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Abstract

Pinpoint landing identifies the capability to land on a planet, e.g. Mars or the Moon,
with a position error lower than few tens of meters. To reach this challenging aim
different technologies are involved. Looking deeper at the area of the terrain relative
navigation and strategies, this work focuses in particular on the development and
analysis of two matching algorithms designed to initialize the landing sequence.
The primary purpose of the matching algorithms is to provide an initial estimate of
the spacecraft pose with respect to the landing target, encompassing both position
and attitude. This estimation serves as a crucial input for initializing the guidance
and navigation system during the final descent phase towards the established
landmark.

To achieve this, during the descent phase a Landing Vision System (LVS)
mounted on the spacecraft captures multiple images of the planetary surface and
various landmark features - such as radius and relative coordinates - are extracted.
The matching algorithm then compares these obtained features with a preloaded
map of a broader region encompassing the captured image.

For the objective of this dissertation, two matching algorithms have been
developed and analyzed. The first algorithm is based on the construction of
triangular configurations, leveraging the geometric similarity of these structures for
feature matching, whilst the second one seeks the transformation that optimally
aligns the extracted features with those present in the reference map. Furthermore, a
Monte Carlo analysis was conducted to assess the performance of the aforementioned
methods, accounting for errors affecting both attitude and altitude. The results
demonstrate that both algorithms exhibit robustness, even under challenging
conditions. While the first algorithm is more resilient to errors, it entails a higher
computational cost. Conversely, the second algorithm offers significantly improved
speed but exhibits greater susceptibility to inaccuracies and errors.

In the conclusions, this thesis describes the manners and constraints for the
applicability of such typologies of algorithms in the frame of the future exploration
missions, manned and unmanned, where position accuracy at landing will become
more and more crucial.
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Chapter 1

Introduction

The exploration of the Moon and Mars has continuously fascinated humanity,
inspiring different kinds of art and disciplines, before becoming the focus of scientists
and engineers. The Soviet Union pioneered human spaceflight by sending the first
astronaut into orbit in 1961, while the United States achieved the first human
landing on the Moon in 1969 through the Apollo program. However, the first
successful mission to Mars was Mariner 4 in 1965 from NASA, which provided the
first close-up images of the Red Planet. The Soviet Mars 3 mission in 1971 became
the first spacecraft to achieve a soft landing on Mars, though it failed shortly
after touchdown. Viking 1 and Viking 2 missions from NASA in 1976 successfully
landed and transmitted scientific data, marking a significant milestone in Mars
exploration.

Following the Moon landing, governmental interest in space exploration declined,
but renewed attention emerged towards the end of the 20th century. NASA resumed
Mars missions, deploying numerous orbiters, landers, and rovers.

Mars landings require different strategies depending on the precision needed.
Ballistic entry is suitable for missions with less stringent accuracy requirements,
with landing zones spanning up to 50 km due to atmospheric variations. For
missions requiring precision within a few kilometers, guided entry systems actively
control descent by modulating drag and lift. Future missions demanding pinpoint
accuracy within 100 meters will require advanced technologies, including optimized
guidance, terrain navigation, and obstacle avoidance.

During the final descent phase, parachutes deploy, and the thermal protection
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Introduction

shield is released, exposing the radar altimeter and Landing Vision System (LVS).
The LVS is crucial for pinpoint landings, as radar alone can determine altitude
and velocity but lacks precise positional accuracy. The LVS captures images of
the Martian terrain, compares landmark features with preloaded maps, and allows
real-time location estimation. The process initiates at an altitude of approximately
4 kilometers. During the image processing and feature-matching phase, the lander,
descending under parachute, maintains a velocity of around 100 m/s. Prior to
reaching an altitude of approximately 2,500 meters, the estimated position of
the lander relative to the designated landing target is provided to the optimized
guidance system. This system computes the trajectory towards the target while
considering kinematic, dynamic, and operational constraints.

Upon completing this phase, the lander transitions to the controlled descent
phase. A maneuver is commanded to reorient the longitudinal axis of the lander to
a prescribed off-vertical attitude. Subsequently, a divert maneuver is executed to
correct the horizontal displacement and align the vehicle above the landing site.
Finally, a braking maneuver is performed to achieve a soft landing in proximity to
the target location.

Terrain navigation continuously tracks landmarks in the LVS field of view, using
cameras or LiDAR to update the position and orientation of the lander. In cases
where onboard sensors detect unexpected hazards, last-minute obstacle avoidance
maneuvers can be executed to ensure a safe landing.

This thesis focuses mainly on the features comparing process, developing two
different algorithms along with the whole descent environment model, suited for the
Martian specific setting, to simulate as accurately as possible a realistic scenario
for future missions.

The following dissertation is structured to offer a thorough exploration of the
problem and the solutions devised. Chapters 2 and 3 provide an overview of the
Pinpoint Landing Problem, analyzing objectives and constraints and depicting
the state of the art for the matching algorithms. Chapter 4 and 5 present the
methodology adopted to create the simulation environment. Chapter 6 focuses
on the matching algorithms and their different approaches while an experimental
analysis is proposed in Chapter 7, where the results of the two methods are compared
in different case scenarios and proposing future research directions. Finally, Chapter
8 concludes the thesis by summarizing the results.
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Chapter 2

Problem Overview

In this prefatory chapter there will be a more detailed overview of the pinpoint
landing problem, with particular attention to the absolute localization and its
challenges, delving into the processes of landmark detection and the obtained
features, proceeding with the core of the study, the matching algorithms, and the
constraints that have to be taken into account.

2.1 Pinpoint Landing problem

As previously mentioned, the pinpoint landing is a fundamental operation for
the purposes of upcoming future missions in the field of space exploration. The
capability to land in a precise location, with less than 100 meters of error, allows
for the allocation of resources in specific outpost, avoiding hazard regions, and
enabling the exploration of highly specified areas otherwise difficult to reach.

At the end of the entry phase a parachute or a number of successive parachutes
are opened, and successively the thermal protection shield is released enabling the
Radar Doppler Altimeter (RDA) and the Landing Vision System to look at the
soil. For both Lunar and Martian missions, when pinpoint landing is required, the
Landing Vision System is fundamental because the radar may be only able to deter-
mine the altitude or the velocity vector (in case the Doppler channel is integrated)
but not the latitude and longitude distance from the target. By using the LVS an
image of the surface can be captured, landmark features may be identified and
compared with the ones in a map, including the observed area, preloaded in the
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onboard computer database before launch. The activity is fundamental to initiate
the whole sequence of pinpoint landing and is actually the objective of this thesis.

Indeed, the identification of observed terrain features within the image enables
the quantification of positional error associated with the current position of the lan-
der, with respect to the landing target, when the altitude is still about 4 km above
the planet surface. The lander in this phase is still hanged to the parachute limiting
its vertical velocity. The computer can so take a certain number of seconds (order of
one decade) to elaborate the images and accomplish the mentioned task of initial lo-
calization. The successive task is represented by the elaboration of a kinematic and
dynamic profile to be followed by the control (starting at an altitude of about 2 km).
The task exploits optimized algorithms to identify, at first, the most convenient
flight duration to the target and then a sequence of commands allowing to simulta-
neously fulfil all the kinematics, dynamic and operational constraints of the landing.

During this phase the terrain navigation is in charge to track the landmarks
changing in the field of view of the LVS (that could be based on cameras or
LiDAR) so providing the updated lander state (translation and rotation terms)
time by time, whilst the navigation could be on call for a last occurrence task of
obstacle avoidance in case the proximity observation of the surface is detecting
some unexpected hazards not evident from the remote observation.

Figure 2.1: Pinpoint landing scheme, example from MSL mission [1]
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2.2 Landmark Detection and Features Extraction

Landmarks, especially in the context of Mars exploration, can be of different types,
such as craters, rocks, ridges, depressions, and other geological features that can
be used to identify a specific area. Typically, since they often recall a circular or
elliptic shape, it is useful to consider landmarks as circumferences to simplify the
detection process and yet provide significant characteristics.

Nowadays, landmark detection and feature extraction are predominantly per-
formed using conventional methods, though deep learning-based approaches are
increasingly being adopted due to rapid advancements in the field in recent years.
Classical algorithms utilize image processing approaches to identify landmarks,
leveraging on edge-to-edge detection, Hough transforms, template matching meth-
ods, watershed algorithms and threshold segmentation [2]. These traditional
techniques can be effective on small datasets and in scenarios where the landmarks
are well-defined and easily distinguishable, but they can struggle as the dataset
grows, illumination noise increases, or asset and altitude errors are present, leading
to scaling and perspective errors. On the other hand, deep learning algorithms
can be trained on large landmark datasets of the desired surface and can provide
a more robust and accurate detection, even in the presence of sustained noise,
leveraging object and pattern recognition, semantic segmentation and classification
tasks. However, they require detailed and well-annotated datasets that are not
always available, and they can be computationally expensive and time-consuming,
thus not always suitable for the technology constraints of the on-board computers
and time requirements. For the purpose of this thesis, a classical approach is
presented, which is more suitable for the size and characteristics of the synthetic
map generated for the study.

2.3 Matching Algorithm

For the successful identification of the spacecraft location inside the observed area,
the extracted features obtained from the corresponding landmarks captured in
the LVS image have to be compared to the ones already stored in an on-board
database of known landmarks of the same—but broader— area. However, the
comparison is not straightforward due to the presence of different sources of noise,
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such as perturbations in the spacecraft pose and altitude. Albeit it is safe to
assume that the spacecraft entry phase is deterministic, that is the vehicle pose,
altitude and velocity are known with a high degree of precision, minor errors
can affect these estimated values, leading to slight rotations along the three axes,
entailing rotation and perspective differences, and altitude noise that is responsible
for an additional scaling factor to be taken into account. Thus, the matching
algorithm has to tackle these issues and provide a robust and accurate estimate of
the spacecraft coordinates, avoiding mismatching and false positives that could lead
to a wrong localization and consequently to a possible failure of the landing. Since
the algorithm has to provide a result in the least amount of time possible (in the
order of a decade of seconds), it is crucial that it is computationally efficient and
able to run on a low-power device such as the on-board computer of the spacecraft,
and it’s also fundamental that it can always produce a successful result, whether
it is reliable or not. In this dissertation, two different algorithms are proposed,
each one with its own strengths and weaknesses in terms of computational time,
accuracy and success rate, and they are compared to each other but also evaluated
independently, in order to provide a comprehensive analysis of their performances
in different scenarios.

2.4 Constraints and Output Target

For the purpose of this study, the following constraints on errors have to be taken
into account, considering the on-board instrumentation:

Actual Parameters

• Altitude: 4100 m ± 65 m

• Position:

– x: 0 ± 3000 m
– y: 0 ± 3000 m

• Pose:

– Off-vertical Axes: 0 ± 5 degrees
– Perpendicular Axis: 0 ± 180 degrees
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Estimated Parameters

• Altitude: 4100 m

• Pose:

– Off-vertical Axes: 0 ± 1 degree

– Perpendicular Axis: 0 ± 1 degree

Target

The target is represented by the ultimately estimated coordinates of the spacecraft
position:

• Latitude

• Longitude

7



Chapter 3

A Review of Existing
Landmark Matching
Algorithms

While landmark matching for precision landing represents a relatively nascent
area of research, a considerable number of methodologies have been developed to
address this challenge. Over recent years, this field has experienced substantial
growth, with significant investments from various space agencies aimed at creating
sophisticated technologies to enhance landing accuracy.

Leroy et al. pioneered an absolute navigation technique utilizing craters, initially
conceived for an asteroid landing mission [3]. Their approach involved detecting
craters through the identification of their perimeters and subsequent fitting of
ellipses. A pre-existing crater catalog served as the reference dataset against which
the detected craters were projected and matched. However, this method was limited
to resolving the affine transformation between the two crater sets, thus requiring a
reasonably accurate initial estimate of the spacecraft’s pose.

Chang et al. further explored crater-based absolute navigation through several
iterations, initially focusing on asteroid landings before adapting their work for
a Mars mission. Their methodology employed edge detection to identify craters
within lander imagery and subsequently matched these observed craters with known
ones by utilizing co-planar invariants derived from the crater ellipses [4].
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Singh and Lim proposed a method specifically designed for fully autonomous
absolute navigation, eliminating the need for prior pose information, except for
the requirement for a nadir-pointing navigation camera [5]. Their work marked
the first instance of crater detection through image segmentation, as opposed to
traditional edge detection, although it relied on fixed thresholds for this process.

Similarly, the method developed by Hanak and Crain also necessitated a nadir-
pointing camera for spacecraft self-localization [6]. This requirement stemmed from
their crater candidate extraction technique, which employed circular edge curve
detection. For crater matching, they utilized a k-vector approach, analogous to
those used in star trackers, which was further augmented with an additional crater
to enhance robustness. Their method demonstrated global lunar localization within
a defined altitude range.

An extensive study by Simard Bilodeau refined crater detection by integrating
segmentation with an edge-based approach to improve resilience against erroneous
detections [7]. However, the crater matching component of this method relied on
an initial pose estimate provided by an external navigation filter. This filter was
assumed to be operational, projecting the crater catalog onto the image plane to
facilitate the matching of detected craters. Consequently, a successful initialization
of the system was deemed necessary to obtain a sufficiently accurate pose estimate.

Maass et al. defined a methodology that integrated three distinct crater matching
algorithms, each tailored to different phases of vehicle descent, addressing scenarios
ranging from a lost-in-space situation to one with an estimated initial pose [8].
Their approach was designed to be robust against false detections and capable of
functioning in a fully autonomous manner.

Jin et al. introduced a strategy to mitigate challenges associated with deep
learning-based crater detection and matching by fusing geometric and regional
descriptors, thereby providing a robust solution for visual navigation tasks [9].

A novel technique was presented by Uwano et al. [10], which leverages triangle
geometric features to determine the similarity between landmark triads observed
by the camera and those within a preloaded database.

Finally, another notable approach was developed by Li et al. [11], which utilizes
the centers and radii of landmarks to construct feature histogram descriptors for
preliminary matching, followed by the application of Random Sample Consensus
(RANSAC) to eliminate spurious matches.
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The latter two methodologies will be examined in greater detail in subsequent
chapters, as the algorithms proposed in this dissertation draw inspiration from
them.
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Chapter 4

Simulated Environment

To properly face the pinpoint landing problem is necessary to provide an envi-
ronment that can handle the simulation of the spacecraft descent, resembling as
more accurately as possible real terrain characteristics. To do so, the PANGU tool
played a relevant role in the creation of a synthetic landmark map that has been
used to test the simulations of this thesis. In this chapter a brief introduction to
PANGU will be given, outlining its main features and capabilities, followed by the
methods used to generate the actual dataset starting from the tool output.

4.1 PANGU Tool

PANGU (Planet and Asteroid Natural scene Generation Utility) is a simulation tool
designed to validate autonomous spacecraft navigation and landing systems [12]. It
generates high-resolution synthetic imagery and LiDAR data, replicating planetary
or asteroid surfaces with multi-resolution terrain modeling. The software enables
the creation of synthetic real-world terrains, incorporating features like craters
and boulders to simulate hazardous landscapes. It also models small celestial
bodies, allowing users to import existing shapes or generate synthetic asteroids
with realistic surface textures.

PANGU includes customizable camera and LiDAR simulations, emulating opti-
cal distortions, sensor noise, and motion effects, rendered via GPU for real-time
performance. Dynamic mission phases, such as landing sequences, can be visual-
ized using FFmpeg-generated videos. Validated against data from missions like
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Hayabusa, PANGU has been refined over two decades and serves as a critical
tool for European space exploration, aiding navigation algorithm development and
hazard avoidance testing.

Figure 4.1: Example of PANGU generated terrain image

4.2 Synthetic Terrain Map Generation

For the specific case of this dissertation, the PANGU tool has been used to generate
a synthetic terrain map of a Martian surface, providing more than 100 images of a
reference area.

Starting from the data generated by the software, salient features of the land-
marks inside the area have been extracted, considering them as circles. In particular,
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latitude and longitude coordinates along with radius and age were taken into ac-
count. Since PANGU provides a real-time render of the scene, extracted features
were taken at diverse times and heights during the descent, creating a heterogeneous
landmark dataset encompassing a 256 km2 surface area divided in 5 progressively
decreasing size frames of 16x16, 8x8, 4x4, 2x2, 1x1 km2 (according to the elevation
reduction).

To achieve a high uniformity in terms of landmark characteristics, age and
extension have been considered, where the first value defines how much the edge
has been flattened over time and thus determining the capability to be identified by
the LVS. A normal distribution has been applied and entries with an age outside
the range of [50 - 90] years and a diameter > 300 m were filtered out.
Afterward, the 5 different frames of the scene just filtered have been merged, re-
sulting in a total of 2529 landmarks uniformly distributed over the 256 km2 surface
(Figure 4.2).

Figure 4.2: Synthetic landmark map
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Chapter 5

Landmark Detection and
Feature Extraction

In order to implement the landmark detection process, a real-time model of the
landing vision system has been developed. It is implemented using the Simulink
framework and exploiting the pinhole model. The simulation system mimics the
descent of the spacecraft from 4100 m of altitude, that is the elevation at which
the Radar Doppler Altimeter begins his function, to an altitude of about 2400
m, where the Terrain Relative Navigation system is provided with the estimated
position and is able to start the tracking phase towards the landing target.

The model is designed to refresh its state variables at a rate of 10 Hz, providing
different captured images of the terrain during the process. Notwithstanding, only
the first shot (at time t = 0 s) is analyzed for each simulation, as it already provides
enough insights for this study purposes.

5.1 Pinhole Model

The Pinhole Model is based on a sequence of transformations enabling the repre-
sentation of a solid 3-Dimensional object in the 2-Dimensional plane of the image.

Firstly, a point on the planetary surface pM can be transformed into the cam-
era frame pC . Both pM and pC are 3-Dimensional vectors at this level. The
transformations involved in the model are defined as follows:
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pi,C = A
è
qB

Mk
qC

B

é 3
pi,M − rMk

− A
è
qB

Mk

éT
rC,B

4

• qB
M,k is the quaternion at time k from the Landing Target Frame (LTF) to

the body frame.

• rM,k is the distance between surface and the lander at time k.

• rC,B is the fixed distance between the body frame and the camera.

The following relationship produces the 2D image of the object. A point in the
camera frame pC can be transformed into a point of the camera image pP through:

pi,P =
h/2
w/2

− f

eT
3 pi,C

eT
2

eT
1

pi,C (5.1)

Where:

• w, h are the width and height of the charge-coupled device camera (CCD).

• f = 13.5 mm is the focal length (from which the half-cone aperture of θ ≈ 30
deg is derived (5.2)).

• For the adopted camera, w = h = 11 mm.

θ = tan−1
A√

h2 + w2

2f

B
(5.2)

The transformation of the images from the camera images to the linked objects
observed on the ground is therefore possible by inverting the process of the roto-
translation transformations described above.
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Figure 5.1: Pictorial representation of the pinhole model of the camera. The
Landing Target Frame (LTF) is referenced as the East-North-Up (ENU) reference
frame.
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5.2 Simulink Environment

The Simulink environment above described is structured in a hierarchical manner,
with the top-level diagram presenting 3 main blocks, as described in Figure 5.2:

• Input of the Actual Pose
This block provides the actual pose of the spacecraft, i.e. the real position
and attitude of the spacecraft. These input values establish in which position
the spacecraft is at the beginning of the simulation and its orientation.

• Ground-to-Camera Transformation
The following unit simulates the behavior of the Landing Vision System on the
ground-to-camera transformation: in particular, a single landmark is identified
by 5 points on its rim, for a total of up to 100 landmarks detected in the camera
field of view. This arbitrary value takes into account a sufficient number of
landmarks, considering possible missed recognitions. These extracted points
undergo a pinhole transformation that generates ellipses shapes in the camera
frame.

• Camera-to-Ground Transformation
This block, in contrast to the previous one, performs the inverse transformation,
extrapolating centers of the ellipses and their equivalent radius to trace back
the shapes to their circular form. In this phase estimated altitude and attitude
provide an additional reconstruction error that afflicts the landmark output
list.

In summary, the simulation model outputs a set of up to 100 detected landmarks,
each defined by its center coordinates and radius, serving as input for the subsequent
matching algorithm.

The initial orientation of the vehicle is represented using a quaternion, a 4-
dimensional vector that provides a compact and non-singular representation of
rotation in 3-dimensional space. The quaternion is defined as follows:

17



Landmark Detection and Feature Extraction

q =


q0

q1

q2
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cos
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θ

2

B

ux sin
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2
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uy sin
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2

B
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A
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(5.3)

Where:

• θ is the rotation angle,

• u is the rotation axis (unit vector),

• q0 is the scalar part of the quaternion,

• q1, q2, q3 form the vector part of the quaternion.

The position of the spacecraft is represented by a 3-dimensional vector, which
defines the coordinates of the spacecraft in the 3-Dimensional space. The position
vector is defined as follows:

p =


x

y

z

 (5.4)

With:

• x as the longitude coordinate,

• y as the latitude coordinate,

• z as the altitude coordinate.
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Below, the Simulink model is presented in Figure 5.2.

Figure 5.2: Top-level of the Simulink model

In particular, the Camera-to-Ground Transformation block elaborates the real
pose of the spacecraft received from the input, generating the estimated attitude
quaternion and the position vector adding uncertainties to real values, according
to the error ranges established in advance.

To provide a clearer understanding of how the estimated initial position vector
and estimated attitude quaternion are generated, the adopted approach is presented:

• The estimated initial position vector is defined as:

pest =


xest

yest

zest

 (5.5)

Where:

– xest = 0
– yest = 0
– zest = 4100

Latitude and longitude coordinates are set to zero as the spacecraft is assumed
to be at the center of the image, placing accordingly its relative coordinate
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system. Altitude is set at 4100, which is the detected elevation value at which
the LVS begins its operations.

• The estimated attitude quaternion is defined as:

qest =


q0,est

q1,est

q2,est

q3,est

 (5.6)

Where:

– q1,est = q1,act + ∆ϕ

– q2,est = q2,act + ∆θ

– q3,est = q3,act + ∆ψ

Vectorial components of the estimated quaternion are composed of the real
correspondent part with uncertainties added to each axis. The generation criteria
for the uncertainties will be later analyzed in section 7.2.

Underneath, a closer view of Camera-to-Ground Transformation block is pre-
sented in Figure 5.3.

Figure 5.3: Camera-to-Ground Transformation block closer view
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Figure 5.4: Example of detected landmarks in the reference map. An area of 4×4
km2 is reported, centered on the estimated initial lander position and containing
up to 100 detected landmarks.
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Chapter 6

Matching Algorithms

This chapter provides an in-depth analysis of the matching phase previously out-
lined, presenting a detailed examination of two distinct methods. Both algorithms
draw inspiration from existing literature, specifically Triangle Similarity Matching
by Uwano et al. [10] and Neighborhood Matching by Li et al. [11].

These methods have been reinterpreted and further refined, with core features
adapted to better suit a significantly different scenario, such as the pinpoint landing
on Martian surface.

The decision to develop the two algorithms stems from their profoundly diverse
approach towards the shared objective. TSM algorithm sets its foundations on a
highly robust methodology, leading to an extremely accurate result in exchange
for an elevate computation time. On the other hand, RANSAC algorithm goes
in the opposite direction, fostering a significant low execution time but losing in
reliability.

These contrasting solutions offer valuable insights into the pinpoint landing
problem, presenting different perspectives on how to approach the same challenge.

6.1 Triangle Similarity Matching (TSM)

As the name suggests, this algorithm operates by constructing constellations
composed of landmarks in the form of triangles. These triangular formations are
derived from input data captured by the camera as illustrated in Figure 5.4, and
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are subsequently compared against a reference set of precomputed constellations
stored in the Landing Vision System. By leveraging this structured approach,
the algorithm aims to establish correspondences between observed and known
landmarks, exploiting geometric features of the triangles.

6.1.1 TSM Methodology

Initially, every extracted landmark obtained from the camera shot image is associ-
ated with the two nearest ones to model a triangle shape. For each constellation,
salient features are obtained successively:

• Angles of the three inner vertexes

• Lenght of the three sides

• Coordinates of the three landmarks forming the triangle

Once the triangle set is obtained, the algorithm performs an initial discrimination
between different objects in the catalogs by comparing the sum of the two smallest
interior angles (6.1). If the difference between these sums falls below a predefined
threshold, the two triangles can be considered approximately affine in the initial
assessment.

2Ø
i=1
|θi − θ′

i| < DIFF (6.1)

Where:

• θi is the i smallest inner angle of the known triangle

• θ′
i is the i smallest inner angle of the camera triangle

• DIFF is the given threshold value

Triangles identified as similar undergo further analysis to determine whether the
match is accurate or a false positive. For each triangle, the algorithm computes
three key features for the entire process:

• c: geometric center of the triangle

• d1: vector of the longest side of the triangle
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• dcenter: vector connecting the geometric center to the nearest landmark outside
the triangle

These obtained values are then used to calculate the projection discrepancies in
Equation 6.2 and Equation 6.3:

I =
-----d1 · dcenter −

d′
1 · d′

center

γ2

----- (6.2)

C =
-----d1 × dcenter −

d′
1 × d′

center

γ2

----- (6.3)

γ =
-----d1

d′
1

----- (6.4)

Where:

• I: the difference of the inner products between d1 and dcenter of paired triangles

• C: the difference of the cross products between d1 and dcenter of paired triangles

• γ: the scaling value between the pair

In this dissertation, γ is always considered ≈ 1 as the elevation uncertainty does
not determine a consistent scaling factor between the pair.
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Figure 6.1: Triangle features

The key features extracted from the triangles are utilized to evaluate their
similarity. Based on the reference literature study, a pair of triangles is considered
matched if the condition specified in Equation 6.5 is satisfied [10]. This inequality
serves as a critical criterion for determining the correspondence between the
geometric properties of the triangles, ensuring that the matching process is both
accurate and reliable. The satisfaction of this constraint confirms that the triangles
share sufficient geometric similarity.

I2 + C2 < T · |dcenter| (6.5)

Where T is a fixed threshold. A preliminary list of paired triangles is thus available,
as an example case in Figure 6.2 is depicted below.
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Figure 6.2: Example of preliminary TSM matched pairs

The final part of the algorithm involves a geometric transformation of the center
point of the camera frame, which defines the vehicle position, to finally determine
the estimated spacecraft coordinates with respect to the target point. To do so,
the algorithm leverages the resulting similar triangle pairs from the aforementioned
selection process, which are then used to compute the rotation matrix and the
translation vector for the transformation, as described in Equation 6.6.

ct = R · cs + t (6.6)

Where:

• ct: target triangle geometric center in the preloaded map frame

• cs: source triangle geometric center in the camera frame
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• R: rotation matrix defined as follows:

R =
cos(θ) − sin(θ)

sin(θ) cos(θ)

 (6.7)

• θ: angle defining the rotation around an axis, perpendicular to terrain, joining
the camera with the observed surface

• t: translation vector

To compute the rotation matrix R, a filtering strategy is adopted to extract the
angle θ. This is achieved by calculating the angle between the geometric centers of
all matched couples (6.8).

θi = arctan
A
yti
− ysi

xti
− xsi

B
(6.8)

A normal distribution of these values is then formed, and the angles falling outside
the 3–σ range are filtered out. The mean value of the remaining angles is subse-
quently used to define the rotation angle θ and thus the rotation matrix.

Successively, every triangle vertex and geometric center of the source frame
is rotated by means of R to properly compute the translation vector. Distances
between the rotated source centroids and the target ones are derived, and again
a normal distribution of the results is generated. To ensure a robust estimation,
the distances are filtered again excluding values beyond the 3–σ range. The mean
value of the remaining distances is then used to define the translation vector t.
Below, Figure 6.3 shows how source triangles nearly overlap the target paired ones
after the transformation following same example previously introduced.
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Figure 6.3: Example of refined TSM matched pairs

To ensure the reliability of the entire process, the algorithm performs an inter-
nal self-diagnosis to assess its current state. Specifically, it verifies whether the
centroid distances, this time filtered using a more stringent 2–σ range, remain
consistent with previously computed values. If the two distributions are found to
be inconsistent, the algorithm flags the final result, signaling a potential invalid
outcome in the matching process. The discrepancy is evaluated by means of a
reliability index function, which takes into account the inliers ratio, the paired
centroids displacement and the delta distance between the outputs derived from
the two distributions, ensuring they fall under a predetermined threshold. A deeper
analysis on this procedure in given in section 7.2.

This validation step is crucial for enhancing the practical application of the algo-
rithm in pinpoint landing missions. Indeed, it introduces a layer of self-assessment
within the process, helping to post-landing evaluations and troubleshooting, useful
to the Mission Control Center to take decisions and elaborate recovery plans when
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necessary.
Finally, the algorithm computes the estimated position of the spacecraft by

applying the transformation defined in Equation 6.6 to the camera frame center
point. This process yields the final coordinates of the spacecraft, providing the
initial state that enables the trajectory planning and tracking to the target.

In Table 6.1 are summarized the parameters used in the algorithm, which are de-
fined based on the analysis of the reference literature and the specific requirements
of this application scenario. These values can be conveniently adjusted to optimize
the performance of the algorithm for different situations, allowing for flexibility in
the matching process.

Parameters Value
DIFF 3

T 4 · 103

γ 1

Table 6.1: Parameters used in TSM algorithm
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Figure 6.4: TSM algorithm flowchart
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6.2 Neighborhood Matching (RANSAC)

This section presents a diverse matching algorithm, which differs significantly from
the previous one in terms of approach and methodology. It is based on the best
effort strategy, which aims to identify the best possible transformation that maps
the camera frame planar projection to the correspondent one contained in the
preloaded set of landmarks.

The above-mentioned algorithm, in fact, exploits the surroundings of each land-
mark to create a unique feature descriptor for each of them. These tuples, each
composed of 3 features, create a 3-dimensional histogram that defines a neighbor-
hood, which is then used to perform a preliminary list of similar landmark pairs.
Successively, for each pair, a coarse matching and a refinement step approach are
performed by means of Random Sample Consensus (RANSAC), leveraging the
homography matrix to finally compute the best matching transformation.

6.2.1 RANSAC Methodology

To begin with, the algorithm identifies for each landmark in the camera frame a set
of neighbors, which are defined as the landmarks falling within a certain distance
from the selected one. This distance depends on the landmark radius, multiplied
by a scaling factor k (6.9). In order to be considered valid, a neighborhood must
contain at least m landmarks (6.10). Parameters k and m can be tuned opportunely
to adapt the algorithm to different situations.

Ni = {j | di,j < k · ri} (6.9)

|Ni| ≥ m (6.10)

Where:

• Ni: neighborhood of the i-th landmark

• di,j: distance between the i-th and j-th landmarks centers

• ri: radius of the i-th landmark
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• k: scaling factor

• m: minimum number of landmarks in the neighborhood

Once the neighborhoods are formed, key values are obtained for each set:

• The neighbor landmarks are sorted in descending order of size:

r1 > r2 > r3 > · · · > rn

• v1: vector connecting the center of the landmark i to the center of the largest
neighbor landmark j. This determines the local reference coordinate system,
with the anticlockwise direction defined as positive.

• vj: vector connecting the center of the landmark i to the center of the n-th
neighbor landmark.

Figure 6.5: Example of neighborhood and its elements

Successively the algorithm computes three features for each neighborhood ele-
ment, which are then used to generate a 3-dimensional histogram that uniquely
describes the landmark i. The features are defined as follows:
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1. Orientation Feature:

• The angle θi between v1 and vj is denoted as f i
1, representing the orienta-

tion feature of j:

f j
1 = ∠(v1,vj)

2. Scale Feature:

• The ratio of the center landmark radius to the radius of the neighbor j is
computed as:

f j
2 = rc

rj

3. Distance Feature:

• The ratio of the norm of vj to the norm of v1, representing the relative
distance feature of the neighbor landmark j, is defined as:

f j
3 = ∥vj∥
∥v1∥

Tuples of features are thus obtained, each denoted as (f j
1 , f

j
2 , f

j
3 ), and are further

elaborated to create the histogram structures.

• Each feature f j
1 , f j

2 , and f j
3 is normalized to the range [0,1].

• The range [0,1] is divided into nb discrete bins for each feature.

• For each neighbor landmark j, there are a total of n3
b possible combinations of

feature values across the bins.

• The feature combinations of all neighbors are counted into a histogram H for
landmark i.

• The histograms of all source landmarks form Hs, while the histograms of the
target preloaded map form Ht.
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The similarities between histograms in Hs and in Ht are measured by means of
the Euclidean distance in the feature space. A correspondence relation is built if
the Euclidean distance is less than a given threshold T .

Figure 6.6: Example of initial matched pairs

With the paired landmarks list (source and target center coordinates), the
algorithm proceeds to perform a coarse matching step. One pair at a time is
selected and the Equation 6.11 is calculated:

ct = s ·R · cs + t (6.11)

Where:

• s is the scale ratio,

• R is the rotation matrix related to an angle φ,

• t is the translation vector.

The above equation defines a geometric transformation to perform a preliminary
but approximate shift of the source landmarks towards the target ones. Let cs be
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the center coordinate of the source element, and ct be its corresponding pair in the
target reference frame. The scale ratio s can be determined as:

s = rcs

rct

The angle φ can be determined by the angle between vs
1 and vt

1.

φ = ∠(vs
1,vt

1)

With s and φ, the translation vector t can also be determined. Every source
landmark cs is then transformed, generating a new set of coordinates C ′

s in the
target frame, where the single entry is defined as in Equation 6.12.

c′
s = s ·R · cs + t (6.12)

After the coarse transformation, the source landmarks are roughly aligned with
those in the target frame, leading to a more precise identification of correspondences.
The matches between each element in the sets C ′

s and Ct at this phase are determined
based on the Euclidean distance between their centers.

To filter out mismatched correspondences, RANSAC method is exploited, which
is utilized to reduce noise and outliers data, higlhy efficient to eliminate potential
false matches. In the fine matching, the objective model of RANSAC is the
transformation matrix between C ′

s and Ct, which is a homography matrix as
depicted in Equation 6.13.


xt

yt

1

 =


h1 h2 h3

h4 h5 h6

h7 h8 1



x′

s

y′
s

1

 (6.13)

Where:

• (x′
s, y

′
s) are the coordinates of the source landmarks after the coarse transfor-

mation

• (xt, yt) are the coordinates of the target landmarks

• h1, h2, ..., h8 are the homography matrix coefficients
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The algorithm at this point selects four pairs of landmarks, essential to solve the
homography matrix. After obtaining the unknown values, all the correspondences
of landmarks are used to compute the transformations of each coarse matched
coordinate and a cost function is calculated (6.14).

Cost =
nØ

i=1

1
(xti
− x′′

si
)2 + (yti

− y′′
si

)2
2

(6.14)

x′′
si

=
h1x

′
si

+ h2y
′
si

+ h3

h7x′
si

+ h8y′
si

+ 1

y′′
si

=
h4x

′
si

+ h5y
′
si

+ h6

h7x′
si

+ h8y′
si

+ 1

Where:

• n is the total number of correspondences between C ′
s and Ct

• (xti
, yti

) are the coordinates of the target landmarks

• (x′′
si
, y′′

si
) are the coordinates of the source landmarks after the fine transfor-

mation

In order to compensate the stochastic nature of this latest step and to increase
the overall number of iterations, the algorithm is designed to repeat the random
selection of four pairs and thus the computation of the homography matrix ns times.

The procedures carried out from the coarse matching (6.11) up to the cost
function calculation are iterated for each landmark pair in the preliminary list.
The algorithm then selects the transformation that minimizes the cost function,
and meaningful data is stored to obtain the final output:

• The best homography matrix

• The inlier pairs, which are the source correspondences c′′
s (transformed by

means of the selected best homography matrix) that produce a singular cost
value below a defined threshold Tc

• The scaling factor s, rotation matrix R and translation vector t of the iteration
that lead to the homography matrix with the lowest cost
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The following Figure 6.7 presents an example of the best cost evolution over the
iterations, highlighting the convergence of the algorithm toward a minimum value.

Figure 6.7: Best cost function trend over iterations

Before proceeding to produce the final output, similar to the TSM algorithm
presented before, the process performs a self-diagnosis estimate about the reliability
of the result. A linear correlation is inferred by experimental analysis between the
overall Euclidean cost of the selected inliers and the distance that exists between
the estimated position of the spacecraft and the target reference. An arbitrary reli-
ability threshold Tr is thus defined, and the algorithm sets a flag reporting whether
the matrix cost is higher or lower than the established threshold. The threshold
is defined conservatively to ensure that a positive flag indicates a highly reliable
result with a high degree of confidence, whereas a negative flag implies that the
result is likely unreliable and should be interpreted with caution. Further insights
are proposed in section 7.2. Eventually, both coarse and fine transformations with
the selected parameters are applied to the camera frame origin point, leading to
the final estimated position of the spacecraft.
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Figure 6.8: Example of final matched pairs

Below, Table 6.2 sums up the parameters utilized in the presented algorithm,
which are tuned according to the best outcome of the experimental analysis for
this specific application case.

Parameters Value
k 7
m 5
nb 4
T 0.7
Tc 5 · 104

Tr 1 · 103

ns 4

Table 6.2: Parameters used in RANSAC algorithm
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Chapter 7

Experimental Analysis

Meaningful results of the experimental verification conducted on both algorithms
are presented in this section. A Monte Carlo analysis has been structured in order
to evaluate the behavior in presence of uncertainties.

In order to provide a fair and coherent comparison between the two algorithms,
the same tech stack and hardware architecture have been used for both. Here is a
brief overview of the experimental setup:

• Programming Language and Environment:

– MATLAB R2024b

– Simulink

• System Architecture:

– CPU: Apple M2

– Memory: 8 GB SDRAM

– Operating System: macOS Sequoia 15.3.1

• Execution Details:

– Execution Mode: Single process

– Threading Model: Single-threaded execution

As briefly mentioned in previous chapters, the matching process begins after the
activation of the Radar Doppler Altimeter (RDA), at roughly 4100 m of altitude

41



Experimental Analysis

where the LVS has few decades of seconds to establish the position of the spacecraft.
Thanks to the stabilizing influence of the parachute, the lander in this phase is
affected by a limited off-vertical angle. Kinematic states of the lander below the
parachute, with the respective ranges and statistic distribution, are considered to
define plausible and representative scenarios of investigation.

7.1 Nominal Case Analysis

Herein this section, the nominal scenario is analyzed. The nominal case is defined as
the scenario where the system is free from any perturbations on the state variables
of the model. Both algorithms are thus evaluated in an ideal situation, where the
vehicle is perfectly aligned with the target landing point, at the correct altitude and
with no banking or rotation variations. Results of both approaches are reported in
Table 7.1.

Metrics TSM RANSAC

x [m] 0 0
y [m] 0 0
h [m] 4100 4100
ϕX [deg] 0 0
ϕY [deg] 0 0
θZ [deg] 0 0
Distance Error [m] 0.24 7.34
Execution Time [s] 17.22 0.19

Table 7.1: Nominal Case Statistics

The Triangle Similarity Matching algorithm exhibits a lower error in the esti-
mated position compared to the RANSAC approach, with a distance error of 0.24
m against 7.34 m. Nevertheless, the RANSAC algorithm shows a significantly lower
execution time, with an average of 0.19 seconds, compared to around 17.22 seconds
of the previously mentioned method. These insights are useful as they provide a
baseline behavior of the system using the two distinct approaches, addressing the
precision of both and the computation time needed to provide a solution.
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7.2 Monte Carlo Analysis

The Monte Carlo Analysis is a statistical method utilized to assess the perfor-
mances of the system with the impact of uncertainties on state variables. Such
analysis has been conducted on the proposed simulation model for the two algo-
rithms, with a total of 100 instances, each with a stochastic set of initial conditions.
To provide a comprehensive and coherent comparison between the two methods,
the same set of initial conditions has been used for both approaches, that is for the
same run n corresponds an equal set of initial variable states.

• Position variations are modeled as a uniform distribution, assuming a max-
imum error of ± 3000 m in the two horizontal coordinates (approximately
corresponding to latitude and longitude) with respect to the target landing
point. It is important to note that 3000 m is a typical figure for the uncertainty
linked to the Parachute Deployment Point at the end of the Guided Entry
phase.

xActual = 0 + 6000 · (rand− 0.5) [m] (7.1)

yActual = 0 + 6000 · (rand− 0.5) [m] (7.2)

• Altitude uncertainties are modeled as a uniform distribution with a ± 65
m error on the estimated altitude of 4100 m, corresponding to the height at
which the landmark detection and matching process begin. This error is a
conservative evaluation of the altitude estimation uncertainty linked to the
RDA inherent errors.

hestimated = 4100 [m] (7.3)

hactual = hestimated + 130 · (rand− 0.5) [m] (7.4)

• Off-vertical angles perturbations along the actual latitude and longitude are
generated as a normal distribution with a maximum variation of ± 5 degrees
on both axes of the spacecraft at 3–σ, while the error of knowledge (estimated
off-vertical angles w.r.t actual off-vertical angles) is 1 deg at 3–σ.

ϕXactual
= 0 + 10 · (randn− 0.5) [deg] (7.5)

ϕYactual
= 0 + 10 · (randn− 0.5) [deg] (7.6)
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ϕXestimated
= 0 + 2 · (randn− 0.5) [deg] (7.7)

ϕYestimated
= 0 + 2 · (randn− 0.5) [deg] (7.8)

• Perpendicular angle error with respect to the surface is instead modeled
as a uniform distribution providing at most a ± 180 degrees change for the
actual rotation along Z-axis. For what concerns the estimated value, the same
approach has been adopted, adding a maximum margin of error of ± 1 degrees.

θZactual
= 0 + 360 · (rand− 0.5) [deg] (7.9)

θZestimated
= 0 + 2 · (randn− 0.5) [deg] (7.10)

The aforementioned uncertainties are summarized in Table 7.2:

Parameters Nominal Value Distribution Max Error / 3σ
xact [m] 0 Uniform ± 3000
yact [m] 0 Uniform ± 3000
hact [m] 4100 Uniform ±65
ϕXact [deg] 0 Normal ±5
ϕYact [deg] 0 Normal ±5
θZact [deg] 0 Uniform ±180
ϕXest [deg] ϕXact Normal ±1
ϕYest [deg] ϕYact Normal ±1
θZest [deg] θZact Normal ±1

Table 7.2: Monte Carlo Analysis Errors

7.2.1 Results

In this section results obtained from the Monte Carlo analysis are exhibited,
according to conditions described in section 7.2. In Figure 7.1 and Figure 7.2
shown below, the success rate of the two algorithms is depicted, highlighting the
percentage of successful, thus valid, outcome over the total number of instances.
Attention is also given to the number of algorithm failures—that is, instances where
the process fails to produce a solution—and not valid cases where the estimated
output distance is excessively far from the target.
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Figure 7.1: TSM Success Rate

Figure 7.2: RANSAC Success Rate

Triangle Similarity Matching algorithm shows a higher success rate compared to
the RANSAC approach, with a percentage of 99%, 1% failure and no invalid cases.
On the other hand, the RANSAC algorithm exhibits a lower success rate, with a
percentage of 91% valid cases, 3% of failures and 6% of invalid cases. In the following
figures, only valid cases are taken into account for both algorithms, in order to
provide a significant comparison of performances in positive outcomes, while false
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positives are introduced when needed to supply more detailed insights. As shown
in Figure 7.3 and Figure 7.4 the two methods exhibits similar performances in
terms of accuracy of the estimated spacecraft position.

Figure 7.3: TSM Scatter Plot

Figure 7.4: RANSAC Scatter Plot
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Herein below, in Figure 7.5 and in Figure 7.6, histograms of the estimated
position error with respect to the target are shown for both algorithms.

Figure 7.5: TSM Estimated Position Error

Figure 7.6: RANSAC Estimated Position Error
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If only valid cases are considered, similar behaviors are observed using the two
distinct approaches. Although the RANSAC algorithm demonstrates a slightly
higher error tendency in the estimated position, if the invalid cases are taken into
account, as Figure 7.7 depicts, nevertheless maintaining a high accuracy overall.

Figure 7.7: RANSAC Estimated Position Error (with outliers)

Figure 7.8 and Figure 7.9 highlight the similarity in the percentile distribution
of the estimated position error for the two methods in the valid cases, keeping the
97% of distance gaps below 60 m.

48



Experimental Analysis

Figure 7.8: TSM Estimated Position Error Percentile

Figure 7.9: RANSAC Estimated Position Error Percentile
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A box-plot is useful to provide a clearer understanding of the estimated distance
error distribution, as shown in Figure 7.10 and Figure 7.11 for valid cases, and in
Figure 7.12 encompassing also invalid cases.

Figure 7.10: TSM Estimated Position Error Box-Plot

Figure 7.11: RANSAC Estimated Position Error Box-Plot
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Figure 7.12: RANSAC Estimated Position Error Box-Plot (with outliers)
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In the following images are visually reported the criteria used to select reliable
outcomes for both algorithms. For the Neighborhood algorithm results has shown
that a reasonable conservative threshold for the final inliers cost is Tr = 1 ·103, as it
guarantees an acceptable trade-off between the number of false positive outcomes
avoided and the number of valid cases discharged (Figure 7.13 and Figure 7.14).

Figure 7.13: RANSAC Reliable Cases close-up view

Figure 7.14: RANSAC Reliable Cases complete view
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On the other hand, for the TSM algorithm a reliability index is computed at
the end of the matching process, taking into account significant values obtained.
The reliability index is so calculated:

Irel = 0.5 · Iratio + 0.25 · Sdist + 0.25 ·∆origin (7.11)

Where:

• Iratio is the ratio between the number of final inliers and the number of initially
matched pairs

• Sdist is the mean distance between centroids of the 2–σ and 3–σ filtered pairs

• ∆origin is the difference between the transformed origin point with 2–σ and
3–σ filtered sets mean distance, respectively

The analysis of the results demonstrates that the proposed reliability index
effectively reflects the validity of the algorithm final outcome. In this specific
scenario, a reliability threshold of Trel = 3 can be reasonably defined as an upper
limit to consider the result valid.

Below, in Figure 7.15, every valid case is depicted by means of its reliability
index and distance error, drawing attention to the arbitrary reliable area and the
estimated distances falling within it.
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Figure 7.15: TSM Reliability Index vs Estimated Position Difference

Finally, in Figure 7.16 and Figure 7.17 presented herein below, a crucial result
for this study is pointed out. Although the TSM algorithm exhibits a higher success
rate, along with a lower error in the estimated position, the RANSAC approach
shows a significantly lower execution time, with an average of roughly 0.2 seconds,
compared to around 15 seconds of the previously mentioned method. This result
legitimates the validity of the RANSAC algorithm, despite lacking of extreme
accuracy, as it is capable of providing a still reliable solution in a substantially
shorter time.
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Figure 7.16: TSM Execution Time

Figure 7.17: RANSAC Execution Time
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The Table 7.3 summarizes all the results achieved by both algorithms. While the
TSM method is highly robust and accurate in providing a reliable and satisfactory
solution, it is also computationally demanding and time-consuming. Indeed, the
dramatic advantage of RANSAC in terms of computation efficiency suggests the
implementation of an iterative approach, in case of failure, processing successive
image of the terrain. For instance the hypothesis of 2 successive elaborations, with
an allocated time ranging to a maximum of 1.2 s (0.6 s · 2), the probability to
fail the localization in both attempts would be 0.092, i.e. 0.0081. Therefore, the
RANSAC would be capable to guarantee a success probability of 99.2% in only
1.2 s against the TSM able to provide an equivalent success probability of 99%
in about 15 s. Furthermore, it could be soon evident that a wide margin would
be present in the RANSAC case for allocating successive iterations, thus with
the possibility to make negligible the failure probability. Instead, with the TSM
algorithm, also a single iteration after the first execution would not be allowed
due to the time constraint of the landing phase, since the lander would be already
flying at an altitude of about 2400 m where the target should be already identified,
the trajectory planned, and the controlled phase started.

Metrics TSM RANSAC

Mean Distance Error [m] 29.16 29.66
Median Distance Error [m] 27.89 27.65
Max Distance Error [m] 93.152 97.36
Min Distance Error [m] 4.7 1.55
Mean Execution Time [s] 15.16 0.17

Table 7.3: Algorithms statistics
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7.3 Future Developments

Further refinements and enhancements can be applied to both the Triangle Similarity
Matching (TSM) and RANSAC algorithms to enhance their performance and
usability. The primary objective is to mitigate the computational drawbacks of the
TSM algorithm while simultaneously improving the robustness and accuracy of the
RANSAC approach. By addressing these aspects, the overall effectiveness of the
target localization strategy can be significantly improved.

7.3.1 Enhancements of the TSM algorithm

TSM algorithm results in a demanding computation time due to the large number
of combinations it has to perform to generate triangles: in fact, for every element
a full search among the list of landmarks is required to find the two closest ones.
Moreover, a consistent number of feature is calculated by means of trigonometric
functions, which add up a not so negligible cost of time to the whole process.
Eventually, the matching process between generated triangles entails a massive
number of iterations to find the best fitting pairs, with a worst case scenario of
O(n2) complexity.

To address these issues, several improvements can be employed:

• Clustering-Based Triangle Filtering: By grouping triangles with similar
geometric properties into clusters, the number of candidate triangles for
matching can be significantly reduced. This approach narrows down the
search space and expedites the comparison process.

• Kd-Tree Data Structure: Implementing a kd-tree for spatial indexing of
landmarks can greatly enhance the efficiency of nearest-neighbor searches.
This structure enables logarithmic search time, reducing the overall computa-
tional burden and making the TSM algorithm more feasible for time-sensitive
applications.

• Parallel Processing and Vectorization: Exploiting modern computing
capabilities, such as multi-threading and GPU acceleration, can distribute the
computational workload efficiently if the on-board instrumentation is equipped
with dedicated hardware. This would allow for concurrent triangle formation
and feature extraction, reducing execution time
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By incorporating these techniques, the TSM algorithm can achieve a more compet-
itive execution time, making it suitable for a larger set of mission scenarios.

7.3.2 Enhancements of the RANSAC algorithm

The RANSAC algorithm, while effective in handling outliers matched pairs, is
inherently less accurate than the TSM approach due to its probabilistic nature. To
improve its reliability and ensure consistency in landmark matching, an advanced
hierarchical structure can be introduced. This framework introduces a multilayer
iterative approach that handles the Neighborhood engine to multiply the opportu-
nities of matching computation and process and endorses the final outcome of the
algorithm.

The proposed framework operates as follows:

• Hierarchical Supervision: The algorithm is structured into at least two
levels:

– The lower level consists of the core RANSAC implementation, responsible
for the estimated position output. At this level, a metrics, based on a
functional cost linked to the inner algorithmic computations, allows the
generation of a boolean indicator. The threshold is fixed in such manner
that the outliers may be detected and discharged. Due to the fact that the
limit could in some cases declare as not reliable an acceptable result, the
hereafter described mechanization is helpful to complete the procedure
successfully.

– The upper level function handles the boolean flag together with possible
iterations and a majority voting criterion to achieve the final algorithmic
result.

• Iterative Reliability Assessment:

– The RANSAC algorithm is executed up to three times.

– After each iteration, the boolean reliability indicator provided by the core
method is checked.

– If the result is deemed reliable, the estimated position is accepted imme-
diately.
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– If not, another iteration is performed, with a maximum of three attempts.

• Fallback and Majority Voting Mechanism:

– If after two iterations no reliable solution is found, the third iteration is
accepted as the final output if deemed valid.

– If all three iterations yield unreliable results, a majority voting mechanism
is employed. The most different estimation among the three ones is
discharged and the most recent among the remaining two ones is chosen
as final result. It is considered as the one better reflecting the spacecraft
state.

By integrating this hierarchical approach, the RANSAC algorithm gains an
additional layer of robustness. The supervision ensures that unreliable results are
filtered out, increasing overall accuracy without compromising the efficiency of the
method.

Indeed, the image processed at each iteration is different from the ones processed
in the previous algorithm steps, therefore the probability of error can be considered
as the combined probability of the error in each successive iteration determining a
huge reduction of failed matching events after three iterations.

In conclusion, according to these presented enhancements, both the TSM and
RANSAC algorithms can be significantly improved in terms of computational
efficiency and robustness. The TSM algorithm, with the aid of kd-trees and clus-
tering techniques, can achieve faster triangle matching. Meanwhile, the supervised
RANSAC framework increases the reliability of landmark matching by incorpo-
rating a structured decision-making process. Together, these improvements will
contribute to a more efficient and accurate initial localization strategy, enabling
pinpoint landing with fine precision in the future planetary missions.
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Chapter 8

Conclusion

This dissertation is dedicated to the development and evaluation of a simulated
scenario for a pinpoint landing mission within a Martian environment. Particular
emphasis is placed on the design, implementation, and analysis of the matching
algorithm process, which plays a pivotal role in determining the pose of the vehicle
relative to a predefined reference frame. This process enables the constrained opti-
mized trajectory planning and the terrain-relative navigation system to accurately
guide the spacecraft toward the designated landing site with high precision.

In pursuit of this objective, two distinct algorithmic approaches have been
explored, each developed to address the challenges associated with terrain-relative
navigation in different operational conditions. These methodologies aim to offer
complementary advantages, ensuring a robust and adaptable solution for a variety
of mission scenarios. By leveraging the strengths of both approaches within an
integrated framework, a more reliable and efficient solution can be achieved, en-
hancing the overall performance of the landing system.

The first approach, the Triangle Similarity Matching (TSM) algorithm, has
demonstrated a high degree of robustness and accuracy in estimating the posi-
tion of the spacecraft. As evidenced by the results obtained from Monte Carlo
simulations, discussed in Section 7.2, this method exhibits a strong capability to
reliably determine the vehicle pose with a high level of certainty. However, despite
its accuracy and robustness, the computational expense associated with the TSM
algorithm poses a significant challenge. The processing time appears to be a critical
limiting factor. The observed computation time approaches the maximum duration

60



Conclusion

allocated for target localization in a pinpoint landing mission. Consequently, while
the current performance would, in principle, allow for the execution of a successful
pinpoint landing, the possibility of performing a second iteration in case of an
uncertain outcome would not be feasible. Therefore, improvements should primarily
focus on enhancing computational efficiency, with the objective of completing the
processing within 7 to 8 seconds.
It is remembered, in this passage, that the computation can be initiated only when
the front-shield release allows the activation of the altimeter and the obtaining
of the surface images. When these operations are completed the altitude of the
lander is slightly over 4000 m. On the other hand the target elaboration must be
completed when the lander is at about 2500 m of altitude to allow the orientation
of the spacecraft and the initiation of the divert manoeuvre at about 2000 m of
altitude. Observing that the trajectory planning can take also some minimum
time for its elaboration, with a descent velocity of 75 m/s under parachute, the
maximum time at disposal of the localization algorithms is in the order of about
15 s.

Conversely, the second approach, based on the Random Sample Consensus
(RANSAC) algorithm, offers a more computationally efficient solution. This method
provides a reliable estimation of the spacecraft position at a significantly reduced
computational cost—approximately 100 times faster than the TSM algorithm.
Such efficiency makes it a viable option for real-time applications and scenarios
with stringent time constraints. However, while the RANSAC algorithm delivers
acceptable accuracy, it does not achieve the same level of precision as the TSM
algorithm. This reduced accuracy could result in minor deviations from the optimal
landing trajectory, potentially impacting the final landing precision.

Despite these trade-offs, the domain of pinpoint landing on Mars remains an
area of ongoing research and rapid evolution. With continuous advancements in
optimization techniques and artificial intelligence-driven strategies, new methodolo-
gies are emerging to enhance landing accuracy and efficiency. The two algorithms
presented in this study establish a solid foundation for further research in this
domain. Their complementary nature suggests that a hybrid approach—leveraging
the accuracy of TSM in scenarios where time is not a critical constraint and the
speed of RANSAC in real-time applications—could lead to a more balanced and
effective solution.
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By contributing to the relatively unexplored yet crucial field of Martian pinpoint
landing, this research provides a concrete basis for future studies. The findings and
methodologies outlined herein serve as a stepping stone for continued advancements
in planetary navigation, ensuring safer and more precise landings on extraterrestrial
surfaces in future missions.
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Appendix - TSM Algorithm
Pseudo-code

Algorithm 1 Triangle Similarity Matching (TSM) Pseudo-code
I. Data Acquisition and Preprocessing
This phase retrieves and processes image data creating triangles. Structures
and thresholds for the matching are initialized.

A. Data Retrieval
1: Retrieve triangle map from reference catalog
2: Obtain landmark map with feature measurements from source image

B. Image Processing
3: Generate triangles with geometric features from source landmark catalog

C. Parameter Initialization
4: Configure similarity thresholds: DIFF ← 4× 103, T ← 3, γ ← 1
5: Initialize parameters and data structures

63



Appendix - TSM Algorithm Pseudo-code

II. Triangle Correspondence Identification
This phase identifies potential triangle matches based on angular similarity and
geometric features.

A. Angular Similarity Assessment
6: for each camera-derived triangle T s

i do
7: Extract the two smallest interior angles αshot ← {α1, α2} where α1 ≤ α2
8: for each map triangle T t

j do
9: Extract the two smallest interior angles αmap ← {β1, β2} where β1 ≤ β2

10: Compute angular difference δα ← |α1 − β1|+ |α2 − β2|
11: if δα < DIFF then
12: Proceed to geometric feature extraction
13: end if
14: end for
15: end for

B. Geometric Feature Extraction
For each potential match, extract and analyze geometric features to further
verify similarity.

1. Target Triangle Analysis
16: Extract vertices A,B,C and compute edge vectors AB,BC,CA
17: Identify longest side d1 and calculate centroid ct ← A+B+C

3
18: Locate nearest non-vertex landmark pnearest to centroid ct

19: Compute reference vector dcenter ← pnearest − ct

2. Camera Triangle Analysis
20: Extract vertices and compute edge vectors
21: Identify longest side d′

1 and calculate centroid cs

22: Locate nearest non-vertex landmark to centroid
23: Compute camera vector d′

center from centroid to the nearest landmark
3. Similarity Verification

24: I ← |d1 · dcenter − (d′
1 · d′

center)/γ2| ▷ Inner product discrepancy
25: C ← |(d1 × dcenter)− ((d′

1 × d′
center)/γ2)| ▷ Cross product discrepancy

26: if I2 + C2 < DIFF · ∥dcenter∥ then
27: Record match in result structure M
28: end if
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III. Transformation Parameter Estimation
This phase calculates the rotation and translation parameters between matched
triangles.

A. Rotation Calculation
29: if |M| < 1 then
30: return ▷ No matches found, exit algorithm
31: end if
32: for each matched triangle pair (T s

i , T
t
j ) ∈M do

33: Compute rotation angle between corresponding vectors θi

34: end for
35: Apply statistical filtering: θifiltered

← {θi : |θi − µθ| ≤ 3σθ}
36: Calculate mean rotation angle ϕ

37: Construct rotation matrix R←
C

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

D
B. Initial Translation Estimation

38: Apply rotation to camera triangle centroids: c′
S ← R · cS

39: Compute mean centroid displacement of matched pairs
40: Calculate spacecraft position Porigin ← R · [0, 0] + T

IV. Statistical Outlier Rejection
This phase applies statistical filtering to remove outliers and refine position
estimates.

A. Centroid Displacement Analysis
41: Compute displacement vectors ∆c← {cti

− c′
si

: i ∈M}
42: Calculate mean µ∆C and standard deviation σ∆C of displacement vectors
43: Apply 3σ filter: M3σ ← {i ∈M : |∆Ci − µ∆C | ≤ 3σ∆C}
44: Apply 2σ filter: M2σ ← {i ∈M : |∆Ci − µ∆C | ≤ 2σ∆C}

B. Refined Parameter Calculation
45: Compute mean displacement vectors µ∆C3σ and µ∆C2σ

46: Calculate 3σ-filtered position estimate: P3σ ← R · [0, 0] + µ∆C3σ

47: Calculate 2σ-filtered position estimate: P2σ ← R · [0, 0] + µ∆C2σ
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V. Reliability Assessment
This phase evaluates the reliability of the position estimate and computes final
metrics.

48: Calculate inlier ratio: ρinliers ← |M3σ |
|M|

49: Compute position difference: δorigin ← ∥P3σ − P2σ∥
50: Evaluate spread of centroid displacements: σspread ← |µ∆C3σ − µ∆C2σ |
51: if (0.5 · ρinliers + 0.25 · δorigin + 0.25 · σspread) ≤ Trel then
52: reliability ← 1 ▷ Position estimate is consistent
53: else
54: reliability ← 0 ▷ Position estimate is inconsistent
55: end if
56: Provide final estimated position Pfinal ← P3σ
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Appendix - RANSAC
Algorithm Pseudo-code

Algorithm 2 Neighborhood Matching Algorithm (RANSAC) Pseudo-code
I. Data Acquisition and Preprocessing
This phase retrieves image and reference data. Structures and thresholds for
the matching are initialized.

A. Data Retrieval
1: Retrieve histogram set Ht from reference catalog
2: Obtain landmark map from source image

B. Parameter Initialization
3: Configure similarity thresholds: k ← 7, m← 5, T ← 0.7, nb ← 4, Tc ← 5 · 104,
Tr ← 1 · 103, ns ← 4

4: Initialize parameters and data structures
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II. Neighborhood and Histogram Construction
5: for each landmark i in source image landmarks do
6: A. Detect neighbors:
7: Find all neighbors within radius k · rc and sort by size
8: if insufficient neighbors (< m) then
9: continue ▷ Skip landmarks with too few neighbors

10: end if
11: Compute reference vector v1 to largest neighbor

12: B. Extract features for each neighbor:
13: for each neighbor j (except the largest) do
14: Compute vector vj from center to neighbor
15: f1 ← normalized angle between vj and v1 (range [0,1])
16: f2 ← radius ratio rc/rj, f3 ← distance ratio ∥vj∥/∥v1∥
17: Store feature vector [f1, f2, f3] for this neighbor
18: end for
19: Normalize f2 and f3 to range [0,1] using min-max normalization

20: C. Create histogram
21: Create bin edges and initialize histogram H
22: for each feature vector do
23: Find appropriate bins for f1, f2, f3 and increment histogram count
24: end for
25: Store histogram: Hs[i]← H
26: end for

27: III. Histogram Matching
28: for each camera landmark histogram Hs[i] do
29: for each map landmark histogram Ht[j] do
30: Compute histogram Euclidean distance between Hs[i] and Ht[j]
31: if histograms match (distance < T) then
32: Store camera and map landmark data with reference vectors
33: break ▷ Move to next camera landmark
34: end if
35: end for
36: end for
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37: IV: Coarse to fine Transformation Estimation
38: if sufficient histograms correspondences (≥ 1) then
39: for each correspondence i do
40: A. Compute coarse transformation
41: Extract points ct, cs and compute scale factor s
42: Compute rotation angle ϕ between source and target landmark pair
43: Create rotation matrix R and obtain translation vector t
44: Transform all source points using s, R, t to get c′

si

45: B. Compute fine transformation
46: for RANSAC iterations 1 to ns do
47: Randomly select 4 correspondences of cti

and csi

48: Set up linear system Bh = Y for homography parameters
49: Solve for homography parameters h
50: Apply homography to all points and compute cost function
51: Identify inliers (singular cost < Tc)
52: if current transformation has lower cost than best so far then
53: Update best transformation parameters and inlier set
54: Update best cost
55: end if
56: end for
57: end for

58: V. Position Estimation and Reliability Assessment
59: if inliers exist then
60: Get target and source data for inliers
61: Compute average displacement between matched landmarks
62: if inliers cost < Tr then
63: Reliability ← 1 ▷ Position estimate is consistent
64: else
65: Reliability ← 0 ▷ Position estimate is inconsistent
66: end if
67: Compute spacecraft position
68: Transform origin using selected similarity and homography
69: end if
70: else
71: Report insufficient correspondences for matching
72: end if
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