
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Development and Optimization of a
WebAssembly-Powered Browser

Extension for Enhanced Performance and
Functionality

Supervisors

Prof. Giovanni MALNATI

Candidate

Pouya HAKIMIFARD

March 2025

Abstract
As web technologies continue to evolve, web applications are becoming more
sophisticated and demanding, making performance and security more critical than
ever. WebAssembly (WASM) has emerged as a game-changer, offering a low-
level, portable bytecode that enables near-native execution speeds, compact code
representation, and a secure runtime environment. Unlike JavaScript, which wasn’t
designed for high-performance computing, WASM provides a powerful alternative,
acting as an abstraction over modern hardware to support multiple programming
languages and platforms. This thesis explores how WASM can enhance browser-
based data processing and analytics by developing an optimized browser extension.

The goal of this research is to leverage WebAssembly to enable efficient, scalable,
and offline data analysis, particularly in scenarios where large datasets—such as
academic records or research data—need to be processed in real time without
relying on a server. The browser extension integrates DuckDB, a high-performance
analytics engine, compiled to WASM. This allows users to run complex SQL queries
directly in their browser with minimal latency and without compromising security.
The project extends and optimizes the WASM-powered version of DuckDB to
handle datasets with millions of records, ensuring scalability and responsiveness.

A key challenge tackled in this work is optimizing how large JSON files are
loaded and queried within the browser. Since JSON files are widely used in
data analysis and research environments, the project implements advanced memory
management and compression techniques to reduce load times and minimize memory
consumption. Additionally, WASM’s inherent security features ensure that high-
performance data processing can be done safely within the browser environment.

This thesis also addresses the wider challenge of performing large-scale data
analysis entirely on the client side, eliminating the need for backend infrastructure
while maintaining consistent performance. By capitalizing on WASM’s strengths in
execution efficiency and security, the project presents a compelling case for using
WASM in real-time, browser-based analytics applications. The result is a fully
functional, responsive, and secure extension that enables seamless interaction with
large datasets.

In summary, this research highlights the potential of WebAssembly as a powerful
tool for high-performance web applications, particularly in handling large-scale
JSON data within the browser. By leveraging WASM for efficient client-side
data processing, this work demonstrates how browser-based computation can
significantly enhance the speed and responsiveness of data queries. While not
strictly real-time, these optimizations enable near-instantaneous interactions with
large datasets, making complex data analysis more accessible and efficient within a
web environment.

i

Acknowledgements

“first of all, I would like to express my greatest respect and appreciation to my
supervisor, Professor Giovanni Malnati, for his invaluable guidance and support
throughout this project. His advice and encouragement played a crucial role in
the completion of my thesis. I also wish to extend my heartfelt thanks to my
family and friends for their support and understanding during this journey. Their
encouragement and patience provided me with the strength and motivation to
persevere.”

Pouya HakimiFard, Turin , March 2025

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 BackgroundMotivation . 1
1.2 Key Aspects . 2
1.3 Objectives . 2
1.4 Questions . 3
1.5 Structure of the Thesis . 3

2 Literature Review 4
2.1 Browser Extensions . 4
2.2 The Significans of WebAssembly . 5

2.2.1 Key Points of WebAssembly 5
2.3 Porting C and C++ Code to WebAssembly 6

2.3.1 Understanding WebAssembly’s Platform Features 6
2.3.2 Floating-Point Support . 6

2.4 C and C++ Language Support in WebAssembly 6
2.4.1 Using APIs in WebAssembly 7
2.4.2 ABI Considerations . 7

2.5 Undefined and Implementation-Defined Behavior 7
2.5.1 Undefined Behavior . 7
2.5.2 Implementation-Defined Behavior 8
2.5.3 Portability of Compiled Code 8
2.5.4 Conclusion . 8

2.6 Managing Memory in WebAssembly 8
2.6.1 How WebAssembly Handles Memory 8
2.6.2 How WebAssembly Interacts with the Host Environment . . 9

v

2.6.3 Allocating and Freeing Memory in WebAssembly 9
2.6.4 Allocating Memory . 9
2.6.5 Freeing Memory . 10
2.6.6 Conclusion . 10

2.7 Security in WebAssembly . 10
2.7.1 Sandboxing and Isolation . 10
2.7.2 Memory Safety . 10
2.7.3 Control-Flow Integrity (CFI) 11
2.7.4 Additional Security Considerations 11
2.7.5 Fine-Grained CFI via Clang/LLVM 11

2.8 Enhancing Browser Extensions with WASM 12
2.8.1 Seamless Integration with JavaScript and Web APIs 12

2.9 DuckDB: The Database Powering The In-Browser Analytics 12
2.9.1 Web Filesystem for JSON and Parquet File Processing in

DuckDB-Wasm . 13

3 Methodology 16
3.1 Introduction . 16
3.2 Server-Side Architecture . 17

3.2.1 MVC Pattern . 17
3.2.2 Advantages of Using MVC in Server-Side Architecture . . . 18
3.2.3 Final Thoughts . 19

3.3 Client-Side Architecture . 19
3.3.1 WebAssembly Workflow on the Client Side 20
3.3.2 Enhancing User Experience 21
3.3.3 Why This Architecture Works 22
3.3.4 Final Thoughts . 22

4 Implementation and Optimization 23
4.1 Introduction . 23
4.2 Server-Side Implementation . 23

4.2.1 Server Architecture . 23
4.2.2 Key Components of the Server-Side Architecture: 24
4.2.3 API Implementation (Server-Side Design) 25
4.2.4 Database Configuration for Large-Scale Data Handling . . . 26
4.2.5 Faster Data Retrieval with JSON Caching 27
4.2.6 Simulating Large-Scale Data for Performance Testing 27

4.3 Client-Side Implementation . 28
4.3.1 Introduction . 28
4.3.2 Technologies Used . 28
4.3.3 Efficient Data Fetching Strategy 29

vi

4.3.4 Fetching Data from the API 29
4.3.5 Data Storage and Processing in WASM 29

4.4 Using Emscripten (emcc) to Bridge C and JavaScript in Our Project 33
4.4.1 Introduction to Emscripten (emcc) 33
4.4.2 Breaking Down the emcc Compilation Script 34
4.4.3 Efficient Data Handling with WebAssembly in JavaScript . . 38

4.5 Leveraging DuckDB for Efficient In-Browser Data Processing 41
4.5.1 Creating Tables and Loading Data 42
4.5.2 Pagination Technique to Prevent Out-of-Memory Errors . . 43

4.6 User Interface . 44

5 Performance Analysis 46
5.0.1 Key Performance Metrics Evaluated 46

5.1 Bulk Data Insertion Performance 46
5.2 Query Performance and Optimization 47

5.2.1 Key Optimizations . 47
5.2.2 Results: . 48

5.3 Data Upload Performance and Benchmarking 48
5.3.1 Benchmark Results . 48

5.4 Data Querying Performance: WASM vs. Normal API Fetch 49
5.5 Limitations in Data Upload and Analysis 49

5.5.1 Uploading Large JSON Files 49
5.5.2 Querying Large Joined Tables 50
5.5.3 Querying Aggregated Data 50
5.5.4 Key Takeaways . 51

6 Conclusion and Future Work 52
6.1 Conclusion . 52

6.1.1 Key Findings . 52
6.1.2 Future Work . 53
6.1.3 Final Thoughts . 53

Bibliography 56

vii

List of Tables

5.1 Benchmark Results for Data Upload Methods 48
5.2 Benchmark Results for Data Querying with WASM vs Normal API

Fetch . 49

viii

List of Figures

2.1 Web File System with DuckDB . 14

3.1 WASM Archirecture Diagram . 17

1 Upload performance . 54
2 Report performance . 55
3 Query performance . 55

ix

Acronyms

WASM
WebAssembly

EMCC
Emscripten Compiler

MVC
Model-View-Controller

UI
User Interface

CORS
Cross-Origin Resource Sharing

DOS
Denial-of-Service

NaCl
Native Client

DOM
Document Object Model

ORM
Object Relational Mapping

CFI
Control-Flow Integrity

xi

LLVM
Low-Level Virtual Machine

ISA
instruction set architecture

xii

Chapter 1

Introduction

1.1 Background and Motivation

Browser extensions have become an essential part of modern web applications,
helping users automate tasks, improve their browsing experience, and add extra
features beyond what browsers offer by default. However, most extensions are built
using JavaScript, which, while versatile, struggles with performance when handling
large datasets or complex computations. This becomes a major bottleneck for
applications that require real-time data processing, analytics, or efficient memory
management.

Over the years, developers have tried various approaches to bridge the per-
formance gap between JavaScript and native code. Technologies like ActiveX,
Native Client (NaCl), and asm.js attempted to improve execution speed, but each
came with its own drawbacks—security risks, platform restrictions, or inefficiencies.
Recognizing these challenges, the W3C introduced WebAssembly (Wasm) in 2017
as a game-changing solution. Wasm provides a highly efficient, low-level binary
format that allows developers to write performance-critical code in languages like
C, C++, and Rust, running it alongside JavaScript at near-native speeds [1].

This thesis explores the use of WebAssembly to develop a high-performance
browser extension that integrates DuckDB, an in-memory analytical database,
for efficient data processing directly within the browser. By leveraging Wasm’s
speed, memory efficiency, and security benefits, this project aims to demonstrate
how WebAssembly can significantly enhance browser-based analytics and provide
a scalable solution for handling large datasets more efficiently than traditional
JavaScript-based approaches.

1

Introduction

1.2 Key Aspects
This project focuses on several key aspects to enhance the performance and func-
tionality of browser extensions:

Performance Optimization
Utilizing WebAssembly to achieve faster execution speeds compared to JavaScript,
especially for computationally heavy tasks.
Efficient Data Processing
Implementing DuckDB to perform in-memory SQL queries, reducing reliance on
cloud-based data processing.
Scalability
Ensuring that the extension can handle large datasets (millions of records) while
maintaining speed and efficiency.
Seamless Browser Integration
Designing a WASM-powered extension that interacts efficiently with web applica-
tions without requiring excessive computational resources.
Memory Management
Optimizing the allocation and deallocation of memory in WASM to prevent memory
leaks and improve overall performance.
Security
Running code inside a sandboxed execution environment within the browser this
ensures that wasm modules cannot perform unauthorized actions, such as accessing
files, network resources, or executing arbitrary system commands, unless explicitly
permitted through browser APIs. this makes wasm both fast and secure, making
it a significant improvement over previous native execution methods like Native
Client (NaCl).[1]

1.3 Objectives
The main objectives of this project are:
Develop a WebAssembly powered browser extension capable of handling
large datasets.
Integrate WebAssembly with DuckDB to perform in-memory analytics with-
out relying on external servers.
Optimize data handling and memory management to improve execution
time and efficiency.
Compare the performance of WASM vs. JavaScript-based solutions for
browser-based analytics.
Ensure scalability and security while maintaining usability within a browser

2

Introduction

extension.

1.4 Questions
This thesis aims to answer the following key questions:

1. How does WebAssembly improve the performance of browser extensions com-
pared to JavaScript?

2. What are the benefits of integrating DuckDB with WebAssembly for in-browser
data analytics?

3. How can memory management be optimized to support large datasets efficiently
in a WASM environment?

4. What are the trade-offs between WebAssembly and traditional JavaScript-
based implementations?

1.5 Structure of the Thesis
Chapter 2: Literature Review explores existing research on browser extensions,
WebAssembly, and in-browser databases.

Chapter 3: Methodology details the architecture, design choices, and im-
plementation of the WASM-powered extension.

Chapter 4: Implementation and Optimization presents the coding strategies,
performance enhancements, and challenges encountered.

Chapter 5: Performance Analysis evaluates execution speed and scalability.

Chapter 6: Conclusion and Future Work summarizes key findings and
proposes potential improvements.

3

Chapter 2

Literature Review

2.1 Browser Extensions

A browser extension is like a little add-on that boosts your web browser’s func-
tionality. It can personalize your browsing experience by offering new features,
automating tasks, and connecting to other services, making your time online
smoother and more efficient.

These extensions work by interacting with the webpage’s structure (known as
the Document Object Model, or DOM). This lets them change content, add scripts,
or tap into the browser’s built-in capabilities.[2] They’re created using familiar web
technologies like:

• HTML: Used to build the user interface for the extension.

• CSS: For styling and customizing the appearance of extension components.

• JavaScript: The core language that handles the logic, lets the extension talk
to the browser, and changes webpage content.

• React.js :A JavaScript library used for building user interfaces. It allows you
to structure the extension’s frontend with reusable components, manage state
efficiently, and create dynamic and interactive UIs. React can be particularly
useful for building extension popups, options pages, or background interfaces
that require frequent updates or complex interactions.

• WASM: To execute high performance codes in the browser that is used when
the performance is essential to process and analyze of large datasets.

4

Literature Review

2.2 The Significans of WebAssembly

WASM is transforming the way we build web applications by bringing near-native
performance directly to the browser. Unlike JavaScript, which can slow down when
handling complex computations, WASM runs precompiled binary code, making it
significantly faster and more efficient all within a secure, sandboxed environment[3].

2.2.1 Key Points of WebAssembly

• WASM Performance
One of WASM’s biggest strengths is speed. While WASM is optimized for
speed, it may not always match fully optimized native machine code due to
factors like memory access overhead and sandboxing security measures [3].

• Use Cases
WASM is well-suited for compute-heavy applications like gaming, video editing,
data analysis, and scientific simulations[1].

• Supports Multiple Programming Languages
WASM isn’t just for JavaScript developers. It allows developers to write code
in languages like C, C++, Rust, and Go, then compile it into WebAssembly.
This means existing high-performance code can be brought into the web
without needing to be completely rewritten in JavaScript.

• Memory Management
WebAssembly gives developers precise control over memory usage, which is
crucial for handling large datasets efficiently. For example, in our project,
we integrate WASM with DuckDB to optimize memory allocation while
performing in-browser data analytics, ensuring smooth performance without
unnecessary resource consumption.

• Security and Privacy Because WASM runs in a sandboxed environment,WASM
itself does not have a built-in permissions system like JavaScript APIs do.
Instead, it relies on the host environment (e.g., the browser) to enforce security
restrictions. It can only interact with system resources through APIs provided
by the host (e.g., Web APIs or imported JavaScript functions)[4].
While WASM can enhance browser extensions, it still requires JavaScript to
interact with browser APIs (e.g., storage, networking). WASM alone does not
inherently have privileged access.

5

Literature Review

2.3 Porting C and C++ Code to WebAssembly
WebAssembly (Wasm) is designed to support C and C++ efficiently, making it
easier to run high-performance applications on the web. This guide covers essential
concepts for C/C++ developers, including porting existing code, platform features,
language support, and best practices[5].

2.3.1 Understanding WebAssembly’s Platform Features
WebAssembly follows a standard instruction set architecture (ISA), meaning that
most portable C/C++ code can be compiled to Wasm with minimal changes. Some
key features include:

• 8-bit bytes, two’s complement integers, and little-endian format,
similar to many other platforms.

• Two architecture variants:

– wasm32 (32-bit) – Uses an ILP32 model where int, long, and pointers
are 32-bit, while long long is 64-bit.

– wasm64 (64-bit) [Future support planned] – Uses an LP64 model
where long and pointers are 64-bit, and int remains 32-bit.

Currently, only wasm32 is supported, with wasm64 planned for larger address
spaces.

2.3.2 Floating-Point Support
WebAssembly follows IEEE 754-2019 standards for floating-point arithmetic:

• float and double are natively supported.

• long double is software-emulated since WebAssembly does not have a built-in
quad-precision type.

For best performance and compatibility, using float and double is recommended.

2.4 C and C++ Language Support in WebAssem-
bly

WebAssembly does not modify the C/C++ language itself, but compiler support
plays a key role in its integration. Modern compilers like Clang/LLVM fully support
WebAssembly[5]. Some upcoming features include:

6

Literature Review

• Multi-threading with shared memory (planned)

• Zero-cost exception handling for C++ (to reduce performance overhead)

• 128-bit SIMD support for efficient vector operations

2.4.1 Using APIs in WebAssembly
WebAssembly allows C/C++ programs to use high-level APIs, including:

• Standard C and C++ libraries

• OpenGL (via WebGL)

• SDL for multimedia applications

• pthreads for multi-threading (once supported)

These APIs rely on WebAssembly’s low-level capabilities, which interface with
web-based APIs when running in a browser.

2.4.2 ABI Considerations
Currently, WebAssembly does not have a stable ABI for dynamically linked libraries.
This means:[5]

• All linked code must be compiled with the same compiler and options.

• Future WebAssembly updates will introduce dynamic linking and stable
ABIs for improved interoperability.

2.5 Undefined and Implementation-Defined Be-
havior

2.5.1 Undefined Behavior
WebAssembly does not change C or C++ undefined behavior. For example:

• Unaligned memory access is defined in WebAssembly but may still lead to
optimization issues in C/C++.

• Compilers optimize based on the assumption that undefined behavior does
not occur, which can lead to unpredictable behavior.

WebAssembly ensures memory safety and prevents sandbox escapes, maintaining
security invariants.

7

Literature Review

2.5.2 Implementation-Defined Behavior
Most implementation-defined behavior depends on the compiler rather than We-
bAssembly. However, Wasm maintains standard features like:

• 8-bit bytes

• Two’s complement integers (32-bit and 64-bit)

• IEEE-754 floating-point arithmetic

2.5.3 Portability of Compiled Code
One of WebAssembly’s greatest strengths is its cross-platform consistency.
Due to its limited nondeterminism, Wasm applications behave consistently across
different implementations and environments.

2.5.4 Conclusion
For C/C++ developers, WebAssembly offers an efficient way to run native applica-
tions in a secure, portable environment. While WebAssembly is still evolving, it
already provides strong support for familiar language features and APIs. Future
improvements, such as multi-threading, exception handling, and dynamic linking,
will make WebAssembly even more powerful for C/C++ development.

Keywords: WebAssembly, C++, Portability, Compilation, API, ABI, Performance

2.6 Managing Memory in WebAssembly
WebAssembly (Wasm) introduces a different approach to memory management
than most high-level languages. Unlike JavaScript, Java, or Python—which have
built-in garbage collection—Wasm requires developers to handle memory explicitly.
This makes it powerful but also introduces challenges, especially for those used to
automatic memory management[6]. In this section, we explore how WebAssembly
handles memory, how it interacts with host environments, and the best ways to
manage it efficiently.

2.6.1 How WebAssembly Handles Memory
WebAssembly uses a linear memory model, meaning memory is a single, con-
tinuous block of bytes. This memory starts small but can grow in 64KB chunks
(called pages) when needed. However, it remains strictly isolated—no program can

8

Literature Review

access memory outside its allocated space unless explicitly allowed.[7]This design
ensures:

• Security – WebAssembly modules cannot read or write memory they shouldn’t.

• Stability – Built-in checks prevent memory corruption.

• Isolation – Wasm modules do not interfere with each other or the host system
unless given permission.

Even with these safeguards, WebAssembly is not immune to common memory
issues like buffer overflows or dangling pointers. Some researchers have proposed
additional safety features, such as stricter bounds checking, to further improve
memory protection.

2.6.2 How WebAssembly Interacts with the Host Environ-
ment

A WebAssembly module does not have direct access to the host system’s memory,
files, or APIs. Instead, it interacts with the host (such as JavaScript in a browser
or a Rust runtime) in two main ways:

1. Function Calls – Wasm functions can take numbers (integers or floats) as
arguments and return numbers, but passing complex data like strings or arrays
requires extra steps.

2. Shared Memory – The host can read and write directly into WebAssem-
bly’s memory, allowing data exchange through pointers and manual memory
management.

Most applications use a mix of both, passing pointers to memory locations
where data is stored. This approach keeps data transfers efficient while maintaining
WebAssembly’s security rules.

2.6.3 Allocating and Freeing Memory in WebAssembly
WebAssembly does not manage memory automatically; developers must allocate
and free it manually. The host environment plays a key role in ensuring memory
is handled correctly. If memory is not freed properly, programs may experience
memory leaks.

2.6.4 Allocating Memory
Many WebAssembly modules provide functions to allocate memory, and tools like
wasm-bindgen help simplify the process.

9

Literature Review

2.6.5 Freeing Memory
If memory is not released when it is no longer needed, the program could run out of
memory. Languages like Rust solve this by using ownership rules that automatically
free memory when it is no longer in use.

To avoid memory issues, developers often use debugging tools like Valgrind
to check for leaks. Some projects even implement custom memory allocators to
fine-tune performance and efficiency.

2.6.6 Conclusion
Managing memory in WebAssembly requires careful attention, especially com-
pared to higher-level languages with automatic garbage collection. While Wasm
ensures strong isolation, developers still need to allocate and free memory prop-
erly—especially when sharing data with the host environment. By following
best practices and using the right tools, developers can keep their WebAssembly
applications both efficient and secure.

2.7 Security in WebAssembly
WebAssembly (Wasm) is designed with two key security goals:[8]

1. Protect users from buggy or malicious modules.

2. Provide developers with safe programming primitives and mitigations.

2.7.1 Sandboxing and Isolation
• Wasm modules execute in a sandboxed environment, preventing direct access

to the host system.

• In a browser, Wasm adheres to same-origin policy and other web security
measures.

• On non-web platforms, security policies (e.g., POSIX model) enforce access
controls.

2.7.2 Memory Safety
• No arbitrary code execution: Functions and memory addresses are vali-

dated before execution[4].

10

Literature Review

• Buffer overflows are limited: Fixed-size local/global variables prevent
corruption, though linear memory regions can still be affected.

• Bounds checking prevents accessing memory outside allocated regions,
reducing memory corruption vulnerabilities.

• Traps halt execution on errors like invalid memory access, division by zero,
or exceeding stack limits.

2.7.3 Control-Flow Integrity (CFI)
• Direct function calls: Only valid, declared functions can be executed.

• Indirect calls: Type signatures must match, preventing unintended function
execution.

• Protected call stack: Prevents return address corruption and stack-based
attacks.

• Code reuse attacks: Limited due to function-level CFI but still possible
against indirect calls.

2.7.4 Additional Security Considerations
• No execution guarantees: Potential for race conditions (e.g., TOCTOU

vulnerabilities).

• Side-channel attacks: Possible, including timing attacks, though mitigations
may improve over time.

• Future protections: Code diversification, memory randomization (ASLR),
and bounded pointers could enhance security.

2.7.5 Fine-Grained CFI via Clang/LLVM
• Enabling -fsanitize=cfi in Clang/LLVM enhances security by checking

function calls at the C/C++ type level.

• This provides stricter CFI protections beyond Wasm’s built-in type-based
enforcement, though with a small performance cost.

Overall, Wasm’s security model significantly reduces traditional vulnerabilities
in C/C++ applications, offering a safer execution environment while maintaining
high performance.

11

Literature Review

2.8 Enhancing Browser Extensions with WASM
WASM can really boost the performance of browser extensions by handling heavy
tasks more efficiently than JavaScript, especially when it comes to running complex
SQL queries or doing resource-intensive computations. In our project, we use
WASM alongside DuckDB to run these data queries directly in the browser, which
means we don’t need a server to process them. This makes everything faster and
reduces the load on the server. In fact, there are still cases where server-side help
is needed—like for storing data, ensuring security, or handling advanced analyt-
ics—but overall, this approach keeps the extension lightweight and super responsive.

2.8.1 Seamless Integration with JavaScript and Web APIs
WASM doesn’t replace JavaScript—it works alongside it. In our project, we
used emcc to compile C code into WASM, which we then call from JavaScript.
This makes it easy to integrate high-performance WASM modules into our web
application. For example, in a browser extension built with React, we offload
resource-intensive tasks to WASM, ensuring the main app remains smooth and
responsive without overloading the browser’s main thread.

2.9 DuckDB: The Database Powering The In-
Browser Analytics

DuckDB is a super-efficient, in-memory database designed to handle complex data
analysis tasks. It’s a columnar database, which means it stores data in a way
that makes it much faster when you’re running analytics queries—especially those
that deal with large datasets. What’s cool about DuckDB is that it’s optimized
for doing heavy analytical tasks directly in the browser, which means we can run
all the analytics without needing a server and it is exactly what we need for our
project[9].

In our research, DuckDB is key to running fast, in-browser data analysis without
relying on a server to do the heavy lifting. Here’s why it’s a perfect fit for our needs:

• Fast Data Queries:
DuckDB is built for heavy computations, so it can handle complicated queries
in no time. This makes it perfect for our project, where we’re working with
large datasets and need fast results without relying on a server.

12

Literature Review

• Works from Memory for Speed:
Since DuckDB is an in-memory database, it keeps data stored in the computer’s
RAM instead of loading it from a disk. This results in lightning-fast access to
the data and much quicker processing.

• Efficient Columnar Storage
DuckDB uses columnar storage, which makes it more efficient for analyzing
large amounts of data. It’s especially good for tasks like filtering, scanning, or
aggregating data, which saves time and resources.

• Works Well with WebAssembly:
DuckDB and WebAssembly (WASM) are a perfect match. WASM allows us
to run DuckDB’s queries directly in the browser at near-native speed. This
means we don’t have to rely on external servers to do the heavy lifting, making
our extension much faster[10].

• Lightweight and Scalable:
DuckDB is lightweight, so it’s perfect for embedding in a browser extension.
It can handle growing datasets without slowing down, keeping everything
responsive even as the data size increases.

2.9.1 Web Filesystem for JSON and Parquet File Process-
ing in DuckDB-Wasm

DuckDB-Wasm comes with a specialized filesystem designed for WebAssembly,
making it easier to work with structured data formats like JSON and Parquet. Since
DuckDB is built on a virtual filesystem, it abstracts high-level operations—such as
reading JSON or Parquet files—away from the low-level filesystem interactions that
vary across operating systems. This design allows DuckDB-Wasm to create custom
filesystem solutions that are optimized for different WebAssembly environments,
ensuring smooth data access and efficient processing.

When a user runs a SQL query on a JSON or Parquet file, the query is first
sent to a web worker through a JavaScript API. From there, it passes through the
WebAssembly module for execution. When the query reaches the json_scan or
parquet_scan function, the system reads the file using a buffered filesystem, which
processes data in smaller chunks. The web filesystem then fetches the necessary
data from different sources, whether it’s stored locally, on a remote server, or in
memory as a preloaded buffer.

Treating JSON and Parquet files the same way, regardless of where they are

13

Literature Review

Figure 2.1: Web File System with DuckDB

stored, simplifies data retrieval and enables useful optimizations. JSON, in partic-
ular, is widely used for storing structured data, but its nested format can make
queries slower. DuckDB-Wasm helps speed things up by applying techniques like
schema inference and indexing to quickly locate and extract relevant data.

One major advantage of this approach is that DuckDB-Wasm doesn’t need to
load entire files into memory. Instead, it retrieves only the parts required for a
given query. For example:

• A query like SELECT count(*) FROM json_scan(’data.json’) or SELECT
count(*) FROM parquet_scan(’data.parquet’) can be executed using just the
file’s metadata, making it incredibly fast—even for very large files.

• Queries with LIMIT and OFFSET, such as SELECT * FROM json_scan(’data.json’)
LIMIT 20 OFFSET 40, allow users to efficiently page through large datasets
without unnecessary data loading.

• If a query includes filters, DuckDB-Wasm can use metadata to skip over
irrelevant sections of the file, reducing read times and improving performance.

While JSON offers more flexibility than the columnar format of Parquet,
DuckDB-Wasm applies similar performance-enhancing techniques to both formats,
such as compression and batched data processing. By relying on SQL semantics
rather than complex JavaScript logic, it makes querying structured data in the

14

Literature Review

browser more efficient and user-friendly.

That said, there are still some limitations. Since browser-based File APIs are
somewhat restrictive, certain features—like saving DuckDB databases for long-term
storage—are challenging to implement. While IndexedDB could be a workaround, it
doesn’t yet support the fast, synchronous read/write operations needed for seamless
integration. Overcoming these limitations is still an ongoing area of research, and
future improvements may help bridge these gaps, making web-based data processing
even more powerful.

15

Chapter 3

Methodology

3.1 Introduction
In this chapter, we describe the practical approach we took to design and imple-
ment our WebAssembly-powered browser extension. Our goal was to build an
extension that is both highly efficient and user-friendly by taking advantage of
WebAssembly’s speed for intensive computations and integrating it with a modern
React.js front-end.

The architecture is split into two main parts:

• Client-Side: Here, we developed the user interface using React.js. This
layer handles all user interactions and communicates with the WebAssembly
module, which executes complex data operations directly within the browser.
This combination ensures that the extension remains responsive and fast.

• Server-Side: On the backend, we use DuckDB for processing large datasets.
DuckDB’s in-memory analytics allow us to efficiently handle data operations
that might be too heavy for the browser alone. This server-side component
acts as a reliable data provider that can support the extension when dealing
with very large or complex data queries.

By merging the near-native performance of WebAssembly, the robust in-memory
querying capabilities of DuckDB, and the flexible, dynamic UI provided by React.js,
this project demonstrates how modern web technologies can be combined to create
a powerful browser extension. The result is an application that not only performs
intensive data processing tasks with remarkable speed but also delivers a seamless
and engaging user experience.

16

Methodology

Figure 3.1: WASM Archirecture Diagram

3.2 Server-Side Architecture
3.2.1 MVC Pattern
For the server-side of the application, we’ve adopted the Model-View-Controller
(MVC) architecture, a well-established approach that helps in keeping different
parts of the system separated and organized. This not only makes the system
easier to manage but also more scalable as it grows. The MVC pattern divides the
application into three main components: the Model, the View, and the Controller,
each with its own role: [11]

• Model (Data and Business Logic): The Model is responsible for man-
aging and processing data. In this project, it deals with fetching data from
PostgreSQL and performing tasks such as data formatting, pagination, and
integration with DuckDB. DuckDB, an in-memory database, is used here to
efficiently query and process large datasets. It works with the JSON files
of students, marks, and courses, which were previously exported from Post-
greSQL. The Model handles queries to paginate the data, ensuring smooth and
efficient retrieval of large datasets. Once the data is retrieved and processed,
it’s passed to the View to be displayed.

• View (User Interface): The View is the part that users interact with directly.
In this project, the View is the WebAssembly-powered browser extension. This
extension manages the user interface, fetching data from the backend in a

17

Methodology

paginated manner and displaying it to the user in an organized and visually
appealing way. The View is responsible for ensuring a smooth user experience
by rendering the data efficiently and interactively.

• Controller (Request Handling and Data Flow): The Controller serves
as the bridge between the Model and the View. It takes incoming requests
from the client, processes the required data through the Model (e.g., handling
pagination, formatting, etc.), and sends the results to the View for display.
The Controller is also responsible for managing errors, validating requests,
and ensuring that the data is correctly structured before it’s passed to the
View.

3.2.2 Advantages of Using MVC in Server-Side Architec-
ture

Using the MVC pattern offers several key benefits, especially for a project of this
scale:

• Separation of Concerns: With the MVC pattern, the application is neatly
divided into three components. This separation makes it easier to maintain
and update the system. For example, if you need to update how the data
is processed or change the design of the UI, these changes can be made
independently without affecting the other parts of the system.

• Scalability: As the application evolves, it’s easy to add new features without
a major overhaul. If new data sources need to be integrated, they can be
added in the Model without affecting the View or Controller. This makes
scaling the application much more efficient.

• Maintainability: By keeping the components separate, the codebase becomes
more organized and easier to understand. Each developer can focus on their
specific area—whether it’s the data, the UI, or the request handling—making
the code more readable and reducing the risk of errors during development or
debugging.

• Testability: Since each component is separate, it’s easier to test them
individually. For example, you can perform unit tests on the Model to check
if the data manipulation works correctly, test the View to ensure the UI is
rendering as expected, and test the Controller for request handling. This
modularity ensures better robustness and reliability for the application.

18

Methodology

3.2.3 Final Thoughts
Adopting the MVC pattern for the server-side architecture significantly contributes
to the modularity, maintainability, and scalability of the system. By leveraging
this architecture, the application can efficiently handle complex data processing,
ensuring smooth interaction between the client-side (via the WebAssembly-powered
extension) and the server-side components. This clean separation of concerns allows
the system to grow and evolve without affecting the core functionality.

3.3 Client-Side Architecture
The client-side architecture of our WebAssembly-powered browser extension is
designed to provide an efficient, fast, and responsive user experience. It is built
using React.js for the user interface (UI), DuckDB for local data storage and
querying, and WebAssembly (WASM) for performing computationally intensive
tasks directly in the browser. This combination allows the extension to handle large
datasets while maintaining high performance, low memory usage, and a smooth,
interactive UI.

Key Responsibilities

The client side of the extension is responsible for several core tasks:

1. User Interface Rendering

• The UI, built with React.js, offers a simple, interactive platform for users
to enter queries, view results, and adjust settings.

• React’s component-based architecture allows us to efficiently manage the
state and layout of the UI, providing flexibility and scalability.

2. Data Storage and Querying Using DuckDB

• DuckDB, an in-browser SQL database, is used to store the data fetched
from the backend. Once the data is retrieved, DuckDB handles local
querying, which means we can filter and process large datasets right in
the browser without repeatedly hitting the backend.

• DuckDB ensures that the data is efficiently stored in memory and queried,
allowing us to load only relevant data and avoid unnecessary network
calls.

3. WebAssembly Integration for Heavy Computation

19

Methodology

• WebAssembly (WASM) is used for handling complex calculations and
data transformations. After data is processed in DuckDB, it is passed to
WebAssembly to perform computational tasks that would otherwise be
too resource-intensive for JavaScript.

• WebAssembly allows us to run high-performance operations directly in
the browser, significantly speeding up data processing without overloading
system resources.

4. State Management and Smooth Data Flow

• React’s built-in state management features, such as useState and useEffect,
ensure that data is constantly in sync between the UI, DuckDB, and
WebAssembly.

• The state is dynamically updated, ensuring that the interface remains
responsive and reflects any changes in the data in real-time.

3.3.1 WebAssembly Workflow on the Client Side
The client-side WebAssembly workflow follows a structured process to ensure
efficient data handling and computation:

1. Data Fetching and Storing in DuckDB

• The extension first fetches paginated data from the backend API. This
includes data like students, marks, and courses.

• This data is then stored in DuckDB, a local, in-browser database that
allows fast access to data without needing to query the backend repeatedly.

2. Local Data Processing with DuckDB

• DuckDB is used to perform initial queries on the data, including filtering,
sorting, and aggregating. This ensures that only the relevant data is
sent to WebAssembly for further processing, improving performance and
reducing the workload of both the backend and the browser.

3. WebAssembly Data Processing

• Once DuckDB processes the data, it is passed to WebAssembly for heavy
computations such as statistical analysis, data transformation, and other
resource-intensive tasks.

• WebAssembly performs these operations at high speed, returning the
processed results back to React for display.

20

Methodology

4. Displaying Results in the UI

• The React app dynamically updates the UI with the results returned from
WebAssembly. Components like tables, charts, and forms are updated
based on the latest data.[12]

• The virtual DOM in React ensures that only the necessary components
are re-rendered, maintaining fast and responsive interactions.

3.3.2 Enhancing User Experience
To ensure a seamless user experience, we have implemented several features to
optimize performance and responsiveness:

1. Efficient Data Querying with DuckDB

• By using DuckDB for local data storage and querying, we minimize the
need for repeated backend API calls. This speeds up data retrieval and
reduces the load on the backend, allowing the app to respond more quickly
to user interactions.

2. Asynchronous Processing with WebAssembly and React

• Communication between React and WebAssembly is asynchronous, mean-
ing that long-running tasks do not block the user interface.

• Promises and Web Workers are used to handle data processing without
freezing the UI, ensuring that users can continue interacting with the
extension while data is being processed in the background.

3. Optimized Rendering with React’s Virtual DOM

• React’s virtual DOM minimizes unnecessary UI updates, ensuring that
only the necessary components are re-rendered when the data changes.

• This helps maintain smooth and fast interactions, even when large datasets
are being processed or queried.

4. User-Friendly Interface

• The UI is designed to be intuitive and easy to use, with dynamic com-
ponents that automatically update based on the data returned from
WebAssembly.

• The interface includes tables, charts, and forms that are updated in real-
time, providing users with an interactive and visually engaging experience.

21

Methodology

3.3.3 Why This Architecture Works
The combination of React.js, DuckDB, and WebAssembly enables the extension
to deliver high performance, scalability, and efficiency. Here’s why this architecture
is effective:

• Fast Performance: DuckDB handles data storage and querying locally,
minimizing latency and reducing the need for network requests. WebAssembly
performs heavy computations directly in the browser, allowing for faster data
processing.

• Memory Efficiency: By using DuckDB to store and query data locally, we
reduce the amount of memory required to hold large datasets. WebAssembly
processes only the relevant data, ensuring minimal memory usage.

• Reduced Backend Dependence: DuckDB enables local data querying,
which reduces the need to make frequent calls to the backend. This minimizes
network overhead and speeds up the user experience.

• Responsive UI: React’s state management and virtual DOM optimizations
ensure that the UI remains smooth and responsive, even during intensive data
processing tasks.

3.3.4 Final Thoughts
The client-side architecture of our WebAssembly-powered browser extension is
designed to offer a fast, efficient, and responsive user experience. By combining
React.js for the UI, DuckDB for local data storage and querying, and WebAssembly
for high-performance computations, we are able to handle large datasets, reduce
memory usage, and ensure that the extension operates smoothly in the browser.

This architecture not only delivers real-time data processing capabilities but
also keeps the user interface lightweight and responsive. With asynchronous data
fetching, optimized rendering, and local computation, the extension can handle
complex tasks with ease while providing an enjoyable experience for the user.

22

Chapter 4

Implementation and
Optimization

4.1 Introduction
In this section, we will explore the complexities of the implementation and op-
timization process for the WebAssembly-powered browser extension. The core
objective behind this project was to develop a fast, efficient, and scalable extension
capable of handling large datasets while ensuring that users experience minimal
delays and smooth interactions with the interface. The combination of modern
technologies such as React.js, DuckDB, and WebAssembly allowed us to achieve
high performance and reduced memory overhead—key factors for building a re-
sponsive, robust application.

Creating a seamless and interactive user interface is paramount for browser
extensions, especially when working with large and complex datasets. This re-
quires a careful balance of data management, computational efficiency, and UI
responsiveness. In the sections that follow, we break down the technical decisions
made during the development, the integration of different technologies, and the
optimization strategies employed to enhance performance, improve memory usage,
and optimize data handling.

4.2 Server-Side Implementation
4.2.1 Server Architecture
Our server is designed with efficiency, scalability, and seamless data handling in mind.
At its core, it utilizes Express.js, a lightweight and flexible Node.js framework,

23

Implementation and Optimization

to manage HTTP requests and define API routes. Express provides a robust
foundation for handling client-server interactions while allowing for easy integration
of middleware for security, data processing, and cross-origin communication.

To manage our database operations, we rely on Sequelize, a powerful Object-
Relational Mapping (ORM) library for PostgreSQL. Sequelize simplifies complex
SQL queries, ensures data consistency, and provides a secure way to interact
with the database. This ORM enables us to perform database operations using
JavaScript, reducing the need for raw SQL queries and making development more
streamlined.

For high-speed data analysis, we incorporate DuckDB, a high-performance,
in-memory analytical database. DuckDB is particularly well-suited for handling
large datasets directly within the server, eliminating the need for external data
warehouses. This allows us to perform complex queries efficiently, enhancing the
speed and responsiveness of our application.

Additionally, we use JSON file storage to optimize data retrieval, especially
for frequently accessed datasets. Storing structured data in JSON format allows
for quick read/write operations, reducing the dependency on database queries for
non-dynamic data.

To ensure smooth client-server communication, we implement CORS (Cross-
Origin Resource Sharing), enabling secure access to our API from different domains.
We also utilize JSON body parsing middleware to efficiently process incoming
requests, ensuring that all JSON data sent from the client is correctly formatted
and accessible within our application.

4.2.2 Key Components of the Server-Side Architecture:
• Express.js Handles routing, API endpoints, and middleware integration.

• Sequelize Manages database interactions and ensures efficient data transac-
tions.

• DuckDB DuckDB optimizes analytical query processing by using in-memory
execution for fast computations while also supporting disk-based storage for
larger datasets. This hybrid approach ensures high performance when memory
is available while maintaining scalability by seamlessly accessing data from
disk when needed.[13]

• JSON File Storage Optimizes data retrieval by reducing unnecessary
database queries.

• CORS and JSON Body Parsing Middleware Ensures secure and
structured communication between the client and server.

24

Implementation and Optimization

By combining these technologies, our server achieves a balance between perfor-
mance, flexibility, and security, making it well-equipped to handle real-time data
processing and efficient client interactions.

4.2.3 API Implementation (Server-Side Design)
Key Optimizations

• Increased Request Timeout:
Since data processing can be intensive, the request timeout is increased to 60
minutes.

app.use((req, res, next) => {

req.setTimeout(60 * 60 * 1000); // 60 minutes

res.setTimeout(60 * 60 * 1000); // 60 minutes

next();});

• Memory Management:
To ensure our server can efficiently handle large datasets, we configure the
memory limit in the package.json file using the –max-old-space-size=8192 flag.
[14]This setting increases Node.js’ memory allocation to 8GB, allowing for
better performance when processing large amounts of data. By modifying
this configuration, we prevent potential memory-related crashes and ensure
smooth execution of computationally intensive tasks.

"scripts":{

"start": "nodemon –ignore ’data/students.json’ –ignore
’data/marks.json’ –ignore ’data/courses.json’ –exec ’node
–max-old-space-size=8192 server.js’",

});

• CORS Configuration:
To allow smooth interaction between the frontend and backend, we set up
CORS (Cross-Origin Resource Sharing) to permit requests from http://localhost:3000.

25

Implementation and Optimization

This prevents the browser from blocking API requests due to security policies,
ensuring seamless data exchange.
Here’s how we set it up:

const corsOption = {

origin: ’http://localhost:3000’,

optionsSuccessStatus: 200,

credentials: true

};

app.use(cors(corsOption));

• Managing Large JSON Requests:
To ensure our server can handle large API requests smoothly, we’ve increased
the JSON size limit to 100MB. This allows us to process bulk data uploads,
large JSON responses, and complex API requests without hitting default size
restrictions.

Why Adjust the Limit?
By default, Express.js sets a 1MB limit for incoming JSON data. For applica-
tions dealing with large datasets, this can be too restrictive, causing requests
to fail. While we can define larger limits based on our needs, setting them
too high can impact performance and expose the server to Denial-of-Service
(DoS) risks if not managed properly.[15]

app.use(express.json({ limit: ’100mb’ }));

4.2.4 Database Configuration for Large-Scale Data Han-
dling

To handle large amounts of data efficiently, we optimized the backend to support
high-volume transactions without slowdowns. PostgreSQL was chosen for its ability
to manage complex queries and massive datasets, while Sequelize ORM helped
streamline database interactions. To keep things running smoothly, we fine-tuned
connection pooling and timeout settings, ensuring stable performance even under
heavy workloads.

26

Implementation and Optimization

Key Improvements

• Smart Connection Pooling:Managed active database connections efficiently
to prevent overload while keeping performance high.

• Extended Timeout Settings:Increased time limits for idle connections and
data retrieval to avoid disruptions during bulk inserts.

• Logging Optimization:Disabled logging during large data inserts to minimize
unnecessary processing and improve efficiency.

These adjustments allowed the system to handle millions of records seam-
lessly , ensuring that queries and inserts remained smooth even under stress.

4.2.5 Faster Data Retrieval with JSON Caching
To improve response times and reduce repeated queries to PostgreSQL, we imple-
mented JSON caching as a hybrid approach for data retrieval. Frequently accessed
data is stored in JSON files, allowing the system to fetch preprocessed results
instead of repeatedly querying the database.

Benefits of JSON Caching:

• Faster Data Access:Queries are run once and stored in JSON, cutting down
on redundant database calls.

• Lower Server Load:With frequently accessed data cached in JSON, Post-
greSQL is freed up for more critical operations, improving scalability.

• Optimized Pagination:Large datasets are paginated using DuckDB, enabling
efficient retrieval of segmented data without reloading the entire dataset.

4.2.6 Simulating Large-Scale Data for Performance Testing
To evaluate how the system performs under real-world conditions, we generated
and inserted 2,000,000 records into the database using @faker-js/faker. This fake
data generator dynamically created student, course, and marks, simulating realistic
database activity.

• Realistic Data Simulation:By using localized Faker.js settings, we generated
student names, course titles, and marks that match real-world patterns based
on specific regions.

27

Implementation and Optimization

• Bulk Data Insertion:The system efficiently processed and inserted millions
of records without slowdowns or crashes.

• Scalability Check:This approach confirmed that our database setup can
handle high data volumes while maintaining fast performance.

These enhancements ensure that our system is scalable, realistic, and adaptable for
various use cases. More details on performance benchmarks can be found in the
Performance Analysis section.

4.3 Client-Side Implementation
4.3.1 Introduction
The client-side of our system is designed with a strong focus on efficiency, scalability,
and responsiveness. We leverage React.js to create a dynamic and interactive UI,
while WebAssembly (WASM) is used to optimize in-memory data operations,
significantly reducing the need for frequent backend requests. By using WASM, we
ensure that large-scale datasets—containing millions of records—can be processed
and retrieved seamlessly without overloading the browser or causing performance
bottlenecks.

This approach not only enhances the speed and responsiveness of the application
but also minimizes server dependency, making the system more scalable and
cost-effective.

4.3.2 Technologies Used
• React.js A component-based front-end library for building scalable UIs.

• Fetch API Handles asynchronous communication between the frontend and
backend.

• WebAssembly (WASM) Speeds up large-scale in-memory computations.

• C (WASM Module) generated modules by emcc Used to manage memory-
efficient data storage and retrieval.

• DuckDB A high-performance in-memory SQL database optimized for analyt-
ical queries.

• Material-UI Provides a clean and modern UI design for enhanced user
experience.

Each of these tools plays a crucial role in ensuring the smooth performance of
the client-side system, particularly when dealing with vast amounts of data.

28

Implementation and Optimization

4.3.3 Efficient Data Fetching Strategy
• Pagination Fetching data in smaller chunks rather than loading everything

at once.[16]

• In-Memory Storage with WASM Storing fetched data in memory instead
of making repeated backend calls.

• Asynchronous Fetching Ensuring smooth data retrieval without freezing
the UI.

• DuckDB Query Execution Running analytical SQL queries directly in the
browser for fast data analysis.

• Batch Processing Grouping API requests to reduce network overhead.

• Pre-fetching Strategies Anticipating the user’s next actions and loading
data in advance to enhance the browsing experience.

• Lazy Loading Loading only the necessary data initially and retrieving
additional records when required.

4.3.4 Fetching Data from the API
To fetch large datasets efficiently, we implemented a pagination-based fetching
mechanism:

const response = await fetch(BACKENDURL +
‘/allPagedJsonData?page=page&limit =limit‘);

How This Approach Improves Performance?

By implementing this intelligent data-fetching approach, we ensure that our system
can handle millions of records smoothly while keeping the UI responsive and
efficient.

4.3.5 Data Storage and Processing in WASM
Once the data is fetched, it is stored in WASM memory, allowing for high-speed
access and efficient memory utilization. The C-based WebAssembly module manages
structured storage, ensuring that data operations are performed without JavaScript-
induced performance bottlenecks.

29

Implementation and Optimization

Memory Management in C : Optimizing Performance for Large Datasets

Managing memory efficiently is crucial when handling large datasets, especially
when working with millions of records. Our system employs a structured memory
allocation approach in C, ensuring that data is stored, retrieved, and processed
quickly without unnecessary overhead. This setup is designed to work seamlessly
within WebAssembly (WASM) to improve performance on the client side.[17]

Memory Configuration During the Trial Phase

Before integrating real-world data, we conducted a trial phase where we used fake
and simulated datasets to fine-tune our memory management approach. This phase
was essential for:

• Testing different memory allocation sizes to determine the best fit for
performance.

• Simulating real-world database interactions to ensure smooth data
retrieval.

• Identifying memory bottlenecks and addressing potential leaks.

• Benchmarking query speeds to optimize data access.

By configuring our memory handling based on trial data, we were able to predict
system behavior under real load and make necessary adjustments before full
deployment.

Efficient Memory Allocation and Initialization

To ensure smooth operations, memory is dynamically allocated for different enti-
ties—students, courses, and marks—only when needed. Each dataset has its own
initialization function that:

• Frees previously allocated memory (if any) to prevent leaks.[17]

• Allocates new memory blocks dynamically based on record count.

• Optimizes space usage to prevent excessive memory consumption.

For example, the student memory initialization function follows this approach:

30

Implementation and Optimization

void std_init(int count){

if (students!=NULL){

free(students);

}

num_students = count;

students = (Student*)malloc(count * sizeof(Student));

}

This structure is replicated for courses and marks, ensuring that each
dataset is handled independently while preventing memory conflicts.

Inserting Data into Memory

Once memory is allocated, data is directly inserted into pre-allocated memory
blocks, ensuring fast read/write operations without the need for additional
storage operations.

For example, when adding a new student record, we:

• Ensure the index is within the allocated range to prevent memory
corruption.

• Copy the student’s name which is an string safely using strncpy() to
avoid buffer overflows.

• Store the student’s ID and age which are integers in the structured
memory block.

This approach ensures that student data is efficiently stored and easily retrievable.
Similar functions are implemented for courses and marks, maintaining a structured
and predictable data layout in memory.

Retrieving Data from Memory for Queries

A major advantage of our C-based memory management is the ability to retrieve
data instantly without needing additional API calls. Since data is stored in
contiguous memory blocks, queries are executed in real-time with minimal delay.

For instance, fetching a student record is as simple as:

31

Implementation and Optimization

Student* get_students(int index){

if (index < 0 || index >= num_students) return NULL;

return &students[index];

}

This design allows us to:

• Retrieve records instantly for UI rendering and analytics.

• Optimize in-memory searching for real-time performance.

The same logic applies to courses and marks, allowing for seamless access to all
required data.

Preventing Memory Leaks with Proper Deallocation

Since we use dynamic memory allocation, proper memory deallocation is crucial to
avoid leaks and performance degradation over time. To handle this, we implement
cleanup functions that free allocated memory when it is no longer needed.
For example, to free student records, we use:

Student* students=NULL;

void free_students(){

free(students);

students = NULL;

}

This ensures that:

• Allocated memory is properly released,preventing memory buildup.

• Dangling pointers are avoided by setting them to NULL.

Similar deallocation functions exist for courses and marks, ensuring efficient memory
management across the entire system.

32

Implementation and Optimization

Final Thoughts: High-Performance Memory Management

By structuring our memory allocation in C, we’ve built a fast, scalable, and efficient
system capable of handling millions of records with minimal performance overhead.
Our approach ensures that:

• Data is stored and retrieved instantly using in-memory storage.

• Memory leaks are prevented through structured allocation and dealloca-
tion.

• Database load is reduced improving overall system efficiency.

• Query execution is near-instant ensuring smooth UI performance.

The trial phase played a crucial role in fine-tuning our memory management,
allowing us to predict real-world behavior and optimize the system accordingly.
With this approach, we can efficientlyhandle large datasets, reduce latency,
and maintain a smooth user experience—all while keeping memory usage
under control.

4.4 Using Emscripten (emcc) to Bridge C and
JavaScript in Our Project

4.4.1 Introduction to Emscripten (emcc)
Emscripten (emcc) is a powerful compiler that allows us to convert C code into
WebAssembly (WASM) and JavaScript, enabling seamless integration of high-
performance native code within web applications[18]. In our project, we use
emcc to compile our C-based memory management and data handling logic into
JavaScript-accessible functions, ensuring fast in-memory operations while keeping
the flexibility of a React-based frontend.

By integrating emcc, we achieve:

• Seamless execution of C functions within JavaScript, reducing reliance
on backend processing.

• Optimized memory management through WebAssembly, minimizing
browser memory overhead.

• Faster data retrieval and storage by keeping frequently accessed data in
memory.

• Improved scalability, enabling efficient handling of millions of records.

33

Implementation and Optimization

4.4.2 Breaking Down the emcc Compilation Script
To generate a WebAssembly module from our C code (allDataInMemory.c), we use
the following emcc command[19]:

34

Implementation and Optimization

emcc allDataInMemory.c -o mainstudents4.js \

-s MODULARIZE=1 \

-s SINGLE_FILE=1 \

-s EXPORTED_FUNCTIONS="[’_std_init’, ’_courses_init’, ’_marks_init’,

’_insert_student’, ’_insert_courses’, ’_insert_marks’,

’_get_students’, ’_get_courses’, ’_get_marks’,

’_free_students’, ’_free_courses’, ’_free_marks’]" \

-s EXPORTED_RUNTIME_METHODS="[’cwrap’, ’UTF8ToString’, ’HEAP32’,

’lengthBytesUTF8’, ’stringToUTF8’, ’_malloc’, ’_free’]" \

-s INITIAL_MEMORY=2147483648 \

-s ALLOW_MEMORY_GROWTH=1 \

-s MAXIMUM_MEMORY=4GB

Each flag plays a critical role in exposing our C functions to JavaScript
while optimizing performance. Let’s break them down:

1. Creating a Modular JavaScript Wrapper using -s MODULARIZE=1
This ensures that our compiled WebAssembly module is wrapped inside a
JavaScript function instead of being a global script. This approach provides:

• Better maintainability We can import the module as needed rather
than polluting the global namespace.

• Dynamic loading The module can be loaded asynchronously in our
React application.

• Multiple instances If needed, we can create different instances of the
module for various tasks.
With MODULARIZE=1, we import the module in JavaScript like this:
import createMainModule from "./mainstudents";

2. Outputting a Single File using -s SINGLE_FILE=1 This forces the
compiler to bundle everything, including the WebAssembly code, into
a single .js file.[19] The advantages of this approach include:

• Easier deployment No need to manage separate .wasm files.
• Reduced HTTP requests The browser loads everything in one go.

35

Implementation and Optimization

• Simpler project structure All compiled code is self-contained.

3. Making C Functions Usable in JavaScript

-s EXPORTED_FUNCTIONS=

"[’_std_init’, ’_courses_init’, ’_marks_init’,

’_insert_student’, ’_insert_courses’, ’_insert_marks’,

’_get_students’, ’_get_courses’, ’_get_marks’,

’_free_students’, ’_free_courses’, ’_free_marks’]"

This flag ensures that specific functions from our C code are exposed and
callable in JavaScript.
For example, after compilation, we can initialize student data directly from
JavaScript:

module._std_init(numberOfStudents);

By exporting these functions, we ensure that our entire in-memory data
management system—initialization, insertion, retrieval, and cleanup—is
accessible from JavaScript.

4. Exporting Runtime Methods for Memory Management

-s EXPORTED_RUNTIME_METHODS=

"[’cwrap’, ’UTF8ToString’, ’HEAP32’,

’lengthBytesUTF8’, ’stringToUTF8’, ’_malloc’, ’_free’]"

These runtime methods allow us to handle memory allocation and string
conversion between JavaScript and C efficiently:

• cwrap Enables calling C functions from JavaScript without manual
bindings.

• UTF8ToString and stringToUTF8 Convert text data between JavaScript
and C.

• HEAP32 Provides direct access to WebAssembly’s memory.

36

Implementation and Optimization

• _malloc and _free Manage dynamic memory allocation, preventing
leaks.

For example, when inserting student names, we need to convert JavaScript
strings to C-style UTF-8 strings and store them in WebAssembly
memory:

const snamePtr = module._malloc(module.lengthBytesUTF8

(student.sname) + 1);

module.stringToUTF8(student.sname, snamePtr,
module.lengthBytesUTF8(student.sname) + 1);

module._insert_student(index,student.id,snamePtr, student.age);

module._free(snamePtr);

This method ensures efficient memory use and prevents unnecessary
reallocation.

5. Configuring WebAssembly Memory Allocation[19]

-s INITIAL_MEMORY=2147483648

This pre-allocates 2GB of memory for WebAssembly. Since our project
deals with large datasets, having a sizable initial memory allocation:

• Prevents memory fragmentation.
• Improves performance by reducing the need for memory expan-

sion.
• Ensures stability when handling large-scale data.

-s ALLOW_MEMORY_GROWTH=1

This allows WebAssembly memory to dynamically expand when needed,
rather than being limited to a fixed size. It helps in:

• Efficient memory usage, growing only when necessary.

37

Implementation and Optimization

• Handling varying dataset sizes without pre-allocating excessive mem-
ory.

This sets a hard cap on memory usage at 4GB, ensuring that our

-s MAXIMUM_MEMORY = 4GB

application does not consume excessive system resources.

Why emcc Matters in Our Project?

By compiling our C code with emcc and integrating WebAssembly, we achieve:

• Blazing-fast in-memory operations All data queries run directly in mem-
ory, reducing API calls.

• Seamless interaction between C and JavaScript Complex data processing
happens efficiently without slowing down the UI.

• Optimized memory handling With manual allocation and cleanup, we
prevent memory leaks.

• Smooth user experience Even with millions of records, the frontend remains
responsive.

• Scalability Our architecture supports increasing data volumes with minimal
performance impact.

With this setup, our project can efficiently store, retrieve, and process large-scale
data in WebAssembly memory, providing high performance without overloading
the browser or backend.

4.4.3 Efficient Data Handling with WebAssembly in JavaScript
One of the key aspects of our project is how JavaScript interacts with WebAssembly
(WASM) to efficiently store and retrieve structured data. Instead of relying on
standard JavaScript objects, which can be memory-intensive and slow for large
datasets, we use WASM to manage data in a compact, structured format. The
functions that make this possible—such as _std_init ,_insert_student , and
_get_students —were generated using Emscripten (emcc) and allow JavaScript
to directly manipulate WASM memory.

38

Implementation and Optimization

Setting Up the WebAssembly Module

Before anything else, we need to initialize our WebAssembly module, which acts as
a bridge between JavaScript and the compiled C functions. This is done using:

await createMainModule();

This function loads the precompiled WASM module, giving us access to the
memory-efficient functions we defined in C. While createMainModule() is the
function name in our implementation, it could be named anything—since it’s just
a wrapper around our compiled module.

Allocating Memory

Once the WASM module is ready, we need to allocate memory for the student
records:

module._std_init(students.length);

This function, _std_init(), ensures that WASM has enough memory space to
store all student records efficiently. Without this step, trying to insert students
into memory would fail.

Storing Data in WASM

Since WASM does not support JavaScript strings directly, we need to manually
allocate memory for each student’s name before inserting the data. The process
works as follows:

1. Allocate memory for the student’s name using _malloc().

2. Convert the name to UTF-8 and copy it into WASM memory using _stringToUTF8().

3. Insert the structured student data using _insert_student().

4. Free the allocated memory afterward using _free() to prevent memory leaks.

Here’s how this is done in code:

39

Implementation and Optimization

students.map((student, index) => {

const snamePtr =

module._malloc(module.lengthBytesUTF8(student.sname) + 1);

module.stringToUTF8(student.sname, snamePtr,
module.lengthBytesUTF8(student.sname) + 1);
module._insert_student(index, student.id, snamePtr,
student.age);

module._free(snamePtr);

}

This method ensures that our student data is stored efficiently inside WASM
without unnecessary memory overhead.

Retrieving Data from WASM

Once the data is inside WASM memory, we need a way to retrieve it. This is done
using _get_students(index), which returns a pointer to the stored data. Since
WASM memory is a continuous block, we extract individual values using pointer
arithmetic:

const stdproceeddata = students.map((_, index) => {

const stdpointer = module._get_students(index);

return {

id: module.HEAP32[stdpointer / 4],

sname: module.UTF8ToString(stdpointer + 4),

age: module.HEAP32[(stdpointer + 56) / 4]

}

});

• module.HEAP32[stdpointer / 4] retrieves the student’s ID.

• module.UTF8ToString(stdpointer + 4) extracts the student’s name
from WASM memory.

40

Implementation and Optimization

• module.HEAP32[(stdpointer + 56) / 4] retrieves the age.

This approach allows JavaScript to fetch structured data directly from WASM’s
memory, bypassing the inefficiencies of traditional JavaScript objects.

By using WASM, we’ve created a highly efficient way to store and retrieve structured
data within the browser. The functions handling this process—such as _std_init,
_insert_student, and _get_students—were all generated using Emscripten (emcc),
allowing JavaScript to interact seamlessly with our compiled C code. This setup
significantly improves performance, especially when dealing with large datasets, and
ensures optimal memory usage by avoiding JavaScript’s usual memory overhead

4.5 Leveraging DuckDB for Efficient In-Browser
Data Processing

Handling large datasets efficiently within the browser is a significant challenge,
especially when dealing with millions of records. Traditional databases require
constant communication with a backend server, leading to latency and performance
bottlenecks. To address this, DuckDB, an in-memory analytical database, is used
to process large datasets directly in the browser.

By integrating DuckDB with WebAssembly (WASM) and utilizing pagination
techniques, we ensure high performance, scalability, and memory efficiency, pre-
venting browser crashes due to excessive memory usage. This section explores how
DuckDB enables efficient client-side data processing, eliminating the need for a
backend database.

Integrating DuckDB in the Browser

To run DuckDB within a browser, we utilize WebAssembly (WASM) to create a
high-performance execution environment. WebAssembly allows DuckDB to operate
efficiently within the browser’s memory space, providing near-native performance.

Setting Up WebAssembly Memory

To prevent memory fragmentation and ensure smooth execution, WebAssembly
memory is explicitly allocated:[6]

41

Implementation and Optimization

const wasmMemory = new WebAssembly.Memory({

initial: 512, // 32 MB

maximum: 32768, // 2 GB

shared: true

});

This preallocates memory, preventing unexpected crashes when handling large
datasets.

Once memory is allocated, DuckDB is initialized as a Web Worker, allowing
database queries to run asynchronously without freezing the UI:

const bundle = await duckdb.selectBundle(

duckdb.getJsDelivrBundles());

const worker = await duckdb.createWorker(bundle.mainWorker);

const db = new duckdb.AsyncDuckDB(new duckdb.ConsoleLogger(),
worker, wasmMemory)

await db.instantiate(bundle.mainModule,
bundle.pthreadWorker);

Using a dedicated worker ensures that all database operations run in the back-
ground, maintaining a responsive user experience.

Handling Large Datasets Efficiently

To prevent out-of-memory errors, we adopt a pagination technique that processes
data in chunks instead of loading everything at once.

4.5.1 Creating Tables and Loading Data
The dataset consists of three main tables:

• Students: Stores student details (ID, name, age).

• Courses: Stores course information (ID, name, credits).

42

Implementation and Optimization

• Marks:Stores student grades with foreign key references. With foreign key
constraints, the integrity of the relational dataset is maintained (Many to
Many).

4.5.2 Pagination Technique to Prevent Out-of-Memory Er-
rors

Instead of loading millions of records at once (which could crash the browser), we
use a pagination technique to process data in smaller chunks:

while (true) {

let offset = stdpage * limit;

await c.query(

‘INSERT INTO students (id, sname, age)

SELECT id, sname, age FROM read_json_auto(’students_*’)

LIMIT limit OFFSET offset‘

);

const result = await c.query(
‘SELECT * from students LIMIT ${limit} OFFSET ${offset}‘);

if (result.toArray().length === 0) break;
stdpage++;

}

Why Pagination?

• Prevents Memory Exhaustion: Instead of inserting all records at once, data is
processed in batches, ensuring that memory usage remains stable.

• Improves Performance: Queries execute faster since smaller datasets are
processed at a time.

• Ensures Smooth User Experience: The browser remains responsive even when
handling millions of records.

The same technique is applied when inserting marks and courses, ensuring
efficient memory management across all tables.

43

Implementation and Optimization

Conclusion

By integrating DuckDB with WebAssembly and pagination techniques, we enable
high-performance, in-browser data processing without requiring a backend database.

Key takeaways:

• High Performance: DuckDB’s in-memory, columnar processing ensures fast
query execution even for large datasets.

• Scalability: Using pagination, the system can handle millions of records
without running out of memory.

• No Backend Required: All operations run locally in the browser, reducing
network overhead and improving privacy.

• Seamless Integration: DuckDB works directly with WebAssembly memory,
optimizing performance for large-scale data analysis.

This approach is ideal for client-side analytics, interactive dashboards, and
offline data processing, making web applications more powerful and efficient.

4.6 User Interface
In modern web applications, having a well-designed user interface (UI) is crucial for
providing a smooth and efficient experience. This React-based UI is built to handle
large datasets efficiently, combining Material UI for styling, WebAssembly (WASM)
for performance optimization, and DuckDB for fast and lightweight data processing.

Users can input and execute SQL queries on large datasets, retrieving results
in real-time with minimal delay. The application also provides query performance
tracking, displaying execution speed to help users understand the efficiency of their
queries. Error handling and notifications ensure that users receive clear messages
in case of success, failure, or warnings, making interactions more intuitive[9].

In addition to executing queries, the UI also allows users to upload JSON files for
analysis. Through the navigation bar, users can generate and insert fake data into
PostgreSQL for testing purposes and easily export database records as a JSON file
with a single click. Since this project is centered around researching applicability
and performance, we included fake data insertion to facilitate future testing and
performance evaluations as the study progresses.

Query results are displayed in a searchable table, making it easy to filter, search,
and navigate through the data. This enhances usability, especially when working

44

Implementation and Optimization

with large datasets. To prevent memory overflow issues, the application implements
pagination, ensuring that only a manageable portion of data is processed at a time.

By integrating these features, the application creates a highly efficient and
user-friendly environment for data querying, processing, and visualization.

45

Chapter 5

Performance Analysis

To evaluate the system’s efficiency in handling large-scale data operations, we ran
thorough tests on the PostgreSQL database and Json file with 30,000,000
records. The objective was to determine its ability to process high data volumes
while maintaining speed and stability.

5.0.1 Key Performance Metrics Evaluated
• Bulk Insert Efficiency Ensuring the system can handle massive data inserts

without failures.

• Query Execution Speed Measuring how quickly the database retrieves and
processes large datasets.

• Server Load and Scalability Evaluating how concurrent requests impact
system performance.

• Browser Memory Constrains Limitations in data upload and analysis
according to the browsers memory capacity constrain.

5.1 Bulk Data Insertion Performance
To simulate real-world conditions, we generated synthetic student, course, and
marks data using Faker.js and inserted it into PostgreSQL. We optimized the bulk
insertion process using:

• Batch Inserts: Instead of inserting records one by one, we grouped them
into batches, reducing transaction overhead.

• Optimized Connection Pooling: Adjusting Sequelize’s connection pool
settings to keep database connections stable under heavy loads.

46

Performance Analysis

Results:

• Successfully inserted 2,000,000 records in under 45 minutes without
errors or connection failures.

• Memory consumption remained stable due to optimized pooling and
transaction handling.

5.2 Query Performance and Optimization
Working with large datasets requires careful query optimization. In this approach,
we used a combination of JSON caching and pagination techniques to effectively
manage datasets with around 30,000,000 records. These strategies helped us avoid
common issues like memory overload and errors when dealing with such massive
amounts of data.

5.2.1 Key Optimizations
Caching Data with JSON Files:

• Instead of constantly querying PostgreSQL, we preprocessed the data and
saved it in JSON files.

• This helped lighten the load on the PostgreSQL database, as we could quickly
serve frequently accessed data directly from the JSON cache, reducing the
strain on the system.

Using Pagination with JSON Files:
• For large datasets, we employed JSON data retrieval along with a pagination

method.

• Pagination allowed us to break the query into smaller, more manageable
chunks, which helped avoid issues like "Out of Memory" or "Invalid string
length" errors that can occur when trying to pull large datasets all at once.

• By fetching smaller batches of data at a time, we could successfully manage
datasets containing millions of records without running into system limitations.

Integrating DuckDB for Data Processing:
• DuckDB was used to process the data stored in JSON files, enabling efficient

handling of large datasets by performing quick in-memory operations like
filtering and aggregation.

• This integration helped us work with large amounts of data more easily,
without the risk of overwhelming the system.

47

Performance Analysis

5.2.2 Results:
• JSON-based retrieval Caching the data in JSON files allowed us to retrieve

large datasets without overloading the database.

• Pagination Technique: The pagination strategy, which broke the data into
smaller chunks, resolved issues like memory overload, "Out of Memory", and
"Invalid string length" errors, ensuring smooth and successful data retrieval
even with massive datasets.

5.3 Data Upload Performance and Benchmark-
ing

In this section, we look at how we fetch data from the backend and upload it into
DuckDB tables, which allows us to easily query large datasets from the frontend.
We tested two methods for inserting data: adding records one by one and using a
more efficient approach where data is uploaded in larger chunks.

5.3.1 Benchmark Results
We conducted several tests to compare the performance with diffrent data sizes.
The results are shown in the table below:

Method Records Inserted Time Taken (ms)
Inserting data one by one 1,000,000 926,373
Inserting data in chunks (1M) 1,000,000 18,015
Inserting data in chunks (6M) 30,000,000 724,837

Table 5.1: Benchmark Results for Data Upload Methods

1. Inserting Data One by One: When we tried inserting data one record at a
time, it took 926,373 ms to upload 1,000,000 records. This method was
really slow, especially with such a large number of records.

2. Inserting Data in Chunks (1M): To improve this, we switched to inserting
data in larger chunks. By uploading all 1,000,000 records at once, the time
dropped dramatically to 18,015 ms, which was a huge improvement.

3. Inserting Data in Chunks (6M): For even larger datasets, we increased the
chunk size to handle 6,000,000 records in each batch. With this approach,
we were able to upload 30,000,000 records in just 724,837 ms, showing
even better performance.

48

Performance Analysis

These results clearly demonstrate that using chunking for data insertion signifi-
cantly speeds up the process and makes it easier to handle large datasets without
running into performance issues.

5.4 Data Querying Performance: WASM vs. Nor-
mal API Fetch

We compared the performance of querying data using WASM and the traditional
API fetch method. For a dataset of 30,000,000 records, the normal API fetch took
283,339 ms. In contrast, querying the same data using WASM was much faster,
taking only 11,492 ms— a 95.94% improvement in speed .

Method Data Records Time Taken (ms)
API Fetch Report 28,000,000 =1.5 GB 283,339
API Fetch Querying 28,000,000 =1.5 GB 200,112
WASM Reprot 28,000,000 =1.5 GB 8,112
WASM Query 28,000,000 =1.5 GB 2,957

Table 5.2: Benchmark Results for Data Querying with WASM vs Normal API
Fetch

5.5 Limitations in Data Upload and Analysis
While our WebAssembly (WASM)-powered approach significantly improves data
querying performance, it is constrained by the memory limitations of web browsers.
Unlike traditional server-based processing, where memory allocation can be more
flexible, browser environments impose strict memory limits that affect the volume
of data we can handle.

In our case, using Google Chrome (memory limits may vary between browsers
and browser versions), we observed a maximum WebAssembly memory allocation
of approximately 2GB. This directly impacts the size of JSON files that can be
uploaded and queried. Based on our testing, we found the following constraints:

5.5.1 Uploading Large JSON Files
• We were able to successfully upload and process JSON files up to 1.5GB

before reaching memory constraints.

• Beyond this limit, we encountered a memory allocation failure:

49

Performance Analysis

malloc of size 536870912 failed

This suggests that insufficient contiguous memory was available for further
allocation.

5.5.2 Querying Large Joined Tables
Queries involving large joined tables, such as retrieving all students, their courses,
and marks with the following SQL query:

SELECT s.id, s.sname, c.cname, m.marks

FROM marks m

JOIN students s ON m.sid = s.id

JOIN courses c ON m.cid = c.cid;

required 1GB of browser memory when working with tables totaling 512MB
each (1GB in total). Since Chrome’s WASM memory cap is approximately 2GB,
this allowed us to handle up to 1GB of data while reserving the remaining 1GB
for retrieval and processing.

5.5.3 Querying Aggregated Data
Queries with aggregations, such as counting students with a specific mark:

SELECT c.cname, COUNT(DISTINCT s.id) AS Number_of_Students

FROM marks m

JOIN students s ON m.sid = s.id

JOIN courses c ON m.cid = c.cid

WHERE m.marks = 30

GROUP BY c.cname, c.cid

ORDER BY c.cname;

50

Performance Analysis

required less memory for result retrieval, allowing us to handle up to 1.5GB of
data. This is because the final query result was smaller compared to large joined
tables, which required storing a higher volume of intermediate data in memory.

5.5.4 Key Takeaways
• WebAssembly memory constraints (2GB in Chrome) limit how

much data can be processed in-memory.

• 1GB datasets (when querying large joined tables) are feasible, as an
additional 1GB is needed for memory allocation.

• 1.5GB datasets are possible for queries with smaller output sizes, as
they require less memory for retrieval.

• Exceeding these limits results in memory allocation failures (e.g.,
malloc of size 536870912 failed).

• Optimizations such as streaming data or using binary formats (e.g.,
Parquet, Arrow) could mitigate these limitations.

This highlights the necessity of memory-efficient query execution and potential
future optimizations, such as streaming data instead of loading it all at
once or exploring alternative browsers with higher WebAssembly memory
limits.

51

Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis examined how integrating WebAssembly (WASM) with JavaScript
can enhance data retrieval and processing in web applications. The research
demonstrated that WASM significantly boosts performance, improves memory
management, and strengthens security when handling large datasets like student
records, course information, and academic performance. By leveraging WASM, our
implementation achieved faster execution times and optimized resource utilization
compared to traditional JavaScript-based methods.

6.1.1 Key Findings
Performance Optimization

• WASM accelerates execution speed by operating closer to native code perfor-
mance, minimizing JavaScript-related slowdowns in data-intensive tasks.

• Using typed arrays and direct memory manipulation (HEAP32) reduces
overhead and speeds up data retrieval.

Efficient Memory Management

• The application optimizes memory usage through explicit allocation (malloc)
and deallocation (free), ensuring efficient resource management.

• String handling within the WASM module is optimized to prevent memory
leaks and performance degradation.

52

Conclusion and Future Work

Security Enhancements

• WASM’s sandboxed execution model isolates code, preventing unauthorized
memory access and mitigating common web security threats.

• While WASM improves security, careful management of pointers and memory
access is necessary to avoid vulnerabilities like buffer overflows.

Optimized Query Execution

• Integrating DuckDB with WebAssembly enables high-speed SQL-like queries
directly within the browser.

• The system efficiently processes and retrieves filtered datasets, reducing reliance
on backend computations.

Enhanced User Experience

• Combining WASM with React and Material-UI results in a smooth, responsive
interface for executing and visualizing queries.

• Users can seamlessly interact with large datasets without compromising per-
formance, enhancing overall usability.

6.1.2 Future Work
While this implementation demonstrates the advantages of WASM in data-driven
applications, a key improvement for the future would be optimizing memory
management to more efficiently handle dynamic and continuously changing data.

6.1.3 Final Thoughts
This thesis confirms that WebAssembly is a powerful tool for web-based data
processing. By integrating WASM with modern web technologies, we achieve
significant performance gains, enhanced security, and an improved user experience.
As WebAssembly grows, it’s set to shape the future of fast web apps.

53

Appendix

Figure 1: Upload performance

54

Appendix

Figure 2: Report performance

Figure 3: Query performance

55

Bibliography

[1] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Dan Gohman,
Luke Wagner, Alon Zakai, JF Bastien, and Michael Holman. «Bringing the
Web up to Speed with WebAssembly». In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017) (2017). url: https://dl.acm.org/doi/10.1145/3062341.
3062363 (cit. on pp. 1, 2, 5).

[2] chrome extension to interact with DOM. Accessed November 2024. 2024. url:
https://medium.com/%40divakarvenu/lets-create-a-simple-chrome-
extension-to-interact-with-dom-7bed17a16f42 (cit. on p. 4).

[3] Performance Comparison of WebAssembly vs. Native Apps. Accessed Novem-
ber 2024. 2024. url: https://blog.pixelfreestudio.com/webassembly-
vs-native-apps-performance-comparison/?utm_source=chatgpt.com
(cit. on p. 5).

[4] WebAssembly Security. Accessed February 2025. 2025. url: https://webass
embly.org/docs/security/?utm_source=chatgpt.com (cit. on pp. 5, 10).

[5] Porting C and C++ Code to WebAssembly. Accessed December 2024. 2024.
url: https://github.com/WebAssembly/design/blob/main/CAndC%2B%
2B.md (cit. on pp. 6, 7).

[6] WebAssembly.Memory() Constructor. Accessed December 2024. 2024. url:
https://developer.mozilla.org/en-US/docs/WebAssembly/Reference/
JavaScript_interface/Memory/Memory (cit. on pp. 8, 41).

[7] Radu Matei. A Practical Guide to WebAssembly Memory. Accessed December
2024. 2024. url: https://radu-matei.com/blog/practical-guide-to-
wasm-memory/ (cit. on p. 9).

[8] Daniel Lehmann, Raphael Gawlik, Thorsten Holz, Dorothea Kolossa, and
Christian Rossow. «Security of WebAssembly: State of the Art and Chal-
lenges». In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19) (2019). url: https://dl.acm.org/
doi/10.1145/3319535.3363192 (cit. on p. 10).

56

https://dl.acm.org/doi/10.1145/3062341.3062363
https://dl.acm.org/doi/10.1145/3062341.3062363
https://medium.com/%40divakarvenu/lets-create-a-simple-chrome-extension-to-interact-with-dom-7bed17a16f42
https://medium.com/%40divakarvenu/lets-create-a-simple-chrome-extension-to-interact-with-dom-7bed17a16f42
https://blog.pixelfreestudio.com/webassembly-vs-native-apps-performance-comparison/?utm_source=chatgpt.com
https://blog.pixelfreestudio.com/webassembly-vs-native-apps-performance-comparison/?utm_source=chatgpt.com
https://webassembly.org/docs/security/?utm_source=chatgpt.com
https://webassembly.org/docs/security/?utm_source=chatgpt.com
https://github.com/WebAssembly/design/blob/main/CAndC%2B%2B.md
https://github.com/WebAssembly/design/blob/main/CAndC%2B%2B.md
https://developer.mozilla.org/en-US/docs/WebAssembly/Reference/JavaScript_interface/Memory/Memory
https://developer.mozilla.org/en-US/docs/WebAssembly/Reference/JavaScript_interface/Memory/Memory
https://radu-matei.com/blog/practical-guide-to-wasm-memory/
https://radu-matei.com/blog/practical-guide-to-wasm-memory/
https://dl.acm.org/doi/10.1145/3319535.3363192
https://dl.acm.org/doi/10.1145/3319535.3363192

BIBLIOGRAPHY

[9] DuckDB-Wasm: Efficient Analytical SQL in the Browser. Accessed February
2025. 2025. url: https://duckdb.org/2021/10/29/duckdb-wasm.html?
utm_source=chatgpt.com (cit. on pp. 12, 44).

[10] Memory Management in DuckDB. Accessed December 2024. 2024. url:
https://duckdb.org/2024/07/09/memory- management.html (cit. on
p. 13).

[11] MVC Framework. Accessed December 2024. 2024. url: http://geeksfo
rgeeks.org/mvc-framework-introduction/?utm_source=chatgpt.com
(cit. on p. 17).

[12] Building Web Apps with React, WebAssembly. Accessed December 2024. 2024.
url: https://dev.to/akshaysrepo/building-web-apps-with-react-
webassembly-and-go-27f8?utm_source=chatgpt.com (cit. on p. 21).

[13] Anil Kumar Moka. DuckDB Optimization: A Developer’s Guide to Better
Performance. Accessed December 2024. 2024. url: https://dzone.com/
articles/developers-guide-to-duckdb-optimization (cit. on p. 24).

[14] Increase the Max Memory for Node. Accessed January 2025. 2025. url: https:
//support.circleci.com/hc/en-us/articles/360009208393-How-Can-
I-Increase-the-Max-Memory-for-Node?utm_source=chatgpt.com (cit.
on p. 25).

[15] Increase the Max Memory for Node. Accessed January 2025. 2025. url:
https://expressjs.com/en/api.html?utm_source=chatgpt.com (cit. on
p. 26).

[16] Increase the Max Memory for Node. Accessed January 2025. 2025. url:
https://dev.to/robertobutti/efficient-api-consumption-for-huge-
data-in-javascript-1i72?utm_source=chatgpt.com (cit. on p. 29).

[17] Understanding Memory Management. Accessed February 2025. 2025. url:
https://educatedguesswork.org/posts/memory-management-1/ (cit. on
p. 30).

[18] Emscripten Compiler Frontend. Accessed February 2025. 2025. url: https:
//emscripten.org/docs/tools_reference/emcc.html?utm_source=
chatgpt.com (cit. on p. 33).

[19] Iprosk. Low-Level Code Using JavaScript. Accessed November 2024. 2024. url:
https://dev.to/iprosk/cc-code-in-react-using-webassembly-7ka
(cit. on pp. 34, 35, 37).

57

https://duckdb.org/2021/10/29/duckdb-wasm.html?utm_source=chatgpt.com
https://duckdb.org/2021/10/29/duckdb-wasm.html?utm_source=chatgpt.com
https://duckdb.org/2024/07/09/memory-management.html
http://geeksforgeeks.org/mvc-framework-introduction/?utm_source=chatgpt.com
http://geeksforgeeks.org/mvc-framework-introduction/?utm_source=chatgpt.com
https://dev.to/akshaysrepo/building-web-apps-with-react-webassembly-and-go-27f8?utm_source=chatgpt.com
https://dev.to/akshaysrepo/building-web-apps-with-react-webassembly-and-go-27f8?utm_source=chatgpt.com
https://dzone.com/articles/developers-guide-to-duckdb-optimization
https://dzone.com/articles/developers-guide-to-duckdb-optimization
https://support.circleci.com/hc/en-us/articles/360009208393-How-Can-I-Increase-the-Max-Memory-for-Node?utm_source=chatgpt.com
https://support.circleci.com/hc/en-us/articles/360009208393-How-Can-I-Increase-the-Max-Memory-for-Node?utm_source=chatgpt.com
https://support.circleci.com/hc/en-us/articles/360009208393-How-Can-I-Increase-the-Max-Memory-for-Node?utm_source=chatgpt.com
https://expressjs.com/en/api.html?utm_source=chatgpt.com
https://dev.to/robertobutti/efficient-api-consumption-for-huge-data-in-javascript-1i72?utm_source=chatgpt.com
https://dev.to/robertobutti/efficient-api-consumption-for-huge-data-in-javascript-1i72?utm_source=chatgpt.com
https://educatedguesswork.org/posts/memory-management-1/
https://emscripten.org/docs/tools_reference/emcc.html?utm_source=chatgpt.com
https://emscripten.org/docs/tools_reference/emcc.html?utm_source=chatgpt.com
https://emscripten.org/docs/tools_reference/emcc.html?utm_source=chatgpt.com
https://dev.to/iprosk/cc-code-in-react-using-webassembly-7ka

	List of Tables
	List of Figures
	Acronyms
	Introduction
	BackgroundMotivation
	Key Aspects
	Objectives
	Questions
	Structure of the Thesis

	Literature Review
	Browser Extensions
	The Significans of WebAssembly
	Key Points of WebAssembly

	Porting C and C++ Code to WebAssembly
	Understanding WebAssembly’s Platform Features
	Floating-Point Support

	C and C++ Language Support in WebAssembly
	Using APIs in WebAssembly
	ABI Considerations

	Undefined and Implementation-Defined Behavior
	Undefined Behavior
	Implementation-Defined Behavior
	Portability of Compiled Code
	Conclusion

	Managing Memory in WebAssembly
	How WebAssembly Handles Memory
	How WebAssembly Interacts with the Host Environment
	Allocating and Freeing Memory in WebAssembly
	Allocating Memory
	Freeing Memory
	Conclusion

	Security in WebAssembly
	Sandboxing and Isolation
	Memory Safety
	Control-Flow Integrity (CFI)
	Additional Security Considerations
	Fine-Grained CFI via Clang/LLVM

	Enhancing Browser Extensions with WASM
	Seamless Integration with JavaScript and Web APIs

	DuckDB: The Database Powering The In-Browser Analytics
	Web Filesystem for JSON and Parquet File Processing in DuckDB-Wasm

	Methodology
	Introduction
	Server-Side Architecture
	 MVC Pattern
	Advantages of Using MVC in Server-Side Architecture
	Final Thoughts

	Client-Side Architecture
	WebAssembly Workflow on the Client Side
	 Enhancing User Experience
	 Why This Architecture Works
	Final Thoughts

	Implementation and Optimization
	Introduction
	Server-Side Implementation
	Server Architecture
	Key Components of the Server-Side Architecture:
	API Implementation (Server-Side Design)
	Database Configuration for Large-Scale Data Handling
	Faster Data Retrieval with JSON Caching
	Simulating Large-Scale Data for Performance Testing

	Client-Side Implementation
	Introduction
	Technologies Used
	 Efficient Data Fetching Strategy
	Fetching Data from the API
	Data Storage and Processing in WASM

	Using Emscripten (emcc) to Bridge C and JavaScript in Our Project
	Introduction to Emscripten (emcc)
	Breaking Down the emcc Compilation Script
	Efficient Data Handling with WebAssembly in JavaScript

	Leveraging DuckDB for Efficient In-Browser Data Processing
	Creating Tables and Loading Data
	Pagination Technique to Prevent Out-of-Memory Errors

	User Interface

	Performance Analysis
	Key Performance Metrics Evaluated
	Bulk Data Insertion Performance
	Query Performance and Optimization
	Key Optimizations
	Results:

	 Data Upload Performance and Benchmarking
	Benchmark Results

	Data Querying Performance: WASM vs. Normal API Fetch
	Limitations in Data Upload and Analysis
	Uploading Large JSON Files
	Querying Large Joined Tables
	Querying Aggregated Data
	Key Takeaways

	Conclusion and Future Work
	Conclusion
	Key Findings
	Future Work
	Final Thoughts

	Bibliography

