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Abstract

This thesis presents a systematic approach for calibrating a Pan-Tilt-Zoom network
camera and integrating it with state-of-the-art object detection and depth estimation
algorithms for distance measurement of autonomous agents.

A calibration methodology was adopted to compute the intrinsic parameters of the
camera across various zoom levels, addressing the non-linear variations induced by dy-
namic zoom adjustments. This calibration process is fundamental for establishing an
accurate mapping between the three-dimensional world and the two-dimensional image
plane of the camera.

Subsequently, the study focuses on estimating the distance of autonomous agents by
leveraging a dual-framework approach. Object detection is performed using YOLOv8,
chosen for its balance between computational efficiency and detection accuracy in real-
time applications. For depth computation, a monocular image-based technique is em-
ployed using the Apple Depth Pro model, which incorporates a Vision Transformer ar-
chitecture to capture high-level contextual features and infer depth from a single frame.
The integrated system exploits the complementary strengths of YOLOv8 and ViT-based
depth estimation. The object detection component provides precise localization, while
the depth estimation framework supplies spatial measurements, resulting in an accurate
distance assessment to the target autonomous agent.

The results indicate that the proposed methodology achieves robust performance in
distance estimation, with notable improvements in detection accuracy and depth precision
compared to traditional methods.

In conclusion, the primary goal of this work and its main results is the relocalization
of autonomous agents thanks to an external PTZ camera. This approach originated
from the challenges posed by the Leonardo Drone Contest. Moreover, it holds significant
promise for real-world applications, including warehouse logistics, precision agriculture,
and smart city infrastructure.
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Chapter 1

Introduction

1.1 Problem Statement

Autonomous robots, often referred to as agents, rely heavily on accurate positioning
information to navigate, plan tasks, and coordinate with other agents in shared environ-
ments. While numerous state-of-the-art localization techniques exist, such as GPS-based
navigation, LiDAR-based SLAM, and multicamera vision systems, each solution presents
distinct challenges related to cost, infrastructure demands, and integration complexities.

In certain contexts, such as the Leonardo Drone Contest, an external stationary cam-
era may be available, necessitating novel approaches for robust localization. Recent
computer vision advancements, particularly in object detection (e.g., YOLO) and depth
estimation (e.g., Apple Depth Pro), allow for the extraction of three-dimensional coordi-
nates from a monocular camera feed. Incorporating a Pan-Tilt-Zoom (PTZ) mechanism
further enhances coverage through its rotational capabilities and addresses issues with
small or distant targets using its optical zoom.

Despite these technological advances, significant gaps remain in understanding how
best to integrate PTZ control, object detection, and monocular depth estimation sys-
tems to accurately determine the 3D positions of autonomous agents. Challenges include
selecting adaptive camera control policies for targets at varying ranges, minimizing the
impact of motion blur at higher zoom levels, and managing diverse lighting or envi-
ronmental conditions. Furthermore, it is unclear how sensor noise and the precision of
modern monocular depth estimation methods impact the overall accuracy and robustness
of the robot relocalization process.

Therefore, this thesis aims to design and evaluate a systematic workflow that:

1. Calibrates both intrinsic and extrinsic camera parameters to compensate for man-
ufacturing inaccuracies.

2. Detects autonomous agents within a single camera feed via object detection.

3. Estimates reliable 3D positions for these agents by combining monocular depth
estimation techniques with knowledge of the camera’s pan, tilt, and zoom.
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Introduction

By tackling this problem, the work evaluates the feasibility of using a single PTZ
camera as a versatile and cost-efficient solution for robot relocalization in scenarios where
deploying multiple cameras or specialized sensors is impractical or economically unfeasi-
ble.

1.2 Multi-robot Collaboration
Multi-robot collaboration refers to the coordinated operation of multiple autonomous
agents, each possessing distinct capabilities and resources, working together to achieve a
shared objective. This approach contrasts with single-robot deployments by leveraging
complementary strengths, distributing workload, and enhancing the overall system’s flex-
ibility and robustness. Recent advances in robotics have demonstrated the potential of
heterogeneous teams in complex and dynamic environments, including disaster response,
environmental monitoring, and city-scale surveillance tasks.

The overall coordination involves:

• Mission Planning and Task Allocation: Determining which robot is best suited for
a particular sub-task based on real-time sensor data and global mission objectives
(e.g., coverage, inspection, or tracking).

• Information Sharing: Exchanging sensor data (video, GPS location, etc.) among
all team members to reduce the uncertainty of target localization and optimize the
decision-making process.

• Coordinated Navigation: Adjusting paths and trajectories to avoid collisions and
minimize operational time in search-and-detect missions.

A critical aspect of such coordinated deployments is designing robust communication
protocols and real-time decision-making algorithms that handle high-bandwidth sensor
streams, such as camera feeds and LiDAR point clouds. Furthermore, safety mechanisms
and fail-safe routines must be carefully integrated to manage partial failures or drops in
communication, which are more likely when multiple heterogeneous platforms operate
concurrently.

In the context of our work, we focus on a collaborative system composed of three
types of robots: an unmanned aerial vehicle, a ground rover, and a PTZ camera unit.
Each agent in the team offers unique advantages:

• Drone (UAV): Provides a broad overhead view and rapid response to high-level
tasks such as mapping, target detection, and relaying positional information. Its
aerial perspective and agility are particularly useful for overcoming visual occlusions
and navigate complex environments.

• Rover (UGV): Operates on street level, carrying out close range inspection and
capture detailed images of potential targets and navigate urban terrains.

• PTZ Camera: Offers a stationary vantage point with the ability to quickly reorient
and zoom in on areas of interest. The PTZ camera can complement both the
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Introduction

aerial and ground views, providing persistent surveillance or targeted monitoring
in critical zones.

Collaboration among these heterogeneous robots is particularly beneficial in city-
like environments and by leveraging distinct sensing modalities and vantage points, the
multi-robot team can efficiently locate and identify targets such as ArUco markers or
other objects of interest.

1.3 Leonardo Drone Contest

The Leonardo Drone Contest is an Italian university competition organized by Leonardo
S.p.A. The contest serves as a platform for fostering technological innovation in au-
tonomous systems, combining research, experimentation, and competition to push the
boundaries of aerial and ground robotics. This initiative aligns with Leonardo’s strategic
goal of enhancing the development of collaborative and intelligent robotic systems for
real-world applications.

I had the opportunity to participate multiple times in this competition as a member
of the DRAFT PoliTo student team. My contributions to the team, particularly in the
context of this competition, serve as the primary foundation of this thesis.

The main objective of the competition is to develop and test heterogeneous au-
tonomous robotic systems, including Unmanned Aerial Vehicles (also referred as drone)
and Unmanned Ground Vehicles (also referred as rover), capable of working together
aided by an external PTZ camera. The competition emphasizes:

• Autonomous navigation and path planning in unknown GNSS-denied environments.

• AI-driven localization, mapping, and situational awareness.

• Real-time decision-making and coordination between drone and rover.

• Data processing and communication with a Ground Control Station (GCS).

Each participating team must integrate and develop robotic platforms that will com-
plete a series of predefined tasks within a partially unknown environment. The competi-
tion area has dimensions of 20×10×3 meters and is enclosed with a net to ensure safety.
A schema of the positions of known obstacles is shown in figure 1.1. The main tasks are:

• Target Identification: Detecting ArUco markers and specific objects from the COCO
dataset.

• Follow-Me: The drone must autonomously track and follow the rover within a
defined corridor.

• Emergency Response: Performing predefined emergency actions, such as emergency
landing or return-to-base procedures.
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Figure 1.1. Competition area with the position of known obstacles. Movable obstacles
are placed in the right half of the map.

1.4 Applications & Related Work

Relocalization of autonomous agents using monocular depth estimation on PTZ cameras
is an emerging approach that combines cost-effective sensing with active vision capabili-
ties. This approach finds broad applications across various domains.

In warehouse logistics mobile robots and automated guided vehicles can be tracked
and relocalized by overhead PTZ cameras as they navigate storage aisles, enabling efficient
inventory management and collision avoidance. Monocular depth cues help estimate the
distance of a robot from racks or obstacles, which is critical in tight indoor spaces.

Similarly, in precision agriculture, autonomous tractors and drones equipped with
monocular cameras can estimate crop row distances and terrain undulations to localize
themselves in fields. A PTZ camera mounted on farm machinery can actively survey large
farmland plots, zooming in to assess plant health or guide robots for targeted spraying.
Monocular depth estimation provides a low-cost alternative to LiDAR in these outdoor
environments, assisting in mapping crop heights and detecting obstacles.

Smart city infrastructure is another key domain: PTZ surveillance cameras installed
at traffic intersections or in street lamps can monitor autonomous delivery robots and
connected vehicles, using object detection and depth estimation to determine their posi-
tions on roadways or sidewalks. This can also aid the current development of autonomous
driving and advanced driver assistance systems (ADAS), and in the future enable smarter
traffic management. In self-driving cars, a forward-facing monocular camera — in com-
bination with the detection of car’s taillight — can estimate distances to vehicles [1] and
pedestrians, providing essential input for collision avoidance and navigation.

Developing robust relocalization on PTZ monocular cameras requires integrating ad-
vances from several research areas.

A foundational component is monocular depth estimation. Since inferring depth
from a single image is an inherently ill-posed problem, early methods relied on machine
learning-based approaches to predict plausible depth maps. A pioneering work by Eigen
et al. [4] introduced a multi-scale convolutional network to regress depth from a single
image, demonstrating that coarse scene layout and fine details could be learned together.
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This opened the door to purely vision-based distance sensing. Subsequent approaches
significantly improved accuracy and generalization. Many leveraged deep convolutional
neural networks trained on large RGB-D datasets or stereo images; others moved towards
self-supervised learning to reduce the need for ground truth depth. For instance, Zhou
et al. [23] showed that depth and camera motion can be learned jointly from monocular
video sequences by enforcing geometric consistency between consecutive frames. Simi-
larly, Godard et al. [5] developed a framework to learn depth from stereo image pairs
without explicit depth labels, using consistency between the left-right views. These self-
supervised techniques achieve remarkable results, making monocular depth estimation
viable in domains where collecting LiDAR data is impractical. More recently, Transform-
ers have been employed to capture global context, with Ranftl et al. [10,11] demonstrating
that vision transformer models can boost depth estimation performance across diverse
scenes. By training on mixed datasets spanning indoor and outdoor environments, such
models achieve robust zero-shot generalization, a crucial attribute for relocalization in
new or changing environments. The culmination of these advances is that from a single
RGB frame one can obtain a dense depth map that provides the metric distance of each
pixel from the camera. This breakthrough was first achieved by Piccinelli et al. [9] and
later refined by Bochkovskii et al. at Apple [3].

Another critical component is object detection and recognition, which allows identify-
ing and tracking the autonomous agent, or other relevant objects, in the camera’s field of
view. Modern deep learning-based object detectors have achieved high accuracy and real-
time performance, making them well-suited for guiding PTZ cameras. For example, the
Faster R-CNN detector by Ren et al. [13] employs a region proposal network to efficiently
locate objects, achieving near real-time speeds without sacrificing detection precision.
Redmon et al. [12]’s YOLO (You Only Look Once) series further optimized detection to
run at high frame rates by using a single neural network pass to predict bounding boxes
and class probabilities in an image. Beginning with YOLOv5 [16], the series has been
developed by Ultralytics, introducing further enhancements in performance and usabil-
ity. Such detectors can reliably recognize robots, drones, or vehicles in complex scenes,
even from a single viewpoint. The synergy of detection and depth estimation thus yields
not only the direction of the agent in the image but also an estimate of how far it is,
essentially localizing the agent in 3D space relative to the camera.

The use of PTZ cameras brings unique advantages and challenges: the zoom mech-
anism actively alters the internal geometry of the camera, meaning that a calibration
performed at one zoom level may become invalid when the lens is adjusted. In par-
ticular, as the zoom changes, the focal length varies, the effective optical center may
shift, and the characteristics of lens distortion change. These changes are critical because
they directly affect how a three-dimensional scene is projected onto the two-dimensional
image plane, and thus any error in these parameters can lead to inaccuracies in dis-
tance estimation and overall relocalization performance [20, 21]. Traditional calibration
techniques fail to capture nonlinear dynamic changes, necessitating either separate cali-
brations for each zoom setting or the development of a continuous model that predicts
internal parameters as functions of the zoom level [2, 6]. Early approaches to intrinsic
calibration relied on controlled laboratory conditions with known patterns. Willson’s
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work provided one of the seminal methods in this area by imaging a calibration grid
at discrete zoom settings to build a lookup table of focal lengths, principal points, and
distortion coefficients [20,21]. Recent methods favor self-calibration using scene features
and geometric constraints. Agapito et al. [2] leveraged the Image of the Absolute Conic
(IAC) to estimate intrinsic parameters from multiple images. Initially suited for minimal
lens distortion, later refinements incorporated optimization techniques like linear matrix
inequalities to better manage distortion variability [6,15]. With the rise of deep learning,
Zhang et al. [22] proposed a new model, known as DeepPTZ, capable of predicting focal
lengths and distortion coefficients directly from image pairs, even as the camera zooms.
These methods leverage large datasets and the power of convolutional neural networks
to learn the nonlinear relationships between zoom level and intrinsic parameters without
requiring manual intervention.

Combining these components, researchers have developed integrated systems demon-
strating effective monocular relocalization. One approach is to incorporate known visual
markers on the autonomous agents and use specialized detectors to improve range esti-
mation. Oh et al. [7] describe a system that attaches circular fiducial markers on a robot;
a PTZ camera guided by a CNN-based ellipse detector can recognize the marker at a
distance and compute its 3D position using the marker’s apparent size and the calibrated
zoom parameters. Their results show infrastructure-free localization in indoor environ-
ments with centimeter-level accuracy, without relying on external sensors. Conversely,
Unlu et al. [19] demonstrate a PTZ camera system that can autonomously track a flying
UAV by continuously detecting it with a neural network and controlling the camera mo-
tors to center the target. While their primary goal was persistent tracking, the system
implicitly performs relative relocalization whenever the drone re-enters the camera’s view
after a maneuver, owing to the wide-area coverage of the PTZ and the learned model’s
ability to re-detect the UAV on appearance. During such tracking, the distance to the
drone can be inferred either through the drone’s known dimensions or via the depth
estimation networks discussed earlier.

Overall, the literature shows that by fusing advances in single-image depth percep-
tion, object detection, and camera control, one can achieve reliable relocalization of au-
tonomous agents across a range of practical scenarios.

1.5 Thesis Structure

This thesis is organized into five main chapters, each addressing a critical aspect of the
research. The structure is designed to provide a clear and logical progression from the
background and technical context to the methodological approach, results, and conclu-
sions.

Below is an overview of each chapter:

1. Introduction: This chapter introduces the research topic, outlining the problem,
its significance, and the motivation behind the study. It outlines the research ques-
tions and the significance of the work within the broader academic and practical
context.
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2. Hardware and Software Context: This chapter details the technical environ-
ment in which the research was conducted. It describes the hardware components
utilized, including specifications and performance considerations, as well as the soft-
ware stack employed. The programming languages, APIs, and frameworks used in
the development and implementation of the research are also discussed, providing
necessary background for understanding the methodology and experimental setup.

3. Methodology: The methodology chapter explains the approach taken to address
the research problem. It describes the experimental design, data collection meth-
ods, and analytical techniques used. Justification for the chosen methodologies is
provided, along with details of the integration of hardware and software components
and the underlying assumptions made.

4. Results: The findings of the research are presented and analyzed in this chapter.
The results are interpreted in relation to the research questions and objectives,
highlighting key insights.

5. Conclusion and Future Work: The final chapter summarizes the main findings
and discusses their implications. It reflects on the contributions of the research
and its practical applications. Finally, it suggests directions for future research,
highlighting potential improvements and alternative approaches.
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Chapter 2

Hardware and Software Context

This chapter provides an overview of the fundamental principles, components, and tech-
nologies underlying PTZ cameras, setting the stage for the innovative work discussed in
subsequent chapters. Firstly we will talk about the specific camera at hand, then we will
explain all the software used to develop and deploy the algorithms employed, lastly we
will explore all the functionality of this camera from the most basic ones to the more
advanced.

2.1 AXIS M5525-E PTZ Network Camera

PTZ cameras use pan, tilt and zoom to provide both wide-area coverage and great detail
with a single camera. Great image quality and the ability to zoom in make it possible
to verify and detected security events. Axis cameras are equipped with a variety of
intelligent features and can move between pre-set positions and zoom in automatically in
response to detected events.

The M55 line is specifically designed to be affordable and to be deployed both in
indoor and outdoor environments.

Figure 2.1. AXIS M5525-E PTZ Network Camera mounted on its support.
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2.1.1 Technical Specifications

This camera supports a maximum video resolution of 1920x1080 pixels, which ensures
full high-definition (HD) video quality. The camera operates at a maximum frame rate
of 25 frames per second (fps) in regions with a power supply frequency of 50 Hz, such as
Europe.

The camera features a complete pan range of 360 degrees, enabling it to rotate fully
and cover an area without any blind spots. The tilt range is from 0 to -90 degrees,
allowing the camera to cover areas directly below it.

The camera is equipped with a 10× optical zoom. Additionally, the camera offers a
12× digital zoom, which, while increasing the total magnification to 120×, may result in
some loss of image quality. Moreover, the camera includes auto-focus and auto-iris func-
tionalities, ensuring that images remain sharp and correctly exposed even when lighting
conditions change or when zooming in and out.

The camera utilizes Power over Ethernet (PoE) Class 3, which simplifies the instal-
lation process by allowing both power and data to be transmitted over a single Ethernet
cable.

2.1.2 On-Board Capabilities and API

The on-board capabilities of Axis cameras are accessible through the proprietary VAPIX®
APIs, which are RESTful APIs designed to enable easy integration and management of
the camera. REST (Representational State Transfer) APIs rely on stateless communica-
tion between the client and server.

The API is divided in sections. The most used ones are explained in details below.

Network Video

The API provides endpoints to access live video streams directly from the camera. Users
can request streams in various formats, including MJPEG and H.264.

The VAPIX API offers precise control over the camera’s pan, tilt and zoom capability,
allowing to programmatically adjust the camera’s orientation and field of view.

It is also possible to set the focus and the brightness level, or let the camera find the
best combination automatically.

The camera has the ability to go to preset position and follow preset tours.
The API allows for querying the camera to obtain detailed information about its

status, supported features and current configuration settings.

Applications

Axis cameras have various preinstalled onboard applications that enhance the camera’s
functionality. These applications are accessed through the Common Gateway Interface
(CGI). The preloaded applications are focused on crucial aspect of security, like:

• Fence, loitering, and motion guard: enables the camera to identify and alert on
specific behaviors, such as crossing a virtual boundary (fence), lingering in an area
(loitering), or detecting movement (motion).
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• Auto-tracking: enables the camera to automatically track moving objects within its
field of view. The camera can rotate and zoom to better follow the target.

• People counter: allows the camera to count the number of people entering or exiting
a defined area. It is useful to understand visitor trends, occupancy levels and the
flow of people for operational planning.

• Queue monitor: allows the camera to count the number of people in a defined area.

• Object detection and analytics: facilitates advanced object recognition and classi-
fication, allowing the camera to distinguish between different types of objects (e.g.
people, vehicles, etc...) and trigger appropriate actions based on predefined rules.

• License plate verifier: enables the camera to recognize and verify vehicle license
plates, making it ideal for access control systems in parking lots, gated communities,
or other restricted areas.

Audio Systems

Axis products support two-way audio with full duplex modality, that is the Axis product
can both transmit and receive audio at the same time, using built-in or external micro-
phone and speaker. This API provides also functionality to react to audio events with
an alert or an automatic response.

Device Configuration

The management and configuration of the Axis PTZ camera are handled through the
Device Configuration APIs (DCA). These APIs provide comprehensive control over the
camera’s settings, including device administration and initial configuration.

2.2 Development Environment

The development environment for this project was chosen to ensure robustness, compat-
ibility, and ease of deployment for a robotic software system.

Our software must run on three different systems: the UAV, the UGV and the ground
station. To ensure consistency and portability all the applications run inside Docker
containers. A Docker container contains the application and all the dependencies needed
to run it, like operating system, libraries, and tools.

The operating system used inside the Docker containers is Ubuntu 20.04 LTS (Focal
Fossa). Ubuntu is a Linux distribution popular for development in the robotics com-
munity due to its large repository of software packages, and support for ROS (Robot
Operating System). A long-term support release was selected because it ensures that the
system will receive updates and security patches for an extended period.

ROS2 Foxy Fitzroy is the version of ROS used in this project. ROS2 is a middleware
suite designed for developing robotic applications, providing services such as hardware
abstraction, device control, and communication between processes. The Foxy release
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is an LTS version, ensuring that it is stable and well-supported, which is essential for
long-term projects.

ROS2 officially supports both Python and C++, but for this project, we chose to use
C++ over Python due to the significant overhead introduced by the Python interpreter
in embedded systems. Specifically, we opted for C++14, as it offers modern language
features while maintaining compatibility with all relevant compilers. However, for ma-
chine learning applications on the ground station, where resources are less constrained,
we used Python because of its ease of use and the wide variety of available packages.

Useful libraries that are used throughout the codebase are:

• OpenCV (Open Computer Vision Library): a popular library used for computer
vision and image processing tasks. It provides a wide range of highly optimized
functionality for image manipulation, including reading and writing images and
videos, image filtering, ArUco marker detection, and more.

• Boost: a collection of portable, header-only, C++ libraries that provide a variety of
functionalities to enhance programming. In particular we used Asio, for networking
tasks, and Process, for managing system processes.

• PyTorch: a deep learning framework developed by Facebook’s AI Research lab.
It is widely used to train, evaluate, and deploy neural network models with GPU
acceleration.

2.3 Base Functionality
In this section we will discuss all the basic functionality needed to operate a PTZ camera.
We will make ample use of Linux commands and VAPIX APIs. We will start by checking
that the camera is connected and reachable, then we will move on to move it by sending
commands and finally getting the current status and the image.

2.3.1 Connectivity Testing

To verify the connectivity between the host and the Axis camera we use a process com-
monly known as pinging, offered by the Internet Control Message Protocol (ICMP). The
ICMP ping request allows us to determine if a specific IP address is reachable and measure
the round-trip time of packets.

To perform a ping operation programmatically we need to send ICMP packets directly.
Since ICMP is encapsulated within the IP protocol and user-mode sockets only support
TCP/UDP, establishing a raw socket is needed for direct packet manipulation, at the
cost of requiring root privileges.

By using the built-in ping command we are able to access the information required
as regular user, without managing the sockets ourselves.

From C++ we can call the command with std::system("ping -c 1 -W 5 <IP>").
In this case we send 1 packet (-c 1) and wait a maximum of 5 seconds for a response (-W
5) from the server (<IP>). If a response is received and the return value is zero, we can
conclude that the server is reachable.
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2.3.2 Sending Commands

The API endpoint for this functionality is:

http://<IP>/axis-cgi/com/ptz.cgi?<argument>=<value>

To move the camera there are three modalities:

• Absolute position: set the absolute coordinates of the camera in its coordinate
system. We can use the arguments pan, tilt, zoom, with the values in degrees.

• Absolute velocity: set the velocity of pan, tilt and zoom and follow the trajectory
till the limit is reached. We can set the velocity with the argument speed, then we
start the movement with continuouspantiltmove and continuouszoommove.

• Relative position: set the coordinates relative to the current position. We have two
options:

– move by a certain amount of degrees, using rpan, rtilt or rzoom to in-
crease/decrease the zoom level.

– move to a certain pixel in the image, using center or areazoom if we want
also to zoom in or out.

In our work we only used the ability to set the absolute position and to look at a
specified pixel in the captured image.

When sending commands we must always keep in mind that, in VAPIX, the pan is
positive going right and the tilt is negative looking down.

2.3.3 Receiving Status

To get the current status of the camera we must use the same endpoint as in 2.3.2, with
the argument query.

We can query various aspects by using different values:

• position: current values of pan, tilt, zoom, focus, brightness, auto-focus and auto-
iris.

• speed: current value of pan-tilt speed

• limits: range of the different parameters

• attributes: miscellaneous camera attributes

The most used ones are position and speed, whereas limits and attributes are
usually only used while configuring or debugging.
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2.3.4 Receiving Images

Getting the images captured by the camera is a fundamental step.
The VAPIX APIs provide two interfaces: over HTTP or over RTSP (Real Time

Streaming Protocol). For ease of implementation, we utilized the HTTP interface.
We can choose between continuous video streaming or capturing single images on

demand. Each approach offers distinct advantages.

Video

To get the Motion JPEG video we use the endpoint:

http://<IP>/axis-cgi/mjpg/video.cgi?<argument>=<value>

This will get us a continuous flow of JPEG images.
By employing the VideoCapture class from OpenCV and constructing it with the

URL, the class handles the API request internally, allowing us to interface with it as
though it were a conventional video stream.

However, a limitation of this approach is that the camera may buffer some frames to
maintain a smooth video feed. As a result, the images received may be slightly delayed,
which could be problematic for applications requiring real-time processing.

Image

To get a single JPEG image, a snapshot, we use the endpoint:

http://<IP>/axis-cgi/jpg/image.cgi?<argument>=<value>

Before using the image, it is necessary to decode the raw data received. This can be
achieved by employing the OpenCV function imdecode.

In our task, we only need to capture a single frame every two seconds. To achieve
this efficiently, we utilize this endpoint to minimize network load and reduce latency.

2.4 Advanced Functionality
In this section, we will explore advanced functionalities essential for effectively utilizing a
PTZ camera. Our approach will leverage algorithms implemented in OpenCV and employ
various coordinate system transformations. The process begins with the calibration of
the camera, followed by the detection and pose estimation of an ArUco marker. Finally,
we will explain the algorithm used for orienting the camera to focus on a specified point
in 3D space.

2.4.1 Camera Calibration

Camera calibration is a fundamental process in computer vision and photogrammetry
that aims to determine the parameters of a camera to accurately relate the 3D world to
a 2D image. This process is essential for applications that require high precision, such as
robotics. Camera calibration involves estimating both intrinsic and extrinsic parameters.
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Intrinsic Parameters

Intrinsic parameters are the internal characteristics of the camera that affect how it
captures an image.

These parameters are specific to the camera’s optics and sensor.
To model these parameters, we use the pinhole camera model (Fig. 2.2), a theoreti-

cally sound and mathematically simplified approach based on projective geometry, where
each point in a three-dimensional scene is projected onto the image plane along a straight
line passing through a single aperture, known as the pinhole.

This assumption is justified under the following conditions:

• Linear Projection: The model assumes that light travels in straight lines, which
holds true in the absence of significant diffraction or scattering effects.

• Small Aperture Approximation: While real cameras have lenses with finite aper-
tures, the pinhole model approximates the behavior of a camera with a very small
aperture, minimizing the effects of lens-induced aberrations. This simplification is
often sufficient for many computer vision applications where the primary concern
is the geometric relationship between the scene and the image.

Figure 2.2. Pinhole camera model. It is shown how the focal length and principal point
are constructed. Adapted from [8].
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The main intrinsic parameters include:

• Focal length (f): is a measure of how strongly the camera lens converges light. It
affects the field of view and the scale of the image. The focal length is typically
represented in pixels in the camera matrix and can be different for the x and y axes
(fx, fy).

• Principal point (cx, cy): is the point where the optical axis intersects the image
plane. Ideally, this is at the center of the image, but due to manufacturing imper-
fections, it is often offset slightly.

• Distortion coefficients: estimate the distortion introduced by real lenses, particu-
larly wide-angle lenses. The most common types are radial distortion and tangential
distortion. Radial distortion causes straight lines to appear curved, while tangential
distortion occurs when the lens and image plane are not perfectly parallel.

We follow the convention used by OpenCV to represent the intrinsic parameters with
a camera matrix, which combines the focal lengths and principal point, and a vector of
5 distortion coefficients, 3 for radial distortion (k1, k2, k3) and 2 for tangential distortion
(p1, p2):

camera matrix =

⎡⎢⎣fx 0 cx

0 fy cy

0 0 1

⎤⎥⎦ (2.1)

distortion coefficients =
[︂
k1 k2 p1 p2 k3

]︂
(2.2)

Extrinsic Parameters

Extrinsic parameters define the camera’s position and orientation in the 3D world, relative
to the global coordinate system.

The extrinsic parameters consist of:

• Rotation matrix (R): describes the orientation of the camera in 3D space relative
to a world coordinate system. It is a 3 × 3 matrix that encodes the rotation needed
to align the camera’s coordinate system with the world coordinate system.

• Translation vector (t): represents the camera’s position in the world coordinate
system. It is a 3 × 1 vector that specifies the displacement from the world origin to
the camera origin.

Together, the rotation matrix and translation vector can be combined into a single
3 × 4 matrix known as the extrinsic matrix:

extrinsic matrix = [R | t] (2.3)

This matrix transforms coordinates from the world coordinate system to the camera
coordinate system.
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Intrinsic Parameters Estimation

As recommended by OpenCV we use a chessboard pattern, because it is easy to recognize
the locations where two black squares touch each other.

The important input data needed for calibration of the camera is the set of 3D real
world points and the corresponding 2D coordinates of these points in the image.

The 2D points can be found in the image using the function findChessboardCorners
(Fig. 2.3). It is also recommended to refine their position with cornerSubPix, to increase
the accuracy. We need a representative set of images to get a good calibration, usually
at least 20.

Figure 2.3. On the left the chessboard pattern used for calibration. On the right
the location of 2D points.

The 3D location of the points can be derived with some assumptions:

1. the chess board is kept stationary, so the location of the points is always the same

2. the chess board is kept on the XY plane, so z = 0

3. the x and y axis are aligned with the rows and columns of the chessboard

4. the origin is congruent with the top-left point

5. the square size is 1 unit wide

Given this, we can say that the points are at:

(0, 0, 0) (0, 1, 0) (0, 2, 0) · · ·

(1, 0, 0) . . .
...

Once we have all necessary data we can use the OpenCV function calibrateCamera
to obtain the camera matrix and distortion coefficients. Internally this function calls
solvePnP that minimizes the difference between the projected 3D points, using the esti-
mated parameters, and the actual detected 2D image points, implementing the Levenberg-
Marquardt algorithm.
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Extrinsic Parameters Estimation

To estimate the translation vector we measure, with a laser distance meter, the distance
of the camera from the origin of the global coordinate system along each axis.

To estimate the initial orientation of the camera, we only need to calculate the yaw
(pan) angle, because we assume that both the pitch (tilt) and roll angles are zero, as the
camera is mounted parallel to the ground.

To compute the initial pan we:

1. set an ArUco marker (see 2.4.2) along the x-axis

2. align the center of the marker with the center of the image

3. query the status to obtain the current pan

2.4.2 Estimate Marker Pose

An important goal in the Leonardo Drone Contest and a crucial task in many robotic
applications is to detect and estimate the pose of fiducial markers. If they are attached to
an important object we can compute its position in space, otherwise if they are stationary
and their position is known we can recompute the camera position and orientation.

To make it possible we must first examine the characteristics of the ArUco markers
being utilized. Following this, we will explain how to detect and estimate the pose of
these markers.

The whole process is illustrated in the figure 2.4.

ArUco

ArUco (Augmented Reality library from the University of Cordoba) markers are a type
of fiducial marker used extensively in computer vision and robotics for pose estimation
and augmented reality applications. These markers are designed to be easily recognizable
by image processing algorithms, facilitating robust and accurate tracking in a variety of
environments.

ArUco markers are binary square markers with a distinct pattern of black and white
squares arranged in a grid. Each marker is uniquely identified by its pattern, which
encodes a specific identifier (id) used to distinguish it from other markers.

The border of the marker is always black, which helps in detecting the marker’s
boundaries by classical computer vision algorithms.

ArUco markers are susceptible to partial occlusion as they lack error correction codes,
a limitation addressed with the development of AprilTags.

Detection

To detect an ArUco marker we use the OpenCV function aruco::detectMarkers that
takes in input the image and the dictionary that generated the binary patterns.
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Internally this function performs:

1. Candidates detection:

(a) Apply adaptive threshold over all the image

(b) Extract contours that approximate to a square shape

(c) Remove the contours too small, too big, too close to each other, etc...

2. Analysis of the inner codification, one contour at a time:

(a) Apply perspective transformation to obtain the marker in its canonical form

(b) Threshold using Otsu to separate white and black pixels

(c) Divide the image into cells according to the marker size and the border size

(d) Count the number of black or white pixels in each cell to determine if it is a
white or a black bit

(e) Analyze the bit pattern to determine if the marker belongs to the specific
dictionary

The function returns, for each valid marker, the position of its four corners in the
image and its id.

Pose estimation

To determine the position and orientation of an ArUco marker, we use the OpenCV func-
tion aruco::estimatePoseSingleMarkers. This function requires as input the corner
positions of the marker, the side length of the marker, and the intrinsic parameters of
the camera. It returns the marker’s distance and rotation relative to the camera.

Given the camera’s extrinsic parameters, and through the application of coordinate
system transformations, it is possible to compute the marker’s global position.

Figure 2.4. The left image shows an example of an ArUco marker. The middle image
illustrates the detection process, with the corners highlighted by green lines outlining the
sides, the first corner marked in red, and the marker ID displayed in blue. The right image
depicts the coordinate system relative to the marker’s center.

21



Hardware and Software Context

2.4.3 Look at Specified 3D Coordinates

An important quality-of-life feature and a crucial component of downstream applications
is the ability to rotate the camera only by specifying a single 3D point of interest.

Given that the camera possesses two degrees of freedom (pan and tilt), the angles
that satisfy the desired viewpoint are uniquely determined.

First, we calculate the vector originating from the axis position and extending towards
the designated point:

∆ = point − axis_position (2.4)

Now that we know the lengths of the catheti, we can calculate the angles using the
arctangent function:

pan = atan2 (∆y, ∆x) (2.5)

tilt = atan2
(︂
∆z,

√︂
∆2

x + ∆2
y

)︂
(2.6)

Finally, to send the command, we must correct for the initial pan, computed with all
the extrinsic parameters:

axis_pan = axis_init_pan − pan (2.7)
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Methodology

This chapter presents the systematic approach developed for the relocalization of au-
tonomous agents using a PTZ camera, integrating state-of-the-art object detection and
monocular depth estimation techniques. The methodology is structured into two sepa-
rate sections: the calibration of the PTZ camera and the agent relocalization through
advanced computer vision algorithms.

3.1 Camera Calibration with Zoom Lenses

As outlined in Section 2.1.1, the AXIS M5525-E camera features a 10× optical zoom,
internally encoded across 9,999 discrete levels ranging from 1 to 9,999. To simplify the
calibration process, we have selected 10 primary levels: the base level (1×) and succes-
sive increments from 2× to 10×. This approach is a trade-off between complexity and
usability.

During deployment, we can opt for one of the primary levels to ensure maximum
accuracy or approximate by utilizing the calibration of the nearest available level.

3.1.1 Experimental Setup

The mathematical and programming details of the calibration process are described in
Section 2.4.1.

To generate the dataset required for calibration, we collected a comprehensive set of
images. A well-structured calibration dataset should contain at least 20 images per zoom
level, ensuring diversity with respect to position within the frame, distance, rotation, and
skew.

For each zoom level, we systematically captured 30 images with the following charac-
teristics:

• 9 different positions within the frame for 3 distinct distances, for a total of 27
images.

• 3 additional images with the calibration pattern skewed at a close distance.
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In total, we acquired 300 images of the calibration pattern. Figure 3.1 presents a
selection of examples.

This process was made significantly faster by leveraging the pan-tilt capabilities of
the camera to adjust its viewpoint, rather than manually repositioning the calibration
pattern.

Figure 3.1. Samples from the calibration dataset showcasing variations in pattern posi-
tion, distance, and skew across different zoom levels.

3.1.2 Evaluation Setup

To assess the accuracy of the calibration, we collected a test dataset consisting of 10
images, one per zoom level, each containing an ArUco marker at a fixed distance of 7.9
meters. Representative examples are presented in the figure 3.2.

The quality of the calibration was evaluated in the context of a downstream task:
estimating the distance to the marker, as detailed in Section 2.4.2.

Figure 3.2. Samples from the evaluation dataset illustrating different zoom levels:
2× (left), 6× (center), and 10× (right).
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3.2 Agent Relocalization

The agent relocation pipeline is implemented in Python, with each component analyzed
independently to better assess its performance.

3.2.1 Object Detection Using YOLO

YOLO (You Only Look Once) is an object detection model that unites detection and
classification in a single pass through a CNN, enabling fast real-time detection.

We used YOLOv8 [17], one of the most recent advancements in the YOLO family. The
architecture is based on a CSPDarkNet53 backbone, a PAN (Path Aggregation Network)
neck, and a detection head that predicts the bounding box coordinates, the class scores,
and the confidence score. In this work, we opted for YOLOv8-small, a lightweight variant
designed for resource-constrained devices, with 11.2 million parameters.

Fine-tuning is a transfer learning technique that allows a pre-trained model to adapt
to a specific dataset. Instead of training from scratch, we initialize the model with weights
pre-trained on a large dataset, in this case COCO, and subsequently refine these weights
using a smaller, task-specific dataset

In practice for YOLO we have to:

• Replace the classification head to align with the number of target classes.

• Freeze the initial layers to preserve low-level feature representations.

• Train the later layers on the specialized dataset to enhance task-specific perfor-
mance.

We collected a custom dataset of 279 manually annotated images for the detection of
our agents. Each image is labeled with bounding boxes and corresponding class labels in
the YOLO format.

To enhance generalization and robustness, we applied a set of data augmentation
techniques to the training subset of the dataset. These transformations help the model
learn invariant features and prevent overfitting to specific patterns in the training data.
In practice, we used:

• Shear: both horizontal and vertical within a range of ±5◦.

• Saturation: within a range of ±20%.

• Brightness: within a range of ±15%.

• Exposure: within a range of ±8%.

• Gaussian Blur: with standard deviation of 1 pixel.
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3.2.2 Distance Estimation via Bounding Box Dimensions

Estimating the distance to an object from its image, when only its bounding box is
available, is an underdetermined problem. Nevertheless, by leveraging the known in-
trinsic camera parameters and the real dimensions of the target, we can derive a rea-
sonable estimate. The pose of the object is estimated using the OpenCV function
aruco::estimatePoseSingleMarkers. This function requires as parameters:

1. corners: the coordinates of the four marker corners in clockwise order,

2. markerLength: the real-world length of one side of the marker,

3. cameraMatrix: the intrinsic camera matrix containing focal length and optical
center,

4. distCoeffs: the radial and tangential distortion coefficients.

It returns the rotation vector rvec and the translation vector tvec that describe the 3D
orientation and position of the target relative to the camera.

In the absence of full 3D information, we propose using the dimensions of the bound-
ing box as a proxy for the objects physical measures. In particular, an approach rooted
in integral geometry suggests that the mean width of a body can serve as a robust char-
acteristic length. According to the definition introduced in convex geometry, the mean
width of a convex body can be obtained via the Crofton formula as the average of its
directional widths over all orientations of space [14]. For a rectangular prism with edge
lengths a, b, and c, the width in any direction u ∈ S2 is a|ux| + b|uy| + c|uz|, and by
symmetry, integrating over the unit sphere yields:

MW = a + b + c

2 (3.1)

In the image, we denote the measured width and height of the bounding box by W
and H, respectively, and define their arithmetic mean as:

AM = W + H

2 (3.2)

Recall the following properties for any random variables X and Y :

• Linearity of Expectation: E[aX + bY ] = aE[X] + bE[Y ]

• Scaling Property of Variance: Var(aX) = a2 Var(X)

• Variance of a Sum: Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y )

Assuming that the object is subjected to a random 3D rotation, we obtain:

E[W ] = E[H] = MW (3.3)
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We can now demonstrate that AM is an unbiased estimator of the mean width of the
target:

E[AM] = E[W + H

2 ] = 1
2(E[W ] + E[H])

= 1
2(2E[W ]) (by symmetry, E[W ] = E[H])

= E[W ] = MW (3.4)

We compute the variance of AM as follows:

Var(AM) = Var
(︃

W + H

2

)︃
= 1

4 Var(W + H)

= 1
4

(︂
Var(W ) + Var(H) + 2 Cov(W, H)

)︂
= 1

4
(︂
2 Var(W ) + 2 Cov(W, H)

)︂
(by symmetry, Var(W ) = Var(H))

= 1
2

(︂
Var(W ) + Cov(W, H)

)︂
(3.5)

By iterating through all possible side ratios, we empirically prove that:

Cov(W, H) ≤ Var(W ) (3.6)

Which implies:
Var(AM) ≤ Var(W ) (3.7)

Therefore, using the arithmetic mean reduces the variance relative to using a single
dimension, leading to a more precise estimation.

In conclusion, we construct corners as a square with side length AM and set the
markerLength parameters to MW . The magnitude of tvec provides an unbiased estimate
of the distance of the target.

3.2.3 Depth Estimation using Vision Transformers

Monocular depth estimation seeks to infer scene depth from a single image, a fundamen-
tally ill-posed problem that relies on learned scene cues and context.

Vision Transformers (ViTs) have emerged as a powerful alternative to CNNs for dense
prediction tasks. The self-attention mechanism at the core of ViTs allows each image
patch to dynamically attend to every other patch. This global attention is particularly
advantageous for depth estimation as it enables the model to capture long-range depen-
dencies within the image, whereas CNNs are inherently limited by their localized receptive
fields. The self-attention mechanism computes pairwise interactions between all image
patches, effectively learning affinities that correlate with the underlying 3D structure.
This enables the network to group pixels belonging to the same distant surface or to de-
tect sharp depth discontinuities along object boundaries. Moreover, the model can infer
metric scale information by recognizing familiar objects, like cars or people, and their
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relative sizes, even in the absence of explicit camera intrinsics. The attention layers im-
plicitly learn a form of camera calibration by observing structural patterns in the image,
enabling the model to estimate the focal scale from context.

Apples Depth Pro is designed to produce high-resolution depth maps with fine details
in a single forward pass, making it suitable for real-time applications. As illustrated
in Figure 3.3, the network consists of two complementary encoder branches followed by
a specialized decoder. The first branch is a multi-scale, patch-based ViT encoder that
processes overlapping patches of 384×384 pixels extracted from a high-resolution input
of 1536×1536 pixels. The same encoder weights are shared across multiple scales, which
encourages the learning of scale-invariant features. The patch-wise features are then
reassembled into feature maps at each scale. Complementing the patch-based encoder,
a second, image-level encoder processes a downsampled version of the entire image to
capture global contextual features. This branch effectively anchors the depth estimation
by providing a global representation of the scene, which is later fused with the local
features in the decoder.

The decoder, similar to the one proposed in Dense Prediction Transformers (DPT) by
Ranftl et al. [10], performs similar feature fusion. It upsamples and merges the reassem-
bled feature maps from each scale with the global features, progressively constructing a
high-resolution depth map that is both locally detailed and globally coherent. In addi-
tion, a focal length estimation head predicts the horizontal field-of-view from the image,
thereby enabling the conversion of the inverse depth map into a metric depth map.

This architecture was chosen to meet demanding requirements: outputting a 2.25-
megapixel depth map (1536x1536) with metric scale, in 0.3 seconds on a standard GPU
[3].

We used this model for zero-shot metric monocular depth estimation while ignoring
the focal length produced.

Figure 3.3. Overview of the network architecture. Adapted from [3].
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3.2.4 Evaluation Setup

To assess the agent relocalization pipeline, we evaluated each component independently.
For the evaluation of object detection using YOLO, the original dataset was parti-

tioned into three subsets: training (75%), validation (15%), and testing (10%). Figure
3.4 provides representative examples of these splits.

For depth estimation evaluation, we collected a dataset consisting of 32 images cap-
tured at varying zoom levels, in which we recorded the 3D positions of the agents relative
to the camera. In 6 of these images, both agents are present, allowing for an assessment
of relative accuracy. Figure 3.5 presents a selection of examples.

Our depth estimation methods operate in a zero-shot setting; therefore, this dataset
is used exclusively for testing. Before applying any distance estimation techniques, we
must extract the bounding boxes: 3.2.2 requires them to determine side lengths, while
3.2.3 uses them for positioning. To maximize the number of correctly labeled samples for
evaluation, we applied our pretrained YOLO model and manually annotated any missing
ones.

Figure 3.4. Samples from the object detection dataset. The top row illustrates
images from the training set with data augmentation, while the bottom row displays
test set images without augmentation.
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Figure 3.5. Samples from the test dataset used for depth estimation.
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Chapter 4

Results

This chapter presents the experimental outcomes of the proposed approach for relocalizing
autonomous agents using a PTZ camera and monocular depth estimation. The results are
divided into two main parts: the camera calibration process under varying zoom levels
and the relocalization pipeline, which includes object detection and distance estimation.

4.1 Camera Calibration with Zoom Lenses

Intrinsic parameters were estimated using the standard checkerboard calibration method,
implemented via OpenCV’s calibration tools. The calibration was performed across dis-
crete zoom levels ranging from 1× to 10× to account for the varying internal geometry
of the PTZ camera under different focal settings.

As shown in Figure 4.1, the focal length, computed as the average of the focal lengths
along the x and y axes, exhibits a linear trend with increasing zoom levels. The observed
slope aligns with the focal length at the base zoom level (1×), indicating a predictable
scaling behavior. In contrast, the optical center shows a more irregular variation across
zoom levels. However, since its contribution to the downstream task of distance estima-
tion is relatively minor, this variability does not pose a significant concern.
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Figure 4.1. Evolution of intrinsic camera parameters across zoom levels. The red line
indicates the ideal reference value.
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To validate the calibration, the distance to a fixed ArUco marker placed at a known
position of 7.9 meters was estimated using the computed intrinsic parameters. Table 4.1
summarizes the estimated distances at each zoom level, and the trend is visualized in
Figure 4.2.

Zoom Level Estimated Distance [m]
1× 7.93
2× 8.11
3× 8.14
4× 8.07
5× 7.97
6× 7.90
7× 7.68
8× 7.71
9× 7.62
10× 7.76

Table 4.1. Estimated distances to the ArUco marker at varying zoom levels.
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Figure 4.2. Estimated distances to the ArUco marker at varying zoom levels.

The maximum relative error in the distance estimation task is observed at zoom level
9×, where it reaches 3.5%, remaining within acceptable limits for the application.

An interesting observation is the correlation between focal length deviations and dis-
tance estimation errors. At lower zoom levels, the focal length tends to overshoot, result-
ing in an overestimation of distance. Conversely, at higher zoom levels, the focal length
increase slows down, leading to a slight underestimation.
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4.2 Agent Relocalization

4.2.1 Object Detection

A YOLOv8-small was fine-tuned on a custom dataset to detect the target autonomous
agent within the camera’s field of view.

The model was trained for 100 epochs using a batch size of 32. Optimization was
performed with the Adam optimizer provided by the Ultralytics framework. During
training, the performance of the model was monitored on a validation set using the
following metrics:

• Precision: The ratio of true positive detections to the total predicted positives.

• Recall: The ratio of true positive detections to the total actual positives.

• mAP@0.5: The mean average precision computed at an Intersection over Union
(IoU) threshold of 0.5.

• mAP@0.5:0.95: The mean average precision averaged over IoU thresholds ranging
from 0.5 to 0.95.

While these metrics are presented as percentages in our reports, they are computed and
store internally on a scale from 0 to 1.

Throughout the training process, the Ultralytics library automatically saves both the
final model checkpoint and the checkpoint corresponding to the best performance. The
selection of the best model is based on a fitness score, defined as:

Fitness = 0.1 × mAP@0.5 + 0.9 × mAP@0.5:0.95 (4.1)

In our experiment the optimal model was identified at epoch 83.
The best-performing model was subsequently evaluated on an independent test set.

Table 4.2 summarizes the key performance metrics.

Metric Value
Precision 91%

Recall 93%
mAP@0.5 93%

mAP@0.5:0.95 82%

Table 4.2. Performance metrics on the test set, expressed as percentages.

These results demonstrate the robustness of the object detection module, with high
precision and recall indicating reliable detection performance.

Figure 4.3 displays the precision-recall curve and the F1-confidence curve, each serving
a distinct role in evaluating the models performance.

The precision-recall curve illustrates the trade-off between precision and recall as the
confidence threshold varies. A high precision indicates that when the model predicts a
detection, it is likely to be correct; a high recall ensures that most of the true instances are
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detected. The curve helps to visualize how these metrics change with different threshold
settings, for example, lower thresholds often yield higher recall but lower precision due to
an increased number of false positives, while higher thresholds typically improve precision
at the expense of recall. This detailed view is especially valuable in imbalanced scenarios,
where the number of positive samples is much lower than negatives, by focusing on the
models ability to correctly identify the target class.

In contrast, the F1-confidence curve plots the F1 score, defined as the harmonic
mean of precision and recall, against varying confidence thresholds. The peak of the F1-
confidence curve signifies the threshold at which the model achieves the best compromise
between precision and recall, thereby indicating the optimal operational point for the
detection task.

In addition to these curves, the confusion matrix shown in Figure 4.4 provides a
complementary perspective on the model’s performance. This matrix breaks down the
distribution of true positives, false positives, and false negatives for each class, offering
an intuitive visualization of classification accuracy.

Figure 4.3. Precision-Recall and F1-Confidence curves. The light blue curve rep-
resents the drone, the orange curve the rover, with the blue highlight indicating
the average performance.

Accurate bounding box detection is essential for the application of our distance esti-
mation techniques. To ensure that the object detection model generalizes effectively to
the specific dataset used for depth estimation, we also evaluated its classification perfor-
mance on it. The resulting confusion matrix, presented in Figure 4.5, offers a detailed
breakdown of the models predictions on the depth dataset.
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Figure 4.4. Confusion matrix on the object detection test set.

Figure 4.5. Confusion matrix on the distance estimation dataset.

35



Results

4.2.2 Distance Estimation

This section evaluates the performance of two distance estimation approaches: the Bound-
ing Box Dimensions method and the Apple Depth Pro method. We analyze their accuracy
using two error metrics: the total relative error and the rover-corrected drone distance
(RCDD) relative error.

The total relative error quantifies the percentage deviation between the estimated and
true distances across all object classes. The results are summarized in Table 4.3, which
reports the mean error and the corresponding 95% confidence intervals over 38 detections.

Method Mean 95% CI
Bounding Box Dimensions -4.54% ± 6.90%

Apple Depth Pro 9.93% ± 4.27%

Table 4.3. Mean total relative error and 95% confidence intervals computed over 38 detections.

These results illustrates a classic example of the bias-variance tradeoff. The Bounding
Box Dimensions method, grounded in integral geometry, is theoretically unbiased, which
is confirmed by its confidence interval encompassing zero. However, this method exhibits
higher variance, leading to less stable estimations. Conversely, the Apple Depth Pro
method introduces a non-zero bias but compensates with a significantly lower variance.
In many engineering scenarios, a small bias is often an acceptable compromise if it results
in increased reliability and smoother performance.

The RCDD error metric accounts for the known absolute distance of the rover to
refine the drone’s estimated position. The corrected drone distance is computed as:

d′
drone = ddrone + erover, (4.2)

where erover is the absolute error of the rover in that frame.
This correction relies on the following assumptions:

1. Both the rover and the drone are detected within the same frame;

2. The true distance of the rover to the camera is known;

3. Relative depth estimation is more accurate than absolute depth estimation.

All assumptions are satisfied in this study:

1. The RCDD correction is applied only to frames where both the rover and drone are
detected, only 6 out of 32 total samples;

2. The rover’s ground-truth distance is available for evaluation, simulating real-world
deployment where onboard LiDAR enables highly accurate localization through
LIO algorithms;

3. Monocular depth estimation models inherently struggle with absolute scale but
capture relative spatial relationships with higher accuracy.
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Method Mean 95% CI
Bounding Box Dimensions 21.49% ± 13.63%

Apple Depth Pro -6.70% ± 12.63%

Table 4.4. Mean RCDD relative error and 95% confidence intervals over 6 sam-
ples. The Bounding Box Dimensions method shows degraded performance in
relative depth refinement.

Table 4.4 presents the RCDD relative errors and confidence intervals.
As shown, the Bounding Box Dimensions method performs poorly in this setting.

This is expected, as it fails to capture relative spatial consistency, thus violating the
third assumption, due to its reliance on pure geometry without contextual cues.

In contrast, the Apple Depth Pro method reduces both bias and variability in this
context. Its mean error is closer to zero, and its lower standard deviation reflects a
better ability to model fine-grained spatial relationships. Comparing standard deviation
values between the total error (13%) and the RCDD setting (12%) confirms this improved
relative consistency.

These findings reinforce that, for applications requiring stable and locally accurate
estimations, a method with low variance, even if slightly biased, is often preferable to one
that is theoretically unbiased but highly variable.

From a computational perspective, the Apple Depth Pro model processed a single
frame in approximately 0.35 seconds on an NVIDIA 2080 Super GPU. These results are
in line with Apple’s claims of obtaining a high-resolution depth map in around 0.3 seconds
on consumer hardware. Throughput can be increased by processing multiple frames in
batches, but this comes at the cost of additional latency, as the system must wait to
accumulate a full batch before inference. This introduces a trade-off between per-frame
latency and overall system efficiency.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a comprehensive framework for the relocalization of autonomous
agents through the integration of monocular depth estimation and PTZ camera calibra-
tion. Motivated by the challenges encountered during the Leonardo Drone Contest, the
work focused on addressing critical issues in both hardware calibration and algorithmic
depth estimation to facilitate robust multi-agent operations in dynamic environments.

A two-way approach was adopted: first, a rigorous camera calibration procedure
was implemented to account for non-linear variations in intrinsic parameters across a
wide range of zoom levels; second, a dual-framework method for agent relocalization
was developed by combining the strengths of YOLOv8 for object detection with a Vi-
sion Transformer-based depth estimation technique, in this work Apple Depth Pro. The
calibration experiments, conducted using standard checkerboard methods and validated
via ArUco markers, demonstrated a predictable linear evolution of the focal length and
highlighted the acceptable variation in the optical center. The estimated distances main-
tained low relative errors across various zoom settings, confirming the reliability of the
calibration procedure in mapping the three-dimensional world to the two-dimensional
image plane.

In the relocalization phase, the object detection module achieved high precision and re-
call, as evidenced by the performance metrics, while the depth estimation strategies were
evaluated using two error measures: the total relative error and the rover-corrected drone
distance (RCDD) relative error. The experiments underscored a classic bias-variance
tradeoff. The Bounding Box Dimensions method, although theoretically unbiased, suf-
fered from higher variance, leading to inconsistent distance estimations. In contrast, the
Apple Depth Pro method, despite introducing a small bias, yielded lower variance and
improved local accuracy. These findings indicate that in practical applications, where sta-
bility and real-time performance are critical, a method with low variance, even if slightly
biased, is preferable.

Overall, the integrated system demonstrated robust performance for the relocalization
task, achieving accurate distance estimation under various operating conditions. This
work not only addresses the technical challenges associated with PTZ camera calibration
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and monocular depth estimation but also paves the way for deploying such systems in
real-world scenarios, including warehouse logistics, precision agriculture, and smart city
monitoring.

Additionally, a dedicated framework was developed to easily operate the Axis M5525-E
PTZ Network Camera, integrating its onboard capabilities with the proposed algorithms.
This framework streamlined the process of sending commands, receiving status updates,
and managing video streams, thereby facilitating seamless control and real-time data
acquisition from the camera.

5.2 Future Work

Despite the promising results, several avenues for further research and development re-
main open. Future work could address the following aspects:

Asynchronous Operation The current implementation of the system operates syn-
chronously, which can limit throughput and increase latency during high traffic or when
handling multiple concurrent requests. Transitioning to an asynchronous architecture
would enable parallel processing, reduce response times, and improve scalability. This
modification is expected to better accommodate high-frequency requests, manage heavy
traffic loads, and achieve lower latency, thereby boosting overall system performance in
demanding operational scenarios, albeit at the cost of a more complex architecture that
requires sophisticated concurrency management, robust error handling, and intricate de-
bugging due to non-deterministic execution patterns.

Dynamic Calibration Techniques The calibration procedure presented in this thesis
assumes a controlled environment and fixed parameters for discrete zoom levels. Future
research could investigate advanced calibration techniques that accurately map all in-
termediate zoom levels, potentially through neural network-based interpolation or other
novel approaches. Such methods would enable continuous calibration over the full zoom
range, adapting intrinsic parameters in real time to account for environmental changes
and wear-induced variations in camera hardware. This dynamic calibration would signifi-
cantly enhance robustness and accuracy, particularly in long-duration deployments where
hardware characteristics may shift over time.

Advanced Machine Learning Techniques The success of the YOLOv8 and Vision
Transformer models in this thesis suggests that advanced machine learning techniques
hold significant promise for autonomous agent localization. Future studies could investi-
gate the benefits of emerging architectures, such as transformer-based object detectors [18]
and self-supervised learning methods, to further enhance both detection accuracy and
depth estimation reliability. Additionally, the exploration of domain adaptation tech-
niques could enable the system to generalize better across different environments and
object classes.
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Scalability and Multi-Agent Coordination Another promising direction is the ex-
tension of the presented framework to multi-agent systems. While this thesis primarily
focused on relocalizing a single autonomous agent, real-world applications often require
coordinated localization among multiple agents. Future research could focus on devel-
oping algorithms that manage the interactions between several agents, optimizing the
use of shared camera resources, and ensuring robust communication between agents to
maintain overall system coherence.

Application-Specific Customizations Tailoring the system to specific application
domains presents an opportunity for further enhancement. For instance, in warehouse
logistics, the integration of real-time inventory management and obstacle avoidance sys-
tems would be highly beneficial. Similarly, in precision agriculture, adapting the system
for variable terrain and environmental conditions would extend its utility. These cus-
tomizations would involve not only algorithmic improvements but also adjustments in
hardware setup and sensor deployment.

5.3 Summary of Contributions
In summary, this thesis makes the following key contributions:

• Development of a robust calibration methodology for PTZ cameras, capable of han-
dling dynamic zoom variations and ensuring accurate mapping between 3D space
and 2D image projections at all zoom levels.

• Integration of state-of-the-art object detection, YOLOv8, and metric monocular
depth estimation, Apple Depth Pro, methods to accurately relocalize autonomous
agents.

• Creation of a dedicated framework to operate the Axis M5525-E PTZ Network
Camera, enabling seamless control and real-time data acquisition.

• Detailed experimental evaluation and error analysis, which reveal a nuanced tradeoff
between bias and variance in different distance estimation approaches.

The insights gained from this research not only demonstrate the feasibility of using
PTZ cameras for autonomous agent relocalization but also lay the groundwork for fu-
ture innovations in the field. Continued exploration and refinement of the techniques
discussed herein will undoubtedly contribute to the advancement of autonomous systems
in complex, real-world environments.
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