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SUMMARY

The emotional role of music has been widely studied over the years, highlighting its crucial

role as an e↵ective emotional regulator. The rising popularity of streaming platforms, along

with the recent advancements in the artificial intelligence field, led to an increasing necessity

for personalized content consumption experiences. Despite the strong performances of current

recommendation algorithms, capable of modeling users’ preferences from di↵erent perspectives

ranging from content preferences and listening habits, the strong reliance on collaborative fil-

tering methods makes them subject to issues such as the cold start problem caused by the lack

of historical data for new users or new content.

This work aims to create a multimodal music classifier capable of inferring emotional qual-

ities from both lyrics and audio of songs. In order to achieve this, it is necessary to tackle

the data scarcity issue characterizing the music emotion recognition field: because of copyright

limitations on song data, a standardized song dataset, including integral lyrics and acoustic

content, is not currently publicly available. The solution to this issue adopted in this thesis

consists of the use of the Music4All-Onion dataset, a vast collection of sub-datasets containing

pre-processed lyrics and already-extracted audio features describing both the overall proper-

ties of each track and section-specific characteristics, allowing an acoustic analysis at di↵erent

granularity levels.

After an unsuccessful attempt to infer emotional qualities from the anonymized users’ tags

available with the Music4All-Onion dataset, emotional labels for the lyrics modality are ob-
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SUMMARY (continued)

tained with transfer learning: the Edmonds Dance music dataset, a small dataset of song lyrics

and corresponding emotions, is used as a source dataset to train a learning model to predict

the emotional labels on the lyrics layer of the Music4All-Onion collection. Plutchik’s wheel of

emotions inspires the emotional model chosen for this task, consisting of eight emotional classes:

joy, trust, surprise, anticipation, anger, fear, disgust, and sadness. The choice of this emotional

model stems from the need for a more accurate feeling representation than those consisting of

four classes usually found in literature.

As for what concerns the audio modality, the most relevant features in terms of emotional

information are selected leveraging existing literature on the topic, and di↵erent dimension-

ality reduction methods are tested and compared to tackle the curse of dimensionality issues

arising from the use of large datasets. Once a two-dimensional representation of acoustic data

is obtained through the UMAP technique, unsupervised machine learning methods are used

to obtain a meaningful clustering structure, separating the samples into seven final clusters -

excluding the eighth group of outliers - based on their acoustic properties. Subsequently, inter-

pretability studies are conducted to find a correlation between the original audio features and

the obtained cluster indexes to identify meaningful acoustic properties of each class that can

potentially be associated with emotional states. Additionally, supervised classifiers are trained

to learn a mapping between the original audio features and the final class indexes to ensure the

reproducibility of the clustering results independently of the dimensionality reduction technique

applied.

xiv



SUMMARY (continued)

The final multimodal classifier combines a multi-layer perceptron with convolutional and

recurrent elements to achieve the classification pipeline: the multi-layer perceptron is used on

audio data to predict the cluster index of each sample, whereas three parallel convolutional and

recurrent block process the textual data to extract meaningful patterns and context; finally,

the cluster indexes are combined with the output of the convolutional-recurrent layers to serve

as an auxiliary feature for the definitive emotional classification.

Although the final classifier does not outperform the baseline techniques identified and

tested on textual data, it provides valuable insights into the role of lyrics and acoustic infor-

mation in the emotional classification task. Furthermore, this work contributes to exploring an

underresearched field with promising applications in numerous domains.

xv



CHAPTER 1

INTRODUCTION

Music plays a crucial role in many people’s lives, complementing everyday experiences,

providing comfort, or shaping the tone of both social and personal occasions. Researchers in

music psychology have been exploring the social and emotional function of music for years,

underlining the valence of music not only as a facilitator of social interactions or identity

expression, but also as an e↵ective mood regulator [1][2][3].

Driven by the rise of streaming platforms and digital distribution, the technological advance-

ments of the past years have made music even more accessible, allowing users to explore an

unprecedented number and variety of tracks, with suggestions tailored to their preferences. Ac-

cording to the 2024 year-end report by Luminate1, the global number of audio streams recorded

in 2024 increased by 14% compared to the previous year, reaching a total of 4.8 trillion streams

and highlighting the expanding influence of music on daily life.

The rise of music streaming services shaped a new way of consuming such content, acting

as a catalyzer for the transition from traditional music listening, in which a limited set of

tracks is passively consumed, to a new interactive paradigm in which users can engage with

a vast collection of tracks, usually guided by curated playlists and suggestions from dedicated

algorithms.

1https://luminatedata.com/

1
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Intrinsically, this culminates in the need for sophisticated recommendation algorithms ca-

pable of capturing the nuances of songs from di↵erent perspectives, ranging from audio features

such as melody and rhythm to contextual information such as listening habits, social influ-

ences, and, naturally, emotional states. Achieving this level of personalization requires complex

models able to process and model both song data and metadata and user preferences; machine

learning and deep learning approaches, combined with data integration from various sources,

are proven to be e↵ective and efficient tools capable of providing tailored recommendations and

enhancing user engagement.

Machine learning models use di↵erent types of data as predictive features, including songs’

intrinsic characteristics and user-based data, including the listening and search history, created

playlists, and other behavioral data, such as skipped songs, replay frequency, and session dura-

tion [4]. Other contextual factors, such as time of the day and device, are leveraged to model

listening habits and dynamically adapt the recommendations to user behavior changes.

Music recommendation has relied for years on the collaborative filtering paradigm, which

uses the aforementioned data to model each user’s taste profile, which is, in turn, used to

suggest songs liked by other users with a matching profile. Despite the undeniable success of

this model, recommendations based exclusively on it su↵er from several limitations. One major

issue that has been widely explored is the cold-start problem, which can be essentially described

as the challenge faced when user data is not yet available, either because a new user joins the

platform or because a new artist, album, or song is added to the music catalog, resulting

in the lack of interaction data usable to perform reliable recommendations. While the first
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scenario is destined to self-resolve once the user starts interacting with the platform, the second

one presents some additional criticalities, especially for lesser-known artists, whose music may

struggle to gain visibility with insufficient user interaction, but user interaction is destined to

remain low if content is not recommended. This self-reinforcing loop increases the risk that the

collaborative filtering recommender acts as an echo chamber prioritizing mainstream content

over emerging content that is, therefore, destined to remain underrepresented.

The recent years’ migration toward a more content-oriented recommendation strategy ad-

dresses this issue by incorporating more data relative to the intrinsic properties of songs into

the model, since they can be retrieved regardless of the presence of interaction data. While

an exclusively content-based paradigm would fail to capture relevant information provided by

cross-referencing di↵erent users’ preferences, a hybrid approach can benefit from the pros of

both techniques and better handle their drawbacks, further improving recommendation quality

and pertinence.

The motivation behind this thesis stems from the need to further enhance recommendation

strategies by incorporating emotional attributes embedded in songs along with the historical

data already in use. Leveraging music’s multimodal nature, both audio and textual data can be

analyzed to extract the emotional content that human listeners may be responsive to, ensuring

that content suggestions align not only with their past preferences and behavior but also with

their inferred emotional state at a given time.

The primary context in which this work is positioned is, thus, the Music Emotion Recog-

nition (MER) one, a research area of remarkable interest aimed at extracting emotional in-
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formation from musical data. Because of the crucial role emotions play in music and in the

way users engage with it, developing techniques capable of inferring emotional properties based

exclusively on the content of songs, both audio and textual, is essential for enhancing user ex-

perience. Despite the importance of this task, its execution is inherently complicated because

of the deep subjectivity of emotional perception, which can vary across di↵erent individuals due

to their personal experiences and backgrounds. For this reason, it is crucial to outline unbiased

components of music that can serve as reliable predictors of emotional content.

This work ultimately focuses on finding and leveraging those components, training machine

learning models to infer emotional properties in a systematic and consistent way, hoping to

contribute to narrowing the gap between machine learning and human music perception. While

the ideal use for this model is its employment in generating content suggestions, integrating

the two frameworks to achieve an emotionally aware recommendation system is left to future

works.

The remaining content of the thesis is structured as follows: Section 2 provides an overview

of the existing literature on music emotion recognition, multimodal learning and some hints

on recommender systems. Section 3 is dedicated to exploring the available datasets in the

context of music classification and providing an overview of emotional models used for similar

tasks. Section 4 describes the labeling experiments performed on lyrics data to obtain the final

emotional labels used for text classification. Section 5 presents the baselines models identified as

benchmarks for this work, whereas Section 6 highlights the approaches that will be implemented

to tackle the music emotion recognition task, with the corresponding results being presented
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and discussed in Section 7. Finally, Section 8 summarizes the findings, draws conclusions from

the collected data, and outlines future research areas.



CHAPTER 2

RELATED WORK

This section provides an overview of past and current literature on the primary topics

discussed in this thesis, along with minor references to the broader domain of recommendation

to highlight additional key concepts and provide the necessary context.

2.1 Music Emotion Recognition

The core of this research is music emotion recognition (MER), a multidisciplinary domain

of growing interest in recent years due to its many potential applications spanning from rec-

ommendation systems to automatic music generation. The increasing attention given to the

MER task is closely linked to the remarkable developments in the artificial intelligence realm

observed over the last few years, with deep learning models o↵ering novel methods to analyze

and extract information from di↵erent complex data formats.

The importance of the emotional content encompassed by songs had already been theorized

before the 20th century, but contemporary studies confirmed and reinforced the idea of music

as a conveyor of emotions [5][6].

The need for automatic music emotion recognition originates from the necessity to organize

music into categories to improve users’ experience in related applications, which is the same

principle at the base of music genre recognition. Investigating the exact connections between

musical features and emotional values is a challenging component of MER because of both the

6
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subjectivity of feelings and the remarkable requirements in terms of labor and time necessary to

manually explore the co-dependencies between them [7]. Automatic music emotion recognition

has the potential to address or mitigate these issues by introducing models that are able to

extract such information directly from the musical source.

Two main approaches can be outlined based on the level of granularity of the analysis: song-

level MER aims to identify the overall emotional content of music, expressible through either a

single label or multiple labels, whereas music emotion variation detection (MEVD) focuses on

detecting the variations in the emotional tone of songs, highlighting the dynamism of feelings

encompassed over di↵erent sections. Despite the undeniable value of section-specific emotional

information, only traditional MER approaches are discussed in this thesis; this decision is

dictated by the requirements of variation-based strategies, for which multiple sections of each

song, each encompassing a single stable emotion, are essential [8]. As will be further discussed

in Section 3, the data scarcity problem already poses significant challenges in the research

of music datasets with song-level emotional labels; the additional requirement of segmented

song datasets containing section-specific labels would further increase the already numerous

limitations of this research.

The following section contains a brief overview of datasets tailored for the MER task, fol-

lowed by an outline of the principal methodologies currently employed to extract emotional

information from music audio and lyrics, and of how multimodality is achieved.
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2.1.1 MER-Specific Datasets

The authors of [7] and [9] provide a comprehensive overview of datasets typically used for

MER or MEVD tasks, highlighting the di↵erences in emotional models used for the labels, data

format, dimensions, years, and contained genres.

Although the initial focus of MER research was in the audio domain, the possibility of

leveraging di↵erent data sources led to significant advancements in the research field, specif-

ically when joined with traditional audio features to achieve multimodality. Among these,

lyrics and biological features are those more often used [7]; the distinctive trait of biological

features in this field is the fact that they are collected from listeners, rather than from the

songs themselves. Specifically, some of the most used biological features include information

on electroencephalograms (EEG), body temperature, heart rate, and functional magnetic reso-

nance imaging (fMRI), thus embedding the response generated in listeners by music instead of

intrinsic musical features. Other notable modalities that have become increasingly popular in

multimodal music emotion recognition are visual images extracted from music videos or album

covers.

As explained in [10], an issue many researchers have to face concerns the availability of

data; this reason leads to many private datasets and labels being used for the task, which

causes additional complications when trying to establish baselines or common practices. More

details on this crucial topic are given in Section 3, which presents an in-depth discussion of

the specific dataset requirements for this research, an overview of various emotional models
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documented in the relevant literature, as well as an outline of the design choices made to

achieve the objectives of this thesis.

2.1.2 Lyrics Classification

The task of lyrics classification is, in essence, superimposable to the broader domain of text

classification, an element of remarkable interest in NLP research. Applications cover multiple

fields, including news classification, information retrieval, topic modeling, and sentiment anal-

ysis, proving the paramount importance of methods able to provide reliable, objective, and,

above all, automated solutions.

The increasing availability of digital textual data has driven the development of numerous

techniques aimed at investigating the semantic meaning of texts, capturing the language nuances

and layered meanings characterizing human language. Key issues in this field concern the

necessity for models able to capture not only the semantic meaning of single words in a text but

also the global context, considering that human language evolved to embed hidden secondary

meanings in words, depending on their position in a sentence and on the tone used, which is

particularly challenging to discern from textual cues only.

To tackle such a challenging task, multiple techniques have been developed to cover the

whole classification pipeline, from early preprocessing stages to the final classification phase, of

which this section provides an overview.

2.1.2.1 Text Preprocessing and Representation

The first step addresses the need to transform raw data into a format suitable to be analyzed

by computational models.
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First, the text needs to be discretized to the desired level of granularity using tokenization1

[11]. A common practice then consists of cleaning the obtained tokens to eliminate super-

fluous words, symbols, and other unnecessary elements that may negatively a↵ect the final

performance or introduce an excessive computational overhead. Stopwords2 and noise are of-

ten removed in this step, while tokens are also lowercased and, in the case of abbreviations or

contractions, standardized to reduce the total number of unique tokens to account for. Despite

the widespread use of these practices, it is important to evaluate if the specific task tackled

can benefit from operations such as stopword removal, which can profoundly change the over-

all meaning of a text, and standardization of tokens, which could lead similarly-spelled words

having di↵erent meanings to be considered as equal [12].

After the necessary preprocessing steps are performed, it is possible to select a suitable

representation format to convert the obtained tokens into vectors which can be projected into

the feature space. The ultimate goal of this procedure is to transform the literal tokens into

numerical representations that preserve the semantic and syntactic properties of the text and

make them processable by learning models.

Di↵erent techniques of varying complexity have been introduced over the years; among

these, the bag-of-words representation (BOW) is the most straightforward and intuitive method,

1A token is the atomic part of the text; usually, a token corresponds to a word or to a character
n-gram.

2Words that often appear in texts without carrying significant semantic information, such as con-
junctions, articles, or prepositions.
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mapping the text using word frequency vectors [13]. Essentially, a vocabulary in which each

word is associated with its number of occurrences in the text is created, and this is the only

information stored; as a consequence, the overall context of the text may be lost1. Another

criticality of this method is the potential size issue, as the cardinality of the vocabulary may

reach remarkable dimensions, especially with longer texts. To address this, it is thus necessary to

introduce a metric to measure the importance of words in documents; TF-IDF (Term Frequency-

Inverse Document Frequency) is commonly used for this purpose as it allows to compute the

significance of a word in a document in the context of a collection of documents. TF-IDF is

computed as the product between two distinct metrics, TF and IDF, defined respectively in

Equation 2.1 and Equation 2.2, where ft,d represents the number of occurrences of the token t

in the document d, and N is the cardinality of the total collection of documents D.

TF (t, d) =
ft,dP

t02d ft0,d
(2.1)

IDF (t,D) = log
N

1 + |d : {d 2 D and t 2 d}| (2.2)

TF simply represents the frequency of a term t in a document d, whereas IDF can be seen as a

measure of how rare a term t is in the collection, and therefore of how informative it is2. TF-IDF

1Sentences like People like dogs and Dogs like people have an identical BOW representation.

2Words with a high relative frequency in a document but present in many documents are not indicative
of the document’s content.
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is, therefore, higher for words representative of a few documents, highlighting their importance,

and lower for terms present in most of the documents, such as articles, conjunctions, or other

less meaningful words.

An alternative to the bag-of-words approach addressing its order-independency issue is lan-

guage modeling [14], implemented, for instance, through the use of n-grams
1 [15][16]. Language

models enable feeding sequential information to models by considering both the order and de-

pendencies of elements of a sequence. The base idea behind n-grams spans from the need to

compute the probability of a specific item appearing considering the pre-existing history so far.

The history preceding the item can, however, be significantly large and pose computational

problems, and therefore language modeling through n-grams stems from the assumption that

the most recent n − 1 items are sufficient to approximate history, leveraging the Markov as-

sumption. In practice, the base assumption in 4-gram language models is that the probability

of an item occurring depends on the previous three.

Despite the increased contextual awareness provided by language modeling, the mentioned

strategies still lack the ability to encode semantic information; this can be challenging when

trying to project words having similar meanings but di↵erent spellings, such as synonyms: if

no semantic information is available, the vectors obtained from the two distinct words are not

going to reflect their similarities, causing a decrease in model’s performances. Word embeddings

have been introduced to tackle the semantic challenge just discussed [12]. One of the first word

1Sequences of items of size n; they can be constituted of words, characters, or any other atomic item
in a language.
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embedding models introduced, Word2Vec [17], aims at creating semantically accurate mappings

of words of a corpus through their projection into highly dimensional vectors, leveraging shallow

neural networks with di↵erent variations: a continuous bag-of-words (CBOW) and a continuous

skip-gram. These variations consists respectively in the prediction of a target word given the

context around it and vice-versa, in the prediction of the surrounding context given a word.

An alternative to the Word2Vec predictive model is GloVe [18], which gained increasing

popularity in recent text classification pipelines [19]. Unlike Word2Vec, GloVe can be trained

on remarkably large corpora of data, leveraging word-to-word co-occurrence matrix factoriza-

tion to condense global information about the corpus instead of only focusing on the context

of single words. Thanks to the computational efficiency of GloVe, achieved through dimension-

ality reduction of the co-occurrence matrix, the authors were able to train the model on five

large corpora of texts taken from Wikipedia, Gigaword, and Common Crawl [18], providing

embeddings able to capture a wider range of relationships between words.

Despite the notable improvements introduced by Word2Vec and GloVe embeddings, there

is still an open issue: neither model can successfully be used to project terms that were not

seen during training. The authors of [20] introduced a novel word embedding able to tackle

this challenge: fastText. While Word2Vec and GloVe only considered whole words, fastText

represents each term both as the term itself and as a bag of character n-grams representing the

di↵erent subwords contained in it. In practice, fastText is trained similarly to Word2Vec, but
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the whole process incorporates information on subwords as well1; this strategy allows to better

handle unseen words at test time by splitting them into subwords as well and leveraging the

relevant information acquired during training.

2.1.2.2 Unsupervised Methods

Some techniques have been leveraged to identify structures or patterns in an unsupervised

scenario where the labels of the textual data are not provided. One task related to this domain

is topic modeling, which is the identification of underlying topics in corpora of texts; Latent

Dirichlet Allocation (LDA) was used in [21] for this purpose:the authors leverage a Bayesian

Network to extract a Bayesian topic model able to analyze the content of a document collection

and define the di↵erent topics which can be extracted from it. Once the topics are determined,

it is possible to assign a relevance score for each document and for each topic, indicating how

closely related the document is to the topic. LDA is based on a probabilistic approach in

which each document is modeled as a random mixture over latent topics, and each topic as a

distribution over terms [22].

Other unsupervised methods belong to the clustering family and can also be leveraged to

identify underlying relationships and patterns in song collections. [23] proposes a clustering

procedure as a complementary step to the classification one, performing similarity clustering

on a whole collection of documents before training a classifier to improve its performance.

1e.g. the word where is represented by [wh, whe, her, ere, er] and [where].
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2.1.2.3 Supervised Methods

In the domain of supervised learning, many methods have been used in literature with the

purpose of achieving good performance metrics in the text classification task and, subsequently,

in song lyrics classification.

Traditional machine learning methods have been used in [21], [24], [25], and [26], including

techniques such as Support Vector Machines (SVM), random forest classifiers, naive Bayes

classifiers, and logistic regression for continuous emotion models1. Despite the advancements

in the field introduced by such techniques, their adoption has decreased over the last years in

favor of more modern deep learning methodologies, which have proven superior capabilities to

handle pattern extraction in complex data.

The use of deep learning in lyrics classification involves numerous di↵erent architectures

and methodologies. The authors of [19] present three di↵erent models: a Convolutional Neural

Network (CNN), a bi-directional Long Short-Term Memory (bi-LSTM), and a Convolutional

Recurrent Neural Network (CRNN) combining convolutional layers with an LSTM. The input

text fed to the model is transformed using GloVe embedding, and the authors report comparable

performance for the three architectures in terms of accuracy, finally favoring CNNs for the

shorter training time required. This paper highlights an interesting note: it appears that the

sequentiality of lyrics is a secondary element in classification, since the use of models able

1The di↵erence between continuous and discrete emotional models will be discussed in Section 3.1.2
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to better leverage this property, namely the LSTM and CRNN, did not lead to performance

improvements.

A language model often used in this context is BERT, Bi-directional Encoder Representation

from Transformers [27]: the authors of [28] use a BERT model fine-tuned on social media data,

but report a scarce generalization ability on song lyrics. On the other hand, the authors of [24]

achieve remarkable classification results when using BERT as a transfer learning model to label

a song lyrics dataset. More details on this will be given in Section 4.2.3.

Large Language Models (LLMs) introduced significant changes in the NLP domain by re-

markably advancing contextual awareness and semantic representations. Despite their widespread

di↵usion, most of the literature on song lyrics classification does not mention them at the mo-

ment, probably due to how quickly the LLM field is evolving. Further discussion on this topic

will be provided in Section 4.2.4.

2.1.3 Audio Classification

The task of audio classification in the music domain has been approached in di↵erent ways,

ranging from genre classification to instrument classification, including the music emotion recog-

nition problem discussed in this work. Music audio classification, as a sub-domain of the broader

audio classification field, has gained increasing interest over the past years because of the numer-

ous and diverse possible applications across a range of scenarios, including speech recognition,

sound event detection, and environmental sound classification.
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2.1.3.1 Audio Preprocessing and Feature Extraction

The first challenge in any audio classification pipeline is the preprocessing of tracks, which

is necessary to convert the data into meaningful formats that learning models can employ. The

elementary representation of audio data is the audio wave in the time domain, consisting of

a two-dimensional plot having time on the x-axis and amplitude on the y-axis, with y = 0

usually representing silence. A common practice is to translate this representation into a

more suitable one, representing audio through the frequency domain instead of the time one

[29]. The Fast Fourier Transform (FFT) allows the conversion of a signal from the elementary

amplitude-time representation to its individual spectral components, thus obtaining the desired

amplitude-frequency representation of the track. A variation of the FFT is the Short-Time

Fourier Transform (STFT), mitigating the natural loss of information on the time domain

caused by the FFT. The STFT works by computing multiple Fourier transforms over smaller

segments of the signal at di↵erent time stamps to capture both frequency and time information.

Applying the STFT leads to a visual representation of the frequency content of the audio track

called spectrogram.

Spectrograms have been employed in numerous works as input data for learning models

performing the audio classification task [30][31][32][33], thanks to their compact representation

of information and compatibility with deep learning models employing convolutional layers.

Mel-Frequency Cepstral Coefficients (MFCCs) are another popular representation format for

audio data [34]; they are used to represent the short-term energy spectrum of signals, adjusting
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it to a frequency scale closer to the one naturally characterizing human hearing1. Despite its

popularity in speech recognition tasks [35][10], some studies employed them in the context of

MER with other complementary features [31][32].

In general, a large number of features can be extracted from audio signals, and it is possible

to group them into three distinct groups for simplifying purposes: low-level features, rhythmic

features, and tonal features [36], each representing di↵erent properties. Further details on this

topic are provided in Section 3.2.1.

Di↵erent novel features for audio classification have been introduced over the last years,

proposing feature extraction methods leveraging di↵erent properties of audio tracks; [35] in-

troduces a set of novel features explicitly tailored for music emotion recognition to capture

high-level characteristics of the signal. [37] extends this work by providing an overview of emo-

tionally relevant musical features leveraging the eight fundamental musical dimensions: melody,

harmony, rhythm, dynamics, tone color, expressivity, texture, and form. As will be discussed

in detail in Section 3.2.1.1, the authors of [38] introduced a novel system of block-level features,

obtained by processing audio signals on a block level rather than a frame one to capture more

temporal information.

1Humans do not perceive all frequencies equally, the sensitivity of the human ear is di↵erent across the
frequency spectrum. The Mel scale is used to approximate human perception on various representations,
including spectrograms.
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2.1.4 Unsupervised Methods

The most popular unsupervised method applied to audio data for music emotion recognition

is clustering, as performed in [10][30][31][32][39]. The higher popularity of clustering techniques

in MER tasks on audio data when compared to lyrics data may be due to a more significant

lack of emotional labels in music, underlining the challenges of extracting emotionally loaded

information from audio tracks. This explanation is supported by the fact that clustering is

often leveraged as an auxiliary technique paired with supervised methods like those described

in Section 2.1.5, as performed in [30] and [31]; in this way, it is possible to leverage clustering as a

self-supervised method to obtain pseudo-labels that can then be used by supervised algorithms,

as done in [30], or as a way to identify emotionally representative key frames from spectrograms,

as done in [31].

2.1.5 Supervised Methods

The supervised methods used in literature for audio classification do not di↵er significantly

from those presented in Section 2.1.2.3 for the textual data case. In this general domain, CNNs

have been proven efficient in the identification of patterns in spectrograms [40] thanks to their

ability to extract meaningful information from images.

In the context of music emotion recognition, supervised methods reported in the literature

include base machine learning algorithms such as support vector machines or random forest

classifiers [19][41], but these methodologies have been replaced by more complex deep learning

architectures. As mentioned in the previous section, [31] leverages convolutional neural networks

in addition to clustering to recognize emotions from the key spectrogram frames identified. [7]
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reports the use of convolutional and recurrent deep learning architectures, respectively for the

MER and MEVD task1. VGGNet [42], a simple but deep convolutional neural network, has

also been proven to improve the classification performance on music emotion recognition tasks

[43].

2.1.6 Achieving Multimodality

Joining multiple sources of data together in music classification has been proved to better

the quality of the performance, especially when multimodality is achieved through the use of

audio and lyrics [7].

In the context of multimodal classification, one of the design choices that need to be made

concerns the way in which di↵erent information modalities are combined. Two main tendencies

can be outlined: using separate classifiers on the di↵erent modalities and then using a voting

scheme to output the final prediction or using a single classifier on data extracted from the

separate modalities. In [44], the chosen classification algorithm is used on both lyrics and

audio features according to the di↵erent fusion methods: feature-level fusion, consisting of

concatenating text and audio features of a sample in a single composite feature, and model-level

fusion, using a di↵erent classifier for each modality and then employing a weighted voting scheme

to achieve the final prediction. The results indicate that feature-level fusion yields slightly

1The reason why recurrent networks are preferred for the music emotion variation detection task lies
in the necessity for sequential information to be processed in order to identify segments in which the
emotional content is varying.
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better results. The authors of [41] compared the same two approaches on their multimodal

music classifier and report similar results.

2.2 Recommendation Systems Fundamentals

Because of the motivations of this work, some final concepts that are worth mentioning

concern recommendation systems. This domain is remarkably large and it is outside the scope

of this thesis to delve into the details of it, therefore only some essential ideas are presented,

and, to further simplify things, the discussion is limited to recommendation systems in the

music domain.

It is possible to identify two main types of recommendation systems based on the information

leveraged to obtain recommendations: content-based systems, which recommend songs to a user

based on how similar they are to other songs the same user has enjoyed, and systems based

on collaborative filtering, in which the user’s preferences are modeled and compared to those

of other users to recommend songs that people with similar taste profiles have enjoyed. Most

recommendation systems that are currently used by content platforms are mainly based on

collaborative filtering, leveraging the large number of users of those platforms, but, as already

mentioned in Section 1, this is not always the optimal solution: the cold start problem faced

by new artists or new songs, for which no user data is available, deeply disadvantages them.

Though current recommendation algorithms consist of a hybrid solution taking into account

content information as well, this is usually limited to information on the pure sound of music,

representing some key characteristics that are not always sufficient to describe the song as a
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whole from the perspective of listeners1, and cannot thus be used as foundational descriptors

for recommendation.

Furthermore, the benefits of an emotion-based recommendation model based on song con-

tent are presented in [45], introducing a Personality and Emotion Integrated Attentive model

(PEIA) to tackle the issue of music recommendation on social media. In this work, information

on the users’ music-listening tendencies is joined with emotion-related features2 to model their

short-term preference factors, and with personality-related features3 to achieve long-term taste

profiles. This model reportedly outperforms state-of-the-art methods by achieving a normal-

ized discounted cumulative gain (NDCG)4 of 0.53, proving the crucial role of emotion-related

features in the recommendation domain. It is however important to highlight how this work

and its results were made possible by the use of a very large collection of diverse user data, the

WeChat dataset, containing all of the information necessary to perform the above-mentioned

operations, which is not been made publicly available.

This research builds upon the existing literature on Music Emotion Recognition by inte-

grating information concerning both modalities of songs: lyrics and audio. A key feature of this

study is the strategy employed to address the data scarcity problem: instead of relying on exist-

1Some examples of popular features are danceability, tempo, key, energy.

2Time of the day, day of the week, emotions extracted from users posts.

3Demographics, social behavior, interests.

4Items ranking quality metric.
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ing labeled MER datasets, the use of a large unlabeled dataset is favored. The tools employed

to address the lack of reliable tags vary across the di↵erent modalities: while transfer learning

is used for the textual modality thanks to the availability of suitable source datasets, labeling

of the audio modality leverages unsupervised learning techniques to model acoustic properties

of songs and identify meaningful patterns. Because of the nature of the available data, this

thesis proposes a new approach in which the textual modality plays the most significant role in

the emotional classification task. The audio information available only serves as an auxiliary

indicator of the general acoustic properties of songs. Additionally, the most significant litera-

ture baselines are re-implemented and tested on the newly obtained labeled textual dataset in

order to obtain meaningful evaluation benchmarks that act as guiding resources for the design

choices concerning the final deep classifier.

This chapter presented an overview of the state-of-the-art approaches that have been de-

veloped to tackle the MER task, highlighting the challenges emerging from the lack of unified

datasets specifically tailored for it, an issue that will be further discussed in Section 3. The

literature review has covered both lyrics-only and audio-only approaches that will serve as the

foundation for the baseline definitions in Section 5, also underlining the importance of prepro-

cessing operations and feature extraction; notions on the di↵erent ways in which multi-modality

has been achieved have also been discussed. Moreover, a brief overview of current recommen-

dation strategies has been delivered to provide additional context to the motivation behind this

research. Finally, a brief overview of how this work is positioned in the current literature has

been provided.



CHAPTER 3

DATASETS

3.1 The Data Problem

3.1.1 Data Availability

One of the main problems continuously encountered during the research and set the first

limitations to this thesis is the data availability issue, as briefly discussed in Section 2.1.

Despite the broad investigation of MER tasks in recent years, a complete and satisfactory

dataset is still to be made freely available to researchers. The lack of a dataset that allows

to profoundly investigate the emotional side of music listening has multiple causes, embedded

in both the commercial value of music itself and, in general, in the data commodification1

phenomenon spreading throughout various fields.

The data availability problem translates practically into the inability to work with the

complete music data because of copyright limitations [9]. In the context of this thesis, this is a

twofold issue, as it concerns both the audio tracks and the lyrics of the songs. The only viable

solution to this matter is settling with datasets of already preprocessed music tracks, where

audio and lyrical features have been extracted from the original songs and partially elaborated

in order to prevent copyright infringements.

1Transformation of data into a marketable good that can be sold, bought and exchanged for an
assigned economic value.

24
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It is of paramount importance to understand the complications that arose from this solu-

tion: a crucial aspect of any application leveraging artificial intelligence concerns processing

operations on data. Being able to experiment with raw data not only allows a broader range

of information to be incorporated into the model itself, but also enables experimenting with a

more extensive set of models, architectures, and techniques. This consideration is specifically

valid in the field of deep learning, where neural networks have been proven to be valid feature

extractors for tasks that involve audio data [46].

Despite the above-mentioned disadvantages of preprocessed data, relaxing the requirements

in terms of data format and completeness allows for a larger pool of datasets to choose from,

focusing on other important requirements that should be satisfied.

For the multimodal MER task of interest, some form of emotional information on each track

is also needed, in addition to audio and lyrics data. Such information is usually based on the

emotional perception of listeners; this is true not only in the MER field but in any task involving

a↵ective information, due to both the subjectivity of emotions and the need for contextual

understanding, as explained in [47]: di↵erent terms may evoke di↵erent emotions based on

the context in which they are inserted. Despite recent developments in deep natural language

processing and large language models, there are some nuances in languages that are still only

perceivable by humans [48]. For the aforementioned reasons, the extraction of emotionally

meaningful tags requires the availability of users’ data or some other kind of information related

to human perception, such as secondary metadata obtained through raw data processing. The
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problem of emotion modeling is another crucial aspect of the preliminary phase of the research,

and its details will be discussed in Section 3.1.2

Embedded in user data and the associated extracted metadata lies a potential issue: since

organizations collecting, analyzing, and storing such data typically invest notable resources in

them, they may have a tendency to keep data private to protect their competitive advantage

or economic interests. This explanation may justify, even partially, the limited availability of

well-maintained public databases and the existing restrictions on the applications for which

said data can be used.

The goal is to work on a large enough dataset to train ML and DL models to acquire good

generalization ability while maintaining decent data quality and reliability. Despite the crucial

role of data quality in creating any AI model, the considerations made for this research on the

trade-o↵ between quality and quantity led to favor quantity over quality. The reasoning behind

such a decision, which is in contrast with the usual practice, focuses on the need to create

a model operating in a setting as close as possible to the real-world scenario. This decision

optimistically enables the switch to a better-quality dataset whenever available.

3.1.2 Modeling Emotions

The task of modeling emotions for data science applications is a particularly critical one.

We, as humans, are used to perceiving a range of emotions that are easily recognizable to

us. Translating something as complex as feelings into something a computer can discern is a

challenge that cannot be tackled without considering cognitive and sociological points of view.
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It is possible to distinguish two di↵erent emotional paradigms: dimensional and categorical.

Dimensional models leverage spaces defined by two or more axis, often mapping di↵erent emo-

tions onto two-dimensional planes, or three-dimensional spaces. Among these, the most popular

are Russell’s model and Thayer’s one. Russell’s emotion model [49] is the most often referred

to in MER literature [21][24][41]. This configuration is based on a circumplex interpretation of

emotions, which are represented on a two-dimensional plane in which the two Cartesian axes

represent valence1 and arousal2. This model, often referred to as the AV model, is generally

used as a base for a four-quadrant understanding of emotions: two high-valence emotions, hap-

piness (arousal > 0) and relaxation (arousal < 0), and two low-valence ones, anger (arousal >

0) and sadness (arousal < 0).

The two-dimensional model proposed by Thayer [50] instead only considers the first quad-

rant of a Cartesian plane in which the x-axis represents stress and the y-axis energy, thus

leveraging exclusively two di↵erent types of activation. This produces a four-emotion model

consisting of contentment (low stress and low energy), depression (high stress and low energy),

exuberance (low stress and high energy), and anxiety (high stress and high energy) [51].

Russell and Mehrabian also proposed an extension of the AV model in which a third axis rep-

resenting dominance3 is added to the two-dimensional representation, leading to the VAD three-

1Pleasantness (+) or unpleasantness (-) of an emotion

2High energy (+) or low energy (-) of an emotion, in terms of intensity of activation

3Degree of control perceived: dominance, feeling of confidence and control (+) or submissiveness,
total loss of control on events (-).
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dimensional model [52]. This model allows the crucial distinction between emotions mapped

to the same valence and arousal values, like anxiety and anger: anger corresponds to a high

dominance, whereas anxiety, which involve a feeling of loss of control, to low dominance. This

three-dimensional representation leads to a model in which the six fundamental emotions are

joy, surprise, anger, disgust, fear and sadness. It is important to note that the four, or six,

emotions resulting from the models just presented have a merely explanatory meaning, since

dimensional models start from the assumption that emotions exists in a continuous space.

Discrete models, on the other hand, assume the presence of base emotions that exist in

non-continuous space, and thus that it is possible to identify some base emotions which act

as foundational blocks to “build” more complex ones. The simpler discrete model is the one

introduced by Ekman in [53] and based on four basic emotions: happiness, anger, fear, and

sadness. Hevner additionally explored the specific correlation between music and emotion in

her work [54], using eight clusters of adjective to describe the di↵erent nuances of emotions that

music can evoke in people. The most used discrete model in MIR tasks is the one proposed by

the Music Information Retrieval Evaluation eXchange (MIREX) in the dataset1 developed for

their mood classification task, consisting in five clusters of emotional adjectives. However, this

model does not seem to be supported by psychological evidence.

Another objective of this research is to leverage an emotional model which is both complex

enough to better reflect moods in which a user can be and that can influence their musical

1Not publicly available.
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Figure 1: Plutchik’s wheel of emotions.

tendencies, and psychologically accurate. A model respecting both of these requirements is

Plutchik’s wheel of emotions [55], which indeed uses the structure of a wheel, as shown in

Figure 1, to represent the eight core emotions of anger, anticipation, disgust, fear, joy, sadness,

surprise, and trust. As will be discussed in Section 4.2 and mentioned in Appendix A, this

model is specifically suitable for the purpose of this thesis.

3.2 Music4All-Onion Dataset

The dataset that better fits the requirements previously discussed is Music4All-Onion, a

multimodal music dataset containing lyrics, audio, video, and metadata features for over a
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hundred thousand songs [56]. Moreover, this dataset also incorporates a large-scale set of

listening records of real-world users, allowing for further investigation of listening habits and

patterns, which are outside of the scope of this thesis but relevant for future works.

This dataset is an extension of the original Music4All database [57], developed specifically

to tackle MIR tasks and mainly contains songs’ metadata. The choice of the Onion version was

made in favor of all the additional data on di↵erent modalities of each song, symbolizing the

layers of the onion, which are crucial for the purpose of this thesis.

The whole Music4All-Onion dataset actually consists of several more specific sub-datasets

divided by modality, feature extraction method, and other parameters. This division not only

allows the possibility to efficiently isolate the data to work with, but is also a convenient way

to reduce the dimensionality of the data that must be processed at a time.

A brief description of the sub-datasets that have been considered in this thesis is shown in

Table I, as explained in the dataset documentation.

3.2.1 Feature Extraction

As mentioned in Section 3.1.1, copyright issues prevent using full audio tracks and complete

lyrics and, therefore, force to work with a dataset of extracted features. This section presents

the di↵erent extraction frameworks used by the authors of the Music4All-Onion dataset, and

highlights the preprocessing operations performed on raw song data to obtain the resulting

usable datasets presented in Table I.
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TABLE I: SELECTED DATASETS FROM THE MUSIC4ALL-ONION CORPUS

File Name Content Description Onion Layer Features

id blf correlation Correlation Pattern BLF Audio 1325

id blf spectral Spectral Pattern BLF Audio 980

id blf deltaspectral Delta Spectral Pattern BLF Audio 1372

id blf vardeltaspectral Variance Delta Spectral Pattern
BLF

Audio 1342

id blf spectralcontrast Spectral Contrast Pattern BLF Audio 800

id blf logfluc Logarithmic Fluctuation Pattern
BLF

Audio 3626

id emobase f0 stats Statistical aggregation of emotion-
related features extracted with
OpenSMILE

Audio 76

id emobase lsp stats Statistical aggregation of emotion-
related features extracted with
OpenSMILE

Audio 304

id emobase mfcc stats Statistical aggregation of emotion-
related features extracted with
OpenSMILE

Audio 456

id emobase pcm stats Statistical aggregation of emotion-
related features extracted with
OpenSMILE

Audio 114

id emobase voice stats Statistical aggregation of emotion-
related features extracted with
OpenSMILE

Audio 38

id essentia Spectral, time-domain, rhythm, and
tonal frame descriptors aggregated
via mean and standard deviation,
extracted with Essentia

Audio 1034

processed lyrics Song lyrics after preprocessing EMDa 1

id tags dict Tags and corresponding weights ex-
tracted via the Last.fm API

UGCb 1

a Embedded Metadata

b User-Generated Content
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3.2.1.1 Block-Level Features

Block-Level audio Features (BLF) have been proven to lead to successful results in the field

of music information retrieval, tackling problems varying from music genre classification [58] to

automatic music tagging [59]. These tasks are parallel to the MER one tackled in this thesis,

especially the latter explicitly addressing the cold start problem explained in Section 1.

As clearly explained in [59], the idea behind BLFs is the processing of audio signals based

on a block segmentation rather than a frame one. The upside of this approach is the ability to

better describe temporal information, leveraging the fact that each block encompasses multiple

frames.

BLF extraction is performed on a frequency-time representation of audio signals, specifically

the cent-scaled magnitude spectrum1. The spectrum is divided into blocks of n frames, with n

being the window size. Depending on the hop size2 chosen, the extracted blocks can overlap or

not.

After the BLF extraction, a generalization process is applied to obtain a global vector rep-

resentation for the examined track. The generalization process uses a summarization function

to each dimension of the extracted feature vectors.

The datasets of block-level features listed in Table I capture di↵erent aspects of the audio

tracks:

1Representation obtained after applying a STFT to the audio signal, computing the magnitude
spectrum and mapping it onto the logarithmic Cent scale to account for its musical nature.

2Distance in time (frames) between the beginning of two consecutive blocks.
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• Correlation pattern: harmonic and rhythmic relations between song parts.

• Spectral pattern: timbral content of the song.

• Delta spectral pattern: timbral content of the song, emphasizing onset strength.

• Variance delta spectral pattern: timbral content of the song, emphasizing variations in

onset strength over the blocks.

• Spectral contrast pattern: tone-ness of the blocks of the song, intended as the di↵erence

between tonal components (peaks) and noise (valleys).

• Logarithmic fluctuation pattern: rhythmic layout of the song.

3.2.1.2 Emobase Features

The authors of the Music4All-Onion dataset reference [60] as the inspiration for the emotion-

related feature datasets in the corpus. This paper, proposing a music recommendation model

based on data collected from social media modeling users’ long and short-term taste, proposes

the emobase features extracted with OpenSMILE [61] that are then included in the Music4All-

Onion dataset. The OpenSMILE toolkit allows the extraction of various data from audio tracks,

capturing a wide range of information.

The sub-datasets in the second part of Table I are obtained as follows: after extracting the

low-level descriptors for each song, aggregation functions and delta coefficients are computed

to present a mathematically-detailed summary of audio properties of the tracks.

The low-level descriptors extracted as emotion-related features are:
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• F0: fundamental frequency of song and its envelope1; related to perceived pitch.

• Linear spectral pair (LSP) frequencies: encoding of the spectral envelope through linear

predictive coding (LPC2).

• Mel-frequency cepstral coefficients (MFCC): timbre representation through the track’s

short-term power spectrum.

• Pulse code modulation (PCM): intensity and loudness of the song modeled through energy

levels and zero-crossing rate3.

• Voice probability: probability of vocality in the song.

These features then undergo summarization operations through mathematical and statis-

tical functions extracting their minimum and maximum values and corresponding positions,

their mean, standard deviation, skewness, kurtosis, quartiles, inter-quartile ranges, and linear

regression coefficients with associated errors.

3.2.1.3 Essentia Features

The final audio features extractor employed is Essentia [36], an open-source library tailored

for MIR. This toolkit allows information to be extracted on three di↵erent levels, which are

outlined below

1How the trajectory of F0 changes over time; outlines the dominant pitch perceived in the sound.

2Prediction of the current audio sample as a linear combination of past samples.

3Rate at which the signal changes from positive to negative and vice versa.
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• Low-level features

– Loudness

– Dynamic complexity

– Silence rate

– Spectral root mean square, flux1, roll-o↵, strongpeak

– Spectral entropy, complexity, contrast coefficients, valleys

– Spectral energy (overall) and energy per frequency band2 with corresponding crest,

flatness, and skewness

– Zero-crossing rate

– High-frequency content

– Sensory dissonance3

– Pitch salience

• Rhythmic features

– Beats positions and counts

– Beats-per-minute and corresponding histogram

– Beats loudness, loudness band ratio

1How quickly the power spectrum changes

2Barkbands, Melbands, Erbbands

3
Roughness of song as perceived by listeners.



36

– Onset rate

– Danceability score obtained through Detrended Fluctuation Analysis (DFA)1

• Tonal features

– Tuning frequency

– Harmonic pitch class profile (hpcp2) and transposed-hpcp

– Key estimation, scale and strength

– Chords strength, histogram, changing rate, key and scale

– Tuning diatonic strength

– Tuning equal-tempered deviation and non-tempered energy ratio

3.2.1.4 Preprocessed Lyrics

The dataset’s authors report having preprocessed the song lyrics following NLP standards;

first, superfluous white spaces, newline sequences and annotations are removed. Afterward,

the whole text is lowercase and translated into English, where other languages are detected;

finally, numbers and contractions are replaced with their spelled-out form, special characters

and stopwords are removed, and lemmatization and stemming are applied.

Here follows a sample from the processed lyrics dataset:

1Finding a pattern among noisy data and assigning a predictability score to the track, with a higher
score corresponding to higher danceability.

2Vector representing the intensities of the di↵erent semitone pitch classes
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take shirt run slowli away find fine float decid lone heart live room mine

tri make sound oh escap envi pride oh realli dead sin take oh matter time

keep chang mind keep chang mind carri plastic bag throw side show lone oh

mayb need man loos reduc infant depend wine oh matter time keep chang mind

keep chang mind keep chang mind keep chang mind see clear get stuck come

luck take shirt run slowli away find fine keep chang mind keep chang mind

keep chang mind

It is notable how di↵erent this extract looks from properly understandable song lyrics,

highlighting the criticality of not being able to work with the full song data. However, some

hints on the general sense of the full text can still be extracted by focusing on the remaining

words.

3.2.1.5 Users’ Tag

The users’ tag dataset is one of the crucial elements of the final dataset that this thesis aims

to create. The tags have been extracted using the Last.fm API, and consist of a dictionary for

each song, in which each key corresponds to a tag assigned by at least one user to that track,

and the corresponding value is the weight associated with the tag, representing how reliable a

tag is on the base of how many times it appears in association to that specific song.

One issue that can already be highlighted is that this collection of tags is not ready to

use. For the MER task tackled in the thesis, the goal would be a dataset of emotion-related

tags only, whereas in this case the tags are not filtered nor cleaned, and therefore their content

and relevancy widely vary. The first part of the experimental section of this research is thus
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dedicated to the tentative extraction of emotional tags that can be assigned to each track in

the dataset, as will be discussed in Section 4.

3.2.2 Data Dimensionality

A note worth mentioning concerns the dimensionality of the datasets. As shown in the

fourth column of Table I, the dimensionality of some datasets in the audio layer is extremely

high. This poses a problem on multiple fronts: on the one hand, working with such high

dimensional data requires a big computational power, which can be difficult to reach using

current public tools, and on the other hand it also leads to the curse of dimensionality. This

term is used to identify the issues arising from such high-dimensional data, such as the data

sparsity problem, which increases the difficulty in identifying patterns and clusters in the data

or the loss of meaning of distance metrics when applied to highly dimensional spaces.

For these reasons, great e↵ort is put into trying to efficiently reduce the dimensionality of

the bigger datasets, investigating multiple dimensionality reduction techniques whose details

will be better discussed in the following chapters.

This chapter highlighted the key challenges faced in the early phases of this research, in-

cluding data scarcity and copyright limitations, and provided an initial overview of the possible

solutions to these constraints. An overview of emotional models used in the context of machine

learning has also been provided, underlining the key characteristics of each one and the moti-

vation for the selection of the final model for this research. Furthermore, the chosen dataset,

Music4All-Onion, has been described detailing its layers and sub-datasets, along with the spe-
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cific issues resulting from this choice, such as the availability of already-preprocessed data only

and the dimensionality problem that will be tackled in the following sections.



CHAPTER 4

DATASET LABELING

The first practical issue tackled in this thesis is the aforementioned absence of emotional

tags in the dataset, which are a fundamental aspect of any classification task. Tackling this

issue required a detailed review of the solutions presented in literature, and the subsequent

implementation of multiple failed techniques.

4.1 Labeling through Users’ Tags

The first approach tested consisted of the tentative extraction of emotional labels from the

users’ tags dataset. To achieve this, multiple problems need to be taken into account: aside

from the necessity of separating emotional tags from irrelevant ones, the fact that not every

song has been tagged, specifically with emotional labels, needs to be considered. A detailed

explanation of the operations carried out in this stage is available in Appendix A.

The evident criticalities of this method are, first of all, the lack of a proper validation strategy

to check the reliability of the final dataset and, secondly, the fact that it relies solely on general

opinions on the songs given by users. The issue that arises from the latter regards the fact that

users were not clearly instructed to assign tags following any specific criteria, but the tags are

simply the results of a personal annotation process, which cannot be automatically assumed as

reliable. A representative example of this is the clear class imbalance of tags referring to love

and appreciation, which is also discussed in Appendix A and visible in Figure 77, Appendix

40
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A. This issue is due to the fact that users tagging a song with the words love or like may be a

reference to their preferences for the songs, using, for example, the tag I love this song, and not

an indicator of the fact that a song evokes love in the minds of listeners. Despite the possible

mitigation strategies applicable to this issue, it is almost impossible to eliminate the uncertainty

that may lead to misinterpretation of the tags and, therefore, to an unreliable labeling of the

data.

The final issue with this procedure regards the obsolescence of the library used to extract

emotional information from the general tags: WordNet-A↵ect [62], however groundbreaking its

introduction was, has been deployed over twenty years ago. This does not necessarily mean

that it is outdated as a tool, but only that better options may be available after this many

years, especially considering the development of AI tools over the past few years.

4.2 Labeling through Transfer Learning

The data scarcity problem characterizes the whole ML and AI field, posing the first limita-

tion to many applications. For this reason, methods to efficiently address this issue have been

widely studied and employed. Among these methods, one of the most often used is transfer

learning, whose basis was first introduced in the machine learning community in [63] and has

since been widely used in numerous ML and DL applications.

Transfer learning allows to successfully tackle the scarcity of labeled data, as stated in [64],

by leveraging the information learned while performing a task on an initial set of data, called

the source data, to improve its performance on a di↵erent set of target data.
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Inspired by [24], transfer learning is leveraged in this thesis as a labeling method for the

Music4All-Onion lyrics dataset. The choice of focusing exclusively on the lyrics part is dictated

by the necessity of a labeled source dataset to train the predictive model, with data in a

format that is comparable to the one in the target dataset. This is possible for the lyrics

dataset thanks to the Edmonds Dance dataset [65], a small lyrics dataset with emotional labels

based on Plutchik’s wheel of emotions [55]. This dataset includes the full lyrics of 524 songs

and is particularly suitable for this task because it is one of the few employing an emotional

model consisting of eight fundamental emotions: anger, anticipation, disgust, fear, joy, sadness,

surprise, and trust.

The reason why this dataset was not initially selected as a possible working dataset lies

both in the lack of multimodality, since no audio features are available, and in its small size:

even though it may be a suitable source dataset for the transfer learning task, using it to train

stand-alone models would be too limiting and lead to an insufficient generalization ability.

4.2.1 Data Preparation

In order to maximize the model’s ability to correctly predict the missing labels on Music4All-

Onion, it is important that the format of the fine-tuning data is the same as the one that the

model will get as input in the classification step. For this reason, the same preprocessing

operations that were performed on the lyrics layer of the Music4All-Onion dataset, mentioned

in Section 3.2.1.4, need to be applied to the Edmonds Dance source dataset.

It is also worth investigating the source dataset’s label distribution in order to highlight any

possible imbalance that may cause inaccuracies in the labeling process and, therefore, needs to
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Figure 2: Distribution of emotional labels in the Edmonds Dance dataset.

be addressed. Figure 2 shows indeed an imbalance against the labels fear, surprise, disgust,

and anger.

The reason why imbalanced datasets are an issue for learning models lies in the assumption

made by some algorithms during their training: if the distribution of the labels is skewed, models

will learn how to perform optimally in those scenarios; this may mean that less importance is

given to the under-represented classes, therefore leading to a bias in the prediction process. As

an example, considering the distribution of the labels of the dataset at hand, the model could
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learn during its training that surprise is almost never predicted, and thus it could reflect this

knowledge at test time by avoiding predicting that label in favor of more frequent ones.

To address this issue, di↵erent experiments are run using di↵erent versions of the dataset:

the original version, an upsampled version and a downsampled version. Upsampling and down-

sampling are two popular techniques used to tackle the class imbalance problem in datasets [66]:

the former consists of increasing the cardinality of the data by duplicating a number of samples

belonging to the under-represented classes, whereas the latter in decreasing the cardinality by

removing a number of samples from the over-represented classes.

Some additional preliminary considerations need to be discussed on the nature of the clas-

sification problem: music classification as a multi-class problem1 can be considered multi-label

or mono-label, depending on the number of labels that can be assigned to each sample. For

the scope of this thesis, the choice of a multi-label dataset is made, since each song can encom-

pass more than one single emotion, especially given the non-mutually exclusive nature of the

emotional classes used; the multi-label nature of the Edmonds Dance dataset also supports this

decision.

In order for the multi-label dataset to be successfully used in association with the classi-

fication model, it is possible to represent the labels leveraging one-hot encoding: the labels

associated with a sample are represented using a vector of length n, with n being the number

of possible classes, such that each i
th element of the vector [x1, x2, ..., xi, ..., xn] is equal to 1

1More than two labels to choose from.
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only if the i
th emotion in the labels set is assigned to the sample, 0 otherwise. The ordered set

of emotions is joy, trust, fear, surprise, sadness, disgust, anger, and anticipation. An example

of this encoding strategy is shown in Table II.

TABLE II: EXAMPLE OF ENCODED DATASET

idx Lyrics Labels Encoded labels

0 one day life understand
fight surviv taught lu...

Joy, Trust, Surprise [1, 1, 0, 1, 0, 0, 0, 0]

1 hypnot love without air
even breath lead way l...

Fear, Sadness [0, 0, 1, 0, 1, 0, 0, 0]

2 stand littl close stare
littl long danc everi ...

Joy, Trust, Anticipation [1, 1, 0, 0, 0, 0, 0, 1]

3 fall piec need need fault
weak turn cold cut b...

Surprise, Sadness, Disgust [0, 0, 0, 1, 1, 1, 0, 0]

5 end alon done paid get
want load gun made
alon...

Surprise, Sadness, Disgust, Anger [0, 0, 0, 1, 1, 1, 1, 0]

4.2.2 Evaluation Metrics

The transfer learning model’s performance is evaluated on a dedicated test set using pre-

cision, recall, F1 score, and Hamming loss; precision, recall, and F1 score are computed on

the whole data according to Equation 4.1, Equation 4.2, Equation 4.3 and following to the
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micro-average approach to account for imbalance in the data: this strategy allows each sample

to have the same weight, instead of assigning the same weight to each class1.

precision :=
TP

TP + FP
(4.1)

recall :=
TP

TP + FN
(4.2)

F1 := 2 · precision · recall
precision+ recall

(4.3)

Where TP, FP, and FN are the number of true positives, false positives, and false negatives,

respectively, as defined by the standard confusion matrix:

True label

Positive Negative

Predicted label Positive TP FP

Negative FN TN

As for the Hamming loss, which represents the fraction of labels that are incorrectly labeled,

it is computed for each sample as the Hamming distance between the vector true labels y and

1As it happens when using macro-average, where the metrics are independently computed for each
class, and then the average between the classes is calculated to obtain the final result.
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the vector of predicted labels ŷ, according to the format defined in Table II and as formalized

in Equation 4.4.

d(y, ŷ) =
1

n

nX

i=1

|yi − ŷi| (4.4)

The overall Hamming loss is simply computed as the arithmetic mean between the losses of

all the samples.

The choice of these metrics is made according to the standard practice in multi-label classi-

fication problems [67]; the reason why recall, precision, and F1 score are preferred over accuracy

lies in their ability to better capture the performance of models by leveraging the relevance of

true positives and accounting separately for false negatives and false positives. The additional

evaluation of the Hamming loss compensates for the lack of a measure of accuracy by providing

a more general estimate of the overall performance.

4.2.3 BERT Pre-Trained Model

The authors of [24] set up the transfer learning part of their experiments leveraging a BERT

model for multiclass classification, in which the possible emotional labels are those of Russell’s

four-emotion model.

BERT, which stands for Bidirectional Encoder Representation from Transformers, is a

transformer-based model developed by Google. Its key characteristics include the bidirectional-

ity of its text processing and the use of masked language modeling [27], with the former allowing

to leverage preceding and following context by conditioning on both left and right context in

texts. The latter is a strategy consisting in randomly masking some tokens in the input text to

train the model to predict them in order to refine its contextual awareness.
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As already mentioned in Section 3.1.2, this research aims to use a more complex emotional

representation, namely Plutchik’s wheel of emotions, consisting of eight di↵erent labels. Since

the dataset intended to be used as a source of information for the TL model only consists

of 524 songs, using a pre-trained model could lead to an increase in the quality of the pre-

diction. Therefore, a pre-trained BERT model for emotion classification publicly available on

Hugging Face1 is selected for its compatibility with the task at hand. Specifically, the BERT

model chosen is pre-trained for classification on the SemEval-2018 dataset, composed of tweets

and corresponding emotions; the emotional labels that the model is able to predict consist of

Plutchik’s set of eight emotions in addition to three other emotional labels: love, optimism,

and pessimism. Since no labeled lyrics dataset compatible with these 11 emotions was found,

the model is adjusted to only predict the eight base emotions present in the Edmonds Dance

source dataset.

To leverage transfer learning as a labeling method for the lyrics dataset of Music4All-

Onion, the first step consists of fine-tuning the selected BERT model on the training split

Edmonds Dance dataset while keeping a validation set to be able to quantitatively evaluate the

performance of the model before using it on the unlabeled data.

To implement the multi-label classification problem in practice, it is also necessary to know

how the classification model works: the chosen pre-trained BERT model outputs for each sample

and for each possible class a score indicating the probability that that sample belongs to that

1https://huggingface.co/ayoubkirouane/BERT-Emotions-Classifier
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class. In the mono-label case, it would be sufficient to select the class corresponding to the

highest score, but the multi-label case requires some more reasoning: a way of achieving the

desired outcome is to set a probability threshold above which a sample is assigned to the class.

Selecting the right threshold for this task is complex, as it requires considering the trade-o↵

between the higher precision given by a higher threshold1 and the higher recall given by a lower

threshold2. Given the complexity just mentioned, the threshold is not selected a priori; instead,

di↵erent thresholds are tested with the di↵erent dataset versions to identify which combinations

lead to the best results on the validation set.

After splitting the Edmonds Dance Dataset into a training and a validation set, respectively

containing 80% and 20% of the original data, the BERT pre-trained model is trained on the

dedicated split of the dataset for 10 epochs3. The low number of epochs chosen for these

experiment reflects the computational limitations faced, however, given the small nature of

the dataset and the experimental results obtained, it can be considered sufficient. A specific

indicator of this that will be discussed later in this section is how the loss of the model changes

during training.

1Reducing false positives.

2Reducing false negatives.

330 and 60 epochs have also been tested for some configurations but did not lead to an increase in
performance, probably causing the model to overfit.
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Figure 3: Precision of BERT pre-trained model over epochs’ steps.

The results of the experiments on the base dataset where no upsampling or downsampling

operations are performed, according to di↵erent threshold values, are shown in Figure 3, Fig-

ure 4, Figure 5, and Figure 6.

As anticipated, the value of the threshold has a direct influence on precision and a recall: a

lower threshold leads to a lower number of false negatives, therefore improving recall, whereas

a higher threshold causes fewer false positives and therefore improving precision. The F1 score,

keeping into account both precision and recall values, is thus considered as the base metric for

evaluation in this scenario.

In order to avoid extreme scenarios, two threshold values are initially selected for further

experiments based on the results achieved: since 0.3 and 0.4 lead to similar results in terms
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Figure 4: Recall of BERT pre-trained model over epochs’ steps.

Figure 5: F1 score of BERT pre-trained model over epochs’ steps.
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Figure 6: Hamming loss of BERT pre-trained model over epochs’ steps.

of F1 score, their average 0.35 is considered; 0.5 leads to an overall good performance both

in terms of F1 score and in terms of Hamming loss, and is thus chosen as the second viable

threshold.

Other experiments are then run using the threshold values just selected and the di↵erent

dataset versions including corrective measures for the class imbalance problem. The results on

the upsampled dataset are shown in Figure 7, Figure 8, Figure 9, and Figure 10, whereas those

on the downsampled data in Figure 11, Figure 12, Figure 13, and Figure 14.

One detail that is immediately noticeable from the performance reports is the lack of im-

provement over the epochs: the graphs show that the metrics oscillate around a stable value

after the initial settling stage. To further investigate this, it is possible to consider the loss of
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Figure 7: Precision of BERT pre-trained model over epochs’ steps (upsampled data).

Figure 8: Recall of BERT pre-trained model over epochs’ steps (upsampled data).
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Figure 9: F1 score of BERT pre-trained model over epochs’ steps (upsampled data).

Figure 10: Hamming loss of BERT pre-trained model over epochs’ steps (upsampled data).
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Figure 11: Precision of BERT pre-trained model over epochs’ steps (downsampled data).

Figure 12: Recall of BERT pre-trained model over epochs’ steps (downsampled data).



56

Figure 13: F1 score of BERT pre-trained model over epochs’ steps (downsampled data).

Figure 14: Hamming loss of BERT pre-trained model over epochs’ steps (downsampled data).
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Figure 15: Evaluation loss of BERT pre-trained model over epochs’ steps (upsampled data).

the model on the evaluation set. As an example, Figure 15 shows the loss during training com-

puted on the evaluation set: the increasing trend of the graph reflects the missing improvement

in performance, indicating that the model does not benefit from additional training but instead

overfits the training data and performs thus poorly on the unseen evaluation set.

The same considerations can be made for the loss of the model trained on the downsampled

data, as shown in Figure 16.

The results of the training of the pre-trained BERT model on the Edmonds Dance dataset

are not completely satisfactory: even in the best scenario, the highest F1 score reached on the

evaluation set barely reaches 0.6, and the Hamming loss never falls below 0.3, indicating that

if this model was used to label the Music4All-Onion lyrics dataset, only 70% of the assigned



58

Figure 16: Evaluation loss of BERT pre-trained model over epochs’ steps (upsampled data).

labels could be considered correct. For this reason, it is necessary to consider di↵erent models

for this task.

4.2.4 Large Language Models

Large language models, or LLMs, have become increasingly popular over the past years due

to their remarkable performances on NLP tasks and the ease of use provided by their integration

into user-friendly tools like chatbots. In short, LLMs are large neural networks trained on very

extensive amounts of data to be able to process and generate text similar to natural human

language.

Like BERT, LLMs are based on the transformer architecture, first introduced in [68], which

revolutionized the deep learning field by presenting a model exclusively based on a self-attention

mechanism. This allows models to assign di↵erent weights to inter-connected words of a sentence
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and thus incorporate larger context without the need for recurrent or convolutional elements.

While BERT can be considered the first large language model, modern LLMs, such as those

discussed and used in this section, propose an alternative approach to its encoder-only archi-

tecture by implementing a decoder-only one. As a consequence, BERT’s primary focus is the

bidirectional analysis of context for classification tasks, whereas architectures such as general

pre-trained transformers (GPT) yield generative auto-regressive models leveraging a sequential

learning strategy in a single direction (from left to right). This leads to di↵erent applications

for the architectures, with modern LLMs such as GPT being preferred for natural language

generation or conversational tasks, whereas BERT excels in the interpretation of existing texts.

In practice, large language models consist of tens or hundreds of billions of parameters

that are trained on remarkably large corpora of text data, which allows them to capture a

more extensive range of language patterns. This is why LLMs present a promising alternative

to BERT for the labeling task at hand, although such tasks are typically closer to BERT’s

domain. Despite the large dimensions of these models, their popularity led to the development

of a great number of techniques that make their fine-tuning and usage accessible even under the

computational constraints imposed by the limited hardware resources available to the general

public.

To complete the labeling task at hand, multiple LLMs are tested and compared using a

similar strategy to the one described in Section 4.2.3. Specifically, the same train and evaluation

splits are used to fine-tune and then evaluate the performance of the models, with modifications

only to the format of the dataset. The creation of an instruction dataset that can be fed to the
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model consists of using a fixed prompt to specify the task that the model needs to perform,

in addition to some examples, to the sample to label, and to the corresponding true labels for

those in the training split of the dataset.

The instruction given to the models is the following, with additional appropriate separators

according to the specific model used.

Associate the preprocessed song lyrics to at least one of the following

emotions: Joy, Trust, Fear, Surprise, Sadness, Disgust, Anger, Anticipation.

Only use the listed emotions. Each song can be associated with multiple

emotions. No song is associated with no emotion.

Here are some examples:

Input: high drunk moonlight fli touch sky eye danc star shine light night bodi

blind blow mind got ta know cuz gon ride night come aliv lit like fire lit like

fire tonight come aliv lit like fire lit like fire tonight hot got burn feel

good swear could die alright want touch cross line bodi blind blow mind got ta

know cuz gon ride night come aliv lit like fire lit like fire tonight come aliv

lit like fire lit like fire tonight

Response: Joy, Trust, Anticipation

Input: turn somebodi save soul caus sin citi know mani troubl lover got lose

control like drug luxuri sugar gold want good life everi good night hard one

hold caus even know make hand clap said make hand clap somebodi save soul caus
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sin citi know mani troubl lover got lose control like drug luxuri sugar gold

want affect hold close ha ha ha caus even know make hand clap said make

hand clap everi night star come live soul around need believ could hold caus

need someth good right could scream til sun come wake sound get knee say

prayer jame brown make hand clap make hand clap turn make hand clap flesh

search worst best ever deni like stranger gim danger wrong right secret

broadway freeway keeper crime fear convict grape wrath sweeten wine even

know make hand clap said make hand clap everi night star come live soul

around need believ could hold caus need someth good right could scream

til sun come wake sound get knee say prayer jame brown make hand clap

make hand clap make hand clap make hand clap make hand clap get handclap

Response: Anticipation, Sadness, Surprise

Please also keep in mind that texts containing insults or derogative words

should influence the text in terms of negative emotions perceived

(e.g. disgust, anger). Similarly, texts containing references to love and

affection should point to positive emotions such (e.g. joy, trust).

A text with many verbs in the future form could suggest anticipation.

Please give the same importance to all the eight classes.
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The format of the prompt has been subject to some refinements before reaching its final

form; at first, the LLMs were fed a prompt in which no examples nor additional suggestions

were provided, corresponding to the first four lines of the prompt displayed above. The selection

of this prompt originated from the attempt of using instructions that were as simple and clear

as possible as a starting point. Since the models’ answers were not consistent with what the

prompt instructed at first, two examples have been added to assess whether the prediction

capabilities could benefit from their additions. After noticing that the models’ performance

had improved due to the examples, the final suggestions about how to recognize specific classes

and the requirement to balance the importance of the classes have also been added for further

refinement and to prevent the models from focusing on the most recurrent classes only.

The first models tested are Meta’s LLaMA 2 [69] with 7B parameters and LLaMA 3.1

[70] with 8B parameters, and Google’s Gemma 2 [71] with 2B parameters, all united by a

decoder-only architecture.

These models have been made freely available by their creators on Hugging Face, and

can therefore be fine-tuned locally. To reduce the computational need of such operations, a

Parameter-Efficient Fine-Tuning (PEFT) strategy is used: this technique enables training on a

limited set of parameters, while the majority of them remains fixed. The technique chosen for

this purpose is a QLoRA [72], a quantized version of the Low-Rank Adaptation (LoRA) [73],

which adds low-rank updates to the weights of some layers of the network.

To better understand the need for a Parameter-Efficient Fine-Tuning strategy, it may be

useful to highlight the key stages of how fine-tuning is performed on neural networks and, thus,
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large language models. It is possible to simplify the structure of a neural network to a set of

interconnected subsequent layers of units, called neurons, which are organized into one input

layer, one or more hidden layers, and one output layer. The neurons of a layer are connected

to those of the following layer through weighted edges, whose weight represents the importance

of the connection. The weights are the elements that are modified during fine-tuning through

backpropagation1, and are thus the core element of the process. The matrix containing the

weights of all the connections in the network is often very large, and operations on it in its base

form can become memory-intensive and computationally expensive.

When applying LoRA, the weights of the pre-trained network are frozen and instead two

low-rank matrices A and B are used to store the updates resulting from the fine-tuning process.

In this way, it is only necessary to store A and B instead of the original weights matrix, and

predictions will be made using weights obtained by applying the modifications stored in A and

B to the model’s weights matrix. Eventually, QLoRA introduces a further level of efficiency by

quantizing2 the low-rank matrices A and B to further reduce the memory usage.

The final model tested is OpenAI’s GPT-4o-mini updated to July 18th 2024, belonging to the

GPT-4 family [74], whose exact number of parameters has not been disclosed. This model can

be fine-tuned using OpenAI’s API, therefore eliminating the need for any PEFT technique and

1Algorithm allowing the adjustment of weights from the output layer to the input layer to minimize
a selected loss function, measuring the distance between the model’s predictions and the correct ones.

2Conversion of the data format from a higher to a lower precision (e.g. from 32-bit floating-point to
8-bit integers).
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allowing every parameter to be corrected according to the new information acquired through

the Edmonds Dance training data.

Table III shows the performance achieved by the four models tested on the unseen evaluation

set after 100 fine-tuning epochs.

TABLE III: COMPARISON OF PERFORMANCE OF LLMS TESTED

Model Parameters Hamming loss Precision Recall F1-score

Gemma 2B 0.31 0.48 0.60 0.53

LLaMA2 7B 0.32 0.48 0.60 0.53

LLaMA3 8B 0.29 0.54 0.62 0.58

GPT-4o-mini NA 0.05 0.93 0.90 0.91

The model that performed better, as is immediately visible from Table III, is GPT-4o-mini;

such a large di↵erence in performance may be attributed to the possibility of fine-tuning the

whole model without the need for any PEFT techniques, which enables greater customization

of the model on the task at hand. Another factor that could have a↵ected the performance is

the total number of parameters of the model, but a real comparison cannot be performed due

to the lack of information about GPT-4o-mini.
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Since the experiments on the unseen portion of the Edmonds Dance dataset resulted in such

a good performance, GPT-4o-mini is the final model chosen for the labeling of the Music4All-

Onion lyrics dataset. Due to the lack of true labels, it is impossible to estimate the performance

of the model on this specific dataset, but assuming that the samples of the two datasets are not

remarkably di↵erent allows the final dataset to be considered reliable overall.

GPT-4o-mini is the only model among those tested that is not freely available to the public

but is accessible on a pay-per-use basis, with limitations on the number of usable tokens per

day; this led to the necessity of reducing the cardinality of the Music4All-Onion working dataset

from the original 109.269 tracks to approximately 33.000.

The experiments described in this section played a key role in this research, providing

emotional labels to the lyrics component of the Music4All-Onion dataset. While the approach

leveraging users’ tags has been deemed insufficiently reliable, the transfer learning one provided

more robust results, especially when using the GPT-4o-mini model, which outperformed all

other alternatives.



CHAPTER 5

BASELINES DEFINITION

In order to ease the evaluation of the methods proposed in this research, it is helpful to

preliminarily define some baselines as benchmarks for comparison. As already stated in Section

2.1.1, this introduces challenges because of the lack of public resources for researchers in this

field: not having, for instance, a standardized dataset on which to evaluate novel strategies

complicates the comparative evaluation of techniques, forcing each research to rely on a di↵erent,

often private, dataset, limiting the reproducibility of results. To address this issue, the proposed

baselines are evaluated using the emotional extension of the Music4All-Onion dataset developed

for this thesis.

Further reproducibility issues arise from the lack of public ready-to-use code related to many

publications, imposing the creation from scratch of the models described; however, some neces-

sary technical details are often missing, making it difficult to precisely re-implement promising

architectures and evaluate them fairly.

One final consideration on reproducibility concerns the audio modality: due to the nature

of data used in this research, most audio classification techniques presented in the literature

are not applicable. This is primarily due to the lack of data representations used as inputs

to the models reported in Section 2.1.5, namely spectrograms and MFCCs. These limitations

further aggravate the challenges posed by the already discussed lack of labels, restricting the

approaches that can be explored in this research.

66
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Figure 17: Word cloud representation of frequent words in the lyrics layer of the dataset.

5.1 Lyrics Modality

These experiments are run on the Music4All-Onion lyrics layer, containing preprocessed

texts on which standard NLP standardization techniques have been applied, as explained in

Section 3.2.1.4.

The first baseline on which lyrics data is tested is the Latent Dirichlet Allocation (LDA)

proposed in [21]. This aims to model the di↵erent topics in the lyrics dataset and identify the

most significant ones to highlight underlying patterns. Even though LDA is an unsupervised

method per se, the dataset labels are used in a second moment to evaluate the extracted topics,

inspired precisely by [21].

Before running LDA on the data, a word cloud is created to easily visualize the most frequent

words in song lyrics, shown in Figure 17.

According to the authors of the referenced paper, applying LDA on data after TF-IDF has

been applied yields better results since it eliminates the risk of terms that are not sample-specific

being given too much importance. The number of topics to be extracted is a hyperparameter
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that can be chosen according to the dataset’s properties. Since the authors of [21] used an

emotional model consisting of 4 base emotions, they set the parameter to 4. The parameter in

reproduction is, therefore, set to 8 at first, according to the emotional model used for labeling.

The topics extracted by the LDA algorithm can be described by the top 10 most relevant

terms for each of them, presented in Table IV.

TABLE IV: TOP 10 WORDS PER TOPIC

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

mystifi hallelujah shoop jane hello nah love ba

unchang carolin knockin thou doctor dem get blah

indigo dum twentyfour lala suicid alic want groovin

dyou bop yonder jupit sugar betti go bluebird

messiah bom anni choo sacrific ey know wonderland

union strawberri georgia arc ash banana come eagl

woooo te utopia mississippi sacrific mash say breakdown

reckon cuckoo gogo roman pill euphoria never dee

lifelin venus potion undead flag disco let passag

ella foggi amsterdam joan earli wasp like you

The top 10 terms shown in Table IV already demonstrate that LDA did not extract any

evident underlying emotional topic, but another valuable qualitative evaluation tool can be
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Figure 18: Topic distribution for class Joy.

leveraged to further investigate this: the distribution of topics assigned by the LDA algorithm

across the di↵erent emotional classes within the dataset can assist in determining if there is any

meaningful correlation between LDA topics and emotional labels.

Unfortunately, as seen from Figure 18 to Figure 25, the topic distribution does not vary

significantly over the di↵erent classes of the dataset, indicating that LDA does not yield good

results on this dataset. The reason for this may lie in the dataset’s imbalance, as suggested in

[75], or it may originate from the peculiarities of song lyrics: unlike documents such as news

articles or essays, this type of data is typically shorter and does not present large quantities of

text to model; furthermore, it is less common for song lyrics to address a single coherent topic,

and often emotions are not explicitly mentioned as topics of songs, but instead conveyed through

the underlying subtext of the words chosen. An additional note that should be considered lies
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Figure 19: Topic distribution for class Trust.

Figure 20: Topic distribution for class Anger.
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Figure 21: Topic distribution for class Disgust.

Figure 22: Topic distribution for class Surprise.
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Figure 23: Topic distribution for class Sadness.

Figure 24: Topic distribution for class Anticipation.
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Figure 25: Topic distribution for class Fear.

in the multi-label nature of the problem tackled in this thesis, which is not shared over all the

methodologies presented in the literature.

A second paper is chosen as a baseline for lyrics classification: [19], in which a CNN, a

bi-directional LSTM, and a CRNN are tested as classifiers. This choice is motivated both by

the strong results reported by the authors and by the uniqueness of this work in applying neural

networks to lyrics classification. Other works in literature, such as those discussed in Section

2.1.2.3, rely on traditional machine learning models that achieve lower performances or on the

BERT model, which has already been tested in Section 4.2.3 with unsatisfactory results.

First, it is crucial to recreate the architectures as closely as possible, using the informa-

tion presented by the authors. The CNN consists of three concatenated convolutional layers
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of varying kernel sizes1 to allow the identification of patterns of di↵erent dimensions, each fol-

lowed by max pooling; these are followed by two dense layers with a Rectified Linear Unit

(ReLU) activation function, a dropout layer to address the risk of overfitting and, finally, a

softmax layer. The chosen loss function is categorical cross-entropy, suitable for multi-class

classification problems. No other details are provided on the training parameters, and it is thus

impossible to reproduce the experiments presented precisely. However, for research purposes,

the experiments are carried out anyway, and the missing parameters are tuned by leveraging

Bayesian Optimization [76].

Bayesian Optimization is a strategy developed to address the hyperparameter tuning issue of

machine learning algorithms. The fundamental idea behind it is modeling a learning algorithm’s

generalization ability as a sample from a Gaussian process2, which allows the development of

a probabilistically guided search strategy which is remarkably more efficient than the brute-

force approach in which numerous configurations of candidate parameter values are tested

indiscriminately, such as random search and grid search.

As mentioned above, it is crucial to account for di↵erences in problem definitions: the design

choices made by the authors reflect the needs of a multi-class single-label classification problem,

whereas the task of interest is a multi-label classification problem. To make the architecture

compatible with the type of problem tackled in this thesis, some slight modifications must be

1[2, 5, 10]

2Stochastic process in which every finite subset of random variables follows a multivariate normal
distribution.
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made to a few crucial elements of the CNN, such as the selected loss function. An overview of

the categorical cross-entropy loss function is provided below to better understand the reasons

for this.

The categorical cross-entropy loss function, also called Softmax loss, combines a Softmax

activation function with a cross-entropy loss, whose computation is shown in Equation 5.1,

where C is the number of possible classes, and t and p are respectively the true and predicted

probability distribution over all the possible classes.

CE(t, p) = −
CX

i=1

tilog(pi) (5.1)

The Softmax activation function, whose formula is presented in Equation 5.2 and whose

trend is shown in Figure 26, is used on logits1 to convert them into probability values repre-

senting the likelihood of a sample belonging to each possible class.

σ(−!z )i =
e
zi

PK
j=1 e

zj
(5.2)

Since the goal is to transform logits into a probability distribution, the function ensures

that all output values are in the range [0, 1] and that they sum up to 1. One key feature of

the Softmax activation function is that it cannot be applied independently to each logit value;

instead, the probabilities of a sample belonging to di↵erent classes are interdependent. As

1Raw and unnormalized outputs of a neural network.
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Figure 26: Softmax function trenda.
a Because the Softmax function is multivariate and converts vectors of any length and values into a vector of sum 1, its

shape may vary from case to case.
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a result, an increase in the likelihood of a sample belonging to a certain class is necessarily

balanced by a decrease in other probabilities, reflecting the mutually exclusive relationship of

labels in single-label classification.

To adapt the proposed architecture to the multi-label classification problem, it is necessary

to revise the loss function to make class probabilities output by the model independent from each

other: in this case, the likelihood of a sample belonging to a specific class should be independent

of the likelihoods of it belonging to di↵erent classes. One way of achieving this is by leveraging

the binary cross-entropy loss, also called Sigmoid loss. Similarly to the Softmax loss, this

combines a Sigmoid activation function with the cross-entropy loss defined in Equation 5.1.

The sigmoid activation function is formally defined in Equation 5.3, and its trend is shown in

Figure 27.

S(x) =
1

1 + e−x
(5.3)

The Sigmoid function also returns, for each class, probability values in the range [0, 1];

since the likelihood values are independent, they do not sum to 1, reflecting the non-mutual

exclusivity of labels. In other words, using binary cross-entropy as a loss function leads to

considering the multi-label classification problem as the union of multiple independent binary

classification tasks, each involving one of the C classes.

Limited information is provided on both the bi-directional LSTM and the CRNN, further

complicating the reproduction of the architectures. However, following what is done for the

CNN architecture, the models are built according to the information provided, and all other
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Figure 27: Sigmoid function trend.
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design decisions are performed leveraging Bayesian Optimization; the same considerations on

loss functions made for the convolutional network are valid for both the bi-directional LSTM

and the CRNN.

The length of the training stages for the architectures is provided only in temporal terms1,

but no information allows inferring how many training epochs the models underwent; the ex-

periments are thus conducted for a number of epochs constrained by the hardware and compu-

tational resources available. It is evident that all of these adjustments significantly a↵ect the

performance of models, and, therefore, the comparative evaluation of models should only be

considered as a general qualitative measure and not be used to infer definitive conclusions.

Before being input into the deep learning models, data is transformed using GloVe embed-

dings, which provide for a better semantically aware translation of textual tokens into numerical

vectors, as explained in Section 2.1.2.1 and implemented by the authors of the paper under con-

sideration.

After recreating the architectures, performing the necessary adjustments, and tuning the

missing parameters with Bayesian Optimization, each model is trained on a subset of the

Music4All-Onion lyrics layer dataset containing 70% of the samples, using the official labels

obtained in Section 4.2.4. 15% of the samples are then used for validation by the model after

each training epoch, and the final 15% constitutes the separate unseen test set used after

training is complete to evaluate the final performances. The training procedure is performed

120 minutes for the CNN, 4 hours for bi-LSTM, 45 minutes for CRNN.
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for 15 epochs on each model, and the results look promising. The evaluation is performed using

precision, recall, and F1 score, for the same reasons stated in Section 4.2.2; again, the output of

the model is a vector of probabilities for each sample, and to identify the final assigned labels

it is necessary to set a threshold, as done in Section 4.2.3, which is fixed in this case to 0.4 for

the CNN and bi-LSTM models, and to 0.2 for the CRNN1.

The final results on the test data are shown in Table V, whereas the progression of the loss

and the metrics over the training epochs are shown in Figure 28 and Figure 29 for the CNN,

in Figure 30 and Figure 31 for the bi-LSTM, and in Figure 32 and Figure 33 for the CRNN.

TABLE V: BASELINE PERFORMANCES ON MUSIC4ALL-ONION LYRICS LAYER

CNN bi-LSTM CRNN

Precision 0.68 0.65 0.55

Recall 0.52 0.53 0.10

F1 Score 0.59 0.59 0.17

Hamming Loss 0.22 0.23 0.30

Training Time 60 min 140 min 300 min

1Empirically, a threshold of 0.4 is too high and leads to very few labels being assigned.
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Figure 28: Convolutional Neural Network training loss.

Figure 29: Convolutional Neural Network training metrics.
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Figure 30: Bidirectional Long Short-Term Memory training loss.

Figure 31: Bidirectional Long Short-Term Memory training metrics.
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Figure 32: Convolutional Recurrent Neural Network training loss.

Figure 33: Convolutional Recurrent Neural Network training metrics.
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The authors provide an evaluation of the performance of the models only in terms of ac-

curacy, which, for the reasons already stated in Section 4.2.2, is not a suitable metric for the

multi-label classification problem. However, the best accuracy reported in [19] is 0.71 obtained

with the CNN architecture, followed by 0.69 and 0.67 obtained with the bi-LSTM and the

CRNN, respectively. Comparing their results with the results obtained on the dataset used in

this thesis from a merely qualitative point of view, it is possible to notice good performances

with both the CNN and the bi-LSTM, along with good training times; the same cannot be said

for the CRNN, which, despite achieving good precision, has a remarkably low recall, indicating

the model’s inability to detect positive labels. The good performance of the CNN and the

bi-LSTM is reflected by the loss progression over the training epochs, shown in Figure 28 and

Figure 30. Although the loss progression for the CRNN is not as smooth as those of the other

architectures, indicating unstable learning, the overall trend is still promising and indicates

successful learning by the model.

5.2 Audio Modality

Because of the unsupervised nature of the audio modality datasets, the baselines found in

the literature are discussed at a very high level due to the challenges in objectively evaluating

di↵erent methodologies with no ground truth labels available.

As mentioned in Section 3.2.2, one of the first problems to tackle when approaching the

audio layer of the Music4All-Onion dataset is the data dimensionality problem: the audio sub-

datasets made available are all characterized by a remarkably high dimensionality in terms
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of features per dataset, which may lead to issues such as the curse of dimensionality, and to

challenges in extracting meaningful information from data.

Dimensionality reduction is a crucial cross-sectional problem in the artificial intelligence

field, as the dimensionality problems mentioned above are common to all machine learning

domains. For these reasons, numerous techniques have been proposed and are currently in use

to mitigate this issue.

The first baseline considered for this phase is the one provided by the authors of the block-

level feature extraction approach [38]: as explained in the publication, the dataset on which

the automatic music tag classification task is performed is extremely high-dimensional, thus

requiring the use of a compression method. The technique chosen by the authors is the Principal

Component Analysis (PCA) [77], which works by identifying a new set of axes, namely the

principal components, to provide an alternative representation of the data. The new axes are

chosen to maximize the variance of data over said axes, and are obtained as linear combinations1

of the original features. The principal components found, which are all orthogonal to one

another, are ordered based on the portion of variance explained, with the first PC being in the

direction explaining the most variance.

From a mathematical perspective, the computation of the principal components is performed

by computing the covariance matrix of the data, which highlights potential correlations between

features, and extracting its eigenvectors and eigenvalues, corresponding respectively to the

1The original dimensions [x1, x2, ..., xn] are weighed and summed, resulting in w1x1+w2x2+...+wnxn.
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principal components and the relative explained variance. The first n principal components

in order of decreasing explained variance are selected based on the desired balance between

dimensionality reduction and information preservation, aiming at the optimal trade-o↵ between

computational efficiency and data quality. As an example, the authors of the referenced paper

performed several experiments to identify how much explained variance to preserve to achieve

the optimal balance, and they finally set the threshold to 65%, reducing the number of features

from 9448 to 37.

The mathematical discussion highlights the necessity of operating on standardized data to

prevent features having di↵erent magnitudes from having a disproportionate impact on the

results; accordingly, the first operation applied on each audio sub-dataset before performing

Principal Components Analysis is normalization, which ensures that every feature to have a

zero mean and unit variance, allowing for meaningful comparisons of features.

Following [38], di↵erent thresholds of explained variance are tested to evaluate the di↵erent

levels of dimensionality reduction achieved on the sub-datasets. Table VI presents the result-

ing number of principal components needed to explain di↵erent portions of variance across all

the block-level feature datasets. These experiments led to slightly di↵erent results from those

obtained by the authors of the original paper, highlighting the need for more principal com-

ponents to explain the same portion of the variance. This discrepancy may be caused by the

di↵erent datasets used and by the songs’ characteristics, which might include acoustic properties

influencing the relationships between features.
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TABLE VI: NUMBER OF PRINCIPAL COMPONENTS PER EXPLAINED VARIANCE
THRESHOLD PER BLF DATASET

Dataset 60% 65% 70% 75% 80% 85% uncompressed

Correlation Pattern 19 29 45 71 112 182 1325

Spectral Contrast Pattern 2 3 4 5 7 9 800

Spectral Pattern 5 8 10 14 18 25 980

Delta Spectral Pattern 8 12 18 27 46 84 1372

Variance Delta Spectral Pattern 14 19 25 33 42 54 1342

Logarithmic Fluctuation Pattern 9 13 19 29 46 75 3626

TOTAL 58 84 121 179 271 426 9,445

The most found baseline in literature for unsupervised tasks on audio features is K-Means

clustering [78][79], which can be leveraged in various ways as discussed in Section 2.1.4. Because

of its widespread usage, it is considered a baseline method for the purpose of this thesis, and

is applied to the PCA-reduced block-level features datasets to obtain a starting benchmark for

other experiments. The number of PCs for each dataset is the one granting the preservation of

75% of explained variance.

K-means is a partitional, center-based clustering algorithm that divides a set of points into

a predefined number of clusters K. It works by selecting K initial centroids1 for the K clusters

1Either randomly or by considering the empirical probability distribution of each point’s contribution
to the total inertia to speed up convergence.
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and by associating each data point to the closest1 centroid; after all the data samples have

been sorted, the coordinates of each centroid are recomputed as the mean of the coordinates of

the points belonging to its cluster. The algorithm terminates when a stopping criteria is met,

usually when the change in the centroids coordinates between two sub-sequential iterations falls

below a certain tolerance threshold or when the maximum number of iterations is reached. A

criticality of K-Means clustering is the necessity to set the parameter K a priori, which may

be challenging when data is high-dimensional or complex. Other situations in which K-Means

does not perform optimally are those in which clusters have varying sizes and shapes, when

outliers are present, or when clusters have non-globular shapes.

Due to the lack of labels, the task of evaluating unsupervised methods requires ad hoc

metrics that do not rely on a ground truth but evaluate the clustering outcome, such as the

silhouette score, which is an internal index2 measuring the goodness of a clustering structure.

The formula is defined in Equation 5.4, where i is a sample, a(i) is the average dissimilarity of

i from all other objects within its cluster, and b(i) is the average dissimilarity of i from all the

clusters to which i does not belong. s(i) has ranges in [−1, 1], with values closer to 1 indicating

a better result.

s(i) =
b(i)− a(i)

max{a(i), b(i)} (5.4)

1Using a discretional distance metric.

2Evaluation is performed without respect to external information.
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The silhouette score can be used as an evaluator of the overall clustering structure by

considering its average value over all data samples i of the dataset, or of the goodness of a

single cluster by considering its average values over each point i of said cluster; in this case, the

evaluation of K-Means is carried out in the first manner.

A grid search is performed for each BLF dataset to determine the optimal number of clusters

K, using the silhouette score as the evaluator; the results are presented in Table VII.

TABLE VII: EVALUATION OF K-MEANS ON THE BLOCK-LEVEL FEATURES
DATASETS

BLF data # PCs Optimal K Silhouette

Spectral contrast pattern 5 2 0.37

Correlation pattern 71 2 0.23

Spectral pattern 14 2 0.28

Delta spectral pattern 27 2 0.43

Variance delta spectral pattern 33 2 0.19

Logarithmic fluctuation 29 2 0.29

For a more intuitive evaluation of the clustering results, the visual representation of clusters

can be employed; however, representing high-dimensional data is challenging as it requires

projecting it into two-dimensional spaces. For simplification purposes, the visual representation
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Figure 34: K-Means clustering results on the spectral contrast pattern BLF dataset after PCA.

of K-Means clustering is provided only for the spectral contrast pattern dataset, which has been

reduced to 5 dimensions. Figure 34 shows how data samples have been sorted into two clusters,

allowing a clearer interpretation of the structure and the potential patterns in data.

As visible from Figure 34, no evident patterns or groups can be identified in the spectral

contrast pattern dataset, which is a reflection of the silhouette score of just 0.37. Because of

the unsuccessful outcome of the combination of PCA and K-Means, many improvements can be

obtained by varying the dimensionality reduction and clustering techniques, as will be discussed

in Section 6.1.

The baselines introduced in this chapter constitute a valuable instrument for the evaluation

of the models developed in the following sections, as they provide a reference to assess the
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performance of new methodologies on the chosen dataset. Furthermore, this section underlined

the existing reproducibility and comparison issues in the MER field, caused by both the lack of

standardized data and evaluation metrics, and by the limited availability of models pre-trained

on the specific emotional information pursued in this work.



CHAPTER 6

METHODS

This section highlights all the methodology and design choices performed to develop the

desired multimodal classifier. This represents the initial goal of this thesis and thus forms the

core of the research, for which the preliminary operations on the datasets were necessary due

to the lack of suitable data discussed in the previous chapters. The results of the experiments

described in this section will be presented and discussed in Section 7.

Before discussing in detail the proposed approach, some key considerations from the exper-

iments and insights of the previous chapters can be summarized to provide a clearer under-

standing of the chosen methodology. The first observations concern the feasibility of di↵erent

multimodal models given the constraints introduced by the available datasets and the operations

described in Sections 3 and 4.

Firstly, the nature of the labeling operations performed poses some dilemmas on the scope

of validity of the labels; considering the labeling attempt using user tags described in Section

4.1 but disregarding the reliability issues already mentioned, it is true that the labels extracted

describe the tracks in their entirety, meaning that emotions encompassed both by lyrics and by

audio are embedded in the datasets. This is deducible by the assumption that people tagging

a given song consider it as a whole rather than split into the two separate entities of audio

and lyrics; even though the weight given to each part is unknown, unpredictable, and strictly

92
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subjective1, the large number of samples makes it possible to estimate that the labels on average

are comprehensive of both elements.

The same conclusions cannot be inferred for the final labeling process defined in Section 4.2,

consisting of leveraging transfer learning from the Edmonds Dance lyrics dataset to the target

Music4All-Onion lyrics dataset. According to the authors, the Edmonds Dance dataset was

annotated through crowd-sourcing by readers who were exclusively presented with the lyrics of

the tracks [65]. The labels, hence, only refer to the lyrics of the songs, and so does the knowledge

extracted by the transfer learning model and applied to the target dataset. Consequently, only

the lyrics layer of the Music4All-Onion can be considered correctly labeled and suitable for a

classification task.

However, the emotional element in the audio component is as essential as the lyrics for

listeners and thus cannot be disregarded. Instead of creating a pipeline exclusively focused on

pure classification, the audio data are hence clustered using features relevant to the emotional

component of the analysis, following the publications mentioned in Section 2.1.4.

6.1 Unsupervised Audio Modality

6.1.1 Dimensionality Reduction

The first open issue that needs to be addressed is the high dimensionality of the audio sub-

datasets of the Music4All-Onion dataset. Two possible approaches can be outlined to mitigate

the dimensionality problem: the first possibility is reducing the total number of features and

1Di↵erent users could label the same song di↵erently (e.g. one that pays more attention to the lyrics
may notice nuances which are di↵erent from those detected by a user focusing on the audio track).
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datasets deemed essential for the model, whereas the second option consists of preserving all

the features and operating dimensionality reduction to compress the total information. This

thesis proposes a hybrid approach: after investigating the literature on the topic to highlight

only the strictly relevant information for the task, dimensionality reduction is applied to one

single final dataset obtained by concatenating the features resulting from the literature review.

The main reference for the selection of features that are specifically relevant to the music

emotion recognition task is [37]; this work provides an overview of emotionally relevant musi-

cal features leveraging the eight fundamental musical dimensions: melody, harmony, rhythm,

dynamics, tone color, expressivity, texture, and form. For each dimension, the authors list

some relevant quantitative estimators, which guide the selection of features from the corpus

of data of the Music4All-Onion dataset; the process and resulting features are presented in

Table VIII and Table IX. The final dataset, obtained by joining the selected features of the

essentia dataset with the emobase and BLF datasets, is composed of a total of 2.441 features

for 33.694 samples1.

Once the dataset is obtained, dimensionality reduction techniques alternative to the PCA

can be applied to it. One characteristic of the PCA that makes it unsuitable in some cases

is its linearity, which limits its e↵ectiveness on data with complex nonlinear relationships. To

improve the dimensionality reduction results obtained with the baseline method in Section 5.2

1The slight decrease in number of samples is caused by discrepancies across the datasets.
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it is thus necessary to explore nonlinear dimensionality reduction tools, such as those presented

in the following paragraphs: t-SNE, UMAP, or autoencoders.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) [80] is a nonlinear method that

operates dimensionality reduction by preserving the local structure of data, namely the local

relationships between points. It was introduced to aid the visualization of high-dimensional data

by mapping it onto a two or three-dimensional space. It works using a probabilistic approach

to model the pairwise similarities between points in the original high-dimensional space using a

Gaussian distribution, whereas the pairwise similarities between points in the low-dimensional

space are modeled using a Cauchy distribution. The final step consists of minimizing the

di↵erences between the two distributions. Despite its ability to capture nonlinearity in data,

one open issue is the inability to preserve the global structure of data, along with the local one.

The Uniform Manifold Approximation and Projection (UMAP) [81] technique improves

t-SNE by capturing both the local and the global structure of data; it was introduced not

with the aim of data visualization but as a dimensionality reduction method to be included

in machine learning pipelines. Therefore, great attention is being paid to the computational

complexity issue. UMAP leverages a graph built from high-dimensional data, where connections

between nodes (points) are weighted according to the likelihood of them being connected. The

connection between two points is modeled as follows: first, a radius is extended outwards from

each point; the selection of the radius length is determined according to each point’s distance

from its n nearest neighbors. If radii from two di↵erent points meet, then the likelihood of the

points being connected is computed based on the radius value: the more it grows, the less likely
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the connection is, leading to the creation of a fuzzy set of edges. Once the process is performed

on each point, each point is forced to be connected to at least its closest neighbor, ensuring the

preservation of the local structure. Finally, a low-dimensional graph is built to be as similar as

possible to the high-dimensional one, minimizing the cross-entropy loss between the two.

Because of its ability to preserve both the global and the local structure, and thanks to

its computational efficiency1, UMAP is preferred as a dimensionality reduction technique over

t-SNE in this work.

Another dimensionality reduction tool tested is autoencoders [82], a type of neural network

used to learn efficient data representations, often used for dimensionality reduction. An au-

toencoder is composed of two main components: an encoder and a decoder; the encoder is,

in turn, formed by a set of layers of decreasing sizes, able to gradually reduce the dimension

of the input data until it reaches the latent space2. The decoder then performs the inverse

process, leveraging a set of layers of increasing sizes that reconstruct the original data from the

latent space representation [83]. The network is trained to minimize the reconstruction error,

which quantifies the di↵erence between the original and reconstructed data, allowing to obtain

a reliable low-dimensional representation.

1The authors report lower runtime for UMAP thanks to its non-use of global normalization, possible
thanks to the use of fuzzy graphs instead of probability distributions.

2Layer in which data is mapped to the desired lower-dimensional representation, with dimensions
corresponding to the number of neurons in the latent space.
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For this task, the autoencoder architecture is formed by nine layers each for the encoder

and decoder; the outermost ones have as many neurons as the original dataset’s dimensions,

and the following layers going inwards have each half the neurons of the previous one; this

setting allows the latent space to only have two dimensions, in order to make the results

comparable with those obtained via UMAP dimensionality reduction. The network is trained

for 100 epochs1, and the metric used to evaluate its performance is the mean square error

(MSE). An important note concerns the complexity of the network: the proposed architecture

is intentionally shallow to provide a general evaluation of the methodology. As discussed further

in the following paragraphs, it does not achieve the same dimensionality reduction level as

UMAP, but, even when tested on a simpler task, the reconstruction errors are high, therefore

excluding autoencoders from further exploration in this context.

Di↵erent configurations are tested for both UMAP and the autoencoder; in the case of

UMAP, the parameters that need to be set and the tested values are:

• n neighbors: the number n of closest neighbors to consider for each point; [5, 20, 100].

• min dist: the minimum distance that points are allowed to have in the low-dimensional

representation; [0.0, 0.33, 0.67].

• metric: the metric used to compute distances between points; [euclidean, correlation].

• n components: the number of dimensions in the compressed representation; [2, 3].

1Occasionally, training has been carried out for 200 epochs with no significant improvement.
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It is worth reporting that di↵erent metrics were tested, such as the Camberra or the Ma-

halanobis distance, but consistently bad results were obtained during the first trial runs and

therefore they have been purposely excluded from further tests.

As for what concerns the autoencoder architecture, di↵erent configurations have been tested

as well, varying optimizer, learning rate, decay strategy, batch sizes, and scheduling strategy.

The final combination leading to the best performance combines a scheduler with Adam op-

timizer with a starting learning rate of 10−3 and a decay rate of 0.95 every 850 steps, and a

batch size of 32.

6.1.2 Clustering

Once the dimensionality issue in audio data is addressed, it is now possible to test some

clustering algorithms on the low-dimensional data obtained via UMAP.

Before proceeding, a visual test using the labels for the lyric component is conducted; the

objective is to identify potential patterns in the unlabeled audio data and assess if there is any

correlation between the emotions encompassed in the textual data and the audio features. In

practice, this consists of plotting all the samples associated with each emotion using their two-

dimensional representation. Figure 35 presents the results, showing no particular correlation

between the emotional labels associated with the lyrics and the audio features. Once this

scenario has been excluded, it is possible to proceed with the clustering experiments.

Each clustering experiment uses a di↵erent algorithm and is composed of two stages. The

first one is one in which di↵erent parameter configurations are tested to select the better-

performing one, which is then used in the second step to label the data and plot the obtained
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Figure 35: Distribution of samples per emotional label in the lyrics dataset.
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clusters. The clustering algorithms tested are chosen according to the type of clustering per-

formed1 to maximize the likelihood of identifying meaningful patterns in data.

The first algorithm used is K-Means, a proximity-based clustering technique described in

Section 5.2. The primary parameter that needs to be tuned is the number of clusters to

group the data into, which is chosen among [2, 4, 8]; while eight would ideally align with the

emotional classes used for lyrics classification, additional experiments with 2 and 4 clusters are

conducted to explore the possibility of a simpler audio model. The evaluation is performed

leveraging the silhouette score defined in Equation 5.4, Section 5.2, and two additional metrics:

the Calinski Harabasz score and the Davies Bouldin score. The Calinski Harabasz score [84]

is an internal metric having values ranging from 0 to infinity and computed as described in

Equation 6.1, leveraging the within-cluster dispersion (WCSS) defined in Equation 6.2 and the

between-cluster separation BCSS defined in Equation 6.3; n is the total number of points, k

is the total number of clusters, ni is the number of points in the cluster Ci having centroid

ci, and c is the centroid of the data distribution. Higher values of the Calinski Harabasz score

correspond to better clustering structures.

CH =
BCSS
1−k

WCSS
n−k

(6.1)

BCSS =
kX

i=1

ni||ci − c|| (6.2)

1Proximity-based, density-based, hierarchical, graph-based.
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WCSS =
kX

i=1

X

x2Ci

||x− ci|| (6.3)

The Davies-Bouldin score [85] is another internal clustering evaluation metric ranging from

0 to infinity and is computed as reported in Equation 6.4, leveraging Equation 6.5 and Ri,j

Equation 6.6 representing how good a clustering scheme is, where Mi,j is the separation between

cluster i and cluster j, and Si is the within-cluster scatter for a cluster i. Lower values of the

Davies Bouldin score indicate a better clustering structure.

DB =
1

N

NX

i=1

Di (6.4)

Di = maxj 6=iRi, j (6.5)

Ri,j =
Si + Sj

Mi,j
(6.6)

The results of the parameter tuning procedure on K-Means are presented in Figure 36;

it is crucial to report that the Calinski Harabasz score had values of the order of magnitude

of 104, and they have therefore been scaled such that the maximum value is equal to 1 for

visualization purposes; the scaling of the Calinski Harabasz score will be performed for every

clustering algorithm evaluation from now on. The silhouette score has comparable results for 2
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Figure 36: Evaluation metrics over di↵erent numbers of clusters for K-Means.

or 4 clusters, similarly to the Davies Bouldin score for 4 and 8 clusters; the number of clusters is

therefore set to 4, which is the setting corresponding to the maximum Calinski Harabasz score.

The second algorithm tested is DBSCAN, a density-based clustering algorithm that does

not require to specify the number of clusters a priori, but instead works by clustering together

points that are densely close to each other. Specifically, it requires setting a radius eps and a

minimum number of points to consider min points: if a certain point has more than min points

at a distance lower than eps, then it is labeled as a core point. If a point has instead less

than min points in the neighborhood created by eps but is in the neighborhood of a core point,

it is labeled as a border point; all other points are noise points. A remarkable advantage of
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DBSCAN, in addition to not having to specify the number of clusters, is its ability to handle

clusters of complex shapes.

The parameters that need to be tuned are eps, which is chosen from [0.3, 0.6, 0.9], and

min points, chosen from [5, 10, 20]. Figure 37 shows the metrics values for di↵erent configura-

tions. The graph shows default values for the metrics in the case of eps equal to 0.9 because it

leads to a single cluster being found. Since the results don’t change significantly when eps is

equal to 0.6, the final configuration arbitrarily chosen combines a eps of 0.6 and 20 min points.

HDBSCAN is a variation of DBSCAN that converts it into a hierarchical clustering algo-

rithm to improve its ability to identify density-based clusters having di↵erent densities. The

parameters that need to be tuned and the tested values are:

• min cluster size: minimum number of samples per cluster; [50, 100, 200].

• min samples: minimum number of samples to consider when computing each point’s

distance to its closest neighbors; [5, 10, 20].

• cluster selection epsilon: minimum distance threshold to observe when merging together

close clusters; [0, 0.3, 0.6, 0.9].

Additionally, the algorithm is forced to return at least two clusters to provide more meaningful

results and to use the excess of mass (eom) algorithm to identify the most persistent clusters.

The average metrics corresponding to di↵erent values of the parameters to tune are presented

in Figure 38; since the value of epsilon does not seem to yield significantly di↵erent results,

its final value chosen arbitrarily to be 0.9, with a minimum cluster size of 50, and a minimum

number of samples for closest neighbors computation of 5.
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Figure 37: Evaluation metrics over di↵erent configurations for DBSCAN.
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Figure 38: Average evaluation metrics over di↵erent parameter values for HDBSCAN.
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The final algorithm tested is spectral clustering, which is based on the computation of a

similarity matrix and the corresponding similarity graph to model the data distribution: the

nodes of the graph represent the data samples, and the edges are weighted according to the

similarity between the two points they connect, with similarities below a certain threshold

leading to the edge being discarded. The base idea behind spectral clustering is grouping

together points that belong to the same connected component of the similarity graph. This

is implemented by projecting the normalized Laplacian matrix obtained from the similarity

matrix onto an n-dimensional space, where n is the number of clusters to be obtained. The

parameters that need to be tuned and the tested values are:

• n: the number of clusters; [2, 4, 8].

• n neighbors: number of neighbors to consider for the affinity matrix; [5, 10, 20].

• assign labels: strategy for label assignment; [kmeans, cluster qr1].

The metrics values over the di↵erent configurations are shown in Figure 39; the final configu-

ration chosen is the one using cluster qr as a strategy to assign the labels with no additional

parameters specified other than the affinity metrics.

1Clusters are extracted directly from the eigenvectors of the Laplacian matrix, representing the con-
nected components in the graph; if no parameters are specified, it can automatically identify the number
of clusters based on the number of connected components.
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Figure 39: Evaluation metrics over di↵erent configurations for spectral clustering.
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6.2 Multimodal Classification

6.2.1 Supervised Audio Classification

For the final classification task, the labels obtained through clustering are initially leveraged

as an auxiliary tool for the supervised classification task in a similar manner to the approach

described in Section 2.1.4 for [30]. The motivation behind this choice stems from the use of the

UMAP dimensionality reduction technique: despite its strong performance in the tackled task,

its use poses a two-fold problem.

First, the way high-dimensional data is mapped into a two-dimensional space makes the

obtained representation meaningful only when considered in the context of the complete data

distribution; in other words, the mapping is not absolute, but it depends on the global and

local relationships between samples. Consequently, if the data distribution changed or if a

new distribution was introduced, the two-dimensional representation on which clustering is

performed would lose meaning.

Second, UMAP does not provide information on how the single features contribute to the

low-dimensional mapping of data, unlike, for instance, PCA, which allows for a direct interpreta-

tion of the results. This lack of interpretability is due to the non-linearity of the transformations

performed by the algorithm, which complicates the understanding of both the structure and

the clustering results.

These two challenges, while being the expression of distinct issues, are intrinsically linked

to the same underlying cause: the lack of a direct correlation between objective and invariant

audio descriptors and the clustering structure. A way to tackle both problems thus involves
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attempting to find correlations between the original, high-dimensional data and the cluster

labels. Depending on the specific aspect to address, di↵erent yet complementary approaches

can be employed.

Starting from the first challenge regarding the limited validity of the low-dimensional repre-

sentation, the objective is to find a connection between the obtained cluster labels and absolute,

distribution-invariant data features, such as the original ones composing the final emotional au-

dio dataset described in Section 6.1.1. One potential solution is to train a classifier that is able

to predict the cluster labels assigned to the two-dimensional mapping directly from its original

high-dimensional representation. However, this poses the same issues discussed in Section 3.2.2

concerning the curse of dimensionality and the challenges of working with such high-dimensional

data. Furthermore, training a classifier on high-dimensional data may not resolve the second is-

sue of explainability, especially when using deep networks as classifiers: while they may provide

a functional mapping from the original space to the clustering results, it does not necessarily

o↵er insight into why specific features contribute to a given classification.

To gain insight into the relationships between the clustering labels and the original features

before dimensionality reduction, approaches exploring the correlation between each feature and

the target label can be employed: mutual information computation and feature importance

extraction.

Mutual information quantifies the dependency between two variables and is able to capture

both linear and non-linear relationships. In this scenario, it can compute the impact of each

individual feature on the structure identified by the spectral clustering algorithm [86]. Features
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having a higher mutual information score are strongly associated with the clustering labels,

suggesting they might be meaningful descriptors of the data, whereas variables having null

mutual information are statistically independent.

Feature importance analysis follows a slightly di↵erent strategy: instead of investigating the

correlation between features and labels directly, it leverages a supervised learning approach.

Training a classifier to predict the labels from the high-dimensional data allows later extraction

of the feature importance scores to determine which attributes gave the greatest contribution

to the classification task. One of the models allowing this is the Extreme Gradient Booster

classifier (XGBoost) [87], which implements gradient-boosted decision trees. The base concept

behind it is similar to a random forest classifier, since they both employ multiple decision trees

following an ensemble learning approach, but while random forests leverage bagging to obtain

multiple decision trees working in parallel on bootstrap samples of data, XGBoost uses boosting.

Instead of training trees in parallel, they are trained sequentially so that each estimator can

focus on correcting the mistakes of the previous ones. Additionally, each tree is assigned a

weight based on its contribution to lowering the overall loss, di↵erent from random forests,

which average predictions from the parallel trees or employ voting schemas. XGBoost is a

robust classifier that is able to handle missing data, noise, and a large number of features.

By combining mutual information analysis with feature importance from XGBoost, a more

comprehensive understanding of the relationships between high-dimensional features and clus-

tering labels can be obtained. While mutual information provides insight from a statistical

perspective, feature importance ranks features using their contribution to the prediction per-
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formance, providing insight into the attributes that influence the classification outcome more

significantly.

It is worth noting the overlap between the strategies suggested for addressing the validity

and the explainability issues, as both rely on the need for a classification model to connect

the original features with the clustering label. This further proves the interdependence of the

issues to tackle and the complementarity of the solution. In fact, the approaches are combined

to maximize interpretability and explainability, allowing the extraction of more meaningful

insights from the clustering results.

To further increase the comprehension of the analysis, the emotional audio dataset is split

into two separate parts; this choice is motivated by the two di↵erent natures of the features,

which can either be descriptive of the song as a whole1, or of a section of the song2. These

two datasets will be referred to as the general dataset and the block-level dataset, respectively.

The general dataset is composed of 56 features, excluding the dimensionality issues repeatedly

discussed in this thesis, whereas the block-level dataset contains the remaining 2385 attributes.

First, an attempt at training classifiers to predict the clustering labels from the original

audio features is performed, starting from the general dataset. Since, as previously discussed,

it is crucial to choose a model able to capture non-linear relationships between features and

target, a multi-layer perceptron classifier (MLP) is leveraged for this task. This model is a

1e.g., average loudness, dissonance, entropy.

2e.g., block-level features, MFCCs, F0.
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simple type of artificial neural network composed of an input and an output layer separated by

a number of hidden layers of customizable dimensions, all fully connected to each other.

After experimenting with di↵erent numbers of hidden layers of various dimensions, the best

results are obtained with a simple architecture with one hidden layer composed of 30 neurons.

The train component of the 56-dimensional general dataset, containing 80% of the data, is fed

to the network to train it to predict the cluster labels; after 200 iterations, the model is used

to predict the labels on the remaining test samples.

Another tool than can be leveraged for the same purpose of increasing interpretability is the

lime Python library [88], developed with the purpose of explaining machine learning classifiers

and their predictions. It implements a local linear approximation of the model’s predictions to

explain its behavior: once an instance is provided for prediction, it is slightly modified to build

a linear model around it that is able to approximate the model’s decision boundaries locally.

While the global structure may be di↵erent, this tool provides local approximate explainability

of the classification process, mitigating the tackled issue.

The lime library is used with the multi-layer perceptron classifier built for the general dataset

to provide insights on the features that contribute most to the predicted outcome. Once the

classifier has been trained, it is fed to the explainer of the lime library with a sample from the

train set1, and a graphical explanation of the features that contribute the most to the prediction

is provided.

1The train set is used instead of the test set to ensure that the model outputs a correct prediction
and guarantee reliability of the results.



113

While, as already said, the global decision boundaries of the model remain hidden, this still

provides some notions for specific samples and can be leveraged as a qualitative indicator of

which features contribute the most to the output prediction.

Furthermore, by referencing the same literature source used in Section 6.1.1 to identify

the emotionally relevant features, it is possible to infer some insights on the overall emotional

content of songs based on the feature values. For instance, [37] suggests that a pronounced

rhythmic pattern generally corresponds to more intense emotions, such as joy or anger, and

that songs in major keys are typically associated with positive emotions; consequently, a song

characterized by a strong rhythmic pattern in a major key is likely to evoke a joyful sensation

in listeners. Unfortunately, the data and the tools available at this moment prevent such a

straightforward interpretation, but an e↵ort is made anyway to extract some general descriptors

for each class and o↵er preliminary insights on the potential emotional implications.

Because of the promising techniques highlighted for this purpose, an attempt is performed

on the block-level dataset as well. The expectations for training a multi-layer perceptron on such

high-dimensional data are considerably lower due to both the potential curse of dimensionality

and the risk of overfitting, and to the computational complexity. Furthermore, repeating the

same feature relevancy discovery process implemented for the general data is tricky because of

the nature of the dataset: since it is composed of features describing di↵erent sections of songs,

the importance of a feature may vary depending on the segment being analyzed, and di↵erent

sections may be considered important according to di↵erent evaluation strategies. In order to
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mitigate this, the more impacting features will be handled considering only what they measure

and not the index of the associated section.

6.2.2 Final Multimodal Classifier

The model developed to tackle the multimodal classification task draws inspiration from

those set as baselines in Section 5.1, leveraging the strong performances achieved on lyrics

data.

While the convolutional architecture outperformed the two leveraging recurrence on text

classification, it is expected that incorporating audio data into the model increases the task

complexity, requiring architectures able to handle temporal and spectral interdependencies.

The goal is to create an architecture combining convolutional layers and recurrent layers,

implemented as bidirectional LSTMs: the will to include both elements is justified by the at-

tempt to develop a model able to perform more informed predictions, leveraging local patterns

captured by the convolutional layers and broader contextual awareness provided by the bidirec-

tional LSTM. Despite the absence of a well-defined temporal dimension in the used datasets,

this architecture has the potential to yield good results on real-world audio data, where a more

structured temporal component should be present.

The proposed architecture is composed of three parallel convolutional layers that first re-

ceive the input vectors and process them with the same number of filters but di↵erent kernel

sizes; this aims at building a model able to capture patterns of varying dimensions and longer

dependencies.



115

Once the convolutional layers have processed the input, it is necessary to define the order

of the following layers: the bidirectional LSTM and the global pooling layer. The first option

consists of performing max pooling on the output of the convolutional layers, forcing the pooler

to maintain a unit-rank temporal dimension for compatibility with the LSTM. The second

option places the LSTM directly after the convolutional layer to better leverage the extracted

information, and max pooling is performed on the output of the bidirectional LSTM instead.

After the pooling and LSTM layers have processed the output of the convolutional layers

in the selected order, the three parallel blocks consisting of all three elements each are concate-

nated, passed through a dense layer with a ReLU activation function, a dropout layer to avoid

overfitting and, finally, through the output layer.

Multiple runs are conducted to evaluate the best model composition, testing the performance

of various configurations across di↵erent types of data; this approach provides valuable insights

into the interplay between di↵erent model compositions and the two di↵erent modalities.

During the evaluation of models, a key observation was the underperformance of the archi-

tectures tested on the audio datasets, with results shown in Table X. On the one hand, the

general features dataset yielded results comparable to those obtained with the multi-layer per-

ceptron architecture, averaging an F1 score of 57%, but at a higher computational cost due to

the complexity of the convolutional-recurrent architecture. On the other hand, the architecture

tested on the block-level dataset yielded results significantly worse than those obtained with

the MLP, averaging an F1 score of just 51%. These results prove once again how the type of

audio data available is not suitable to be processed by such a complex architecture, and that the
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patterns and context that can be extracted from them are not sufficient to capture meaningful

relationships that would justify the added complexity of convolutional and recurrent layers.

As a result, an alternative solution was developed: given that the optimal results in audio

classification are achieved by a multi-layer perceptron, a relatively simple yet e↵ective architec-

ture with low computational cost, the multimodal architecture is revised accordingly to align

with these findings.

To incorporate this result in the final architecture, a hybrid model consisting of two se-

quential components is designed. First, a dataset including both the lyrics and the emotional

features of each sample is built. Once the data is fed into the model, it is split into di↵erent

inputs: lyrics and audio features. The audio features are processed by a multi-layer perceptron

(MLP) to predict the cluster indexes for each sample, leveraging the high reliability of this

approach, as proved by the results achieved in Section 6.2.1, Figure 65 and Figure 52.

Once the cluster labels are obtained, they are incorporated into the lyrics dataset as an

additional auxiliary feature. The enriched dataset is now processed by the final model, where

the lyrics are first converted into embeddings and subsequently analyzed through the three

parallel convolutional-recurrent blocks. After the lyrics are processed, the outputs of these

blocks are concatenated with one another and with the cluster labels obtained with the MLP.

The concatenated representation is then passed through the final dense layers, which generate

the definitive multi-label emotional prediction for the samples.

It is important to notice the reduced role of audio features in the classification task, as

their inclusion did not enhance the performance of the complex architecture. Rather than
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serving as a crucial component of a multimodal system, the audio data in this setting serves an

auxiliary purpose, contributing to the classification of samples without fundamentally altering

the outcome in order to preserve the role of textual data, which is the most valuable element to

the performance in this setting. While this implementation does incorporate both modalities,

it is not a fully multimodal model in the strict sense, as the primary decision-making process

is mainly driven by textual data. Given the limitations of the available audio features, this is

a practical compromise that ensures the best possible results without introducing unnecessary

complexity or compromising the performance of the classifier.

This section detailed the setup of the di↵erent experiments conducted to achieve the final

multimodal architecture. Starting from the baselines defined in Section 5, new models and

approaches have been introduced, providing important insights into the role of the two di↵erent

modalities by initially analyzing them separately. The results of the described experiments are

presented and discussed in the following chapter, Section 7.
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TABLE VIII: LITERATURE-GUIDED FEATURE SELECTION PROCESS FROM
MUSIC4ALL-ONION CORPUS (1)

Musical

Dimension Estimators Matching Feature(s) Dataset

Melody f0 * emobase f0

Harmony hpcp hpcp.mean, hpcp.stdev essentia

tuning
frequency

tuning frequency essentia

key key krumhansl.strength,
key temperley.strength

essentia

modality tuning diatonic strength essentia

Rhythm beat
spectrum

bpm histogram first peak bpm,
bpm histogram first peak weight,
bpm histogram second peak bpm,
bpm histogram second peak weight

essentia

onset onset rate essentia

pulse beats count, bpm essentia

Dynamics RMS
energy

spectral rms.mean,
spectral rms.stdev

essentia

loudness average loudness,
loudness ebu128.loudness range,
loudness ebu128.short term.mean,
loudness ebu128.short term.stdev

essentia

Expressivity average
silence ratio

silence rate 20dB.mean,
silence rate 20dB.stdev,
silence rate 30dB.mean,
silence rate 30dB.stdev,
silence rate 60dB.mean,
silence rate 60dB.stdev

essentia

Texture musical
layers

NA NA

Form structural
information

NA NA

Bonus vocal
features

* emobase voice

⇤ Whole dataset.
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TABLE IX: LITERATURE-GUIDED FEATURE SELECTION PROCESS FROM
MUSIC4ALL-ONION CORPUS (2)

Musical

Dimension Estimators Matching Feature(s) Dataset

Tone Color zero-
crossing
rate

zerocrossingrate.mean,
zerocrossingrate.stdev

essentia

spectral
flatness,
crest factor

spectral strongpeak.mean,
spectral strongpeak.stdev,
spectral decrease.mean,
spectral decrease.stdev,
spectralcontrastvalleys.mean,
spectralcontrastvalleys.stdev

essentia

spectral
entropy

spectral entropy.mean,
spectral entropy.stdev

essentia

spectral
flux

spectral flux.mean,
spectral flux.stdev

essentia

spectral
rollo↵

spectral rollo↵.mean,
spectral rollo↵.stdev,
barkbands.mean

essentia

energy in
Mel, Bark,
ERB bands

barkbands.mean,
barkbands.stdev,
melbands128.mean,
melbands128.stdev,
erbbands.mean,
erbbands.stdev,
erbbands spread.mean,
erbbands spread.stdev,
barkbands spread.mean,
barkbands spread.stdev,
melbands spread.mean,
melbands spread.stdev

essentia

MFCC * emobase mfcc

lsp * emobase lsp

spectral
contrast

* blf spectralcontrast

sensory
dissonance

dissonance.mean,
dissonance.stdev

essentia

⇤ Whole dataset.
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TABLE X: PERFORMANCE OF THE CONVOLUTIONAL-RECURRENT ARCHITEC-
TURE ON PREDICTING CLUSTER INDEXES FOR THE AUDIO DATASETS

Metric Audio (general dataset) Audio (block dataset)

Precision 0.46 0.35

Recall 0.76 0.91

F1-score 0.57 0.51

Hamming loss 0.21 0.25



CHAPTER 7

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the results obtained with the models discussed in Section 6 and

provides an overview of the experimental setups implemented.

7.1 Unsupervised Audio Modality

7.1.1 Dimensionality Reduction

This section specifically presents the results obtained with the implementation of the tech-

niques described in Section 6.1.1.

The final UMAP configuration chosen for the dimensionality reduction task on audio data

is, as outlined in Section 6.1.1, the one using the Euclidean distance, 100 as the value of the

n neighbors parameters, 0.67 as the minimum distance, and two final components for the low-

dimensional representation. This configuration yields a reconstruction MSE of 0.67. Figure 40

shows the data projected onto the final two dimensions, whereas Figure 41 shows it onto three

dimensions, keeping all other parameters unchanged, to verify that no important information

is lost with the simpler representation.

Then, the autoencoder architecture is evaluated using the final configuration that combines

a scheduler with Adam optimizer having a starting learning rate of 10−3 and a decay rate of

0.95 every 850 steps and a batch size of 32.

121



122

Figure 40: Data after being reduced to two dimensions using UMAP.
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Figure 41: Data after being reduced to three dimensions using UMAP.

After training the model for 100 epochs with the goal of minimizing the reconstruction error,

the final mean value of the reconstruction MSE across all features is 2.8⇥105, remarkably larger

than the one obtained by UMAP: further investigation shows an imbalance in MSE for di↵erent

features, with some having really high reconstruction errors and the majority having errors

comparable the UMAP case. Figure 42 shows the reconstruction MSE per feature obtained

after removing the 204 features having a mean square error over 103 for visualization purposes.

Among the 2.237 features included in the graph, 1.834 have reconstruction errors lower than 1.

A surprising result emerges when plotting the low-dimensional representation obtained with

the autoencoder: as shown in Figure 43, all the points collapse to the origin of the axes (0, 0)

in the two-dimensional space. This clearly indicates that the selected configuration for the au-

toencoder fails to learn a meaningful representation of the data and highlights that quantitative
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Figure 42: Autoencoder reconstruction mean square error per feature (truncated).
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Figure 43: Two-dimensional representation of data obtained with the autoencoder.

metrics alone are insufficient for the evaluation of such techniques. Despite the poor quality

of the result, it provides some insights into the imbalance in reconstruction errors. Since the

dataset was normalized to have zero mean and unit variance, many features have values close

to zero, and thus the reconstruction error in terms of MSE is low for those features and higher

for those having values in wider ranges. To exclude that normalizing data is the cause for the

poor autoencoder performance, a trial on unnormalized data is performed; Figure 44 presents

the results of the test, showing that the autoencoder mapped the data in two linearly depen-

dent components. The outcome indicates that the network struggles to identify meaningful

underlying patterns in the data regardless of the normalization strategy.
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Figure 44: Two-dimensional representation of data obtained with the autoencoder on unnor-
malized data.

Even disregarding the poor reconstruction quality, UMAP is still preferred for multiple

reasons: first, it is remarkably faster than a network that needs to be trained. Second, one

drawback typical of neural networks, and thus autoencoders, is the unpredictability of their

behavior, as they are considered black boxes, and their operation is opaque [89]. While this

is not always a critical flaw, UMAP is favored for its clear mathematical framework, allowing

both interpretability and reproducibility without the need for parameter tuning and extensive

training.
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Figure 45: Final clustering structure obtained with K-Means clustering.

7.1.2 Clustering

This section specifically presents the results obtained with the implementation of the tech-

niques described in Section 6.1.2.

After the optimal configuration for each clustering technique has been selected in Section

6.1.2, it is possible to visually present the results in order to compare them.

Figure 45 presents the final clustering structure obtained with the K-Means algorithm using

4 clusters.
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Figure 46: Final clustering structure obtained with DBSCAN clustering.

The final configuration chosen for the DBSCAN clustering algorithm leads to the final

clustering structure shown in Figure 46, in which a main cluster contains the majority of

points, and a smaller cluster contains the rest.

As for what concerns the HDBSCAN clustering algorithm, the resulting structure is shown

in Figure 47, and presents a bigger cluster containing the majority of samples with some border

clusters having significantly fewer samples.

The results obtained with the spectral clustering algorithm setting exclusively cluster qr as

a label assignment strategy and the nearest neighbors as an affinity measure are presented in
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Figure 47: Final clustering structure obtained with HDBSCAN clustering.

Figure 48. The result is di↵erent from those of the previous clustering techniques as it presents

a structure of 8 clusters.

Since the parameter tuning results for this algorithm indicate the same perforance for the

chosen configuration and for the one using K-Means as a label assignment strategy, 8 clusters

and 10 or 20 neighbors, this configuration is tested as well and leads to the same results shown

in Figure 48.

A comparison of the metrics obtained by the best configuration of each tested algorithm

is shown in Figure 49, indicating that the clustering structures obtained with DBSCAN and

HDBSCAN are the worst performing ones, with the one resulting from K-Means and spectral
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Figure 48: Final clustering structure obtained with spectral clustering.

clustering yielding to better results. Despite the metrics indicating a slightly better perfor-

mance for K-Means clustering, the final structure chosen is the one obtained through spectral

clustering, both because of its meaningful 8-label structure ensuring compatibility with the

emotional model used to label the lyrics, and because of the mathematical foundation of spec-

tral clustering, which leverages properties of the affinity matrix and graph to automatically

identify the clusters embedded in the data.

The final distribution of the cluster labels is shown in Figure 50; by considering Figure 48,

it is possible to notice how cluster 0, having merely 28 samples, corresponds to the uppermost

cluster of separate points in the two-dimensional representation. Because of the remarkable
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Figure 49: Evaluation metrics over di↵erent clustering algorithms.

di↵erence in the cardinality of the cluster, all samples belonging to class 0 are discarded as

outliers for further experiments in order not to introduce possible biases in the models discussed

in the following sections. From now on, the cluster indexes will be numbered from 0 to 6 in

order to ensure compatibility with the models used in the following sections.

7.2 Multimodal Classification

7.2.1 Supervised Audio Classification

This section specifically presents the results obtained with the implementation of the tech-

niques described in Section 6.2.1.
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First, the results obtained by using the multi-layer perceptron architecture to predict the

cluster labels starting from the general dataset are presented and evaluated in terms of accu-

racy1, recall, precision, and F1 score. Figure 51 presents the recall, precision and F1 score

values for each of the seven classes, and Figure 52 presents their micro-averaged values along

with the overall accuracy. The results are quite promising: considering that a small proportion

(about 2%) of the original features was used to train the multi-layer perceptron classifier, its

performance over 60% indicates that the general features alone can reasonably approximate

the complete dataset, providing a good trade-o↵ between dimensionality reduction and model

performance. While the results are not perfect, they suggest that the selected general features

are able to capture the essential characteristics of the data, allowing the model to achieve

competitive results despite the drastic reduction in input dimensions.

Although the multi-layer perceptron classifier does not fully solve the explainability issue

associated with UMAP dimensionality reduction, it provides a solution to the need for objective

features that can capture the essence of data. This strategy is e↵ective in approximating the

mapping obtained through dimensionality reduction and clustering, o↵ering meaningful support

to the supervised task.

Despite the surprising results obtained with the first experiments, other attempts are made

for research purposes to further investigate the possibility of improving the audio classification

performance. One factor that needs to be taken into account before running the experiments

1In this case, accuracy is considered a reliable metric because of the single-label nature of the classi-
fication problem.
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is that an issue that remains open concerns the emotional valence of the clustering labels:

leveraging the data currently available, it is impossible to infer any quality of the sound that

may point a human listener toward certain emotional states.

To gain more insights into the relationship between the original audio data and the clustering

labels, the mutual information scores between each feature of the two datasets and the clustering

labels are computed. Figure 53 shows the values for the general dataset, whereas Figure 54

concerns the block-level dataset. It can be noticed that there is, in fact, a remarkable di↵erence

between the attributes, suggesting that certain features have a stronger correlation with the

labels than others. This indicates that those features may be more informative for the clustering

process and, thus, for the UMAP dimensionality reduction.

After training an XGBoost classifier for the classification task, the model is leveraged to

extract the feature importance scores of the two datasets. Figure 55 shows the values for the

general dataset, and Figure 56 for the block-level dataset. A significant di↵erence in scores

between features is noticeable in this case as well, supporting the findings from the mutual

information observation. It is worth mentioning that the discrepancy in the magnitude of

values between the datasets is due to the significantly di↵erent number of features: since the

sum of all feature importance scores for a dataset equals 1, a dataset with a higher number of

features influences the absolute values of the scores, di↵erently from the mutual information

case.

Additional insights can be obtained by analyzing the local explanations provided by the

lime library for each class, shown in Figure 57 to Figure 63.
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Because of the complexity of the clustering structure, the analysis is performed only consid-

ering the positive indicators for the class (represented by green bars); this aims at simplifying

the interpretation of results and ensuring that classes can be di↵erentiated more easily. Given

the number of classes, focusing exclusively on descriptors that contribute to a positive prediction

for each class allows to identify distinctive characteristics across clusters in a more straightfor-

ward way; furthermore, the negative indicators for each class may point to any of the remaining

six classes, making their interpretation less direct and less useful to the characterization of each

cluster’s emotional profile.

When observing the explanation for class 0 in Figure 57, the positive indicators point to

songs with high spectral roll-o↵, sensory dissonance, and spectral entropy alongside a low voice

probability. The spectral properties suggest the sharpness of sound, which could be perceived

by listeners as energetic and dynamic, with a component of tension or unease given by the high

sensory dissonance. The low voice probability suggests that the song is mainly instrumental.

Overall, this description defines a dynamic and possibly harsh sound, with a mostly instrumental

track, that could evoke energetic feelings in listeners.

As for class 1, depicted in Figure 58, it is characterized by low sensory dissonance, high

spectral strong-peak, and moderate values of Melbands spread, spectral decrease, and minimum

position of voice probability. The low sensory dissonance may point to songs evoking calmness

and serenity; the high spectral strong peak suggests the presence of one prominent frequency

or harmony, which can be associated with tonal clarity and stability, evoking positive emotions

such as peacefulness or happiness. Moderate values of spectral decrease suggest fullness and
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richness of the sound, making it more expressive, and the value of the Melbands spread implies

a balance between harmonic and noise components. Such characteristics potentially indicate

intense emotional content, with potential elements of tension or excitement. Overall, this

profile suggests a harmonically pleasant and balanced sound, potentially expressing relaxation,

warmth, or even gentle optimism.

Class 2, whose characterization is shown in Figure 59, presents more positive indicators

and, notably, a greater proportion of features considering their standard deviation. In general,

a higher standard deviation for a feature indicates greater variation in its values, contributing

to a sense of unpredictability of sound. The high zero-crossing rate and relative standard

deviation indicate the prevalence of high-frequency content and noise of sounds alternated with

contrasting calmer sections. The moderate values of spectral entropy indicate unpredictability

of the energy distribution and, therefore, of sounds, which appear more chaotic; the same

conclusion can be drawn from the values of both RMS features and of the spectral decrease

standard deviation. The dynamic nature of sound is confirmed by the high standard deviation

of both Barkbands and Melbands energy spread, as well as by the spectral flux values. On

the other hand, features like the low average Melbands spread point to less complex and more

controlled spectral content, while the average dissonance value introduces a slight sense of

tension. Finally, voice probability statistics indicate a stable yet non-dominant voice presence.

Overall, these descriptors depict a complex sound profile marked by high energy, instability,

and unpredictability, which may be associated with intense emotions, leaning towards agitation

or excitement.
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Class 3, shown in Figure 60, is characterized by a high onset rate and spectral flux, pointing

to a fast-paced and rhythmically dense sound, with frequent spectral changes evoking liveness.

The high standard deviation of ERB bands spread and sensory dissonance indicates fluctuations

and dynamicity in the timbral component of the sound, highlighting the dynamic nature of

the track. An interesting aspect is the low weight of the first peak in the bpm histogram,

representing that the song does not rely on a prominent rhythmic component but is instead

more fluid. Overall, the descriptors indicate a dynamic and fast-paced song with an intense

rhythm that does not overpower the sound, suggesting that this track may convey intense and

high-energy emotions, such as excitement, agitation, or restlessness, with a moderate vocal

component.

The descriptors of class 4 in Figure 61 clearly depict a di↵erent sound profile: the low values

of sensory dissonance, ERB bands spread, and spectral entropy indicate a calmer, harmonically

smooth and balanced sound, with mellow components and less complex sound patterns. Overall,

this description suggests a peaceful, stable, and possibly soothing song with a soft acoustic style.

Figure 62 shows the description of class 5, characterized by a high sensory dissonance,

spectral entropy, and zero-crossing rate, indicating an energetic and dynamic sound again; this

impression is reinforced by the moderate-to-high values of the spectral flux, suggesting a sense

of instability and motion. Voice probability statistics indicate an intermittent presence of vocal

elements, which are not significant in the overall song. Interestingly, the low loudness reported

indicates that the dynamicity and energy present in the song are not explicitly expressed through

sheer volume, but instead they may be conveyed through timbre, potentially leading to a
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more eerie type of sound. Leveraging this information, the overall emotional content might be

described as nervous, anxious, or even excited.

Finally, class 6 presents low spectral entropy, sensory dissonance, and spectral flux, as shown

in Figure 63, which describe a structured and predictable sound with a smooth harmonic

content and low dynamic variability. The importance of voice probability linear regression

coefficients suggests a more prominent presence of vocal components, which may contribute to

additional emotional expressivity. Overall, this class appears to be characterized by soft, calm,

and peaceful songs, evoking positive feelings with low intensity.

As already mentioned, these are high-level and general observations that would undoubtedly

need further validation through more rigorous experimentation, possibly leveraging a set of

ground truth emotional labels, complete audio tracks, or at least listener feedback. However, the

information obtained through this analysis o↵ers a preliminary understanding of the potential

emotional content within each cluster.

To further enhance the analysis, it is useful to extract the names of the features having

higher mutual information scores and feature importance for the general dataset, in order to

compare them with the ones identified by the lime library.

The features of the general dataset having mutual information scores higher than 0.25 are

listed below, with the feature in bold having the highest mutual information score:

• barkband spread.mean

• dissonance.mean

• dissonance.stdev
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• spectral entropy.mean

• spectral entropy.stdev

• spectral flux.mean

• voiceProb sma amean1

Whereas the features having importance higher than 0.03 according to the XGBoost classi-

fier are:

• lowlevel.dissonance.mean

• lowlevel.erbbands spread.stdev

• lowlevel.spectral entropy.mean

• lowlevel.spectral entropy.stdev

• lowlevel.spectral flux.mean

• voiceProb sma de linregerrQ

• voiceProb sma de stddev

It is immediately noticeable how some features are common to all three evaluation systems,

indicating a higher predictive ability for the cluster labels and, therefore, highlighting the

di↵erences between the seven resulting classes. It is the case of dissonance, spectral entropy

and flux, and voice probability statistics, as well as the energy in ERB bands. However, the

1sma: smoothed average; amean: arithmetic mean
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insights provided by the lime library suggest that other features have significant predictive

power, such as the zero-crossing rate, the average loudness, onset rate, spectral rms, and bpm

statistics, as well as energy measure on di↵erent bands. It is worth noting how all methods

pose significant importance to the dissonance feature, representing the perceived roughness of

the sound. According to the essentia documentation [36], it is computed starting from spectral

information such as the peak positions and values, therefore explaining the relevancy of other

spectral components.

Concerning the replication of the experiments just described on the block-level dataset, dif-

ferent configurations of a multi-layer perceptron have been successfully tested, and the results

proved a remarkably good performance: not only does the model converge after fewer itera-

tions (never more than 50 with the tested settings), but the metrics also indicate a significant

improvement with respect to the classification using only the general features, reaching metrics

values over 80%. The final configuration chosen uses again a single hidden layer, but the size is

now set to 100 neurons; Figure 64 shows the recall, precision, and F1 score for each prediction

class, and Figure 65 presents their average values and the overall accuracy.

For research purposes, another model is trained and tested on the block-level audio data,

leveraging the inter-dependent nature of the features1. The model in question is a convolutional

neural network similar to the one described in Section 5.2 that has already been tested on lyrics

1Since the dataset contains features computed on di↵erent sections of a song, it is implied that there
are temporal dependencies within these sections, which may capture patterns that are relevant to the
overall classification task.
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data. After numerous attempts to find the optimal configuration, the best results that were

obtained reached accuracy, F1 score, recall, and precision values of 62%, confirming that the

MLP classifier achieves the best results despite the simpler architecture. The discrepancy in

performance may be due to the non-fully connected nature of the CNN, which could struggle

to capture the complex relationships between features, as it relies more heavily on local spatial

dependencies, which are not significant enough in this case.

Figure 66 to Figure 72 present the local explanations for one sample for each class. Similarly

to the general dataset case, an attempt to describe each class is made in order to identify

potential contradictions or confirmations with respect to each class’s musical and emotional

information obtained earlier.

By analyzing the descriptors for each class, it can be noticed how the vast majority of them

are related to the bpm histogram of specific sections of the sound, suggesting that the model

classifies samples based on the location of certain rhythmic patterns. For instance, the class

0 descriptors shown in Figure 66 imply that the discriminative sections are characterized by a

reduced rhythmic structure, pointing to a song having a softer rhythm in those parts. This does

not contradict the hypothesis made for the same class based on the general dataset descriptors,

but rather provides additional insights into the sound. When considering all of the classes, it is

noticeable how they are di↵erentiated based on which specific sections have a slower rhythmic

structure. Consequently, this analysis is less informative and o↵ers limited relevance to the

purpose of this research and is, therefore, omitted.
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As for what concerns the mutual information scores for the block-level dataset of interest,

the features associated with values larger than 0.25 are reported below, where the feature in

bold is the one having the highest score, and the X represents di↵erent song section indexes:

• lowlevel.erbbands.mean X, lowlevel.melbands.mean X, lowlevel.barkbands.mean X

• BLF spec ctrsX (block-level features spectral contrast)

• lspFreq sma de[X] statistics

• mfcc sma de[X] statistics

• lowlevel spectral contrast valleys.mean X

Similarly, below are reported the features having importance greater than 0.003 according

to the XGBoost evaluation:

• lowlevel.erbbands.mean X

• lowlevel.spectral contrast valleys.mean X

• mfcc sma de[X] statistics

• lspFreq sma de[X] statistics

• BLF spec ctrsX (block-level features spectral contrast)

Di↵erently from the general dataset case, there is an overlap between features having high

mutual information scores and XGBoost importance, but the interpretation provided by the

lime library poses the focus on di↵erent attributes. Specifically, great importance is given to
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the bpm histogram, highlighting the impact of the rhythmic structure of data and to the base

frequency F0 and its envelope, correlated to the pitch of the songs.

Although great improvements have been made concerning the two issues mentioned at the

beginning of the section, giving a full interpretation of the cluster labels able to tie it to the

emotional aspects of songs is still an open challenge. The unavailability of the audio tracks

limits the possibility of performing a qualitative analysis of the tracks to assess how songs

belonging to di↵erent clusters sound to the human ear and if the division actually corresponds

to di↵erent emotional patterns. Further analysis, possibly incorporating human annotators

and audio segments of the songs, would be required to move forward and bridge this gap.

Unfortunately, the current state of the dataset does not allow for such an approach, and the

integration of this research with data or methodologies leverageable to infer emotional properties

remains open for future work. For the time being, the information obtained so far about feature

relevancy and label predictions for audio data is integrated with the lyrics layer of the Music4All-

Onion dataset and the relative labels obtained in Section 4.2.4 to achieve the final multimodal

classifier.

The attempt to find a correlation between the cluster labels and their potential emotional

content, although not completely successful in providing definitive answers, yielded valuable

insights into the clustering structure. This analysis, especially the one leveraging the informa-

tion from the lime library on the general dataset, partially supports the hypothesis that the

emotional features used to define the clusters are, in fact, meaningful and relevant indicators

to distinguish songs into di↵erent groups. A summary of such findings is provided in Table XI.
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TABLE XI: SUMMARY OF INFERRED AUDIO QUALITIES FOR EACH CLUSTER

ClusterID Sample Description

0 Sharp, energetic, dynamic sound; tension; possibly mainly instrumental.

1 Tonal clarity and stability; calm, rich, harmonically pleasant sound.

2 Complex, energetic, unpredictable, intense sound.

3 Dynamic, fast-paced, high-energy sound; fluid rhythm.

4 Calm, harmonically smooth, balanced sound; soothing, calm, stable structure.

5 Energetic, dynamic sound; potentially eerie; intermittent vocal component.

6 Structured, predictable, soft sound; smooth harmonic content;

important voice component.

7.2.2 Final Multimodal Classifier

The experiments to evaluate the di↵erent architectures described in Section 6.2.2 have been

carried out leveraging Bayesian Optimization to find the optimal parameter configuration for

each model. The parameters that have been tested are:

• number of filters of the convolutional layers, equal for all convolutional layers; [32, 64,

128, 256]

• kernel sizes, di↵erent for each convolutional layer; [5, 10, 15, 20, 25]

• number of units in each of the LSTMs, di↵erent for each LSTM; [50, 75, 100]

• optimizer; [adam, sgd, adagrad, rmsprop]

• optimizer’s learning rate; [1e-2, 1e-3, 1e-4]
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• number of neurons in the dense layer processing audio classes; [8, 16, 32]

Additionally, di↵erent thresholds are tested on the probability vectors output from the

model to set the value above which a label is marked as positive.

The chosen loss function for the multi-label classification task is binary cross-entropy, re-

flecting the considerations made in Section 5.1.

As shown by the test metrics in Figure 73, the performed experiments do not yield signifi-

cantly di↵erent results when the bidirectional LSTM and pooling layers are inverted, suggesting

that the order of these components may not critically impact model performance and highlight-

ing its robustness.

The final configuration chosen applies, therefore, the pooling operation before feeding the

information into the bidirectional LSTM: this choice is motivated by the lower computational

cost and faster training without negatively impacting the performance.

This result, however, reinforces the idea that the recurrent component does not have a

significant impact on the classification task, given the data available.

The optimal configuration, obtained with Bayesian Optimization, uses 128 filters across the

three convolutional layers, with kernel sizes equal to 5, 15, and 20, respectively. Each parallel

LSTM has 75 units, while the first dense layer processing the audio classes consists of 8 neurons.

The model is optimized using Adagrad with a learning rate equal to 1e-3.

To balance performance and computational efficiency while minimizing overfitting, the

model is trained for a total of 20 epochs. The optimal trade-o↵ between precision and re-
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call is obtained with a threshold of 0.25, meaning that a label is assigned to a sample if the

probability output by the model for that class is higher than 0.25.

Table XII shows the performance achieved by the di↵erent versions of the model on the dif-

ferent datasets; the audio and lyrics experiments were performed using the hybrid convolutional-

recurrent architecture solely on the lyrics dataset to predict the emotional labels or on the audio

datasets to predict the cluster indexes, respectively. The integrated experiments, instead, lever-

age the final definitive architecture, using the acoustic features as auxiliary information for the

classifier. The values reported in the table are average indicators of the performance achieved

by the models during di↵erent runs.

TABLE XII: PERFORMANCE OF THE CONVOLUTIONAL-RECURRENT ARCHITEC-
TURE ON LYRICS-ONLY DATA AND ON DATA INTEGRATING LYRICS AND ACOUS-
TIC CLUSTER LABELS

Metric Lyrics Multimodal architecture

Precision 0.64 0.42

Recall 0.56 0.74

F1-score 0.60 0.54

Hamming loss 0.21 0.37
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Despite the reported results showing that the multimodal architecture yields unsatisfactory

results for the emotional label classification task, it provides insights into the role of di↵erent

modalities in this context. Specifically, they confirm that textual data is the most valuable

source of information, and that the introduction of acoustic information in the form executed

in this work unfolds as detrimental to the performance of the models. These insights may guide

future research toward more e↵ective multimodal fusion techniques leveraging improved data

in terms of quality and relevance of audio features for emotional classification tasks.
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Figure 50: Distribution of samples over di↵erent clusters.



148

Figure 51: Performance of multi-layer perceptron classifier per cluster class on the general
dataset.

Figure 52: Average performance of multi-layer perceptron on the general dataset.
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Figure 53: Mutual information per feature of the general dataset.

Figure 54: Mutual information per feature of the block-level dataset.
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Figure 55: Feature importance per feature of the general dataset.

Figure 56: Feature importance per feature of the block-level dataset.
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Figure 57: Feature importance in predicting label 0 on the general dataset.

Figure 58: Feature importance in predicting label 1 on the general dataset.
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Figure 59: Feature importance in predicting label 2 on the general dataset.

Figure 60: Feature importance in predicting label 3 on the general dataset.
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Figure 61: Feature importance in predicting label 4 on the general dataset.

Figure 62: Feature importance in predicting label 5 on the general dataset.
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Figure 63: Feature importance in predicting label 6 on the general dataset.

Figure 64: Performance of multi-layer perceptron classifier per cluster class on the block-level
dataset.
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Figure 65: Average performance of multi-layer perceptron on the block-level dataset.

Figure 66: Feature importance in predicting label 0 on the block-level dataset.
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Figure 67: Feature importance in predicting label 1 on the block-level dataset.

Figure 68: Feature importance in predicting label 2 on the block-level dataset.
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Figure 69: Feature importance in predicting label 3 on the block-level dataset.

Figure 70: Feature importance in predicting label 4 on the block-level dataset.
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Figure 71: Feature importance in predicting label 5 on the block-level dataset.

Figure 72: Feature importance in predicting label 6 on the block-level dataset.
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Figure 73: Test metrics for two di↵erent designs (pooling layer followed by bi-LSTM layer /
bi-LSTM layer followed by pooling layer).



CHAPTER 8

CONCLUSIONS

This thesis explored the development of a multimodal classifier for emotion-based music

recommendation, leveraging textual and audio features to maximize the e↵ectiveness of emo-

tional classification. By integrating both modalities, this research aimed at capturing a more

comprehensive representation of the emotions encompassed by musical content, improving the

performance of unimodal models.

The challenges addressed covered the whole development process, ranging from the data

scarcity issues explored in Section 3, which posed the most limiting issues to this work, to the

need to balance computational complexity and efficiency throughout the experimental research

phases.

To address the data scarcity issue, considerable e↵ort was made to curate a suitable dataset

for the task at hand, leveraging the best resources available at the time these decisions were

taken. As this research progressed, other resources became available to the public, such as

new multimodal datasets o↵ering di↵erent data formats and quantities for this task, potentially

enhancing the model’s performance and simplifying the pipeline. However, by the time these

new resources were discovered, the research had already advanced too far to allow for a complete

redesign of the pipeline, forcing the study to proceed with the originally available dataset.

Future work can certainly benefit from these newly available datasets, either by incorporating

them into the model to improve generalization or by exploring di↵erent data formats for further

160
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experimentation. Additionally, a crucial improvement would be the integration of more reliable

emotional labels, which could contribute to enhancing the overall classification quality.

This work evaluated di↵erent models on diverse tasks: first, for the lyrics labeling task, dif-

ferent models have been tested on the transfer learning task, proving the superior performance

of the GPT-4o-mini large language model on other LLMs and on the BERT model. Subse-

quently, di↵erent dimensionality reduction techniques have been used in an attempt to reduce

the dimensionality of audio data in order to give way to multiple clustering algorithms to find

meaningful emotional patterns, attempting to create pseudo-labels for the audio component

of songs. These pseudo-labels have then been investigated to map the relationship between

them and the original audio features, gaining insights into the acoustic properties of samples

belonging to di↵erent classes. Finally, the definitive multimodal architecture has been devel-

oped, joining the good performance of the multi-layer perceptron model in predicting the audio

classes for each sample with the ability to process textual data of the convolutional-recurrent

model.

The multimodal architecture was originally designed to fully integrate both textual and au-

dio information, leveraging the strengths of both modalities to enhance classification. However,

in practice, the model is primarily functions as a text classification system, leveraging audio

information only as an auxiliary feature. This outcome highlights the challenges posed by the

scarcity of public data sources, which limited the ability to implement a custom architecture

for feature extraction. Additionally, the lack of reliable emotional labels for audio data further

complicated the task, hindering the development of a robust audio classification model. Future
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work could address these limitations and extend this approach by leveraging new audio sources

and high-quality labeled data, enabling a classifier in which both modalities contribute signifi-

cantly to the prediction. To this end, the creation of a customized loss function to balance the

importance given to the two modalities could be crucial to the classification task at hand and

to further applications for content recommendation based on each user’s preferences. Provided

that a new model in which the two modalities have comparable importance, a personalized

approach to classification allowing users to specify the importance of di↵erent modalities based

on their listening habits and preferences could be explored.

The evaluation of di↵erent architectures led to multiple key findings: first, exclusively convo-

lutional models outperformed both recurrent and hybrid models, including the final multimodal

architecture, on the lyrics classification tasks. This suggests that feature extraction played a

more significant role when compared to capturing contextual dependencies. A potential con-

tributing factor to this is the preprocessed status of the lyrics data: while techniques such as

stopword removal, stemming, and lemmatization are standard practice in multiple natural lan-

guage processing tasks, their application on song lyrics significantly altered them, often making

them unrecognizable even to human eyes. As a result, the reduced linguistic context might have

limited the good performance that recurrent architectures often achieve on sequential data. The

same considerations can be made for the audio modality: while the final architecture did not

perform well on the features already extracted, working with raw audio tracks could allow for

more e↵ective feature extraction, able to capture a wider temporal window and, therefore, more

spectral patterns. The use of preprocessed data, as continuously mentioned throughout this
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thesis, may have caused the loss of important information that could have improved the perfor-

mances of the tested models. Future work could explore how end-to-end convolutional-recurrent

architectures perform on raw acoustic data, where more temporal information can be extracted

and leveraged for classification. One promising approach could involve using the convolutional-

recurrent block to process spectrogram representations of songs, which were unavailable in the

datasets used in this work, to extract deeper insights into the emotional properties of music.

To conclude, this thesis has tackled various problems in the MER field, specifically achieving

the following results:

• creation of an emotion-based lyrics dataset starting from the Music4All-Onion lyrics layer

(Section 4);

• identification and implementation of various baselines on the datasets used in this work

(Section 5);

• evaluation of di↵erent dimensionality reduction techniques on the audio layers of the

Music4All-Onion dataset, achieving a simplified representation on which meaningful clus-

tering experiments can be conducted (Sections 6.1.1 and 7.1.1);

• identification of meaningful acoustic properties of di↵erent classes of samples based on

the values of the audio features (Sections 6.2.1 and 7.2.1);

• definition and implementation of a multimodal architecture able to infer emotional labels

for each sample starting from a subsection of the raw features of the Music4All-Onion

dataset (Sections 6.2.2 and 7.2.2).
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Although the quantitative results obtained in terms of performance did not surpass those of

the baseline models tested on the lyrics dataset, this study achieves promising results considering

the available resources and provides insights into the impact of multimodal information for

music classification. Furthermore, the analysis of the emotional content of songs contributes to

an underexplored field with vast potential applications: aside from the intended contributions

to emotion-based music recommendation, emotionally aware music classification has possible

implications in the creation of mood-based playlists or interactive music experiences, in the

creation of personalized soundtracks for storytelling, and in the mental healthcare field, proving

its relevance and the necessity for further research.
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APPENDIX

EMOTIONAL LABELS EXTRACTION FROM USERS TAGS

Before diving into the labels extraction, some exploration of the dataset’s properties can be

useful to better understand its composition and have a clearer idea of the specific challenges

that it presents. This is a crucial part of the process since it allows the specific design of a

suitable methodology.

After removing the songs that did not have any tag assigned to them, each song has, on

average, 41 tags, with the songs being tagged the least having 1 tag and the most tagged songs

having 100 tags. The frequency distribution of the number of tags per song shown in Figure 74

highlights a very large number of songs having 100 tags, from which it can be inferred that,

during the dataset creation, tags exceeding the 100th one were discarded.

The structure of the dataset is then changed so that each sample respects the following

structure:

<user_tag>: [(song1, weight1), ..., (songN, weightN)]

In this way, it is possible to track exactly how many unique tags are in the dataset and how

many songs each tag is assigned to on average. This process resulted in 257.510 distinct tags,

with an average of 14 songs per tag. The most used tag is associated with 40.031 songs and the

least popular ones with 1 song. The frequency distribution is in this case dramatically more

unbalanced, as shown in Figure 75 and more clearly in Figure 76, and it reflects an issue in the
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Figure 74: Number of users’ tags per song.

data collection stage: the users are able to assign any tag to a song, in opposition to only being

able to choose from a predetermined list, and this leads to tags with really high specificity and

therefore applicable to few songs, if not only one.

The insight gained through these operations highlights the importance of a mapping process

designed to drastically filter and reduce the number of tags in the dataset. Inspired by [90], the

tool employed for this purpose and to extract emotional information from the tags is WordNet-

A↵ect (WNA) [62], an extension of the WordNet lexical database [91]. WordNet was originally

introduced in 1995 as a tool to collect lexicographic information in a form that is usable by

computing systems and consists of organizing words in sets of synonyms, referred to as synsets,
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Figure 75: Number of songs per unique tag.

Figure 76: Number of songs per unique tag (zoomed in).
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linked by semantic relations. The -A↵ect extension was later introduced to encode emotional

and a↵ective knowledge in order to facilitate the operations in the field of a↵ective computing.

The development of WordNet-A↵ect started with the identification of a↵ective synsets in

the original WordNet database with the aid of A↵ect, a preliminary lexical database containing

terms referring to emotional states and the corresponding a↵ective information [92]. A↵ect is

a core element of WordNet-A↵ect since it is mapped onto the WordNet original database to

create its final, emotionally accurate version through the addition of information without the

need to change the original structure.

Emotional information is encoded leveraging a hierarchical tree structure, in which more

specific emotional states are iteratively organized under more general concepts. As an example,

one of the terminal leaf emotional states is guilt, which is hierarchically mapped through the

following a↵ective nodes:

negative-emotion -> sadness -> sorrow -> regret-sorrow -> compunction -> guilt

This allows working at di↵erent levels of specificity based on the task at hand and on the desired

granularity.

In practice, the WordNet-A↵ect package, freely available on GitHub1, identifies whether

words of a sentence belong to any of the synsets encoding a↵ective information and by returning

the corresponding emotion if found.

1https://github.com/clemtoy/WNA↵ect
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To apply WordNet-A↵ect to the emotional labeling task discussed in this section, all the

distinct users’ tags are fed to the library’s methods to infer the a↵ective meaning associated

with each of them. Each word that corresponds to an emotion, which will be referred to as

trigger word, is saved in a dedicated file for future investigation and the corresponding emotion

at the desired specificity level is memorized. After each tag is processed through WordNet-

A↵ect, another dictionary is used to store the newly found emotions and the associated songs

and weights. The tags that did not have any a↵ective meaning according to WNA are discarded.

The resulting emotions to which all the tags were mapped and their occurrence counts are

shown in Figure 77. The clear imbalance in the cardinality of songs tagged with love raised

doubts about the emotion tagging process, which needs to be inspected to verify if the imbalance

is due to a conceptual mistake or if it is naturally embedded into the dataset.

The starting point for the investigation of the strong imbalance for the love class is the

trigger words file. By examining which tags are selected as those having an emotional meaning,

it is possible to notice occurrences of words such as loves, loved, likes and liked: it is clear to

human eyes that these words may indicate that a user loves a certain song, not necessarily that

that song is about love. Similarly, quality indicators such as good and bad may say nothing

about the emotional reaction evoked in the users but could have been used simply to express

a personal preference. This problem, also reported by the authors of [90], can be solved by

ignoring all the ambiguous tags: after manually cleaning the trigger words file to delete the

words that may cause equivocation, a filtering step is added to the WNA tagging such that

emotions deriving from words which are not in the “allowed” trigger words set are discarded.
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Figure 77: Emotions identified by WordNet-A↵ect and corresponding frequency in the dataset.
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Figure 78: Emotions identified by WordNet-A↵ect and corresponding frequency in the dataset
after cleaning the trigger words.
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After the cleaning operations, a more balanced distribution of the tags can be observed in

Figure 78. Despite a persisting imbalance, the cardinality of the di↵erent emotions is now at

least comparable.

As mentioned at the beginning of this section, not every song is labeled with tags that have

emotional valence, and this process allowed the dataset to be cleaned from all those songs. The

resulting working dataset is now composed of 42.572 tracks.

It is now possible to dive deeper into the labels obtained through the WNA classification.

Figure 78 shows among the emotions on the x-axis gravity and thing, which do not correspond

to what is usually defined as an emotion. Therefore, these tags are discarded.

Despite the goal of working with an increased level of emotional granularity expressed in

Section 3.1.2, a set of 29 distinct emotions would represent a level of specificity that would be

hard to work with even as humans, and thus the next goal is to reduce it to a simpler set by

clustering together similar emotions.

After reviewing the literature on the matter, eight clusters are identified based on Plutchik’s

wheel of emotions [55]:

• Joy: fearlessness, joy, liking, self-pride, enthusiasm, levity

• Trust: a↵ection, love, gratitude, calmness, neutral-unconcern

• Fear: ambiguous-fear, negative-fear, anxiety

• Surprise: surprise, daze

• Sadness: sadness, compassion, humility, despair, pensiveness, apathy
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• Disgust: shame

• Anger: general-dislike

• Anticipation: positive-fear, ambiguous-expectation, ambiguous-agitation, positive-expectation,

positive-hope

It is important to note how this clustering operation has been performed on the basis

of the WNA library documentation in order to be as faithful as possible with the original

intended emotional interpretation given by the authors. Figure 79 shows the resulting dataset’s

distribution of songs over the final emotional clusters, whereas Figure 80 shows the distribution

of number of tags per song.

There still is one final cleaning operation to perform: the weight associated with each tag

is a form of measure for the reliability of the tag. Assuming that the tag used most times has a

score of 100, and considering the high tags imbalance shown in Figure 74, discarding all the tags

having a weight smaller than or equal to 5 seems to provide a good trade-o↵ between ensuring

data reliability and maintaining a large enough dataset. This operation leads to a final dataset

of 27.657 songs.

After these operations have been performed, it is possible to create two final versions of

the dataset: a multilabel version, which allows for each track to be tagged with more than

one emotion, and a monolabel version, in which only the emotion with the highest weight is

used to label a song. The distribution of emotional labels in the monolabel version is shown in

Figure 81, and the one for the multilabel version in Figure 82, with the final distribution of the

number of tags per each track being displayed in Figure 83.
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Figure 79: Intermediate distribution of emotional labels.

Figure 80: Intermediate distribution of emotion tags per song.
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Figure 81: Final distribution of emotional labels in monolabel dataset.

As stated in Section 4.1, a criticality embedded in the data labeling problem is the lack

of validation possibilities to check the quality of the extracted tags. One of the few possible

workaround to this is verifying which sets of emotions frequently appear together using the

Apriori algorithm1. After setting minimum support and confidence values to 0.05, which seems

a reasonably low threshold, the only couples of emotions that frequently appear together are

trust and sadness and sadness and anticipation. This result is somehow reassuring: if the

1Frequent item set mining algorithm.
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Figure 82: Final distribution of emotional labels in multilabel dataset.

Figure 83: Final distribution of emotion tags per song.
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frequent co-occurrence of opposite tags, such as joy and sadness, was identified, that would

have been an indicator of unreliability.
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