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Abstract

In recent years, the use of drones, or Unmanned Aerial Vehicles (UAVs), has
expanded across various industries, including agriculture, emergency response, and
logistics. However, these operations are generally restricted to within Visual Line
of Sight (VLoS), limiting their effectiveness.
VLoS refers to drone operations where the pilot can maintain an uninterrupted
visual observation of the UAV without any visual aids, such as binoculars or
cameras. This type of flight is currently the standard for drone operations in Italy,
primarily due to safety and regulatory concerns, ensuring the pilot can immediately
react to potential obstacles or hazards. Extended Visual Line of Sight (EVLoS) is
also permitted under specific conditions, allowing for slightly longer operational
ranges with additional safeguards, such as spotters.
Beyond Visual Line of Sight (BVLoS) operations instead open up new possibilities
but also introduce complex challenges, particularly in ensuring constant and reliable
communication. This thesis aims to develop a novel framework for efficient BVLoS
flight planning.

This research focuses on a case study in a realistic suburban scenario, also consid-
ering a realistic distribution of GSM towers. In such suburban environments, the
key challenges revolve around ensuring reliable communication in BVLoS scenarios,
adopting the Rural Macrocell (RMA) channel model.

Key performance indicators (KPIs) such as communication latency, signal strength,
and Quality of Service (QoS) are analyzed to ensure continuous and reliable connec-
tivity. By leveraging existing ground cellular infrastructure, we aim to ensure that
UAVs remain under constant control without the need for costly, dedicated networks.

One of the central challenges in suburban areas is the variability in communication
coverage and quality, especially when using the Rural Macrocell (RMA) channel
model. This thesis proposes solutions that propose a graph-based framework,
integrating an ad-hoc channel model to provide optimal flight routes. Experimental
results demonstrate how drones can navigate through suburban environments while
maintaining robust connections with cellular networks, enabling effective communi-
cation without the need for new infrastructure.

These methods have the potential to be applied in various real-world BVLoS
missions, from agricultural monitoring to infrastructure inspections, enhancing
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both the performance and safety of UAV flights. The results of this work lay the
groundwork for future advancements in BVLoS connectivity and their potential
deployment in larger-scale applications.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have experienced
significant growth in their application across various fields in recent years. According
to Forbes [2] in 2016, the global drone market was projected to reach a value of
$127 billion by 2025, driven primarily by their use in infrastructure, agriculture,
and transport sectors. In agriculture alone, precision farming applications using
drones have grown by over 80% between 2014 and 2020, reflecting their efficiency
in monitoring crops and optimizing resource use. Furthermore, the report [3]
highlighted that the construction industry could save up to $45 billion annually
by adopting drone technology for site inspections and surveys. These results
are graphically represented in Fig. 1.1. From goods delivery and infrastructure
monitoring to search-and-rescue operations, drones offer unmatched flexibility and
efficiency in many sectors.

Figure 1.1: Commercial potential of drones in industrial sectors, data taken from
[1]
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Chapter 1. Introduction

According to more recent researches done by [4], the global commercial drone
market size is estimated nowadays at approximately USD 60.37 billion and is
projected to reach around USD 1,445.80 billion by 2034, growing at a Compound
Annual Growth Rate (CAGR) of 37% during this period, as shows the graph in
figure 1.2. The construction industry will be the sector that will benefit the most
from drone technology, with potential annual savings of up to USD 45 billion
through improved site inspections and surveys.
In the United States, the drone market is also expanding rapidly as stated in
[4]. Sales of drones in the U.S. were estimated at USD 6.58 billion in 2024, with
projections to reach USD 31.34 billion by 2034, indicating a CAGR of 16.9%.

Their increasing presence in urban and suburban environments has also transformed
them into essential tools in advancing technological frontiers such as Urban Air Mo-
bility (UAM) and Advanced Air Mobility (AAM). These paradigms aim to enhance
transportation and logistics in areas underserved by traditional infrastructure,
paving the way for more sustainable and efficient solutions.

Figure 1.2: Commercial Drone market size from 2023, data taken from [4]

Despite their potential, UAVs face considerable operational limitations, particularly
concerning their flight range and communication methodologies. Compared to tra-
ditional ground-based vehicles, drones have significantly smaller payload capacities
and limited ranges, both of which are heavily influenced by battery life and payload
weight. Current commercial drones typically have a maximum range between 15
to 50 kilometers, depending on the model and operational conditions, with flight
times ranging from 20 to 50 minutes under ideal conditions, as investigated in
[5] and [6]. Payload capacity is another limiting factor, with most commercial
UAVs supporting loads of 1 to 5 kilograms, which decreases with extended range
requirements or adverse weather conditions such as headwinds.
Environmental factors further exacerbate these constraints, as increased wind
resistance can significantly affect energy consumption and reduce effective range,
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Chapter 1. Introduction

as highlighted in [5]. These constraints require careful mission planning and the
development of optimization strategies to ensure successful UAV operations within
these technical limitations.

Currently, UAVs are primarily restricted to operations within the Visual Line of
Sight (VLoS) of the pilot for many civilian uses, as stipulated by aviation regulations
in many countries, including Italy. However, advancements in drone technology
have introduced new operational paradigms, such as Extended Visual Line of Sight
(EVLoS) and Beyond Visual Line of Sight (BVLoS). As shown in the diagram
1.3, VLoS operations rely on the pilot’s direct visual contact only, suitable for
activities like hobby flights, surveying construction sites, and real estate mapping.
EVLoS, supported by a visual observer, expands the range to include more complex
operations such as asset inspection and emergency response. BVLoS represents
the most advanced mode, enabling many applications where the drone operates
completely out of the pilot’s sight, requiring at least a regulatory approval.

Figure 1.3: Differences between VLoS, EVLoS & BVLoS operations, reported in
[12]

The European Aviation Safety Agency (EASA) classifies UAV operations into three
categories, based on risk levels:

• Open Category: For low-risk operations, drones can be used without a
permit if they are flown within the visual line of sight (VLoS), remain below
120 meters in altitude, and have a maximum flying weight of 25 kg. Depending
on the weight of the drone, there are restrictions on how close to uninvolved
persons it can be flown. The pilot must register with the aviation authority.
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• Specific Category: or medium-risk operations, such as flights beyond
the visual line of sight (BVLoS), a permit from the aviation authority is
required. Theoretical and practical training is mandatory for drone pilots in
this category, as well as the registration.

• Certified Category: For high-risk operations, including passenger transport,
drones in this category have a size of at least 3 meters. The scope of the legal
provisions hardly differs from manned aviation.

In the open category, as depicted in Fig. 1.4, drones can be used without a permit
if they are flying in sight (clearly respecting the restrictions mentioned above).
These limitations ensure safety by maintaining direct visual contact between the
operator and the UAV but heavily constrain the scope of applications, especially
for long-range or beyond-obstacle missions.
To unlock the full potential of UAVs, it is essential to enable Beyond Visual Line
of Sight (BVLoS) operations. BVLoS flights allow UAVs to autonomously navigate
and execute missions over extended distances without the need for constant visual
oversight by a human operator. This capability expands the range of applications,
the main ones are highlighted in [8] include:

• Infrastructure Inspection: BVLoS drones can inspect power lines, pipelines,
and railways over long distances, enhancing efficiency and reducing the need
for manual inspections.

• Agricultural Monitoring: Farmers can monitor large fields for crop health,
irrigation issues, and pest infestations, enabling precise and timely interven-
tions.

• Environmental Monitoring: BVLoS drones are used to monitor environ-
mental changes, track wildlife, and conduct scientific research in remote areas,
vital for conservation efforts and understanding ecological dynamics.

• Disaster Response: In emergencies, BVLoS drones can assess damage,
locate survivors, and deliver supplies in areas inaccessible to ground teams.

Currently, these operations fall into the specific category, for which a permit from
the aviation authority is required. As a drone pilot in this category, theoretical
and practical training is mandatory.
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Chapter 1. Introduction

Figure 1.4: The airspace division for drones based on category, data taken from [9]

In the context of BVLoS, two critical challenges arise: ensuring safety and main-
taining reliable communication. Safety concerns involve minimizing risks to both
aerial and ground environments, including potential collisions or malfunctions, and
mitigating threats to populated areas. Communication challenges focus on provid-
ing a robust, low-latency, and high-quality link between the UAV and the pilot or
control station. In Italy and across Europe, where urban and suburban landscapes
vary significantly, achieving reliable BVLoS operations requires addressing these
dual challenges within the constraints of existing infrastructure.

A promising avenue to tackle these communication challenges lies in leveraging
existing cellular networks, such as 4G and 5G, as primary or supplementary
communication technologies for UAV operations. Cellular networks are already
extensively deployed and provide wide-area coverage, high bandwidth, and low
latency connections, making them a viable candidate for supporting BVLoS commu-
nication. Integrating UAVs with cellular networks could open up new possibilities
for autonomous navigation, real-time monitoring, and adaptive mission planning,
transforming industries such as delivery services, environmental monitoring, and
emergency response.

However, utilizing cellular networks for UAV communications is not without its
challenges. Ensuring adequate Quality of Service (QoS), addressing coverage
gaps, and managing interference are vital to guaranteeing reliable and safe UAV
operations, highlighted in [7]. In addition, Italian regulations currently impose strict
limitations on BVLoS flights, making the widespread adoption of such technologies
contingent on future policy changes and technological advancements.
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1.0.1 Emerging Applications & Enabling Technologies for
BVLoS Drones

The rapid development of drone technology has paved the way for a wide spectrum
of applications that extend far beyond traditional military and recreational uses.
The ability to operate drones Beyond Visual Line of Sight (BVLoS) has emerged
as a critical enabler for unlocking the full potential of Unmanned Aerial Systems
(UAS), driving significant advancements in various fields such as logistics, agricul-
ture, infrastructure inspection, and emergency response.

Recent advancements in Internet of Things (IoT) architectures, miniaturization of
onboard sensors, and communication technologies have revolutionized how data is
collected, processed, and utilized in real-time. For instance, IoT-enabled BVLoS
drones equipped with hyperspectral cameras, LiDAR, and Global Navigation
Satellite Systems (GNSS) provide unparalleled capabilities for applications like
precision agriculture, urban mapping, and disaster management. These drones can
autonomously navigate complex environments, collect high-resolution environmental
data, and perform tasks such as crop monitoring, damage assessment, or search-
and-rescue missions in remote areas, as stated in [10].
Key enabling technologies such as sensor integration, data fusion, and AI-based
algorithms have been instrumental in advancing BVLoS drone capabilities. Sensor
fusion techniques, for example, combine data from multiple sources, including
infrared cameras and LiDAR, to enhance navigation and obstacle detection even in
adverse conditions.

From a regulatory perspective, EASA initiatives, such as the Joint Authorities
for Rule-making on Unmanned Systems (JARUS), aim to establish a unified
framework for the safe and reliable operation of drones. These regulations emphasize
compliance with safety, privacy, communications, and environmental standards,
which are essential for the integration of BVLoS drones into everyday business
processes. Compliance with such frameworks is particularly critical for applications
in urban areas, where the stakes for safety and privacy are higher, but also in
rural areas, where communication is the main risk factor. This is mostly due to
limited cellular coverage and the lack of essential ground-based communication
infrastructure. Sparse or unreliable LTE and 5G networks can result in signal loss,
hindering the ability to maintain control and transmit data effectively. Additionally,
environmental factors such as dense forests, mountainous terrain, or large water
bodies further disrupt communication signals, increasing operational risks.
The diverse use cases of BVLoS drones highlight their transformative potential:

• Logistics and Delivery: UAVs can streamline last-mile delivery by reaching
remote areas and reducing congestion in urban settings. They offer solu-
tions for transporting critical medical supplies to inaccessible locations or
performing simultaneous multi-location deliveries.

• Agriculture: BVLoS drones facilitate precision farming in big fields, enabling
tasks like crop monitoring, disease detection, and resource optimization,
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ultimately increasing productivity and sustainability.

• Emergency Response and Surveillance: in disaster scenarios, advanced
sensor-equipped drones provide critical situational awareness, expedite victim
localization, and improve the effectiveness of rescue operations. Similarly,
their use in public surveillance ensures better safety and risk mitigation during
critical incidents.

While these applications demonstrate immense potential, they also present chal-
lenges, particularly in terms of performance, which includes ensuring reliable
communication, maintaining operational stability over long distances, and achiev-
ing accurate navigation in complex environments. Performance issues can arise
due to factors such as signal latency, position inaccuracies, or limited battery life,
which can constrain the range and duration of BVLoS flights.
Balancing these conflicting requirements is crucial for scaling BVLoS operations to
widespread adoption. For example, robust communication frameworks that leverage
4G/5G networks must guarantee low latency and high bandwidth, enabling drones
to perform computationally intensive tasks like real-time video analysis or route
optimization [11].

1.0.2 Thesis Objective & Structure of the document

This thesis builds on the concepts of the study described in the work [13]. It
comes from advances in UAV technology and the increasing demand for their
application Beyond Visual Line of Sight (BVLoS). The objective is to deepen
the understanding of potential telecommunication risks during flight, focusing on
path optimization to minimize the likelihood of issues during BVLoS operations,
especially in suburban and urban areas where connectivity may present challenges.
The Fig. 1.5 presents a simple schema of a possible scenario during a BVLoS flight,
where the pilot/user is present only at the take-off. The thesis’s goal is to find
the best possible routes a drone can take during its flights, maintaining the best
possible communication conditions even in rural areas, exploiting the GSM network.
This work contributes to addressing these challenges by proposing a graph-based
framework that encapsulates critical operational parameters, including connectivity
quality and environmental constraints.
The methodology is based on the concept of a layered graph structure [13], which
integrates diverse data inputs such as no-fly zones, population density, cellular infras-
tructure, and obstacle mapping. This allows to generate safe and dependable routes,
leveraging existing cellular networks for seamless communication. Through rigorous
experimental evaluations using real-world datasets, the framework demonstrates
the possibility and feasibility of achieving BVLoS operations without necessitating
new infrastructure investments.
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Figure 1.5: Possible BVLoS scenario, involving an operator with limited visibility,
image taken from[13].

In order to obtain the desired result, a simulator is exploited to create, analyze,
and perform some computations on the layered-graph. The main structure of this
document is briefly described as follows:

• Chapter 1: Introduction and presentation of the thesis objective.

• Chapter 2: Review of the state-of-the-art, and a comprehensive examination
of the potential challenges resulting in a real-case scenario.

• Chapter 3: Presentation of the thesis work, specifically the preliminary phases
involving the graph generation.

• Chapter 4: Illustrates the main methodology and the description of the
scenarios.

• Chapter 5: The results are commented and conclusions drawn, highlighting
possible future improvements.
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Chapter 2

State-of-the-Art

In this chapter, we discuss the main technologies and paradigms presented in the
literature. More specifically, we review the following aspects:

• Communication challenges in UAV Networks, discussing limitations for aerial
users.

• Explanation of the channel model used to compute the signal path loss in
the specific scenario.

• The usage of a graph-based solution to work in a 3D space, to generate the
drone’s path moving along 3 coordinates.

2.1 Communication Challenges in UAV Networks

Operating Unmanned Aerial Vehicles (UAVs) either being in Line of Sight or Beyond
Visual Line of Sight (BVLoS) introduces significant communication challenges that
must be addressed to ensure safe and efficient operations.
As highlighted in [14], UAVs traditionally rely on radio frequency bands such as
2.4 GHz and 5.8 GHz for pilot-to-drone communications. While effective for Visual
Line of Sight (VLoS) operations, these bands face significant limitations in (BVLoS)
scenarios, including restricted range and susceptibility to interference.

To overcome these challenges, leveraging existing cellular networks has emerged as
a promising alternative. Cellular infrastructure, particularly 4G LTE and 5G, offers
extensive coverage, higher bandwidth, and lower latency compared to traditional
RF communication methods. The integration of UAVs with these networks not
only expands their operational range but also enables advanced functionalities such
as real-time video streaming, adaptive mission planning, and reliable command-
and-control links. UAVs have been tested as aerial base stations to offload traffic
during network congestion, enhancing overall capacity and coverage [16], [17]. For
instance, in [15], UAVs demonstrated the ability to supplement terrestrial networks
by providing reliable communication links during emergencies or in remote areas.
This dual capability, both as users and enhancers of the cellular infrastructure,
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underscores their potential in modern communication ecosystems. The ability of
UAVs to act as communication relays between disconnected areas or as a means
to extend network coverage in rural and remote regions highlights their unique
advantages.

The reliance on cellular networks such as 4G and 5G for BVLoS operations is
particularly promising. Cellular networks offer wide-area coverage, low latency,
and high bandwidth, making them suitable for UAV applications where traditional
communication methods fall short. However, challenges such as seamless handover
during UAV mobility, interference management, and maintaining quality of service
(QoS) persist, as highlighted in [17], as well as security issues and privacy loss,
as stated in [18]. In this case study, we are considering real antennas distributed
throughout the territory, assessing their specifications and the different technologies
supported, evaluating how handovers may affect the paths and the goodness of the
results in the final sections.

Energy consumption remains a critical challenge for UAVs, as also stated in [20],
where the optimization of flight trajectories and communication protocols signifi-
cantly improves operational efficiency. These considerations are vital for ensuring
the feasibility of UAV-based applications in scenarios where continuous connec-
tivity is paramount. In this work are considered the power and energy specifics
of a commercial drone capable of performing BVLoS flights, but the main goal is
to always guarantee a certain level of QoS in the communication, therefore the
results will show how this priority will impact the UAV performances (section 4 & 5).

A possible solution to the energy consumption problems proposed in [19] involves
establishing ad hoc UAV-specific networks by deploying drone hubs or warehouses
close to demand points. These facilities serve as distribution centers for UAVs,
enabling them to recharge, reload payloads, or exchange data. This approach
has been explored extensively in logistics and disaster recovery, particularly for
applications like medical supply delivery in remote areas. For example, the use of
drone hubs allows UAVs to operate over shorter distances between the depot and
the delivery point, reducing energy consumption and extending mission feasibility.

While this strategy mitigates the limitations of UAV energy capacity and enhances
operational efficiency, it requires the creation of dedicated infrastructure. This
includes identifying optimal hub locations, allocating UAV fleets, and maintaining
facilities, which can be costly and logistically complex. Additionally, deploying
ad-hoc networks may not always be feasible in dense urban areas or in regions with
limited resources.
Given the challenges associated with deploying dedicated UAV networks, this
work focuses on leveraging the existing cellular infrastructure. Transitioning from
conventional pilot-drone communication to cellular networks introduces several
advantages. First, it reduces the dependency on direct visual contact or radio links,
thereby enabling more autonomous and scalable operations. Second, as mentioned
before, leveraging existing cellular infrastructure eliminates the need for extensive
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new investments, making it a cost-effective solution for expanding UAV capabilities
[17].

2.2 Channel model in RMA environment

The primary focus of this section is to address the complexities associated with main-
taining high-quality communication links between Ground Base Stations (GBSs)
and drones during BVLoS operations. These challenges are particularly worsened
in rural and suburban areas, categorized as Rural Macrocell (RMA) environments,
where the signal quality is often poor due to sparse population and irregular dis-
tribution of cellular infrastructure. On the other hand, Urban Macrocell (UMA)
environments provide a contrasting scenario, where signal quality is better due to
dense infrastructure, although with increased risks of signal obstruction from tall
buildings and urban clutter.

In RMA environments, maintaining reliable communication links is hindered by
large inter-site distances and weaker signal reception. Rural Macrocell (RMA)
environments are typically characterized by a low density of base stations, leading
to gaps in coverage and weaker signal reception. The antenna lobes in such
areas are designed to focus radiation on specific populated zones, often leaving
sparsely populated regions with suboptimal coverage. This design choice introduces
significant variability in communication reliability for UAVs operating in BVLoS
mode.
Rural Macro environments exhibit specific propagation characteristics, including
increased line-of-sight (LoS) probability over long distances and heightened influence
of free-space path loss due to the reduced presence of scatterers. Studies such as
[21] emphasize that the propagation models for RMA environments often adopt a
dual-slope path loss model, where the breakpoint distance d_BP determines the
transition between near-field and far-field propagation conditions. The LoS path
loss model in RMA scenarios used in [21] is expressed in formula 2.1:

PLLoS = 20 log10(d) + 20 log10(fc)− 27.55, for d ≤ dBP, (2.1)

where d is the distance between the transmitter and receiver in meters, fc is the
carrier frequency in GHz, and dBP represents the breakpoint distance, determined
by the heights of the transmitter and receiver.
For Non-Line of Sight (NLoS) conditions, additional losses due to diffraction and
reflection dominate, requiring the inclusion of shadow fading parameters, as also
highlighted in [22].

PLNLoS = PLLoS +∆NLoS, (2.2)

where ∆NLoS accounts for additional losses due to obstructions.
According to [23], RMA deployments typically involve macro base stations (with
heights around 35 meters or above) covering large inter-site distances (1732 to 5000
meters).
Studies such as [24] further refine this model by including a correction factor (CF)
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to account for environmental variations specific to RMA conditions. For instance:

PLRMA = PL3GPP + CFRMA(d2D), (2.3)

where d_2D represents the horizontal distance, and the CF varies across two
segments with a breakpoint at 4 km:

CFRMA(d2D) =

2.8359 log10

(
1000
d2D

)
+ 13.2785, 1 ≤ d2D ≤ 4 km,

3.9745 log10

(
1000
d2D

)
+ 13.9739, 4 < d2D ≤ 10 km.

Conversely, UMA environments, characterized by dense infrastructure and higher
population density, ensure better signal coverage but introduce challenges such
as multipath propagation and increased interference, as figure 2.1 shows. In such
scenarios, the LoS path loss model is again represented by [21]:

Figure 2.1: UMA air-to-ground propagation scenario, image taken from[22].

PLLoS = 28 + 22 log10(d) + 20 log10(fc), (2.4)

while the NLoS path loss incorporates additional reflection and diffraction losses:

PLNLoS = max(PLLoS, 13.54+39.08 log10(d)+20 log10(fc)− 0.6(hUT − 1.5)), (2.5)

where hUT is the height of the user terminal.
These models underscore the need to account for environmental and operational
variables specific to each scenario. These variables are closely tied to the communica-
tion technologies employed—whether 4G LTE or 5G NR. Since this project is based
on a real-case scenario, the technologies considered align with the infrastructure
available in the test area, which includes 4G and 5G deployments.
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In addition to evaluating signal quality, calculating the effective range of coverage of
base stations in a suburban environment becomes critical. The channel model plays
a pivotal role in obtaining accurate coverage estimates. In RMA environments, the
coverage range of a tower is largely determined by the path loss model and the
effective Signal-to-Noise Ratio (SNR) at the receiver. To compute the coverage
range, it is essential to evaluate the effective SNR. In practical scenarios, the effective
SNR depends on parameters such as the transmitter’s output power (P_tx ), the
antenna gains at both ends (G_tx and G_rx ), path loss (PL), and the noise floor
at the receiver (N ). In [25], where a coverage planning method performed in Nepal
(rural and suburban areas) is evaluated, the relationship between the SNR and the
powers is described as follows:

SNReff = Prx + N, (2.6)

where the received power P_Rx is given by:

Prx = Ptx + Gtx + Grx − PL), (2.7)

The path loss (PL) is calculated using propagation models tailored to the deploy-
ment area. For RMA environments, the ITU-R and 3GPP TR 38.901 standards
recommend models that include additional terms to account for environmental
factors like building density and terrain height variations. In [25], the maximum
path loss is calculated based on service throughput defined by the cell edge user.
The same work also outlines a more complex coverage computation model, inte-
grating link budget analyses. The link budget approach, which incorporates the
Cost231-Hata model to estimate coverages, provides a practical method to assess
base station placement and frequency allocation. This last model is beyond the
scope of this paper as it takes into account factors present in urban realities and
attenuation factors due to indoor tests.
In this work, the effective SNR for evaluating the coverage range and signal quality
is computed using principles derived from the Shannon-Hartley theorem. This
theorem provides a fundamental relationship between channel capacity, bandwidth,
and SNR, enabling the calculation of SNR thresholds required to achieve a certain
quality of communication. The approach is tailored to each type of antenna
according to the guidelines outlined in the 3GPP TR 38.901 specification [23].
The Shannon-Hartley theorem states that the maximum achievable data rate (C)
for a communication channel is given by:

C = B log2(1 + SNR), (2.8)

where:

• C: Channel capacity in bits per second (bps),

• B: Bandwidth of the channel in Hz,

• SNR: Signal-to-Noise Ratio (linear scale).

For this work, the objective is to identify the SNR threshold (SNRth) required to
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maintain moderate communication quality, defined as achieving a specific channel
capacity (Cmod) suitable for UAV operations. The evaluation of the effective SNR
will be addressed again later in Section 4.

These models highlight the critical need for scenario-specific adjustments in channel
modeling. This work integrates advanced propagation models for RMA scenarios
from the 3GPP TR 38.901 framework [23]. This comprehensive model accounts
for carrier frequency, antenna heights, and environment-specific factors such as
building density and heights that will be further analyzed in Section 4. Furthermore,
by optimizing flight paths and leveraging cellular infrastructure, the proposed
framework aims to mitigate coverage gaps and enhance communication reliability
in diverse operating conditions.

2.3 Graph-based layered solution

In the previous sections, an overview of the main challenges in a suburban envi-
ronment for BVLoS flights was provided, particularly focusing on maintaining a
reliable quality of service (QoS) in the communication channel. Beyond addressing
these issues, it is equally crucial to define the foundational framework that enables
efficient navigation and route planning for UAVs in 3D space.

Figure 2.2: Example of adjacent cells in a discretized space, image taken from [13].

This work employs a multi-layered graph model, inspired by the approach initially
presented in the paper [26]. The graph-based layered structure serves as the skeleton
for mapping and organizing the 3D space into manageable and navigable segments,
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where drones can travel safely and effectively. The space itself is then discretized
into cells of fixed dimensions with a parallelepiped shape, as shown in figure 3.1.
This model integrates spatial, environmental, and operational data, creating a
flexible and scalable framework for BVLoS operations.

2.3.1 Multi-Layered Graph Representation

The multi-layered graph maps the 3D operational space by discretizing it into
horizontal layers, each representing a specific altitude range. These layers are
designed in [26] to capture different operational parameters and environmental
constraints at different altitudes relevant to UAV navigation:

• Obstacle Layer: Represents physical obstacles such as buildings, trees, and
other no-fly zones. This layer ensures collision-free paths by incorporating
environmental data into the graph.

• Wireless Infrastructure Layer: Models the quality of communication with
ground base stations, integrating parameters such as signal strength, path
loss, and effective SNR.

• Risk Map Layer: Accounts for risks associated with UAV operations, such
as population density and sensitive areas. This layer, while critical in urban
scenarios, is excluded in this study due to the lower risk levels in rural and
suburban environments.

Each layer is populated with nodes representing the centroids of 3D geo-referenced
cells and edges connecting these nodes to indicate possible movement paths. The
edges are weighted according to key operational parameters in order to solve the
Maximum Dependability Path Problem (MDP2), as explained in more detail in [13].
These includes:

• Connectivity Quality: Derived from the channel model and effective SNR
evaluations at the given altitude and position.

• Risk Assessment: Incorporating factors such as population density and
potential obstacles, as detailed in [13].

• Energy Efficiency: Calculating the energy consumption to cross the edge,
which varies with altitude and distance.

The integration of these weights allows for the development of cost-efficient and
risk-averse routes while maintaining strong communication links throughout the
UAV’s flight. Each cell is evaluated for the attributes mentioned above (connectiv-
ity, risk, and energy cost) which are then used to populate the nodes and edges
of the graph. The resulting structure provides a comprehensive 3D map of the
operational space, enabling the UAV to navigate autonomously through the defined
corridors.

This layered structure introduces several advantages:
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• Scalability: The multi-layered representation simplifies the division of the 3D
space, making it easier to integrate additional data, such as new environmental
constraints or updated communication parameters.

• Dynamic Adaptation: By dynamically adjusting edge weights based on
real-time data, the graph allows for responsive route planning, accommodating
changes in connectivity, weather conditions, or obstacles.

• Risk Mitigation: The risk-aware routing capability reduces the likelihood
of UAV failures or accidents by prioritizing safer paths with lower risk indices.

A related approach, investigated in [27], explores a two-layer path planning model
for cooperative Ground Vehicle (GV) and UAV systems. In this model, a GV acts
as a mobile depot, facilitating UAV operations by transporting the drone between
discrete target areas and providing recharging or battery replacement.
While this approach enhances UAV endurance and operational efficiency, it intro-
duces significant constraints, such as requiring an additional vehicle and optimizing
the cooperative paths of both the UAV and GV simultaneously. This dependency
limits its applicability in scenarios where deploying an auxiliary ground vehicle is
infeasible or inefficient.

Similarly, [28] presents a comprehensive survey of UAV path planning techniques
in 3D environments, emphasizing factors such as collision avoidance, energy effi-
ciency, and cost optimization. These studies highlight the importance of finding
optimal paths to minimize energy consumption and operational costs. However,
they primarily focus on navigation and obstacle avoidance without addressing the
optimization of communication quality.

In contrast, the current work integrates communication parameters directly into
the graph framework, optimizing both the path planning and the quality of the
communication channel. This ensures that UAVs maintain robust links with ground
base stations throughout their routes, a feature not explored in the studies cited
above.

By discretizing the 3D space and generating navigable corridors, this work estab-
lishes a comprehensive map for UAV operations. This graph-based representation
provides a scalable and adaptive solution for BVLoS operations, ensuring that
the UAV can navigate safely and maintain optimal communication with ground
infrastructure.
This research primarily focuses on the Obstacle and Wireless Infrastructure layers
of the graph. The Obstacle layer defines collision-free paths, as further detailed in
Section 3, while the Wireless Infrastructure layer ensures optimal communication, as
described in Section 4. The Risk Map layer is excluded, as the rural and suburban
nature of the selected environment inherently mitigates the risks associated with
human impact.
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Preliminary Steps

The case study presented in this work focuses on the suburban city of Mappano,
located in the metropolitan area of Turin, Italy. This area is chosen for its diverse
topographical features and multiple BSs, which align with the objectives of this
research. In order to make the simulation as loyal as possible to real world cases,
the test area encompasses a total of 247 ground base stations (GBSs) operated by
various telecommunications providers, including WindTre, Vodafone, TIM, Iliad,
and Zefiro. They are distributed over 8 different positions on the map, as shows
the in figure 3.1. This configuration is maintained over all the scenarios.
Additionally, the distribution of antenna heights for both 4G and 5G base stations is
illustrated in Figure 3.2. This analysis provides insight into the vertical positioning
of antennas, which plays a crucial role in determining coverage, signal propagation,
and the effectiveness of UAV communication in BVLoS operations. In the figure,
the left histogram represents the height distribution of 4G antennas, while the
right histogram corresponds to 5G antennas. The x-axis in both plots denotes the
antenna height in meters, while the y-axis represents the count of base stations at
each height level. The blue bars illustrate the frequency of 4G base station heights,
whereas the red bars represent the distribution of 5G base station heights. The
distribution highlights that 4G base stations are more prevalent and exhibit a wider
range of heights compared to 5G base stations, which are fewer and appear to be
installed at lower altitudes on average.
This difference in height distribution impacts signal propagation characteristics, as
higher base stations tend to have wider coverage but may experience increased path
loss. In contrast, lower 5G antennas might be optimized for urban environments
with smaller cell sizes and higher frequencies, requiring a denser deployment for
effective coverage.

These base stations support a wide range of technologies, including 4G and 5G,
across multiple frequency bands (700 MHz, 800 MHz, 1800 MHz, 2100 MHz, and
2600 MHz). The data for these base stations, such as their locations, supported
technologies, and operational parameters, are retrieved from LTE Italy [30] website.
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Figure 3.1: Base station position on the map.

LTE Italy Network aims to provide information about mobile network coverage in
Italy, specifically focusing on 4G LTE, being a crowdsourced database of network
coverage information. A sample of the data includes the following parameters:

• ID: Unique identifier for the base station.

• Supported Technologies: E.g., 5G, 4G.

• ARFCN: Absolute Radio Frequency Channel Number.

• Geographical Coordinates: Latitude and longitude of the base station.

• Cell Name: Identifier for the cell tower (e.g., “B1 S1 DSS Mappano Via Cà
Nuova”).

• Layer and Height: Corresponding operational layer (Italy telephone opera-
tor) and the height of the base station antenna.
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Figure 3.2: BSs heights distribution

These realistic parameters serve as the foundation for modeling the wireless com-
munication layer and are integral to the simulations conducted in this study.

Further in this chapter, every aspect of the preliminary analysis will be taken into
account and described, starting from the description of the initial input files and
following up with the generation of the main data input for the simulator.

3.0.1 Digital Elevation Model (DEM)

A key component of this research involves the utilization of a Digital Elevation
Model (DEM) to characterize the test area. The DEM provides detailed altitude
information for each geographical point in the area, enabling the identification of
potential obstacles for UAV operations.
The initial DEM dataset is provided by the Department of Civil Engineering
(DISAT) at Politecnico di Torino. However, since certain base stations are located
outside the bounds of this dataset, it is supplemented with regional DEM data
obtained from the Geoportal of Piemonte Region, taken from the source [31].

For consistency, the altitude data within the DEM are adjusted to set the minimum
altitude found in the dataset as the reference ground level (0 meters). This
adjustment simplifies the processing and ensures uniformity across the simulations.
For the default configuration, the minimum altitude is set to 220.18m above mean
sea level. For smaller test areas, such as those used in specific simulations, the
minimum altitude is recalculated, with the value set to 223.3m.
It is important to note that areas below the defined ground level, such as rivers or
lakes, are also considered at 0 meters, as UAVs are not expected to operate from
these regions.

The DEM plays a pivotal role in generating the foundational elements of the
simulator: the 3D matrix and the basic graph. By discretizing the geographical
area into grid cells, the DEM provides altitude data at each cell, indicating the
presence or absence of obstacles. This approach ensures that the 3D representation
of the test area accurately reflects the real-world topography and is optimized for
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UAV navigation and communication.
The methodology for processing the DEM is as follows:

1. Discretization: The DEM is divided into a grid, with each cell representing
a 10m x 10m area horizontally and 30m vertically in the default scenario.

2. Obstacle Identification: Cells with altitudes below the defined DEM level
are marked as containing obstacles.

3. Integration: The DEM data are integrated with shapefiles, which define the
boundaries of the test area, ensuring that only relevant regions are considered.

This processed DEM serves as the foundation for creating both the 3D matrix,
which stores obstacle information, and the basic graph, which defines initial node
connectivity. These elements are further detailed in the following sections.

3.1 Generation of the 3D Matrix

The 3D matrix serves as a fundamental component of the simulator, representing
the discretized 3D space of the test area and capturing critical information regarding
obstacles. Its primary purpose is to facilitate UAV navigation and communication
analysis by providing a structured and realistic representation of the environment.
The structure and generation of the 3D matrix are inspired by the methodologies
outlined in [13], ensuring that the model adheres to recognized standards for
simulating UAV communication environments.

3.1.1 Structure and Purpose of the 3D Matrix

The 3D matrix discretizes the test area into small cubic cells, each representing
a 10m × 10m × 30m space in the default configuration. Every cell contains in-
formation about its geographical location, altitude, and whether it contains an
obstacle or not. This structure enables a layered representation of the environment,
with each layer corresponding to a specific altitude. By dividing the area into
manageable units, the matrix provides a scalable and efficient way to model the
3D operational space for UAVs.

The 3D matrix is used for the following purposes:

• Identifying obstacle-free cells that are safe for UAV navigation.

• Providing altitude-specific information to facilitate the generation of the basic
graph.

• Serving as a reference for determining communication parameters such as
line-of-sight (LoS) and signal quality between UAVs and ground base stations.

• Serving as a simpler structure than the graph itself to perform obstacle-
detecting computations.
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3.1.2 Creation of the 3D Matrix

The generation of the 3D matrix begins with the processed Digital Elevation Model
(DEM) and shape files described in the previous section. A Python script together
with QGIS tools are used to automate this process. The steps for generating the
matrix are as follows:

1. Grid Initialization: The geographical area is divided into a 3D grid of cells,
having each cell assigned a unique identifier based on its coordinates.

2. Altitude Assignment: For each cell, the DEM is queried to determine the
presence of possible obstacles. This altitude is compared with the altitude
level indicated by the DEM at that specific geographical location.

3. Obstacle Marking: Cells with altitudes below the level specified by the
DEM are marked as containing obstacles. In contrast, cells at or above the
DEM level are marked as obstacle-free.

4. Boundary Validation: The shape files are used to exclude cells outside
the defined test area, ensuring that only relevant regions are included in the
matrix.

The resulting matrix is a three-dimensional array where each element corresponds
to a cell. For the default configuration, there are 3 z-layers of discretization, while
for the smaller but more discretized scenario, we can find 9 altitude layers. The
value of each element indicates whether the cell contains an obstacle (1) or is
obstacle-free (0), schematically represented in figure 3.3.

Figure 3.3: 3D Matrix representation.
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The 3D matrix forms the foundation for creating the basic graph, which represents
the connectivity between cells in the 3D space. It is also used to evaluate line-of-
sight conditions and calculate communication parameters, as described in [13]. By
providing a detailed representation of the environment, the matrix ensures that
the simulator accurately models real-world conditions and supports robust UAV
operations.

3.2 Creation of the Graph

Following the generation of the 3D matrix, the next steps involve the construction
of the basic graph, which serves as the skeletal structure of the simulator. This
graph is derived directly from the 3D matrix and provides an initial representation
of the test area’s connectivity. Each node in the graph corresponds to a cell in the
3D matrix, and edges represent potential paths between adjacent cells. In figures
3.4 and 3.5, the blue points indicate the obstacle-free nodes, the red ones those
containing possible obstacles, while, where allowed, the orange lines represent the
edges among cells.

3.2.1 Purpose and Role of the Basic Graph

The basic graph is a foundational component of this work, representing the initial
3D connectivity of the test area based on the previously generated 3D matrix. Each
node in the graph corresponds to a cell in the 3D matrix, and edges denote possible
paths the UAV can traverse. The graph structure is crucial for simulating UAV
navigation, ensuring the drone can safely take off, avoid obstacles, and land in the
designated area.
The default graph initially includes three altitude layers, as shown the figure 3.4,
and only a subset of edges with no weights; these are added in subsequent steps as
part of the simulator’s refinement process.

The basic graph is used to:

• Model the 3D connectivity of the test area, enabling UAVs to navigate through
obstacle-free corridors (the orange lines in figures 3.4 and 3.5).

• Serve as the input for adding weights based on communication quality and
shortest distance parameters, that will be seen in later chapters.

• Provide an efficient representation of the test area for pathfinding and opti-
mization algorithms.
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Figure 3.4: 3 layered graph - Default configuration on total area

(a) 4 layered graph - total area (b) 9 layered graph - smaller urban area

Figure 3.5: 3D layered Graphs

3.2.2 Graph Construction Process

A Python script automates the creation of the graph by processing the 3D matrix.
The main steps are depicted in the flow chart 3.6 and explained in detail as follows:
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Figure 3.6: Flowchart main graph creation steps

1. Node Initialization: Each cell in the 3D matrix is mapped to a unique
node in the graph. The node’s attributes in the preliminary step include
only its coordinates (x, y, z) and obstacle status (0 for obstacle-free, 1 for
obstacle).

2. Edge Generation: Edges are created between adjacent nodes that respect
specific criteria. Adjacency is determined in six directions: up, down, left,
right, forward, and backward, corresponding to the cell’s neighbors in the 3D
matrix.

3. Boundary Handling: Cells at the edges of the test area are connected only
to neighbors within the matrix bounds, ensuring the graph does not reference
non-existent nodes.
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4. Obstacle Exclusion: Nodes marked as obstacles in the 3D matrix are
excluded from edge creation except in certain circumstances seen in the next
chapter, ensuring that UAVs avoid these regions during navigation.

The resulting graph G = (V,E) is represented as a set of nodes and edges, where:

• Nodes (V ): As mentioned before, each cell in the 3D matrix is mapped to
a unique node, identified by its coordinates (x, y, z). The nodes inherit the
attributes of the corresponding matrix cells. Each node can have up to 18
neighbors, 6 that share a face (face-adjacent), and 12 neighbors that share
only a side (edge-adjacent).

The decision to allow connectivity up to 18 neighbors ensures flexibility in
UAV navigation, particularly in 3D spaces where avoiding obstacles may
require considering multiple movement directions.

• Edges (E): Edges represent the connectivity between neighboring nodes and
are mono directional, capturing the direction of potential UAV movement by
following the criterias specified below.

Edges are created based on the attributes of the source and target nodes, following
specific criteria designed to reflect realistic UAV behavior:

• Obstacle-free cells (obstacle = 0):

– If the neighbor is also obstacle-free (obstacle = 0) and covered by at
least a BS (no_cover = 0), a normal edge is created with a positive
weight.

– If the neighbor is obstacle-free but uncovered (no_cover = 1), an edge is
created, but its weight is set to infinite, reflecting limited communication
reliability.

– If the neighbor contains an obstacle (obstacle = 1), no edge is created,
as UAVs are designed to avoid entering cells with obstacles, unless this
node is the destination point. In this case is supposed to have the
support of a user/pilot.

• Cells with obstacles (obstacle = 1):

– Outgoing edges are allowed only to obstacle-free neighbors:

∗ If the neighbor is obstacle-free and covered (no_cover = 0), a
normal edge is created. This might be the case of a starting cell
with an obstacle towards the destination.

∗ If the neighbor is obstacle-free but uncovered (no_cover = 1), an
edge is created with infinite weight.

– No incoming edges are allowed to nodes with obstacles, as UAVs cannot
safely land or navigate into such cells.

This set of criteria ensures that UAVs prioritize paths through safe, obstacle-free
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areas while accounting for communication constraints. The exclusion of incoming
edges into obstacle-containing cells reflects the UAV’s operational constraints, where
obstacles may impede both navigation and safe landing.

Mathematically, the graph G = (V,E) is defined as:

V = {vi | i ∈ cells in the 3D matrix}, (3.1)

where vi represents a node corresponding to a cell, and:

E = {(vi, vj) | vi, vj ∈ V, and vi and vj are adjacent and obstacle-free}. (3.2)

By leveraging the 3D matrix and DEM data, the basic graph ensures an accurate
and realistic representation of the test area’s spatial and connectivity characteristics,
forming the backbone of the simulation framework.

3.2.3 Different Graph Configurations and Scenarios

Three different graph configurations are generated to analyze UAV path planning
under varying discretization levels and operational constraints. Each graph in-
cludes the municipal administrative boundaries of Mappano along with portions of
adjacent municipalities, except for the smallest graph, which focuses on the most
densely populated area.

The first and most detailed graph represents the entire test area with three
altitude layers set at 30, 60, and 90 meters above the ground. The fixed cell size
is 10 × 10 × 30 meters, ensuring fine-grained discretization of the airspace. The
total area covered by this graph is 45.88 km², with:

• Number of nodes: 1,374,707

• Number of edges: 16,667,454

The second graph extends the default configuration by introducing a new altitude
layer at 10 meters, resulting in four layers: 10, 30, 60, and 90 meters. This con-
figuration allows for an additional level of analysis at near-ground UAV operations.
The cell size at the lowest layer is 10 × 10 × 10, while the higher layers retain
10× 10× 30. The total area remains 45.88 km², with:

• Number of nodes: 1,832,936

• Number of edges: 18,521,802

The third and smallest graph covers a highly urbanized subregion of 4.86 km²,
offering the highest resolution. It features nine altitude layers distributed every
10 meters, from 10 to 90 meters. Each cell has a fixed size of 10× 10× 10, enabling
a highly granular representation of the 3D airspace. This setup allows for a more
detailed analysis of UAV path selection in urban settings, where more height options
exist for navigation. The graph properties are:
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• Number of nodes: 440,588

• Number of edges: 6,603,629

In table 3.1 provides a numerical summary of the three graph configurations:

Graph Area (km²) Altitude Layers Cell Size (m) Nodes Edges
Default Graph 45.88 3 (30, 60, 90) 10× 10× 30 1,374,707 16,667,454

Four-Layer Graph 45.88 4 (10, 30, 60, 90) Mixed (10× 10× 10 at lowest) 1,832,936 18,521,802
Smallest Graph 4.86 9 (10-90) 10× 10× 10 440,588 6,603,629

Table 3.1: Summary of the generated graph configurations.

These three configurations allow for extensive testing of UAV navigation under
different levels of discretization and airspace constraints, ensuring robust validation
of the proposed methodology.

The graphs serve as the foundation for further refinements, such as adding edge
weights based on communication quality, risk assessment, and other factors. By
modeling the connectivity of the test area, it provides a scalable framework for
UAV navigation and supports the simulator’s goal of ensuring safe and efficient
BVLoS operations.
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Methodology

As already mentioned in section 1 and 3, in order to guarantee a certain level of
QoS for the communication between UAV-BS during the flight, it is necessary to
define the most realistic channel model for RMA scenarios.
The methodology adopted in this work is structured around a two-step approach
aimed at modeling and analyzing UAV communication in a BVLoS scenario. This
process is built upon the pre-processed data derived from the DEM, shape files
defining the study area, and the basic graph representation of the 3D environment.

An ad-hoc simulator is developed as the principal tool from here onward, entirely
programmed in Python. This choice is motivated by Python’s flexibility as an
object-oriented language and its extensive ecosystem of libraries, including networkx
for graph-based modeling, rtree for efficient spatial indexing, and other scientific
computing libraries that facilitate geospatial and signal processing operations. The
modular nature of Python allows for streamlined implementation, testing, and
optimization of the proposed methodology.

The core objective of the methodology is to assign meaningful attributes to the
nodes and edges of the graph-based representation of the 3D space. This is achieved
through an incremental approach, where each step progressively refines the level of
information embedded within the graph. The first phase focuses on determining
the coverage area of each BS by computing the expected path loss for each cell
within its range. This involves evaluating the propagation characteristics of the
signal in relation to environmental factors, including terrain elevation and obstacles
derived from the DEM.
Once the coverage map has been established, the second phase enhances the graph
structure by defining the connectivity between nodes and assigning weights to the
edges. These weights represent the feasibility and cost of transitioning from one
node to another, incorporating key parameters such as signal quality, potential
obstructions, and flight constraints. The ultimate goal is to produce a structured
representation of the UAV flight space that enables optimal path selection while
ensuring reliable communication links.

As already mentioned in the previous chapters, to ensure the simulation remains
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as faithful as possible to real-world conditions, the actual distribution and tech-
nical specifications of BSs are incorporated. Additionally, obstacle distribution
is accurately mapped using real-world DEM data and shape files, allowing for
precise modeling of environmental constraints affecting UAV flight paths and signal
propagation. A simple graph presented in figure 4.1 summarizes all the needed
input data, as well as the final output obtained once all the computations are done.

Figure 4.1: Graph to summarize Input and Output data of the algorithm

This chapter provides an in-depth explanation of the two main phases of the
methodology, highlighting the considerations made during the implementation and
the key challenges addressed to accurately model real-world UAV operations. The
subsequent sections will detail the processes involved in computing the coverage
range, assigning path loss values, and defining edge weights to create a dynamic
and realistic network representation.

4.1 General Algorithm description

In this section, we describe the overall algorithm used in our study. The algorithm
consists of multiple phases, each performing a specific task related to network
modeling and path optimization. The first phase focuses on calculating the channel
model for the cells in the graph.

The first step of the algorithm involves computing the coverage radius of all BSs
present in the area (see step 2 figure 4.2. Then, it iteratively selects all cells n
where the ‘obstacle‘ field is set to 0 (see step 3 in 4.2), indicating that they are free
of obstacles and can be traversed.
It should be specified that for cell n is intended the physical portion of volume in
space that occupies a dimension of 10x10x30 in the standard case, and 10x10x10
in the more discrete case.
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For each selected cell n, the algorithm evaluates whether it falls within the coverage
radius of any BS (see steps 4 and 6 in 4.2). Additionally, a flag "no_cover" is set
to indicate whether cell n is covered by at least one BS (see step 5 in 4.2). If after
the computation the cell is not in the range of any antenna, this flag will be set to
1 and the final weigth will be computed accordingly as explained later.

The process follows these steps:

• Select a cell n with ‘obstacle = 0‘.

• Check whether at least one BS covers cell n. If no BS covers the cell and
the ‘no_cover‘ flag remains set to 1, the cell is marked as uncovered, and the
next cell is processed.

• If cell n is covered by a BS, determine whether the BS is in LoS or NLoS
conditions (see step 7 in 4.2).

• Compute the Path Loss (PL) using the appropriate formula.

• If the computed PL exceeds the maximum acceptable PL, the algorithm
moves to the next BS in the list. Otherwise, the ‘no_cover‘ flag is set to 0,
and the computed PL is appended to a list associated with the BS (see steps
8 and 9 in 4.2).

• If additional BSs remain to be checked (step 11 in 4.2), repeat the process
from step 4 in figure 4.2. Otherwise, sort the PL values in ascending order
(step 10 in 4.2).
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Figure 4.2: Flowchart of Phase 1: Channel Model Computation.

The flowchart illustrating this process is shown in Figure 4.2.

In the second phase, weights are assigned to the graph edges based on the computed
PL values. The algorithm selects all obstacle-free nodes (see step 2 in 4.3) and
evaluates only edges connecting neighboring cells that also satisfy this condition
(see steps 3 and 4 in 4.3). In this case, the nodes represent the centroid of each
geographical cell, which means that the algorithm will select, as before, all those
cells that have as property the ’obstacle=0 ’
The steps include:

• Selecting the neighboring cells, having as constraint the maximum of 18
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possible adjacent cells (step 6 in 4.3). This means that at best the 18 edges
may exit from cell n.

• Extracting the smallest PL value from the sorted list of the neighboring cell
n′ (see step 5 in 4.3).

• If the BS of n′ matches the BS of n (step 7 in 4.3), (meaning they correspond
to the same tower) compute the weight (see step 12 in 4.3) using the ratio:

ratio =
PL(n)

PL(n′)
(4.1)

followed by scaling and normalization processes, explained in the next section
(step 13 in 4.3).

• If the BS of n′ is different and ‘no_cover = 0‘, an inter-cell handover is
triggered, and a penalty is applied to the weight computation (see steps 9
and 10 in 4.3). This quantity will be explained later in 4.19.

• If flag ‘no_cover = 1‘, the transition weight to that cell is set to inf, as it is
an uncovered cell (see step 11 in 4.3).

A flowchart illustrating this phase is provided in Figure 4.3.

The next sections will further analyze each step that the algorithm does, paying
particular attention to the ad hoc channel model used and the corresponding
equations.
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Figure 4.3: Flowchart of Phase 2: Edge property definition and weights assignment.
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4.2 Phase 1: Network Coverage and Path Loss
Calculation

The first part of the simulator is dedicated to assessing the network coverage over
the study area and determining the path loss experienced by UAVs at different
positions within the graph. This step is crucial in ensuring that the drone can
maintain reliable communication links with BSs throughout its flight. The overall
process consists of three main components: preprocessing input data, computing
the range of coverage for each BS, and calculating the path loss under LoS and
NLoS conditions.
The approach ensures that, for each cell, it will be possible to retrieve the necessary
information to evaluate and find the most efficient connection between the UAV
with the ground network, minimizing disruptions caused by terrain obstructions
and varying signal conditions.

Figure 4.4: Estimated Range of coverages for each BS

4.2.1 Data Preprocessing and Input Handling

The algorithm begins with data preprocessing, ensuring that all necessary input
files, including the Power consumption and supported technologies specifications,
shapefiles, and base station information, are correctly loaded.
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The UAV environment is built using real-world base station locations and topo-
graphical data extracted previously from the DEMs. The Radio Access Network
(RAN) is composed of several BSs, each one individually characterized by its
supported technology, either multi-frequency Long Term Evolution (LTE) or New
Radio 5G.

Thanks to the data obtained from the [30] website and the work in [29], the algo-
rithm can rely on various key technological parameters and characteristics of power
consumption for each BS.

These input attributes include:

• Geographic Coordinates: Latitude and longitude defining its precise
position.

• Height and Antenna Specifications: Actual BS height and supported
technology bands (4G/5G).

• Transmit Power: Defines the signal strength for communication coverage.

• Operational Layer: Information on frequency bands and Absolute Radio
Frequency Channel Numbers (ARFCNs).

• Mobile Operator: The specific cellular operator that installed his dedicated
antenna. These are the main italian operators: Vodafone, Tim, Wind-Tre,
Illiad and the newest Zefiro.

The simulator reads from configuration files that define the supported wireless
communication technologies in the area. These files include parameters that dictate
the performance and behavior of different cellular technologies, particularly 4G
and 5G, across various frequency bands.

Below is presented the list of the main key parameters:

• Bitrate: The possible transmission rates (Mbps) available for that technology.

• Input Power (dBm): The value of the maximum input power of the
antenna.

• Frequency: The specific frequency of the antenna, that can be for 4G tech-
nologies among 700, 800, 1800, 2100 or 2600 MHz, while for 5G technologies
can assume one value among those available between 800, 2100 MHz.

• Receiver SNR (dB): Signal-to-noise ratio (SNR) values required to sustain
different bitrates of the receiver.

• SNR Threshold: The minimum SNR required to maintain a stable connec-
tion, used to evaluate the range of coverage. A detailed explanation of this
parameter choice will be done in the next subsection.
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• Bandwidth (MHz): The allocated spectrum for that frequency.

• Antenna Gain (dBi): The gain of the BS antenna.

• Path Loss Margins: Includes the fade margin, interference margin, and
shadow margin, which account for real-world signal degradation and obstruc-
tion.

• Maximum Input Power (dBm): Defines the highest transmission power
for that technology.

• Doppler Margin: Accounts for signal distortions due to UAV mobility.

• Noise Figure: Represents the noise introduced by the receiver hardware,
affecting signal clarity.

In addition to technological parameters, the simulator also incorporates energy
consumption models, which are defined in specific files. These models describe the
power requirements for each type of base station and technology.

The power consumption model includes the following parameters:

• Nant: Number of antennas used in transmission.

• Ptx: Power effectively transmitted by the base station.

• Pamp: Power consumed by the amplifier to boost the signal strength, defined
as:

Pamp =
Ptx

η
(4.2)

where η is the efficiency factor.

• Ptrans: Power transferred for signal transmission.

• Pdsp: Power dissipation in digital signal processing.

• Prect: Power used by the rectifier circuit to stabilize energy supply.

• Pcool: Cooling system power requirements, particularly relevant for high-
frequency 5G transmitters.

• Pbh: Power used for backhaul connectivity to link the base station to the
core network.

• Pmwl: Power used by the microwave link for base station communication.

• η: Efficiency factor of the amplifier, indicating how much of the input power
is converted into usable transmission power.

• Sectors: Number of independent antenna sectors supported by the base
station.
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These parameters allow the algorithm to compute realistic energy requirements for
different base station configurations, impacting coverage calculations.
They are utilized in different computational models depending on whether the base
station operates on a 4G or 5G network.

The simulator computes the total power consumption using different formulas:

• For 5G base stations, power consumption is computed as:

Ptotal = Nant × (Ptrans + Pdsp + Pamp) + Prect + Pcool + Pbh (4.3)

• For 4G base stations, power consumption is computed as:

Ptotal = Pconst + Pload (4.4)

where
Pconst = Sectors× Prect + Pmwl + Pcool + Pbh (4.5)

and
Pload = Sectors× (Tx× (Pamp + Ptrans) + Pdsp) . (4.6)

Concerning instead the UAV flight area, it is divided into a 3D grid, where each
cell represents a spatial point and contains metadata about potential obstacles,
elevation, and later also with communication coverage. Spatial indexing techniques,
such as R-trees, are applied to efficiently retrieve nearby BSs for each UAV position.
The integration of geospatial analysis tools allows for enhanced optimization of
communication paths, ensuring a good adaptability during UAV missions.

4.2.2 Base Station Coverage Computation

The coverage range of each base station is a fundamental aspect of this simulation.
The computation is based on the maximum allowable path loss that still ensures
an acceptable Signal-to-Noise Ratio (SNR). The maximum coverage distance is
determined iteratively, increasing the distance from the base station until the path
loss exceeds the defined limit, as shown in the flow chart 4.5.
Theoretical SNR thresholds can be derived from the Shannon-Hartley theorem,
which defines the maximum channel capacity C (in bits per second) as:

C = B log2(1 + SNR) (4.7)

where:

• C is the channel capacity,

• B is the channel bandwidth,

• SNR is the Signal-to-Noise Ratio.

.
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Figure 4.5: Flowchart describing the steps for Range of Coverage computation

From this equation, the minimum SNR required to sustain a given data rate can
be derived as:

SNR = 2
C
B − 1. (4.8)

However, the values obtained from this formula only represent theoretical limits
under ideal conditions with no interference, no multipath fading, and perfect
receiver sensitivity. In practical BVLoS scenarios, additional factors such as
shadow fading, interference margins, and environmental conditions impact real-
world communication quality, but we leave these aspects for future works.
To ensure a stable and reliable connection, the SNR thresholds used in this work
are selected based on a balance between theoretical limits and real-world conditions,
as derived from existing literature on network performance in RMA environments
[32], [34] and [33]. Instead of setting SNR thresholds at their minimum viable
levels, a more conservative approach is adopted to maintain a stable link, even in
suboptimal conditions.
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An ad hoc function to evaluate the range will iteratively increases the distance
from the BS while computing the path loss, stopping once the maximum set
SNR threshold is reached. The overall estimated range of coverage for each tower
considered in the test area can be seen in figure 4.4. It should be specified that the
calculated value does not guarantee the minimum beyond which there is no longer
any coverage, but rather the coverage radius within which the signal quality is still
considered to be at an ‘acceptable’ level (see table 4.6).

Figure 4.6: General LTE SNR level bands, taken from [36]

Mathematically, the maximum path loss PLmax is derived as:

PLmax = Ptx +GBS +GUAV − Losses − SNRmin (4.9)

where:

• Ptx is the transmit power of the BS,

• GBS and GUAV are the antenna gains of the BS and UAV, respectively,

• Losses accounts for penetration loss, Doppler margin, and other system-
dependent attenuation factors,

• SNRmin is the minimum required SNR for reliable communication, which is
not the global minimum nor the theoretical one.

The choice of SNRmin is based on empirical data from scientific literature rather
than purely theoretical calculations. While the Shannon-Hartley theorem provides
a theoretical lower bound for SNR, real-world conditions such as interference,
multipath fading, and environmental attenuation necessitate a more conservative
threshold.

The selected values are as follows:

• 4G at 2600 MHz: SNRmin = 5 dB,

• 4G at 2100 MHz: SNRmin = 3 dB,

• 4G at 1800 MHz: SNRmin = 2 dB,

• 4G at 800 MHz: SNRmin = 0 dB,
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• 5G at 800 MHz: SNRmin = 0 dB.

• 5G at 2100 MHz: SNRmin = 4 dB.

These values reflect practical considerations, ensuring a balance between maintaining
coverage and achieving an acceptable signal quality. BSs with different frequencies
will have varying coverage ranges due to the inverse relationship between frequency
and propagation distance, as shown in table 4.1. Lower frequencies, such as 700
MHz, will cover larger areas, whereas higher frequencies, such as 2600 MHz, will
be more localized. This also imply that the SNRmin for lower frequencies can be
set at lower values, viceversa for higher frequencies.

Technologies Acceptable Ranges (m)
5G 2100 MHz 705
4G 2100 MHz 1480
4G 2600 MHz 770
5G 800 MHz 5540
4G 700 MHz 5815
4G 1800 MHz 5525
4G 800 MHz 5550

Table 4.1: Supported Technologies VS Range of Coverage

The importance of fine-tuning SNR thresholds is particularly evident in RMA
environments, where coverage gaps are common, and small adjustments can signifi-
cantly impact communication reliability. By adopting a moderate SNR threshold,
this work aims to optimize coverage without excessively sacrificing quality, ensuring
that UAV communication remains stable even in suboptimal scenarios.

4.2.3 Path Loss Computation: RMA Model and LoS/NLoS
Conditions

After determining the BS coverage, the algorithm proceeds to compute the path
loss at each UAV-accessible cell. The computation is based on the RMA model, an
adaptation of the UMA model proposed in [29]. Reliable communication for UAVs
operating in BVLoS scenarios depends critically on accurate channel modeling and
path loss estimation. The RMA model is more suitable for suburban and rural
areas due to the lower building density and larger inter-site distances.
In addition, in RMA environments, as mentioned previously, the BS density is
typically lower and the propagation conditions are dominated by free-space losses
with fewer scattering objects compared to urban settings.

Consequently, the path loss in RMA is primarily determined by:

• Free-space propagation: At moderate distances, the line-of-sight (LoS)
component dominates, and the path loss can be almost approximated by a
free-space model.
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• Dual-slope behavior: A breakpoint distance (dBP ) is introduced to differ-
entiate near-field and far-field propagation. The breakpoint is a function of
the BS and UAV antenna heights.

• Additional attenuation in NLoS conditions: When obstacles (e.g.,
low-rise buildings, vegetation) obstruct the direct path, possible diffraction,
scattering, and shadowing contribute to an additional loss.

The PL is expressed in decibels (dB) and is computed differently depending on
whether the communication link is in Line of Sight or Non-Line of Sight. The
RMA propagation model is employed to calculate path loss, considering whether the
UAV has a clear LoS to the BS or encounters obstacles resulting in NLoS conditions.

For a given 2D distance d2D between a base station and a receiver (e.g., drone),
the LoS path loss that was adopted is given by:

PLLoS(d3D) = 20 log10

(
40πfc
3

)
+

min
(
0.03h1.72, 10

)
log10(d3D)−

min
(
0.044h1.72, 14.77

)
+ 0.002 log10(h)d3D.

(4.10)

where:

• d3D is the 3D distance between the transmitter and receiver in meters,
computed as:

d3D =
√

d22D + (hBS − hUAV )2 (4.11)

Since we are working with distances of the order of kilometers, for those beyond
the breakpoint distance (d3D > dBP ), an additional loss term is introduced:

PLLoS,far(d3D) = PLLoS(d3D) + 40 log10(d3D/dBP ) (4.12)

where:

• A breakpoint distance dBP is introduced, computed as:

dBP =
4(hUAV + 1)hBSfc

c
(4.13)

• c = 3× 108 m/s is the speed of light.

For NLoS conditions, if the UAV is obstructed by terrain, buildings, or foliage,
additional diffraction and scattering losses are introduced:

PLNLoS(d3D) = 161.04− 7.1 log10(W ) + 7.5 log10(h)+

−(24.37− 3.7(h/hBS)
2) log10(hBS)+

+(43.42− 3.1 log10(hBS))(log10(d3D)− 3)+

+20 log10(fc)− (3.2(log10(11.75hUAV ))
2 − 4.97)

(4.14)

where:
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• The term PLLoS(d3D) is compared to PLNLoS(d3D), and the larger value is
taken as the final path loss.

If the computed NLoS path loss exceeds the LoS path loss, the LoS model is applied
as a conservative estimate.

PL′
NLoS = max(PLLoS, PLNLoS) (4.15)

From the extracted information, the following variables and parameters are consid-
ered:

• Carrier Frequency (fc): The frequency of the transmitted signal in GHz,
influencing propagation characteristics.

• 2D Distance (d2D): The horizontal distance between the transmitter and
receiver in meters.

• 3D Distance (d3D): The actual Euclidean distance considering height
differences, computed as

√
d22D + (hBS − hUAV )2.

• Base Station Height (hBS): The height of the base station antenna, which
affects signal propagation and diffraction.

• UAV Height (hUAV ): The height of the UAV in meters.

• Breakpoint Distance (dBP ): The distance beyond which additional losses
occur, computed based on frequency and heights.

• Street Width (W ): A factor influencing NLoS path loss in urban and
suburban environments.

• Building Height (h): Used in computing diffraction and scattering effects
in NLoS conditions.

Additional terms are present in the LoS and NLoS equations have been derived
from the literature [23], and ensure accurate modeling of path loss in both LoS and
NLoS conditions:

• 20 log10(40π(f/3× 108)): Free-space path loss component.

• min(0.03h1.72, 10) log10(d3): Accounts for attenuation due to building height.

• min(0.044h1.72, 14.77): Additional attenuation factor related to building
height, capped at 14.77.

• 0.02 log10(h) · d3: Small correction factor for building height.

• 40 log10(d3/dBP ): Models increased path loss beyond the breakpoint distance.

• −7.1 log10(W ): Effect of street width on signal attenuation.
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• 7.5 log10(h): Accounts for the average building height’s effect on signal atten-
uation.

• (43.42− 3.1 log10(hBS))(log10(d3)− 3): Models impact of distance and base
station height.

• 20 log10(f): Incorporates effect of carrier frequency.

• −(3.2(log10(11.75hu))
2−4.97): Models effect of mobile station antenna height.

• (24.37− 3.7(haverage/hBS)
2) log10(hBS) (for NLoS only): Captures BS height

impact, important for NLoS scenarios.

This refined model ensures an accurate computation of the quality of communication
for different environments, considering the presence or absence of obstacles between
the base station and the receiver.

4.2.4 Iterative Path Loss Assignment and Sorting

In summary, to evaluate the connectivity of UAV-accessible cells in the environment,
the algorithm iteratively computes the path loss from nearby base stations for
each cell. The stored PL values for each cell are no more than 30, meaning that
not for each BS present in the area the result is stored. This decision was taken
both for computational and time-saving reasons, but also because the results were
getting worse, and consequently they would not have been taken into account in
the selection for the shortest path afterwards.

This procedure is essential to determine the best possible coverage for each cell and
forms the foundation for subsequent weights assignment to each graph’s edge.

The process is described in the following:

1. Select a cell n with obstacle field = 0.

2. For each BS, check if n falls within its coverage range.

3. If covered, determine if the BS is in LoS or NLoS relative to n.

4. Compute the corresponding path loss using the RMA model.

5. If the computed path loss is below the acceptable maximum, store it and set
the no_cover flag to 0.

6. If multiple BSs cover n, store path loss values in a sorted list (ascending
order).

7. If no BS covers n, leave no_cover set to 1.

The outcome of this phase is a comprehensive mapping of UAV-accessible cells to
their respective BSs, ordered by signal quality. This information will be crucial
for the second phase, where edge weights between nodes are determined based on
signal strength, handover events, and network stability.
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4.3 Graph Weight Assignment

This section details the methodology employed for assigning weights to the omni-
directional edges in the newly constructed graph, as depicted in the flowchart in
Figure 4.3. The resulting graph, enriched with appropriate weight assignments,
serves as the foundation for computing the shortest path in the simulator, whose
details will be further elaborated in the following sections.

The algorithm commences by iterating over all cells in the discretized environment
and selecting only those for which the obstacle attribute is set to zero. This
ensures that weight computations are performed exclusively on traversable regions,
effectively filtering out obstacles from the connectivity analysis.
Once a cell, denoted as n, has been selected, its adjacent nodes are identified.
Given the imposed constraint that limits the maximum number of adjacent cells
to n′ ≤ 18, the algorithm examines only these neighboring nodes. The selection
criterion for adjacency is based on direct spatial connectivity within the 3D grid
structure, as mentioned in chapter 3.

For each selected cell n, the algorithm determines whether it shares a base station
with its adjacent nodes. This step is essential, as connectivity properties depend
on the communication infrastructure available to each cell.

The evaluation follows these steps:

1. Retrieve the set of base stations covering cell n as well as its adjacent node
n′.

2. Extract the PL values corresponding to the communication link between n
and each of its associated base stations.

3. Compare the base stations assigned to n and n′ to determine if they share
the same primary (best) base station.

Once the path loss values are extracted, the relative loss between nodes is assessed
using the ratio:

PLn′

PLn

(4.16)

where PLn and PLn′ represent the path loss values for the current and adjacent
cell, respectively.

At this stage, two possible cases emerge:

• Cases 1: The best base station for cell n, i.e., the one providing the lowest
path loss, is also the best base station for its adjacent node n′.
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• Cases 2: The best base station for cell n is either absent in the base station
list of n′ or is present but does not provide the best possible coverage for that
position.

4.3.1 Assignment of Edge weight - Case 1

In the case where both the current node N and its neighboring node N ′ are primarily
covered by the same base station, the algorithm proceeds by computing the ratio
of their respective path loss values, as done in equation 4.16.
This ratio quantifies the relative degradation of the signal between the two nodes.
Since path loss inherently measures the attenuation experienced by the transmitted
signal, higher ratios indicate a more significant loss when transitioning from n to
n′.

To ensure consistency across different edge weights and maintain comparability
in the shortest-path computation, the computed ratio undergoes a scaling and
normalization process. The algorithm first applies a logarithmic transformation:

Wlog = log(Wn,n′) + 5 (4.17)

where the base offset of 5 ensures that all weights remain positive, avoiding negative
values that could distort the weight distribution and can later cause possible errors
in the NetworkX algorithm.

Next, the transformed weight is rescaled to fit within a predefined range:

W ′
n,n′ = Wmin +

(Wlog − 1)

10− 1
× (Wmax −Wmin) (4.18)

where Wmin and Wmax represent the minimum and maximum observed weight
values across the entire graph. The rescaled values are mapped onto the interval
[1, 10] to ensure consistent weight interpretation.

4.3.2 Assignment of Edge Weights - Handover Case

If the adjacent node n′ is covered by a different base station than n, an additional
penalty is introduced to account for the handover cost. This reflects the preference
for maintaining connectivity with a single base station throughout the UAV’s flight,
as frequent handovers may introduce latency, increased energy consumption, and
more importantly potential communication disruptions.

The penalty is computed as a function of the relative path loss values of the two
nodes:

Phandover = 2×
∣∣∣∣1− PLn′

PLn

∣∣∣∣ (4.19)

This formulation ensures that the penalty increases as the path loss discrepancy
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between n and n′ grows. Larger penalties discourage frequent handovers by increas-
ing the associated transition cost.

The introduction of a handover penalty serves two key purposes:

• Minimizing unnecessary transitions: By increasing the weight of edges
that involve handovers, the algorithm will favor paths that maintain connec-
tivity with a single base station for as long as possible.

• Reflecting real-world constraints: In practical UAV communications,
excessive handovers may result in increased packet loss, delays, and energy
consumption, making it desirable to limit such occurrences.

4.3.3 Assignment of weights to special cases

An additional case arises when a selected cell n has no obstacles (obstacle = 0) but
is entirely outside the coverage range of any base station, indicated by the flag
no_cover = 1. In this scenario, the cell represents a geographical location where
no wireless connectivity is available.

Consequently, while an entry edge can still exist, its weight is set to infinity:

Wn,n′ = ∞ (4.20)

This effectively discourages the selection of paths traversing such cells, as the UAV
would experience a complete loss of connectivity.

Before finalizing the graph and storing it in GraphML format, a final consistency
check is performed to ensure that at least one upward-directed edge exists from
ground-level cells (z = 0).
This is important as it guarantees that the UAV, regardless of its initial position
on the ground, has a valid path to ascend into the air. It is assumed that takeoff
in obstacle-fill areas can be aided by a pilot, making an initial transition from the
ground to a higher altitude always feasible. This occurrence is only valid if z is
equal to 0, i.e. the drone takes off from the ground.

The logic for assigning these edges is as follows:

• If an edge from node B to node A exists, where zA = 0, then an edge in the
opposite direction from A to B is created, inheriting the same weight.

• If no such reverse edge exists, a default weight of infinity is assigned, following
the same policy done in equation 4.20.

With this final processing step, the graph is now fully prepared, incorporating all
necessary weight adjustments, penalties, and connectivity constraints.
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4.3.4 Interpretation of Edge Weights

The final weight assigned to the edge connecting n and n′ is a measure of the
expected difficulty in establishing a reliable communication link between the two
cells. Lower values indicate better connectivity, whereas higher values reflect a
higher likelihood of signal degradation. That is why, to adapt them to the NetworkX
edge weight rules, the reciprocal is computed with the exception of the special
cases where Wfinal is already set to the worst possible value, equal to ∞.

Thus the final weight assigned to the edge connecting n and n′ is computed as:

Wfinal =
1

max(W ′
n,n′ , 1)

(4.21)

Whereas the rescaled weight, incorporating the handover penalty, is computed as:

W ′
handover = W ′

n,n′ − Phandover (4.22)

The modified graph, now enriched with weight penalties, is subsequently stored in
GraphML format, preserving all relevant node and edge attributes for subsequent
shortest-path computations.

4.4 Shortest Path Computation and
Scenario Testing

After constructing the weighted graph representations of the environment, the next
step involves computing the shortest path for a UAV trajectory using the NetworkX
library [44]. This section outlines the methodology adopted for path computation,
detailing the algorithms, tools, and testing scenarios employed to evaluate UAV
navigation through the generated graphs.

The primary objective of this phase is to determine the most efficient UAV tra-
jectory while maintaining a stable communication link with the available BSs.
The computed paths take into account the weighted graph structures described in
the previous sections, where edge weights encapsulate the expected difficulty in
maintaining reliable connectivity due to PL and potential handovers.
To achieve this, the Dijkstra’s algorithm is leveraged from the NetworkX library
[46], ensuring the computation of the minimum-cost path from a given start node
to a target destination. As defined by [45] source:

Dijkstra’s algorithm is an algorithm for finding the shortest paths between
nodes in a weighted graph, which may represent, for example, a road network.

Dijkstra’s algorithm operates with a time complexity of O(|E|+|V |log|V |), where
|V | is the number of nodes and |E| is the number of edges in the graph (source [45]).
This complexity arises from the use of a priority queue (commonly implemented
as a binary heap), allowing efficient retrieval of the next node with the smallest
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accumulated cost. Given that UAV trajectory planning involves a limited number of
waypoints and the network of base stations is not overly dense, this computational
complexity remains manageable.
The cost function is dictated in this work by the assigned edge weights, which,
as described earlier, reflect communication quality rather than simple Euclidean
distances.

This algorithm finds the shortest path from a source node to a destination node in
a weighted graph by iteratively expanding the least-cost path until reaching the
target. At each step, the algorithm selects the node with the lowest cumulative
weight, updates its neighboring nodes’ tentative distances, and continues until the
optimal path is found.

The step-by-step operation of Dijkstra’s algorithm is illustrated in Figure 4.7.

4.4.1 Graph Variants and Test Scenarios

Different scenarios and tests are performed to compare the performance and results
obtained under different circumstances.
To analyze different UAV mobility conditions and communication constraints, three
distinct graph structures are considered:

• Graph with 3 altitude layers: This graph represents a moderately dis-
cretized environment where UAV movement is restricted to three different
altitude levels (30 m, 60 m, and 90 m). It serves as the baseline scenario, of-
fering a balance between computational efficiency and flexibility in trajectory
planning.

• Graph with 4 altitude layers: An extension of the previous graph, incor-
porating an additional altitude layer at 10m, allowing an evaluation of UAV
behavior at lower altitudes, particularly in urban-like areas where obstacles
may influence the choice of the optimal path, and Non-Line of Sight situations
may arise more frequently.

• Graph with 9 altitude layers: This is the most discretized representation,
allowing UAVs to navigate at fine-grained altitude variations (10m intervals up
to 90m). It is particularly useful for testing UAV decision-making in densely
populated areas, where multiple flight levels provide different trade-offs in
connectivity and obstacle avoidance.

For each of these graph structures, multiple test scenarios are implemented by
varying:

• The initial and target positions of the UAV.

• The UAV model used, with distinct technical features.
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• The impact of base station distribution and coverage variations.

• The influence of handover penalties on the computed paths.

Different Edge Weights

Besides exclusively using the Path Loss weights, two additional types of weights
are computed and employed to determine alternative shortest paths:

• Physical Distance Weights: Each edge weight is assigned based on the
Euclidean distance between two connected nodes, representing a purely
geometric shortest path. Given two nodes u and v in the graph, the distance
weight is simply computed as:

duv =
√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2 (4.23)

where (xu, yu, zu) and (xv, yv, zv) are the coordinates of nodes u and v, re-
spectively.

• Combined Weights: A weighted combination of the physical distance
and path loss values, balancing both spatial efficiency and communication
reliability. The combined weight is computed as:

wcombined
uv = WPD · duv +WPL · wPL

uv (4.24)

where duv is the physical distance weight, and wPL
uv represents the path loss

weight assigned to the edge (u, v). The values WPL and WPD are the factors
given to each kind of ’weight’ in order to give more importance to one or the
other. The tests are done by varying these factors in order to find the best
balance between the physical shortest path but without reducing the quality
of communication. Among the results, the combination used are listed in
table 4.2.

Path Distance (PD) Path Loss (PL)
50 50
80 20
20 80

Table 4.2: Combined weights proportions

All three weight configurations are applied across the three graph variants in order
to evaluate how different cost functions influence UAV trajectory selection.

Base Station Reduction Analysis

In addition to the scenarios illustrated in Figure 4.8, additional tests are conducted
by reducing the number of available base stations in the network. Specifically, the
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base stations supporting the technologies 4G 700 MHz, 4G 800 MHz, and, in the
case of the 4-layer graph, also 5G 800 MHz are removed.
This reduction aims to evaluate the impact of decreased connectivity on UAV
navigation and path selection.
Unlike the main tests, which involved multiple UAV models, these reduced-base-
station scenarios are tested exclusively using the DJI Inspire 3, since changing the
drone will impact only the power consumption and battery level performance in
this case.

Scenarios Summary

The following sections will present a detailed analysis of the shortest paths computed
under the conditions described above, comparing UAV trajectories, communication
performance, and overall network robustness across different scenarios.
The relationships among these test scenarios are summarized in Figure 4.8.

Figure 4.8: Overview of the main scenarios tested in shortest path computations

Each simulation considers multiple weight configurations (path loss, distance, and
their combination), various UAV models, and different start-end path pairs across
the three graph variants. The results highlight the trade-offs between minimizing
path loss and optimizing trajectory efficiency.

4.4.2 Key Performance Indicators (KPIs)

A crucial step in every simulation-based study is the definition of Key Performance
Indicators (KPIs). In this analysis, the selected KPIs follow widely accepted criteria
ensuring specificity, measurability, and relevance to the study objectives.
For this study, three primary KPIs are chosen to evaluate UAV path computa-
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tion strategies, focusing on network connectivity, flight efficiency, and signal quality.

The defined Key Performance Indicators are as follows:

1. Communication Performance

• Evaluates the UAV’s connectivity with the ground network by analyzing
parameters such as:

– Mean and variance of the path loss encountered during the trajec-
tory.

– The percentage of LoS and NLoS connections along the path.
– Number of handovers suffered along the path.

2. Travel Distance and Flight Characteristics

• Measures the total distance traveled by the UAV along the computed
shortest path.

• Includes sub-metrics such as the number of altitude changes (ups and
downs) and time elapsed from take-off and landing.

• Battery level and power consumptions of the drone with or without
payload.

3. Network Technology Utilization

• Assesses which communication technologies are predominantly used
throughout the UAV’s flight.

• Computes the percentage of connectivity with different technologies.

• Provides insights into how the UAV interacts with different network
infrastructures and helps in optimizing coverage strategies.

Among these, the main ones include total path length, average path loss, the
cumulative vertical displacement (z-axis shifts) and the total number of handovers
suffered during flight, the results of which will be shown in the next chapter.

The main focus, as mentioned in the first chapters, will be on Communication
Performances. These should be evaluated by balancing the average PL with the
total number of handovers Hn and the percentage of LoS (or NLoS) sustained along
the path. For instance, good communication performance would be reached by
minimizing the Hn, the average PL as well as the percentage of NLoS.
In the following chapter, the outputs and results obtained for each scenario and
combination of weights/graphs/UAV type, starting from the baseline, will be
presented.
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Figure 4.7: Dijkstra algorithm flow chart, taken from [35]
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Final Results

This chapter presents the results obtained from the UAV shortest path simula-
tions, analyzing different network and mobility conditions across multiple scenarios.
The final goal is to evaluate the impact of various weighting strategies (path loss,
physical distance, and combined weights) on UAV trajectory optimization while
considering key performance metrics such as connectivity, handover frequency, and
power consumption.

The results are structured according to the three different graph configurations (3
layers, 4 layers, and 9 layers), considering the path evaluated with the PL weights
(the standard weight scenario). For each graph, simulations are conducted using
different UAV models and weight-assignment strategies, providing insight into how
different constraints affect flight efficiency and network stability.
Additionally, a sensitivity analysis is performed to assess the impact of reducing
the number of available base stations, specifically by removing support for lower-
frequency bands such as 4G 700 MHz and 4G 800 MHz.
These tests will be presented in the final sections of this chapter.

5.1 Drone Specifications

Maintaining good and stable drone-to-tower communications is indeed the focus of
this work, but in order to have a realistic assessment of the final outcomes, other
performance metrics such as power consumption, time elapsed, and battery level
are also considered.

Three different drones with very different technical features, as reported in the
table 3.1, are used to monitor and compare these metrics.
The computations are based on aerodynamic models, energy efficiency principles,
and real drone specifications taken from the official DJI website [38], leveraging
methodologies from the works in [39] and [40].

It should be specified that both horizontal and vertical speeds are considered at their
maximum values in Normal flight mode. Since operating at these speeds results in
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higher energy consumption compared to typical flight velocities, this choice was
made to evaluate a worst-case scenario. Additionally, as no weather conditions
are factored into the analysis, this assumption helps balance the simplification
introduced by neglecting external environmental factors.
Regarding the UAV’s empty weight, it already includes the battery but does not
account for any additional payload. The payload weight is set to the maximum
capacity that each drone is capable of carrying. Consequently, the results obtained
for the DJI Avata remain unchanged between the payload and no-payload scenarios,
as this drone is not designed to carry additional weight beyond its built-in battery
and camera equipment.

Specification FlyCart 30 Avata 2 Inspire 3
Empty Weight (kg) 52.5 0.377 3.995
Max Payload (kg) 30.0 0.0 0.4
Battery Capacity (mAh) 38000 2150 4280
Battery Voltage (V) 52.2 14.76 23.1
Horizontal Speed (m/s) 20.0 8.0 26.0
Vertical Speed (m/s) 3.0 6.0 8.0
Air Density (kg/m3) 1.204 1.204 1.204
Drag Coefficient 0.3 0.3 0.3
Frontal Area (m2) 0.5 0.013 0.124
Width (m) 3.08 0.212 0.7098
Length (m) 2.8 0.185 0.500
Height (m) 0.947 0.064 0.176
Rotors (num) 8 4 4
Rotors diameter (m) 1.375 0.0756 0.406

Table 5.1: Drone Specifications Used in Simulations

The power consumption of the drone is computed by distinguishing horizontal
and vertical energy expenditures. Horizontal power consumption accounts for
aerodynamic drag, while vertical power is dictated by the energy required to
counteract gravity. The aerodynamic drag force is computed as:

Fdrag =
1

2
ρV 2

airCdA, (5.1)

where Cd is the drag coefficient, A is the drone’s frontal area, and Vair is the relative
airspeed, which includes wind effects.
Since air density affects aerodynamic performance, it is modeled using the Interna-
tional Standard Atmosphere (ISA) approximation:

ρ(h) = ρ0

(
1− Lh

T0

) g
RL

−1

, (5.2)

where ρ0 is the sea-level air density (1.204 kg/m3), L is the temperature lapse
rate (0.0065 K/m), T0 is the reference temperature at sea level (293.15 K), g is
gravitational acceleration (9.81 m/s2), and R is the specific gas constant for air
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(287.05 J/(kg·K)). This formula accounts for the decrease in air density as altitude
increases, influencing energy requirements.
Wind speed is also considered, as it influences the drone’s effective airspeed and
subsequently impacts energy consumption. It is estimated using a power-law model:

W (h) = W0

(
h

h0

)α

, (5.3)

where W0 is the reference wind speed at h0 = 10 m (set to 1 m/s), and α = 0.1 for
low turbulence conditions. While the influence of wind is considered to be relatively
small in these experiments, its impact on power consumption is still integrated into
the computations.

The thrust required to keep the drone airborne is determined following the model
used in [39]:

T = (mdrone +mpayload)g + Fdrag, (5.4)

where mdrone and mpayload are the mass of the drone and its carried payload,
respectively. The hovering power required to maintain altitude is then computed
as:

Phover =
T 3/2√

0.5πnd2ρ
, (5.5)

where n is the number of rotors and d is the rotor diameter. The power needed for
forward motion is given by:

Pforward = TVair. (5.6)

The total power consumption at any point in the flight is then computed as:

Ptotal = Phover + Pforward. (5.7)

The total energy consumption, in kWh, is obtained instead by integrating power
over time:

E =
Ptotal · t
3600

, (5.8)

where t is flight time in seconds, converted to hours for watt-hour calculations.
Takeoff and landing introduce additional power requirements, modeled as:

Ptakeoff =
(mdroneg)

3/2

√
2ρA

. (5.9)

A duration of 5 seconds is assumed for takeoff and landing, adding extra energy
consumption.
Finally, the battery level at each step is computed as:

Bremaining = 100− Etotal

CbVb

× 100, (5.10)

where Cb is battery capacity in mAh and Vb is battery voltage in volts, converted
from mWh to Wh. These calculations allowed for precise tracking of energy
consumption and remaining flight time, incorporating altitude, wind effects, and
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payload variations.

The different capabilities of these UAVs lead to variations in optimal path selec-
tion, as flight speed, weight, and aerodynamics affect energy consumption and
maneuverability.

5.2 Performance Analysis of default scenario -
3-layered graph

In the context of the default case, the 3-layer graph is used to model the environ-
ment. Figure 5.1 illustrates the four shortest paths calculated by the NetworkX
algorithm for the given start and end points. The selected paths displayed on the
right are based on path loss weights, which evaluate the impact of signal attenuation
along the trajectory. On the left are instead presented the same paths, with the
only difference of using the physical distances as the edges weights.

The following elements are highlighted in figures 5.1, 5.2, 5.3 and 5.4, and will be
valid for this and subsequent 2D plots:

• The red line represents the chosen shortest path as determined by the
algorithm. Note that while the path appears as a 2D projection, it includes
transitions between different elevation levels (z-layers), which are not directly
visible in these plots.

• The green dot indicates the starting point of the trajectory, while the blue
dot represents the endpoint.

• The orange dots correspond to the geographical locations of the base stations
(BSs), which are distributed across the environment.

(a) Path A with PD weights selection (b) Path A with PL weights selection

Figure 5.1: Path A for the 3-layered graph - PD & PL weights comparison.
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(a) Path B with PD weights selection (b) Path B with PL weights selection

Figure 5.2: Path B for the 3-layered graph - PD & PL weights comparison.

(a) Path C with PD weights selection (b) Path C with PL weights selection

Figure 5.3: Path C for the 3-layered graph - PD & PL weights comparison.

(a) Path D with PD weights selection (b) Path D with PL weights selection

Figure 5.4: Path D for the 3-layered graph - PD & PL weights comparison.
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The results reveal varying path lengths and characteristics depending on the
proximity of the UAV to base stations and urban centers, as well as the relative
elevations at the starting and ending points. In particular:

• In Figures 5.1a 5.1b, the paths start from a relatively remote area, far from
any BSs, approaching an urban area once at destination, with moderate
proximity to base stations.

• In Figures 5.2a and 5.2b, the trajectories cover longer distances, being further
away from the base stations in the first half of the trajectory, emphasizing
the impact of higher path loss weights.

• In Figures 5.3a and 5.3b, the selected paths starts and ends near base stations,
traversing areas with relatively high urban density.

• In Figures 5.4a and 5.4b, the selected paths endpoints are rather far away
from any urban center, starting also far away from any BSs but arriving
exactly adjacent to one.

Even without a 3D visualization, it is clear how, especially for longer distances,
the PL weight-based paths are not optimize to find the shortest path, sometimes
seemingly preferring deviations from the physical shortest one. In any case, even if
not very noticeable, these small deviations tend to force the path to the nearest
BS location in the territory.

To illustrate the differences between the two path selection strategies, Figure 5.5
presents a comparison between the distances traveled when optimizing for PL
versus PD. The plot visualizes the relationship between the two approaches for
different paths, highlighting the percentage increase in total distance when priori-
tizing communication performance over travel efficiency. Points above the diagonal
line indicate cases where the PL-based approach resulted in longer trajectories
compared to the PD-based method. The percentage labels quantify this increase,
showing the extent to which the PL distance exceeds the PD distance. On average,
for middle-range distances between 3 and 5 km, the increase is approximately 4.8%.
For shorter distances between 500 m and 3 km, the average increase rises to 7.6%.
Finally, for longer distances exceeding 5 km, the increase averages around 3.25%.

To better understand this statement, in figures 5.6 and 5.7 are represented the 3D
plots of the trajectories for the first 2 paths A and B. On the left side of figures
5.6 and 5.7 (a and c) the 3D path representations compare the differences with
respect to the two paths computed using PD over PL. Clearly, the fact that by
only focusing on optimizing the path losses over the physical distances may force
the drone to do many shifts, especially along z.
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Figure 5.5: Extra Distance comparison between PD and PL cases

(a) Path A - 3D plot using PD (b) Path A - elevation profile using PD

(c) Path A - 3D plot using PL (d) Path A - elevation profile using PL

Figure 5.6: Path A - focus on displacements along the z-axis

However, to better quantify the differences between the two path selection strategies,
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the PL weight-based results are indeed optimized for communication performances,
as shown in tables 5.2 and 5.3. The table structure presents in the first column
the metrics, in the second column the results obtained using the path loss ratios
as weights, and finally in the third column the standard (abbreviated STD) path,
minimizing distance.
These tables summarize key metrics for each computed trajectory. The total path
length gives insight into how much extra distance is traveled when optimizing for
PL instead of PD. The cumulative vertical displacement highlights how much the
drone is forced to change altitude when selecting the path with the lowest signal
attenuation.

The data reveals that paths optimized for PL tend to exhibit significantly higher
cumulative vertical displacement compared to those optimized for PD. This suggests
that minimizing signal attenuation forces the UAV to navigate through different
altitude layers more frequently, likely in an effort to maintain a favorable line of
sight with base stations. While this may enhance communication reliability, it could
also lead to increased energy consumption due to frequent altitude adjustments.
This is especially highlighted by the "Final Battery Level" metric reported in tables
5.2 and 5.3.

(a) Path B - 3D plot using PD (b) Path B - elevation profile using PD

(c) Path B - 3D plot using PL (d) Path B - elevation profile using PL

Figure 5.7: Path B - focus on displacements along the z-axis
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Table 5.2: Comparison of Path Loss Optimized vs. PD path using DJI FlyCart 30
for Path A

Metric PL Optimized STD Shortest Path
Travelled Distance (m) 4684.14 4274.57
Number of Ups 3 1
Number of Downs 3 1
Handover Count 3 2
Total Time (No Payload) (s) 609.30 548.92
Total PC (No Payload) (%) 13.89 12.57
Final Battery Level (No Payload) (%) 86.11 87.43
Total Time (Max Payload) (s) 609.30 548.92
Total PC (Max Payload) (%) 13.89 12.57
Final Battery Level (Max Payload) (%) 86.11 87.43
Mean Path Loss (dB) 96.17 96.61
Maximum PL (dB) 99.09 99.50
Minimum PL (dB) 91.01 92.21
95th Percentile PL (dB) 98.84 99.36
99th Percentile PL (dB) 99.04 99.47
Variance of Path Loss 4.74 4.93
LoS Percentage (%) 99.72 99.70
NLoS Percentage (%) 0.28 0.30

Table 5.3: Comparison of Path Loss Optimized vs. PD path using DJI FLyCart 30
for Path B

Metric PL Optimized Std Shortest Path
Travelled Distance (m) 7777.2672 7422.0310
Number of Ups 4 0
Number of Downs 4 0
Handover Count 3 4
Total Time (No Payload) (s) 470.21 381.10
Total PC (No Payload) (%) 58.77 54.91
Final Battery Level (No Payload) (%) 41.23 45.09
Total Time (Max Payload) (s) 470.21 381.10
Total PC (Max Payload) (%) 92.06 85.10
Final Battery Level (Max Payload) (%) 7.95 14.90
Mean Path Loss (dB) 96.80 96.51
Maximum PL (dB) 99.97 99.97
Minimum PL (dB) 92.06 91.89
95th Percentile PL (dB) 99.54 98.97
99th Percentile PL (dB) 99.95 99.83
Variance of Path Loss 4.65 2.53
LoS Percentage (%) 100.00 100.00
NLoS Percentage (%) 0.00 0.00
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The results highlight the advantages of optimizing paths based on PL over se-
lecting the standard shortest path. Specifically, in both Path A and Path B, the
PL-optimized paths demonstrate key benefits for communication reliability:

• For Path A, the results indicate that the PL-optimized path introduces a
higher number of handovers (three versus two) compared to the shortest
path. Frequent handovers are typically undesirable in UAV communications,
as they can introduce latency and potential link failures. However, this
drawback is compensated by an improved average path loss and a lower
percentage of time spent in Non-Line-of-Sight (NLoS) conditions.

• For Path B, while the mean path loss is slightly higher than in the shortest
path, it achieves fewer handovers (three versus four), which is beneficial in
reducing communication disruptions. Concerning instead the percentage of
flight done in NLoS they are both at 0 since (as also shown in the elevation
profile) both the start and end points are at a high altitude, being 60 meters
from ground.

Another important aspect that should be consider is, obviously, the selection of
start and end points. Keeping as test set path A and path B, these two examples are
selected to analyze the general behavior of the algorithm using PL-based weights
in worst case scenarios. In particular we can see:

• Path A: the start point is in a urbanized area, adjacent to a BS. The path
gradually shifts towards a remote and less covered area.

• Path B : viceversa, in this path the starting point is in the lower extreme
of the map, far from the base stations, while the destination point a few
kilometers further north ends up in a built-up area.

With this in mind, the results of the various path losses measured along the route
are consistent with the statements made before, as also shown in figures 5.8 and
5.9. The results suggest that the path losses suffered along the route are actually
greater in areas further away from the BSs (and consequently from population
centers). The path loss trend for route A is, in fact, increasing, and vice versa for
route B.
These results confirm that the PL-optimized approach strategically adapts the
UAV’s trajectory to improve connectivity. By reducing handovers/average PL when-
ever possible and ensuring a more uniform signal strength. This is clearly strictly
dependent on the geographical location the drone is to take-off or land. Although
total travel distance and battery consumption are slightly higher, the trade-off
results in enhanced connectivity, which is critical for BVLoS drone operations.

5.2.1 Performance Analysis of different drones -
default scenario

In this subsection, we analyze the performance of different drones along predefined
paths, considering their technical constraints and endurance capabilities, previously
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(a) Path A - Path Loss suffered for PD-
based weights

(b) Path A - Path Loss suffered for PL-
based weights

Figure 5.8: Representation of path Losses suffered along paths A

(a) Path B - Path Loss suffered for PD-
based weights

(b) Path B - Path Loss suffered for PL-
based weights

Figure 5.9: Representation of path Losses suffered along paths B

described in table 5.1. As already mentioned, there are no plans for the Avata drone
to carry payloads of any kind, as its small size and capacity make it more suitable
for precision manoeuvres rather than for transporting objects. However, even with
its small size, it is able to cover longer distances, even surpassing the Inspire 3 in
terms of total travel distance. This is because the Avata 2 was specifically designed
to operate in BVLoS scenarios where possible, optimizing its battery consumption
for extended missions.
On the other hand, while the Inspire 3 excels in terms of speed and maximum
altitude, its power consumption is higher, leading to a shorter operational time
before battery depletion.

Since Paths C and D have not been previously analyzed, they are now selected for
performance evaluation. The following figures 5.10, 5.11 and 5.12 present detailed
results, including energy consumption and battery depletion trends, to assess the
feasibility and efficiency of each drone along its designated path.
The first plot in these figures displays the energy consumption (in watt-hours, Wh)
along the path. The x-axis represents the path step, while the y-axis represents
the energy consumption per step. Notably, the y-axis is logarithmic, to better
visualize the result. The second graph in each case displays the battery level (as a
percentage of total capacity) along the path. The x-axis represents again the path
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step, while the y-axis represents the battery level in percentage (%).

(a) Path C - Power Consumption for PD-
based weight graph

(b) Path C - Power Consumption for PL-
based weight graph

(c) Path D - Power Consumption for PD-
based weight graph

(d) Path D - Power Consumption for PL-
based weight graph

Figure 5.10: Power consumption of the Avata drone along path C & D

Figure 5.10 analyzes the energy consumption and battery levels of the DJI Avata
drone using PD weight-based and PL weight-based respectively. The drone’s
technical specifications include a total battery capacity of:

Battery Energy Capacity =
2150mAh × 14.76V

1000
= 3173.4Wh.

Energy consumption values range approximately between 10−2 Wh (0.01 Wh)
during steady-state flight and peak at around 6 × 10−2 Wh (0.06 Wh) during
moments of increased energy demand.
The energy consumption shows a consistent trend across both scenarios:

• Takeoff and Landing: The initial spike in energy consumption corresponds
to the drone’s takeoff phase. Similarly, a final spike represents the landing
phase. These activities require additional power to overcome gravitational
forces.

• Steady-State Flight: During horizontal flight, the energy consumption
stabilizes at lower values, reflecting the reduced power demand compared to
vertical maneuvers.

• Additional Peaks: Whenever "downward movements" happen (two in these
cases) along the z-axis, it may cause additional peaks in energy consumption.
These maneuvers likely correspond to controlled descents, requiring higher
power to maintain stability.
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In both scenarios, the battery level exhibits a gradual decline over time, consistent
with the energy consumption trends. In the first case (PD), where the total distance
is shorter (1125.21 m), the battery depletion is minor with respect to the second
case (PL), where the total distance is greater (1141.77 m). In this last case the
battery depletion is slightly higher, reflecting the higher energy demands of a longer
flight.

(a) Path D - Power consumption using
max payload (PD)

(b) Path D - Power consumption using
no payload (PD)

(c) Path D - Power consumption using
max payload (PL)

(d) Path D - Power consumption using
no payload (PL)

Figure 5.11: Power consumption of the FlyCart30 drone along path D

Using a more appropriate drone for long-distance transport tasks, the results for
the DJI FLyCart 30 are displayed in figures 5.11, representing path D. Differently
with respect to the Avata case, in here the results refer to a longer traveled distance,
comparing the case in which the drone is carrying the maximum possible payload
with the case without it.
For the FlyCart 30 drone, the energy consumption is expected to be significantly
higher than the DJI Avata due to its larger size, higher weight, and greater power
requirements. The energy consumption plot reveals:

• A baseline consumption that remains steady during level flight, with occasional
peaks corresponding to changes in altitude, acceleration, or sharp maneuvers.
For example:

– Peaks around the initial path steps are likely due to takeoff or an increase
in vertical speed.

– Additional peaks occur during descent or ascent phases, which align
with the presence of “ups” (only 1 for PL case) and “downs” (2 for PD
case and 3 for PL case) in the path.
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• When payload is added (30 kg for DJI FlyCart 30 ), the range of energy
consumption increases across the path steps, reflecting the greater energy
demands required to sustain flight under higher weight.

• The overall energy consumption ranges from about 0.01 Wh in steady flight to
above 10 Wh during peaks, consistent with the drone’s power requirements.

Given the FlyCart 30 ’s battery specifications:

Battery Energy Capacity =
38000mAh × 52.22V

1000
= 1984.36Wh.

The battery level plots further illustrate the energy demands, decreasing linearly
with minor deviations. With Maximum Payload the battery drain is more
pronounced due to the additional load. Additionally, the energy consumption
during ascent and descent maneuvers with payload (as evidenced by the peaks)
further contributes to this accelerated battery depletion bor both cases.
The total power consumption percentages for the analyzed paths are as follows:

• No Payload: 41.62% (PD) and 42.53% (PL).

• Max Payload: 64.91% (PD) and 66.57% (PL).

While for battery level the final results for path D are:

• No Payload: 58.38% (PD) and 57.47% (PL).

• Max Payload: 35.08% (PD) and 33.43% (PL).

For what concern the last type of UAV, the DJI Inspire 3, similar conclusions
can be made by looking figures 5.12, whose battery specifications include a total
battery capacity of:

Battery Energy Capacity =
4280mAh × 23.1V

1000
= 1984.36Wh.

Again the trends are coherent with what was mentioned previously, presenting
peaks at take-off and landing heights, as well as at ups and downs movements along
z-axis. The energy consumption plots, ranging between 0.2 Wh to 1 Wh, presents:

• PD case: 2 downs and 0 ups movements.

• PL case: 3 downs and 1 up movements.

In summary, the power consumption as well as the final battery levels are:

• No Payload PD: 79.80% and final battery level 20.20%.

• No Payload PL: 81.08% and final battery level 18.91% (PL).

• Max Payload PD: 85.85% and final battery level 14.14%.
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• Max Payload PL: 87.27% and final battery level 12.72% (PL).

(a) Path D - Power Consumption and
battery level with max payload (PD)

(b) Path D - Power Consumption and
battery level with no payload (PD)

(c) Path D - Power Consumption and
battery level with max payload (PL)

(d) Path D - Power Consumption and
battery level with no payload (PL)

Figure 5.12: Power consumption of the Inspire 3 drone along path D

5.2.2 Analysis of supported technologies -
default scenario

During the drone’s flight, the primary technologies used for connectivity varied
depending on the weighting approach. Again the focus will be for path A and B,
which presented a series of handovers during flight, thus it will be more interesting
looking at the different types of antennas which were exploited.

The presence of 4G technologies displayed in figures 5.13 for PL-based paths,
particularly at lower frequencies, suggests that their broader coverage areas made
them favorable for maintaining connectivity over longer distances, despite the
availability of 5G.
For PD-based weights instead the dominance shifts significantly to 5G tech. This
indicates that when prioritizing the shortest path, the network favored 5G, that
still being at lower frequencies guarantee the coverage but poorer performance.
As already mentioned in chapter four, another scenario is tested to see the impact
of removing the 4G 700MHz and 800MHz antennas, in favor to those who were not
considered due to higher Path Losses. For both path A and B, and for both PD
and PL types of weight the results are identical, as shows figure 5.14 that reports
only 2 of the 4 results since are all identical.

The results demonstrate that 5G at 800MHz is capable of sustaining connectivity
across the trajectory in the absence of alternative lower-frequency 4G bands.
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(a) Path A - Supported tech exploited
for PD-based weights

(b) Path A - supported tech exploited
for PL-based weights

(c) Path B - supported tech exploited for
PD-based weights

(d) Path B - supported tech exploited
for PL-based weights

Figure 5.13: Pie charts - Supported Technologies

However, it also suggests that without 4G support, this setting could support the
trajectory but with slightly higher path loss variability, being equal to, for example
in path A to:

• 97.14 dB versus 96.17 dB for PL-based in path A.

• 97.02 dB versus 96.61 dB for PD-based in path A.
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(a) Path A - Supported tech with no 4G
antennas (PD)

(b) Path B - Supported tech with no 4G
antennas (PL)

Figure 5.14: Supported techs with no 4G 700/800 MHz antennas

5.3 Performance Analysis of second scenario -
4-layered graph

In this second scenario, the constructed graph includes an additional layer along
the z-axis, making it more discrete and allowing for the formation of a greater
number of traversable arcs, as shown in Table 3.1. The added z-layer represents a
10-meter band above the ground, meaning that flying at this height may be more
challenging due to an increased probability of encountering obstacles.
The paths analyzed in this scenario differ from the standard case in the z-plane.
This choice was made to broaden the variety of results and assess how different
altitudes influence the findings.
The 2D plots of the main paths can be seen in figures 5.15, 5.16, 5.17 and 5.18.

(a) Path A with PD weights selection (b) Path A with PL weights selection

Figure 5.15: Path A for the 4-layered graph - PD & PL weight-based comparison.
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(a) Path B with PD weights selection (b) Path B with PL weights selection

Figure 5.16: Path B for the 4-layered graph - PD & PL weight-based comparison.

(a) Path C with PD weights selection (b) Path C with PL weights selection

Figure 5.17: Path C for the 4-layered graph - PD & PL weight-based comparison.

(a) Path D with PD weights selection (b) Path D with PL weights selection

Figure 5.18: Path D for the 4-layered graph - PD & PL weight-based comparison.
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On the 2D plane, the results appear very similar to those in Figure 5.1, with only
slight differences. These variations are mainly caused by differences in the altitude
of the start and/or destination points, as well as the presence of an additional
layer on which the drone can navigate. The key distinction between the PD and
PL cases remains evident, highlighted by the deviations observed in the PL case
compared to the PD case.

For a clearer understanding, Figures 5.19 and 5.20 present the 3D trajectories of
Path A and Path C. The elevation models for Path A can be compared with those
in Figure 5.6, where the PL case exhibits more frequent altitude variations before
reaching the destination. This behavior is particularly noticeable when approaching
a base station along the route. Such deviations are also reflected in the handovers
occurring at the same nodes, justifying the ‘change of course’ as an optimization
strategy to enhance signal reception from the BS.
Despite these changes, the shortest physical path remains identical to the one
obtained using the default graph. Since no modifications were made along the x-
and y-axes, the shortest route in terms of horizontal distance remains unchanged.

(a) Path A - 3D plot using PD (b) Path A - elevation profile using PD

(c) Path A - 3D plot using PL (d) Path A - elevation profile using PL

Figure 5.19: Path A - focus on displacements along the z-axis

Another example is illustrated in Figure 5.20, which represents the shortest route
observed so far. Given the relatively short total distance, no major influencing
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factors—such as intermediate base stations or obstacles—are present. Consequently,
the final results exhibit similar behavior across cases.

(a) Path C - 3D plot using PD (b) Path C - elevation profile using PD

(c) Path C - 3D plot using PL (d) Path C - elevation profile using PL

Figure 5.20: Path C - focus on displacements along the z-axis

As done previously, Tables 5.4 and 5.5 summarize the key metrics obtained for
Paths A and C. The observations for Path A remain consistent, with an equal
number of handovers and a lower average PL.

72



Chapter 5. Final Results

Table 5.4: Comparison of Path Loss Optimized vs. PD path using DJI Inspire 3
for Path A

Metric PL Optimized STD Shortest Path
Travelled Distance (m) 4385.77 4274.56
Number of Ups 4 1
Number of Downs 4 1
Handover Count 2 2
Total Time (No Payload) (s) 200.24 180.2
Total PC (No Payload) (%) 63.92 61.98
Final Battery Level (No Payload) (%) 36.07 38.02
Total Time (Max Payload) (s) 200.24 180.24
Total PC (Max Payload) (%) 68.87 66.71
Final Battery Level (Max Payload) (%) 32.13 33.29
Mean Path Loss (dB) 96.09 96.61
Maximum PL (dB) 99.39 99.50
Minimum PL (dB) 91.00 92.20
95th Percentile PL (dB) 99.33 99.36
99th Percentile PL (dB) 99.38 99.47
Variance of Path Loss 6.83 4.93
LoS Percentage (%) 99.72 99.70
NLoS Percentage (%) 0.28 0.30

Regarding Path C, physical metrics such as drone power consumption, total flight
time, distance traveled, and battery level show no significant variations. However, a
stronger focus should be placed on communication KPIs. Since this route is entirely
within a populated area, starting under one base station and reaching a second,
noticeable differences emerge in the number of handovers and the percentage of
NLoS occurrences.
In the PL-based case, performance is optimized by minimizing unnecessary han-
dovers along the trajectory. Additionally, since this path traverses an urbanized
area, a small fraction of it occurs in NLoS conditions. This is primarily due to the
starting point being located behind a warehouse, which obstructs the signal from
the neighboring base station.

To validate the observations above, Figure 5.21 illustrates the PL values experienced
at each node along the trajectory.
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Table 5.5: Comparison of Path Loss Optimized vs. PD path using DJI Inspire 3
for Path C

Metric PL Optimized STD Shortest Path
Traveled Distance (m) 1115.94 1115.94
Number of Ups 2 2
Number of Downs 0 0
Handover Count 3 5
Total Time (No Payload) (s) 57.86 57.86
Total PC (No Payload) (%) 17.24 17.26
Final Battery Level (No Payload) (%) 82.75 82.74
Total Time (Max Payload) (s) 57.86 57.86
Total PC (Max Payload) (%) 18.64 18.66
Final Battery Level (Max Payload) (%) 81.35 81.34
Mean Path Loss (dB) 91.66 91.66
Maximum PL (dB) 93.51 93.51
Minimum PL (dB) 88.97 88.98
95th Percentile PL (dB) 93.31 93.31
99th Percentile PL (dB) 93.48 93.48
Variance of Path Loss 1.10 1.12
LoS Percentage (%) 98.85 98.85
NLoS Percentage (%) 1.15 1.15

(a) Path A - Path Loss suffered for PD-
based weights

(b) Path A - Path Loss suffered for PL-
based weights

(c) Path C - Path Loss suffered for PD-
based weights

(d) Path C - Path Loss suffered for PL-
based weights

Figure 5.21: Representation of path Losses suffered on paths A and C
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Focusing on plots 5.21d and 5.21c, it is important to note the red line at the
beginning of the graph, which represents the initial NLoS steps.

5.3.1 Performance Analysis of different drones -
4-layers scenario

This section presents the results obtained for Path A, as Path C does not exhibit
any significant deviations from the default scenario. As previously mentioned, the
plots 5.22, 5.23, 5.24 illustrate the trends in battery level and power consumption
at each step.

(a) Path A - Power Consumption & bat-
tery level with max payload (PD)

(b) Path A - Power Consumption & bat-
tery level with no payload (PD)

(c) Path A - Power Consumption & bat-
tery level with max payload (PL)

(d) Path A - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.22: Power Consumption and battery level trends using Inspire 3 along
path A

(a) Path A - Power Consumption & bat-
tery level (PD)

(b) Path A - Power Consumption & bat-
tery level (PL)

Figure 5.23: Power Consumption and battery level trends using Avata 2 along path
A
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(a) Path A - Power Consumption & bat-
tery level with max payload (PD)

(b) Path A - Power Consumption & bat-
tery level with no payload (PD)

(c) Path A - Power Consumption & bat-
tery level with max payload (PL)

(d) Path A - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.24: Power Consumption and battery level trends using FlyCart 30 along
path A

Consistent with the previous findings, the altitude variations along the z-axis in
the PL case have led to significant spikes in energy consumption for both the DJI
Inspire 3, DJI Avata 2 and DJI FlyCart 30 drones, significantly impacting the
final results, as shown in Table 5.6. The results shown for the case with maximum
payload refer for the DJI FlyCart 30 to 30 kg maximum, and for the DJI Inspire 3
to 0.043 kg.

Metrics Name PL case PD case

Traveled distance Inspire: 4385.77 Inspire: 4274.56
FlyCart: 4385.77 FlyCart: 4274.56
Avata: 4385.77 Avata: 4274.56

Total PC (No P) Inspire: 63.92% Inspire: 61.98%
FlyCart: 34.40% FlyCart: 32.61%
Avata: 13.49% AVata: 12.66%

Final Battery (No P) Inspire: 36.08% Inspire: 38.02%
FLyCart: 65.6% FlyCart: 67.38%
Avata: 86.50% Avata: 87.34%

Total PC (Max P) Inspire: 64.45% Inspire: 62.49%
FlyCart: 54.48% FlyCart: 51.06%
Avata: 13.49% Avata: 12.66%

Final Battery (Max P) Inspire: 35.55% Inspire: 37.51%
FlyCart: 45.52% FlyCart: 48.93%
Avata: 86.50% Avata: 87.34%

Table 5.6: Metrics Comparison for PL and PD Cases
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As expected, the FlyCart 30 performs better over longer distances due to its more
powerful battery, despite its total weight of 52.5 kg, further burdened by the
payload of 30 kg in the corresponding cases.
In contrast, the Inspire 3 is designed for aerial filming, prioritizing higher velocities
at the expense of increased energy consumption, nearly double that of the FlyCart
30.
Among the tested drones, the DJI Avata 2 exhibited the best performance, main-
taining the highest remaining battery levels across all scenarios. This advantage
is primarily due to its lack of additional payload, significantly reducing energy
consumption. Furthermore, its sustained speed allows it to reach its destination
efficiently without excessive battery depletion, making it particularly well suited
for missions requiring extended flight endurance.

5.3.2 Analysis of supported technologies -
4-layers scenario

Also, for the 4-layer scenario, the most commonly supported technologies are
lower-frequency 4G LTE bands, specifically 700 MHz and 800 MHz, along with
occasional support for 5G at 800 MHz. The results do not differ significantly from
the default case, yielding identical plots for path A. However, for the remaining
three paths, the results are presented in the figures below (see 5.25, 5.26 and 5.27).
A particular focus should be placed on path C, as it exhibits a greater variety of
technologies. During this flight, the drone traverses an urban area, starting near
one base station and concluding near another. Given that the total distance is
slightly over one kilometer, configuring the algorithm to use PL-based weights
effectively prevents unnecessary handovers. In contrast, when using PD-based
weights, the system still performs multiple unnecessary handovers throughout the
flight, as also highlighted in Table 5.5.

(a) Path B - Supported tech exploited
for PD-based weights

(b) Path B - supported tech exploited
for PL-based weights

Figure 5.25: Pie charts B- Supported Technologies for 4 layer graph
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(a) Path C - supported tech exploited for
PD-based weights

(b) Path C - supported tech exploited
for PL-based weights

Figure 5.26: Pie charts C- Supported Technologies for 4 layer graph

(a) Path D - supported tech exploited
for PD-based weights

(b) Path D - supported tech exploited
for PL-based weights

Figure 5.27: Pie charts D- Supported Technologies for 4 layer graph

To further analyze the impact of lower-frequency 4G technologies, an additional test
is conducted in which all 4G 700/800 MHz and 5G 800 MHz bands are removed.
The results indicate that, across all paths, the drone consistently utilizes the next
available technology, which is 4G at 1800 MHz, as illustrated in Figure 5.28. The pie
charts remain unchanged across different paths, reflecting this fallback mechanism.
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(a) Path B -supported tech exploited for
PD-based weights no 700-800 MHz techs

(b) Path B - supported tech exploited for
PL-based weights no 700-800 MHz techs

Figure 5.28: Pie charts - Supported Technologies for 4 layer graph with no 700-800
MHz techs

These findings suggest that removing lower-frequency base stations should have
influenced the original path selection. Indeed, the absence of these base stations
negatively impacted overall performance. Differently with respect to the default
case, where only 4G 700/800 MHz bands are removed, the scenario is further
deteriorated by the removal of even the 5G 800 MHz band, causing a significant
deterioration in performance.

The results presented in Table 5.7 demonstrate this degradation.

Paths PL-based weights PD-based weights
STD NO 700-800 MHz STD NO 700-800 MHz

Path A 96.09 #H=2 103.02 #H=1 96.6 #H=2 102.90 #H=4
Path B 96.86 #H=3 102.56 #H=4 96.56 #H=4 104.57 #H=4
Path C 91.66 #H=3 99.35 #H=3 91.66 #H=5 99.35 #H=3
Path D 96.07 #H=2 103.12 #H=2 96.15 #H=2 102.95 #H=4

Table 5.7: PL-based and PD-based weights for different paths.

Analyzing the results in the Table 5.7, it is evident that removing the 700-800 MHz
bands leads to a clear degradation in performance when compared to the standard
case. This degradation is even more pronounced than in the default scenario, where
at least the 5G 800 MHz bands are still available.

The number of handovers remains relatively stable within the same weight type
(PL-based or PD-based), with only a slight increase in the NO 700-800 MHz case.
The major gap in total handovers is observed when comparing different weight types
within the same scenario (either standard or NO 700-800 MHz). This suggests that
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the choice of weight type has a more substantial influence on handover frequency
than the mere removal of lower-frequency bands.
Regarding the comparison between PL-based and PD-based weights within the
same scenario, it is observed that some cases exhibit higher mean path loss when
using PL-based weights compared to their PD-based counterparts. However, this
increase in path loss is balanced by a significantly lower number of handovers
along the path, reinforcing the advantage of PL-based optimization in reducing
unnecessary handovers while maintaining an acceptable communication quality.

5.4 Performance Analysis of third scenario -
small graph

In this third scenario, the graph model is extended to include a higher level of
discretization along the z-axis, incorporating a total of nine altitude layers. This
increased granularity provides a more detailed representation of UAV mobility,
allowing for finer altitude adjustments that can significantly influence path selection.
The additional layers facilitate a greater number of traversable arcs, potentially
offering improved connectivity but also increasing computational complexity.
The purpose of this scenario is to analyze how a higher-resolution altitude model
impacts trajectory planning, communication performance, and energy consumption.
The UAVs now have the flexibility to adjust their altitude more frequently.

As with the previous cases, the analysis compares paths computed using PL-based
and PD-based weight assignments. Given the higher number of available altitude
levels, it is expected that PL-based paths will take greater advantage of vertical
displacements to optimize connectivity. Conversely, PD-based paths may attempt
to minimize the number of altitude changes to reduce energy consumption.
The selected paths for this analysis, displayed in figures 5.29, 5.30, 5.31 and 5.32,
include a diverse range of start and end locations to assess how different terrain
conditions and base station distributions influence UAV flight. The upcoming
sections will discuss in detail the impact of this increased discretization on UAV
trajectory selection, power efficiency, and network handover events.
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(a) Path A with PD weights selection (b) Path A with PL weights selection

Figure 5.29: Path A for small graph - PD & PL weight-based comparison.

(a) Path B with PD weights selection (b) Path B with PL weights selection

Figure 5.30: Path B for small graph - PD & PL weight-based comparison.

(a) Path C with PD weights selection (b) Path C with PL weights selection

Figure 5.31: Path C for small graph - PD & PL weight-based comparison.
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(a) Path D with PD weights selection (b) Path D with PL weights selection

Figure 5.32: Path D for small graph - PD & PL weight-based comparison.

To further investigate connectivity performance, two representative paths are
selected: a shorter path (Path B) and a longer path (Path C). Both paths traverse
the town center, with takeoff or landing near one of the base stations in the area.
For comparison, Path A and Path C represent longer routes spanning the diagonal
of the available area, covering both urban and rural environments, including open
fields. These longer paths introduce additional variability in signal propagation due
to diverse terrain conditions. They may differ only for the z starting and ending
points.
Path B and Path D instead are shorter paths which begin (or end) in a flat area,
arriving (or departing) from a more densely populated area, possibly near a BS.

The following figures 5.33 and 5.34 present the 3D plots and elevation profiles of the
selected paths, providing information on the influence of terrain on communication
performance.
Each elevation profile depicts variations in terrain height along the communication
path, highlighting also for this scenario the major deviations, compared to the
shortest route, of the optimized route for PLs.
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(a) Path B - 3D plot using PD (b) Path B - elevation profile using PD

(c) Path B - 3D plot using PL (d) Path B - elevation profile using PL

Figure 5.33: Path B - focus on displacements along the z-axis

Despite some fluctuations in the paths generated by the PL-based weights, and
despite the shorter distances compared to previous scenarios, the increased height
levels and more discretized space significantly reduced the total distance traveled.
This optimization of PLs consequently led to lower energy consumption for the
drone, as will be demonstrated in the following sections. Similar elevation trends
can also be observed for paths A and D.

A general overview of the main KPIs for both path B and path C are reported in
tables 5.8 and 5.9.
Even when using a more discretized graph over a smaller area, the results remain
consistent with initial expectations, further supporting the observations made for
both the default and 4-layered graphs in terms of communication metrics.
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(a) Path C - 3D plot using PD (b) Path C - elevation profile using PD

(c) Path C - 3D plot using PL (d) Path C - elevation profile using PL

Figure 5.34: Path C - focus on displacements along the z-axis

Table 5.8: Comparison of PL vs. PD based paths using DJI Inspire 3 for Path B

Metric PL Optimized STD Shortest Path
Traveled Distance (m) 1127.52 1102.67
Number of Ups 8 5
Number of Downs 3 0
Handover Count 3 6
Total Time (No Payload) (s) 65.36 57.86
Total PC (No Payload) (%) 28.34 27.19
Final Battery Level (No Payload) (%) 71.66 72.81
Total Time (Max Payload) (s) 65.36 57.86
Total PC (Max Payload) (%) 30.69 29.40
Final Battery Level (Max Payload) (%) 69.30 70.60
Mean Path Loss (dB) 91.63 91.71
Maximum PL (dB) 93.47 93.47
Minimum PL (dB) 88.63 88.63
95th Percentile PL (dB) 93.27 93.37
99th Percentile PL (dB) 93.43 93.46
Variance of Path Loss 1.14 1.29
LoS Percentage (%) 100 100
NLoS Percentage (%) 0 0
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Table 5.9: Comparison of PL vs. PD based paths using DJI Inspire 3 for Path C

Metric PL Optimized STD Shortest Path
Traveled Distance (m) 3144.7 3136.41
Number of Ups 1 0
Number of Downs 6 5
Handover Count 5 7
Total Time (No Payload) (s) 138.58 136.08
Total PC (No Payload) (%) 72.39 72.16
Final Battery Level (No Payload) (%) 27.60 27.84
Total Time (Max Payload) (s) 138.58 136.08
Total PC (Max Payload) (%) 77.99 77.72
Final Battery Level (Max Payload) (%) 22.01 22.28
Mean Path Loss (dB) 93.54 93.46
Maximum PL (dB) 95.32 96.43
Minimum PL (dB) 92.27 92.17
95th Percentile PL (dB) 95.07 95.05
99th Percentile PL (dB) 95.30 96.11
Variance of Path Loss 0.62 0.70
LoS Percentage (%) 100 100
NLoS Percentage (%) 0 0

To validate these findings, Figure 5.35 illustrates the PL values experienced at each
node along the trajectory. As previously stated in Tables 5.8 and 5.9, the number
of handovers in PD-based paths is significantly higher than in their corresponding
PL-based counterparts, increasing the likelihood of communication issues, such as
disconnections, during the flight.
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(a) Path B - Path Loss suffered for PD-
based weights

(b) Path B - Path Loss suffered for PL-
based weights

(c) Path C - Path Loss suffered for PD-
based weights

(d) Path C - Path Loss suffered for PL-
based weights

Figure 5.35: Representation of path Losses suffered along paths B and C in small
graph

Focusing on the trend of perceived PLs along path B, we observe an initial increase
followed by a subsequent decrease. As shown in figures 5.30a and 5.30b, the
trajectory begins just below a BS and ends near another. This pattern explains
the PL trend: approximately midway through the route, the drone is equidistant
from both BSs, leading to higher PL values.
For path C, the drone starts in a relatively flat but isolated area, as seen in figures
5.31a and 5.31b, apart from the initial (but far) BS in LoS. Upon entering the
built-up area, a series of handovers occur, resulting in the observed peaks in the
initial steps. As the drone moves from the urban area towards the far northwest of
the region, the PL exhibits a slight upward trend.

5.4.1 Performance Analysis of different drones -
small graph scenario

In this scenario, the performance of the three different drone models—DJI Avata 2,
Inspire 2, and FlyCart 30—can be directly compared. This comparison is feasible
because the covered area is smaller, and the selected path for evaluation, path D, is
more manageable for all three drone types. Path B exhibits performance trends
similar to path D, as well as path A with Path C.
Table 5.10 presents the main communication KPIs for path D, which remain
consistent across all three drone types. Concerning the second analyzed case, Path
C, the main KPIs can be found in table 5.9.

86



Chapter 5. Final Results

KPIs PL Optimized STD Shortest Path
Traveled Distance (m) 1252.37 1177.81
Number of Ups 9 3
Number of Downs 6 0
Handover Count 2 3
Mean Path Loss (dB) 92.77 92.75
Maximum PL (dB) 94.29 94.31
Minimum PL (dB) 90.98 90.81
95th Percentile PL (dB) 94.11 94.12
99th Percentile PL (dB) 94.26 94.27
LoS Percentage (%) 100.0 100.0
NLoS Percentage (%) 0.0 0.0

Table 5.10: Communication KPIs for path D in small graph

As observed in previous analyses, the PL-optimized path exhibits more frequent
altitude changes (ups and downs) compared to the standard shortest path for both
the visualized cases C and D. This results in a longer traveled distance and higher
power consumption. However, communication performance remains superior, as
the handover count is lower in the PL-optimized path. Despite the mean PL being
slightly higher than that of the standard shortest path, the overall reliability of the
connection is improved, reducing the likelihood of communication disruptions. The
PL-based path for all the drones, as expected, has more peaks in power consump-
tions due to the frequent ups and downs, compared to the PD-based path.

(a) Path C - Power Consumption & bat-
tery level with no payload (PD)

(b) Path C - Power Consumption & bat-
tery level with no payload (PL)

(c) Path D - Power Consumption & bat-
tery level with no payload (PD)

(d) Path D - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.36: Power Consumption and battery level trends using Avata 2 along path
C & D in small graph.
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As mentioned in previous section, displayed in Figure 5.36, the energy consumption
and battery level results for the DJI Avata drone account only for its own operational
payload (being equal to 0.377), as it is not designed for transporting objects or
materials. Instead, it is primarily intended for video recording over short distances.
In the final results, DJI Avata ranged from a minimum of 0.01 to a maximum of
0.06 Wh in energy consumption, achieving:

• Path C

– Final Battery Level:

∗ PL-based: 90.51%
∗ PD-based: 90.56%

– Power Consumption:

∗ PL-based: 9.49%
∗ PD-based: 9.44%

• Path D

– Final Battery Level:

∗ PL-based: 95.69%
∗ PD-based: 96.19%

– Power Consumption:

∗ PL-based: 4.31%
∗ PD-based: 3.81%

As for DJI Inspire 3, figures 5.38 and 5.37 present the energy consumption results
for both scenarios in path C and D : with no payload and with the maximum
payload the drone can carry.
Since this drone operates at its maximum horizontal speed (see Table 5.1 for
reference), which is higher than that of the other two models, this inevitably leads
to increased power consumption.
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(a) Path C - Power Consumption & bat-
tery level with max payload (PD)

(b) Path C - Power Consumption & bat-
tery level with no payload (PD)

(c) Path C - Power Consumption & bat-
tery level with max payload (PL)

(d) Path C - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.37: Power Consumption and battery level trends using Inspire 3 along
path C in small graph

(a) Path D - Power Consumption & bat-
tery level with max payload (PD)

(b) Path D - Power Consumption & bat-
tery level with no payload (PD)

(c) Path D - Power Consumption & bat-
tery level with max payload (PL)

(d) Path D - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.38: Power Consumption and battery level trends using Inspire 3 along
path D in small graph

In the final results, the DJI Inspire 3 exhibited energy consumption ranging from
a minimum of 0.2 Wh to a maximum of 0.6 Wh for the PD-based path and from
0.2 Wh to 1 Wh for the PL-based path, achieving:
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• Path C:

– Final Battery Level:

∗ Max Payload PL-based: 53.48%
∗ No payload PL-based: 53.87%
∗ Max Payload PD-based: 53.60%
∗ No payload PD-based: 53.98%

– Power Consumption:

∗ Max Payload PL-based: 46.52%
∗ No payload PL-based: 46.13%
∗ Max Payload PD-based: 46.40%
∗ No payload PD-based: 46.02%

• Path D:

– Final Battery Level:

∗ Max Payload PL-based: 65.64%
∗ No payload PL-based: 68.27%
∗ Max Payload PD-based: 69.05%
∗ No payload PD-based: 71.35%

– Power Consumption:

∗ Max Payload PL-based: 34.36%
∗ No payload PL-based: 31.73%
∗ Max Payload PD-based: 30.95%
∗ No payload PD-based: 28.65%

Finally, concerning instead the results obtained for both Path C and Path D for
DJI FlyCart 30, these are displayed in figures 5.39 and 5.40.
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(a) Path C - Power Consumption & bat-
tery level with max payload (PD)

(b) Path C - Power Consumption & bat-
tery level with no payload (PD)

(c) Path C - Power Consumption & bat-
tery level with max payload (PL)

(d) Path C - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.39: Power Consumption and battery level trends using FlyCart 30 along
path C in small graph

(a) Path D - Power Consumption & bat-
tery level with max payload (PD)

(b) Path D - Power Consumption & bat-
tery level with no payload (PD)

(c) Path D - Power Consumption & bat-
tery level with max payload (PL)

(d) Path D - Power Consumption & bat-
tery level with no payload (PL)

Figure 5.40: Power Consumption and battery level trends using FlyCart 30 along
path D in small graph

Regarding the DJI FlyCart 30, as in previous cases, the initial and final peaks
in power consumption are significantly higher than those observed for the other
drones. This is due to the drone’s need to generate sufficient lift for a greater mass
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(see specifications 5.1), which becomes even more pronounced when carrying the
maximum payload. In these scenarios, power consumption exceeds 10 Wh during
these critical phases.
The final results obtained by DJI FlyCart 30 in path C and D are:

• Path C:

– Final Battery Level:

∗ Max Payload PL-based: 61.16%
∗ No payload PL-based: 75.36%
∗ Max Payload PD-based: 61.51%
∗ No payload PD-based: 75.53%

– Power Consumption:

∗ Max Payload PL-based: 38.84%
∗ No payload PL-based: 24.64%
∗ Max Payload PD-based: 38.49%
∗ No payload PD-based: 24.47%

• Path D:

– Final Battery Level:

∗ Max Payload PL-based: 79.81%
∗ No payload PL-based: 87.80%
∗ Max Payload PD-based: 83.28%
∗ No payload PD-based: 89.65%

– Power Consumption:

∗ Max Payload PL-based: 20.19%
∗ No payload PL-based: 12.20%
∗ Max Payload PD-based: 16.72%
∗ No payload PD-based: 10.35%

5.4.2 Analysis of supported technologies -
small graph scenario

The analysis of the main supported technologies confirms previous observations.
The most commonly used technologies are those operating at lower frequencies
within the 4G and 5G bands. The distribution of these technologies is illustrated
in Figures 5.41 for shorter paths and 5.42 for longer ones.
One notable difference compared to the other scenarios is the increased frequency of
handovers. This can be attributed to the lower flight altitude over the urban area,
where BS in LoS frequently transition to NLoS due to obstacles. This phenomenon
is particularly evident in paths weighted primarily by PD-based weights, as the
drone is forced to switch connections more frequently.
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(a) Path B - supported tech exploited for
PD-based weights

(b) Path B - supported tech exploited
for PL-based weights

(c) Path D - supported tech exploited for
PD-based weights

(d) Path D - supported tech exploited
for PL-based weights

Figure 5.41: Pie charts - Supported Technologies for small graph

To further evaluate the impact of lower frequency bands, an additional test is con-
ducted by removing all 4G 700/800 MHz bands. The results remain consistent with
previous findings, confirming that 5G 800 MHz remains the dominant technology
along the entire route, as shown in Figure 5.48.

The results, shown in 5.11, indicate that removing the 4G 700-800 MHz bands
negatively impacts the average PL in both cases; however, the effect on handovers
(#H) differs between the large and small graphs. In the larger graph, the removal of
these bands led to an increase in both PL and #H, while in the smaller graph, only
PL worsened, and #H remained the same or even decreased. This difference can be
attributed to the greater discretization in the smaller graph, which allows for more
route options, potentially reducing the need for frequent handovers. Additionally,
in the larger graph, the 5G 800 MHz band was also removed, reducing the available
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(a) Path A - Supported tech exploited
for PD-based weights

(b) Path A - supported tech exploited
for PL-based weights

(c) Path C - supported tech exploited for
PD-based weights

(d) Path C - supported tech exploited
for PL-based weights

Figure 5.42: Pie charts - Supported Technologies for small graph

frequency bands significantly. In contrast, in the smaller graph, the 5G 800 MHz
band remained, allowing it to compensate for the removed 4G bands, thus mitigating
the impact on handovers.

Paths PL-based weights PD-based weights
STD NO 700-800 MHz STD NO 700-800 MHz

Path A 93.54 #H=3 94.33 #H=3 93.39 #H=4 94.54 #H=6
Path B 91.63 #H=3 92.24 #H=1 91.71 #H=6 92.23 #H=3
Path C 93.54 #H=5 94.39 #H=3 93.46 #H=7 94.42 #H=6
Path D 92.77 #H=2 93.06 #H=2 92.75 #H=3 93.02 #H=2

Table 5.11: PL-based and PD-based weights for different paths.
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(a) Supported tech exploited for PD-
based weights - no 4G 700/800 MHz

(b) Supported tech exploited for PL-
based weights - no 4G 700/800 MHz

Figure 5.43: Pie charts - Supported Technologies for small graph with no 4G
700/800 MHz bands

5.5 Performance Analysis of the Trade off scenario

In this section, we analyze the performance of the proposed approach when opti-
mizing the trade-off between communication quality and energy efficiency. The
evaluation is conducted using the previous three graph representations, where the
edge weights are derived from a combination of physical distance and path loss
values. Unlike the previous cases, the objective here is to balance both spatial
efficiency and communication reliability by assigning weighted contributions to
each factor, as summarized in table 4.2.
To achieve this, a combined weight model is employed, as previously introduced,
where the total weight of an edge is computed as a linear combination of path
loss and physical distance. By adjusting the weighting coefficients, WPL and WPD,
different trade-off scenarios are tested to assess their impact on routing decisions.
The goal is to find an optimal balance that minimizes the physical path length
without significantly degrading communication quality. For simplicity, we refer to
this combination of the two weight types as the Hybrid Weight (HW).
It is important to note that, since physical distances generally have greater nu-
merical values compared to path loss values (which are the normalized and scaled
ratio of metrics expressed in dB), they tend to have a stronger influence on the
final weights. As a result, the routing decisions will often be more similar to those
obtained using a purely PD-based approach. This effect occurs because, even when
PL is included in the weighting scheme, its relative contribution remains lower than
that of PD unless explicitly amplified through the weighting coefficients.

The results presented below correspond to a single selected path from those analyzed
previously, allowing for comparisons across the three different graph types. These
results are evaluated under the three threshold configurations outlined in Table 4.2.
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The same type of drone, DJI Inspire 3, is used in all the following results.

5.5.1 Analysis on default graph - trade off

For the default scenario using the 3-layered graph, Path B is selected. The original
PL-based and PD-based 2D plots were previously presented in Figures 5.2a and
5.2b, respectively. The results obtained using the HW-based path are shown in
Figure 5.44.
Since the differences between the various threshold configurations within each HW
scenario are minimal, only the case of ’50% PD vs. 50% PL’ is displayed in the
plots.

(a) 2D plot for the configuration 50% PD and
50%.

(b) Path losses perceived along path B
in 50:50 trade off configuration

Figure 5.44: Results for path B in trade off scenario

Given that the DJI Inspire 3 is chosen for this scenario, it is important to assess
whether the computed trajectories fall within the operational limits of the drone’s
battery capacity. Based on manufacturer specifications, the Inspire 3 can cover in
this case a maximum distance of approximately 6969.98 m with no payload and
around 6483.35 m when carrying the maximum payload.

However, as observed in the computed results, the total power consumption in this
scenario exceeds what the standard battery can support. This implies that the
drone would be unable to complete the flight before the battery is fully depleted.
As a result, the battery percentage will appear negative, and the total power
consumption surpasses 100%, as illustrated in Figure 5.45.
However, despite this limitation, a meaningful comparison can still be made between
the final power consumption in the standard cases and in the hybrid weight-based
trade-off scenario.

The results presented in Table 5.12 indicate that the differences among the various
HW-based outputs are small. This is likely due to the limited number of available
paths, constrained by the number of cells and edges, which restricts the impact of
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(a) Power consumptions for configuration
20:80 for max payload.

(b) Power consumptions for configura-
tion 20:80 no payload

(c) Power consumptions for configuration
50:50 for max payload.

(d) Power consumptions for configura-
tion 50:50 with no payload

Figure 5.45: Results for Power Consumptions and Battery Levels in path B in
trade off default scenario

combining path loss and physical distance weights. However, a notable transition
in communication performance occurs between the 80:20 HW and the 50:50 HW
configurations, while the traveled distance and corresponding power consumption
remain stable across all HW cases. This shift can be attributed to the selection of a
specific edge over another (along x-y plane rather than z, which remains constant),
enabling the drone to maintain connectivity with the same base station while
minimizing the number of handovers.

On the other hand, the performance gap between the 20:80 and 50:50 HW cases is
not as pronounced. Notably, the 50:50 HW configuration appears to offer the best
trade-off for this path, achieving a slight reduction in total power consumption and
traveled distance compared to the PL-based standard case, while maintaining the
number of handovers at three. This suggests that a balanced weighting between
path loss and physical distance can provide an effective routing solution, ensuring
both energy efficiency and communication reliability.
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Metrics PL-based Std PD-based Std Trade off - PD:PL [%]

20:80 50:50 80:20

#H 3 4 3 3 4

Avg PL 96.80 96.51 97.02 97.024 96.51

Distance 7777.27 7422.03 7422.12 7422.03 7422.03

Tot PC Max Payload 120.64% 114.48% 114.48% 114.48% 114.48%

Tot PC No Payload 112.09% 106.48% 106.48% 106.48% 106.48%

Table 5.12: Comparisons on path B with all the trade off configurations - standard
graph

5.5.2 Analysis on 4-layered graph - trade off

Since path B yields identical results for both the default and 4-layered graphs—having
the same start and end points—path A is selected for this analysis. The main
results are presented in Figure 5.46, while the power consumption trends for the
20:80 trade-off configuration are shown in Figure 5.47.

The 2D path and path loss plots for the three different configurations exhibit only
minimal variations, making the differences nearly imperceptible. For this reason,
only a single representative case is displayed.

(a) 2D plot for the configuration 20% PD
and 80%.

(b) Path losses perceived along path A in
trade off scenario

Figure 5.46: Results for path A in trade off 4-layered scenario

The results in Table 5.13 indicate that the trade-off configurations produce only
minor variations compared to the standard (STD) cases. While all hybrid configu-
rations maintain a similar number of handovers, they show a slight reduction in
average path loss compared to the PD-based case, though still higher than the
PL-based scenario.
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(a) Power consumption for the configura-
tion 20% PD and 80% with max payload.

(b) Power consumption for the configura-
tion 20% PD and 80% with no payload.

Figure 5.47: Results for path A in trade off 4-layered scenario

Regarding power consumption, the trade-off configurations exhibit a noticeable
improvement over the PL-based case, aligning more closely with the PD-based
results. Among them, the 50:50 and 80:20 configurations offer the most balanced
outcome, achieving a reasonable compromise between signal quality and energy
efficiency without significantly deviating from the shortest physical path.

Metrics PL-based STD PD-based STD Trade off - PD:PL [%]

20:80 50:50 80:20

#H 2 2 3 3 3

Distance 4385.77 4274.56 4282.85 4274.57 4282.94

Avg PL 96.09 96.61 96.218 96.229 96.226

Tot PC Max Payload 68.87% 66.71% 62.60% 62.49% 62.49%

Tot PC No Payload 63.92% 61.98% 62.10% 61.98% 61.98%

Table 5.13: Comparisons on path A with all the trade off configurations - 4-layered
graph

5.5.3 Analysis on small graph - trade off

The path selected for the small graph scenario is path B, whose results were previ-
ously discussed in the dedicated sections and summarized in Table 5.8 for the DJI
Inspire 3 drone.

The following figures present the 2D trajectory and the corresponding path loss
variations experienced along path B. As observed in previous scenarios, the dif-
ferences among the trade-off configurations are relatively minor. For this reason,
Figures 5.48 illustrate only one representative trade-off case, specifically the 20:80
configuration.

Since the selected path is shorter than the previous ones, the DJI Inspire 3 com-
pletes the flight without any issues. Figure 5.49 presents the results for the 20:80
trade-off configuration, as the other configurations yield results nearly identical to
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(a) 2D plot of path B using the 20:80 trade
off configuration

(b) Path Loss suffered along path B for
configuration 20:80

Figure 5.48: Results for path B in trade off scenario - small graph

the PD-based case.

(a) Power consumptions for configuration
20:80 for max payload.

(b) Power consumptions for configura-
tion 20:80 for no payload.

Figure 5.49: Results for path B in trade off scenario - small graph

Since the differences among the trade-off configurations are minimal and not easily
distinguishable in the visual plots, Table 5.14 provides a summarized comparison
of the obtained results.

The analysis conducted on the small graph reveals that all hybrid configurations
(50:50, 80:20, and 20:80 HW) produce nearly identical outcomes in terms of
average path loss, traveled distance, and power consumption, with no significant
impact on communication performance. This similarity can be attributed to the
relatively short traveled distance (1460 m), which limits the number of possible
paths and variations in power consumption or path loss. Consequently, none of the
hybrid configurations demonstrate a meaningful advantage over the others. In this
particular case, when flying across an urban area, choosing an HW configuration is
not the most effective solution, as the proximity to numerous antennas eliminates
the need to optimize communication, while it comes at the cost of a significantly
longer route.
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Metrics PL-based Std PD-based Std Trade off - PD:PL [%]

20:80 50:50 80:20

#H 3 6 4 4 4

Avg PL 91.63 91.71 92.39 92.39 92.39

Distance 1127.52 1102.67 1460.0 1460.0 1460.0

Tot PC Max Payload 30.69% 29.40% 22.02% 22.02% 22.02%

Tot PC No Payload 28.34% 27.19% 21.83% 21.83% 21.83%

Table 5.14: Comparisons on path B with all the trade off configurations - small
graph
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Conclusions

This study explored an extended 3D graph-based model for BVLoS drone opera-
tions, incorporating additional altitude layers to enhance path diversity and improve
communication performance. The results demonstrated how the introduction of
additional z-axis layers influences drone trajectories, handover events, and power
consumption, providing valuable insights for optimal communication quality and
energy efficiency. By integrating path loss as a weighting parameter, we highlighted
how signal reliability influences the choice of routes, especially in scenarios where
NLoS conditions are prevalent. Additionally, the comparison between different
drones revealed significant differences in energy consumption, further emphasizing
the need for drone-specific optimizations in mission planning.

Another key finding of this study is that the hybrid weight configurations yield
results that, while distinct from the standard PD- and PL-based cases, remain
closely aligned with one another. The trade-off configurations consistently exhibit
an intermediate behavior, balancing distance minimization and communication
performance. In some cases, power consumption is even lower than in the standard
PD-based scenario, while path loss values tend to be slightly worse. These results
suggest that hybrid weight strategies can provide a viable middle ground between
optimizing energy efficiency and maintaining acceptable signal quality.
Moreover, we observed that when traveling away from urban centers, the path loss
experienced along the trajectory tends to be higher compared to paths that pass
near urbanized areas (e.g., 5 up to 10 dB gap in a comparable traveled distance).
As a result, the algorithm adapts by deviating from the shortest path to maintain
connectivity, bringing the trajectory closer to the nearest base station. This behavior
suggests that a hybrid approach would be most effective, dynamically adjusting the
path selection based on the drone’s proximity to urban areas and base stations. Such
an approach would help mitigate signal loss while also limiting excessive deviations,
thereby balancing communication reliability and power consumption. Conversely,
in fully urban environments, where base station density is higher, the shortest
path approach may be preferable, with the primary concern shifting to obstacle
avoidance if buildings are too tall. Future refinements to this framework could
incorporate adaptive weight adjustments based on environmental characteristics,
further improving the robustness of drone trajectory planning in BVLoS operations.
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6.1 Future Work

While the proposed model has demonstrated its effectiveness in improving BV-
LoS drone trajectory planning by incorporating additional altitude layers and
communication-aware path selection, there are several directions for further devel-
opment that could enhance its applicability and accuracy.
A natural extension of this work would involve adapting the channel model to
urban environments by integrating the UMA propagation model. This would allow
a more precise representation of signal propagation in densely built-up areas, where
obstacles such as buildings significantly impact the received power and connectivity.
By extending the model beyond the suburban scenario considered in this study,
it would be possible to better assess the viability of BVLoS drone operations in
real-world urban deployments.

Another important enhancement concerns the integration of dynamic constraints,
such as the presence of no-fly zones. By incorporating regulatory and operational
constraints into the path-planning process, the model could ensure that drones
comply with airspace regulations while optimizing their trajectories for both com-
munication performance and flight efficiency. This extension could involve real-time
updates on restricted areas, allowing the drone to dynamically adapt its route when
faced with new restrictions.
The communication model itself can also be further refined by considering addi-
tional environmental and network factors. Elements such as weather conditions,
multipath effects, and base station congestion due to high ground traffic could
be incorporated to achieve a more realistic assessment of connectivity along the
planned routes. The impact of such factors on path loss and handover frequency
would provide valuable insights into the robustness of communication links under
various operational scenarios. Furthermore, an additional refinement could involve
incorporating the uplink case, where the drone must transmit data back to the
network. Since transmission power consumption depends on the drone’s position
relative to the base station it is associated with, considering uplink energy require-
ments would provide a more comprehensive optimization framework. This would
allow for a more realistic approach, balancing both downlink and uplink efficiency,
which is particularly crucial for missions involving, for example, real-time video
streaming or sensor data collection.

Finally, improvements can be made in the power consumption modeling by incor-
porating additional parameters that affect drone energy efficiency. The inclusion
of factors such as wind resistance, varying speed profiles, payload variations, and
different atmospheric conditions would allow for a more comprehensive evaluation
of energy consumption throughout the flight. Such refinements could lead to
more accurate predictions of battery performance, ultimately contributing to more
efficient mission planning.
By addressing these aspects, the model could be further extended to support more
complex and dynamic operational scenarios, ensuring improved reliability and
efficiency for BVLoS drone communications and navigation.
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