
POLITECNICO DI TORINO
Master Degree Course in Computer Engineering

Master Degree Thesis

A Groovy-based Domain-Specific
Language For Digital Payment

System End-To-End Testing

Relatore
Prof. Riccardo Coppola Vito Ruggirello

matricola: 289902

Supervisor
Pay Reply

Dott. Mattia Ognibene

A. Y. 2024-2025

Summary

Automated software testing remains one of the most overlooked processes in soft-
ware engineering, primarily due to its costly implementation and the limited un-
derstanding of its benefits outside the field of testing expertise. This research aims
to develop a tool that supports the automated execution of integration tests for
an application in the digital payments domain while demonstrating the advantages
of automated testing approaches. The digital payments domain serves as an ideal
testing environment for this purpose due to its business-critical nature and the
data-driven, browser-based testing processes required by its business requirements.

The first part of this thesis presents the challenges posed by domain and business
requirements. In the second part, a Java solution to execute a set of user-defined
test is proposed. In particularly, a Domain Specific Language has been designed
to dynamically extract tests definitions and parameters from an input file and run
them inside JUnit. Groovy has been employed to define the DSL and directly
parse the input file into Java classes. Compared to other parsing solution, Groovy
provided maximum flexibility and easy of implementation. As output, the program
produces an HTML report using the new opentest4j standard maintained by the
JUnit team.

The developed solution offers several significant advantages over traditional test-
ing approaches. First, it provides a more accessible interface for non-technical
stakeholders to define and comprehend test cases through the custom DSL. Sec-
ond, the integration with JUnit leverages an established testing framework while
extending its capabilities for specialized payment processing scenarios. Third, the
HTML reporting functionality enables clear visualization of test results and facili-
tates communication between technical and business teams.

Future research directions include extending the DSL to support more complex
testing scenarios and integration of additional technologies; for example by devel-
oping a web application interface and including Large Language Models in DSL
definition and utilization pipelines. Additionally, the approach could be adapted
for other domains requiring similar data-driven, browser-based testing workflows.
Keywords: Software Engineering, Automation Testing, Integration Testing, Dig-
ital Payments, JUnit, Domain-Specific Language, Groovy, Selenium

ii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Statement . 1
1.3 Objectives . 2
1.4 Digital Payments as Testing Domain 3

1.4.1 Thesis Structure . 3

2 State Of The Art 5
2.1 Software Development Models . 5

2.1.1 V&V Model . 6
2.2 Software Testing . 6

2.2.1 Testing Methodologies . 7
2.3 Automation Testing Tools . 9

2.3.1 Testing Framework . 9
2.3.2 Project Management Tools 10
2.3.3 CI/CD Servers . 11

2.4 Domain-Specific Languages . 14
2.4.1 Programming Languages . 14
2.4.2 Problem Domain . 15

3 Domain Analysis and Challenges 17
3.1 Pay Reply . 17
3.2 Analysis of the Case Study . 17

3.2.1 Digital Payments . 18
3.2.2 Digital Payment Systems . 18
3.2.3 The General Payment Process 19
3.2.4 PaymentHub Solutions . 20
3.2.5 Payment Orchestrator . 21
3.2.6 Payment Gateway . 22
3.2.7 Security Considerations . 22
3.2.8 Context Diagram . 23
3.2.9 Glossary . 23

iii

3.3 Scenarios to be Tested . 23
3.3.1 Direct Payment . 24
3.3.2 Card Tokenization . 24
3.3.3 Pre-Authorization . 24
3.3.4 Merchant Initiated Transaction 26

3.4 Testing Challenges and Solutions 26

4 Methodology 27
4.1 JUnit 5 . 27
4.2 Java Annotations . 29

4.2.1 Writing Tests with junit-jupiter 30
4.2.2 Dynamic Tests with @TestFactory 31
4.2.3 Running Tests Programmatically 33
4.2.4 Test Report Generation and TestExecutionListener 35
4.2.5 JUnit 5.12 . 37

4.3 Open Test Reporting . 37
4.4 Replacing Manual Postman HTTP Requests 38

4.4.1 OkHttp and Retrofit . 39
4.4.2 Connection to the Test Environments via SSH Proxies . . . 40
4.4.3 Apache Mina SSHD . 41

4.5 Selenium Web Driver . 43
4.5.1 Selenium WebDriver Manager 43
4.5.2 The Page Object Model . 45
4.5.3 Waiting Strategies . 45

4.6 Groovy . 47
4.6.1 Closures . 48
4.6.2 Delegation Strategies . 49
4.6.3 The Builder Pattern . 50
4.6.4 Integrating Groovy into a Java Application 51
4.6.5 Combining Custom Script Class With Closures Delegation . 53
4.6.6 Static Type Checking . 54

4.7 DSL Implementation . 57
4.7.1 DSL Requirements and Design 57
4.7.2 Implementation Overview 59
4.7.3 Defining Test Classes . 59
4.7.4 Configuring Test Parameters 61
4.7.5 Detailed Class Diagram . 61

4.8 Parallel Test Execution . 62
4.8.1 PaymentCard Synchronization 63
4.8.2 Enabling Parallel Test Execution in JUnit 65

4.9 IntelliJ IDEA DSL Specification via GDSL 66
4.9.1 GDSL Files . 66

iv

5 Results and Evaluation 71
5.1 Test Suite Definition . 71
5.2 Qualitative Analysis: DSL Expressiveness and Usability 72

5.2.1 Case Study: Multi-Card Test Definition 72
5.2.2 Environmental Configuration Flexibility 77
5.2.3 Test Reporting Capabilities 78

5.3 Quantitative Analysis: Execution Time 78
5.3.1 Execution Time Comparison 78

5.4 Challenges and Limitations . 80
5.4.1 Test Stability . 80
5.4.2 Application Interfaces . 80

5.5 Future Works . 80
5.5.1 Reporting Infrastructure . 80
5.5.2 Solution Generality . 81
5.5.3 LLM Integration . 81

5.6 Summary of Findings . 81

6 Conclusion 83

v

Chapter 1

Introduction

1.1 Context and Motivation
Every engineering field has developed, over the years of its own history, some
methods and processes to test and validate the proposed solutions. For instance,
aerospace engineering provides a set of standards and rigorous mechanical tests to
assess the airplane reliability. The software engineering field is no exception, and
since the birth of modern software development, programmers needed a way to
validate their products against a set of formal requirements and to ensure that the
quality of what they produced would meet customer expectations. Yet, software
engineering is unique in the nature of the solutions to be tested and in the way
these tests are executed. Software possesses no physical properties that can be
measured or subjected to critical scenarios, but is instead abstract and primarily
involves information manipulation.

Testing has been demonstrated to be the most reliable method for assessing prod-
uct maturity, thereby becoming the common factor across all software engineering
development models.

In addition to showing the presence of bugs, automated software testing can
be of great help when well integrated into the development process as it provides
a fixed set of constraints preventing regressions and allowing for frictionless code
modification and refactoring.

1.2 Problem Statement
The testing phase is typically assigned either to developers or to dedicated Qual-
ity Assurance teams responsible for performing manual testing of the delivered
application. Developer-led testing may be susceptible to domain misconceptions,
potentially resulting in defective products, whereas QA-team testing presents signif-
icant resource requirements and necessitates execution with each release to prevent

1

1 – Introduction

regressions.
While the domain misconceptions can be addressed adopting Domain-Driven De-

sign methodologies[10], several tools, such as Cucumber [17], have been proposed
to bridge the technical gap between software testing and less technical stakeholders.
These tools introduce a common language—a Domain-Specific Language—purposefully
designed for test requirements definition. Since the DSL is written in common en-
glish, it can be accessed by both stakeholders and developers to enable a collab-
orative effort in writing business requirements, reducing the gap between formal
requirements and techical solution. In this way, stakeholders and developers can
share the same requirements representation with the added clarity due to formality.
This approach presents significant implementation challenges, requiring both highly
coordinated teams and well-defined human processes. Furthermore, it is optimally
implemented at project inception, as post-launch integration may not provide suf-
ficient return on investment. Additionally, Cucumber test data are fixed by test
definitions, and the tool is not designed to execute tests with varying user-defined
input parameters.

The digital payments domain, however, necessitates a highly customizable dy-
namic test definition framework that supports repeated execution of identical tests
with variable parameters. For example, this would enable testing a payment process
initially with a MasterCard debit card and subsequently with a Visa card. While
tests framework usually provide out-of-the-box support for these data-driven tests
scenarios, they actually did not fit the SUT requirements: the data point are still
defined and embedded in the test case and cannot be changed at run-time based on
the user input data.

The testing challenges addressed by this research work are the following:

• Test definitions and descriptions that align closely with business domain termi-
nology and remain accessible to stakeholders with limited technical expertise.

• Highly parameterized test frameworks that support execution with variable
user-defined parameters.

• Visual reporting mechanisms that facilitate inspection of test results and en-
able effective sharing among diverse stakeholders.

1.3 Objectives
Having identified these key challenges in the testing domain, this research aims to
develop a Domain-Specific tool that facilitates system testing of domain applica-
tions.

As a business-critical sector, digital payments necessitate rigorous correctness
testing to verify system functionality and integration between components. The
thesis work focuses specifically on testing the client’s business processes, verifying

2

1.4 – Digital Payments as Testing Domain

that the integration between various payment chain actors is correctly aligned. In
particular, the objective is to automate the execution of such tests to reduce costs
and prevent human errors.

Although test implementation incurs initial development costs, empirical evi-
dence suggests that long-term benefits—including time savings for operators and ac-
celerated integration processes—typically exceed these initial investments [23][14].

The final objective is to integrate a Domain-Specific Language in an automation
testing framework to allow the user to execute and configure a test suite with
run-time test parameters.

1.4 Digital Payments as Testing Domain
Since the implementation of the first Payment Service Directive (PSD), the dig-
ital payments market has experienced substantial growth attributable to the es-
tablishment of a well-defined legal framework. The directive established a highly
regulated environment comprising distinct legal entities with clearly delineated re-
sponsibilities. This framework defined several new roles within the digital payments
ecosystem, classified as Third Party Providers [11], including PISP (Payment Ini-
tiation Service Providers), AISP (Account Information Service Providers), CISP
(Card Issuers Service Providers). The integration of these services facilitates a
comprehensive digital payments experience for consumers.

Digital payments represent an appropriate domain for this research for several
reasons:

• The business-critical nature of digital payment systems necessitates compre-
hensive testing coverage;

• The target application represents the integration of multiple interconnected
services;

• Domain-specific business processes can be effectively formalized through a spe-
cialized language while reducing manual testing interventions, thereby creating
opportunities for automation and performance optimization.

1.4.1 Thesis Structure
This introductory chapter has established the context, challenges, and objectives
of the present research, with specific focus on the digital payments domain as an
appropriate testing domain.

The following chapters will elaborate on the test automation state-of-the-art and
current trends, domain analysis, proposed solution architecture, implementation
details, and evaluation methodology.

3

1 – Introduction

In particular, Chapter 2 presents the current background and state-of-the-art
of automation testing, describing the various methodologies and their implementa-
tions.

Chapter 3 is dedicated to a general analysis of the system to be tested and the
digital payments domain as a whole.

Chapter 4 presents the solution implementation, including a detailed analysis of
the tools employed.

Chapter 5 provides an empirical validation of the concepts presented in this
research and an evaluation of their impact.

4

Chapter 2

State Of The Art

Software engineering is the discipline of engineering concerned with the systematic
development of software systems[22]. The necessity for rigorous analysis and formal
models of the software development life-cycle arises from the inherent complexity
of these systems. Just to cite some examples, the Chromium Web Browser con-
tains more than 32 million lines of code [6] and the GNU/Linux operating System
just about some million more [21]. To manage such complexity without rigorous
methodologies and practices is indeed impossible and overwhelming.

Beyond code complexity, software engineers must address the application domain
to which the software is applied; this aspect will be examined in greater detail
in Section 2.4.2. This includes managing new knowledge not strictly related to
programming itself but to the ecosystem of ideas and information that the software
must manipulate. The domain requirements are in fact a crucial aspect of software
engineering and overlooking them is the primary cause of failing projects and high
evolution costs[10]. For this reason, software engineering has developed a set of
theories and practices to minimize the complexity of developing large systems and
to limit the number of errors that could lead to software failure. This chapter
examines these techniques with particular emphasis on the testing phase.

2.1 Software Development Models
In order to provide a methodological and tractable representation of the software
development problem, a set of common frameworks has been developed in the field.

These models attempt to formalize the process of building software products
by breaking it down into smaller problems. The degree of model complexity and
sub-processes involved mainly depends by the software complexity and the risks
involved. For bigger products that could lead to catastrophic outcomes, more time
is spent on planning its evolution and carefully validating the solution.

The main tasks usually defined by software development models includes:

5

2 – State Of The Art

Requirements Elicitation Focused on collecting and extracting any hidden do-
main knowledge and business requirements, both functional and non-functional.

System Design Involve creating a detailed design of the system that would meet
the elicited requirements.

Testing Is responsible of validating the solution to assess that requirements are
fully respected.

Maintenance Once a solution has been developed and concluded, it enters main-
tenance mode, which includes both corrective operations or new evolution of
the products.

2.1.1 V&V Model
The Verification & Validation model (V&V)[5] is a structured approach to ensure
that software systems meet specified requirements and fulfill their intended pur-
pose. This model establishes distinct phases for verification (building the system
correctly) and validation (building the correct system).

Verification
and

Validation
Project

Definition

Concept of
Operations

Requirements
and

Architecture

Detailed
Design

Integration,
Test, and

Verification

System
Verification

and Validation

Operation
and

Maintenance

Project
Test and

Integration

ImplementationImplementation

Time

Figure 2.1. V-Model process represantion. frey Brummond, Robert Hart,
Mohsen (Moe) Zarean Ph.D., P.E, Steven Conger; Image extracted from Clarus
Concept of Operations. Publication No. FHWA-JPO-05-072, Federal Highway
Administration (FHWA), 2005, Public Domain

2.2 Software Testing
Code without tests is broken by design.

– Jacob Kaplan-Moss

Software testing is the phase, in the software development life-cycle, where the
developed product is assessed for requirements compliance. This generally means
that the software is executed with predetermined input data for which expected
behavior has been defined and subsequently verified.

6

2.2 – Software Testing

2.2.1 Testing Methodologies
The software product can be seen at many different layers of abstraction: at the
highest one it is a black box providing output for input but as additional levels of
detail are introduced, the software reveals its composition of integrated modules,
each containing its own set of defined functional units. Just as we can see the
software at different levels of abstraction, in the same way the testing process can
be applied at different levels, so that, for example, we could test units independently
from one another and then at a higher level of integration to see how they behave
together. This perspective provides significant value for testing methodologies as it
enables considerable flexibility in both test scope and implementation. For example,
when a defect is identified during black box testing, it may be isolated through
iterative application of additional testing layers until the source is located. It is
important to observe that the defect’s origin is not necessarily confined to a single
unit but may extend across the integration of multiple subsystems. This section
presents an overview of the primary testing levels and examines their respective
advantages and disadvantages.

White Box Testing

With the White Box Testing approach the system is transparent and its internals
are exposed to the test cases.

While this allows deeper testing it is more complicated to carry out as it requires
a great understanding of the system. As explained before, once we can access the
internals of the system, we can test its behaviour in many ways.

Unit testing Represents the most fundamental level of testing, focusing on indi-
vidual functional components of the system in isolation;

integration Integration testing focuses on the dependencies among subsystems
and their inner-working as a whole. Depending on the dependency tree, there
are different ways to conduct an integration testing: big-bang to test them
all together, bottom-up to start from the lowest one and top-down to do the
opposite,

In addition to provide passing results for test cases, white box testing can provide
insightful metrics about the system:

Code coverage the percentage of source code lines executed during the testing
phase. Higher percentages correlate with increased confidence regarding sys-
tem behavior verification;

Path coverage provides more details than the code coverage as it gives numerical
insights about the percentage of logical path followed by system during the
testing.

7

2 – State Of The Art

Black Box Testing

In the Black Box testing the system is instead totally opaque and accessible only
by its input and output interfaces.

In this scenario we can provide a set of test cases as a pair of expected input
and expected output. The test cases are passes if the system outputs correspond
to the expected ones for every input provided.

While this approach presents certain limitations, it demonstrates high imple-
mentation efficiency and practical applicability.

Figure 2.2. Black Box Testing

Under the umbrella of Black Box testing falls also the End-to-End testing
approach, particularly relevant for web applications, as it simulates a requirements
scenario from start to finish including any user interactions with the web applica-
tion. The system is tested as a whole and from the perspective of a user interacting
with it, and so without knowledge about its implementation. This is the approach
that we are going to apply to test our digital payment system.

Figure 2.3. The hierarchy of testing levels

8

2.3 – Automation Testing Tools

2.3 Automation Testing Tools

As the main contribution of this thesis is a tool for software automation, we will
now focus on this subject and the available tools to deal with it.

Test Automation is the process of running the testing phase with little human
intervention and supervision. A dedicated software infrastructure and tools are em-
ployed to run a predefined set of test cases and execute them against the running
application. Although automation is not essential for end-to-end testing and re-
quires initial configuration time, it ultimately provides significant benefits through
accelerated test execution, increased testing frequency, and reduced operational
costs.

Automation testing tools need to provide ways to define tests, run them and vi-
sualize the results. Depending on the programming language chosen for the system
implementation there are different testing frameworks available. Since the language
adopted for our system under test is Java, we kept it not to break continuity with
company standards and maintain homogeneity in the project It should be noted,
however, that as end-to-end testing operates externally to the system, alternative
programming languages could have been selected for test implementation.

2.3.1 Testing Framework

Testing framework are software libraries designed to help in the task of writing
and executing tests. For Java, the most important and common implementations
are JUnit and TestNG. For our task we decided to adopt JUnit as it is the most
commonly used one and provided a set of API and features which matched our
requirements, discussed in more details in the methodology section related to JUnit.

Spock is another testing library worth mentioning as it exploits the power of
Groovy DSL for elegant test definitions. Cucumber also deserves its mention as it
proposes a new approach to test definitions by combining a test oriented DSL to
let stakeholders write scenarios to be used by developers to implement tests. This
is a gap-reducing approach limiting the risk of requirements misunderstanding.

In general, every programming language has its own ecosystem of framework to
define tests and verify results. A useful framework should allow developers great
flexibility in the testing definition and provide useful reporting infrastructure. JUnit
completely reach this target by providing a powerful assertions library and many
different ways to define tests, from standard one, to data driven tests, extension
points, test template and totally dynamic tests. We will explore its features in
more details in the following chapters.

9

2 – State Of The Art

2.3.2 Project Management Tools
A typical application relies on many external dependencies to work properly, and
managing them manually becomes increasingly challenging as their number grows.
Dependency management represents one of the primary functions addressed by
project management tools. These tools function as extensions of compilers, ex-
panding their operational scope to address additional aspects of application devel-
opment.

Project management tools serve multiple purposes beyond dependency man-
agement and compilation, including test execution and result reporting. Maven
Surefire, for example, operates as a plugin for the Maven management system that
executes tests and generates HTML reports of the results. These tools typically
implement specific support for testing frameworks to facilitate automatic test dis-
covery and execution.

The evolution of build systems in software development represented a signif-
icant progression in managing increasingly complex projects. In the early days
of Java development, build processes were often managed through shell scripts or
proprietary solutions, which lacked standardization and portability. This situation
changed significantly with the introduction of formal build systems.

The first build tool developed for the Java platform was Apache Ant, released
in 2000 [8]. At that time, Java applications’ dependencies were manually managed
by developers. The solution proposed by Ant was to employ a declarative XML-
based approach to define build processes, test tasks, configure dependencies, and
so on. This represented a significant improvement over shell scripts. Ant provided
a task-based model that allowed developers to specify build operations such as
compilation, testing, and packaging in a platform-independent manner, since Ant
was built with Java itself and did not rely on operating systems’ utilities. Ant
did not come with a set of convention, and every task had to be explicitly defined
by the developers using Ant’s specific XML model. However, this flexibility often
resulted in verbose build files that were difficult to maintain across large projects.

Maven [27], introduced in 2004 by the Apache Software Foundation, proposed a
different approach [28]: unlike Ant’s procedural approach, Maven defined a set of
convention and lifecycles that standardized project structures and main tasks. Dif-
ferently from Ant, the users could not define new project lifecycles (the Ant’s tasks
substitutes), which were fixed and could only be extended by plugins. Maven’s
innovation included also dependency management, introducing the concept of cen-
tralized repositories for sharing Java artifacts which led to the birth of the Maven
repository1. This development significantly simplified the management of external

1What nowadays is given for essential - package repositories such as npm for the Javascript
environment and crates.io for the Rust ecosystem - actually traces back to the ideas of Maven
developers.

10

2.3 – Automation Testing Tools

dependencies, allowing developers to specify required libraries declaratively rather
than managing them manually.

Gradle [16], first released in 2007, can be seen as a synthesis of Maven’s convention-
based approach and Ant’s flexibility. Its distinctive feature was the adoption of
Groovy, a dynamic JVM language, for build script definition. A domain-specific
language implemented in Groovy substituted the verbose XML files used by both
Maven and Ant, and provided developers with greater expressivity and reduced ver-
bosity in build specifications. Gradle also implemented incremental build capabil-
ity and performance optimizations to address long compilation time for large-scale
projects.

The currently adopted structure of modern Java applications derives from Maven’s
defined conventions, which separate test code (located in the src/test directory)
from primary application code (located in the src/main directory). This organiza-
tional approach enhances code clarity and allows for the distinction between test
dependencies - such as the JUnit library - and primary dependencies. This sepa-
ration ensures that test dependencies are referenced only during the testing phase
and not embedded in the final application artifacts.

A common characteristic shared by these three Java build management tools is
their explicit support for popular testing frameworks such as JUnit and TestNG,
enabling test discovery and execution within dedicated build phases.

Build tools Lifecycle support Configuration
Ant Non opinionated, must be defined by users XML
Maven Opinionated and pre-defined XML
Gradle Easily extensible Groovy DSL

Table 2.1. Comparison of the most popular Java build systems

2.3.3 CI/CD Servers
The preceding analysis has examined test execution through build management
tools and supported test frameworks. Although this process automates test execu-
tion, it nevertheless requires human intervention to initiate, as the command to run
the tests must be given to the build management tool. This limitation highlights
the need for a mechanism to ensure that code deployed to production environments
undergoes mandatory testing prior to release.

Continuous Integration/Continuous Deployment (CI/CD) practices, originating
from the DevOps methodology, address this requirement effectively. CI/CD repre-
sents a paradigm shift in software delivery by establishing automated pipelines that
integrate testing directly into the deployment workflow [13]. These practices create
a systematic approach wherein software deployment proceeds only after successful

11

2 – State Of The Art

validation through automated test suites.
The primary function of CI/CD is to enforce testing procedures in the deploy-

ment processes. By constructing this relationship, organizations ensure that only
code that meets predefined quality standards reaches production environments.
When tests fail, the deployment process terminates automatically, preventing po-
tentially defective code from affecting end users. This integration significantly
reduces the risk of deploying faulty software and consequently minimizes system
downtime and user-reported defects [18].

Beyond basic test execution, CI/CD infrastructure supports sophisticated qual-
ity policies. For example, pipelines can be configured with conditional progression
rules based on code quality metrics. A common implementation involves establish-
ing minimum code coverage thresholds (e.g., 80

CI/CD servers operate by interfacing with Version Control Systems (VCS) through
event-driven mechanisms. When developers commit code to the repository, the
VCS triggers a webhook notification to the CI/CD server, initiating the execution
of predefined pipeline workflows. This automation eliminates the need for manual
intervention in the testing and deployment process, establishing a consistent and
reliable software delivery mechanism.

A CI/CD pipeline comprises a sequence of defined stages, typically including:

1. Code checkout: Retrieval of the latest source code from the repository

2. Compilation: Transformation of source code into executable artifacts

3. Unit testing: Validation of individual code components in isolation

4. Integration testing: Verification of component interactions

5. Static code analysis: Evaluation of code quality without execution

6. Security scanning: Detection of potential security vulnerabilities

7. Artifact generation: Creation of deployable software packages

8. Artifact publication: Distribution to artifact repositories

9. Deployment: Installation in target environments

10. Post-deployment testing: Validation of the deployed application

Each stage in this sequence depends on build management tools for execution,
demonstrating the hierarchical relationship between technologies in the automation
ecosystem. This layered approach enables the construction of increasingly sophis-
ticated software delivery mechanisms while maintaining modularity and separation
of concerns. Figure 2.4 illustrates this hierarchical relationship.

12

2.3 – Automation Testing Tools

Figure 2.4. Hierarchy of the automation testing tools

Jenkins has emerged as the de facto standard for CI/CD implementation in
enterprise environments, commanding significant market share due to several dis-
tinguishing characteristics [19]. Its architecture supports extensive customization
through a vast ecosystem of plugins (over 1,800 as of 2023), enabling integration
with virtually any development tool or technology. Jenkins’ pipeline definition lan-
guage, implemented as a Groovy-based Domain-Specific Language, provides both
flexibility and readability, allowing complex deployment workflows to be expressed
in a concise, code-based format.

Alternative CI/CD platforms have emerged to address specific market require-
ments:

GitLab CI/CD Offers tight integration with GitLab repositories, emphasizing a
unified user experience

GitHub Actions Provides workflow automation directly within GitHub reposito-
ries

CircleCI Focuses on containerized execution environments for consistent build
environments

Travis CI Originally specialized in open-source project integration

13

2 – State Of The Art

Azure DevOps Integrates with Microsoft’s comprehensive development ecosys-
tem

AWS CodePipeline Optimized for deployment to Amazon Web Services infras-
tructure

The implementation of CI/CD practices yields quantifiable benefits for organi-
zations, including reduced deployment frequency (from months to days or hours),
decreased time to market, improved software quality, and enhanced developer pro-
ductivity [12]. By automating the repetitive aspects of software testing and de-
ployment, CI/CD enables development teams to focus on value-adding activities
such as feature development and innovation rather than manual integration and
deployment procedures.

2.4 Domain-Specific Languages
The limits of my language mean the limits of my world.

– Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1921)

2.4.1 Programming Languages
As demonstrated in previous sections, Domain-Specific Languages (DSLs) are in-
creasingly integrated into software applications to provide specialized functional-
ity, as evidenced in tools such as Spock, Gradle, and Jenkins. Before examining
Domain-Specific Languages in detail, it is essential to establish a foundational un-
derstanding of programming languages.

Programming languages are formal, artificial languages designed to control and
describe operations executed by computing systems. From a linguistic perspective,
they comprise a sequence of symbols with an associated semantics. The syntax of a
language determines the validity of symbol sequences within its framework. For ex-
ecution on computing hardware, programs must undergo translation to a machine-
interpretable representation, typically binary code. This translation process, known
as compilation, is inherently machine-dependent; each target architecture requires
a specific compiler to generate appropriate binary or assembly code from the source
program.

Languages such as C, C++, Java, and Python are classified as high-level pro-
gramming languages because they abstract away the underlying hardware details,
such as register allocation and memory management. This abstraction allows pro-
grammers to focus on solution development rather than hardware-specific imple-
mentation concerns. These languages provide a higher conceptual level of operation,
liberating developers from addressing low-level computational details and enabling
concentration on the solution domain.

14

2.4 – Domain-Specific Languages

This abstraction represented a significant advancement in the evolution of com-
puting, as direct hardware manipulation requires cognitive effort and is susceptible
to errors that prove difficult to diagnose and correct. The fundamental principle of
high-level language design was to establish a set of constructs sufficiently generic
to express diverse problem domains. These languages introduced abstract concepts
(such as classes and structures) that made natural domain representation easier.

2.4.2 Problem Domain
For effective application to real-world problems, a programming language must fa-
cilitate the formalization of domain-specific concepts, information structures, and
constraints. In software engineering terminology, the domain refers to the contex-
tual environment in which software operates, encompassing specialized knowledge,
operational constraints, conceptual vocabulary, and related elements.

The domain-agnostic architecture of high-level languages enables them to model
diverse domains using their generic constructs while maintaining hardware abstrac-
tion. This flexibility allows, for instance, the representation of a financial transac-
tion as a Java class with appropriate fields containing domain-relevant information.

Table 2.5 delineates the comparative characteristics of the languages discussed
in this analysis.

Language Type Abstraction Expressivity

Assembly
• Low-level
• Hardware-specific
• Machine instructions

• Hardware operations
• Memory management
• Architecture-specific
• System-level only

General-Purpose
• High-level
• Platform-independent
• Reusable components

• Generic constructs
• Standard algorithms
• Multi-domain
• Broad applicability

Domain-Specific
• Domain-focused
• Business-level
• Specialized abstractions

• Domain terminology
• Specialized operations
• Single domain
• Deep coverage

Table 2.2. Comparison of Programming Language Types

Despite the significant advantages offered by high-level programming languages,
domain definition and modeling remain among the most challenging aspects of
software development [10].

Domain-Specific Languages constitute a category of programming languages de-
signed for particular application contexts. Unlike general-purpose programming

15

2 – State Of The Art

languages such as Java or C, they are not intended for expressing generic com-
putational operations and algorithms. Instead, DSLs are engineered to provide
enhanced expressivity within their target domains, necessarily sacrificing general-
ity to achieve this specialized functionality.

For illustrative purposes, while the C language permits the formalization of di-
verse algorithmic solutions, these solutions are expressed using C’s general-purpose
constructs, which maintain distance from the semantic structures of the specific
problem domain. If generality and domain expressivity could be quantified as
language attributes, they would demonstrate an inverse relationship; an increase
in one characteristic necessarily results in a corresponding decrease in the other.
Consequently, DSLs represent a deliberate optimization strategy that exchanges
generality for enhanced domain expressivity.

Figure 2.5 provides a visual representation of the relationship between domain
expressivity and generality across different programming language categories.

Figure 2.5. This visualization illustrates the trade-off between domain expressiv-
ity and generality across different types of programming languages. Domain-Spe-
cific Languages (triangles) excel in expressivity within their domains but have lim-
ited general applicability, while General-Purpose Languages (circles) offer broader
applicability at the cost of domain-specific expressiveness.

16

Chapter 3

Domain Analysis and
Challenges

3.1 Pay Reply

Figure 3.1. Pay Reply Logo

This thesis work was conducted within Pay Reply Srl, an Information Technology
consulting firm with specialized expertise in digital payment technologies.

Pay Reply has been founded in 2012 as a component of the Reply network of
companies, to provide support to banking institutions and major retail organiza-
tions in the integration of digital payment technologies. Beyond the integration of
digital payment services, Pay Reply has developed specialized in Smart Point of
Sale (POS) solutions. These advanced transaction terminals extend functionality
beyond conventional payment processing to embed business-specific applications.
Smart POS systems can manage different aspects of the business, including hu-
man resources management, loyalty program administration, inventory control and
synchronization across distributed retails.

3.2 Analysis of the Case Study
This section presents an introduction to the real-world payment, which is the do-
main of the test framework developed in this work.

17

3 – Domain Analysis and Challenges

Figure 3.2. Smart POS Terminal (Source: it.mobiletransaction.org)

3.2.1 Digital Payments
Digital payments, alternatively called electronic payments, are value transfers ex-
changed through interconnected banking systems via telecommunication networks.
They are distinguished from conventional cash transactions by the absence of phys-
ical currency exchange.

The term refers to transactions executed through electronic instruments, in-
cluding payment cards, digital wallets, and direct bank account debits utilized for
the acquisition of goods and services. This modality of transaction has become a
fundamental component of contemporary economic systems.

3.2.2 Digital Payment Systems
The introduction of digital payments has fundamentally transformed the landscape
of modern financial ecosystem. These systems represent the technological conver-
gence of traditional financial services with contemporary digital infrastructure, fa-
cilitating secure, instantaneous, and traceable transactions through electronic chan-
nels. As organizational entities increasingly adopt digital transformation strategies,
payment systems have evolved beyond simple transaction processing to encompass
comprehensive financial management solutions, integrating seamlessly with enter-
prise resource planning frameworks, accounting applications, and banking infras-
tructure.

Digital payment adoption has demonstrated accelerated growth in recent years,
driven by technological innovation, evolving consumer preferences, and organiza-
tional requirements for operational efficiency. Current market research and sta-
tistical analyses underline the significant growth and economic impact of digital
payment systems. According to the McKinsey Global Payments Report (2023),

18

3.2 – Analysis of the Case Study

digital payments account for 12% of credit transfer inside the Single Euro Pay-
ments Area (SEPA) [26], and is forecasted to double by 2027. The World Bank
Global Findex Database (2021) indicates that 64% of adults worldwide made or re-
ceived at least one digital payment in 2021 [15]. In the commercial sector, Juniper
Research (2024) forecasts that business-to-business digital payments will reach $124
Trillion Globally by 2028, highlighting these systems’ critical function in contem-
porary commerce [2].

This transition is particularly evident in organizational financial management
processes, where the value obtained by combining automation and cash flow man-
agement is greater. For commercial enterprises, digital payment systems deliver
invaluable operational and strategic benefits through multiple mechanisms. First,
payment processing and reconciliation automation significantly reduces operational
expenses, with organizations typically reporting 40-50% cost reductions compared
to traditional methodologies. Then, real-time transaction visibility enables detailed
cash flow management, allowing organizations to optimize capital utilization and
implement data-driven financial decision processes.

In summary, the evolution and adoption of digital payment systems is expected
to keep growing, especially in SEPA where the anticipated PSD3, expected for 2026,
promises to bring increased fraud protection for customers [4].

3.2.3 The General Payment Process
This section presents the main actors and steps involved in the processing of a digital
payments. In particular, the following list describes the sequence of operations
performed during a credit card payment transaction using a POS terminal:

1. The Customer (Cardholder) initiates a purchase transaction with a Merchant
and selects card payment as the settlement method.

2. The Merchant (the product or service provider) processes the payment through
a POS terminal.

3. The POS Terminal transmits the payment authorization request (containing
the card data) to the Acquirer bank (the financial institution maintaining the
merchant’s account).

4. The Acquirer, operating under contract with the merchant, routes the trans-
action request to the appropriate Card Network associated with the presented
card.

5. The Card Network directs the request to the Issuer Bank (the financial
institution maintaining the customer’s account).

19

3 – Domain Analysis and Challenges

6. The Issuer, which provided the payment card to the customer, verifies fund
availability and communicates transaction authorization or denial to the Card
Network.

7. The Card Network transmits the response to the Acquirer Bank.

8. The Acquirer Bank communicates the transaction authorization or rejection
to the merchant.

9. The Acquirer Bank advances the transaction amount to the merchant through
account credit.

10. The Acquirer Bank transmits to the Card Network a data stream containing
confirmed transaction information, which the Card Network utilizes for trans-
action reconciliation and determination of the bank’s credit/debit position.

11. The Card Network provides the calculated balance of amounts to be credited,
adjusted for applicable fees and commissions.

This sequence of operations can be categorized into three distinct phases:
1. The Authorization Phase includes steps 1 through 8, focusing on transac-

tion verification and approval. 2. The Clearing Phase span across steps 9 and
10, defined as the process of transmitting and reconciling payment transfer instruc-
tions prior to settlement. 3. The Settlement Phase is represented by step 11,
constituting the transaction completion through the execution of inter-bank fund
transfers to fulfill the obligations of all involved parties.

3.2.4 PaymentHub Solutions
A payment hub functions as a centralized platform for the management and pro-
cessing of diverse payment transactions across multiple channels, currencies, and
payment methodologies. It serves as a unified interface between varied payment
systems, banking institutions, and financial organizations, effectively operating as
a sophisticated transaction management system for financial operations.

The payment hub concept represents a platform where all organizational pay-
ment flows are transformed into a single, structured, and centralized information
repository, generating unified inbound and outbound data streams. Payment infor-
mation may originate from various Enterprise Resource Planning (ERP) systems
or alternative payment initiation platforms utilized by organizational departments
including accounting, treasury, finance, and human resources.

Figure 3.3 illustrates a representative payment hub architecture in which trans-
action flows from diverse channels converge within a centralized processing compo-
nent.

20

3.2 – Analysis of the Case Study

Physical Point of Sale

eCommerce Channel

«POS»
POS Terminal

«App»
SmartPos Application

«www»
Merchant eCommerce

«backend»
Merchant Backend

«Hub»
Payment Orchestrator

«Gateway»
Payment Gateway

Payment Services

Business services

Middleware handling:
- Business Rules
- Payment Routing

Gateway Services:
- Authorization
- Processing
- Settlement

«deploy»

Figure 3.3. Representative Payment Hub Architecture

The architectural framework comprises two principal components: the Payment
Orchestrator and the Payment Gateway. The former represents an internally de-
veloped system implementing business logic and routing payment requests to the
gateway. The Payment Gateway functions as a Software-as-a-Service (SaaS) appli-
cation providing payment functionality through HTTP Application Programming
Interfaces (APIs). Both components are examined in greater detail in subsequent
sections.

3.2.5 Payment Orchestrator

The payment orchestrator represents the core solution developed by Pay Reply, re-
sponsible for managing the business aspects of the payment hub operation. As pre-
viously described, it leverages the API functionality provided by the payment gate-
way to execute transaction operations, augmenting these capabilities with business-
specific features.

The orchestrator’s business responsibilities include installment management,

21

3 – Domain Analysis and Challenges

which is executed automatically on scheduled payment dates through MIT op-
erations utilizing previously tokenized payment instruments.

Additionally, the orchestrator exposes APIs for registered merchants to initiate
payment processes, access transaction records, configure installment parameters,
and perform related operations. It functions as a middleware layer to the payment
gateway, maintaining transaction records and enabling new transaction execution.
This architecture provides a unified access point for financial services integration
with business applications.

3.2.6 Payment Gateway
As previously indicated, the payment gateway exposes a set of APIs to facilitate
payment operations. This section provides a concise description of these operations
for contextual understanding.

Payment transactions are classified into two distinct categories: Customer Ini-
tiated Transactions (CIT) and Merchant Initiated Transactions (MIT). These op-
eration types differ fundamentally in their execution processes. The former, as
the designation implies, is initiated by the customer and requires direct interac-
tion for the submission of payment card information. The latter operates without
cardholder intervention and can be executed automatically by a system or admin-
istrative personnel.

An eCommerce purchase is an example a CIT, while an automated installment
payment falls under the MIT category.

3.2.7 Security Considerations
The regulatory framework established by the European Union’s Payment Services
Directive 2 (PSD2) imposes strong privacy and security standard regarding pay-
ment card data manipulation. Since this information is critically sensitive, such
data cannot be transmitted or processed over standard interfaces. Only certified
PSD2 entities, such as the payment gateway, are authorized to manage card infor-
mation.

For CIT operations, since only the payment gateway can access unencrypted card
data, eCommerce platforms redirect customers to a PSD2-compliant web interface
managed by the gateway, where payment information can be securely entered. The
payment orchestrator requests the gateway to initiate a transaction and receives
a redirection URL to which the customer is redirected. The customer then enters
card information within the gateway’s secure web pages, and once finished, the
gateway notifies the orchestrator through a configured webhook callback.

For MIT operations, the system must be able to identify the payment card in
order to issue a payment with it. In order to do so without directly storing it, a
mechanism is required to reference the card across the two systems. The gateway

22

3.3 – Scenarios to be Tested

addresses this requirement through card tokenization, generating a character string
identifier for each payment card. This token contains no actual card information
and maintains complete data opacity while providing a consistent reference mecha-
nism. This way, if a payment must be issued to a certain card, only the card token
is stored and sent to payment gateway.

3.2.8 Context Diagram

The context diagram presented in Figure 3.4 illustrates the principal actors and
systems interacting with the payment orchestrator, which constitutes the system
under test in this analysis.

Context Diagram

System Under Test

Payment OrchestratorMerchant

Customer

Payment Gateway

Inter Banking Circuit

Figure 3.4. Context Diagram of the Payment System

3.2.9 Glossary

Figure 3.5 presents the principal concepts introduced in the preceding analysis.

3.3 Scenarios to be Tested
In this section are presented the use case scenarios that will be tested. A scenario is
a narrative description of the use case with added details including user interaction
with the system and expected behaviors.

23

3 – Domain Analysis and Challenges

Merchant

id

Transaction

id: UUID
operation: TxOp
amount: int
currency: String
status: TxStatus
parentTransactionId : UUID
authCode
withTokenization: bool

TxStatus

PENDING
OK
KO

TxOp

SALE
VERIFY
AUTHORIZE
CAPTURE

Customer

PaymentCard

PAN: String
CVC: String
expYear: int
expMonth: int

PaymentCircuit

VISA
MASTERCARD
AMEX

IssuerAcquirer

Bank

DirectPayment

txOp == SALE

CardVerification

txOp == VERIFY
amount == 0

PreAuthorization

txOp == AUTHORIZE

Used to track the transaction is applied to.
Ex: refund of another transaction.«parentTransactionId»

cardHoldercircuit

contract

cardIssuer

contract

Figure 3.5. Glossary of Key Payment System Concepts

3.3.1 Direct Payment
The direct payment scenario represents one of the most critical use cases within
the system. It constitutes the primary payment flow enabling value transfer from
a merchant’s customer in exchange for products or services. The principal scenario
is described in Table 3.3.1.

3.3.2 Card Tokenization
This scenario represents an extension of the direct payment process. In addition
to the primary transaction flow, the customer may select an option to "remember
the payment method" for future transactions. When this option is activated, the
payment card undergoes tokenization, and the resulting token is returned to the
orchestrator for utilization in subsequent automated payment processes, eliminating
the need for repeated card information entry.

3.3.3 Pre-Authorization
Pre-Authorization represents a common methodology in payment processing when
the final transaction amount cannot be determined prior to payment card process-
ing. This approach is frequently implemented in contexts such as fuel dispensing
stations to verify fund availability and prevent fraudulent transactions.

In this scenario, a specified amount is pre-authorized from the customer’s avail-
able funds, rendering it temporarily unavailable for alternative uses. Once the
actual transaction value is determined (e.g., after fuel dispensation), only the cor-
responding amount is transferred, with the remaining pre-authorized funds released

24

3.3 – Scenarios to be Tested

Table 3.1. Action «Direct Payment»

Action Direct Payment
Precondition The customer initiates a transaction comple-

tion process on the merchant’s eCommerce
platform.

Postcondition The verify-transaction API indicates that the
transaction status is "OK".

Actors 1. Customer accessing the eCommerce
platform

2. Payment Orchestrator

3. Payment Gateway
Main path 1. The orchestrator receives a start-

payment request

2. The orchestrator preserves the transac-
tion data and forwards the payment re-
quest to the payment gateway

3. The gateway establishes a new transac-
tion and returns the redirect URL to the
payment interface

4. The customer is redirected to the pay-
ment interface, enters payment card in-
formation, and confirms the transaction

5. The orchestrator receives a verify-
payment request, which it forwards
to the gateway, obtaining confirmation
that the transaction status is "OK"

back to the customer’s account.

The pre-authorization process follows a sequence identical to the direct payment
flow, the only difference being in the transaction type. Rather than immediate
fund transfer, pre-authorization reserves funds and enables subsequent "capture" of
a potentially lower amount at a later time.

25

3 – Domain Analysis and Challenges

3.3.4 Merchant Initiated Transaction
As previously described, merchant initiated transactions proceed without customer
interaction. The sole prerequisite for this transaction type is the availability of a
previously tokenized payment card. Table 3.3.4 outlines the MIT process.

Table 3.2. Action «MIT»

Action MIT
Precondition The customer’s payment card has been previ-

ously tokenized.
Postcondition The transaction status is "OK".
Actors 1. Payment Orchestrator

2. Payment Gateway
Main path 1. The orchestrator receives a MIT request

specifying the payment card token to be
utilized. It forwards this request to the
gateway.

2. The gateway processes the transaction
and returns the status information.

3. The orchestrator verifies that the trans-
action status is "OK".

3.4 Testing Challenges and Solutions
The preceding analysis has demonstrated that the payment orchestrator supports
multiple payment scenarios and thus requires extensive testing. The principal chal-
lenges in testing methodology relate to the labor-intensive operations necessary for
end-to-end payment verification, including manual API invocation, browser navi-
gation for test card data entry, and transaction verification procedures.

Unfortunately, the diversity of payment scenarios exponentially increases the
number of required tests, rendering manual execution increasingly time-consuming
and resource-intensive.

The subsequent chapters will present a solution for automated test execution
utilizing contemporary testing frameworks and web automation tools. Additionally,
the research will introduce a Domain-Specific Language specifically designed for
test definition and parameter specification, including payment card data, operation
types, and related testing variables.

26

Chapter 4

Methodology

This chapter presents the methodological contribution developed for the testing
framework. The analysis begins with an examination of the JUnit framework and its
testing capabilities, followed by an identification of the domain-specific limitations
encountered in the standard implementation. Subsequently, the chapter introduces
a novel approach to overcome these constraints while preserving the framework’s
core advantages, including comprehensive report generation and concurrent test
execution capabilities. The methodology demonstrates the implementation of a
Domain-Specific Language (DSL) designed to enhance test suite definition through
improved descriptive capabilities.

4.1 JUnit 5
JUnit represents one of many libraries available for testing Java-based applications.
It maintains the position of the most frequently downloaded library in the Maven
repository under the "Testing Frameworks and Tools" category and has maintained
continuous development since 1997, establishing it as the longest-maintained testing
framework in the Java ecosystem. Its intuitive Application Programming Interface
(API) has established foundational patterns for subsequent libraries that extend
its functionality, most notably TestNG and Spock. JUnit has become the de facto
standard for unit testing and general test execution within the Java ecosystem,
receiving first-class support from Integrated Development Environments (IDEs)
and project management tools including Maven, Ant, and Gradle. The decision
to implement JUnit for this research was based on its widespread adoption and
extensible API, complemented by its report generation capabilities, concurrent test
execution support and dynamic test definition functionality.

JUnit 5.0.0, released on September 10, 2017, approximately 11 years after the
4.0 release, is designed with a modular architecture composed by three distinct
components [24]. These modules include:

27

4 – Methodology

• junit-platform: A common infrastructure module providing test suite exe-
cution capabilities, supporting both jupiter API implementations and legacy
implementations through the junit-vintage compatibility layer.

• junit-vintage: A compatibility module maintaining support for version 4 and
version 3 test engines through segregation within a separate module. Tests
implemented with junit-vintage maintain compatibility with legacy features
while supporting execution through the current junit-platform architecture.
This backward compatibility has been crucial for many legacy Java projects
that have not migrated to the jupiter implementation.

• junit-jupiter: The contemporary, feature-enhanced test engine released in-
dependently from its predecessor.

Figure 4.1 illustrates the dependency relationships between these modules and
their respective artifacts.

Figure 4.1. Dependency Diagram of JUnit Architecture

This research employed the 5.12.01 released in February 2025, which was un-
der development during the research period. This version introduces enhanced
reporting capabilities essential for the current implementation. These features are
examined in detail in Section 4.2.5.

JUnit provides multiple test definition approaches to accommodate diverse test-
ing scenarios. The subsequent sections present both fundamental and advanced

1Release note available at: https://junit.org/junit5/docs/5.12.0/release-notes/

28

https://junit.org/junit5/docs/5.12.0/release-notes/

4.2 – Java Annotations

testing methodologies supported by the framework. Prior to examining the spe-
cific implementation methodology, it is necessary to evaluate the framework’s core
capabilities and identify areas requiring extension to support the objectives of this
research. For the proposed solution to function as designed, the following capabil-
ities are required:

• Programmatic test execution, as detailed in Section 4.2.3.

• Parameterized test execution with customizable inputs, for which TestTem-
plate and DynamicTests present viable implementation options, albeit with
certain operational constraints.

• Test report generation with possibility to add attachments such as captured
in-browser screenshot.

To comprehend JUnit’s operational architecture, it is essential to first under-
stand fundamental Java annotation concepts and their implementation advantages.

4.2 Java Annotations
Java annotations represent one of the language’s most widely implemented features,
extensively utilized by frameworks including Spring for configuration purposes. JU-
nit similarly employs annotations extensively for test configuration, parameter pro-
vision through extensions, and related functionality.

At their core, Java annotations enable metadata attachment to annotated ele-
ments, which annotation processors can subsequently utilize to modify the behavior
of these elements based on the specified annotation parameters.

Annotations can be categorized according to the following criteria:

• Retention type: Defines the annotation management policy. Compile-time
annotations are removed during compilation and absent from generated code,
while runtime annotations persist in the compiled output and remain acces-
sible to runtime processors. Typically, code-generating annotations such as
Lombok’s @Data or @Sl4j operate exclusively at compile time, as their util-
ity terminates once the annotation processor completes its operations (which
includes enriching the annotated class with methods and additional fields).

• Target specification: Defines the elements to which the annotation may be
applied, including classes, methods, fields, or other annotations.

Listing 4.1 demonstrates the implementation of JUnit’s fundamental @Test an-
notation:

29

4 – Methodology

1 package org.junit. jupiter .api;
2

3 import static org. apiguardian .api.API. Status . STABLE ;
4

5 import java.lang. annotation . Documented ;
6 import java.lang. annotation . ElementType ;
7 import java.lang. annotation . Retention ;
8 import java.lang. annotation . RetentionPolicy ;
9 import java.lang. annotation . Target ;

10

11 import org. apiguardian .api.API;
12 import org.junit. platform . commons . annotation . Testable ;
13

14

15 @Target ({ ElementType . ANNOTATION_TYPE , ElementType . METHOD })
16 @Retention (RetentionPolicy . RUNTIME)
17 @Documented
18 @API(status = STABLE , since = "5.0")
19 @Testable
20 public @interface Test {
21 }

Listing 4.1. JUnit Test annotation

The @Target annotation on line 15 indicates that this annotation may be applied
exclusively to methods and other annotations. Line 16 specifies a runtime retention
policy through the @Retention annotation.

Annotations have gained widespread adoption because they enable declarative
programming paradigms, allowing developers to specify desired outcomes rather
than implementation mechanisms. As the following section illustrates, annotations
constitute a fundamental component of JUnit’s API architecture.

4.2.1 Writing Tests with junit-jupiter
Standard Tests with @Test

In JUnit, fundamental test cases can be defined using the @Test annotation as
demonstrated below:

1 import static org.junit. jupiter .api. Assertions . assertEquals ;
2

3 import example .util. Calculator ;
4

5 import org.junit. jupiter .api.Test;
6

7 class MyFirstJUnitJupiterTests {

30

4.2 – Java Annotations

8

9 private final Calculator calculator = new Calculator ();
10

11 @Test
12 void addition () {
13 assertEquals (2, calculator .add (1, 1));
14 }
15

16 }

Listing 4.2. JUnit Test Definition

The @Test annotation identifies a method as a test case. When the JUnit test
launcher scans the test class and identifies methods annotated with @Test, these
methods are processed as test sources.

4.2.2 Dynamic Tests with @TestFactory
A significant limitation of basic test implementations is their predefined nature—there
exists no mechanism to modify test behavior or input data at runtime. Each test
executes with fixed parameters and produces success or failure outcomes accord-
ingly.

As stated in the JUnit documentation:

These test cases are static in the sense that they are fully specified
at compile time, and their behavior cannot be changed by anything hap-
pening at runtime.

While this approach satisfies many real-world testing requirements, it presents
limitations for the objectives of this research. The primary goal is to develop a
framework where test definitions and parameters can be dynamically modified at
runtime based on external test specification files.

The JUnit documentation further describes:

In addition to these standard tests a completely new kind of test
programming model has been introduced in JUnit Jupiter. This new
kind of test is a dynamic test which is generated at runtime by a factory
method that is annotated with @TestFactory.

[...]
A DynamicTest is a test case generated at runtime. It is composed of

a display name and an Executable. Executable is a @FunctionalInterface
which means that the implementations of dynamic tests can be provided
as lambda expressions or method references.

31

4 – Methodology

Dynamic tests provide maximum flexibility in test definition, requiring only an
implementation of a functional interface to derive the test. This enables runtime
test generation rather than static specification.

Dynamic tests proved ideal for addressing the requirements of this implementa-
tion, as they allow for runtime test definition through the return of a Collection,
Stream, or Iterable of DynamicNode objects. When such a collection is provided to
the JUnit engine, these objects are processed as valid tests.

Listing 4.2.2 demonstrates the implementation of dynamic tests:
1 import static example .util. StringUtils . isPalindrome ;
2 import static org.junit. jupiter .api. Assertions . assertEquals ;
3 import static org.junit. jupiter .api. Assertions . assertTrue ;
4 import static org.junit. jupiter .api. DynamicTest . dynamicTest ;
5

6 import java.util. Arrays ;
7 import java.util. Collection ;
8

9 import example .util. Calculator ;
10

11 import org.junit. jupiter .api. DynamicTest ;
12 import org.junit. jupiter .api. TestFactory ;
13

14 class DynamicTestsDemo {
15

16 private final Calculator calculator = new Calculator ();
17

18 @TestFactory
19 Collection < DynamicTest > dynamicTestsFromCollection () {
20 return Arrays . asList (
21 dynamicTest ("1st dynamic test", () -> assertTrue (

isPalindrome ("madam"))),
22 dynamicTest ("2nd dynamic test", () ->

assertEquals (4, calculator . multiply (2, 2)))
23);
24 }
25 }

Listing 4.3. JUnit Dynamic Test

While the API exhibits straightforward implementation, certain operational con-
straints must be considered, as documented in the JUnit specifications. Dynamic
tests do not adhere to the standard test lifecycle of JUnit tests. For example, the
BeforeEach callback, which normally executes before each test, is invoked only once
before the test container initiates execution of all dynamic tests.

This constraint applies similarly to injected parameters. JUnit allows to define
parameters for test methods, which are subsequently injected by external extensions

32

4.2 – Java Annotations

or the framework itself using the ParameterResolver interface. This capability
allows the addition of a TestReporter to a test, which is a special class used to
report data about the test execution..

With dynamic tests, these parameters are associated with the top-level container
and remain consistent across all tests. Consequently, an injected test reporter would
report data as originating from the test container rather than individual tests.
This consideration is particularly relevant when implementing data reporting for
dynamic tests, where a solution must be developed to overcome this limitation
(more on this later).

4.2.3 Running Tests Programmatically
While test execution is typically managed by project management tools such as
Gradle or Maven, the proposed solution requires test execution as a component of
the main application. Conventionally, JUnit is defined as a test-only dependency
to prevent its inclusion in compiled applications, restricting its use to the testing
phase. Similarly, classes in the src/test directory are accessible only during the
test phase.

To execute tests as part of the main application, the following requirements must
be satisfied:

• JUnit must be available on the main application classpath

• The test classes must also reside on the main classpath

The first requirement can be fulfilled by specifying the appropriate dependency
retention policy (dependency scope) using project management tool utilities. In
Gradle, this is accomplished by labeling the dependency as implementation rather
than testOnly, while Maven utilizes the scope property (test, compile, etc.) to
define dependency scope.

Listing 4.2.3 demonstrates the configuration of JUnit dependencies in Gradle for
availability as main application dependency:

1 dependencies {
2 // JUnit Platform
3 implementation platform (’org.junit:junit -bom :5.12.0 -

SNAPSHOT ’)
4 implementation ’org.junit. platform :junit -platform -

launcher ’
5 implementation ’org.junit. platform :junit -platform -

reporting ’
6

7 // JUnit Jupiter
8 implementation ’org.junit. jupiter :junit -jupiter - engine ’
9 implementation ’org.junit. jupiter :junit - jupiter ’

33

4 – Methodology

10 }

Listing 4.4. Gradle JUnit Implementation Dependency

With junit-platform and junit-jupiter engine accessible from the main source
code, the launcher API can be employed to invoke tests directly from the main
application, as demonstrated in the following example:

1 package it. payreply .cli;
2

3 import it. payreply .tests. MyTestClass ;
4 import lombok . extern .slf4j.Slf4j;
5 import org.junit. platform . engine . discovery . DiscoverySelectors

;
6 import org.junit. platform . launcher .core.

LauncherDiscoveryRequestBuilder ;
7 import org.junit. platform . launcher .core. LauncherFactory ;
8

9 import java.nio.file.Files;
10 import java.util.List;
11

12

13 @Slf4j
14 public class TestRunnerApplication {
15

16 public static void main(String [] args) throws Exception {
17

18 // create the JUnit test launcher
19 var junitLauncher = LauncherFactory . create ();
20

21 // create a test execution request via the builder
22 var junitTestRequest =

LauncherDiscoveryRequestBuilder . request ()
23 // use DiscoverySelectors to select which

test class to run
24 . selectors (
25 DiscoverySelectors . selectClass (

RunGroovyTests .class . getName ())
26)
27 // eventually add some parameters with

configurationParameter (), skip for now
28 .build ();
29 junitLauncher . execute (junitTestRequest);
30 }
31 }

Listing 4.5. Launching Tests Programmatically

34

4.2 – Java Annotations

4.2.4 Test Report Generation and TestExecutionListener
An essential component of the testing process is the generation of comprehensive
reports containing relevant test results information. These reports typically include
test status (pass/fail), exception details for failed tests, and potentially log entries
written to standard output and standard error during test execution.

JUnit enables report generation through the registration of one or more Tes-
tExecutionListener implementations, which intercept lifecycle events during test
execution. The TestExecutionListener interface is illustrated in Figure 4.2.

TestExecutionListener

+testPlanExecutionStarted(TestPlan testPlan): void
+testPlanExecutionFinished(TestPlan testPlan): void

Test Plan lifecycle methods

+executionStarted(TestIdentifier testIdentifier): void
+executionFinished(TestIdentifier testIdentifier, TestExecutionResult testExecutionResult): void
+dynamicTestRegistered(TestIdentifier testIdentifier): void

Test execution lifecycle methods

+reportingEntryPublished(TestIdentifier testIdentifier, ReportEntry entry): void

Reporting methods

+executionSkipped(TestIdentifier testIdentifier, String reason): void
Other

TestIdentifier TestExecutionResult TestPlan ReportEntry

uses uses uses uses

Figure 4.2. JUnit 5 TestExecutionListener Interface

The methods of TestExecutionListener implementations are invoked upon spe-
cific test execution lifecycle events. These events may relate to the entire test
execution (represented by the TestPlan) or individual tests (identified by TestIden-
tifier objects).

TestIdentifier objects are "Immutable data transfer objects that represent tests
or containers which are usually part of a TestPlan." TestIdentifiers are categorized
as either containers or actual tests. Containers do not represent actual tests but
serve as sources for the tests they contain. For example, in a test class containing
multiple methods annotated with @Test, the class functions as a TestIdentifier
container for the test-type TestIdentifiers associated with its methods.

The entire test execution can be conceptualized as a tree structure where the
root TestIdentifier represents the JUnit engine container, which contains additional

35

https://junit.org/junit5/docs/current/api/org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
https://junit.org/junit5/docs/current/api/org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html

4 – Methodology

TestIdentifier containers. The leaves of this tree structure are the actual tests,
represented by test-type TestIdentifiers.

Example of JUnit test exection tree

«Container»
[engine:junit-jupiter]

«Container»
[class:RunGroovyTests]

«Container»
[test-factory:runTestFromGroovy(DynamicTestReporter)]

«Container»
[dynamic-container:#1]

«Test»
[dynamic-test:#1]

«Test»
[dynamic-test:#2]

Figure 4.3. JUnit Test Execution Tree Example

The reportEntryPublished method of the TestExecutionListener is invoked
whenever a test calls the publishEntry method on the auto-wired TestReporter,
as demonstrated in Listing 4.6. Reporting entries enables the attachment of con-
textual data to tests for inclusion in the reporting infrastructure.

The TestReporter is automatically injected by JUnit and associated with the
current TestIdentifier. However, due to the distinctive behavior of dynamic tests
mentioned earlier, the TestReporter is not linked to individual dynamic tests but
rather to the parent container. To address this limitation, the JUnit maintenance
team developed a workaround through the implementation of a DynamicTestRe-
porter extension, as documented in the GitHub discussion.

1 class TestReporterTest {
2

3 @Test
4 void reporterExample (TestReporter testReporter) {
5 var actual = 1 + 1;
6 assertEquals (2, actual);
7 testReporter . publishEntry (" expected ", "2");

36

https://github.com/junit-team/junit5/discussions/4175#discussioncomment-11508863

4.3 – Open Test Reporting

8 testReporter . publishEntry (" actual ", String . valueOf (
actual));

9 var myMapEntry = new HashMap <String , String >();
10 myMapEntry .put("1", "1");
11 myMapyEntry .put("2", "2");
12 // published togheter
13 testReporter . publishEntry (myMapEntry);
14 }
15

16 }

Listing 4.6. TestReporter Example

4.2.5 JUnit 5.12
This research employed JUnit 5.12.0 due to its enhanced reporting infrastructure,
which, in addition to previously described capabilities, includes functionality for
file and directory publication. This feature is required for publishing screenshots
captured during Selenium web browser sessions. Specifically, the following meth-
ods were added to the TestReporter (with corresponding implementations in the
TestExecutionListener interface):

• void publishFile(Path file, MediaType mediaType)

• void publishDirectory(Path directory)

4.3 Open Test Reporting
Open Test Reporting [25] represents an initiative by the JUnit team aimed at
standardizing the Java testing ecosystem. Its primary objective is to establish
a common foundation for Java testing procedures applicable across widely used
frameworks.

Historically, testing frameworks have implemented proprietary approaches to
represent test session execution and generate associated reports. The Open Test
Reporting initiative seeks to standardize XML-based test reporting, simplifying the
development of common reporting infrastructure. This standardization benefits
both testing frameworks, by eliminating the need to develop proprietary reporting
systems, and reporting infrastructure components such as project management tools
and IDEs, which can now support a single reporting protocol.

Specifically, Open Test Reporting provides a standardized event-based XML
output format and an HTML report generator for human-readable visualization of
test results. An example of report page is available in Figure 4.4.

37

4 – Methodology

Figure 4.4. An example of produced HTML report using open-test-reporting.

To implement Open Test Reporting, the LauncherDiscoveryRequest must be
configured to utilize the new reporting platform through the provision of additional
configuration parameters enabling the Open XML reporting format.

4.4 Replacing Manual Postman HTTP Requests
A critical component of the testing framework involves issuing HTTP requests to
the system under test. In manual testing scenarios, Postman represents the pre-
ferred tool, providing a graphical user interface for HTTP request configuration,
including host URL specification, request method and body definition, authentica-
tion header configuration, and related parameters.

Since the objective of this research is to replace manual operations with program-
matic testing, Postman functionality must be replicated through a Java-accessible
HTTP client. While numerous HTTP client implementations exist, specific re-
quirements must be considered. Due to security constraints, the HTTP client must
support proxy configuration (as explained in Section 4.4.2) and implement request
signing using a cryptographic algorithm based on pre-shared keys.

The signing algorithm requires the addition of specific headers to each request,
including host, date, and digest (the SHA-256 hash of the request body, when
present), and their subsequent signature using the HMAC-SHA256 algorithm 2 to

2https://datatracker.ietf.org/doc/html/rfc2104

38

https://datatracker.ietf.org/doc/html/rfc2104

4.4 – Replacing Manual Postman HTTP Requests

ensure message authentication. The resulting signature is incorporated into the
Authentication header before request transmission. On the server side, the pre-
shared key is used to verify the message integrity and authentication.

4.4.1 OkHttp and Retrofit
OkHttp3 and Retrofit4 are Java libraries developed by Square Inc.5. OkHttp imple-
ments the HTTP client API, while Retrofit builds upon this foundation to create
comfortable service interfaces.

These libraries provide the necessary capabilities to implement the specified re-
quirements through an intuitive programming model. The OkHttpClient can be
customized with Interceptor implementations to modify requests before transmis-
sion. This architecture enables implementation of the previously described signa-
ture algorithm through the creation of a custom interceptor added to the processing
chain. Additionally, the HttpLoggingInterceptor provides request logging to stan-
dard output, which are valuable for test analysis purposes.

Listing 4.7 demonstrates the configuration of these interceptors:
1 var okHttpClient = new OkHttpClient . Builder ()
2 . addInterceptor (new SigningRequestInterceptor (merchant .

getKeyId (), merchant . getKeySecret ()))
3 . addInterceptor (new HttpLoggingInterceptor (). setLevel (

HttpLoggingInterceptor .Level.BODY)) // new
OkHttpCallReporter (testReporter)))

4 .proxy(testEnvironmentSpec . getProxyJump (). newProxy ())
5 .build ();

Listing 4.7. OkHttpClient Configuration

This example illustrates the client configuration with a specific proxy for request
transmission, as detailed in subsequent sections.

Once an OkHttpClient is configured, it can be utilized to construct a Retrofit
interface to the target service. Retrofit enables the definition of HTTP services
as Java interfaces to invoke HTTP services through standard Java method calls.
The interfaces are instantiated through a builder object using an OkHttpClient
pre-configured with appropriate interceptors. Listing 4.8 provides an example of
Retrofit interface instantiation.

1 package it. payreply . paytests . domain . services ;
2

3 public interface PaymentApi {

3https://square.github.io/okhttp/
4https://square.github.io/retrofit/
5https://squareup.com/us/en

39

https://square.github.io/okhttp/
https://square.github.io/retrofit/
https://squareup.com/us/en

4 – Methodology

4

5 @POST("start - payment ")
6 Call < StartPaymentResponse > startPayment (@Body

PaymentRequestDTO paymentRequestDTO);
7

8 @GET("verify - payment /{ transactionId }")
9 Call < VerifyPaymentResponse > verifyPayment (@Path("

transactionId ") String transactionId);
10 }
11

12 // interface instantiation
13 Retrofit retrofit = new Retrofit . Builder ()
14 . client (okHttpClient)
15 . baseUrl (testEnvironmentSpec . getFullBaseUrl ())
16 . addConverterFactory (
17 GsonConverterFactory . create ()
18)
19 .build ();
20

21 PaymentApi paymentApi = retrofit . create (PaymentApi . class);

Listing 4.8. HTTP Service Interface Built with Retrofit

4.4.2 Connection to the Test Environments via SSH Prox-
ies

Security protocols restrict direct internet exposure of servers hosting the APIs ac-
cessed by the HTTP client. Instead, these servers are accessible only through a
bastion host located within the same Local Area Network (LAN), which itself is
accessible through a Virtual Private Network (VPN) connection. This architecture
implements two security levels: the VPN protocol securing access to the bastion
host, and a secondary security layer controlling access to test servers through the
bastion host. This network topology is illustrated in Figure 4.5.

The bastion host exposes the SSH protocol on port 22, which can be utilized
to establish a SOCKS5 service for dynamic port forwarding. This is typically ac-
complished using the -D port option of the ssh command when establishing a
connection. With this option, the bastion host functions as a SOCKS5 server, cre-
ating an SSH tunnel from the specified local port to the bastion host port providing
the SOCKS5 service.

SOCKS5 is a network protocol implementing dynamic port forwarding, which
processes network packets containing metadata about the intended destination IP
address and port, forwarding these packets accordingly. When responses are re-
ceived, they are returned to the original sender.

40

4.4 – Replacing Manual Postman HTTP Requests

Figure 4.5. Network Layout of the Test Environment

Figure 4.6. SOCKS5 Implementation Details. IP Packets are Enhanced
with SOCKS5 Application-Level Data Containing Information About the
Intended Destination.

4.4.3 Apache Mina SSHD
While SOCKS5 proxies over SSH can be established using the ssh command, the de-
veloped solution employs the Apache Mina library and its SSH package to configure
the proxy programmatically through Java APIs.

Apache Mina6 is a Java networking library supporting diverse network protocols
in a programmatically accessible manner. It includes a specialized package for SSH
connection management, Apache Mina SSHD7.

Listing 4.9 demonstrates the use of org.apache.sshd classes to establish dy-
namic port forwarding (SOCKS5) over an SSH connection. This implementation

6https://mina.apache.org/
7https://mina.apache.org/sshd-project/

41

https://mina.apache.org/
https://mina.apache.org/sshd-project/

4 – Methodology

requires only the ’org.apache.sshd:sshd-core’ dependency. The resulting proxy can
be utilized to configure the OkHttpClient for proxy-based request transmission.

1 import org. apache .sshd. client . SshClient ;
2 import org. apache .sshd. client . future . ConnectFuture ;
3 import org. apache .sshd. client . session . ClientSession ;
4 import org. apache .sshd. common .util.net. SshdSocketAddress ;
5

6 import java.io. IOException ;
7 import java.net. InetSocketAddress ;
8 import java.net.Proxy;
9 import java.util. concurrent . TimeUnit ;

10

11

12 public class ProxyJump {
13 // ...
14

15 public Proxy getProxy () {
16 log.info(" Starting ssh proxy");
17 var sshClient = SshClient . setUpDefaultClient ();
18 try {
19 // Open the client
20 sshClient .start ();
21

22 // Connect to the server
23 ConnectFuture cf = sshClient . connect (username ,

host , port);
24 ClientSession session = cf. verify (). getSession ();
25 session . addPasswordIdentity (password);
26 session .auth (). verify (TimeUnit . SECONDS . toMillis

(3000));
27

28 log.info(" Connected to the ssh host");
29

30 // setup the socks proxy using the established
ssh session

31 session . startDynamicPortForwarding (new
SshdSocketAddress (" localhost ", localPort));

32 return new Proxy(Proxy.Type.SOCKS , new
InetSocketAddress (" localhost ", localPort));

33 } catch (IOException e) {
34 throw new RuntimeException (e);
35 }
36

37 }

Listing 4.9. Apache Mina SOCKS5-SSH Proxy Configuration

42

4.5 – Selenium Web Driver

4.5 Selenium Web Driver
Selenium WebDriver8 is a browser automation framework extensively utilized for
end-to-end testing of web applications. It enables the simulation of user interactions
with web pages, including navigation, element identification, button activation, and
form input.

The architecture comprises three principal components:

User Agent The actual browser binary being controlled, such as Chrome, Firefox,
or Safari.

WebDriver The component issuing commands to the user agent. It functions as
a server, translating HTTP requests into user agent commands. The inter-
face between the WebDriver and user agent is browser-specific, necessitating
distinct WebDriver implementations for each supported browser.

Selenium Bindings The programming language-specific API interfacing with the
WebDriver. These APIs fundamentally transmit HTTP requests to the Web-
Driver, which subsequently issues corresponding commands to the user agent.

Figure 4.7 illustrates this architectural relationship:
The WebDriver represents a specification that each browser implements inde-

pendently. Two specifications currently exist: the JsonWire Protocol 9 and the
W3C WebDriver 10. While JsonWire represents the original open-source specifica-
tion developed by the Selenium team, it is no longer actively maintained. The W3C
specification represents the current standard and the focus of ongoing development.

According to the WebDriver protocol documentation11:

WebDriver is a remote control interface that enables introspection and
control of user agents. It provides a platform- and language-neutral wire
protocol as a way for out-of-process programs to remotely instruct the
behavior of web browsers.

4.5.1 Selenium WebDriver Manager
While the general architecture of the Selenium/WebDriver stack functions in the-
ory, it presents a practical challenge: effective communication between the Web-
Driver and browser requires version compatibility. Since the WebDriver is typically

8https://www.selenium.dev/documentation/webdriver/
9https://www.selenium.dev/documentation/legacy/json_wire_protocol/

10https://w3c.github.io/webdriver/
11https://www.w3.org/TR/webdriver2/

43

https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/legacy/json_wire_protocol/
https://w3c.github.io/webdriver/
https://www.w3.org/TR/webdriver2/

4 – Methodology

Selenium Web Driver Architecture

User Agents
Web Driver Implementations

Language Bindings

Browser Binaries

«browser»

Chrome

«browser»

Firefox

«browser»

Safari

«driver»
Chrome WebDriver

«driver»
Gecko WebDriver

«driver»
Safari WebDriver

«specification»
WebDriver protocol

Selenium Bindings

python bindingsjava bindings

Chrome DevTools

«WebSockets»

Apple MessagingMarionette

«TCP Sockets»

HTTP

«implements» «implements» «implements»

«controls»

«use»

Figure 4.7. Component Diagram of the Selenium Architecture

downloaded manually as a standalone executable, it requires proper management
to maintain compatibility with the browser version.

Browsers implement aggressive update strategies to address security vulnerabil-
ities, often updating automatically without user intervention. While this practice
enhances security, it frequently causes runtime failures in WebDriver-browser com-
munication due to version incompatibilities.

To address this issue, various solutions have been developed to automate driver
management and prevent version conflicts. These solutions typically involve select-
ing a target browser (Chrome, Firefox, Safari) and automatically configuring the
corresponding WebDriver version without manual intervention.

44

4.5 – Selenium Web Driver

This research employs WebDriverManager12 developed by Professor Boni Gar-
cia13 of Universidad Carlos III de Madrid. In addition to automated driver config-
uration, WebDriverManager supports browser execution in Docker containers and
provides a JUnit extension, Selenium Jupiter14, which facilitates the integration of
Selenium into JUnit test lifecycles through the JUnit extension mechanism. While
Selenium Jupiter was not required for this implementation, WebDriverManager
significantly reduced potential Selenium failures.

4.5.2 The Page Object Model
In the Java ecosystem, Selenium implementation frequently employs the Page Ob-
ject Model pattern15. This pattern represents each user-accessible page with a
corresponding class implementing methods for web page interaction. A primary
advantage of this approach is the decoupling of test flow logic from page interaction
implementation. When user interface changes necessitate interaction modifications
(e.g., selector name changes), only the page class requires updating, while the test
flow logic remains unmodified.

Figure 4.8 presents the Page Object Model classes designed for the application
testing framework. The diagram includes classes from the selenium-java module
used for driver interaction (package org.openqa.selenium). The By classes locate
elements within web pages, while the WebElement and Select classes represent Java
models of DOM elements used for interaction with input fields, dropdown menus,
and related components.

4.5.3 Waiting Strategies
When automating web applications with Selenium, waiting strategies represent es-
sential mechanisms for synchronizing test execution with the application’s dynamic
state. In complex web applications, particularly digital payment platforms, page
elements load asynchronously, undergo state changes, and respond to various AJAX
calls. Without proper waiting strategies, automated tests become unreliable and
generate false negatives when attempting to interact with elements that have not
yet loaded or become interactive.

The fundamental challenge addressed by waiting strategies is the temporal gap
between browser automation commands and the actual state of the web application.

12https://bonigarcia.dev/webdrivermanager/
13https://bonigarcia.dev/
14https://github.com/bonigarcia/selenium-jupiter
15https://www.selenium.dev/documentation/test_practices/encouraged/page_object_

models/

45

https://bonigarcia.dev/webdrivermanager/
https://bonigarcia.dev/
https://github.com/bonigarcia/selenium-jupiter
https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/
https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/

4 – Methodology

org.openqa.selenium

WebDriver

get(String)
findElement(By) : WebElement

WebElement

sendKeys(String)

Select

element : WebElement

selectByVisibleTest(String)

By

«locator»
ByName

WebPage

driver : WebDriver

CardEntryPage

url : String
cardEntryForm : CardEntryForm

insertCardData(PaymentCard)
clickConfirm() : OTPEntryPage

PaymentCard

pan: String
cvc: String
expDate: String

CardEntryForm

insertCardData(PaymentCard)
insertCardPan(String)
insertCardCVC(String)
insertCardExpiration(String)

CVV_INPUT : By.name("CVV")
PAN_INPUT : By.name("PAN")
EXPDT_YY_SEL : By.name("EXPDT_YY")
EXPDT_MM_SEL : By.name("EXPDT_MM")

OTPEntryPage

insertOTP(String)
confirm() : PaymentResultPage

CHALLENGE_DATA_ENTRY : By.ByName("challengeDataEntry");
CONFIRM_OTP : By.ByName("confirm");

PaymentResultPage

Figure 4.8. Page Object Model for Payment Flow Testing

For example, when testing a payment form, attempting to activate a "Confirm"
button immediately after page loading might fail for several reasons:

• The button might not yet exist in the Document Object Model (DOM)

• The button might be present but obscured by a loading overlay

• The button might exist in the DOM but remain disabled until form validation
completes

Traditional static waiting mechanisms (Thread.sleep()) are inadequate for sev-
eral reasons:

1. They unnecessarily slow tests when elements become ready earlier than the
specified sleep duration

2. They cannot adapt to variable network conditions and browser loading times

3. They remain susceptible to unpredictable failures when elements require longer
loading times than the specified wait period

4. They reduce test maintainability by introducing arbitrary wait times through-
out the code

Selenium’s dynamic waiting strategies address these limitations by providing
intelligent synchronization mechanisms:

46

4.6 – Groovy

Implicit Waits

This mechanism instructs the driver to wait for a specified duration before rais-
ing exceptions. This represents a global setting applied to the entire test session.
Importantly, when the target element becomes available, the driver immediately
returns the element reference and continues execution. Consequently, a longer
implicit wait value does not necessarily increase the session duration (unlike the
Thread.sleep() approach).

Explicit Waits

Explicit waits enable the configuration of custom conditions to await, such as the
visibility of an element identified by a specific locator. These are implemented as
explicit polling loops that continuously verify condition fulfillment. If the condition
remains unsatisfied within the specified timeout period, an error is generated.

Fluent Waits

Fluent waits represent an evolution of explicit waits, providing more granular con-
trol over the polling mechanism. They enable specification of polling intervals and
exceptions to ignore (e.g., ElementNotInteractableException.class). Unlike explicit
waits, fluent waits accept a callback executed during each polling iteration, con-
taining the element interaction code. If the callback executes without errors and
returns true, the wait terminates and test execution continues. If the callback gen-
erates an error configured to be ignored, polling continues until either the timeout
expires, a non-ignored exception occurs, or the operation succeeds.

4.6 Groovy
The preceding sections have described the utilization of JUnit and Selenium to de-
fine and execute end-to-end tests requiring user agent interaction and report genera-
tion. This section demonstrates the integration of Groovy with Java to parse script
files defining a Domain-Specific Language (DSL) for dynamic test configuration.

Describing Groovy [1] as a library would be reductive, as it represents a com-
prehensive programming language powering modern technologies [20] including the
Gradle project management tool, Jenkins CI/CD server DSL, and Grails web frame-
work, with robust scripting capabilities. The official documentation [7] describes
Groovy as follows:

Apache Groovy is a powerful, optionally typed and dynamic language,

47

4 – Methodology

Figure 4.9. Groovy Logo

with static-typing and static compilation capabilities, for the Java plat-
form aimed at improving developer productivity thanks to a concise, fa-
miliar and easy to learn syntax. It integrates smoothly with any Java pro-
gram, and immediately delivers to your application powerful features, in-
cluding scripting capabilities, Domain-Specific Language authoring, run-
time and compile-time meta-programming and functional programming.

This section presents Groovy integration into a Java application for Domain-
Specific Language development. The discussion begins with the fundamental Groovy
concept of Closures, then examines the Builder pattern in Groovy, with emphasis on
DSL implementation using custom script classes and closure delegation strategies.

4.6.1 Closures
Functional programming languages trace their origins to the 1940s and the devel-
opment of lambda calculus by Alonzo Church[9]. In the functional programming
paradigm, computation is expressed through functions applied to arguments. Func-
tions are considered first-class citizens, serving as the primary computational unit
and capable of being passed and returned as parameters.

Functional programming support has become commonplace in modern program-
ming languages, including Python, JavaScript, and, since version 8, Java with its
lambda expression support.

From an implementation perspective, functions are created through function lit-
erals—expressions representing function values that can be referenced. An anony-
mous function (or lambda expression) represents a function defined through a func-
tion literal, creating a reference-able function value.

When an anonymous function references variables defined in its lexical scope,
it is called a closure. A closure "closes over" the environment in which is defined,

48

4.6 – Groovy

maintaining access to lexical scope variables even after the outer function returns.
This behavior allow the closure to capture such variables and reuse them at a later
time. This mechanism enables previously difficult programming patterns and is
particularly adopted for event handling and callback mechanisms.

Groovy extends this concept with a more sophisticated closure implementation.
Groovy closures go beyond anonymous functions to become full-fledged objects of
the Closure class, offering enhanced capabilities compared to similar constructs in
other languages. While Java lambdas and Python lambda functions remain rela-
tively constrained, Groovy closures provide extensive features particularly suited
for Domain-Specific Language creation. One of these being the delegation strategy.

4.6.2 Delegation Strategies
The effectiveness of Groovy closures in DSL creation derives from their delegation
mechanism. Unlike standard anonymous functions, Groovy closures can modify
their resolution strategy and delegate object, enabling execution in different con-
texts. This feature is fundamental for creating expressive DSLs that closely resem-
ble natural language while maintaining programmatic structure and safety.

Delegation in this context refers to the method call resolution process within
closures. When a method is invoked inside a closure, it must be resolved and
executed. By default, closures search for the method within the owner class. By
specifying a custom delegate and modifying the delegation strategy, developers can
override the default behavior and configure a custom object for method resolution
and invocation.

The Closure class supports the following primary delegation strategies:

OWNER_FIRST With this resolve strategy, the closure attempts to resolve
property references and methods first to the owner, then to the delegate (this
represents the default strategy).

OWNER_ONLY With this resolve strategy, the closure resolves property refer-
ences and methods exclusively to the owner without invoking the delegate.

DELEGATE_FIRST With this resolve strategy, the closure attempts to resolve
property references and methods first to the delegate, then to the owner.

DELEGATE_ONLY With this resolveStrategy, the closure resolves property
references and methods exclusively to the delegate, bypassing the owner en-
tirely.

The delegation strategy proves invaluable for DSL implementation as it allows for
fine-grained customization of the method resolution while permitting user-defined
side-effects, such as appending created elements to a list. Next sections will provide
additional implementation details.

Listing 4.10 demonstrates closure utilization for class instance construction:

49

4 – Methodology

1 class PaymentCard {
2 public String pan
3 public String cvc
4 public String expDate
5

6 void pan(String panNumber) {
7 this.pan = panNumber
8 }
9

10 void cvc(String securityCode) {
11 this.cvc = securityCode
12 }
13

14 void expDate (String expirationDate) {
15 this. expDate = expirationDate
16 }
17 }
18

19 // Define a closure that will call the methods on whatever
object is set as its delegate

20 def closure = {
21 pan ’4111111111111111 ’
22 cvc ’123 ’
23 expDate ’12/25 ’
24 }
25

26 def newCard = new PaymentCard ()
27

28 // Set the delegate of the closure to the new PaymentCard
instance

29 closure . delegate = newCard
30

31 // Execute the closure - it will call methods on the delegate
(the PaymentCard)

32 closure ()
33 assert newCard .pan == ’4111111111111111 ’
34 assert newCard .cvc == ’123 ’
35 assert newCard . expDate == ’12/25 ’

Listing 4.10. Closure Delegation Example

4.6.3 The Builder Pattern
While the builder pattern can be implemented in various programming languages,
its combination with Groovy Closures significantly enhances expressiveness and

50

4.6 – Groovy

readability.
Listing 4.11 provides an illustrative example:

1 def writer = new FileWriter (’markup .html ’)
2 def html = new groovy .xml. MarkupBuilder (writer)
3 html.html { // start the html tag
4 head { // start head tag
5 title ’Constructed by MarkupBuilder ’ // add title tag

with content
6 } // close head tag
7 body { // start body tag
8 ’Groovy XML builder example ’
9 form (action :’example ’) {

10 for (line in [’Produce HTML ’,’Produce XML ’,’Have
some fun ’]){

11 input(type:’checkbox ’,checked :’checked ’, id:
line , ’’)

12 label(for:line , line)
13 br()
14 }
15 }
16 } // body tag closed
17 } // html tag closed

Listing 4.11. XML Builder in Groovy

This example demonstrates declarative XML construction without explicit addChild
method invocations for each node. Instead, through the closure mechanism, nested
elements can be defined declaratively by invoking the corresponding method (e.g.,
form()) and passing a closure defining nested elements.

Groovy provides built-in builder support for common data structures such as
XML, JSON, directory trees, and other formats. Beyond these pre-defined builders,
Groovy offers dedicated classes for creating new builders using some conventional
patterns16. While these classes offer utility in numerous scenarios, they were not
adopted for this work as complexity increased during their evaluation. Instead, this
work relies only on closure delegation and custom script classes, examined in the
following section.

4.6.4 Integrating Groovy into a Java Application
Groovy functions as a complete independent language executable as a standalone
application or invokable from a JVM process. The latter approach enables integra-
tion with Java applications, providing access to shared variables and methods.

16https://docs.groovy-lang.org/docs/latest/html/gapi/groovy/util/FactoryBuilderSupport.html

51

4 – Methodology

The GroovyShell class manages Groovy script parsing, compilation, and execu-
tion. This class provides both fundamental methods for parsing String or File ob-
jects as Groovy scripts and advanced customization options for the parsing process.
The CompilerConfiguration can define the scriptBaseClass, adding behaviors
to the executed script by defining methods callable from the script but implemented
in the base class. Listing 4.6.4 demonstrates this approach in Groovy (chosen for
clarity, though identical functionality is available through Java). This example il-
lustrates how a script can be parsed within a context that implicitly enhances its
functionality.

1 import org. codehaus . groovy . control . CompilerConfiguration
2

3 class PaymentTest {
4 String name;
5 public PaymentTest (String name) {
6 this.name = name;
7 }
8

9 String toString () {
10 "test: ${name}"
11 }
12 }
13

14 abstract class PaymentTestScript extends Script {
15 List < PaymentTest > paymentTests = new ArrayList ();
16

17 public void addTest (String name) {
18 this. paymentTests .add(new PaymentTest (name));
19 }
20 }
21

22 def compilerConfig = new CompilerConfiguration ();
23 compilerConfig . setScriptBaseClass (PaymentTestScript .class.

getName ());
24

25 def shell = new GroovyShell (this. class. classLoader , new
Binding (), compilerConfig);

26

27 def parsedScript = shell.parse(’addTest ("1 st Test ")’);
28

29 assert parsedScript instanceof PaymentTestScript
30 parsedScript .run ();
31 assert parsedScript . paymentTests .size () == 1
32 println parsedScript . paymentTests // will print: [test: 1st

Test]

52

4.6 – Groovy

Listing 4.12. Parsing Groovy Script with Custom Base Class

This mechanism enables users to define executable test sets. The following sec-
tion demonstrates how this approach can be enhanced using closures to implement
the DSL builder pattern.

4.6.5 Combining Custom Script Class With Closures Del-
egation

Listing 4.11 demonstrated how closures enable declarative object construction through
the delegation mechanism illustrated in Listing 4.10. Listing 4.6.4 illustrated script
enhancement with domain-specific functionality. This section demonstrates the
integration of these approaches to implement the payment test DSL.

For clarity, this presentation examines a subset of the DSL—specifically, a single
test instance instantiation—as additional components introduce only minor varia-
tions using identical methodology.

After multiple design iterations, the final DSL implementation appears in Listing
4.13. This design maximizes flexibility regarding target environments, merchant
credential configuration, and connection parameters, all configurable independently
for each test.

1 def jumpHost = " 1.2.3.4 "
2

3 def validationEnv = testEnv {
4 hostname " hidden "
5 port 8081
6 baseUrlPayment " example /api/ payment "
7 proxyJump {
8 via jumpHost
9 username " tester "

10 password " tester "
11 }
12

13 def maestroCard = paymentCard {
14 pan " 1234567890 "
15 cvc "123"
16 expDate " 04/2025 "
17 }
18

19 def merchantOne = merchant {
20 keyId "test -keyId"
21 keySecret "test - keySecret "
22 }
23

53

4 – Methodology

24

25 directPayment (" direct payment test example ") {
26 withMerchant merchantOne
27 withPaymentCard maestroCard
28 toTestEnv validationEnv
29 }
30

31 preAuth ("pre -auth test example ") {
32 withMerchant merchantOne
33 withPaymentCard maestroCard
34 amount 200
35 toTestEnv validationEnv
36 thenCapture {
37 amount 100 // partial capture
38 }
39 }
40

41 MIT("mit test example ") {
42 withMerchant merchantOne
43 withPaymentCard maestroCard
44 amount 200
45 toTestEnv validationEnv
46 }

Listing 4.13. Example of the Target DSL

4.6.6 Static Type Checking
The parsing process described thus far provides no mechanism for detecting poten-
tial type errors during compilation. Groovy compilation customizers enable type-
checking implementation at compile time. Listing 4.14 demonstrates this approach,
with reference to the code in Listing 4.6.4.

1 import groovy . transform . TypeChecked ;
2 import org. codehaus . groovy . control . customizers .

ASTTransformationCustomizer ;
3

4 def compilerConfig = new CompilerConfiguration ();
5

6 // add the type checking phase during compilation
7 config . addCompilationCustomizers (new

ASTTransformationCustomizer (TypeChecked . class));
8

9 compilerConfig . setScriptBaseClass (PaymentTestScript .class.
getName ());

Listing 4.14. Forcing Type Checking at Compile Time with a CompilationCustomizer

54

4.6 – Groovy

With this enhancement, attempts to invoke the addTest method with incorrect
parameter types (e.g., an integer instead of a String) will generate a compilation
failure with a MultipleCompilationErrorsException:

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:
Script1.groovy: 1: [Static type checking]
- Cannot find matching method Script1#addTest(int).

Please check if the declared type is correct and if the method exists.
@ line 1, column 1.

addTest(0)
^

1 error

This enhancement significantly improves application robustness by enabling early
detection of type errors before script execution, allowing users to correct issues
proactively.

Section 4.6.5 demonstrated the integration of Closures and custom Script classes
for DSL development using closure delegation on Spec classes. However, the type-
checking mechanism described above does not adequately address closure body
type-checking: while it enforces type checking on the script itself, the compiler
cannot anticipate runtime closure delegation targets, as delegation occurs during
execution.

Consequently, the compiler attempts to resolve methods within closures against
the script class, generating errors even when runtime behavior would execute cor-
rectly:

1 import org. codehaus . groovy . control . CompilerConfiguration
2 import groovy . transform . TypeChecked
3 import org. codehaus . groovy . control . customizers .

ASTTransformationCustomizer
4

5 class PaymentTest {
6 String name;
7

8 public PaymentTest () { name = null }
9

10 public void name(String name) {
11 this.name = name
12 }
13

14 String toString () {
15 "test: ${name}"
16 }

55

4 – Methodology

17 }
18

19 abstract class PaymentTestScript extends Script {
20 List < PaymentTest > paymentTests = new ArrayList ();
21

22 public void createTest (Closure cl) {
23 def delegate = new PaymentTest ()
24 cl. setDelegate (delegate)
25 cl. setResolveStrategy (Closure . DELEGATE_ONLY);
26 cl()
27 this. paymentTests .add(delegate)
28 }
29 }
30

31 def compilerConfig = new CompilerConfiguration ();
32 // if the following line is uncommented it will raise an

compile -time exception
33 // compilerConfig . addCompilationCustomizers (new

ASTTransformationCustomizer (TypeChecked .class));
34 compilerConfig . setScriptBaseClass (PaymentTestScript .class.

getName ());
35

36 def shell = new GroovyShell (this. class. classLoader , new
Binding (), compilerConfig);

37

38 def parsedScript = shell.parse("""
39 createTest {
40 name "a test created with closure delegation "
41 }
42 """);
43

44 assert parsedScript instanceof PaymentTestScript
45 parsedScript .run ();
46 assert parsedScript . paymentTests .size () == 1
47 assert parsedScript . paymentTests [0]. name == "a test created

with closure delegation "
48 println parsedScript . paymentTests // will print: [test: a

test created with closure delegation]

Listing 4.15. A Compile-Time Failing PaymentTestScript Due to Runtime
Closure Delegation

To address this limitation, the Groovy compiler must be informed about method
resolution against alternative classes. Groovy 2.1 introduced the @DelegatesTo
annotation to specify delegate classes for Closure parameters and optionally define
delegation strategies. According to Groovy documentation:

56

4.7 – DSL Implementation

@groovy.lang.DelegatesTo is a documentation and compile-time anno-
tation aimed at:

1. documenting APIs that use closures as arguments
2. providing type information for the static type checker and compiler

Modifying the createTest method signature as follows enables compatibility with
static type checking:

public void createTest(
@DelegatesTo(
value=PaymentTest,
strategy=Closure.DELEGATE_ONLY

) Closure cl)

4.7 DSL Implementation
The techniques described previously form the foundation of the DSL implementa-
tion detailed in this section. First, the target DSL is examined, including formal
requirements and design guidelines. Subsequently, the section presents an archi-
tectural overview of the application, detailing its components and their respective
responsibilities. Additional domain-specific mechanisms are also described.

4.7.1 DSL Requirements and Design
The application’s core functionality enables users to define and execute test sets,
generating execution reports for result analysis.

To ensure DSL completeness and utility, the following considerations were ad-
dressed:

• Available test templates for user implementation

• Parameter specifications for each test type

• User parameter definition mechanisms

• Environment configuration (validation, quality, etc.) with determination of
whether configuration should be global or test-specific

These questions require opinionated resolution, as no universally optimal solu-
tion exists. The selected approach involved iterative DSL refinement until achieving
the desired flexibility and usability.

Table 4.1 enumerates the tests incorporated into the payment test DSL.
Several tests share common parameters (payment card, amount, target environ-

ment), enabling reusability pattern implementation for test configurations.

57

4 – Methodology

Test method Description Parameters

directPaym A generic transaction with configurable
transaction type (verify, sale)

- paymentCard
- amount
- transactionType (verify, sale)
- targetEnv

preAuth
A test involving amount pre-authorization.
The user can also specify what should follow
the authorization (capture, reversal)

- paymentCard
- amount
- then (capture or reversal)
- targetEnv

MIT A Merchant Initiated Transaction.
- paymentCard
- amount
- targetEnv

Table 4.1. Test Types Implemented in the DSL

1 def jumpHost = " 1.2.3.4 "
2

3 def validationEnv = testEnv {
4 hostname " hidden "
5 port 8081
6 baseUrlPayment " example /api/ payment "
7 proxyJump {
8 via jumpHost
9 username " tester "

10 password " tester "
11 }
12

13 def maestroCard = paymentCard {
14 pan " 1234567890 "
15 cvc "123"
16 expDate " 04/2025 "
17 }
18

19 def merchantOne = merchant {
20 keyId "test -keyId"
21 keySecret "test - keySecret "
22 }
23

24

25 directPayment (" direct payment test example ") {
26 withMerchant merchantOne
27 withPaymentCard maestroCard
28 toTestEnv validationEnv

58

4.7 – DSL Implementation

29 }
30

31 preAuth ("pre -auth test example ") {
32 withMerchant merchantOne
33 withPaymentCard maestroCard
34 amount 200
35 toTestEnv validationEnv
36 thenCapture {
37 amount 100 // partial capture
38 }
39 }
40

41 MIT("mit test example ") {
42 withMerchant merchantOne
43 withPaymentCard maestroCard
44 amount 200
45 toTestEnv validationEnv
46 }

Listing 4.16. Example of Final Test Configuration Script

4.7.2 Implementation Overview
Figure 4.10 presents the implementation architecture, depicting principal compo-
nents contributing to the final system.

Payment Test Application

«Groovy Script Class»
TestScriptConfiguration

Parse the input file and return a list of DynamicTests to be run

«JUnit»
JUnit test runner

Selenium

HTTP Client Run the tests employing selenium and
the configured HTTP client

«JUnit Test Execution Listener»
OpenTest4J

test-script.paytest

The DSL script containing the test
to be run and their configurations.

test-report.html

«tests»«use»

«use»

«test events»

«generate report»

Figure 4.10. Component Diagram of the DSL Implementation

4.7.3 Defining Test Classes
Test implementation classes must address multiple requirements. First, they must
implement the Executable interface for interpretation by JUnit as dynamic tests.
This interface represents the most abstract execution interface in Java, consisting
of a single method: void execute() throws Throwable.

59

4 – Methodology

To enhance the Executable interface with additional functionality shared across
tests, a new interface, PaymentTest extends Executable has been defined. This
interface introduces methods required for test configuration, such as setReporter(TestReporter testReporter)
for configuring the reporter instance for each test, and String getName() to get
the name identifier of the test.

Furthermore, this interface provides a default implementation of the execute
method. For code reuse maximization, tests are designed as sequences (Lists) of
common TestStep objects, where test execution entails sequential step execution.
Listing 4.17 presents the PaymentTest interface, demonstrating its default execute
method implementation, which reports test configuration via the testReporter and
executes each step sequentially.

1 package it. payreply . paytests .dsl. testscenarios ;
2

3 import it. payreply . paytests .dsl. domain . PaymentCard ;
4 import it. payreply . paytests .dsl. testscenarios .steps. TestStep ;
5 import org.junit. jupiter .api. TestReporter ;
6 import org.junit. jupiter .api. function . Executable ;
7

8 import java.util.List;
9

10 public interface PaymentTest extends Executable {
11

12 void reportTestConfiguration ();
13

14 List <TestStep > getTestSteps ();
15

16 String getName ();
17

18 void setReporter (TestReporter testReporter);
19

20 default void execute () throws Exception {
21 reportTestConfiguration ();
22 for (TestStep step: getTestSteps ()) {
23 step. execute (getTestContext ());
24 }
25 }
26

27 TestContext getTestContext ();
28

29 default PaymentCard getPaymentCard () {
30 return getTestContext (). getPaymentCard ();
31 }
32 }

Listing 4.17. The PaymentTest Interface

60

4.7 – DSL Implementation

The TestStep interface defines another execution method that accepts a Test-
Context parameter: void execute(TestContext context) throws Throwable.
Step classes are stateless, utilizing the TestContext to access required data and
store execution results. The TestContext maintains a TestReporter reference, en-
abling any step to report data, screenshots, and properties to the JUnit reporting
infrastructure.

This architecture enables the CompleteTransactionInBrowserStep to report
browser page screenshots to the JUnit reporting infrastructure. Each step employs
assertions to verify expected conditions, such as confirming API calls return status
200 with expected response data. Assertion failures indicate test failures.

The implemented TestSteps include:

StartTransactionStep Initializes transactions and retrieves browser callback URLs

CompleteTransactionInBrowserStep Utilizes previously obtained URLs to nav-
igate web pages, input card data, and proceed to the success page

VerifyTransactionStep After browser interaction completion, verifies transac-
tion status via additional API calls

PerformMITStep Specific to MIT test scenarios, executes different API calls to
complete transactions synchronously using payment tokens obtained in previ-
ous steps

4.7.4 Configuring Test Parameters
Having described test implementation through specialized classes, this section ex-
amines parameter configuration via the custom Groovy script class.

When the application executes, test classes are instantiated during Groovy script
interpretation and execution, which happens within JUnit tests, as test classes must
be returned as dynamic tests implementing the Executable interface. Figure 4.11
illustrates this process.

For the script to return a PaymentTest lists, it must track down every test
creation internally. This is done by adding tests to the list as they are created, as
demonstrated in Listing 4.6.5. The script class provides public methods for creating
PaymentTest instances from Closures (and Strings for test naming). These Closures
are delegated to test type specifiers that configure parameters and instantiate tests.
Figure 4.12 illustrates this process.

4.7.5 Detailed Class Diagram
Figure 4.13 presents a more detailed class-level architectural diagram.

61

4 – Methodology

Figure 4.11. Application Lifecycle

4.8 Parallel Test Execution

The main advantage of a mature testing frameworks such as JUnit is its incredible
features support, that most of the time only requires some additional configuration.
Parallel test execution is one of these features: it can be easily configured to gain
a non-negligible speed-up in test execution time. For test suites with many cases,
parallel execution capability significantly enhances performance.

Without parallel execution, automation alone provides limited speed up in exe-
cution time: most of the gain relies in parallelization of the test executions, as this
will allow to run more test cases at the same time. Compared to human opera-
tors which cannot reliably be multi-task without operational errors, computers are
designed to do multiple things at the same time.

The implementation has thus taken into account parallel test execution while
addressing domain-specific constraints. While JUnit enables parallel execution
through simple environment variable configuration, a synchronization mechanism
is required to prevent concurrent transactions using identical payment cards. This
in fact could result in unspecified behaviors on testing environments.

62

4.8 – Parallel Test Execution

Figure 4.12. Delegation Process in PaymentTest Instantiation

4.8.1 PaymentCard Synchronization
In order to prevent side effects from concurrent transactions using the same pay-
ment card, browser payment steps are synchronized relative to the payment card,
ensuring that only one transaction per card executes simultaneously.

This constraint applies exclusively to browser payment steps (where transactions
occur) and not to other steps, as broader synchronization would eliminate paral-
lelization benefits. The implementation utilizes Java synchronization primitives,
specifically synchronized blocks targeting payment card objects.

For effective implementation, each unique card configuration (pan, expiration
date, CVV) must reference the same PaymentCard object, as synchronization oc-
curs at the object level. Since the DSL enables PaymentCard object creation from
multiple contexts (root context paymentCard method or closure delegation within
withPaymentCard methods), a consistency mechanism is required.

63

4 – Methodology

domain

services

d t o

useragent

DSL

bui lder domain

juni t

report ing

test ing

spec

testscenarios

steps

cli

PaymentApi

@POST startPayment(StartPaymentRequest): StartPaymentResponse
@GET verifyPayment(String) : VerifyPaymentResponse
@POST cancelPreAuth(StartPaymentResponse): StartPaymentResponse
@POST capturePreAuth(StartPaymentRequest) : StartPaymentResponse

PaymentService

paymentApi : PaymentApi
requestSigner : SigningRequestInterceptor
proxy : Proxy

SigningRequestInterceptor

merchant : Merchant

StartPaymentResponse

StartPaymentRequest

VerifyPaymentResponse

PaymentAgent PaymentPage ThreeDSPage

«Groovy Script Class»
TestConfigurationScript

PaymentCardFactory

newInstance(PaymentCardSpec) : PaymentCard

Merchant

keyId : String
keySecret : String

constructor(PaymentSpec)

PaymentCard

pan : String
cvc : String
expirationDate : String

PaymentTestReportGeneratingListener

OkHttpCallReporter

RunGroovyTests

runTestFromGroovy() : DynamicNode

«Closure Delegate»
MerchantSpec

keyId(String)
keySecret(String)

«Closure Delegate»
PaymentCardSpec

pan(String)
cvc(String)
expirationDate(String)

«Closure Delegate»
PaymentTestSpec

withMerchant(Merchant)
withPaymentCard(PaymentCard)
withPaymentCard(Closure)
toTestEnv(TestEnvironmentSpec)

«Closure Delegate»
PreAuthSpec

thenCapture(bool)
thenCancel(bool)

«Closure Delegate»
TestEnvironmentSpec

hostname(String)
port(int)
baseUrlPayment(String)
proxyJump(Closure)

«Closure Delegate»
ProxyJump

via(String)
username(String)
password(String)
getProxy() : Proxy

GenericTransaction

constructor(PaymentTestSpec)

PaymentTest

execute()
setTestReporter(TestReporter)
getTestContext()

PreAuth

constructor(PreAuthSpec)

TestContext

paymentService : PaymentService
paymentAgent : PaymentAgent

CompleteTransactionInBrowserStep

StartTransactionStep

TestStep

excute(TestContext)

VerifyTransactionStep

PreAuthCaptureStep

PreAuthCancelStep

TestRunnerApplication

calls

controls redirects to

stepsList

context

executes

loads

testsList

defines

defines

creates

Figure 4.13. Class Diagram of the DSL Implementation

The implemented solution delegates PaymentCard creation to a specialized Pay-
mentCardFactory that returns existing instances when requested to create Pay-
mentCards with previously registered data. A Map<PaymentCardSpec, PaymentCard>
associates PaymentCard instances with specifications containing card data. When
creating a PaymentCard from a PaymentCardSpec, the system checks for exist-
ing objects, returning them when found or creating new instances when necessary.
Listing 4.18 formally describes this behavior.

1 var card1 = paymentCard {
2 pan " 123456 "
3 cvc "123"
4 expirationDate " 04/2025 "
5 }
6

7 def card2 = paymentCard {
8 pan " 123456 "
9 cvc "123"

64

4.8 – Parallel Test Execution

10 expirationDate " 04/2025 "
11 }
12

13 def card3 = paymentCard {
14 pan "09876"
15 cvc "123"
16 expidationDate " 05/2025 "
17 }
18

19 assert card1 == card2
20 assert card3 != card1

Listing 4.18. Same Card Instantiation Behavior

4.8.2 Enabling Parallel Test Execution in JUnit
JUnit parallel test execution configuration requires three actions:

1. Add the junit.jupiter.execution.parallel.enabled configuration param-
eter with value true to the LauncherDiscoveryRequest created when launching
the test class

2. Annotate the test method with @Execution(ExecutionMode.CONCURRENT)

3. For dynamic tests created with @TestFactory, wrap returned test lists in a
dynamicContainer and modify the return type to DynamicNode

Listing 4.19 demonstrates this implementation.
1 // when creating the LaucherDiscoveryRequest :
2 var junitTestRequest = LauncherDiscoveryRequestBuilder .

request (). selectors (
3 DiscoverySelectors . selectClass (

RunGroovyTests .class . getName ())
4)
5 . configurationParameter ("junit. platform .

output . capture . stdout ", "true")
6 . configurationParameter ("junit. platform .

output . capture . stderr ", "true")
7 . configurationParameter ("junit. platform .

reporting . output .dir", OUTPUT_DIR)
8 // enable parallel execution
9 . configurationParameter (

10 "junit. jupiter . execution . parallel .
enabled ", "true"

11)

65

4 – Methodology

12 . configurationParameter ("junit. platform .
reporting .open.xml. enabled ", "true")

13 .build ();
14

15

16 // on the test methods :
17 @TestFactory
18 @ExtendWith (DynamicTestReportingExtension . class)
19 @Execution (ExecutionMode . CONCURRENT) // new
20 public DynamicNode runTestFromGroovy (DynamicTestReporter

testReporter) throws IOException {
21 // ... just as before
22 // wrap tests inside DynamicNode usign

dynamicContainer
23 return dynamicContainer (SOURCE_SCRIPT , testList .

stream ().map(it -> {
24 it. setReporter (testReporter);
25 return dynamicTest (it. getName (), it);
26 }));
27 }

Listing 4.19. Enabling JUnit Parallel Execution

4.9 IntelliJ IDEA DSL Specification via GDSL
A remaining challenge involves assisting users in test script creation. While Section
4.6.6 demonstrated compile-time type checking for error prevention, IDE assistance
for method availability, parameter types, and related guidance remains necessary.
This capability resembles Jenkins steps definition support.

Jenkins steps derive from DSL files and would be challenging for DevOps de-
velopers to implement correctly without assistance. IntelliJ IDEA IDE provides
mechanisms for DSL definition and application to Groovy files. This methodology
is widely adopted in the Jenkins developer community and is detailed below.

4.9.1 GDSL Files
Without specification, Groovy files utilizing DSLs appear in IntelliJ as shown in
Figure 4.14.

With DSL specification, the IDE immediately signal any type error or invalid
method calls, while also providing code suggestion and method documentation
during editing, as illustrated in Figure 4.15. This assistance significantly improve
the script editing experience, especially for new users who might not be aware of
method names and expected arguments.

66

4.9 – IntelliJ IDEA DSL Specification via GDSL

Figure 4.14. DSL Editing in IntelliJ Without Capability Information

Implementing this functionality requires informing IntelliJ about the DSL struc-
ture, which is composed of methods, parameters, and closure delegation. This is
accomplished through GDSL files. GDSL files provide a way to explicitly describe
what a DSL allows to do. For instance it allows to specify that a certain method
is available and what kind of parameters it expects. By placing a .gdsl file in
the src/main/groovy directory a new DSL is created and can be used (which is
provided assistance) inside the code editor files.

67

4 – Methodology

Figure 4.15. DSL Editing with Complete IDE Assistance, Including Method
Documentation and Argument Type Resolution

This process is detailed in the IntelliJ documentation17. Yet, explicitly defining
the DSL in this way has 3 main disadvantages: requires time and effort; is suscep-
tible to error and misalignment with respect to the real DSL; and finally must be
updated in accordance with every new modification of the DSL. Fortunately, there
was an alternative: the GDSL can be used to infer the DSL knowledge directly from
the Groovy custom script class, as shown in Listing 4.20. This has many benefit
because ensure that the defined DSL is always based on the real script class.

17https://youtrack.jetbrains.com/articles/GROOVY-A-15796912

68

https://youtrack.jetbrains.com/articles/GROOVY-A-15796912

4.9 – IntelliJ IDEA DSL Specification via GDSL

1 // PayTest .gdsl file for DSL specification
2 // place it in scr/main/ groovy
3 // apply only to ". paytest " files
4 def rootCtx = context (scope: scriptScope (null), filetypes : ["

paytest "])
5

6 contributor (rootCtx) {
7 // delegates to our custom script class
8 // it must be available on the classpath
9 delegatesTo (findClass ("it. payreply . paytests .dsl.

TestConfigurationScript "))
10 }

Listing 4.20. The PayTest.gdsl File Implementation

69

70

Chapter 5

Results and Evaluation

This chapter presents the results of implementing the automated testing framework
with a domain-specific language for digital payment systems. The evaluation of
the developed solution is addressed both quantitative and qualitative, comparing
the efficiency of the automated approach against manual testing procedures and
analyzing the expressiveness of the DSL for test definition. Starting from a pre-
defined list of tests, the results point out how the developed framework allows
to formalize the test suite in an intuitive manner by employing Groovy language
capabilities. The performance gain of the automated execution are evaluated for
the whole test suite, and point out not negligible improvements.

5.1 Test Suite Definition

The test suite to be evaluated is extracted from a list provided by the customer,
which contains the most important payment scenarios and consists of 82 tests,
divided in 41 cases repeated twice for each of the two card type, MasterCard and
Visa. The repetition of the same tests for the two card issuer attempts to validate
the connection to the two circuits’ networks. Of these 41 test scenarios, 26 requires
the physical card to be inserted on the smart pos, and so are excluded from the
evaluation test suite. The remaining 15 tests have been implemented using the
methodologies described in the previous chapter. Since the tests are executed for
each of the two payment card of MasterCard and Visa, the total number of tests is
30.

71

5 – Results and Evaluation

5.2 Qualitative Analysis: DSL Expressiveness and
Usability

Beyond quantitative improvements in execution efficiency, the DSL-based approach
offers significant qualitative advantages in test definition, maintenance, and exten-
sibility. This section examines these aspects through illustrative examples and
usability analysis.

5.2.1 Case Study: Multi-Card Test Definition
As explained above, the defined test suite involves executing identical test scenarios
using two different payment cards from two issuers (Mastercard and Visa). The DSL
design combined with Groovy language features intuitively support this pattern as
allow to express it with minimal code reuse. This is demonstrated in Listing 5.1,
where the test suite script employ the Groovy forEach to define the same tests for
the different cards:

1 // Common test setup
2 def testMerchant = merchant {
3 keyId " hidden "
4 keySecret " hidden "
5 }
6

7 def targetTestEnv = testEnv {
8 hostname " hidden "
9 port 8081

10 baseUrlPayment "/test/api/ payment /"
11 proxyJump {
12 via " bastionHost ’s IP"
13 username " hidden "
14 password " hidden "
15 }
16 }
17

18 def masterCard = paymentCard {
19 pan " 511111111111111 "
20 cvc "000"
21 expirationDate "12/30"
22 }
23

24 def visa = paymentCard {
25 pan " 411111111111111 "
26 cvc "000"
27 expirationDate "12/30"
28 }

72

5.2 – Qualitative Analysis: DSL Expressiveness and Usability

29

30 def cardsToTest = [masterCard , visa];
31

32 cardsToTest . forEach { card ->
33 {
34 // Test Case 1: Direct Payment online
35 genericTransaction ("${card. getIssuer ()} Direct

Payment online ") {
36 withMerchant testMerchant
37 withPaymentCard card
38 amount 100
39 toTestEnv targetTestEnv
40 }
41

42 // Test Case 2: Direct Payment online with
tokenization

43 genericTransaction ("${card. getIssuer ()} Direct
Payment online with tokenization ") {

44 withMerchant testMerchant
45 withPaymentCard card
46 amount 100
47 tokenize true
48 toTestEnv targetTestEnv
49 }
50

51 // Test Case 3: Card_verification & tokenization
online

52 verifyCard ("${card. getIssuer ()} Card verification &
tokenization online ") {

53 withMerchant testMerchant
54 withPaymentCard card
55 tokenize true
56 toTestEnv targetTestEnv
57 }
58

59 // Test Case 4: Pre -Auth - online
60 preAuth ("${card. getIssuer ()} Pre -Auth - online ") {
61 withMerchant testMerchant
62 withPaymentCard card
63 amount 100
64 toTestEnv targetTestEnv
65 }
66

67 // Test Case 5: Pre -Auth - online with token
68 preAuth ("${card. getIssuer ()} Pre -Auth - online with

token") {

73

5 – Results and Evaluation

69 withMerchant testMerchant
70 withPaymentCard card
71 amount 100
72 tokenize true
73 toTestEnv targetTestEnv
74 }
75

76 // Test Case 6: Pre - authorization cancellation
77 preAuth ("${card. getIssuer ()} Pre - authorization

cancellation ") {
78 withMerchant testMerchant
79 withPaymentCard card
80 amount 100
81 then {
82 cancel
83 }
84 toTestEnv targetTestEnv
85 }
86

87 // Test Case 7: Pre - authorization (with tokenization)
cancellation

88 preAuth ("${card. getIssuer ()} Pre - authorization (with
tokenization) cancellation ") {

89 withMerchant testMerchant
90 withPaymentCard card
91 amount 100
92 tokenize true
93 then {
94 cancel
95 }
96 toTestEnv targetTestEnv
97 }
98

99 // Test Case 8: Pre - authorization partial closure
100 preAuth ("${card. getIssuer ()} Pre - authorization

partial closure ") {
101 withMerchant testMerchant
102 withPaymentCard card
103 amount 100
104 then {
105 capture 50
106 }
107 toTestEnv targetTestEnv
108 }
109

74

5.2 – Qualitative Analysis: DSL Expressiveness and Usability

110 // Test Case 9: Pre - authorization partial closure
with token

111 preAuth ("${card. getIssuer ()} Pre - authorization
partial closure with token") {

112 withMerchant testMerchant
113 withPaymentCard card
114 amount 100
115 tokenize true
116 then {
117 capture 50
118 }
119 toTestEnv targetTestEnv
120 }
121

122 // Test Case 10: Pre - authorization total closure
123 preAuth ("${card. getIssuer ()} Pre - authorization total

closure ") {
124 withMerchant testMerchant
125 withPaymentCard card
126 amount 100
127 then {
128 capture 100
129 }
130 toTestEnv targetTestEnv
131 }
132

133 // Test Case 11: Pre - authorization total closure with
token

134 preAuth ("${card. getIssuer ()} Pre - authorization total
closure with token") {

135 withMerchant testMerchant
136 withPaymentCard card
137 amount 100
138 tokenize true
139 then {
140 capture 100
141 }
142 toTestEnv targetTestEnv
143 }
144

145 // Test Case 12: Transaction refund intraday (
Original transaction CNP)

146 genericTransaction ("${card. getIssuer ()} Transaction
refund intraday (Original transaction CNP)") {

147 withMerchant testMerchant
148 withPaymentCard card

75

5 – Results and Evaluation

149 amount 100
150 then {
151 refund 100
152 }
153 toTestEnv targetTestEnv
154 }
155

156 // Test Case 13: Transaction refund partial intraday
(Original transaction CNP)

157 genericTransaction ("${card. getIssuer ()} Transaction
refund partial intraday (Original transaction CNP)
") {

158 withMerchant testMerchant
159 withPaymentCard card
160 amount 100
161 then {
162 refund 50
163 }
164 toTestEnv targetTestEnv
165 }
166

167 // Test Case 14: Transaction refund intraday (
Original transaction Pre -Auth)

168 preAuth ("${card. getIssuer ()} Transaction refund
intraday (Original transaction Pre -Auth)") {

169 withMerchant testMerchant
170 withPaymentCard card
171 amount 100
172 then {
173 capture 100
174 refund 100
175 }
176 toTestEnv targetTestEnv
177 }
178

179 // Test Case 15: Transaction refund partial intraday
(Original transaction Pre -Auth)

180 preAuth ("${card. getIssuer ()} Transaction refund
partial intraday (Original transaction Pre -Auth)")

{
181 withMerchant testMerchant
182 withPaymentCard card
183 amount 100
184 then {
185 capture 100
186 refund 50

76

5.2 – Qualitative Analysis: DSL Expressiveness and Usability

187 }
188 toTestEnv targetTestEnv
189 }
190

191 }
192 };

Listing 5.1. The test script containing the 30 tests to be executed. Note
how the Groovy language allows to reuse code to configure the same tests
for different cards.

The collection-based approach significantly reduces redundancy compared to
defining each test case individually, and is only possible thanks to Groovy. Also,
the test name is used to identify the value received by the test as it is parameterized
with its value.

5.2.2 Environmental Configuration Flexibility
The DSL’s environment configuration capabilities also allow tests to target different
deployment environments without modifying test logic. Listing 5.2 illustrates this
flexibility:

1 // Define environments with different configurations
2 def validation = testEnv {
3 // ...
4 }
5

6 def quality = testEnv {
7 // ...
8 }
9

10 // Define test that runs in both environments
11 [validation , quality]. each { env ->
12 genericTransaction ("Cross - environment payment in ${env}")

{
13 withPaymentCard visaCard
14 amount 1000
15 tokenize true
16 toTestEnv env
17 }
18 }

Listing 5.2. Example of tests run across different environments

This is the same approach mentioned above but applied across the target test
environment parameters. Allowing to target different deployments of the applica-
tion can be useful to trace back introduced regression present in one environment
but not the other.

77

5 – Results and Evaluation

5.2.3 Test Reporting Capabilities
The integration with JUnit 5’s reporting infrastructure provides comprehensive test
execution documentation. Figure 5.1 illustrates the generated HTML report for a
test execution:

Figure 5.1. Example of generated HTML report visualized in a browser.
The report contains all the test configurations parameters, captured stan-
dard output and standard error and screenshot of the web pages captured
by the Selenium user agent.

The report includes:

• Test execution status (pass/fail) with clear visual indicators.

• Execution duration for each test case and the overall suite.

• Test parameters provided, including test environment properties, payment
card details, and so on.

• Detailed failure information including exception stack traces and standard
error.

• Screenshots captured during browser-based testing steps.

• Transaction data and API response details logged by the OkHttpClient.

This comprehensive reporting facilitates efficient debugging and provides de-
tailed documentation of test coverage for compliance purposes.

5.3 Quantitative Analysis: Execution Time
One of the primary objectives of the automated testing framework was to reduce the
time and effort required to execute comprehensive test suites for payment scenarios.
This section presents a comparative analysis of execution times between manual
testing procedures and the automated DSL-based approach.

5.3.1 Execution Time Comparison
To evaluate execution efficiency, the application has been run against the test suite
defined in Listing 5.1. In order to compare it with manual execution, an estimation
of the manual run was obtained by considering a constant time for a human times
the number of tests. The constant is obtained empirically by measuring with a
digital clock a single test manual execution time. Table 5.3.1 presents the execution

78

5.3 – Quantitative Analysis: Execution Time

Execution Number of Execution Average Time
Mode Tests Time (s) per Test (s)
Manual (Estimated) 30 9,000 300
Automated (Measured) 30 600 40
Time Savings – 8,400 260
Improvement (%) – 93.3% 86.7%

Table 5.1. Test Suite Execution Time Comparison Note: Estimated manual
execution time includes also manual filling of the test report. Automated execution
can run 2 tests in parallel (one test for each card at a time), resulting in a total
execution time of 600 seconds (15 test pairs × 40 seconds). Time savings calculated
as the difference between manual and automated execution times. Improvement
percentage calculated as: ManualT ime−AutomatedT ime

ManualT ime × 100%.

79

5 – Results and Evaluation

time comparison between manual testing procedures and the DSL-based automated
framework.

The results, as expected, demonstrate an evident improvement in execution time,
with the automated framework reducing execution time by approximately 93.3%
for the whole test suites. This is partially due to the increased level of parallelism
(two different card so two tests at a time), the faster speed at which the program
can work, and that manual testing required also manual filling of the test report.

5.4 Challenges and Limitations
While the DSL-based automated testing framework delivers significant improve-
ments, several challenges and limitations were identified during implementation
and evaluation:

5.4.1 Test Stability
Since the test environment were reliant on external services provided by external
parties, their availability was not under control and caused some non-reproducible
instabilities during tests, making them fail. In order to prevent these kind of issues
some retry strategies can be introduced in order to detect anomalies during tests
and trigger a new run for involved tests.

5.4.2 Application Interfaces
While the implemented solutions currently utilizes a command-line interface, future
work may focus on making it accessible from more intuitive interfaces, such as a
dedicated web app with embedded test-script editor enriched with code-assistance
functionalities. This extension would lower the entry barrier for non technical
stakeholders and provide a centralized access to the testing infrastructure.

5.5 Future Works

5.5.1 Reporting Infrastructure
While the report generation fulfills the main requirements and expectations, there
is still room for improvement by integrating more advanced infrastructure offering
greater capabilities. Allure2 [3] would be a perfect candidate for this exploratory
work as offers many useful features out-of-the-box, such as test history and success
monitoring over time, including of course HTML test report output.

80

5.6 – Summary of Findings

5.5.2 Solution Generality
The implemented solution has proven well for the target SUT. A possible extension
of this work could focus on increasing its generality to support different target
application in the domain of digital payments. This would require to define ad-hoc
payment scenarios and API definition and calls. While this is indeed challenging,
a feasibility study is required to analyze the costs of such a solution.

5.5.3 LLM Integration
The applications of Large Language Models (LLM) are ubiquitous and they have
provided useful functionalities across several domains. Since the main point of
LLM is language manipulation, they could be a good fit to generate or manipulate
new DSL defintions as the one developed in this thesis. Future works could focus
on their integration for DSL specification of test script generation from natural
language interfaces, or event automatic information extraction from test reports.

5.6 Summary of Findings
The evaluation of the DSL-based automated testing framework has proven not
negligible improvements both across qualitative and quantitative dimensions:

• Execution Efficiency: The automated framework reduced test execution
time by 93.3% for the multi-card test suites through parallel execution and
optimized test sequences.

• Test Maintainability: The DSL’s expressive syntax and modular design en-
able concise test definition with minimal redundancy, facilitating maintenance
and extension of test suites.

• Coverage Scalability: The framework’s parallel execution allows to scale the
test coverage across many parameters while maintaining low execution time.
In other words: more configurations can be tested in the same time.

• Reporting Quality: Integration with JUnit 5’s reporting infrastructure pro-
vides easily accessible and comprehensive test documentation with detailed
diagnostic information.

These findings validated the effectiveness of the domain-specific testing approach
for case study and demonstrated the value of investing in specialized testing solu-
tions. Future works could focus on exploring new DSL design, implements new
scenarios, integrate additional reporting framework or even new technologies such
as LLM, which are adapt to manipulate the kind of language the DSL implements,
which is simpler than a programming language but still can implements valuable
semantics.

81

82

Chapter 6

Conclusion

This research has addressed the challenge of automating the testing process for dig-
ital payment systems through the development of a domain-specific language and
testing framework. The work was motivated by the inherent complexity of pay-
ment system testing, which typically involves labor-intensive procedures spanning
multiple interfaces, systems, and transaction types. By implementing a specialized
testing approach, the developed solution successfully achieved its main goals of
enhancing testing efficiency and supporting dynamically provided test parameters.

As described in detail in Chapter 3, the testing procedures observed for this
domain require manual interaction with payment APIs, data insertion in browser,
while also scaling poorly due to the dynamic range of possible configurations. The
solution developed in this thesis effectively addresses both challenges, demonstrat-
ing that a DSL-based approach can significantly improve the testing process for
complex financial systems with the same constraint as the one evaluated.

The tech stack ended up being a good fit for this project. JUnit gave us the
mature testing framework we needed, especially since allowed for run-time test de-
fitions. Selenium paired with WebDriverManager made browser automation man-
ageable without the usual problems. The reports produced by open-test-reporting
are a step forward standard Excel sheets, as are automatically created and can
embed screenshots and many other information. The real advantage, though, was
Groovy DSL implementation. Not only it delivered on the promise of concise, con-
figurable test suites, but it also avoided the need of implementing different parsing
solutions that would have required a higher degree of complexity without providing
scripting capabilities.

The findings in Chapter 5 confirm the effectiveness of this approach on multi-
ple fronts. Tests demonstrated measurable improvements in execution speed and
required less manual monitoring. Equally important, the test scripts provided
notably improved readability and maintainability. These results suggest similar
domain-specific testing approaches could be valuable in other technical domains
characterized by high complexity.

83

6 – Conclusion

The DSL implementation demonstrates how Groovy’s meta-programming capa-
bilities can be leveraged to create intuitive, readable test definitions that closely
align with the domain terminology of payment systems. By enabling non-technical
stakeholders to understand and potentially contribute to test definitions, the DSL
bridges the gap between technical implementation and business requirements.

While the current implementation successfully meets the project objectives, sev-
eral paths for further development remain. Future work should focus on integration
with enhanced test reporting infrastructure such as Allure2, incorporating LLM ca-
pabilities for DSL script definition, developing more accessible interfaces such as a
dedicated web application, and increasing the generality of the solution to accom-
modate different applications within the digital payment domain.

84

Bibliography

[1] Laforge et al. A flexible and extensible Java-like language for the JVM. url:
https://groovy-lang.org/.

[2] B2B Payments to Reach 124TrillionGloballyby2028, asInstantPaymentRailsRevolutioniseCross−
borderPayments. url: https://www.juniperresearch.com/press/b2b-
payments- to- reach- 124- trillion- globally- by- 2028- as- instant-
payment - rails - revolutionise - cross - border - payments/ (visited on
01/04/2025).

[3] Dmitry Baev. Flexible, lightweight multi-language test reporting tool. url:
https://allurereport.org/.

[4] Stripe Blog. What platforms and marketplaces can expect from PSD3. 2024.
url: https://stripe.com/gb/guides/what-platforms-and-marketplaces-
can-expect-from-psd3 (visited on 01/04/2025).

[5] B.W. Boehm. «Verifying and Validating Software Requirements and Design
Specifications». In: IEEE Software 1.1 (1984), pp. 75–88. doi: 10.1109/MS.
1984.233702.

[6] Chromium lines of code number. url: https://openhub.net/p/chrome/
analyses/latest/languages_summary.

[7] Groovy Community. Groovy Official Documentation. url: https://groovy-
lang.org/documentation.html.

[8] James Duncan Davidson. 2000. url: https://ant.apache.org/ (visited on
03/23/2025).

[9] Harry Deutsch and Oliver Marshall. «Alonzo Church». In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta and Uri Nodelman. Spring
2025. Metaphysics Research Lab, Stanford University, 2025.

[10] Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software.
USA: Addison-Wesley Longman Publishing Co., Inc., 2003. isbn: 0321125215.

[11] Fabrick. PISP, AISP and CISP: the Third Party Providers (TPPs) introduced
by the PSD2. 2023. url: https://www.fabrick.com/en-gb/insights/
blog/pisp-aisp-cisp/ (visited on 01/04/2025).

85

https://groovy-lang.org/
https://www.juniperresearch.com/press/b2b-payments-to-reach-124-trillion-globally-by-2028-as-instant-payment-rails-revolutionise-cross-border-payments/
https://www.juniperresearch.com/press/b2b-payments-to-reach-124-trillion-globally-by-2028-as-instant-payment-rails-revolutionise-cross-border-payments/
https://www.juniperresearch.com/press/b2b-payments-to-reach-124-trillion-globally-by-2028-as-instant-payment-rails-revolutionise-cross-border-payments/
https://allurereport.org/
https://stripe.com/gb/guides/what-platforms-and-marketplaces-can-expect-from-psd3
https://stripe.com/gb/guides/what-platforms-and-marketplaces-can-expect-from-psd3
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1109/MS.1984.233702
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://groovy-lang.org/documentation.html
https://groovy-lang.org/documentation.html
https://ant.apache.org/
https://www.fabrick.com/en-gb/insights/blog/pisp-aisp-cisp/
https://www.fabrick.com/en-gb/insights/blog/pisp-aisp-cisp/

BIBLIOGRAPHY

[12] Nicole Forsgren, Jez Humble, and Gene Kim. Accelerate: The Science of Lean
Software and DevOps Building and Scaling High Performing Technology Or-
ganizations. 1st. IT Revolution Press, 2018. isbn: 1942788339.

[13] Martin Fowler. Continuous Integration. 2006. url: https://martinfowler.
com/articles/continuousIntegration.html (visited on 01/04/2025).

[14] Vahid Garousi and Mika Mäntylä. «When and what to automate in soft-
ware testing? A multi-vocal literature review». In: Information and Software
Technology 76 (Apr. 2016). doi: 10.1016/j.infsof.2016.04.015.

[15] Global Financial Inclusion (Global Findex) Database 2021. url: https://
microdata.worldbank.org/index.php/catalog/4607 (visited on 01/04/2025).

[16] Adam Murdoch Hans Dockter. 2008. url: https://gradle.com/our-story/
(visited on 03/23/2025).

[17] Aslak Hellesøy. Open source tool for running plain-language automated accep-
tance tests. url: https://github.com/cucumber.

[18] Jez Humble and David Farley. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. 1st. Addison-Wesley
Professional, 2010. isbn: 0321601912.

[19] Kohsuke Kawaguchi. The leading open source automation server, Jenkins pro-
vides hundreds of plugins to support building, deploying and automating any
project. url: jenkins.io (visited on 01/04/2025).

[20] Paul King. «A history of the Groovy programming language». In: Proc. ACM
Program. Lang. 4.HOPL (June 2020). doi: 10.1145/3386326. url: https:
//doi.org/10.1145/3386326.

[21] Linux lines of code number. url: https://openhub.net/p/linux/analyses/
latest/languages_summary.

[22] Ian Sommerville. Software Engineering. 10th. Pearson, 2015. isbn: 0133943038.
[23] Ossi Taipale et al. «Trade-off between automated and manual software test-

ing». In: International Journal of System Assurance Engineering and Man-
agement 2 (June 2011). doi: 10.1007/s13198-011-0065-6.

[24] JUnit Team. JUnit 5 User Guide. 2024. url: https://junit.org/junit5/
docs/current/user-guide/ (visited on 01/04/2025).

[25] JUnit team. open-test-reporting. 2024. url: https://github.com/ota4j-
team/open-test-reporting.

[26] The 2023 McKinsey Global Payments Report. 2023. url: https : / / www .
mckinsey.com/industries/financial- services/our- insights/the-
2023-mckinsey-global-payments-report (visited on 01/04/2025).

[27] Jason van Zyl. 2007. url: https://maven.apache.org/ (visited on 03/23/2025).

86

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1016/j.infsof.2016.04.015
https://microdata.worldbank.org/index.php/catalog/4607
https://microdata.worldbank.org/index.php/catalog/4607
https://gradle.com/our-story/
https://github.com/cucumber
jenkins.io
https://doi.org/10.1145/3386326
https://doi.org/10.1145/3386326
https://doi.org/10.1145/3386326
https://openhub.net/p/linux/analyses/latest/languages_summary
https://openhub.net/p/linux/analyses/latest/languages_summary
https://doi.org/10.1007/s13198-011-0065-6
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://github.com/ota4j-team/open-test-reporting
https://github.com/ota4j-team/open-test-reporting
https://www.mckinsey.com/industries/financial-services/our-insights/the-2023-mckinsey-global-payments-report
https://www.mckinsey.com/industries/financial-services/our-insights/the-2023-mckinsey-global-payments-report
https://www.mckinsey.com/industries/financial-services/our-insights/the-2023-mckinsey-global-payments-report
https://maven.apache.org/

BIBLIOGRAPHY

[28] Jason van Zyl. 2023. url: https : / / maven . apache . org / background /
history-of-maven.html (visited on 03/23/2025).

87

https://maven.apache.org/background/history-of-maven.html
https://maven.apache.org/background/history-of-maven.html

	Introduction
	Context and Motivation
	Problem Statement
	Objectives
	Digital Payments as Testing Domain
	Thesis Structure

	State Of The Art
	Software Development Models
	V&V Model

	Software Testing
	Testing Methodologies

	Automation Testing Tools
	Testing Framework
	Project Management Tools
	CI/CD Servers

	Domain-Specific Languages
	Programming Languages
	Problem Domain

	Domain Analysis and Challenges
	Pay Reply
	Analysis of the Case Study
	Digital Payments
	Digital Payment Systems
	The General Payment Process
	PaymentHub Solutions
	Payment Orchestrator
	Payment Gateway
	Security Considerations
	Context Diagram
	Glossary

	Scenarios to be Tested
	Direct Payment
	Card Tokenization
	Pre-Authorization
	Merchant Initiated Transaction

	Testing Challenges and Solutions

	Methodology
	JUnit 5
	Java Annotations
	Writing Tests with junit-jupiter
	Dynamic Tests with @TestFactory
	Running Tests Programmatically
	Test Report Generation and TestExecutionListener
	JUnit 5.12

	Open Test Reporting
	Replacing Manual Postman HTTP Requests
	OkHttp and Retrofit
	Connection to the Test Environments via SSH Proxies
	Apache Mina SSHD

	Selenium Web Driver
	Selenium WebDriver Manager
	The Page Object Model
	Waiting Strategies

	Groovy
	Closures
	Delegation Strategies
	The Builder Pattern
	Integrating Groovy into a Java Application
	Combining Custom Script Class With Closures Delegation
	Static Type Checking

	DSL Implementation
	DSL Requirements and Design
	Implementation Overview
	Defining Test Classes
	Configuring Test Parameters
	Detailed Class Diagram

	Parallel Test Execution
	PaymentCard Synchronization
	Enabling Parallel Test Execution in JUnit

	IntelliJ IDEA DSL Specification via GDSL
	GDSL Files

	Results and Evaluation
	Test Suite Definition
	Qualitative Analysis: DSL Expressiveness and Usability
	Case Study: Multi-Card Test Definition
	Environmental Configuration Flexibility
	Test Reporting Capabilities

	Quantitative Analysis: Execution Time
	Execution Time Comparison

	Challenges and Limitations
	Test Stability
	Application Interfaces

	Future Works
	Reporting Infrastructure
	Solution Generality
	LLM Integration

	Summary of Findings

	Conclusion

