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Abstract

The growing complexity of space systems and missions is causing a rapid increase of
onboard data size, to the point where efficient data compression algorithms become
essential. The resource constrained environment requires careful consideration of
how to optimize this procedure. On the other hand, NOEL–V is emerging as a
promising space-grade processor, offering both high performance and reliability for
critical space applications. Being built on the RISC–V ecosystem, NOEL–V inherits
its ability to enhance performance through the integration of hardware accelerators
with the processor. Tightly-coupled and loosely-coupled accelerators (TCAs and
LCAs respectively) offer different benefits: the former are more compact but require
more effort to integrate them, while the latter should be carefully designed to
minimize their area. This work will compare those two approaches regarding the
optimization of the CCSDS 121.0 algorithm, a lossless data compression technique
recommended as a standard by the Consultative Committee for Space Data Systems.
Synopsys ASIP Designer has been used to design and integrate the accelerators
into a NOEL–V model. Two variants of TCAs will be proposed, each targeting
specific bottlenecks of the algorithm, reaching a total clock cycle reduction of 85%,
with an area increment of only 9% (based on 65 nm low power ASIC technology).
The proposed memory-mapped LCA performs the entire compression procedure,
reaching a speed-up factor of 480× and a 48% area increment with respect to the
reference implementation. With a throughput of 7.83 Gb/s, the LCA turned out to
be the far superior design in terms of Throughput-Area Ratio, but the TCAs proved
to be a valid choice for lossless data compression optimization in area-constrained
environments.

Keywords: Hardware design, accelerators, space, RISC–V, NOEL–V, data com-
pression, CCSDS 121.0, ASIP Designer.
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Chapter 1

Introduction

Modern satellite missions and space exploration platforms face a critical challenge
when it comes to efficient data processing. The increasing complexity of payloads
and Earth observation applications has led to a noticeable size increment of
data generated onboard. For this reason, the implementation of advanced data
compression techniques has become essential for both data storing and transmission.
Although a software version of the compression algorithm is the most portable
solution, it is also not efficient. A fully-dedicated hardware implementation, on
the other hand, lacks in flexibility, requiring to redesign the hardware every time a
change is needed. Hardware accelerators can be a good trade-off to greatly increase
the performance without adversely affecting the occupied area and flexibility. This
work will compare tightly-coupled and loosely-coupled accelerators, enhancing
the performance of the recommended CCSDS 121.0 standard for lossless data
compression in space applications.

1.1 Thesis objectives and organization
The thesis will be organized as follows:

• chapter 1 is a brief introduction about the purpose and motivations of this
work;

• chapter 2 presents the background information necessary to understand
what will be discussed in the following chapters. Section 2.1 introduces data
compression techniques, mainly focusing on the algorithm that is the subject
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Introduction

of this thesis. Section 2.2 is dedicated to RISC–V architectures: the NOEL–V
processor is introduced alongside Synopsys ASIP Designer, the tool that allows
the implementation of the accelerators. Section 2.3 will conclude this chapter
with a general presentation of different variants of hardware accelerators;

• chapter 3 gives a more comprehensive overview of the NOEL–V processor,
describing its key components and the various configurations options. Section
3.1 illustrates the ASIP Designer model of the processor;

• chapter 4 describes the development of the tightly coupled accelerators.
Section 4.1 analyses the three main areas improved by the accelerators, while
section 4.2 reports how the accelerators have been integrated into the official
NOEL–V processor within GRLIB.

• chapter 5 illustrates the developed loosely coupled accelerator. Firstly,
the ASIP Designer implementation is reported in section 5.1, and then its
integration with the official NOEL-V processor is described in section 5.2.

• chapter 6 reports the area and performance results of the TCAs in section
6.1, of the LCA in section 6.2 and a comparison of the two approaches in
section 6.3. The proposed accelerators are then compared to the designs found
in the literature in section 6.4, and some future work proposals are laid out in
section 6.5;

• chapter 7 is the conclusion of the thesis, where the final remarks are discussed
and all the achieved results are summarized.
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Chapter 2

Theoretical background

This chapter provides an overview of the three key aspects of this thesis: data
compression algorithms, RISC-V architectures and hardware accelerators. Data
compression is a technique used to encode information using less bits than the
original data, in order to save storage space and transmission time. The main focus
will be on the CCSDS 121.0 standard for lossless data compression. RISC–V is
an open-source instruction set architecture (ISA) processors that offer flexibility
and efficiency for various applications. Accelerators are hardware blocks designed
to perform a specific task efficiently. They can either be small and integrated
inside the core of the processor, or perform harder computational task and being
connected through other interfaces. Together, these technologies play a crucial role
in optimizing resource utilization in constrained environments.

2.1 Data compression

The main objective of data compression is to encode information using fewer bits,
reducing the size of data files or streams to save storage space and transmission
time. Depending on the technique applied, the original data can be either preserved
or some information can be discarded to achieve higher compression rates, these are
the cases of lossless and lossy compressions. Lossless compression algorithms
play a fundamental role in space data management, providing an efficient and
reliable method to reduce data size without compromising integrity in environments
where computational power, storage, and bandwidth are limited.
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Theoretical background

2.1.1 CCSDS 121.0
The chosen algorithm for this work is the CCSDS 121.0 standard, specifically the
B-3 version [1], regarding lossless data compression. The standard consists of two
separate functional parts: the preprocessor and the Adaptive Entropy Coder. The
function of the preprocessor is to decorrelate input data and reformat them into
non-negative integers, applying a reversible function to each block of input samples.
This produces a ‘preferred’ source block, characterized by its low entropy: a measure
of the smallest average number of bits that can be used to represent each sample.
This component is not essential and, depending on the implementation, can be
omitted. The preprocessor adopted for this work is the unit delay predictor with
the prediction error mapper described in the selected standard. The Adaptive
Entropy Coder uses the Rice’s coding technique [2] that chooses, among a set of
code options, the best representation for an incoming block of preprocessed data
samples. This is achieved by applying concurrently several compression algorithms
to a block of consecutive preprocessed samples. The configuration that yields the
shortest encoded length for the current section of data is selected for transmission,
and a unique identifier is attached to the block to indicate to the decoder which
option to use. The possible block encoding techniques are:

• No compression: If no other scheme offers a better compression size, the
data is not compressed, but rather written as is inside the memory. In this
case the compression size is block size · samples bit depth.

• Fundamental Sequence: The most basic encoding option is a variable-
length codeword (called FS codeword), which consists of m zeros followed by
a one when the preprocessed sample has a value equal to m.

• Sample Splitting: The kth split-sample option is obtained by encoding
the n − k MSBs of each preprocessed sample with a FS codeword, and then
appending the preprocessed sample’s k LSBs uncoded.

• Second Extension: Each pair of preprocessed samples in a J-sample block
is transformed into an H sample using the following equation:

Hsmp = (Jsmp 2 + Jsmp 1) · (Jsmp 2 + Jsmp 1 + 1)
2 + Jsmp 1 (2.1)

The H samples block is then encoded using a FS codeword.

• Zero Block: Each sequence of consecutive All-Zeros blocks is encoded by
one FS codeword composed by a one preceded by n − 1 zeros, where n is the
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Theoretical background

number of consecutive All-Zeros blocks.

A graphical representation of the complete algorithm chosen for the optimization
is reported in Figure 2.1.

Figure 2.1: CCSDS 121.0 algorithm

2.1.2 OBPMark
The code implementation of the compression algorithm used in this work can be
found in the OBPMark repository [3], an open source set of computational perfor-
mance benchmarks developed specifically for spacecraft on-board data processing
applications.
Aside from the employed data compression algorithm, the repostory also con-
tain other interesting algorithm used in space applications like image and radar
processing, image compressions, signal processing and machine learning.
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Theoretical background

2.2 RISC-V
RISC–V is a modern open-source instruction set architecture (ISA) originally de-
veloped as an educational and research instrument. However, given the widespread
support it received, it has been quickly adopted in a large variety of applications.
RISC-V architectures are characterized by 32 or 64-bit parallelism (with a 128-bit
variant under development), and by a central register file with 32 fields, accessed
using two read ports and one write port. Depending on the register usage, the base
ISA divides the instructions into four formats:

• R-Type: two source registers and the destination register

• I-Type: one of the source registers and the destination register

• S-Type: only the two source registers

• U-Type: only the destination register

A further classification can be made according to the immediate encoding used by
the instruction, explained in detail in [4].

The basic integer ISA support only basic arithmetic and boolean operations,
but its capabilities can be enriched using extensions. They provide additional
functionalities to the base processor, ranging from typical multiplication and
floating point operations to more advanced operations like vector data and SIMD
processing. Thanks to the open-source nature of this project, specialized instructions
can be developed to enhance domain-specific applications. This procedure is called
Instruction Set Extension (ISE) and allows the creation of a unique processor
with specialized ISA, called Application Specific Instruction-set Processor (ASIP).
The RISC-V based processor chosen for this thesis is the NOEL-V, that will be
thoroughly described in Chapter 3.

2.2.1 Synopsys ASIP Designer
Synopsys’ ASIP Designer [5] is a proprietary software that has been developed
to ease the implementation of ASIP processors. The tool uses two proprietary
languages to describe processor architectures:

• nML: this language is used to outline the instruction set architecture of the
processor, using a hierarchical approach. Each instruction is described with
its encoding and its behaviour individually, and operations of the same type

6
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or that share the same functional unit are then bundled together. Every
bundle is then assembled with the other ones until the complete ISA is formed.
Memory resources are also described in this scope, and are fully customizable,
for example in their bit-width, number of ports and access timing.

• PDG: this language describes the behaviour of functional units, using a C-like
approach. This setup simplifies the process of creating new functions for the
processor, as a C implementation of the new features can be easily transferred
into PDG format.

The development flow of ASIP Designer consists on the compiler-in-the-loop ap-
proach reported in Figure 2.2. The processor model is compiled and an Instruction
Set Simulator (ISS) is generated in order to emulate code running on the developed
design. The ISS provides both instruction-accurate and cycle-accurate simulation,
and the built-in debugger and disassembler allow for microcode stepping, which
makes finding bugs and errors more convenient. Furthermore, ASIP Designer offers
remarkable profiling capabilities, including the measurements of cycle count, regis-
ter accesses, instructions count, and tracing. The processor can then be modified
and re-compiled, updating the ISS, and this procedure can be iterated until the
model performs as intended. Once a satisfactory design is achieved, the tool can
generate a synthesizable HDL description of the processor either in Verilog or
VHDL, which can be used for further development through other means.

2.3 Hardware accelerators
Data compression algorithms can be implemented with multiple methods. Although
a software solution is the most portable, it is also not efficient, while a fully-dedicated
hardware implementation lacks in flexibility, requiring to redesign the hardware
every time a modification is needed. Hardware accelerators can be a good trade-
off to greatly increase the performance without compromising too much area
and flexibility. Hardware accelerators are usually divided in tightly-coupled and
loosely-coupled, depending on their implementation.

2.3.1 Tightly-coupled accelerators
Tightly coupled accelerators (TCAs) reside within the CPU’s microarchitecture,
involving core and toolchain modifications. They usually need instruction set
extension, meaning that the ISA of the processor is extended with new custom

7
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Figure 2.2: ASIP Designer’s development flow.
Image source: Synopsys’ ASIP Designer™ webpage [5].

instructions in order to use them. They are usually small, to keep the critical path
short, and highly specialized in a single task. For this thesis, several TCAs have
been developed, each targeting a specific bottleneck of the chosen algorithm.

2.3.2 Loosely-coupled accelerators
Unlike TCAs, loosely-coupled accelerators (LCAs) are typically separated from the
CPU and handle compute-heavy tasks with large data sets. LCAs are usually bigger
than their counterparts, as they commonly work concurrently with the processor
to complete complex tasks in few clock cycles. These accelerators are usually
connected via system buses and can be driven in several ways. The LCA developed
for this thesis uses the memory-mapping approach, meaning that some memory
locations are reserved to exchange data and give commands to the accelerator. The
LCA is connected to the system bus of the NOEL-V, whose controller handles bus
ownership and selects the correct peripherals depending on the given address. A
more detailed explanation will be given in Chapter 3.

8



Chapter 3

NOEL–V

The RISC–V processor that has been chosen for this thesis is the NOEL–V [6],
a new candidate in the space-graded processor industry. This field is currently
led in Europe by the LEON SPARCv8 [7] due to its open source nature that
offers multiple sources of intellectual properties together with radiation hardened
standard products from several vendors. Nonetheless, the NOEL–V proved to be
a suitable alternative for novel space-graded processor architectures, attracting a
growing interest in its advancement. The open-source version of this processor is
distributed by Gaisler as part of GRLIB IP library [8], under GNU GPL license
and comes in many configurations, as shown in Table 3.1. Each of them is available
with either 32 or 64 bit parallelism, making the NOEL–V suitable for various types
of applications. The configuration adopted for this thesis is the General Purpose
(GP) one, with 64-bit parallelism.

Table 3.1: NOEL-V configurations
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The NOEL–V core of the selected configuration employs a 7-stage pipeline with
dual issue and separate data and instruction L1 caches. Other relevant features,
also reported in Figure 3.1, are the branch prediction unit, the FPU and the
late-ALU and late-branch support.

Figure 3.1: NOEL–V pipeline schematic

The core is then instantiated into a subsystem featuring a debug module, two system
buses and several other peripherals, as shown in Figure 3.2. These buses use the
Advanced Microcontroller Bus Architecture (AMBA) specification, which defines
an on-chip communications standard for designing high-performance embedded
microcontrollers [9]. The first system bus is the Advanced High-performance Bus
(AHB), which is designed for high clock frequency system modules and supports the
efficient connection of processors, on-chip memories and off-chip external memory
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interfaces. The other bus is an Advanced Peripheral Bus (APB) that is optimized
for low power consumption and reduced interface complexity to support peripheral
functions. Several units are connected to this bus, like a UART unit, an Ethernet
core and a GPIO module. Both these system buses and their peripherals use
the AMBA Plug’n’play function described in GRLIB User’s manual [10]. This
feature allows the bus controller to automatically recognize the connected units
and their memory space using a memory-mapped approach. The controller receives
the address from the master that is currently using the bus, and selects the slave
peripheral assigned to the corresponding address space. This feature allows to
easily integrate other IPs into the system by simply providing their own address
space. More information about this feature are reported in the GRLIB User’s
manual [10], while for further details about the AMBA interface specifications and
timing please refer to its specification manual [9].

Figure 3.2: NOEL–V subsystem schematic

11
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3.1 ASIP Designer processor model
Before starting the development of the accelerators, an ASIP Designer model
of the NOEL–V has been realized. Even though it is not an exact replica, it
comprises all the key features of the real processor, and therefore is a suitable
environment to develop the accelerators. The tool comes with a plethora of design
examples, including many RISC–V models. The one chosen as starting point for
this work is the trv64p5, a 64-bit 5-stage pipeline RISC–V processor. This example
model already contains the vast majority of the features and instructions needed to
obtain an architecture close to the one of the NOEL–V. The first additions are the
floating point unit and the CSR register, which have been retrieved from another
example processor of ASIP Designer. Since this FPU will not be used by the chosen
algorithm, no more precise details regarding its implementation will be provided.
It is important to clarify that, even though the FPU is not actually used, it has
been added anyway to produce a model closer to the NOEL–V and to give more
significant results on area increments. The main changes that are worth looking
into are the pipeline extension and the dual issue modification.

3.1.1 Extending the pipeline
The next modification made to the model was to extend the pipeline to reach
the 7-stages structure of the NOEL–V. The register access (RA) and exception
(XC) stages have been added to the corresponding enumerate in the parent nML
description of the processor. The other stage names have also been changed to
resemble the ones used by the actual NOEL–V, and all the instructions have been
updated accordingly. The modified enumerate containing the new stage names is
shown below:

...
enum stage_names {

PF=-1, // Prefetch -> just for information purposes
FE, // Inst. Fetch -> 64-bit word (2 instructions) is fetched
DE, // Decode -> 2 instructions are decoded at a time
RA, // Reg. Access -> operands are read from RF or bypasses
EX, // Execute -> ALU op. are executed, address is generated
ME, // Memory -> Read data is received and store is executed
XC, // Exception -> Exceptions, interrupts and late op. resolved
WR // Write-back -> Results are written back to the RF

};
...

12
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Next, processor resources are added for the new stages. The following modifications
refer to the integer pipeline of the processor, but also the floating point pipeline
must be extended in the same manner. To properly connect the new stages to the
existing ones, new pipe registers have been added in the corresponding nML file:

// RA to EX
pipe praX1 <w64>;
pipe praX2 <w64>;
...
// XC to WR
pipe pxcX1 <w64>;
trn txcX1 <w64>;
...

The starting model used to fetch the operands from the central register file inside
the decode stage and pass them to the execute stage through the pidX1 and pidX2
pipe registers. However, in the new model, the register file is accessed in the register
access stage, meaning that these two registers are no longer used. For the same
reason, and also to correctly pipe data through the new exception stage, the mode
rules used to read and write data to the central register file have been modified
with the new pipe registers:

// in the read modes:
...
read_value : stage EX: praX1;
read_action {

stage RA: praX1 = r;
}
...

//in the write modes
...
write_action {

stage EX: pexX1 = texX1;
stage ME: pmeX1 = tmeX1 = pexX1;
stage XC: pxcX1 = txcX1 = pmeX1;
stage WR: r = twrX1 = pxcX1;

}
...

All the read modes now take data from the register file in the RA stage and transfer
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it to the execution stage. The write modes on the other hand use the new pipe
register and transitory to correctly route results from the execution or memory
stages to the write-back stage, where they are written in the central register file.

The new exception stage could cause data dependency problems if not handled
carefully. If the result of an operation in the XC stage is needed as a source operand
in the RA stage, a bypass is required to solve the dependency. To add it, the hzrd.n
has been modified as shown below:

...
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Bypass XC to RA if offset = 3 cycles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// cycle 0 1 2 3 4 5 6 7 8
// add x4,x5,x6 FE DE RA EX ME XC WR
// ... FE DE RA EX ME XC WR
// ... FE DE RA EX ME XC WR
// addi x3,x4,1 FE DE RA EX ME XC WR
// ^^ bypass
instantiate bypass_X (bypass_X_from_XC, 3, txcX1, XC);

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Bypass WR to RA if offset = 4 cycles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// cycle 0 1 2 3 4 5 6 7 8
// add x4,x5,x6 FE DE RA EX ME XC WR
// ... FE DE RA EX ME XC WR
// ... FE DE RA EX ME XC WR
// ... FE DE RA EX ME XC WR
// addi x3,x4,1 FE DE RA EX ME XC WR
// ^^ bypass
instantiate bypass_X (bypass_X_from_WR, 4, twrX1, WR);
...

The newly instantiated bypass solves the aforementioned dependency, taking the
result of the instruction from the XC stage (using the txcX1 transitory created
previously) and routing it to the EX stage. It’s important to notice that also the
WR to RA bypass has been modified, increasing the number in the parenthesis
from 3 to 4, to take into account the new XC stage.

All the these modifications must also be performed on the floating point pipeline,
which is affected by the same problems.
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Since some instructions use the program counter (PC) as an operand in the EX
stage, its reserved pipeline must also be extended to cover the new RA stage. The
PC_RA register is then added to the reg.n file, and a register transfer is added to
the instructions that need it:

// in the reg.n file PC_RA is added
...
reg PC_DE <addr> read(PC_DE_r) write(PC_DE_w); // PM addr. of instr @ DE
reg PC_RA <addr> read(PC_RA_r) write(PC_RA_w); // PM addr. of instr @ RA
reg PC_EX <addr> read(PC_EX_r) write(PC_EX_w); // PM addr. of instr @ EX
...

// the new register is used for example by the auipc instr. in alu.n:
...
action {

stage DE: PC_RA = PC_RA_w = PC_DE_r = PC_DE;
stage RA: PC_EX = PC_EX_w = PC_RA_r = PC_RA;
stage EX: aluA = PC_EX_r = PC_EX;

aluB = i;
// ---
stage EX: aluR = add (aluA,aluB) @alu;
// ---
stage EX..WR: rd = aluR`EX`;

}
...

The last modification needed to complete this pipeline extension regards the control
flow instructions. When an indirect jump is decoded, bubbles must be inserted
until the jump instruction reaches the execution stage, where the target address
is calculated. With the addition of the RA stage, the number of bubbles to be
inserted must be incremented by one. This can be done by modifying the cycles(3)
property of the JALR function in the ctrl.n, changing it from 3 to 4.

3.1.2 Enabling dual-issue
After testing the pipeline modifications to ensure their correctness, the processor
has been modified to enable two instructions to be issued at each clock cycle.
To do so, the byte-addressed program memory has been modified to output two
32-bit instructions as a single 64-bit word, which is then issued and decoded. To
fetch the next two instructions, the program counter is then incremented by 8
instead of 4. Next, the pipeline must be redesigned, nearly doubling the existing
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resources. To accomplish that, ASIP Designer’s components have been used, which
are the tool’s counterpart of VHDL components. It is in fact possible to use the
component keyword to define a set of instructions and resources that can then
be easily instantiated multiple times using the instantiate keyword. Each new
instance is characterized by a unique name, and it’s possible to access the internal
data using the dot operator: <comp_name>.<resource_name>. For example, to
duplicate the pipe registers and transitory to fit the new dual lane structure, the
pipe.n file has been modified as follows:

component pipe_lane() {
// RA to EX
pipe praX1 <w64>;
...
trn twrX1 <w64>;

}

instantiate pipe_lane pl0();
instantiate pipe_lane pl1();

The two instances are therefore named pl0 and pl1, and their elements can be
accessed using the dot operator like pl0.praX1. The same procedure has been
applied to the central register file, where the read and write ports have been
duplicated. Exploiting these features, the ISA of the processor has been modified
to resemble the one of the NOEL–V:

• since each lane has its own ALU unit, both the functional unit and its
instructions have been included into a component and have been entirely
doubled. The correct pipe registers, transitory, and central register’s ports are
then assigned to each instance;

• load, store, FPU and CSR operations are executed exclusively on lane 0;

• branch and jump instructions belong to the lane 1;

• the NOEL–V features a single multiplier and divider unit, but the instructions
that use it can go in both lanes.

The first difference with the NOEL–V processor is found here. In a real dual issue
processor, instruction in the decode stage can be halted to prevent conflicts and
can be re-ordered when some instructions have special needs. This is done because
the compiler that generates the code usually does not know the exact structure of
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the processor on which the code will run, and instead generates only the instruction
flow. The generated code is then loaded into the program memory, and it might
happen that, for example, a load instruction ends up in the wrong lane. In the
NOEL–V this problem is solved by swapping the instruction lanes. Also, some
combinations of instructions are prohibited, for example two multiplications cannot
be issued together because there is a single multiply unit. The real processor would
then halt for one clock cycle the instruction that must be executed later. These two
functions are hard to implement inside ASIP Designer, due to instructions being
decoded and issued by different stages. The tool issues them in the stage before the
decode one, i.e. the fetch stage, assigning their execution to one of the two lanes.
When they reach the decode stage, their lane cannot be changed anymore, making
it impossible to implement line swapping. Even though two lanes are instantiated,
the tool does not allow stalling only one of them by selectively inserting bubbles,
meaning that also the second aforementioned functionality cannot be implemented.
There is technically one way to solve these problems, that is manipulating the tool
assigning the decode_stage annotation to the RA stage. This will postpone the
issue to the decode stage, where it should actually belong, allowing instructions to
be handled freely before they are issued. The downside of this approach is that
checking the constraints of the instructions would then require a manual decoding
inside the processor’s controller. This makes some of the tool’s functionalities
useless and complicates the development.

ASIP Designer offers instead the possibility to specify which instruction pairing are
allowed and which instructions can go in which lane. The built-in compiler then
generates the code aware of these constraints, making sure each instruction pair
can be correctly executed. Exploiting this functionality, the instruction pairing
have been defined in the noelv.n file following the constraints reported inside the
NOEL–V documentation [8]:

// 64-bit instruction format
opn noelv (

alu_pair
| jump_pair
| branch_pair
| mul_pair
| div_pair
| ldst_pair
| swbrk_pair
| csr_pair
| fpu_pair
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);

// ------------- jump pairs -------------
opn jump_pair(l0 : alu0.alu_nop, l1 : jump_instrs) {

dummy_syntax : l0;
syntax : "nop" PADINST " : " l1;
image : l0::"11"::l1::"11";

}

// ------------- branch pairs -------------
opn branch_pair(l0 : branch_paired, l1 : br_instr) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}
opn branch_paired (

alu0.alu_rrr_ar_instr_or_nop
| alu0.alu_rri_ar_instr
| alu0.alu_rri_sh_instr
| alu0.alu_rrr_arw_instr
| alu0.alu_rri_arw_instr
| alu0.alu_rri_shw_instr
| alu0.lui_instr
| mpy0.mpy_instrs

);

// ------------- mul pairs -------------
opn mul_pair(mul_l0_pair | mul_l1_pair);
opn mul_l0_pair(l0 : mpy0.mpy_instrs, l1 : alu1.alu_instrs) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}
opn mul_l1_pair(l0 : alu0.alu_instrs, l1 : mpy1.mpy_instrs) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}

// ------------- div pairs -------------
opn div_pair(div_l0_pair | div_l1_pair);
opn div_l0_pair(l0 : div0.div_instrs, l1 : alu1.alu_nop) {

dummy_syntax : l1;
syntax : l0 PADINST " : nop";
image : l0::"11"::l1::"11";

}
opn div_l1_pair(l0 : alu0.alu_nop, l1 : div0.div_instrs) {
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dummy_syntax : l0;
syntax : "nop" PADINST " : " l1;
image : l0::"11"::l1::"11";

}

// ------------- alu pairs -------------
opn alu_pair(l0 : alu0.alu_instrs, l1 : alu1.alu_instrs) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}

// ------------- ldst pairs -------------
opn ldst_pair(l0 : ldst_instrs, l1 : ldst_paired) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}
opn ldst_paired (

alu1.alu_instrs
| mpy1.mpy_instrs

);

// ------------- swbrk pairs -------------
opn swbrk_pair(l0 : swbrk_instr, l1 : swbrk_instr) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}
// ------------- csr pairs -------------
opn csr_pair(l0 : csr_instrs, l1 : csr_paired) {

syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}
opn csr_paired (

alu1.alu_instrs
| mpy1.mpy_instrs

);

// ------------- fpu pairs -------------
opn fpu_pair(l0 : fpu_instrs, l1 : alu1.alu_nop) {

dummy_syntax : l1;
syntax : l0 PADINST " : nop";
image : l0::"11"::l1::"11";

}
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The last modification needed to allow for correct dual issue execution is to update
the bypasses. With two lanes it might happen that results from lane 0 are needed
by lane 1 and vice versa. All the possible combinations are therefore instantiated
exploiting components:

// From lane 0 to lane 0
instantiate bypass_X_lane bypass_X_l00(regX_l0, pl0, regX_trn_l0);
// From lane 1 to lane 0
instantiate bypass_X_lane bypass_X_l01(regX_l0, pl1, regX_trn_l0);
// From lane 0 to lane 1
instantiate bypass_X_lane bypass_X_l10(regX_l1, pl0, regX_trn_l1);
// From lane 1 to lane 1
instantiate bypass_X_lane bypass_X_l11(regX_l1, pl1, regX_trn_l1);

The modifications have then been tested to ensure the correct behaviour of the
processor.

3.1.3 Model limitations
Aside from the aforementioned constraint on lane swapping and selective bubble
insertions, the obtained processor model has also some other difference with the
real NOEL–V. The most noticeable one is the absence of the late ALU and late
branch units, which are used by the original processor to handle conflicts. These
features are not included in the tool, and implementing them by hand would require
the same modifications mentioned for the lane swapping, encountering the same
problems. Other more sophisticated features, like branch prediction and caches,
were intentionally omitted. This decision led to a simpler model, which is faster to
simulate and easier to debug, but still remains coherent with the original processor.
The model keeps in fact the same architectural key elements of the NOEL–V,
and ensures a fairly accurate execution flow, leading to a suitable environment to
develop the desired accelerators.
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Chapter 4

Tightly-coupled accelerators

With the processor model ready, the development of the tightly-coupled accelerators
can start. The first thing to do is to understand what are the bottlenecks of the
algorithm through a profiling of the application. The code implementation taken
from the OBPMark repository needs a small modification to compile it on the
new processor model. More specifically, the part of the code that measures the
execution time must be commented out, since the time.h library is not supported.
However, the absence of this feature will not matter because the speed-up will be
calculated in terms of clock cycles, which are measured by ASIP Designer profiling.
The application is then run for the first time, using a reference input file, with the
following parameters:

• Sample’s bit depth: 16

• J-block size: 64

• Reference sample interval: 4096

• Preprocessor active: true

These parameters and the input file will remain unchanged when profiling different
designs to guarantee a fair and accurate comparison. Tests, on the other hand,
will also be performed changing parameters and input files to cover all the possible
scenarios. The first profiling of the application highlights some complications with
the code:
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Calls Cycles tot Cycles tot Function
(func) (%func)

-------- ----------- ----------- ----------------------
164415 253080042 24.58% ... memcpy
148307 217029535 21.08% memset

1029312 195455024 18.99% writeWord
209079 94712787 9.20% GetSizeSampleSplitting
... ... ... ...

From this excerpt of the function report, it is possible to observe that the most
computationally intensive functions are the standard library functions memcpy
and memset. Those functions are used to allocate and zero-initialize blocks of
data in the main memory, and relaying heavily on them leads to many wasted
cycles and reduces the benefits brought by the TCAs. The reason behind all
these function calls can be found by looking at how the best compression scheme
is found. All the different techniques are tried one after the other, saving the
better one after every comparison. The information about the compressed data
is stored in a struct called FCompressedData, which is freed when the technique
is not convenient. A new struct is then instantiated for the new scheme, and this
procedure is iterated until all the possible techniques have been analysed. On top
of that, each structure is passed as a function argument or used as a return value
several times, leading to even more clock cycles wasted by continuously storing and
loading data from the stack. The solution is to define only two of these structures
in the AdaptativeEntropyEncoder function, and to use pointers to identify the
best compression method, as shown in the code excerpt reported below:

// file processing.c
...
inline void MIN(struct FCompressedData** best, struct FCompressedData**

new_candidate){ñ→

if((*new_candidate)->size < (*best)->size){
struct FCompressedData* tmp1 = *best;
*best = *new_candidate;
*new_candidate = tmp1;

}
}
...

// inside AdaptativeEntropyEncoder function
struct FCompressedData CompressedData1;
struct FCompressedData CompressedData2;

CompressedData1.data = (unsigned int*) malloc(sizeof(unsigned int) *
compression_data->j_blocksize);ñ→
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CompressedData2.data = (unsigned int*) malloc(sizeof(unsigned int) *
compression_data->j_blocksize);ñ→

struct FCompressedData* BestCompression = &CompressedData1;
struct FCompressedData* CompressedData_tmp = &CompressedData2;

if(NumberOfZeros == -1){
NoCompression(compression_data, Samples, BestCompression);
SecondExtension(compression_data, Samples, block, step,

CompressedData_tmp);ñ→

MIN(&BestCompression, &CompressedData_tmp);
FundamentalSequence(compression_data, Samples, CompressedData_tmp);
MIN(&BestCompression, &CompressedData_tmp);
unsigned int max_i = compression_data->n_bits - 2;
for(int i = 1; i < max_i; ++i){

SampleSplitting(compression_data, Samples, i, CompressedData_tmp);
MIN(&BestCompression, &CompressedData_tmp);

}
}
else{

ZeroBlock(compression_data, NumberOfZeros, BestCompression);
}

...

Reporting every modified source file in its entirety would make this document too
long. For this reason, only small sections of these files will be used to highlight
important modifications done to the code and to showcase how TCAs are used. At
the start of the algorithm, the no-compression technique is selected as the best
compression, and therefore the BestCompression pointer will point to its struct.
The other struct is then filled with data compressed using another scheme, and
the two are compared. If the one pointed by the BestCompression pointer is still
the better alternative, nothing happens, and the other struct is overwritten with
another technique. If, instead, the new scheme is more advantageous than the
current best one, the pointers are swapped. The struct previously pointed by the
BestCompression pointer is then overwritten with a new technique. This allows
using pointers as function arguments instead of the whole structs, saving even more
clock cycles and removing the need of allocating data every time a new scheme is
analysed.

4.1 Features improved by the accelerators
The function profiling of the rewritten code yields the following bottleneck functions:
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Calls Cycles tot Cycles tot Function
(func) (%func)

-------- ----------- ------------ ----------------------
1029312 195455024 33.93% writeWord
209079 94712787 16.44% GetSizeSampleSplitting

2059226 72874215 12.65% ... writeValue
209079 61188198 10.62% SampleSplitting

4 27546382 4.78% preprocess_data
1048576 25411636 4.41% PredictorErrorMapper

... ... ... ...

These functions highlight three processing steps to be optimized: storing the
compressed data in the main memory, calculating the size occupied by a J-block
compressed with a certain technique and the preprocessing.

4.1.1 Storing compressed data
The writeWord, writeValue and writeChar functions are used to write compression
data into the main memory. Together, they occupy almost half the total number
of clock cycles spent to run the entire application. Looking for example at the
writeWord function, it is possible to understand why they are so demanding:

void writeWord(struct OutputBitStream *status, unsigned int word, int
number_bits){ñ→

for (int i = number_bits - 1; i >=0; --i){
status->OutputBitStream[status->num_total_bytes] |= ((word >>i)

& 0x1) << (7 - status->num_bits);ñ→

status->num_bits++;
// Check if the byte is complete
if (status->num_bits >= 8){

status->num_bits = 0;
status->num_total_bytes++;

}
}

}

This function stores an arbitrary number of bits, shifting them by a certain amount
to make sure to append them exactly at the end of the previously stored data. For
this reason, data is stored one bit at a time, leading to long loops and many
cycles wasted. The writeWordChar does exactly the same thing but with shorter
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data. The writeValue function works slightly differently than the writeWord one,
because it writes a series of zeros followed by a one and allows compressed data
longer than 32 bits. Aside from that, the writing procedure of the data itself is done
in the exact same manner as the other two functions, meaning that an accelerator
could potentially speed-up all of them.

The first TCA, hereafter called writeWord accelerator, allows to directly write entire
32-bit words into the memory with a single instruction while ensuring correct data
alignment. Even though the model allows for 64-bit memory operations, 32 was
chosen to allow the use of the accelerator even on 32-bit processors, like some of
the NOEL–V’s configurations. The TCA features four internal registers:

1. incW holds the incomplete 32-bit word that still needs to be written in the
memory;

2. lenD contain the length of the new data to append to the one stored by incW;

3. nbit indicates how many valid bits are present inside incW;

4. totB keeps track of how many bytes of compressed data have been written
into the memory to ensure that new data is stored in the right location.

The accelerator is operated by five different custom primitives, which are identified
by the CUSTOM1 RISC–V opcode:

• rst_wW: this instruction resets the accelerator, writing zero in all its internal
registers. This function must be called before using the accelerator to ensure
its registers do not hold unwanted data.

• ld_lD: this function loads the lenD register, indicating how many bits will
be attached to the incW content. Normally, an entire J–block of samples is
compressed maintaining this length constant, while distinct blocks may have
it different.

• wWord: this is the core instruction of the accelerator that uses the hardware
represented in Figure 4.1 to obtain a 32-bit word of compressed data that is
then written to the memory. The PDG description of the unit is reported
below:

w32 getWordToWrite(w64 data_i, w32 data_length, w32 incW_i, w32& incW_o,
w08 nbit_i, w08& nbit_o, w32 totB_i, w32& totB_o){ñ→

uint64_t buffer = incW_i::(uint32_t)0;
uint32_t data = ((uint32_t) data_i) & lenD_mask[data_length];
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uint8_t bits_in_buffer = nbit_i + (uint8_t) data_length;

buffer |= (uint64_t) (((uint64_t) data) << (64 - bits_in_buffer));

if (bits_in_buffer < 32){
incW_o = buffer[63:32];
nbit_o = (uint8_t) bits_in_buffer;
totB_o = totB_i;

}
else{

incW_o = buffer[31:0];
nbit_o = bits_in_buffer - 32;
totB_o = totB_i + 4;

}
return change_endian(buffer[63:32]);

}

The input sample is first masked, retaining only the number of bits indicated
by the lenD register. The masks are stored inside a small ROM, which is read
using lenD. After that, the remaining bits are left-shifted in order to append
them to the end of the valid data already present in the incW register. The
shifted data is then OR-ed with the incW data, obtaining a temporal 64-bit
buffer, whose 32 MSBs are written in the memory. The total number of valid
bits in the buffer is given by the sum of lenD and nbit. If this number is less
than 32, the word is still incomplete, and the 32 MSBs of the buffer are written
in the incW register. If, instead, the total number of valid bits is higher than
or equal to 32, a complete word is present. The incW register is loaded with
the 32 LSBs of the buffer, i.e. the new incomplete word, and the totB and
nbit registers are updated. A word written in the memory corresponds to 4
bytes, meaning that totB is incremented by 4, and the new number of valid
bits in the incW register is obtained by subtracting 32 from the total number
of valid bits in the buffer. The big-endian compressed word obtained with
this unit is then converted to little-endian format in order to store it correctly
inside the little-endian data memory.
In the EX stage, the memory address is also generated, adding totB to the
address passed as an argument, and the compressed data is finally stored in
the data memory.

• st_tBiW: when all the samples have been compressed, the total number of
bytes written in the memory can be retrieved with this function. The last
sample written in the memory may have led to some residual bits in the incW
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register that still need to be written in the memory. This function also takes
care of this aspect by doing one last memory store of the content of the incW
register as it is. For the same reason, the total number of bytes is calculated
by adding the number of valid bytes of this last word written in the memory
(obtained from the nbit register) to the content of the totB register.

• st_nbit: similarly to the previous instruction, this one provides how many
valid bits are present in the last byte of compressed data written in memory.

Figure 4.1: Schematic of the core function of the writeWord TCA

To use the new accelerator inside the source code, the compiler must be instructed
on how to use the new primitive instructions. To do so, ASIP Designer allows to
easily associate C-like functions to the primitive operations. With these custom
functions, the source code can now be modified. Before the accelerator is used,
a reset is performed at the beginning of the process_benchmark function, inside
device.c, to clear the registers from unwanted values:

// inside process_benchmark function, in device.c
...

//prepare writeWord registers
reset_writeWord();

...
compression_data->OutputDataBlock->num_total_bytes =

storeLastWordNewTotBytes(
compression_data->OutputDataBlock->OutputBitStream);

ñ→

ñ→

compression_data->OutputDataBlock->num_bits = storeNewNumBits();
...
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Next, the output_format_utils.c has been modified to use the accelerator during
the storing procedure:

// beginning of output_format_utils.c
...
inline void writeWord_inline(struct OutputBitStream *status, unsigned

int* data, unsigned int n_bits, unsigned int size)ñ→

{
unsigned int* outStreamStart = (unsigned int*)

status->OutputBitStream;ñ→

loadLenData(n_bits);
for(int i = 0; i < size; ++i){

writeWord(outStreamStart, data[i]);
}

}

inline void writeValue_inline(struct OutputBitStream *status, unsigned
int number_bits){ñ→

unsigned int* outStreamStart = (unsigned int*)
status->OutputBitStream;ñ→

// number of 0 words
unsigned int n0words = (number_bits-1)/32;
if(n0words > 0){

loadLenData(32);
for(int i = 0; i < n0words; i++){

writeWord(outStreamStart, 0);
}

}
loadLenData(number_bits%32);
writeWord(outStreamStart, 1);

}
...

Additionally, also the processing.c file has been modified, adding the writeWordChar
function that uses the accelerators:

// beginning of output_format_utils.c
...
inline void writeChar_inline(struct OutputBitStream *status, unsigned char

word, int number_bits)ñ→

{
chess_protect_access unsigned int* outStreamStart = (unsigned int*)

status->OutputBitStream;ñ→

loadLenData(number_bits);
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chess_separator();
writeWord(outStreamStart, word);

}
...

All these functions have been inlined to avoid calls overhead and save additional
cycles. To reuse the developed accelerator also for the writeValue function, a
preemptive control is needed, because, if the length of the compressed data is higher
than 32 bits, more than 1 cycle is needed to store it correctly. First, the number of
0-words is calculated with the operation: floor(number_bits−1

32 ). Next, the writeWord
accelerator is called that many times writing 32-bit words of all zeros. The number
of remaining bits to write in the memory is then calculated as number_bits%32
and is loaded into the lenD register. The accelerator is then called one more
time writing the last 1 in the memory. The chess_protect_access attribute and
the chess_separator() directive were used in the new writeWordChar function
to ensure that the compiler does not optimize or reorder the operations. The
application can now be executed both to ensure the correctness of output data
and to check the benefits brought by the accelerator. A synthesis of the model to
evaluate the area increment was then performed using Synopsys’ Design Compiler.
The results are reported in section 6.1.

4.1.2 J–block compression size
The Adaptive Entropy Coder used by the CCSDS 121.0 algorithm compares different
compression techniques on each J–block, and chooses the one that gives the smallest
compressed data size. The fundamental sequence, sample splitting and second
extention schemes require iterating over the entire J–block to calculate the size of
the data compressed using each of these techniques. The sample splitting option
is particularly expensive in terms of clock cycles because the size calculation is
repeated 29 times, changing the value of the k parameter from 1 to 29. The
fundamental sequence is a particular instance of the sample splitting option where
k is zero, while the second extension requires calculating H-samples from the
input samples using Equation 2.1. Two TCAs have been realized to improve these
procedures:

• the size calculation accelerator, shown in Figure 4.2a, uses an internal
register and some additional hardware to speed-up every size calculation done
iteratively over a block of samples. The internal size register is used to store
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the intermediate value of the compression data size, which is calculated as
size + = (input_sample >> k) + k + 1. The k value depends on the
intruction that uses the accelerator, as will be described later. The PDG
implementation of the accelerator is reported below:

w32 addSize(w32 old_size, w32 sample, w08 k_i){
return (uint32_t) ((uint32_t)old_size + (uint8_t)k_i +

(((uint32_t)sample) >> k_i[4:0]) + 1);ñ→

}

• the H-sample calculation accelerator, reported in Figure 4.2b, uses two input
samples to calculate the corresponding H-sample. The PDG implementation
of this unit is reported below:

w32 get_hSample(w32 sample1, w32 sample2){
return (uint32_t) ( ((sample1 + sample2) * (sample1 + sample2 +

1)) >> 1) + sample2;ñ→

}

(a) size calculation (b) H-sample calculation

Figure 4.2: J–block compression size accelerators

Five different primitives have been added to the processor to use the accelerators:

• getHsmp: this function is used to operate the H-sample calculation accel-
erator. It uses two source registers for the input samples and returns the
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calculated H-sample in the destination register.

• ld_k: this primitive is used to load another internal register, the k register.
It holds the value of k that can be used by the size calculation accelerator.

• sz_wsh: similarly to the previous wWord primitive, this instruction both
operates the size calculation accelerator and performs a memory store operation.
The TCA is used with the value of k read from its register, and the internal
size register is updated with the newly calculated size. The input sample is
then written in the memory at the address present in the other source register.

• sz_nosh: this function behaves exactly as the previous one, with the exception
of the k value used by the accelerator being zero instead of the value read
from the k register. Loading zero with ld_k and then using sz_wsh would
have the same effect, but this function allows the accelerator to be used in
contexts where the k is not mentioned, resulting in a clearer C code. On top
of that the same hardware of the the previous primitive is used, meaning that
adding this function causes a very small area overhead.

• getSize: this instruction is used to retrieve the size value stored in the internal
register at the end of the block computation. The newly read size is stored in
the central register file and the internal register is then reset to zero, ready
for a new size calculation. This function can also be used to just reset the size
register content, discarding the returned value, avoiding unwanted data in the
register before its first usage.

Next, the custom C functions used to call the new primitives have been created.
Two different functions, addSizeHalvedSamples and addSizeFundamentalSequence,
are used to call the sz_nosh primitive, while the sz_wsh function can be called
only from addSizeSampleSplitting. The source code in processing.c is then modified
to use the newly added functions:

// in processing.c
...
// inside SecondExtension function

for(unsigned int i = 0; i < HalfBlockSize; ++i){
unsigned int HalvedSample = calculateHalvedSample(Samples[2*i],

Samples[2*i + 1]);ñ→

addSizeHalvedSamples(&cData_destination[i], HalvedSample);
}
CompressedData->size = getCalculatedSize();

...
// inside FundamentalSequence function
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for(int i = 0; i < j_blocksize; i++){
addSizeFundamentalSequence(&cData_destination[i], Samples[i]);

}
CompressedData->size = getCalculatedSize();

...
// inside SampleSplitting function

for(int i = 0; i < j_blocksize; i++){
addSizeSampleSplitting(&cData_destination[i], Samples[i]);

}
CompressedData->size = getCalculatedSize();

...

The updated code was then executed to ensure the correctness of the output data,
profiled to measure the obained speed-up, and finally synthtised to evauate the
area increment.

4.1.3 Preprocessing samples
The last processing step that has been optimized is the preprocessing step. As
already said in section 2.1, the preprocessor used by this algorithm is made by a
simple Unit Delay Predictor and a Prediction Error Mapper. Both this
units have been integrated inside a single accelerator and the entire computation
is executed in a single clock cycle. The implementation of this accelerator was
straightforward and the developed PDG code mirrors the C implementation almost
perfectly:

// in ccsds121.p
...
w32 UDP_PEM(w32 new_sample, w32 PredictedValue, t1u preprocessor_active, w32

x_max){ñ→

if(preprocessor_active){
int32_t PredictionError = new_sample - PredictedValue;
int32_t difference = x_max - PredictedValue;
int32_t theta = (PredictedValue < difference) ? PredictedValue :

difference;ñ→

int32_t PredictionErrorAbs = (PredictionError > 0) ? PredictionError :
-PredictionError;ñ→

int32_t PreprocessedSample;
if(0 <= PredictionError && PredictionError <= theta) {

PreprocessedSample = 2*PredictionError;
}
else if(-theta <= PredictionError && PredictionError < 0){

PreprocessedSample = 2*PredictionErrorAbs -1;
}
else{

PreprocessedSample = theta + PredictionErrorAbs;
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}
return PreprocessedSample;

}
return new_sample;

}
...

Three additional registers have also been added. The first one stores the x_max
value, which is calculated from the samples’ bit depth. Another register holds a
flag that indicates whether the preprocessor is active or not, allowing the internal
hardware to be bypassed. Both these informations are obtained from the algorithm’s
parameters and need to be written inside the internal registers just a single time,
at the start of the computation. The third register is used to store the delayed
sample needed to calculate the prediction error. To load the internal registers and
operate the accelerator, three custom primitives have been developed:

• UDPclS: this function clears the register that holds the delay sample by
filling it with zeros. This is done before using the accelerator for the first
time and at the end of every reference sample interval. This ensures that the
first sample of each of those intervals passes the preprocessing stage unaltered,
allowing to correctly reconstruct the initial data from the compressed data.

• ld_UDPr: this instruction is used to load the aforementioned registers with
the preprocessor active flag and the x_max value.

• UDPproc: this primitive is the core of the accelerator as it actually performs
the preprocessing. The input sample is provided by one source register,
and it is conveyed towards the preprocessing logic and the delayed-sample
register. If the active flag is set, the preprocessed sample is computed using
the input sample and the delayed sample. If, instead, the flag is not set, no
preprocessing is done and the input sample remains untouched. The result of
the preprocessing is then both returned in the destination register and written
directly in the main memory, at the address held by the other source register.

After the corresponding custom C functions have been added, the source code in
the device.c and processing.c file has been added:

// in device.c
...

// inside process_benchmark function
UDPloadRegs(compression_data->preprocessor_active, (uint32_t)

(((uint64_t)0x1 << compression_data->n_bits) - 1));ñ→
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...

// in processing.c
...

// inside preprocess_data function
unsigned int r_samplesInterval = compression_data->r_samplesInterval;
unsigned int j_blocksize = compression_data->j_blocksize;
unsigned int step_offset = step * j_blocksize * r_samplesInterval;
unsigned int* InputDataStart = compression_data->InputDataBlock;
unsigned int* OutputPreprocessedStart =

compression_data->OutputPreprocessedValue;ñ→

// Pre-processing the input data values, precalculating ZeroBlock offsets
for(unsigned int block = 0; block < r_samplesInterval; ++block){

AllZerosInBlock = true;
unsigned int* OutputPreprocessedBlock = &OutputPreprocessedStart[block

* j_blocksize];ñ→

unsigned int* InputDataBlock = &InputDataStart[block * j_blocksize +
step_offset];ñ→

// Preprocessing the samples
for(unsigned int i = 0; i < j_blocksize; ++i){

// print InputDataBlock with accelerator
unsigned int preprocessed_data =

UDPprocess(&OutputPreprocessedBlock[i], InputDataBlock[i]);ñ→

if (preprocessed_data != 0) AllZerosInBlock = false;
}

...
// inside process_blocks function
UDPclearDelayedStack();

...

After testing the new functionalities of the processor, a profiling of the application
is performed. The function report now gives the following results:

Calls Cycles tot Cycles tot Function
(func) (%func)

-------- ----------- ------------ ----------------------
209079 83004363 46.56% SampleSplitting
16083 24979943 14.01% ... SampleSplittingWriter

304 21604080 12.12% memset
4 18109190 10.16% preprocess_data

16083 7430346 4.17% SecondExtension
... ... ... ...

From this it’s possible to observe that now the most intensive function is the
SampleSplitting, a function that has been already optimized. The other functions use
significantly less clock cycles and they have been already optimized too. This means
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that further enhancements of unoptimized functions would improve performance by
less then 4%. Increasing the processor area for such a small performance increment
is usually not worth it, especially in area-constrained environments. More details
about the achieved performance and the area increment are reported in section 6.1.

4.1.4 Version B of the J–block TCAs
The algorithm stores the preprocessed samples inside a big vector of 32-bit elements.
In a processor with a 32-bit parallelism only two elements can be computed with a
single instruction, one for each source register. On a 64-bit processor however, a
single source register can potentially hold two vector elements. Following this idea,
a second version of the J–block accelerators has also been developed, doubling the
amount of data computed with each instruction:

w32 addSize(w32 old_size, w64 sample_couple, w08 k_i){
uint32_t shifted_sample1 = (uint32_t) (((uint32_t)sample_couple[31:0]) >>

k_i[4:0]);ñ→

uint32_t shifted_sample2 = (uint32_t) (((uint32_t)sample_couple[63:32]) >>
k_i[4:0]);ñ→

uint8_t k = "000"::k_i[4:0]::"0";
return (uint32_t) (old_size + k + shifted_sample1 + shifted_sample2 + 2);

}

w64 get_hSample(w64 sample_couple1, w64 sample_couple2){
uint32_t sample1 = sample_couple1[31:0];
uint32_t sample2 = sample_couple1[63:32];
uint32_t sample3 = sample_couple2[31:0];
uint32_t sample4 = sample_couple2[63:32];
uint32_t hsample1 = (uint32_t) ( ((sample1 + sample2) * (sample1 + sample2 +

1)) >> 1) + sample2;ñ→

uint32_t hsample2 = (uint32_t) ( ((sample3 + sample4) * (sample3 + sample4 +
1)) >> 1) + sample4;ñ→

return hsample2::hsample1;
}

The C code was also slightly modified, halving the loop iterations and adding casts
to the vectors’ pointer to ensure 64-bit memory operations. The modified code of
the second extension function is reported as an example:

// inside SecondExtension, in processing.c
...

const unsigned int HalfBlockSize = compression_data->j_blocksize / 2;
unsigned long* cData_destination = (unsigned long*) CompressedData->data;
unsigned long* Samples_align64 = (unsigned long*) Samples;
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// Halving the data using the SE Option algorithm. See:
https://public.ccsds.org/Pubs/121x0b2ec1.pdfñ→

for(unsigned int i = 0; i < HalfBlockSize/2; ++i){
unsigned long HalvedSamples =

calculateHalvedSample(Samples_align64[2*i], Samples_align64[2*i +
1]);

ñ→

ñ→

addSizeHalvedSamples(&cData_destination[i], HalvedSamples);
}

...

Even though this modification can be performed only on 64-bit processors, it allows
speeding-up even more the execution of the size computation, which is still the
most demanding step of the algorithm. The performance and area results obtained
with this TCA are reported in section 6.1.

4.2 Integration into NOEL-V within GRLIB
Once all the TCAs have been profiled and tested extensively they were integrated
inside the NOEL–V pipeline. In addition to modifying the core within the GRLIB
library, this step required to re-build the NOEL–V compiler adding the new custom
instructions. ASIP Designer comes with a built-in compiler, which is used also
for simulation purposes, that allows code to be generated already including the
new custom functions. However, since the devoleped processor model does not
have all the features of the real processor, rebuilding the compiler ensures that the
NOEL–V is used exploiting all its capabilities.

4.2.1 Adding instructions to the compiler
The compiler used to generate code for the NOEL–V processor, is NCC [11], a
toolchain based on the GNU GCC compiler [12]. Being open-source, GCC can be
freely modified, allowing custom instructions to be easily added. After downloading
the NCC source files from [11] and extracting it in the src directory of the toolchain,
the source files can be modified. To correctly add the custom instructions, only two
files must be modified: riscv-opc.h and riscv-opc.c. The first one is located in the
sources directory, at <NCC_src_dir>/binutils/include/opcodes/riscv-opc.h.
Inside this file two macros are defined for each custom instruction:

• MATCH: is the basic instruction opcode provided initially. It consistes of
the seven opcode bits, i.e. the seven LSBs, and the funct bits that are placed
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in the correct position depending on the instruction encoding. Bits occupied
by operands must be filled with zeros;

• MASK: is used to identify the position of operand bits in the instruction. The
ith bit in the mask is 1 if that bit is not used as an operand in the instruction,
otherwise it is 0;

The instructions are then declared using the DECLARE_INSN function, as shown
below:

...
#define MATCH_WWORD 0x4000102b
#define MATCH_RST_WW 0x200102b
#define MATCH_LD_LD 0x400102b
#define MATCH_ST_NBIT 0x600102b
#define MATCH_ST_TBIW 0x4800102b
#define MATCH_SZ_WSH 0x4000202b
#define MATCH_SZ_NOSH 0x4200202b
#define MATCH_GETSIZE 0x400202b
#define MATCH_GETHSMP 0x600202b
#define MATCH_LD_K 0x800202b
#define MATCH_UDPPROC 0x4000402b
#define MATCH_UDPCLS 0x200402b
#define MATCH_LD_UDPR 0x400402b

#define MASK_WWORD 0xfe007fff
#define MASK_RST_WW 0xffffffff
#define MASK_LD_LD 0xfe0fffff
#define MASK_ST_NBIT 0xfffff07f
#define MASK_ST_TBIW 0xfff0707f
#define MASK_SZ_WSH 0xfe007fff
#define MASK_SZ_NOSH 0xfe007fff
#define MASK_GETSIZE 0xfffff07f
#define MASK_GETHSMP 0xfe00707f
#define MASK_LD_K 0xfff07fff
#define MASK_UDPPROC 0xfe00707f
#define MASK_UDPCLS 0xffffffff
#define MASK_LD_UDPR 0xfe007fff
...
DECLARE_INSN(wWord , MATCH_WWORD , MASK_WWORD )
DECLARE_INSN(rst_ww , MATCH_RST_WW , MASK_RST_WW )
DECLARE_INSN(ld_lD , MATCH_LD_LD , MASK_LD_LD )
DECLARE_INSN(st_nbit, MATCH_ST_NBIT, MASK_ST_NBIT)
DECLARE_INSN(st_tBiW, MATCH_ST_TBIW, MASK_ST_TBIW)
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DECLARE_INSN(sz_wsh , MATCH_SZ_WSH , MASK_SZ_WSH )
DECLARE_INSN(sz_nosh, MATCH_SZ_NOSH, MASK_SZ_NOSH)
DECLARE_INSN(getSize, MATCH_GETSIZE, MASK_GETSIZE)
DECLARE_INSN(getHsmp, MATCH_GETHSMP, MASK_GETHSMP)
DECLARE_INSN(ld_k , MATCH_LD_K , MASK_LD_K )
DECLARE_INSN(UDPproc, MATCH_UDPPRO , MASK_UDPPRO )
DECLARE_INSN(UDPclS , MATCH_UDPCLS , MASK_UDPCLS )
DECLARE_INSN(ld_UDPr, MATCH_LD_UDPR, MASK_LD_UDPR)
...

The second file can be found again in the NCC sources directory, following the path
<NCC_src_dir>/binutils/opcodes/riscv-opc.c. Inside this file, the opcodes
array is defined, and every instruction is represented by a riscv_opcode struct
whose elements represent different constraints and features of the instruction:

1. name: is the name that will be associated to the micro-instruction;

2. xlen: setting this parameter to either 32 or 64 specifies whether the instruction
is targeted for only 32 or 64-bit RISC–V variants. If this value is set to 0 then
the instruction will work on both variants;

3. insn_class: describes the class of instruction, whether it is an integer, atomic
or compressed. INSN_CLASS_I is used for the integer class;

4. args*: this string is used to specify the operands/register involved in the
instruction. Here “d” indicates that the instruction uses a destination register.
Similarly “s” is for the first source register and “t” is for the second one.
Additionally, also other letters can be used to specify immediates, but the
developed accelerators do not need them;

5. match: is the match used for the instruction

6. mask: is the mask used for this instruction

7. match_func: is a pointer to the function that will be used during compilation
to detect if any instruction matches with given C operation. Here, the same
function as the other opcodes was used;

8. pinfo: is used to describe the instruction by binary codes. Since it is not
needed by the developed TCA, it is set to 0;

The new custom instructions have then been added as reported below:
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...
{"wword" , 0, INSN_CLASS_I, "s,t" , MATCH_WWORD , MASK_WWORD , match_opcode, 0},
{"rst_ww" , 0, INSN_CLASS_I, "" , MATCH_RST_WW , MASK_RST_WW , match_opcode, 0},
{"ld_lend", 0, INSN_CLASS_I, "t" , MATCH_LD_LD , MASK_LD_LD , match_opcode, 0},
{"st_nbit", 0, INSN_CLASS_I, "d" , MATCH_ST_NBIT, MASK_ST_NBIT, match_opcode, 0},
{"st_tbiw", 0, INSN_CLASS_I, "d,s" , MATCH_ST_TBIW, MASK_ST_TBIW, match_opcode, 0},
{"sz_wsh" , 0, INSN_CLASS_I, "s,t" , MATCH_SZ_WSH , MASK_SZ_WSH , match_opcode, 0},
{"sz_nosh", 0, INSN_CLASS_I, "s,t" , MATCH_SZ_NOSH, MASK_SZ_NOSH, match_opcode, 0},
{"getsize", 0, INSN_CLASS_I, "d" , MATCH_GETSIZE, MASK_GETSIZE, match_opcode, 0},
{"gethsmp", 0, INSN_CLASS_I, "d,s,t", MATCH_GETHSMP, MASK_GETHSMP, match_opcode, 0},
{"ld_k" , 0, INSN_CLASS_I, "s" , MATCH_LD_K , MASK_LD_K , match_opcode, 0},
{"udpproc", 0, INSN_CLASS_I, "d,s,t", MATCH_UDPPROC, MASK_UDPPROC, match_opcode, 0},
{"udpcls" , 0, INSN_CLASS_I, "" , MATCH_UDPCLS , MASK_UDPCLS , match_opcode, 0},
{"ld_udpr", 0, INSN_CLASS_I, "s,t" , MATCH_LD_UDPR, MASK_LD_UDPR, match_opcode, 0},
...

After applying these changes, the compiler can be re-built. The script needed to do
this is not provided directly with the NCC sources, but it can be easily obtained
from BCC2 [13], the LEON compiler toolchain. After downloading its sources from
[13], the required script can be found at <BCC2_src_dir>/ubuild.sh. The script
was simply copied inside the NCC sources directory and only a single modification
is necessary. The TARGET variable at the beginning of the script must be changed
with one for the NOEL–V:

...
TARGET=riscv-gaisler-elf
...

Optionally, also the OPT variable can be modified, specifying the desired directory
path of the new compiler. The modified script was then ran using the options
--toolchain --destination <path>. The building process is then started and
the rebuilt compiler is saved in the directory specified by <path>. If the OPT
variable has been updated, the --destination <path> option is not needed.

4.2.2 Changes made to the NOEL–V core
Now that the compiler is ready, the NOEL–V core can be modified to integrate
the TCAs. Only the first version of the accelerators has been integrated because
the process is practically the same in both cases. The VHDL descriptions of all
the functional units and multiplexers that are used by the accelerators have been
automatically generated by ASIP Designer. All the components of each TCA are
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then gathered together and wrapped by a standard interface. The three interfaces
are then instantiated in a single component, which will be then used inside the
NOEL–V core. The library files of the NOEL–V model that need to be modified are
the integer pipeline of the processor, described in iunv.vhd, and the nvsupport.vhd
file, which contains some support functions. The length of those files is considerable,
therefore they are not reported in full form. However, the changes made to them
will be briefly discussed hereafter, starting from the iunv.vhd file:

• First, the TCA library is defined and its corresponding package is included.
This package contains the component instantiations needed to use the TCAs,
as well as many other information needed by the ASIP Designer hdl files.

-- added lines 124 and 125
library ccsds121_TCA_vA;
use ccsds121_TCA_vA.TCA_vA_pkg.all;

• Next, the TCA component is instantiated and new signals are used to for
its connections. The comb process sensitivity list is updated with the output
signals of the accelerators:

-- added between lines 11725 and 11726
signal TCA_argA : std_logic_vector(63 downto 0);
signal TCA_argB : std_logic_vector(63 downto 0);
signal TCA_instruction : std_logic_vector(31 downto 0);
signal TCA_argR : std_logic_vector(63 downto 0);
signal TCA_dm_addr : std_logic_vector(31 downto 0);
signal TCA_dm_data : std_logic_vector(63 downto 0);
signal TCA_reset : std_logic;

-- added between lines 11727 and 11728
inst_tca: TCA_vA
port map (
argA => TCA_argA ,
argB => TCA_argB ,
instruction => TCA_instruction ,
argR => TCA_argR ,
dm_addr => TCA_dm_addr ,
dm_data => TCA_dm_data ,
reset => TCA_reset ,
clock => clk
);
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TCA_reset <= not arst;

-- modified line 11762
fpuo, fpuoa, tbo, hart, rstn, holdn, mmu_csr, perf, cap, imsico,

TCA_argR, TCA_dm_addr, TCA_dm_data)ñ→

• The signals connected to the accelerator ports are driven from inside the comb
process. The instruction word is briefly decoded inside the TCAs component
to activate the correct accelerator. For this reason, the instruction word is
passed to the component only if the instrucion is valid:

-- added between lines 13829 and 13830
TCA_argA <= ex_alu_op1(0);
TCA_argB <= ex_alu_op2(0);
-- check if accelerator instruction
if(opcode(r.e.ctrl(0).inst) = OP_CUSTOM1 and r.e.ctrl(0).valid =

'1' and holdn = '1' and x_flush = '0' and not (x_branch_valid
and x_branch_mispredict and r.x.lbranch) = '1') then

ñ→

ñ→

-- assign instruction to "decode" which TCA to use
TCA_instruction <= r.e.ctrl(0).inst;
-- write TCA result
ex_result(0) := TCA_argR;
-- TCA result can be forwarded (r.e.ctrl(0).valid already

checked)ñ→

ex_result_fwd(0) := '1';
-- TCA data for memory (address generated separately
ex_stdata := TCA_dm_data;

else
TCA_instruction <= (others => '0');

end if;

• This file must also be modified to handle the storage operations performed by
the TCAs. The correct data size must be passed to the cache input and the
address must be correctly generated, hence the TCA_dm_addr signal is passed
to the address generation function (which is implemented in the nvsupport.vhd
file). Since TCAs store 32-bit data, the instruction_control function must be
modified to allow these back to back store operations. Additionally, line 16258
must be modified because some of the TCA instructions use both the store
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functional unit and the destination register, which is normally not used for
storing operations.

-- added between lines 4990 and 4991
if(opcode(inst_in) = OP_CUSTOM1) then

-- for TCA store inst size = 32 bit
dci.size := "10";

end if;
...
-- added between lines 13734 and 13735
TCA_dm_addr,
...
-- added between lines 9306 and 9307
variable sz_st_a_lt_32 : std_logic := r.a.ctrl(memory_lane).inst(13);
variable sz_st_e_lt_32 : std_logic := r.e.ctrl(memory_lane).inst(13);
...
-- added between lines 9836 and 9837
if (opcode(r.a.ctrl(memory_lane).inst) = OP_CUSTOM1 and v_fusel_eq(r, a,

memory_lane, ST)) thenñ→

sz_st_a_lt_32 := '1';
end if;
if (opcode(r.e.ctrl(memory_lane).inst) = OP_CUSTOM1) then

sz_st_e_lt_32 := '1';
end if;
...
-- modified line 9845
sz_st_a_lt_32 = '0') or
...
-- modified line 9849
sz_st_e_lt_32 = '0') or
...
-- modified line 16258
if (v_fusel_eq(r, m, memory_lane, ST) and not (opcode(r.m.ctrl(0).inst) =

OP_CUSTOM1))thenñ→

• To solve dependencies and allow data forwarding some additional changes
are required. Normally, forwarding from store operations is not performed,
but some TCA operations store data and also present results to be written
in the destination register. The processor must then be able to forward this
data in the same way as other results. For what concerns dependencies, TCA
operations must wait if they need the result of a load instruction. They
must also be considered when deciding if ALU operations, paired with TCA
instructions, must be executed in the late ALUs to solve dependencies.

-- added between lines 4241 and 4242
variable TCA_inst : std_logic := '0';
...
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-- added between lines 4268 and 4269
if(v_fusel_eq(r, same, lane, WWORD) or v_fusel_eq(r, same, lane,

JBLOCK) or v_fusel_eq(r, same, lane, UDP_FU)) thenñ→

TCA_inst := '1';
end if;
...
-- modified line 4430
v_fusel_eq(r, same, nlane, MUL or ALU or FPU or WWORD or JBLOCK or

UDP_FU) andñ→

...
-- modified line 9391
if v_fusel_eq(r, a, 0, ALU or LD or MUL or FPU or WWORD or JBLOCK

or UDP_FU) thenñ→

...
--modified line 9584
if not (i = 0 and v_fusel_eq(r, a, memory_lane, ST) and not

opcode(r.a.ctrl(memory_lane).inst) = OP_CUSTOM1) thenñ→

• Finally, the data produced by the accelerators that must be written inside the
register file is assigned to the correct variable:

-- added between lines 12814 and 12815
if(opcode(r.x.ctrl(0).inst) = OP_CUSTOM1) then

x_wb_data(0) := r.x.result(0);
end if;

Next, the nvsupport.vhd file has been modified. It contains support functions called
from other files, such as the iunv.vhd of before. The modifications are reported
hereafter:

• First, the address generation function must be modified. The function call
present in the iunv.vhd file has been modified adding the TCA_dm_addr signal,
so the function declaration must be updated accordingly. If the instruction
calling the function is then recognized as a TCA instruction, the address
passed with the new signal is used as output value:

-- added between lines 6477 and 6478
dm_addr : in std_logic_vector(31 downto 0);
...
-- added between lines 6524 and 6525
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if(opcode(inst_in) = OP_CUSTOM1) then
add(63 downto 32) := (others => '0');
add(31 downto 0) := dm_addr;
size := "10";

end if;
...

• Next, the TCA functional units have been added. The number of bits used to
represent the functional units have been incremented by 3, since one functional
unit for each type of accelerator is defined. The newly defined function unit
bits are then assigned depending on the opcode of the instruction and its
funct bits. For TCA instructions that perform also storing operations, the ST
functional unit bit is set as well.

-- modified line 80
constant FUSELBITS : integer := 17;
...
-- added between lines 845 and 846
constant WWORD : fuseltype; -- WWORD TCA
constant JBLOCK : fuseltype; -- JBLOCK TCA
constant UDP_FU : fuseltype; -- UDP TCA
...
-- added between lines 1902 and 1903
constant WWORD : fuseltype := fusel(13); -- WWORD TCA
constant JBLOCK : fuseltype := fusel(14); -- JBLOCK TCA
constant UDP_FU : fuseltype := fusel(15); -- UDP TCA
...
-- added between lines 6425 and 6426
when OP_CUSTOM1 =>

case funct3 is
-- writeWord
when "001" =>

if (funct7(6 downto 5) = "00") then
fusel := WWORD;

elsif (funct7(6 downto 5) = "01") then
fusel := (WWORD or ST);

end if;
-- J-block
when "010" =>

if (funct7(6 downto 5) = "00") then
fusel := JBLOCK;

elsif (funct7(6 downto 5) = "01") then
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fusel := (JBLOCK or ST);
end if;

-- UDP
when "100" =>

if (funct7(6 downto 5) = "00") then
fusel := UDP_FU;

elsif (funct7(6 downto 5) = "01") then
fusel := (UDP_FU or ST);

end if;
when others => null;

end case;

• Some of the TCA operations use the second source register, so the function
that validates this fields during instruction decoding must be updated:

-- added between lines 5030 and 5031
when OP_CUSTOM1 =>

• Next, the dual_issue_check function has been modified. It checks for data
dependencies and conflicts, disabling instructions that do not meet the required
constraints. More specifically, TCA operations should not be issued along side
branches and instructions that must use lane 0. Additionally, a conflict must
be raised if the TCA operation needs data from the destination register of the
paired instruction. Normally in this case late ALUs will be used, but this is
not an option for TCA operations.

-- added between lines 5556 and 5557
when OP_CUSTOM1 =>

if (for_lane0(active, cfi_en, lane, inst_in(one)) or opcode_1 =
OP_BRANCH) thenñ→

conflict := '1';
end if;

...
-- added between lines 5604 and 5605
when OP_CUSTOM1 =>

-- TCA inst. can wrongly update internal registers otherwise
conflict := '1';

...
-- added between lines 5842 and 5843
OP_CUSTOM1 |
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• Finally some other minor changes are needed in the for_lane0 function, since
TCA must be executed exclusively on lane 0 and in the exception_check
procedure, where it must be indicated that the TCA instructions do not
generate exceptions.

-- added between lines 5109 and 5110
op = OP_CUSTOM1 or
...
-- added between lines 7201 and 7202
when OP_CUSTOM1 =>

null;

After all these modifications, the entire processor with the accelerators can be
tested. To use the newly added TCA operations inside the code, asm instructions
were employed. The code is then compiled using GRLIB scripts, which also generate
the memory files used to simulate the design. If the name and the correct number
of arguments are used inside the asm function, the rebuilt compiler recognizes the
instruction and correctly generates the code. For hardware simulation purposes,
Mentor Graphics’ Questasim was used. Due to the long simulation time typical of
complex hardware systems like processors, the application code was not run in its
entirety, but each accelerator underwent thorough testing individually.
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Chapter 5

Loosely-coupled accelerator

This chapter will focus on the development of the loosely-couped accelerator for
the CCSDS 121.0 data compression algorithm. The LCA, which is represented
schematically in Figure 5.1, will feature two AHB interfaces, one master and one
slave, as well as a standard memory port. The device was, in fact, designed to
be connected to a dual port memory, allowing simultaneous reading and writing
operations. The ASIP Designer model is described in depth in section 5.1, while
the integration within GRLIB is discussed in section 5.2.

Figure 5.1: Schematic representation of the developed LCA
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5.1 ASIP Designer implementation
The accelerator has been developed using ASIP Designer’s io_interface feature.
This allows creating PDG units that can work independently of the processor.
Registers, memories and transitory can be declared like in nML files, but C like
functions and data-types can be used as well. An io_interface is composed of:

• External interfaces: that are used as connections with the processor or with
other io_interfaces.

• Local storages: are internal register and memories used inside the interface.

• process_result process: is a C-like function that drives the external inter-
faces. The output values are taken either from transitories or registers.

• process_request process: reads from the external interfaces and does the
main data elaboration.

• dbg_access function: is used to define the behaviour of the interface during
debug.

Once the unit is developed, it can be easily included in the main processor’s PDG
description.

5.1.1 Interface and memory model
The dm.p file of the processor is an io_interface that implements the actual data
memory of the model. Since the LCA is a memory-mapped accelerator, it has been
connected to this interface. The memory implementation was therefore modified to
correctly route data to the actual memory or the accelerator, depending on the
received address. First, the memory was modified, adding the second port, and the
accelerator’s input and output ports were added.

The slave interface of the LCA is used to receive commands and algorithm param-
eters from the processor. When a store operation is performed, if the provided
address falls in the LCA’s address range, data is forwarded to the accelerator’s
interface instead of the memory. Registers are used to capture the store operation
performed by the processor and delay the data by one clock cycle to satisfy the
AHB protocol timing. Load operations are treated similarly, with the exception
that they already satisfy the AHB timing requirements. If a load instruction with
an LCA address reaches the memory io_interface, it is redirected towards the LCA.
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On the next clock cycle, the accelerator will provide the data to the interface,
which will in turn forward it to the processor. If an LCA load is requested while
the accelerator is busy, the entire processor, except the LCA, is stalled using the
insert_wait_this_cycle() Chess function. Since the processor is frozen, for
every successive clock cycle it will try to perform the load operation until the LCA
stops being busy.

The master interface of the accelerator is used to read input samples directly from
the memory during data compression. When a master wants to use the bus, it
must assert its bus_request signal. The bus controller then grants the bus to that
master, which can then start using it. To implement this feature, an additional
register used to keep track of who controls the memory is added to the io_interface.
Normally, the control is granted to the processor, but when the LCA computation
starts, the memory control passes to the accelerator that starts reading samples
through its AHB master interface. If the processor then tries to use the memory, it
is again stalled using the same function discussed before. During sample processing,
the LCA also stores the compressed data using the second memory port, allowing
concurrent read/write operations. After the end of the computation, the bus is
freed and the processor can take back the control over the memory. The full PDG
implementation of the memory io_interface is reported in Appendix B.

5.1.2 Compression parameters and commands
After finishing the dm.p modification, the LCA was developed. After the definition
of the required input and output interface ports, the registers needed to store
the algorithm parameters have been added. These parameters are passed to the
accelerator by performing AHB write operations, which are handled inside the
process_request process. The input samples and the compressed data start
addresses are also stored to allow direct read and write operations. Start and reset
commands are also received in the same way:

ahb_slv_op_ncc_ff = 0;
ahb_pipe = 0;
if ((hsel_slv_i == "1") && (htrans_slv_i == "10") && (hsize_slv_i ==

"010") && hready_slv_i && !acc_bsy){ñ→

ahb_pipe = haddr_slv_i;
ahb_slv_wr_ncc_ff = hwrite_slv_i;
ahb_slv_op_ncc_ff = 1;

}
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if(ahb_slv_op_ncc_ff && ahb_slv_wr_ncc_ff){
switch (ahb_pipe){

// load configuration registers
case NBITS_ADDR:

n_bits = hwdata_slv_i[5:0];
break;

case JSIZE_ADDR:
j_blocksize = hwdata_slv_i[6:0];
break;

case RSINT_ADDR:
r_samplesInterval = hwdata_slv_i[12:0];
break;

case PPACT_ADDR:
preprocessor_active = hwdata_slv_i[0];
break;

case TOT_SMP_ADDR:
tot_samples = hwdata_slv_i;
break;

case SAMPLE_ADDR:
samples_address = hwdata_slv_i;
break;

case CDATA_ADDR:
cdata_address = hwdata_slv_i;
break;

// accelerator operations
case START_COMP_ADDR:

if (hwdata_slv_i == 1){
ahb_req_mem = 1;
start_comp_ff = 1;

}
break;

case RST_ADDR:
if (hwdata_slv_i == 1){

smp_in_del = 0;
totB = 0;
n_bits = 0;
cnt_j_wr = 0;
cnt_j_rd = 0;
cnt_smp = 0;
incW = 0;
size_se = 0;
v30_uint32_t size_k_tmp;
for(int k = 0; k<30; k++){

size_k_tmp[k] = 0;
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}
size_k = size_k_tmp;

}
break;

default:
break;

}
}

The reset command initializes all the internal registers, while the start command
starts the computation by requesting the bus ownership. The processing is divided
into several steps, exploiting a pipeline architecture where each step is enabled by
a flip-flop. Each section can enable the following one, and thanks to the pipeline
structure, many sections can work concurrently. For example, when the start
command is received, the start_comp_ff is set, meaning that the next clock cycle
the following if statement is executed:

if(start_comp_ff){
// accelerator becomes busy
acc_bsy = 1;

if(hgrant_mst_i == "1"){
// start a new read and increment the sample counter
start_read = 1;
cnt_smp += 1;

// process the first read and start the second one
start_rd_ff = 1;
rd_smp_ff = 1;

// reset register
start_comp_ff = 0;

}
else{

// if the bus is not granted keep asking for it
ahb_req_mem = 1;

}
}

Here, the accelerator checks if it has the bus ownership, and if it does, it proceeds
to the next processing step and starts reading the input samples. If it doesn’t have
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the bus ownership, it keeps requesting it.

5.1.3 Preprocessing
Once the bus has been granted to the accelerator, the computation starts by reading
the input samples from the memory. It is done through the AHB master interface
of the LCA that sends read commands to the AHB slave memory interface. If the
start_read is set, read commands are sent from the process_result function:

if(start_read){
haddr_mst_o = samples_address + cnt_smp::"00";
htrans_mst_o = "10";
hsize_mst_o = "010";
hlock_mst_o = "1";

}

During the entire processing, the bus is locked using the hlock signal, preventing the
bus ownership from changing. Once a sample arrives on the bus, it is stored inside a
pipe register, ready to be preprocessed. During this phase, the same preprocessing
unit developed as TCA has been used:

if(pproc_smp_ff){
// preprocessor section
ppsmp = UDP_PEM(smp_in, smp_in_del, preprocessor_active,

w32_mask[n_bits]);ñ→

smp_in_del = smp_in;

// proceed to size calculation and start new read
size_calc_ff = 1;

// keep the control of the bus with locked idle transmission when
read is endedñ→

locked_idle = !start_rd_ff;

// update registers
pproc_smp_ff = rd_smp_ff;

}

The preprocessed sample is then stored inside a pipe register to discontinue the
combinational path, and the size calculation step is started.
If the preprocessor is deactivated, the developed LCA implements only the block

52



Loosely-coupled accelerator

entropy coding, and can therefore be used with other algorithms, like the CCSDS
123 [14, 15]. This multispectral and hyperspectral image compression algorithm
can use the same decoder as the CCSDS 121 standard, as showed by the SHyLoC
implementation in [16].

5.1.4 Size calculation
During this step, the preprocessed sample is added to the fundamental sequence
and all the sample splitting sizes concurrently, and the results are saved in the
corresponding registers. On top of that, an H-sample is calculated every two
samples using the current sample and the preceding one, which was saved in a
register. The obtained H-sample is then added to the second extension size register.
The preprocessed sample is then stored in the J register, the FIFO-like structure
represented in Figure 5.2 which is built to hold the preprocessed samples until the
writing operation is executed, adapting to every J-block size.

Figure 5.2: FIFO structure used for the J registers

To write and read samples from the FIFO structure, two auxillary PDG functions
have been added:

void wr_Jreg(uint32_t smp_to_write){
v64_uint32_t regJ_tmp;
regJ_tmp[0] = smp_to_write;
for(int i = 0; i < 63; i++){

regJ_tmp[i+1] = regJ[i];
}
regJ = regJ_tmp;

}

uint32_t rd_Jreg(){
uint32_t j_out;
switch(j_blocksize){

case 8:
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j_out = regJ[7];
break;

case 16:
j_out = regJ[15];
break;

case 32:
j_out = regJ[31];
break;

case 64:
j_out = regJ[63];
break;

}
return j_out;

}

A similar, but smaller, unit is also instantiated for the H register holding the
H-samples.
During this step, which is iterated over all the samples of a J-block, a 1 bit register is
used to check whether the block contains all zeros, allowing zero-block identification
during the next section.

5.1.5 Compression technique identification
Once a J-block has been analysed entirely, the best compression technique can be
found. This process happens in a single clock cycle, where all the compression
technique sizes are compared and the best one is chosen. First, the best sample
splitting candidate is found:

// find leading one
v15_uint1_t diff_signs_vector;
for(int k = 0; k < 15; k++){

uint32_t diff = size_k[2*k] - size_k[2*k+1];
diff_signs_vector[k] = diff[31];

}
uint4_t leading1 = find_leading_1(diff_signs_vector);

// find best sample-splitting (0 == fundamental sequence)
uint5_t candidate1 = (uint5_t) leading1::"0";
uint5_t candidate2 = ((uint5_t) leading1::"0") - 1;
uint5_t candidate3 = candidate2[4:1]::"0";
uint5_t index_smallest;
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if(leading1 == 0){
index_smallest = 0;

}
else if((size_k[candidate3] <= size_k[candidate2]) &&

(size_k[candidate3] <= size_k[candidate1])){ñ→

index_smallest = candidate3;
}
else if(size_k[candidate2] <= size_k[candidate1]){

index_smallest = candidate2;
}
else{

index_smallest = candidate1;
}
uint5_t index_size_lk = (index_smallest <= n_bits-3) ? index_smallest :

n_bits-3;ñ→

size_lk = size_k[index_size_lk];

The registers that hold the sizes of all the different sample splitting options are
ordered with k growing from 0 to 29. This means that register 0 holds the size for
the sample splitting option with k=0, i.e. the fundamental sequence scheme, register
1 holds the size of the option with k=1 and so on. With this arrangement, the
resulting sizes will either present "V-shaped" or monotonous trends. This ensures
that it is always possible to find the smallest value without actually comparing
every size one by one.
To do so, from each size the next one is subtracted, and the MSBs of the 15 results
are gathered together. The resulting vector will have zeros until a certain point,
meaning that the corresponding couples present the kth element bigger or equal
than the kth+1 one. The remaining bits will be all ones, meaning that here the
trend is monotonically increasing. With a leading one detector, it is therefore
possible to identify the first "1" of the vector, which reduces the number of possible
candidates to three, as shown in Figure 5.3. The three candidate sizes are then
compared and the smallest one is chosen.

Figure 5.3: Smallest sample splitting size cases
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After that, the best compression method is then found by comparing the remaining
sizes and the zero-block flag:

// no copression size
uint32_t size_nc = j_blocksize * n_bits;

// find best compression method
if(all_0_block_ff){

// for ZB J and H mem are not needed
// if not ended samples start a new read
start_rd_ff = (cnt_smp != tot_samples);

cid_int_tmp = ZB_CID_INT;
compression_identifier = 0;

}
else if (size_nc <= size_se && size_nc <= size_lk){

// writing has same timing than reading, since writing starts earlier
// there is no risk of loosing data not yet compressed
start_rd_ff = (cnt_smp != tot_samples);

nZeros = 0;
cid_int_tmp = NC_CID_INT;
compression_identifier = cid_nc_tmp;

}
else if(size_se < size_nc && size_se <= size_lk){

// writing has same timing than reading, since writing starts earlier
// there is no risk of loosing data not yet compressed
start_rd_ff = (cnt_smp != tot_samples);

nZeros = 0;
cid_int_tmp = SE_CID_INT;
compression_identifier = 1;

}
else{

// if FS start reading, if SS wait to finish phase 1
start_rd_ff = (index_size_lk == FS_CID_INT) && (cnt_smp !=

tot_samples);ñ→

nZeros = 0;
cid_int_tmp = index_size_lk;
compression_identifier = index_size_lk+1;

}

If the chosen technique is not the Sample Splitting option, the reading procedure
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of a new J-block can start. The new samples are stored in the internal register
with the same timing as they are read for the compression, so no data is lost.
The Sample Splitting option, on the other hand, requires more cycles to write the
data, because the J-block must be read two times. This means that the samples
acquisition is stopped until this writing operation ends.
With the best compression technique now chosen, the last operation performed
during this step is to store the compression technique identifier in the memory:

uint6_t cid_int_tmp;
uint6_t cid_nc_tmp;
uint6_t compression_identifier;
uint3_t compression_identifier_size;

if (n_bits < 3){
compression_identifier_size = 1;
cid_nc_tmp = 0x1;

}
else if (n_bits < 5){

compression_identifier_size = 2;
cid_nc_tmp = 0x3;

}
else if (n_bits <= 8){

compression_identifier_size = 3;
cid_nc_tmp = 0x7;

}
else if (n_bits <= 16){

compression_identifier_size = 4;
cid_nc_tmp = 0xF;

}
else{

compression_identifier_size = 5;
cid_nc_tmp = 0x1F;

}
...
// best compression technique identification
...
cid_int = cid_int_tmp;
// If the selected technique is ZB or the SE, the

compression_identifier_size is +1ñ→

if(cid_int_tmp == ZB_CID_INT || cid_int_tmp == SE_CID_INT){
compression_identifier_size += 1;

}
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// write compression identifier in memory
uint32_t tmp_cdata = getWordToWrite(compression_identifier,

compression_identifier_size);ñ→

cdata_to_wr_tmp = change_endian(tmp_cdata);
//ahb_pipe = change_endian(cdata_to_wr);
start_write = 1;

5.1.6 Data compression
During this last step, data is compressed using the technique chosen previously.
The samples stored inside the J register, or in the H register depending on the
compression scheme, are read one by one and stored with the selected technique.
The complete PDG implementation of each procedure is fairly straightforward and
can be seen in the Appendix B. It is worth mentioning that the hardware unit
developed for the writeWord accelerator has been used also here, as well as for the
technique identifier storing operation, to correctly align the compressed data. The
actual store commands are performed inside the process_result process, through
the back-end port of the memory:

if(start_write){
wrport_addr_acc_o = totB[31:2]::"00" + cdata_address;
wrport_datain_acc_o = cdata_to_wr;
wrport_en_acc_o = "1";
wrport_write_acc_o = "1";

}

After all the J-blocks have been processed, one last cycle is needed to store the
remaining bits that may not have been written yet. The total number of bytes
written in the memory is therefore updated and the accelerator becomes not busy.
This last clock cycle is also used to guarantee the recommended idle cycle at the
end of the locked cycle.

if(end_wr_cdata_ff){
// this also works as the recommended
// idle cycle after end of locked transmission

// write the remaining incW content in memory and update totB
cdata_to_wr_tmp = change_endian(incW);
start_write = 1;
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totB += nbit[4:3];

// signals the end of the processing
acc_bsy = 0;

// reset register
end_wr_cdata_ff = 0;

}

A known limitation of the proposed design is encountered when the chosen com-
pression technique is the Sample Splitting scheme. This scheme requires the same
J-block to be read two times, forcing to stop the sample acquisition until the block
has been analysed for the first time. If this is not done, the new preprocessed
samples of the new block would overwrite the previous ones, resulting in a wrong
encoding. This issue obviously limits the throughput when this technique is applied,
as discussed in the following Chapter.
Now that the model is ready, the C source files must be modified accordingly. To
communicate with the accelerator, memory operations with the correct address
must be performed. The code is therefore modified by adding the necessary store
operations before the start of the computation.

// process_benchmark inside device.c is modified as follows
unsigned int* input_data = compression_data->InputDataBlock;
unsigned int* output_data = (unsigned int*)

compression_data->OutputDataBlock->OutputBitStream;ñ→

unsigned int j_blocksize = compression_data->j_blocksize;
unsigned int r_samplesInterval = compression_data->r_samplesInterval;
unsigned int total_samples = compression_data->TotalSamplesStep;
unsigned int tot_byte = 0;

// algorithm parameters
* (unsigned int*) NBITS_ADDR = compression_data->n_bits;
* (unsigned int*) JSIZE_ADDR = j_blocksize;
* (unsigned int*) RSINT_ADDR = r_samplesInterval;
* (unsigned int*) PPACT_ADDR = compression_data->preprocessor_active;
* (unsigned int*) TOT_SMP_ADDR = total_samples;

// input samples and output compressed data addresses
* (unsigned int*) CDATA_ADDR = (unsigned int) output_data;
* (unsigned int*) SAMPLE_ADDR = (unsigned int) input_data;
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// start computation
* (unsigned int*) START_COMP_ADDR = 1;

// store resulting number of bits in memory
compression_data->OutputDataBlock->num_total_bytes = *(unsigned int*)

TOTB_ADDR;ñ→

compression_data->OutputDataBlock->num_bits = *(unsigned int*)
SPARE_BITS_ADDR;ñ→

First, the algorithm parameters are loaded into the corresponding accelerator’s
registers, and the computation is then started. The processor will wait for the
accelerator to finish the computation, and the resulting number of bytes written is
read from the LCA.
Finally, the accelerator was thoroughly tested and profiled, obtaining the results
reported in Section 6.2.

5.2 Integration into NOEL–V within GRLIB
The finished accelerator was then integrated with the NOEL–V processor of the
GRLIB IP library. This process was much easier than the TCAs integration,
thanks to the AHB plug&play feature of the library. However, before discussing
the connection of the actual accelerator, the employed memory model is examined.

5.2.1 Memory model
The memory model used as a reference is the AHBDPRAM, a dual port syn-
chronous RAM with an AHB interface on one port. The memory comes only as a
synthesizable component with a fixed data width of 32 bits, and therefore a more
fitting simulation model was derived.
The majority of the simulation model was ported from the AHBRAM_SIM model,
which already handles AHB commands and single-port memory operations with
variable bit lengths. On top of that, another process for the back-end memory port
was added:

-- BACK-END port process
RamBEProc: process(clk) is
begin

if rising_edge(clk) then
if enable = '1' then
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if conv_integer(write) > 0 then
for i in 0 to dw/8-1 loop

if (write(i) = '1') then
ram(to_integer(unsigned(be_ramaddr)))(i*8+7 downto i*8) :=

be_wrdata(i*8+7 downto i*8);ñ→

end if;
end loop;

end if;
end if;
be_read_address <= be_ramaddr;

end if;
be_rddata <= ram(to_integer(unsigned(be_read_address)));

end process RamBEProc;

The new memory can now simulate correctly operations performed on both ports,
and can be adapted to different data widths. Therefore, it has been instantiated
inside the noelvmp.vhd file, substituting the previously used memory.

-- new dual-port memory model instantiation
mig_ahbram: ahbdpram_sim
generic map (

hindex => 0,
haddr => L2C_HADDR,
hmask => L2C_HMASK,
tech => CFG_MEMTECH,
abits => log2(1024) + 8 - log2(AHBDW/32),
bytewrite => 1,
cacheable => 0,
maccsz => AHBDW,
fname => ramfile

)
port map (

rst => rstn,
clk => clkm,
ahbsi => mem_ahbsi0,
ahbso => mem_ahbso0,
clkdp => clkm,
address => bemp_address,
datain => bemp_datain ,
dataout => bemp_dataout,
enable => bemp_enable ,
write => bemp_wr

);
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5.2.2 Connecting the accelerator
With the new memory model in place, the LCA can be finally connected. A wrapper
was used to adapt the interface of the accelerator component obtained with ASIP
Designer to the other interfaces:

entity LCA is
generic (

mst_hindex : integer := 0;
slv_hindex : integer := 0;
slv_haddr : integer := 16#ffa#;
slv_hmask : integer := 16#fff#;
port_width : integer := 32);

port (
rst : in std_ulogic;
clk : in std_ulogic;
-- AHB slave interface
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;
-- AHB master interface
ahbmi : in ahb_mst_in_type;
ahbmo : out ahb_mst_out_type;
-- Beck-end memory port interface
bemp_din: out std_logic_vector(port_width-1 downto 0);
bemp_addr: out std_logic_vector(31 downto 0);
bemp_en: out std_logic;
bemp_wr: out std_logic_vector(port_width/8-1 downto 0));

end;

The AHB configuration of the accelerator must be declared inside the cfgmap.vhd
file in the design directory. Indexes are assigned to the new master and slave
modules, and the slave’s address range is chosen among the available ones.
The accelerator was then instantiated inside the noelvmp.vhd file, connecting it to
the AHB bus and the AHBDPRAM memory back-end port, as shown in Figure
5.4. After updating the total number of the AHB modules using the bus, no other
modifications are needed, and the design can be simulated. This time the compiler
does not need any changes, because the accelerator is operated with standard
memory operations. The design was finally simulated using GRLIB automatically
generated scripts and QuestaSim. Due to the long simulation time, the entire
application code was not entirely simulated, but the accelerator was thoroughly
tested, varying all the algorithm parameters and test samples.
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Figure 5.4: Representation of the LCA integrated inside the NOEL–V subsystem
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Chapter 6

Results and comparisons

In this chapter, results obtained profiling and synthesizing every design are analysed
and compared. TCA results are reported in Section 6.1, while the LCA is reviewed
in Section 6.2. The two acceleration approaches are compared in Section 6.3, and
the developed designs are also compared with the ones found in the literature
in Section 6.4. Finally, in Section 6.5, some future work possibilities are briefly
discussed.

6.1 Tightly-coupled accelerators
After implementing each optimization, the algorithm has been profiled to check
the performance increment. The HDL description of the processor automatically
provided by ASIP Designer was then synthesised using Synopsys’ Design. The
ASIC implementation has been chosen because TCAs need to be as close to the
processor’s pipeline as possible to reduce delays. ASIC technologies also ensure
high energy efficiency and reliability, which are critical factors in space applications.
The library used for the synthesis is the TSMC 65 nm low power library.
The maximum frequency of the design is then obtained from the synthesis results,
and the throughput can be calculated as:

TH = #samples · samples bit depth · fmax

CC
(6.1)

To finally compare the effectiveness of each optimization, the throughput to area
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ratio (TAR) has been calculated.
The results obtained for the developed accelerators are reported in Table 6.1.

Table 6.1: TCA performance and area results

From the table, it is possible to observe that rewriting the C code already saves
44% of the required clock cycles, highlighting the importance of this step. To
understand the performance increment brought by each accelerator, the clock cycle
reduction and the speed-up factor have also been calculated with respect to the
rewritten code. The writeWord accelerator is the one that brings more benefits,
speeding up the computation by more than 50% with an area increment of less
than 2%. With the other two TCAs, the performance are enhanced up to 73.3%
for the A version and to 81.4% for the B version. The former increases the area
by less than 10%, while the latter increases it by 14%. The developed TCAs do
not introduce any new critical paths, therefore the maximum operating frequency
stayed the same for each design.
The TAR highlights that if the system supports 64-bit operations, the B version of
the TCAs is more advantageous, giving the best performance while maintaining a
small area increment.

6.2 Loosely-coupled accelerator
After testing it, also the loosely-coupled accelerator has been profiled and syn-
thesised, obtaining the results reported in Table 6.2. Due to the aforementioned
Sample Splitting limitation, the profiling was performed in the worst-case scenario,
where all the sample blocks have been compressed using that technique.

The LCA increases the performance substantially, achieving a speed-up factor
of ×480 in the worst-case scenario. When the Sample Splitting technique is not
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Table 6.2: LCA performance and area results

used, one sample can be computed every clock cycle, achieving a speed-up of ×924.
However, this increment comes at the cost of a larger occupied area, which has
grown by 47.5% compared to the reference implementation.

6.3 TCA vs LCA
The most meaningful results obtained for the developed accelerators are compared
in Table 6.3. From that, it is clear that for what concerns performance, the LCA
is clearly the best design. Executing all the operations and controls in hardware
inside the accelerator allows concurrent executions of many processing steps. The
compression of one sample per clock cycle for all the compression techniques, except
for the Sample Splitting, increases the throughput up to 7.8 Gb/s, which is way
higher than any of the other designs.
The TCAs, on the other hand, are more compact but enhance the compression pro-
cedure substantially, which makes them a suitable choice to have good performance
with contained area overhead.

Table 6.3: Results comparison between the developed TCAs and LCA

As with the occupied area, other aspects must also be taken into consideration
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when choosing which type of accelerator to use. TCAs pros and cons are:

+ They offer good performance increment with low area investment.

+ Since they are usually single-function units operated by software, algorithm
changes are easily handled with source code changes.

+ They can be used selectively, allowing one or more TCAs to be used also for
other algorithms beyond the one they were created for.

- They require high effort for their integration into existing designs. The
processor core must be modified, adding the new hardware and updating all
the necessary control logic. On top of that, the compiler toolchain must also
be modified, adding the new custom instructions that operate the accelerators.

- To achieve the best possible performance with TCAs, a proper coding style is
required. Accelerators enhances certain parts of the computation, but if the
code is not properly written, those improvements may be overshadowed by
the remaining part of the code. The algorithm should be written exploiting
data reuse and temporal locality to reduce memory operations and speed up
the execution.

• To maintain small delays, low energy consumption and high reliability, TCAs
are best implemented with the ASIC technology.

Loosely-coupled accelerators, on the other hand, have different characteristics:

+ If the accelerator is properly designed, and features direct memory access
(DMA), it can often outperform other types of accelerators, obtaining the best
performance increment.

+ The use of a standard interface makes the LCA allowing effortless integration in
many processor’s subsystems. Additionally, memory-mapped accelerators do
not require custom instructions to operate, making them even more portable.

+ With a proper design, after the starting command, LCAs can work concurrently
with the processor.

- Since LCAs perform complex tasks, they usually require higher area investment
with respect to TCAs.

• Even though an ASIC implementation guarantees the best possible perfor-
mance, it is also not flexible to algorithm changes. For this reason, FPGA
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implementations may be preferable.

6.4 Comparison with other works
At the time of writing, no works similar to the proposed TCAs have been reported.
Project [17] obtained comparable performance results, but the approach used
is completely different, featuring a multicore and GPU implementation of the
algorithm. On the other hand, many implementations similar to the proposed
LCA can be found in the literature, even though the only reference to an ASIC
implementation is found for the SHyLoC in [18]. The SHyLoC comes in many
configurations, but the one more similar to the proposed design is represented
by the set 4 that employs the runtime configuration feature. It is worth noting
that, in both the proposed design and [18], small memories like the internal FIFOs
have been mapped to FFs, causing an area overhead. These results should then be
considered as upper bounds, because synthesis with appropriate memory macros
should yield a lower area.

Metric Proposed LCA
only

SHyLoC of [18]
(set 4 w mem)

Samples bit depth 32 16
ASIC synthesis technology l.p. 65 nm DARE 180 nm

Max Frequency [MHz] 709 153.85
Total Core Area [µm2] 94532 3280000

Throughput at fmax [Gb/s] 11.10 4.92

Table 6.4: ASIC design results and comparisons

The proposed LCA has also been implemented on the XCVU3P FPGA for an
easier comparison with other works. Due to the aforementioned Sample Splitting
limitation, the worst-case performance of this work are slightly lower than the one
reported for work [16], despite the higher frequency of the proposed design. Solving
this issue would lead to better results, with additional improvements possible
by reducing the critical path. Paper [19] parallelizes part of the computation of
SHyLoC, achieving a throughput higher than the proposed solution, at the cost of
higher resource utilization. The work in [20] presents an efficient implementation of
the algorithm, but detailed material is hard to find, and implementation specifics
are not provided in the available sources. The solution adopted for work [21]
is constrained to image data compression targeting remote sensing applications.
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This means that the maximum bit depth for the input samples is 16 bits, whereas
the proposed is 32 bits. The architecture is then tailored around this constraint,
achieving a smaller area footprint and better performance than this work.

Metric Proposed LCA
only SHyLoC of [16] Parallel121 of

[19] USES-32 of [20] Work of [21]
(D = 16)

FPGA XCVU3P XQR5VFX130 XCKU040 EP3SE50F484C2 XC6VLX75T
Max Frequency [MHz] 142.9 79.9 121.5 - 313

LUTs / DSPs 8929 / 3 7670 / 5 28329 / 4 6255 / - 9% slices
FFs / BRAM or LUTRAM 4275 / 96 2291 / 0 8774 / 0 3383 / 16 Kb 5% BRAMs
Throughput at fmax [Gb/s] 2.24 2.56 7.78 6.4 4.67

Table 6.5: FPGA design results and comparisons

6.5 Future work
The reference implementation of the algorithm taken from OBPMark is not op-
timally written. For example, all the input samples are read many times from
the memory, wasting clock cycles in loop overheads, function calls and memory
operations. Rewriting the code exploiting proper data reuse will certainly increase
the performance of both the reference implementation and the TCA design.
Future work will also be done to remove the aforementioned limitation of the
Sample Splitting encoding on the LCA, matching the rate of one sample per clock
cycle already achieved by the other compression techniques. The resulting higher
throughput would make the accelerator more suitable for high-performance designs
and more competitive with respect to the other similar works.
Finally, this comparison can also be extended to the CCSDS 123.0 standard, where
the complex preprocessing stage presents significant challenges for its optimization.
Given the increasingly widespread use of this standard, several studies have been
conducted to speed up its execution [22]. The removal of data dependencies [23]
and the use of multicore solutions [24] offer interesting insights for future work
possibilities.
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Conclusion

This work greatly enhanced the performance of the CCSDS 121.0 algorithm, ex-
ploring various strategies in the solution space.
Given the widespread support for the RISC–V project from numerous vendors and
corporates, the NOEL–V proved to be an optimal candidate processor for this
optimization, and ASIP Designer allowed for rapid and intuitive development of
the accelerators.
The LCA proved to be the best design for what concerns TAR, reaching a through-
put of 7.83 Gb/s with an area increment of 47.5%. On the other hand, TCAs still
increased the performance noticeably while remaining compact enough for area
constrained devices.
Comparing the developed accelerators from different perspectives provided inter-
esting insights about their development, integration, and potential performance.
The analysis highlighted key trade-offs between flexibility, efficiency, and resource
utilization, and discussed specific design constraints that can guide the selection of
the most suitable accelerator type depending on the application.
The developed accelerators have therefore demonstrated a promising potential,
providing interesting insights and opportunities for improvement. Their design and
implementation ultimately provide a solid foundation for extending this work to
other, more complex, compression standards.
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Appendix A

TCA model and source code

//------------ CCSDS121 top level opn ------------

// 0b00xxxxxxxx -> no ST or LD operation in dM
// 0b01xxxxxxxx -> require ST operation in dM
// 0b10xxxxxxxx -> require LD operation in dM

// 0bxxxxAAAxxx -> AAA used to identify instruction

enum majCUSTOM1_fn10 {
// writeWord instructions -> 0bxxxxxxx001
wWord = 0b0100000001,
rst_wW = 0b0000001001,
ld_lD = 0b0000010001,
st_nbit = 0b0000011001,
st_tBiW = 0b0100100001,
// Jblock size instructions -> 0bxxxxxxx010
sz_wsh = 0b0100000010,
sz_nosh = 0b0100001010,
getSize = 0b0000010010,
getHsmp = 0b0000011010,
ld_k = 0b0000100010,
// preprocessor instructions -> 0bxxxxxxx100
UDPproc = 0b0100000100,
UDPclS = 0b0000001100,
ld_UDPr = 0b0000010100,
// just needed by ASIP Designer for correct enum
last = 0b1111111111

};

trn argA <w64>;
trn argB <w64>;
trn argR <w64>;

opn ccsds121_pair(CDwrite_pair | Jsize_pair | UDPproc_pair);
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// -------------------------------------------------------------------------
// ------------------------------- writeWord -------------------------------
// -------------------------------------------------------------------------

//------------ writeWord top level opn ------------

opn CDwrite_pair(l0 : CDwrite_instrs, l1 : alu1.alu_instrs) {
syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}

opn CDwrite_instrs (CDwrite_write_instr |
CDwrite_reset_instr |
CDwrite_ld_lD |
CDwrite_st_tBiW |
CDwrite_st_nbit);

//------------ writeWord resources ------------

fu writeCompData;

reg nbit <w08> read (nbit_r) write (nbit_w);
reg totB <w32> read (totB_r) write (totB_w);
reg incW <w32> read (incW_r) write (incW_w);
reg lenD <w32> read (lenD_r) write (lenD_w);

trn uncompressed_data <w64>;
trn compressed_data <w32>;
trn nbits <w64>;
trn address <addr>;
trn totBytes <w64>;
trn dataLength <w64>;
trn new_nbit <w64>;
trn new_totB <w64>;

hw_init incW = 0;

//------------ writeWord instruction ------------

opn CDwrite_write_instr (op: majCUSTOM1_fn10, rs1: mX_l0.mX1r_EX, rs2: mX_l0.mX2r_EX) {
action {
stage RA..EX: argA`EX` = rs1;

argB`EX` = rs2;
// ---
stage EX:

switch (op) {
case wWord : address = argA;

uncompressed_data = argB;
dm_addr = getWriteAddr(address, totB_r = totB) @writeCompData;
compressed_data = getWordToWrite( uncompressed_data, lenD_r=lenD,

incW_r=incW, incW=incW_w,ñ→
nbit_r=nbit, nbit=nbit_w, totB_r = totB,

totB=totB_w) @writeCompData;ñ→
ñ→
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DMw[dm_addr`EX`] = dmw_wr`EX` = compressed_data`EX`;

}
}
syntax : op PADMNM " " rs1 "," PADOP1 rs2;
image : op[9..3] :: rs2 :: rs1 :: op[2..0] :: "00000" :: opc32.CUSTOM1

class(ccsds121), class(wW_acc);
}

opn CDwrite_reset_instr (op: majCUSTOM1_fn10) {
action {
stage EX:

switch (op) {
case rst_wW : incW = incW_w = 0;

lenD = lenD_w = 0;
nbit = nbit_w = 0;
totB = totB_w = 0;

}
}
syntax : op PADMNM;
image : op[9..3] :: "00000" :: "00000" :: op[2..0] :: "00000" :: opc32.CUSTOM1

class(ccsds121), class(wW_acc);
}

//------------ writeWord load instructions ------------

opn CDwrite_ld_lD (op: majCUSTOM1_fn10, rs2: mX_l0.mX1r_EX) {
action {
stage RA..EX: argB `EX` = rs2;
// ---
stage EX:

switch (op) {
case ld_lD : lenD = lenD_w = argB;

}
}
syntax : op PADMNM " " rs2;
image : op[9..3] :: rs2 :: "00000" :: op[2..0] :: "00000" :: opc32.CUSTOM1

class(ccsds121);
}

//------------ writeWord store instructions ------------

opn CDwrite_st_tBiW (op: majCUSTOM1_fn10, rs1: mX_l0.mX1r_EX, rd: mX_l0.mX1w_EX) {
action {
stage RA..EX: argA `EX` = rs1;
// ---
stage EX:

switch (op) {
case st_tBiW : address = argA;

dm_addr = getWriteAddr(address, totB_r = totB) @writeCompData;
DMw[dm_addr`EX`] = dmw_wr`EX` = change_endian(incW_r`EX` =

incW`EX`)@writeCompData;ñ→
argR = getNewTotB(totB_r = totB, nbit_r = nbit) @writeCompData;

}
// ---
stage EX..WR: rd = argR`EX`;
}
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syntax : op PADMNM " " rd "," PADOP1 rs1;
image : op[9..3] :: "00000" :: rs1 :: op[2..0] :: rd :: opc32.CUSTOM1

class(ccsds121);
}

opn CDwrite_st_nbit (op: majCUSTOM1_fn10, rd: mX_l0.mX1w_EX) {
action {
stage EX:

switch (op) {
case st_nbit : argR = getNewNbit(nbit_r = nbit) @writeCompData;

}
// ---
stage EX..WR: rd = argR`EX`;
}
syntax : op PADMNM " " rd;
image : op[9..3] :: "00000" :: "00000" :: op[2..0] :: rd :: opc32.CUSTOM1

class(ccsds121);
}

//------------ writeWord chess_view and sw_stall ------------

// writeWord
chess_view () {

dm_addr = getWriteAddr(address, totB_r=totB);
compressed_data = getWordToWrite(uncompressed_data, lenD_r=lenD, incW_r=incW, incW=incW_w,

nbit_r=nbit, nbit=nbit_w, totB_r=totB, totB=totB_w);ñ→
DMw[dm_addr] = compressed_data;

} -> {
writeWord_p(address, uncompressed_data);

}

// reset accelerator registers
chess_view () {

incW = incW_w = 0;
lenD = lenD_w = 0;
nbit = nbit_w = 0;
totB = totB_w = 0;

} -> {
reset_wWord_p();

}

// load of lenD
chess_view () {

lenD = lenD_w = argB;
} -> {

ld_lD(argB);
}

// store of totB and incW at the end of execution
chess_view () {

dm_addr = getWriteAddr(address, totB_r=totB);
DMw[dm_addr] = change_endian(incW_r=incW);
argR = getNewTotB(totB_r=totB, nbit_r=nbit);

} -> {
argR = st_tBiW_p(address);

}

// store of nbit at the end of execution
chess_view () {

argR = getNewNbit(nbit_r = nbit);
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} -> {
argR = st_nbit_p();

}

// -------------------------------------------------------------------------
// -------------------------- Jblock accelerator ---------------------------
// -------------------------------------------------------------------------

//------------ Jblock accelerator resources ------------

fu jBlockFU;

reg k_reg <w08> read (k_r) write (k_w);
reg size_reg <w32> read (size_r) write (size_w);
hw_init size_reg = 0;

trn k <w08>;
trn sample1 <w32>;
trn sample2 <w32>;
trn hSample <w32>;

//------------ Jblock acceleratore instructions ------------

opn Jsize_pair(l0 : Jsize_acc_instr, l1 : alu1.alu_instrs) {
dummy_syntax : l1;
syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}

opn Jsize_acc_instr (Jsize_hSmp_instr | Jsize_calcSize_instr | Jsize_getSize_instr |
Jsize_ldK_instr);ñ→

opn Jsize_hSmp_instr (op: majCUSTOM1_fn10, rd: mX_l0.mX1w_EX, rs1: mX_l0.mX1r_EX, rs2:
mX_l0.mX2r_EX) {ñ→
action{

stage RA..EX: argA`EX` = rs1;
argB`EX` = rs2;

stage EX:
switch (op) {

case getHsmp:
sample2 = argA;
sample1 = argB;
argR = hSample = get_hSample(sample1, sample2) @jBlockFU;

}
stage EX..WR: rd = argR`EX`;

}
syntax : op PADMNM " " rd "," PADOP1 rs1 "," PADOP2 rs2;
image : op[9..3] :: rs2 :: rs1 :: op[2..0] :: rd :: opc32.CUSTOM1;

}

opn Jsize_calcSize_instr (op: majCUSTOM1_fn10, rs1: mX_l0.mX1r_EX, rs2: mX_l0.mX2r_EX) {
action{

stage RA..EX: argA`EX` = rs1;
argB`EX` = rs2;

// ---
stage EX:

switch (op) {

75



TCA model and source code

case sz_wsh:
dm_addr = address = argA;
sample1 = argB;
DMw[dm_addr`EX`] = dmw_wr`EX` = sample1`EX`;
k = k_r = k_reg;
size_reg = size_w = addSize(size_r = size_reg, sample1, k) @jBlockFU;

case sz_nosh:
dm_addr = address = argA;
sample1 = argB;
DMw[dm_addr`EX`] = dmw_wr`EX` = sample1`EX`;
k = 0;
size_reg = size_w = addSize(size_r = size_reg, sample1, k) @jBlockFU;

}
}
syntax : op PADMNM " " rs1 "," PADOP1 rs2;
image : op[9..3] :: rs2 :: rs1 :: op[2..0] :: "00000" :: opc32.CUSTOM1;

}

opn Jsize_getSize_instr (op: majCUSTOM1_fn10, rd: mX_l0.mX1w_EX) {
action{

stage EX:
switch (op) {

case getSize:
argR = size_r = size_reg;
size_reg = size_w = 0;

}
stage EX..WR: rd = argR`EX`;

}
syntax : op PADMNM " " rd;
image : op[9..3] :: "00000" :: "00000" :: op[2..0] :: rd :: opc32.CUSTOM1;

}

opn Jsize_ldK_instr (op: majCUSTOM1_fn10, rs1: mX_l0.mX1r_EX) {
action{

stage RA..EX: argA`EX` = rs1;
// ---
stage EX:

switch (op) {
case ld_k:

k_reg = k_w = argA;
}

}
syntax : op PADMNM " " rs1;
image : op[9..3] :: "00000" :: rs1 :: op[2..0] :: "00000" :: opc32.CUSTOM1;

}

//------------ Jblock accelerator chess_view ------------

// sampleSplitting size and memory store
chess_view () {

DMw[dm_addr = address] = dmw_wr = sample1;
size_w = addSize(size_r, sample1, k_r = k_reg);

} -> {
sizeWshift(address, sample1);

}

// fundamentalSequence and halvedSamples size and memory store
chess_view () {

DMw[dm_addr = address] = dmw_wr = sample1;
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k = 0;
size_w = addSize(size_r, sample1, k);

} -> {
sizeNOshift(address, sample1);

}

// get calculated size
chess_view () {

argR = size_r = size_reg;
size_reg = size_w = 0;

} -> {
argR = getSize();

}

// calculate HalvedSample from two J-samples
chess_view () {

hSample = get_hSample(sample1, sample2);
} -> {

hSample = calc_hSampl(sample1, sample2);
}

// load k_reg auxiliary register
chess_view () {

k_reg = k_w = argA;
} -> {

ld_k(argA);
}

// -------------------------------------------------------------------------
// ----------------------------- preprocessor ------------------------------
// -------------------------------------------------------------------------

//------------ preprocessor top level opn ------------

opn UDPproc_pair(l0 : UDPproc_instr, l1 : alu1.alu_instrs) {
dummy_syntax : l1;
syntax : l0 PADINST " : " l1;
image : l0::"11"::l1::"11";

}

opn UDPproc_instr (UDP_process_instr | UDP_clear_instr | UDP_reg_instr);

//------------ preprocessor resources ------------

fu UDP;

reg UDPdSmp <w32> read (UDPdSmp_r) write (UDPdSmp_w);
hw_init UDPdSmp = 0;

reg UDPactive <t1u> read (UDPactive_r) write (UDPactive_w);
reg UDPxmax <w32> read (UDPxmax_r) write (UDPxmax_w);

trn data_to_preprocess <w32>;
trn preprocessed_data <w32>;

//------------ preprocessor instruction ------------
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opn UDP_process_instr (op: majCUSTOM1_fn10, rs1: mX_l0.mX1r_EX, rs2: mX_l0.mX2r_EX, rd:
mX_l0.mX1w_EX) {ñ→

action {
stage RA..EX: argA`EX` = rs1;

argB`EX` = rs2;
// ---
stage EX:

switch (op) {
case UDPproc : dm_addr = address = argA;

data_to_preprocess = argB;
preprocessed_data = UDP_PEM(data_to_preprocess, UDPdSmp_r=UDPdSmp,

UDPactive_r=UDPactive, UDPxmax_r=UDPxmax) @UDP;ñ→
argR = preprocessed_data;
UDPdSmp = UDPdSmp_w = data_to_preprocess;
DMw[dm_addr`EX`] = dmw_wr`EX` = preprocessed_data`EX`;
ñ→

}
// ---
stage EX..WR: rd = argR`EX`;
}

syntax : op PADMNM " " rd "," PADOP1 rs1 "," PADOP2 rs2;
image : op[9..3] :: rs2 :: rs1 :: op[2..0] :: rd :: opc32.CUSTOM1

class(ccsds121);
}

opn UDP_clear_instr (op: majCUSTOM1_fn10) {
action {
stage EX:

switch (op) {
case UDPclS : UDPdSmp = UDPdSmp_w = 0;

}
}
syntax : op;
image : op[9..3] :: "00000" :: "00000" :: op[2..0] :: "00000" :: opc32.CUSTOM1

class(ccsds121);
}

//------------ preprocessor load instructions ------------

opn UDP_reg_instr (op: majCUSTOM1_fn10, rs1: mX_l1.mX1r_EX, rs2: mX_l1.mX2r_EX) {
action {
stage RA..EX: argA`EX` = rs1;

argB`EX` = rs2;
// ---
stage EX:

switch (op) {
case ld_UDPr : UDPactive = UDPactive_w = argA;

UDPxmax = UDPxmax_w = argB;
}

}
syntax : op PADMNM " " rs1 "," PADOP1 rs2;
image : op[9..3] :: rs2 :: rs1 :: op[2..0] :: "00000" :: opc32.CUSTOM1

class(ccsds121);
}

//------------ preprocessor chess_view ------------

// preprocessor
chess_view () {

dm_addr = address;
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preprocessed_data = UDP_PEM(data_to_preprocess, UDPdSmp_r=UDPdSmp, UDPactive_r=UDPactive,
UDPxmax_r=UDPxmax);ñ→

UDPdSmp = UDPdSmp_w = data_to_preprocess;
DMw[dm_addr] = preprocessed_data;

} -> {
preprocessed_data = UDPprocess(address, data_to_preprocess);

}

// clear UDPdSmp
chess_view () {

UDPdSmp = UDPdSmp_w = 0;
} -> {

UDPclear();
}

// load UDP registers
chess_view () {

UDPactive = UDPactive_w = argA;
UDPxmax = UDPxmax_w = argB;

} -> {
UDPreg(argA, argB);

}

Code A.1: nML description of TCAs

class v33_uint32_t property (vector uint32_t [33]);

const v33_uint32_t lenD_mask = {
"00000000000000000000000000000000",
"00000000000000000000000000000001",
"00000000000000000000000000000011",
"00000000000000000000000000000111",
"00000000000000000000000000001111",
"00000000000000000000000000011111",
"00000000000000000000000000111111",
"00000000000000000000000001111111",
"00000000000000000000000011111111",
"00000000000000000000000111111111",
"00000000000000000000001111111111",
"00000000000000000000011111111111",
"00000000000000000000111111111111",
"00000000000000000001111111111111",
"00000000000000000011111111111111",
"00000000000000000111111111111111",
"00000000000000001111111111111111",
"00000000000000011111111111111111",
"00000000000000111111111111111111",
"00000000000001111111111111111111",
"00000000000011111111111111111111",
"00000000000111111111111111111111",
"00000000001111111111111111111111",
"00000000011111111111111111111111",
"00000000111111111111111111111111",
"00000001111111111111111111111111",
"00000011111111111111111111111111",
"00000111111111111111111111111111",
"00001111111111111111111111111111",
"00011111111111111111111111111111",
"00111111111111111111111111111111",
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"01111111111111111111111111111111",
"11111111111111111111111111111111"

};

w32 getWordToWrite(w64 data_i, w32 data_length, w32 incW_i, w32& incW_o, w08 nbit_i, w08& nbit_o,
w32 totB_i, w32& totB_o){ñ→

uint64_t buffer = incW_i::(uint32_t)0;
uint32_t data = ((uint32_t) data_i) & lenD_mask[data_length];
uint8_t bits_in_buffer = nbit_i + (uint8_t) data_length;

buffer |= (uint64_t) (((uint64_t) data) << (64 - bits_in_buffer));

if (bits_in_buffer < 32){
incW_o = buffer[63:32];
nbit_o = (uint8_t) bits_in_buffer;
totB_o = totB_i;

}
else{

incW_o = buffer[31:0];
nbit_o = bits_in_buffer - 32;
totB_o = totB_i + 4;

}
return change_endian(buffer[63:32]);

}

w32 change_endian(w32 a){
return a[7:0]::a[15:8]::a[23:16]::a[31:24];

}

addr getWriteAddr(addr address, w32 totB_i){
return address + (uint64_t) totB_i[31:2]::"00";

}

w64 getNewNbit(w08 nbit_i){
return (uint64_t) ("0"::nbit_i[2:0]);

}

w64 getNewTotB(w32 totB_i, w08 nbit_i){
return (uint64_t) (totB_i + nbit_i[7:3]);

}

// -------------------------------------------------------------------------
// -------------------------- Jblock accelerator ---------------------------
// -------------------------------------------------------------------------

w32 addSize(w32 old_size, w32 sample, w08 k_i){
return (uint32_t) ((uint32_t)old_size + (uint8_t)k_i + (((uint32_t)sample) >> k_i[4:0]) + 1);

}

w32 get_hSample(w32 sample1, w32 sample2){
return (uint32_t) ( ((sample1 + sample2) * (sample1 + sample2 + 1)) >> 1) + sample2;

}

// -------------------------------------------------------------------------
// ----------------------- preprocessor accelerator ------------------------
// -------------------------------------------------------------------------

w32 UDP_PEM(w32 new_sample, w32 PredictedValue, t1u preprocessor_active, w32 x_max){
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if(preprocessor_active){
int32_t PredictionError = new_sample - PredictedValue;
int32_t difference = x_max - PredictedValue;
int32_t theta = (PredictedValue < difference) ? PredictedValue : difference;
int32_t PredictionErrorAbs = (PredictionError > 0) ? PredictionError : -PredictionError;
int32_t PreprocessedSample;

if(0 <= PredictionError && PredictionError <= theta)
{

PreprocessedSample = 2*PredictionError;
}
else if(-theta <= PredictionError && PredictionError < 0)
{

PreprocessedSample = 2*PredictionErrorAbs -1;
}
else{

PreprocessedSample = theta + PredictionErrorAbs;
}

return PreprocessedSample;
}
return new_sample;

}

Code A.2: PDG implementation of TCA units

#ifndef INCLUDED_NOELV_P_CCSDS121_H_
#define INCLUDED_NOELV_P_CCSDS121_H_

namespace noelv_primitive {

// -------------------------------------------------------------------------
// ------------------------------- writeWord -------------------------------
// -------------------------------------------------------------------------

// accelerator
void writeWord_p(addr, w64) property(alternate_store programmers_view);
w32 getWordToWrite(w64, w32, w32, w32&, w08, w08&, w32, w32&);
void reset_wWord_p() property(programmers_view);

// load registers
void ld_lD(w64) property(programmers_view);

// store registers
w64 st_tBiW_p(addr) property(alternate_store programmers_view);
w64 st_nbit_p() property(programmers_view);
w64 getNewNbit(w08);
w64 getNewTotB(w32, w08);

// common auxiliary primitives
w32 change_endian(w32);
addr getWriteAddr(addr, w32);

// -------------------------------------------------------------------------
// -------------------------- Jblock accelerator ---------------------------
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// -------------------------------------------------------------------------

// load/store instructions
void ld_k(w64) property(programmers_view);

// size calculation
w32 addSize(w32, w32, w08);

// HalvedSample operations
w32 get_hSample(w32, w32);

// programmers_view primitives for the compiler
void sizeWshift(addr, w32) property(alternate_store programmers_view);
void sizeNOshift(addr, w32) property(alternate_store programmers_view);
w64 getSize() property(programmers_view);
w32 calc_hSampl(w32, w32) property(programmers_view);

// -------------------------------------------------------------------------
// ----------------------- preprocessor accelerator ------------------------
// -------------------------------------------------------------------------

// UDP preprocesso implementation
w32 UDP_PEM(w32, w32, t1u, w32);

// programmers_view primitives for the compiler
w32 UDPprocess(addr, w32) property(alternate_store programmers_view);
void UDPclear() property(programmers_view);
void UDPreg(w64, w64) property(programmers_view);

}

#endif // INCLUDED_NOELV_P_CCSDS121_H_

Code A.3: TCA primitives declaration

#ifndef INCLUDED_NOELV_C_CCSDS121_H_
#define INCLUDED_NOELV_C_CCSDS121_H_

// -------------------------------------------------------------------------
// ------------------------------- writeWord -------------------------------
// -------------------------------------------------------------------------

// accelerator
promotion void writeWord(unsigned char *, int) = void writeWord_p(addr, w64);
promotion void reset_writeWord() = void reset_wWord_p();

// load registers
promotion void loadLenData(int) = void ld_lD(w64);

// store registers
promotion unsigned int storeLastWordNewTotBytes(unsigned char *) = w64 st_tBiW_p(addr);
promotion unsigned int storeNewNumBits() = w64 st_nbit_p();

// -------------------------------------------------------------------------
// -------------------------- Jblock accelerator ---------------------------
// -------------------------------------------------------------------------

// load/store
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promotion void ld_k(int) = void ld_k(w64);

// size calculation
promotion void addSizeSampleSplitting(unsigned int*, unsigned int) = void sizeWshift(addr, w32);
promotion void addSizeFundamentalSequence(unsigned int*, unsigned int) = void sizeNOshift(addr,

w32);ñ→
promotion void addSizeHalvedSamples(unsigned int*, unsigned int) = void sizeNOshift(addr, w32);
promotion unsigned int getCalculatedSize() = w64 getSize();

// HalvedSample calculation
promotion unsigned int calculateHalvedSample(unsigned int, unsigned int) = w32 calc_hSampl(w32,

w32);ñ→

// -------------------------------------------------------------------------
// ----------------------- preprocessor accelerator ------------------------
// -------------------------------------------------------------------------

promotion unsigned int UDPprocess(unsigned int*, unsigned int) = w32 UDPprocess(addr, w32);
promotion void UDPclearDelayedStack() = void UDPclear();
promotion void UDPloadRegs(int, int) = void UDPreg(w64, w64);

#endif // INCLUDED_NOELV_C_CCSDS121_H_

Code A.4: Chess compiler header file to use the TCA functions
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/*
-- File : dm.p
--
-- Contents : Definition of the noelv DM IO interface.
-- This IO interfaces merges the aligned access from DMb DMh DMw DMd
--
-- Copyright (c) 2019-2022 Synopsys, Inc. This Synopsys processor model
-- captures an ASIP Designer Design Technique. The model and all associated
-- documentation are proprietary to Synopsys, Inc. and may only be used
-- pursuant to the terms and conditions of a written license agreement with
-- Synopsys, Inc. All other use, reproduction, modification, or distribution
-- of the Synopsys processor model or the associated documentation is
-- strictly prohibited.
*/

#include "noelv_define.h"

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ DM IO Interface
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// One io_interface unit
// 1) merge byte/half/word/double accesses

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Merge byte/half/word/double accesses
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// This IO Interface
// * merges the memory record aliases
// * interfaces to a single-cycle 64b wide memory with byte enables
// * supports only aligned addresses
// * has an external interface with double-word addresses

io_interface dm_merge (DMb) {

// Assumption:
// nml_side {
// mem DMb [SIZE,1]<w08,addr> access {
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// dmb_ld`0`: dmb_rd`1` = DMb[dm_addr`0`]`1`;
// dmb_st`0`: DMb[dm_addr`0`]`0` = dmb_wr`0`;
// };
// mem DMh [SIZE,2]<w16,addr> alias DMb access {
// dmh_ld`0`: dmh_rd`1` = DMh[dm_addr`0`]`1`;
// dmh_st`0`: DMh[dm_addr`0`]`0` = dmh_wr`0`;
// };
// mem DMw [SIZE,4]<w32,addr> alias DMb access {
// dmw_ld`0`: dmw_rd`1` = DMw[dm_addr`0`]`1`;
// dmw_st`0`: DMw[dm_addr`0`]`0` = dmw_wr`0`;
// };
// mem DMd [SIZE,8]<w64,addr> alias DMb access {
// dmd_ld`0`: dmd_rd`1` = DMd[dm_addr`0`]`1`;
// dmd_st`0`: DMd[dm_addr`0`]`0` = dmd_wr`0`;
// };
// }

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ External Interface
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

trn edm_st <uint8_t>; // byte write mask

mem eDM [2**61] <v8u8,addr> access {
edm_ld`0`: edm_rd`1` = eDM[edm_addr_rd`0`]`1`;
edm_st`0`: eDM[edm_addr_wr`0`]`0` = edm_wr`0`;

};

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Accelerator Interface
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// slave input
outport hsel_slv_i <uint1_t>;
outport haddr_slv_i <uint32_t>;
outport hwrite_slv_i <uint1_t>;
outport htrans_slv_i <uint2_t>;
outport hsize_slv_i <uint3_t>;
outport hwdata_slv_i <uint32_t>;
outport hready_slv_i <uint1_t>;

// slave output
inport hready_slv_o <uint1_t>;
inport hresp_slv_o <uint1_t>;
inport hrdata_slv_o <uint32_t>;

// master input
outport hready_mst_i <uint1_t>;
outport hgrant_mst_i <uint1_t>;
outport hrdata_mst_i <uint32_t>;
outport hresp_mst_i <uint1_t>;

// master output
inport haddr_mst_o <uint32_t>;
inport hwrite_mst_o <uint1_t>;
inport htrans_mst_o <uint2_t>;
inport hsize_mst_o <uint3_t>;
inport hlock_mst_o <uint1_t>;
inport hbusreq_mst_o <uint1_t>;
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// back-end memory port for accelerator results writing
inport wrport_addr_acc_o <uint32_t>;
inport wrport_datain_acc_o <uint32_t>;
inport wrport_en_acc_o <uint1_t>;
inport wrport_write_acc_o <uint1_t>;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Local Storage
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

reg col_ff <uint3_t>; hw_init col_ff = 0;

// grant register:
// 0 -> normal operations memory operations and ahb slave communications
// 1 -> ahb master communications
reg grant_reg <uint1_t>;

// ahb slave registers
reg ahb_slv_reg_data <uint32_t>;
reg ahb_slv_reg_rd_ncc <uint1_t>;
reg ahb_slv_reg_data_ph <uint1_t>;

// ahb master registers
reg ahb_mst_reg_rd_ncc <uint1_t>;

hw_init ahb_slv_reg_data = 0;
hw_init ahb_slv_reg_rd_ncc = 0;
hw_init ahb_slv_reg_data_ph = 0;
hw_init grant_reg = 0;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Process response from memory
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

process process_result() {

// dmb_rd, dmh_rd, dmw_rd, dmd_rd
u08 b0 = edm_rd[col_ff]; // 0, 1, 2, ...
// dmh_rd, dmw_rd, dmd_rd
u08 b1 = edm_rd[col_ff[2:1]::"1" ]; // 1, 3, 5, 7
// dmw_rd, dmd_rd
u08 b2 = edm_rd[col_ff[2] ::"10"]; // 2, 6
u08 b3 = edm_rd[col_ff[2] ::"11"]; // 3, 7

//default values of ahb signals
hsel_slv_i = "0";
haddr_slv_i = 0;
hwrite_slv_i = 0;
htrans_slv_i = "00";
hsize_slv_i = "00";
hready_slv_i = 0 ;
hwdata_slv_i = 0;
hready_mst_i = 0;

// ~~~~~~ normal memory op & ahb slave interaction ~~~~~~
if (grant_reg == "0"){
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// data phase
if (ahb_slv_reg_data_ph){

hwdata_slv_i = ahb_slv_reg_data;
hready_slv_i = 1;

}
// address phase
uint1_t st_op = dmd_st | dmw_st | dmh_st | dmb_st;
uint1_t ld_op = dmd_ld | dmw_ld | dmh_ld | dmb_ld;
uint1_t mem_op = ld_op | st_op;
if (hready_slv_o && mem_op && (dm_addr >= ACC_SPACE_START) && (dm_addr <= ACC_SPACE_END)){

hsel_slv_i = "1"; // accelerator selected
haddr_slv_i = dm_addr[31:0]; // address bus
hwrite_slv_i = st_op; // if the memory requested a store the operation is a write
htrans_slv_i = "10"; // "10" means non-sequential transfer
hsize_slv_i = "010"; // "010" means 32 bits transfer
hready_slv_i = 1; // 1 since there are no other slaves that can interrupt the

acceleratorñ→
}

if (ahb_slv_reg_rd_ncc){
if(hready_slv_o){

dmd_rd = (uint64_t) hrdata_slv_o;
dmw_rd = hrdata_slv_o;
dmh_rd = hrdata_slv_o[15:0];
dmb_rd = hrdata_slv_o[7:0];

}
}
else{

dmd_rd = edm_rd[7]::edm_rd[6]::edm_rd[5]::edm_rd[4]::b3::b2::b1::b0;
dmw_rd = b3::b2::b1::b0;
dmh_rd = b1::b0;
dmb_rd = b0;

}
}

// ~~~~~~ ahb master interaction ~~~~~~
else if (grant_reg == "1"){

hready_mst_i = 1;
if(ahb_mst_reg_rd_ncc){

hrdata_mst_i = b3::b2::b1::b0;
}

}

// grant signal passed to ahb master
hgrant_mst_i = grant_reg;

}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Process request from core
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

process process_request() {

uint1_t st_op = dmd_st | dmw_st | dmh_st | dmb_st;
uint1_t ld_op = dmd_ld | dmw_ld | dmh_ld | dmb_ld;
uint1_t mem_op = ld_op | st_op;
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// ~~~~~~ normal memory op & ahb slave interaction ~~~~~~
if(grant_reg == "0"){

// split address
addr row = dm_addr[63:3];
uint3_t col = dm_addr[2:0];

// addr (read or write)
edm_addr_rd = row;
edm_addr_wr = row;

// read enable
edm_ld = ld_op;

// register read info
col_ff = col;

// write enable
uint8_t t1 = "00000000";
if (dmd_st) t1 = "11111111";
else if (dmw_st) t1 = "00001111" << (col[2] ::"00");
else if (dmh_st) t1 = "00000011" << (col[2:1]::"0" );
else if (dmb_st) t1 = "00000001" << (col);
edm_st = t1;

// write data
if (dmd_st) {

edm_wr = dmd_wr;
} else if (dmw_st) {

edm_wr = dmw_wr::dmw_wr;
} else if (dmh_st) {

edm_wr = dmh_wr::dmh_wr::dmh_wr::dmh_wr;
} else if (dmb_st) {

edm_wr = dmb_wr::dmb_wr::dmb_wr::dmb_wr::dmb_wr::dmb_wr::dmb_wr::dmb_wr;
}

// accelerator data phase
uint1_t ahb_op = mem_op && (dm_addr >= ACC_SPACE_START) && (dm_addr < ACC_SPACE_END);
ahb_slv_reg_data_ph = 0;
ahb_slv_reg_rd_ncc = 0;

if (ahb_op){
//deactivate memory
edm_st = "00000000";
edm_ld = 0;
if (hready_slv_o){

// data is stored to be passed to the accelerator next cycle
if (dmd_st) {

ahb_slv_reg_data = dmd_wr[31:0];
} else if (dmw_st) {

ahb_slv_reg_data = dmw_wr;
} else if (dmh_st) {

ahb_slv_reg_data = (uint32_t) dmh_wr;
} else if (dmb_st) {

ahb_slv_reg_data = (uint32_t) dmb_wr;
}
ahb_slv_reg_data_ph = 1; // load ff to write in the next cycle
ahb_slv_reg_rd_ncc = ld_op; // if the operation is a load the result will be loaded the

next cycleñ→

88



LCA model and source code

}
else{

insert_wait_this_cycle();
ahb_slv_reg_data_ph = ahb_slv_reg_data_ph;
ahb_slv_reg_rd_ncc = ahb_slv_reg_rd_ncc;
ahb_slv_reg_data = ahb_slv_reg_data;

}
}

if(hbusreq_mst_o){
if(!mem_op || (mem_op && !hready_slv_o)){

grant_reg = "1";
}

}

}

// ~~~~~~ ahb master interaction ~~~~~~
else if(grant_reg == "1"){

// if the processor request a memory operation a wait must be inserted
if(mem_op){

insert_wait_this_cycle();
if(!hlock_mst_o){

grant_reg = "0";
}

}

// check if the operation is valid
uint1_t ahb_mst_op = (htrans_mst_o == "10") && (hsize_mst_o == "010");

// if the operation is a read, it must start immediatly
edm_ld = !hwrite_mst_o & ahb_mst_op;
edm_addr_rd = haddr_mst_o[31:3];
col_ff = haddr_mst_o[2:0];
ahb_mst_reg_rd_ncc = !hwrite_mst_o & ahb_mst_op;

// if the operation is a store, the second port is used
if(wrport_en_acc_o & wrport_write_acc_o){

edm_wr = wrport_datain_acc_o::wrport_datain_acc_o;
edm_addr_wr = (uint64_t) wrport_addr_acc_o[31:3];
edm_st = "00001111" << (wrport_addr_acc_o[2] ::"00");

}
}

}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ DC Synthesis embedded options
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#ifndef SYNTHESIS_NO_UNGROUP
vlog synthesis_options() {%

// Ungroup this design. It is in the critical path.
%% synopsys dc_tcl_script_begin
%% set_ungroup [current_design]
%% synopsys dc_tcl_script_end

%}
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#endif

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Debug Access
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void dbg_access_DMb(AddressType a, w08& val, bool read) {
addr row = a[61:3];
uint3_t col = a[2:0];

u08 v = val;
dbg_access_eDM(row,col,v,read);
val = v;

}
}

Code B.1: PDG implementation of the memory interface

#include "noelv_define.h"

#define FS_CID_INT 0
#define SE_CID_INT 30
#define ZB_CID_INT 31
#define NC_CID_INT 32

// for mask
class v33_uint32_t property (vector uint32_t [33]);

// for sample splitting register
class v30_uint32_t property (vector uint32_t [30]);

// for LOD
class v15_uint1_t property (vector uint1_t [15]);

// for J register
class v64_uint32_t property (vector uint32_t [64]);

// for H register
class v32_uint32_t property (vector uint32_t [32]);

const v33_uint32_t w32_mask = {
"00000000000000000000000000000000",
"00000000000000000000000000000001",
"00000000000000000000000000000011",
"00000000000000000000000000000111",
"00000000000000000000000000001111",
"00000000000000000000000000011111",
"00000000000000000000000000111111",
"00000000000000000000000001111111",
"00000000000000000000000011111111",
"00000000000000000000000111111111",
"00000000000000000000001111111111",
"00000000000000000000011111111111",
"00000000000000000000111111111111",
"00000000000000000001111111111111",
"00000000000000000011111111111111",
"00000000000000000111111111111111",
"00000000000000001111111111111111",
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"00000000000000011111111111111111",
"00000000000000111111111111111111",
"00000000000001111111111111111111",
"00000000000011111111111111111111",
"00000000000111111111111111111111",
"00000000001111111111111111111111",
"00000000011111111111111111111111",
"00000000111111111111111111111111",
"00000001111111111111111111111111",
"00000011111111111111111111111111",
"00000111111111111111111111111111",
"00001111111111111111111111111111",
"00011111111111111111111111111111",
"00111111111111111111111111111111",
"01111111111111111111111111111111",
"11111111111111111111111111111111"

};

io_interface loose_acc (){

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ External Interface
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// slave input
inport hsel_slv_i <uint1_t>;
inport haddr_slv_i <uint32_t>;
inport hwrite_slv_i <uint1_t>;
inport htrans_slv_i <uint2_t>;
inport hsize_slv_i <uint3_t>;
inport hwdata_slv_i <uint32_t>;
inport hready_slv_i <uint1_t>;

// slave output
outport hready_slv_o <uint1_t>;
outport hresp_slv_o <uint1_t>;
outport hrdata_slv_o <uint32_t>;

// master input
inport hready_mst_i <uint1_t>;
inport hgrant_mst_i <uint1_t>;
inport hrdata_mst_i <uint32_t>;
inport hresp_mst_i <uint1_t>;

// master output
outport haddr_mst_o <uint32_t>;
outport hwrite_mst_o <uint1_t>;
outport htrans_mst_o <uint2_t>;
outport hsize_mst_o <uint3_t>;
outport hlock_mst_o <uint1_t>;
outport hbusreq_mst_o <uint1_t>;

// back-end memory port for accelerator results writing
outport wrport_addr_acc_o <uint32_t>;
outport wrport_datain_acc_o <uint32_t>;
outport wrport_en_acc_o <uint1_t>;
outport wrport_write_acc_o <uint1_t>;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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// ~~~ Local Accelerator Storages
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

reg regJ <v64_uint32_t>;
reg regH <v32_uint32_t>;

// algorithm parameters
reg n_bits <uint6_t>;
reg j_blocksize <uint7_t>;
reg r_samplesInterval <uint13_t>;
reg preprocessor_active <uint1_t>;
reg tot_samples <uint32_t>;
reg samples_address <uint32_t>;
reg cdata_address <uint32_t>;

// counters
reg cnt_smp <uint32_t>;
reg cnt_j_wr <uint7_t>;
reg cnt_j_rd <uint7_t>;
reg cnt_r <uint13_t>;

// preprocessing
reg smp_in <uint32_t>;
reg smp_in_del <uint32_t>;
reg ppsmp <uint32_t>;

// delayed preprocessed sample for H-sample calculation
reg ppsmp_del <uint32_t>;

// size calculation
reg size_se <uint32_t>;
reg size_k <v30_uint32_t>;
trn size_lk <uint32_t>;

// ZeroBlock registers
reg all_0_block_ff <uint1_t>;
reg nZeros <uint6_t>;

// compression technique identification
reg cid_int <uint6_t>;

// memory write registers
reg nbit <uint6_t>;
reg incW <uint32_t>;
reg totB <uint32_t>;
trn smp_to_wr <uint32_t>;
trn cdata_to_wr <uint32_t>;

// SS phase 1 register
reg ss_phase2_ff <uint1_t>;

// execution status ff
reg start_comp_ff <uint1_t>;
reg start_rd_ff <uint1_t>;
reg rd_smp_ff <uint1_t>;
reg pproc_smp_ff <uint1_t>;
reg size_calc_ff <uint1_t>;
reg end_jproc_ff <uint1_t>;
reg wr_cdata_ff <uint1_t>;
reg end_wr_cdata_ff <uint1_t>;
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// auxiliary registers for correct interface timing
reg acc_bsy <uint1_t>;
reg ahb_pipe <uint32_t>;
reg ahb_slv_wr_ncc_ff <uint1_t>;
reg ahb_slv_op_ncc_ff <uint1_t>;

// auxiliary transitories to communicate ahb actions
trn ahb_req_mem <uint1_t>;
trn start_write <uint1_t>;
trn start_read <uint1_t>;
trn locked_idle <uint1_t>;

// initial values for registers
hw_init smp_in_del = 0;
hw_init nbit = 0;
hw_init incW = 0;
hw_init totB = 0;
hw_init nZeros = 0;
hw_init pproc_smp_ff = 0;
hw_init size_calc_ff = 0;
hw_init all_0_block_ff = 1;
hw_init end_jproc_ff = 0;
hw_init wr_cdata_ff = 0;
hw_init ss_phase2_ff = 0;
hw_init cnt_j_wr = 0;
hw_init cnt_j_rd = 0;
hw_init cnt_smp = 0;
hw_init size_se = 0;
hw_init size_k = 0;
hw_init acc_bsy = 0;
hw_init ahb_pipe = 0;
hw_init ahb_slv_wr_ncc_ff = 0;
hw_init ahb_slv_op_ncc_ff = 0;
hw_init start_comp_ff = 0;
hw_init rd_smp_ff = 0;
hw_init start_rd_ff = 0;
hw_init cnt_r = 0;
hw_init end_wr_cdata_ff = 0;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Process response from the accelerator
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

process process_result() {

// default signal values
haddr_mst_o = 0;
hwrite_mst_o = "0";
htrans_mst_o = "00";
hsize_mst_o = "000";
hlock_mst_o = "0";
wrport_addr_acc_o = 0;
wrport_datain_acc_o = 0;
wrport_en_acc_o = "0";
wrport_write_acc_o = "0";

hbusreq_mst_o = ahb_req_mem;

if(start_write){
wrport_addr_acc_o = totB[31:2]::"00" + cdata_address;
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wrport_datain_acc_o = cdata_to_wr;
wrport_en_acc_o = "1";
wrport_write_acc_o = "1";

}

if(start_read){
haddr_mst_o = samples_address + cnt_smp::"00";
htrans_mst_o = "10";
hsize_mst_o = "010";
hlock_mst_o = "1";

}
else if(locked_idle){

hlock_mst_o = "1";
}

if(acc_bsy){
hready_slv_o = 0;

}
else if(ahb_slv_op_ncc_ff && !ahb_slv_wr_ncc_ff){

hready_slv_o = 1;
hresp_slv_o = 0;
switch(ahb_pipe){

case TOTB_ADDR:
hrdata_slv_o = totB;
break;

case SPARE_BITS_ADDR:
hrdata_slv_o = nbit[2:0];
break;

default:
break;

}
}
else{

hready_slv_o = 1;
}

}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Process request from core
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

process process_request() {

ahb_req_mem = 0;
start_read = 0;
start_write = 0;
locked_idle = 0;
uint32_t cdata_to_wr_tmp = 0;

uint6_t j_bs_minus1 = j_blocksize-1;

// ahb memory mapped loosely-coupled accelerator control
ahb_slv_op_ncc_ff = 0;
ahb_pipe = 0;
if ((hsel_slv_i == "1") && (htrans_slv_i == "10") && (hsize_slv_i == "010") && hready_slv_i &&

!acc_bsy){ñ→
ahb_pipe = haddr_slv_i;
ahb_slv_wr_ncc_ff = hwrite_slv_i;
ahb_slv_op_ncc_ff = 1;
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}

if(ahb_slv_op_ncc_ff && ahb_slv_wr_ncc_ff){
switch (ahb_pipe){

// load configuration registers
case NBITS_ADDR:

n_bits = hwdata_slv_i[5:0];
break;

case JSIZE_ADDR:
j_blocksize = hwdata_slv_i[6:0];
break;

case RSINT_ADDR:
r_samplesInterval = hwdata_slv_i[12:0];
break;

case PPACT_ADDR:
preprocessor_active = hwdata_slv_i[0];
break;

case TOT_SMP_ADDR:
tot_samples = hwdata_slv_i;
break;

case SAMPLE_ADDR:
samples_address = hwdata_slv_i;
break;

case CDATA_ADDR:
cdata_address = hwdata_slv_i;
break;

// accelerator operations
case START_COMP_ADDR:

if (hwdata_slv_i == 1){
ahb_req_mem = 1;
start_comp_ff = 1;

}
break;

case RST_ADDR:
if (hwdata_slv_i == 1){

smp_in_del = 0;
totB = 0;
n_bits = 0;
cnt_j_wr = 0;
cnt_j_rd = 0;
cnt_smp = 0;
incW = 0;
size_se = 0;
v30_uint32_t size_k_tmp;
for(int k = 0; k<30; k++){

size_k_tmp[k] = 0;
}
size_k = size_k_tmp;

}
break;

default:
break;

}
}

if(start_comp_ff){
// accelerator becomes busy
acc_bsy = 1;

if(hgrant_mst_i == "1"){
// start a new read and increment the sample counter
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start_read = 1;
cnt_smp += 1;

// process the first read and start the second one
start_rd_ff = 1;
rd_smp_ff = 1;

// reset register
start_comp_ff = 0;

}
else{

// if the bus is not granted keep asking for it
ahb_req_mem = 1;

}
}

if(start_rd_ff && hready_mst_i){

// start a new read and increment the sample counter
start_read = 1;
cnt_smp += 1;

// update registers
rd_smp_ff = 1;
uint6_t reminder;
switch (j_blocksize){

case 8:
reminder = (uint6_t) cnt_smp[2:0];
break;

case 16:
reminder = (uint6_t) cnt_smp[3:0];
break;

case 32:
reminder = (uint6_t) cnt_smp[4:0];
break;

case 64:
reminder = cnt_smp[5:0];
break;

default:
break;

}
if(reminder == j_bs_minus1){

start_rd_ff = 0;
}
else{

start_rd_ff = 1;
}

}

if(rd_smp_ff){
// insert the received sample in the pipe register
smp_in = hrdata_mst_i;
pproc_smp_ff = 1;

// keep the control of the bus with locked idle transmission when read is ended
locked_idle = !start_rd_ff;

// update registers
rd_smp_ff = start_rd_ff;
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}

if(pproc_smp_ff){

// preprocessor section
ppsmp = UDP_PEM(smp_in, smp_in_del, preprocessor_active, w32_mask[n_bits]);
smp_in_del = smp_in;

// proceed to size calculation and start new read
size_calc_ff = 1;

// keep the control of the bus with locked idle transmission when read is ended
locked_idle = !start_rd_ff;

// update registers
pproc_smp_ff = rd_smp_ff;

}

if(size_calc_ff){

// check if pre-processed sample is 0 for zero block
if(ppsmp != 0){

all_0_block_ff = 0;
}

// store the preprocessed sample in J register
wr_Jreg(ppsmp);

// fundamental sequence and sample splitting section
v30_uint32_t size_k_tmp;
for(int k = 0; k<30; k++){

size_k_tmp[k] = size_k[k] + (ppsmp>>k) + k + 1;
}
size_k = size_k_tmp;

// second-extension section

// H sample calculation
uint32_t hsmp = get_hSample(ppsmp, ppsmp_del);
if(cnt_j_wr[0]){

size_se = size_se + hsmp + 1;

//store H sample in H register
wr_Hreg(hsmp);

}

// delayed pre-processed sample
ppsmp_del = ppsmp;

// check if the block has been fully analyzed
if(cnt_j_wr == j_bs_minus1){

cnt_r += 1;
end_jproc_ff = 1;
cnt_j_wr = 0;

}
else{

cnt_j_wr = cnt_j_wr+1;
}
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// keep the control of the bus with locked idle transmission when read is ended
locked_idle = !start_rd_ff;

// update registers
size_calc_ff = pproc_smp_ff;

}

if(end_jproc_ff){

// with dual-port the write is done on separate port, the bus must be hold
locked_idle = 1;

uint6_t cid_int_tmp;
uint6_t cid_nc_tmp;
uint6_t compression_identifier;
uint3_t compression_identifier_size;

if (n_bits < 3){
compression_identifier_size = 1;
cid_nc_tmp = 0x1;

}
else if (n_bits < 5){

compression_identifier_size = 2;
cid_nc_tmp = 0x3;

}
else if (n_bits <= 8){

compression_identifier_size = 3;
cid_nc_tmp = 0x7;

}
else if (n_bits <= 16){

compression_identifier_size = 4;
cid_nc_tmp = 0xF;

}
else{

compression_identifier_size = 5;
cid_nc_tmp = 0x1F;

}

// find leading one
v15_uint1_t diff_signs_vector;
for(int k = 0; k < 15; k++){

uint32_t diff = size_k[2*k] - size_k[2*k+1];
diff_signs_vector[k] = diff[31];

}
uint4_t leading1 = find_leading_1(diff_signs_vector);

// find best sample-splitting (0 == fundamental sequence)
uint5_t candidate1 = (uint5_t) leading1::"0";
uint5_t candidate2 = ((uint5_t) leading1::"0") - 1;
uint5_t candidate3 = candidate2[4:1]::"0";
uint5_t index_smallest;
if(leading1 == 0){

index_smallest = 0;
}
else if((size_k[candidate3] <= size_k[candidate2]) && (size_k[candidate3] <=

size_k[candidate1])){ñ→
index_smallest = candidate3;

}
else if(size_k[candidate2] <= size_k[candidate1]){

index_smallest = candidate2;
}
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else{
index_smallest = candidate1;

}
uint5_t index_size_lk = (index_smallest <= n_bits-3) ? index_smallest : n_bits-3;
size_lk = size_k[index_size_lk];

// no copression size
uint32_t size_nc = j_blocksize * n_bits;

// find best compression method
if(all_0_block_ff){

// for ZB J and H mem are not needed
// if not ended samples start a new read
start_rd_ff = (cnt_smp != tot_samples);

cid_int_tmp = ZB_CID_INT;
compression_identifier = 0;

}
else if (size_nc <= size_se && size_nc <= size_lk){

// writing has same timing than reading, since writing starts earlier
// there is no risk of loosing data not yet compressed
start_rd_ff = (cnt_smp != tot_samples);

nZeros = 0;
cid_int_tmp = NC_CID_INT;
compression_identifier = cid_nc_tmp;

}
else if(size_se < size_nc && size_se <= size_lk){

// writing has same timing than reading, since writing starts earlier
// there is no risk of loosing data not yet compressed
start_rd_ff = (cnt_smp != tot_samples);

nZeros = 0;
cid_int_tmp = SE_CID_INT;
compression_identifier = 1;

}
else{

// if FS start reading, if SS wait to finish phase 1
start_rd_ff = (index_size_lk == FS_CID_INT) && (cnt_smp != tot_samples);

nZeros = 0;
cid_int_tmp = index_size_lk;
compression_identifier = index_size_lk+1;

}

cid_int = cid_int_tmp;

// If the selected technique is ZB or the SE, the compression_identifier_size is +1
if(cid_int_tmp == ZB_CID_INT || cid_int_tmp == SE_CID_INT){

compression_identifier_size += 1;
}

// write compression identifier in memory
uint32_t tmp_cdata = getWordToWrite(compression_identifier, compression_identifier_size);
cdata_to_wr_tmp = change_endian(tmp_cdata);
start_write = 1;

// start compressed samples writing process
wr_cdata_ff = 1;
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// if a R-interval has been analyzed, reset the predictor
if(cnt_r == r_samplesInterval){

cnt_r = 0;
smp_in_del = 0;

}

// reset registers
all_0_block_ff = 1;
end_jproc_ff = 0;
size_se = 0;
v30_uint32_t size_k_tmp;
for(int k = 0; k<30; k++){

size_k_tmp[k] = 0;
}
size_k = size_k_tmp;

}

if(wr_cdata_ff){

// with dual-port the write is done on separate port, the bus must be hold
// ininfluent if the new reading has started
locked_idle = 1;

uint32_t tmp_cdata;

// zero block
if(cid_int == ZB_CID_INT){

tmp_cdata = get_fs_word(nZeros);

nZeros += 1;

// end write procedure
end_wr_cdata_ff = (cnt_smp == tot_samples);

// reset status ff and counters
wr_cdata_ff = 0;
cnt_j_rd = 0;

}

// second extension
else if(cid_int == SE_CID_INT){

smp_to_wr = rd_Hreg();
if(!size_calc_ff){

wr_Hreg(0);
}
tmp_cdata = getWordToWrite(smp_to_wr, 32);
if(cnt_j_rd == ("00"::j_blocksize[5:1])-1){

// end write procedure
end_wr_cdata_ff = (cnt_smp == tot_samples);

// reset status ff and counters
wr_cdata_ff = 0;
cnt_j_rd = 0;

}
else{

cnt_j_rd = cnt_j_rd+1;
}

}

// no compression
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else if(cid_int == NC_CID_INT){
smp_to_wr = rd_Jreg();
if(!size_calc_ff){

wr_Jreg(0);
}
tmp_cdata = getWordToWrite(smp_to_wr, n_bits);
if(cnt_j_rd == j_bs_minus1){

// end write procedure
end_wr_cdata_ff = (cnt_smp == tot_samples);

// reset status ff and counters
wr_cdata_ff = 0;
cnt_j_rd = 0;

}
else{

cnt_j_rd = cnt_j_rd+1;
}

}

// fundamental sequence
else if(cid_int == FS_CID_INT){

smp_to_wr = rd_Jreg();

tmp_cdata = get_fs_word(smp_to_wr);
if(cnt_j_rd == j_bs_minus1){

// end write procedure
end_wr_cdata_ff = (cnt_smp == tot_samples);

// reset status ff and counters
wr_cdata_ff = 0;
cnt_j_rd = 0;

}
else{

if(!size_calc_ff){
wr_Jreg(0);

}
cnt_j_rd = cnt_j_rd+1;

}
}

// sample splitting
else{

smp_to_wr = rd_Jreg();
uint32_t shifted_smp = smp_to_wr >> cid_int;
if(!ss_phase2_ff){

tmp_cdata = get_fs_word(shifted_smp);
}
else{

tmp_cdata = getWordToWrite(smp_to_wr, cid_int);
}
if(cnt_j_rd == j_bs_minus1){

if(!ss_phase2_ff){

cnt_j_rd = 0;
// start phase 2 of sample splitting writing
wr_Jreg(smp_to_wr);
ss_phase2_ff = 1;

// here also new reading can start
// writing has same timing than reading, since writing starts
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// earlier there is no risk of loosing data not yet compressed
start_rd_ff = (cnt_smp != tot_samples);

}
else{

// end write procedure
end_wr_cdata_ff = (cnt_smp == tot_samples);

// reset status ff and counters
cnt_j_rd = 0;
ss_phase2_ff = 0;
wr_cdata_ff = 0;

}
}
else{

if(!size_calc_ff){
wr_Jreg(smp_to_wr);

}
cnt_j_rd = cnt_j_rd+1;

}
}

// start the next writing in the memory
cdata_to_wr_tmp = change_endian(tmp_cdata);
start_write = 1;

}

if(end_wr_cdata_ff){
// this also works as the recommended
// idle cycle after end of locked transmission

// write the remaining incW content in memory and update totB
cdata_to_wr_tmp = change_endian(incW);
start_write = 1;
totB += nbit[5:3];

// signals the end of the processing
acc_bsy = 0;

// reset register
end_wr_cdata_ff = 0;

}

cdata_to_wr = cdata_to_wr_tmp;
//wr_ncc_ff = start_write;

}

void wr_Jreg(uint32_t smp_to_write){
v64_uint32_t regJ_tmp;
regJ_tmp[0] = smp_to_write;
for(int i = 0; i < 63; i++){

regJ_tmp[i+1] = regJ[i];
}
regJ = regJ_tmp;

}

uint32_t rd_Jreg(){
uint32_t j_out;
switch(j_blocksize){
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case 8:
j_out = regJ[7];
break;

case 16:
j_out = regJ[15];
break;

case 32:
j_out = regJ[31];
break;

case 64:
j_out = regJ[63];
break;

}
return j_out;

}

void wr_Hreg(uint32_t smp_to_write){
v32_uint32_t regH_tmp;
regH_tmp[0] = smp_to_write;
for(int i = 0; i < 31; i++){

regH_tmp[i+1] = regH[i];
}
regH = regH_tmp;

}

uint32_t rd_Hreg(){
uint32_t h_out;
switch(j_blocksize){

case 8:
h_out = regH[3];
break;

case 16:
h_out = regH[7];
break;

case 32:
h_out = regH[15];
break;

case 64:
h_out = regH[31];
break;

}
return h_out;

}

uint32_t UDP_PEM(int32_t new_sample, int32_t PredictedValue, uint1_t preprocessor_active,
uint32_t x_max){ñ→

if(preprocessor_active){
int32_t PredictionError = new_sample - PredictedValue;
int32_t difference = x_max - PredictedValue;
int32_t theta = (PredictedValue < difference) ? PredictedValue : difference;
int32_t PredictionErrorAbs = (PredictionError > 0) ? PredictionError : -PredictionError;
int32_t PreprocessedSample;

if(0 <= PredictionError && PredictionError <= theta)
{

PreprocessedSample = 2*PredictionError;
}
else if(-theta <= PredictionError && PredictionError < 0)
{

PreprocessedSample = 2*PredictionErrorAbs -1;
}
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else{
PreprocessedSample = theta + PredictionErrorAbs;

}

return PreprocessedSample;
}
return new_sample;

}

uint32_t get_hSample(uint32_t sample1, uint32_t sample2){
return (uint32_t) ( ((sample1 + sample2) * (sample1 + sample2 + 1)) >> 1) + sample2;

}

uint32_t get_fs_word(uint32_t data_length){
uint32_t word_to_write;

uint32_t new_val_bits_minus1 = nbit + data_length;

uint27_t n_words = new_val_bits_minus1[31:5];
if(n_words == 0){

uint6_t n_zeros = "0"::data_length[4:0];
word_to_write = getWordToWrite(1, n_zeros+1);

}
else{

word_to_write = incW;
totB += n_words::"00";

uint8_t new_nbit = "0"::new_val_bits_minus1[4:0] + 1;

incW = (uint32_t) 0x80000000 >> new_val_bits_minus1[4:0];
nbit = new_nbit;

}
return word_to_write;

}

uint4_t find_leading_1(v15_uint1_t diff_signs_vector){
uint4_t l1 = 14;
uint1_t found = 0;
for(uint4_t i = 0; i < 15; i++){

if(diff_signs_vector[i] && !found){
l1 = i;
found = 1;

}
}
return l1;

}

uint32_t getWordToWrite(uint32_t data_i, uint6_t data_length){
uint64_t buffer = incW::(uint32_t)0;
uint32_t data = data_i & w32_mask[data_length];
uint8_t bits_in_buffer = (uint8_t) nbit + (uint8_t) data_length;

buffer |= (uint64_t) (((uint64_t) data) << (64 - bits_in_buffer));

if (bits_in_buffer < 32){
incW = buffer[63:32];
nbit = (uint5_t) bits_in_buffer;

}
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else{
incW = buffer[31:0];
nbit = bits_in_buffer - 32;
totB = totB + 4;

}
return buffer[63:32];

}

uint32_t change_endian(uint32_t a){
return a[7:0]::a[15:8]::a[23:16]::a[31:24];

}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~ Debug Access
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void dbg_access_LCA(AddressType a, w08& val, bool read) {
// not implemented

}
}

Code B.2: PDG implementation of LCA
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