
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

A Web-Based Mobile Platform for
Continuous Monitoring and Assessment

of Classroom Comfort

Supervisors
Prof. Antonio Servetti

Candidate
Longsheng Zhao

Academic Year 2024-2025



Acknowledgements

The candidate would like to express his sincerest gratitude to:

His family, for keeping patience through all the occurrences during the procedure.

His supervisor, for being the assisting force when facing obstacles.

And all those who have been around.

2



Abstract

In modern societies, Indoor Environmental Quality (IEQ) has been proved to be a
significant index for classrooms and workplaces, as it indicates quantities that directly
relate to comfort and efficiency. A user interface with higher readability and accessibility
can play a significant role throughout the feedback loop for such a platform.

PROMET&O is a multi-sensor system that excels in monitoring IEQ data that are
strongly connected to human comfort in a crowded open environment (e.g. classroom)
and processing the feedback from users.

During this thesis, works have been put into the development of a user-friendly in-
terface on mobile devices; through it, the system can include an effective and efficient
procedure for users to view data streams transmitted from the system, provide feedback,
and maintain a profile on mobile devices such as phones and tablets.

The thesis also explores the possibilities of introducing a more explicit network struc-
ture to the platform by utilizing Apache APISIX® for improved maintainability, with its
features that provide easily configurable routes for API calls and a library of plugins; it
can prove itself to be a viable upgrade for the system.



Contents

1 Introduction 5

I Reassuring responsiveness: a development of user interface for
PROMET&O on mobile devices 7

2 Background 9
2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Visual hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Useful features from CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 SASS: a CSS pre-processor . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Typical user interfaces on mobile devices . . . . . . . . . . . . . . . . . . . 11
2.6 Determination of the device type . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Utilizing dynamic importing in React.js . . . . . . . . . . . . . . . . . . . 13
2.8 Differentiating display modes . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Avoiding overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 "Immutable" content and maintainability . . . . . . . . . . . . . . . . . . . 15

3 Homepage 17
3.1 Welcome page for anonymous users . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Login and homepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 IEQ questionnaire 21
4.1 Overall Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Classification of Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Thermal comfort questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Acoustic comfort questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Visual comfort questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Air quality questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Notification on completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Profile page 41
5.1 Profile page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Showcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



5.1.2 Style sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Personal questionnaire 45
6.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 An inspection in detail into the style sheets . . . . . . . . . . . . . . . . . 49

6.3.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.2 Main container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.3 Question rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.4 Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Dashboard 57
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Dividing the devices . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.2 The display of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.3 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Gauge view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.1 Notification on scrolling . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Off-canvas sidebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Graph display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Graph comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5.1 The initial view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5.2 The filter sidebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5.3 Graph comparison view . . . . . . . . . . . . . . . . . . . . . . . . 75

II Reorganizing the back-end: integrating Apache APISIX® 77

8 Background 79
8.1 A parallel in real life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 API gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 Apache APISIX® . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3 Current state of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 The new architecture 85
9.1 An overview on the new architecture . . . . . . . . . . . . . . . . . . . . . 85
9.2 Integrating the API gateway . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 The authentication service . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.4 The Grafana routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 Centralizing the authentication service 95
10.1 Introducing realms in Keycloak . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 The indented workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.3 The login flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3.1 GET /auth/login . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3



10.3.2 GET /auth/login/callback . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.3 GET /userInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.4 The logout flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Review on the new architecture 107
11.1 The objectives achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.2 Limits and reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.3 A perception to further development . . . . . . . . . . . . . . . . . . . . . 111

12 Conclusion 113

13 Appendices 115
13.1 List of the SASS items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 119

4



Chapter 1

Introduction

In modern societies, Indoor Environmental Quality (IEQ) has been shown to be a signif-
icant index for classrooms and workplaces, as it indicates quantities that directly relate
to comfort and efficiency. A user interface with higher readability and accessibility can
play a significant role throughout the feedback loop for such a platform, as it has the
potential to help the user accurately express their feelings and needs.

PROMET&O is a Internet of Things (IoT) system with the purpose of assessing the
quality of the indoor environment. It consists of both hardware and software parts; the
former includes a series of sensors on perimeter that are able to collect environmental
data such as room temperature, humidity, noise level, and others from their surroundings
and periodically upload records to a database, and the latter part consists of a front-end
web application in charge of user experience and back-end for data exchange. The front-
end, acting as the portal for users through a web browser, will display relevant data on
a Single-Page Web Application, and the user will be able to provide feedback messages
back to the system.

Since its first edition, which is based on a serverless solution and relies on multiple
external web services, PROMET&O has been benefiting from multiple updates that came
afterward. Looking back at its path of evolution, it now has a solid construction includ-
ing a relational database using MySQL, a middle-ware that serves as a reverse proxy
utilizing Keycloak for user authentications, and a front-end user interface designed and
implemented using React.JS. It has gained more independence in data storage, higher
security, and user management functionality with less operating expense. All the previ-
ous works have laid a solid foundation for the effort that is being demonstrated in later
chapters.

To further experiment on possible solutions, and take a step forward on the user-
experience aspect of this project, the author is honored to take this opportunity and
make several modifications on the software system, specifically web development part, to
achieve a more user-friendly and more functional product in the end.

In the first part of the thesis "Reassuring responsiveness: a development of user
interface for PROMET&O on mobile devices", the candidate will experiment on a various

5



Introduction

of alternative solutions and different sets on configurations, in attempt to design and
implement a brand new user interface for displaying and analyzing data, providing user
feedback and maintaining user profiles.

In the second part of the thesis "Reorganizing the back-end: integrating Apache
APISIX®", the candidate will experiment on improving the network architecture of
PROMET&O by integrating Apache APISIX® as an API gateway, in pursuit for a more
light-weight and flexible structure. Moreover, the Apache APISIX® has the possibility of
introducing brand new features that will benefit the current system in numerous aspects,
such as efficiency and security.

6



Part I

Reassuring responsiveness: a
development of user interface for
PROMET&O on mobile devices

7





Chapter 2

Background

2.1 Motivations
The front-end of the project, which is designed and implemented during previous work,
has been overall stable in terms of performance and user interface/user experience aspects.
However, it is necessary to point out its lack of adequate responsiveness.

After switching the context from workplaces to classrooms, PROMET&O has majority
of its user base on mobile devices such as mobile phones and tablets. With such devices,
operators should be able to collect environmental data from the dashboard, and regular
users can express their personal experiences according to their own perspectives efficiently.

The inadequacy of responsiveness means sacrificing functionality and efficiency dur-
ing user interactions, which could potentially introduce biases into user feedback. For
example, when a user feels exhausted during the interaction, that user may provide more
negative feedback. Biases like this are obviously not in the favor of inspectors. For this
reason, the candidate recognizes the necessity of a rework towards the layout.

2.2 Visual hierarchy
In terms of user interface design, visual hierarchy is a key aspect worth highlighting.

Visual hierarchy, according to Gestalt psychology, is a pattern in the visual field
wherein some elements tend to "stand out," or attract attention, more strongly than
other elements, suggesting a hierarchy of importance. [5]

There are several ways to form visual hierarchy during design, namely:

• Color

– Contrasting colors could lead users to identity and in turn focus on specific
parts on the interface.

• Size

– Like color, contrasting sizes can also guide users to identity and classify infor-
mation.

9



Background

• Alignment

– Alignment is the basis of layout, it helps users to quickly find the order of the
information.

• Character

– Different shapes can help building a hierarchy of information, providing that
complex shapes tend to attract more attention from the user.

Ensuring the visual hierarchy inside user interface is an important mission during
the front-end design and one of the candidate’s most focused part, since the user in-
terface of PROMET&O has a significant requirement on efficiency: to the operators,
direct and clear data display should be the priority, while to users it should be friendly
and time-saving to ensure minimum impact on user biases. the candidate constructs
such a hierarchy by using available methods and functions native to CSS and front-end
frameworks (namely React.JS and Bootstrap).

2.3 Useful features from CSS
CSS, or Cascading Style Sheets, is a style sheet language used for describing the presen-
tation of a document written in a markup language like HTML. CSS is a cornerstone
technology of the World Wide Web, alongside HTML and JavaScript. [4]

CSS has a wide range of features that can be used to enhance the user interface of a
web application. One of such features is the vw and vh. These units are relative to the
size of the view, which is the visible portion of a web page. The vw is equal to 1% of the
width of the view, while the vh is equal to 1% of the height of the view. These units are
useful as they allow the developer to create layouts that adapt to the size of the view.

Also, em and rem are also useful in CSS. The em is relative to the font size of the
element, while the rem unit is relative to the font size of the root element. They allow
the developer to create scalable text that adapts to the size of the view.

Moreover, @media is a feature of CSS that allows the developer to apply different
styles based on different conditions, such as the size of the view or the orientation of the
device. This feature enables the developer to create layouts that adapt to the size and
orientation of the view.

Those are merely a fraction of the features that CSS provides.With those features,
the candidate has been able to create a responsive and efficient user interface that meets
the requirements of the project.

2.4 SASS: a CSS pre-processor
SASS(short for syntactically awesome style sheets) is a CSS preprocessor that grants
developers the access to more flexible and maintainable style sheets on their web applica-
tions. SASS supports custom variables, nested rules, and functions. Those are commonly
used features that provide a more efficient way to write style sheets. Its compatibility to

10



2.5 – Typical user interfaces on mobile devices

native CSS syntax significantly eased the learning curve. React.js has native support for
SASS format thus decreasing the complexity of the integration.

In the development on the new front-end, the candidate has been trying to embrace
this new format, as it truly presents a balance between readability and efficiency without
impacting the current technology stack.

For example, the following is a pair of functions that are constantly used throughout
the development:

// Define the default font size
$default-size-font: 16

// Returns the relative font size based on the default font size
@function getRelativeFontSize($num)

@return calc($num / $default-size-font)

// Returns the relative font size for landscape orientation
@function getRelativeLandFontSize($num)

@return clamp(#{$num}px, #{getRelativeFontSize($num)}em, #{$num * 2}px)

The first is a declaration and definition of a SASS variable value, it sets the default
font size to 16px.

The function right below returns the relative font size based on the default font size,
basically transforms the value into em value. This is to adapt to the high-level prototype
of the user interface designed by external staff where all the values are defined using
pixels.

The second function uses clamp to define a vague range of font size that is being used
under landscape mode. This can help to ensure the proper display of font sizes.

As shown above, the SASS is presented an efficient and effective tool for the develop-
ment of the new front-end.

2.5 Typical user interfaces on mobile devices
The most common cases of a user interface on mobile devices consist of a screen with a
9:16 resolution aspect on "portrait" mode, and a 16:9 aspect on "landscape" mode which
is similar to a regular PC monitor.

A regular user, specifically a participant of the survey, is typically using the "portrait"
mode. In our user story, a user gets to the survey form by scanning a QR code attached
to a classroom, users tend to use portrait mode to do so.

As for operators, that may not always be the case – in fact, operators or inspectors
have multiple contexts that vary from sitting before a desk to being on the move. In this
case, the display mode is unpredictable – but since the user interface in landscape mode
(on PC monitors) is already finished and tested before our work here, the candidate can
focus on the design of portrait mode.

One aspect that may not always be visible to the user is that, the user interface is
almost entirely designed to be adapting to different resolutions. Despite applying to the
two-mode display, the resolutions of different devices are almost all nonidentical to each

11



Background

other. Indeed, the actual resolution of a mobile device is a result of multiple factors
including screen size, frame design, configuration and others. With this in mind, the
candidate chooses the margin sizes, font size and other values in units adapting to the
current view in pursuit of a higher level of responsiveness across different devices.

2.6 Determination of the device type
The process of determining the type of device is surprisingly not very straightforward, as
nowadays mobile and desktop devices are becoming more and more similar to each other;
one may find mobile devices being simply smaller in terms of screen size and that is all
the difference one can name. The narrowing gap between those two types has made the
determination not so reliable at first glance.

However, in logic, the size of the device is directly connected to the size of the screen,
which can be the sole reason why we are engaging the development in the first place. After
this realization, the candidate can safely say that differentiating devices solely based on
their screen size is a reliable method. Such example can be found in our project.

@media(min-height: 901px) {
#prometeoSmallLogo {

display: none;
}

}

It shows where we need to enforce certain properties based on the height of the view,
a more detailed explanation on a similar example can be found in the snippet 2.8.

Another feasible method can be by processing the user agent. The user agent is a
string that can be fetched from browsers representing various aspects about the user
context, such as the operating system and browser that the user is currently using. One
disadvantage is that it is not secured as it can be modified at ease, but since the user
interface has very limited functionality regarding security, it can be a worthy trade.

One particular issue is that, the project have a dedicated type of device for specific
use cases, which will be used by specific staff members. And the project has an original
version of user interface specifically optimized for that usage, so naturally the candidate
has no intention altering the user experiences on that device.

After evaluating all alternative methods, the candidate has made the decision to
simply use a single line in vanilla JavaScript to determine the device type. It is not
in any case a perfect solution but a trade-off between maintainability, reliability and
efficiency. The line of code is shown below:

if (/Android|iPhone|iPad/i.test(navigator.userAgent) &&
!/SM-X200/i.test(navigator.userAgent)) {↪→

document.body.classList.add("mobile-view");
}

The JavaScript line is tagging a specific class name to the class list of body. Since the
front-end is a Single-Page Application, the body will maintain the class list throughout

12



2.7 – Utilizing dynamic importing in React.js

the whole life cycle of the application, regardless of the navigating happening across
views. This makes a simple way to allow the style sheet to identify the correct condition
to apply corresponding style sheets.

2.7 Utilizing dynamic importing in React.js
The React.js framework supports conditional importing, which is a feature that enables
more flexible import of resources based on current context or state. This feature is
particularly helpful in the case as it can save computing resources by only importing
certain style sheets (SASS files in our case) after the user interface has determined the
device type, rather than importing useless style sheets when desktop users never need.
The following code snippet illustrates the only usage of such feature in the project.

useEffect(() => {
if (isDesktop) {

import("./CSS/Hello_A8.css");
import("./CSS/PrivacyNotice.css");
import("./CSS/Thanks.css");
import("./CSS/App.css");
import("./CSS/SurveyJS_A8.css");
import("./CSS/dashboard.css");
import("./CSS/Profile.css");

} else {
import("./CSS/sass/App.sass");

}
}, []);

In this case, the corresponding style sheets are imported based on the device the user
is using (e.g., user agent). Such feature also helps the future maintenance.

2.8 Differentiating display modes
In the previous section, the candidate has discussed the determination of the device type.
However, the question still remains as the display mode also needs evaluation.

The most common display modes are "portrait" and "landscape", and the most distinct
way of telling which one the user is using is by inspecting the width and height of the
view, in other words, the aspect ratio. The aspect ratio is calculated by dividing the
width of the view by the height of the view. If the aspect ratio is greater than 1, then
the user is using the landscape mode, otherwise the portrait mode.

Vanilla CSS already has the feature of @media, which can be used to apply different
styles based on different conditions. Naturally, @media is supported by SASS as well, and
is the main method used by the candidate to apply different style sheets based on display
modes.

@media screen and (max-aspect-ratio: 1/1)
.row-nav p

13



Background

padding-top: getRelativeHeight(20)
padding-bottom: getRelativeHeight(20)
margin: 0

The lines shown above set the padding and margin of the navigation bar based on
the aspect ratio of the view. max-aspect-ratio is a feature of @media that can be used
to set the maximum aspect ratio.

In this thesis, the candidate will highlight the situations where significant differences
exist between the results under portrait and landscape mode, and how the candidate
handles them. Normally, the candidate will demonstrate only the snippet applied to
portrait mode, as it is the main design focus during the development.

2.9 Avoiding overflow
Overflow, being a very commonly found "feature" that can be found in almost every web
or not web application, is a situation where the content of a container exceeds the size
of the container itself. The default behavior for handling the issue by common browsers
is by making the user scroll to look for hidden content. In the candidate’s point of view,
overflow is troublesome in terms of both aesthetics and user experience.

The problem of overflow is not only about the aesthetics of the user interface, but
also about the experience; taking an example where users slide from one side to another,
they will either get frustrated along the way, or only to find out there are merely things
that they imagined to be there in the first place, or what’s worse, nothing.

The worst overflow occurs when it reveals nothing valuable in the end. Those situa-
tions are typically due to improper padding, margin value, or lack of suitable implemen-
tation in the style sheets. In any case, overflow is not a desirable outcome, and getting
rid of it has been a mission for the candidate throughout development. A typical example
of preventing overflow could be a simple line like:

.some-random-class {
width: 95vw;

}

By limiting the maximum width of .container, this line tries to prevent possible
overflow within this container when it attempts to adapt to its content. Sometimes,
content exceeds the container anyway; indeed, if the component is able to overflow even
the screen size, surely a mere "container" will not contain it. In conclusion, the candidate
understands that he needs to be careful when overruling the layout, and to be constantly
aware of the content size.

However, in numerous situations overflow is inevitable, or is a result of trade-off for
something of higher priority. In those cases, the candidate will try to at least erase the
scroll bar and use other components to indicate users that there could be something
hiding for aesthetic reasons.

14



2.10 – "Immutable" content and maintainability

2.10 "Immutable" content and maintainability
As the candidate introduced in the chapter 1, PROMET&O did not start in the hand
of the candidate. Out of the trust and respect to previous developers, the candidate has
been trying to keep the original content as much as possible. The reasons are mainly:

• The original content has been tested and proven to be functional.

• The candidate is not an expert on visual designs and questionnaire designs, so he
will not try to undermine the work of more experienced person who came before.

In this section, the candidate will borrow the concept of "immutability" from the
programming world to refer to a higher "resistance" to changes than amendments, or
a mindset that can be constituted into a phrase "make modifications only when it is
absolutely necessary", or a more commonly saying "if it works, do not fix it."

Despite the subjective argue given previously, a more objective reason is, some of the
static resources, especially from SurveyJS, are previously compiled and generated before
the user interface development. This also provides an explanation to the fact that, the
main workload throughout the development of the candidate is making modifications on
style sheets rather than the content or components themselves.

Also, decoupling and separating different generations of user interface design is eventu-
ally beneficial to the candidates afterwards by providing higher maintainability. Dynamic
importing the style sheets allows other candidates to easily add or remove style sheets
without touching the previous iteration, benefiting the testing.

On the other hand, there are situations where a modification on source code could
save a remarkable amount of resources, or the code itself needs revision. Under those
circumstances, the candidate will not hesitate to make necessary changes.

15



16



Chapter 3

Homepage

3.1 Welcome page for anonymous users
Upon accessing the domain without a cookie, the user is welcomed by the view for anony-
mous users. The default language is in English, the user can change the language setting
by tapping the language option on top of the screen.

The main focus is the logo text which is rendered in a different font family than other
text among the view. Aside from aesthetic reasons, the title also stands in between two
other major parts of this view, namely the navigation bar and the interactive area, in
order to help the user differentiate from each other.

(a) English welcome page (b) Italian welcome page

17



Homepage

As previously stated, the user interface is designed with respect to the actual view size
of the user’s device, so all the views will adapt to various screen sizes. For convenience of
demonstration, every view under landscape mode or on another device will not be shown.

Figure 3.2: welcome page under landscape mode

On the top there is a navigation header, it serves the purpose of helping users to log
in and change the current language. The interface uses an underlined style on the "Login"
button to highlight it, as it is the most important functionality of this view nonetheless.

Figure 3.3: Privacy dialogue modal

18



3.2 – Login and homepage

A button for information on privacy is located on the bottom, once clicked it will
communicate our principles of handling sensitive data to the user. The candidate used
the following SASS code to prevent the dialog modal from overflowing to the external
view.

body.mobile-view
.modal-content

max-height: 90vh
max-width: 100vw
overflow: hidden

3.2 Login and homepage
If the user possesses an account or needs to sign up, he can tap on the button. From
there, the client will send a request to the authentication service to perform inspection
on cookies and credentials. If the user does not possess any necessary information, the
authentication process is now handed to the authentication service through a form.

If the user succeeds in logging into the system, they will be redirected back to the
home page. The view now displays two buttons that indicate users they are about to
have a choice of whether to participate in a feedback process or go to the personal profile
page.

Figure 3.4: Login page Figure 3.5: Logged page

19



20



Chapter 4

IEQ questionnaire

4.1 Overall Comfort
In order to capture the most direct and authentic feeling, the user is asked to first provide
an overall rating about the room comfort.

Figure 4.1: Overall feedback Figure 4.2: Overall feedback (picked)

The "HOME" button on the top right corner is the single point for navigation through-
out the whole questionnaire. Users can tap on it to go back to the homepage, or to the
profile page if they are logged in. The style sheets for the button are shown below:

21



IEQ questionnaire

#container-survey #button-home
text-align: end
font-size: getRelativeFontSize(16) + em
padding-top: getRelativeHeight(16)
padding-right: getRelativeHeight(16)
text-decoration: underline

In the application, the candidate will present several different style of navigation
buttons, in adapting to external requirements and high-fidelity prototype, meanwhile
maintaining the user experience.

Due to restriction of Single-Page Application and SurveyJS, the user cannot have the
option to go back and forth during the questionnaire, it can sometimes cause confusion.
The candidate is fully aware about this.

The main content of the view is obviously the image picker, manipulating them is not
always easy to achieve. The original plan was to pursuit the most responsive behavior:
the image should be centered and scaled to fit the view, based on the view width the
image should be displayed either in a single line, or a two-by-two layout. However, the
candidate found that the image picker provided by SurveyJS is not as flexible as expected.
After considering the balance between comprehensiveness and feasibility, the candidate
decided to use the uniformed two-by-two layout for the image picker.

@media screen and (max-aspect-ratio: 1/1)
#container-survey [id^="surveyModel"] .sv-question__content > .

sv-selectbase:has(.sv-imagepicker__item)↪→

display: grid
justify-content: center
grid-template-columns: repeat(2, 1fr) // Two columns of equal width
max-width: fit-content

The significant part should be the grid-template-columns: repeat(2, 1fr) line,
it enforces the said layout. The max-width: fit-content is used to prevent the image
picker from overflowing to the external view.

Under landscape mode, the candidate has made the decision to take the advantage of
the extended width from the mode. The image picker will be displayed in a single line,
as shown below:

22



4.1 – Overall Comfort

Figure 4.3: Overall feedback (landscape)

This is achieved by removing the grid-template-columns: repeat(2, 1fr) from
the style sheets from portrait mode, thus reverting back to the default behavior of
display value. Also, notice the display here has been changed to flex.

@media screen and (min-aspect-ratio: 1/1)
#container-survey [id^="surveyModel"] .sv-question__content >

.sv-selectbase:has(.sv-imagepicker__item)↪→

display: flex
justify-content: center
max-width: fit-content

And it is required to adapt the size and scale of the button to fit this new layout.

@media screen and (min-aspect-ratio: 1/1)
#container-survey [id^="surveyModel"] .sv-action > .sv-action__content >

.sv-btn↪→

text-align: center
height: clamp(25px, getRelativeHeight(90), 50px)
width: clamp(25vw, getRelativeWidth(130), 50vw)

Here the candidate uses the clamp function to set a upper, optimal, and lower bound
for the button size. clamp will prove itself very useful throughout this whole project.

The comparison between the portrait and landscape mode has been one of the major
topic during the development of this project. By default, the user interface is designed
with respect to portrait mode, and the landscape mode is considered as an extension of
the portrait mode. But there could be situations where major differences happen, the
candidate will hight light those differences when it is necessary.

Another interesting component of this view is actually the PROMET&O logo under-
neath the main content; under portrait mode, its relevant style sheets are shown below:

#prometeoLogo {
position: fixed; // Fixed at the bottom of the view

23



IEQ questionnaire

bottom: 1vh; // 1% of view height higher than the bottom
width: 100%; // Takes the full width of the container (body)
text-align: center;
pointer-events: none;
z-index: -1;

}

#prometeoLogo p {
margin-bottom: 0;

}

But under landscape mode, the logo will adjust itself to the right corner of the view,
avoiding it being overshadowed by the main content, specifically the button. This is a
hard requirement from external.

As shown above, the logo is fixed at bottom of the view with one percent of view
height higher than the bottom. The pointer-events is set to none to prevent the logo
from being clicked, z-index is set to -1 to ensure the logo is always behind the main
content. Also, in order to precisely control the margin of the paragraph, the candidate
has set the margin-bottom to zero.

@media screen and (min-aspect-ratio: 1/1)
#container-survey + #prometeoLogo

text-align: end
right: 1vw

By using the plus sign + in the selector, the CSS selector will only choose the logo
that is accompanied by the #container-survey, which is the main content of the view.
The text-align: end will align the text to the right, and the right: 1vw will set the
logo to one percent of the view width from the right side of the view.

Throughout the questionnaire, if the user did not fill in any mandatory field, they
will be notified by built-in notification mechanisms.

24



4.2 – Classification of Issues

Figure 4.4: Overall unfilled

4.2 Classification of Issues
After the system acquired the overall comfort level from the user, it will attempt to
further classify the issues that the user is experiencing. The user can choose multiple
choices from a list of predefined issues that is monitored by the platform.

25



IEQ questionnaire

Figure 4.5: Overall feedback (positive) Figure 4.6: Overall feedback (negative)

One difference, being not so significant, is the help message that will be displayed
underneath the question text if exists. There are situations where additional messages or
blocks like this will effect the overall layout in the next views, major or not.

Another issue about this view is that, as one can see in the picture, the forth icon
which has the longest caption text and thus taking the most width of the view, is affecting
the overall layout. This can be avoided by limiting the maximum width value of the
component, combining with the word-break to properly wrap the word, as shown below.
The value of max-width is chosen subjectively.

#container-survey [id^="surveyModel"] .sv-question__content > .sv-imagepicker >
.sv-imagepicker__item .sv-string-viewer↪→

font-size: getRelativeFontSize(14) + em
max-width: 30vw // Limit the width of the caption
display: inline-block
word-break: break-word

4.3 Thermal comfort questionnaire
If the user has selected a negative overall comfort level about the thermal comfort in
the section 4.1, the system will display this view to gather further information on the
feedback.

26



4.3 – Thermal comfort questionnaire

Figure 4.7: Thermal comfort (1) Figure 4.8: Thermal comfort (2)

It is obvious that the candidate has introduced a bias upon the horizontal position, it
can be argued that such bias maintains the visual hierarchy and also reserves the aesthetic
of the view. The following SASS snippet is used to construct such layout:

@media screen and (max-aspect-ratio: 1/1)
#container-survey [id^="surveyModel"] .sv-question__content >

.sv-selectbase:has(.sv-radio)↪→

display: grid
justify-content: center
padding-right: 90px // The horizontal bias

Major differences between portrait and landscape mode are presented in this view,
since the height of the radio selector under portrait mode takes too much space verti-
cally and will introduce major overflow issues under landscape mode. To resolve this,
the candidate uses grid-template-columns: repeat(2, 1fr) like in previous sections.
Additionally, the style sheet removed the margin from the home button to save horizontal
space.

@media screen and (min-aspect-ratio: 1/1)
#container-survey #button-home

margin-bottom: zero()

#container-survey [id^="surveyModel"] .sv-question__content >
.sv-selectbase:has(.sv-radio)↪→

27



IEQ questionnaire

display: grid
// Removed the horizontal bias
// padding-right: 90px
justify-content: center
grid-template-columns: repeat(2, 1fr)

Eventually the view under landscape mode is presented like below.

Figure 4.9: Thermal radio landscape (1)

The focus of the user is naturally guided to the title and the help message, which
is the desired behavior. One little detail in questionnaire view under landscape mode is
the disappearance of the line divider and the gap between the question text and the help
message, to save the vertical space as the margin between the background of the help
message and the question text is enough to separate them.

@media screen and (min-aspect-ratio: 1/1)
#container-survey [id^="surveyModel"] .sv-question__content > div >

div[style]↪→

display: none

This component is a little tricky to select using SASS; if the style sheet choose here
.sv-question__content it is enough to do the trick currently. However, looking at the
class name one may find it being very "abstract" or "general", which could potentially in
turn select unintended components. Considering risks like this is very damaging for main-
tainability, the candidate has decided to use a more specific pseudo-selector div[style],
which stands for a div with an attribute style, no matter what the style is. Firstly
it is more specific, and secondly this greatly narrows down the possibility of unintended
side effects.

After the system acquired the feedback on user comfort about room temperature, it
will further ask the user about air velocity as it acts as a major index around the topic.
The help message that is highlighted using BackgroundColor has its relevant style of the
following:

28



4.3 – Thermal comfort questionnaire

#container-survey [id^="surveyModel"] .sv-page .sv-row:not(:first-child) > div
h5↪→

font-size: getRelativeFontSize(14) + em !important
padding: 2% !important
border-radius: 20px !important

The font size of this message is slightly less than 1em, which is to build visual hierarchy
as the candidate prefers it not exceeding the title. The padding and border-radius are
used to make the message more appealing on visual. Note that the candidate did not use
em as the unit for border-radius as the candidate believes it should be a fixed value and
is independent to the screen size.

Figure 4.10: Thermal comfort picker (1) Figure 4.11: Thermal comfort picker (2)

Similar to the previous view, the candidate constructs the layout with a single line
display on landscape mode.

A point that was not mentioned in the previous view is the change of the icon size
under portrait and landscape mode. The following shows the relevant SASS lines:

// Portrait
@media screen and (max-aspect-ratio: 1/1)

#container-survey [id^="surveyModel"] .sv-question__content >
.sv-imagepicker > div > .sv-imagepicker__label .sv-imagepicker__image↪→

width: 20vw
height: 20vw

29



IEQ questionnaire

// Landscape
@media screen and (min-aspect-ratio: 1/1)

#container-survey [id^="surveyModel"] .sv-question__content >
.sv-imagepicker > div > .sv-imagepicker__label .sv-imagepicker__image↪→

width: 15vw
height: 15vw

Looking at the values it is easy to see the icon size is 33% percent larger under portrait
mode than landscape. This better utilizes the vertical space and makes the icons more
prominent, since the picker is supposed to be the main focus inside this view.

Figure 4.12: Thermal comfort picker (landscape)

4.4 Acoustic comfort questionnaire
The first page of the acoustic comfort questionnaire is shown below, the user will be asked
to provide an overall rating about the acoustic comfort of the room.

30



4.4 – Acoustic comfort questionnaire

Figure 4.13: Acoustic comfort picker (1) Figure 4.14: Acoustic comfort picker (2)

The style sheet applied on this form of questionnaire has already been covered by
previous sections that contain image pickers, thus it will not be repeated here.

The following view, which consists of check boxes, is the second page of the acoustic
comfort questionnaire. It collects the information on possible sources of environmental
noises around the room. The user can select multiple options, and the view will display
the selected options with a highlighted ring.

Note that the check boxes in the application often times has lengthy lines, which is
the reason why the candidate has not added any bias horizontally under portrait mode,
this helps better visualize the options and makes the view more appealing. The following
SASS code is used to achieve this:

@media screen and (max-aspect-ratio: 1/1)
// Checkboxes picker div
#container-survey [id^="surveyModel"] .sv-question__content >

.sv-selectbase:has(.sv-checkbox)↪→

padding-left: 50px // Add padding to the left
padding-right: 50px // Add padding to the right
display: grid
justify-content: center

The candidate has introduced a "limit" rather than "bias" on both sides of the check
boxes, its sole purpose is to further concentrate the user’s focus on the options.

31



IEQ questionnaire

Figure 4.15: Acoustic comfort portrait (1) Figure 4.16: Acoustic comfort portrait (2)

A more interesting part about this view is the distribution of options on the radio
checkers. In previous views it looks decent, but unfortunately the candidate cannot have
the same conclusion on the checkers in this one. As shown below, there exists a more
lengthy option among other options that are more or less at the same width level. To
cope with this, the candidate chose to reserve the overflow in this page, considering that
a specific fix for this issue would have an impact on both resources and maintainability.

@media screen and (min-aspect-ratio: 1/1)
// Checkboxes picker div
#container-survey [id^="surveyModel"] .sv-question__content >

.sv-selectbase:has(.sv-checkbox)↪→

padding-left: 50px
padding-right: 50px
grid-template-columns: repeat(2, 1fr) // Enforcing two columns
display: grid
justify-content: center

Notice there is a double-layer structure of helping messages, it may also contributed
to the exhaustion of vertical space. But since they are vital components of both visual
and operational purposes, the candidate will not make any alteration on them, thus the
overflow stays. A simple overflow has become a more viable solution for more advantages
it generates.

32



4.5 – Visual comfort questionnaire

Figure 4.17: Acoustic checker landscape

4.5 Visual comfort questionnaire
If the user chose in section 4.1 the option for visual comfort to express their complaint
about visual comfort, the system will display this view to gather relevant information.

The visual comfort questionnaire is a good example for summarizing the most repet-
itive procedures of the questionnaire, namely image picker, radio picker and check boxes.
By comparing the layout between all three types of the form, it is very easy to see the
consistency and visual hierarchy that the candidate has been emphasizing during this
theses. At first, we will have a image picker in Fig. 4.18.

The main focus is surely the image picker, we reserve the most space for the options
that are distributed over a two-by-two layout. The first priority is to provide to the user
the room of operation, and secondly to reduce the probability of mishandling the choice.
The color differences on each icon also helps the user to have an intuitive understanding
of the selected options.

Next, the help message that is asking "the real question" right above the focus will
provide further messages for users to assist them on better understanding their choice.
The question text may appear in less significance than the two above but it still helps
improving the user-friendliness of the view, the icon besides it also provides a visual cue.

The button below is separated enough from the main content to reduce the possibility
of mistake and also build the visual hierarchy. And the logo is properly placed below it.

33



IEQ questionnaire

Figure 4.18: Visual comfort picker (1) Figure 4.19: Visual comfort picker (2)

Figure 4.20: Visual comfort picker (landscape)

The design is consistent with the check box form in Fig. 4.21, where the user can select
multiple ones from well distributed options. The help message is placed right above the
focus point, and the question text locates above the help message. The button is placed
below the main content, and the logo is placed below the button. And like previous
views, the landscape mode will have the same layout but with a two-by-two layout of the
options.

34



4.5 – Visual comfort questionnaire

Figure 4.21: Visual comfort checkbox (1) Figure 4.22: Visual comfort checkbox (2)

Figure 4.23: Visual comfort checker (landscape)

Also for the radio form demonstrated in Fig. 4.24, the user can only select one option.
The help message is placed right above the main picker, and the question text is placed
right above the help message. The button is placed below the main content, and the logo
is placed below the button. The landscape mode will have the same layout but with a
two-by-two layout of the options.

35



IEQ questionnaire

Figure 4.24: Visual comfort radio (1) Figure 4.25: Visual comfort radio (2)

Figure 4.26: Visual comfort radio (landscape)

4.6 Air quality questionnaire
If the user has chosen the option for air quality to express their feeling about the complaint
about air quality, the system will display this view.

At this point the user is likely to be adequately familiar with the procedure and
visual of the questionnaire, and the candidate believes the pursuit of consistency during
the design and development of the questionnaire is crucial for achieving this.

36



4.6 – Air quality questionnaire

Figure 4.27: Air comfort portrait (1) Figure 4.28: Air comfort portrait (2)

Figure 4.29: Air comfort landscape (1)

The next step is the system trying to acquire the reason why user is feeling discomfort
in the room, it contains some common options of the reasons why the user is feeling
discomfort in the room. This time, the options are not lengthy and very much numbered,
this benefits the display under landscape mode. The same with all check boxes, the user
can select multiple options.

37



IEQ questionnaire

Figure 4.30: Air comfort portrait (1) Figure 4.31: Air comfort portrait (2)

Figure 4.32: Air comfort landscape (1)

4.7 Final comments
After users finishes providing their feedback on their complaints, they reach the final step
of the questionnaire, where the user is able to input a piece of message to express their
feeling about the room.

This could be helpful to the system by collecting some informative data about the
room besides implicit answers over a set of predefined answers, and also for the user to

38



4.7 – Final comments

have their answers justified or emphasized. However, the user is not supposed to enter
too many words at a time.

Alternatively, the user is also able to simply skip this step if they have such intention
by tapping the "Complete" button.

Figure 4.33: User comment portrait (1) Figure 4.34: User comment portrait (2)

Discussions have been made about if the candidate should maintain a single line
of text input, or instead replace it with a multi-line text input. The result is that by
presenting a impression of short text input, the user interface can guide user to provide
simple messages that tend to be straight to the point. This is beneficial for the space
resources for communication and back-end.

Figure 4.35: User comment landscape (1)

39



IEQ questionnaire

4.8 Notification on completion
After expressing their dissatisfaction about the quality of the IEQ indices, the user is
asked to leave a short message about their experience. This message is then sent to the
system administrator for further analysis, and the user is then redirected to this view to
receive a piece of message of gratitude.

Other than the kind words, the user is also given a "receipt" for their completion
of the questionnaire – it summarize the answers given by the user using a group of
percentages reflecting the degree of the user’s level of satisfaction based on their choices
in the questionnaire. Not only does this indicate the completion of the questionnaire,
but also serves as a reminder for the user about their experience and communicates the
communication has been successful. The receipt is shown in Figure 4.36.

Figure 4.36: Receipt for questionnaire

40



Chapter 5

Profile page

5.1 Profile page
5.1.1 Showcase
Once users chose to tap on the button "Profile" on the welcome screen 3.5, they will be
redirected to the profile page.

Despite the name being seemingly self-explanatory, the "profile" page is not as true
to its name as it appears to be. Rather than a page that serves the purpose of displaying
and providing the option to modify the personal information attached to the current user,
it is actually more of a "hub page" that provides the user with a variety of options to
navigate to different parts of the application based on the information it provides.

The view is separated, based on functionalities, three different sections.
On top, you have the welcome message that displays the username. Firstly the mes-

sage greets the user, and secondly it confirms users that they have successfully logged
in and they are on the right account at the moment. We do not provide any further
information beyond first name basis for the sake of privacy.

Right under the divider stroke we have the main interactive area, which consists of
two identical buttons labeled respectively "Dashboard" and "Personal". The "Dashboard"
button serves as a pathway to the dashboard page, while the "Personal" button will lead
the user to the personal questionnaire view.

Finally at the bottom area, the section that contains a page-based list view of past
finished personal questionnaire records. Each record will show the date and time of
completion, as well as the sensor number indicating where the user has completed the
questionnaire. If the user has not completed any questionnaire yet, the list will be empty,
as shown in Figure 5.1. If the user has completed at least one questionnaire, the list will
be populated with the records, as shown in Figure 5.2.

41



Profile page

Figure 5.1: Profile with blank record Figure 5.2: Profile with previous records

Figure 5.3: Profile with blank record (landscape)

5.1.2 Style sheets
Let us look at relevant SASS lines that are in charge of the view. Note that since the
SASS file is dedicated to the mobile view (on desktop devices the application will import
corresponding CSS file instead), for this reason we will not add the extra @media line to
indicate whether the lines are applied to mobile view or not, as in this case, all lines are
for the mobile devices by default.

42



5.1 – Profile page

Firstly, we need to set the proper and clear boundary for the profile page.

// Set boundary for container with id Profile
body.mobile-view #Profile

padding-top: getRelativeHeight(90)
padding-left: getRelativeWidth(30)
padding-right: getRelativeWidth(30)
padding-bottom: getRelativeHeight(60)

// Set the font size for the welcome message
body.mobile-view #surveyTitle

font-size: getRelativeFontSize(30) + em

The usage of getRelativeHeight(), getRelativeWidth() is to ensure that the
padding is set in a way that is relative to the screen size, so that the padding will
be consistent across different devices. Same with some views in previous, due to the im-
plicit nature of the high-fidelity prototype, we use functions to convert fixed pixel values
to relative values.

Next we will set the style for the buttons. They are almost identical under both the
portrait and landscape mode, with the only difference being the height of the buttons.
Using the ancient art of "eye-balling", the candidate has determined that it needs a little
more on height under landscape mode than portrait mode. The usage of clamp() function
is to set a definitive boundary for button sizes.

@media screen and (max-aspect-ratio: 1/1)
body.mobile-view #button-profile, #button-personal

font-size: getRelativeFontSize(18) + em
height: clamp(25px, getRelativeHeight(90), 50px)
width: clamp(25vw, getRelativeWidth(130), 40vw)
margin: getRelativeWidth(10)

@media screen and (min-aspect-ratio: 1/1)
body.mobile-view #button-profile, #button-personal

font-size: getRelativeFontSize(18) + em
height: clamp(25px, getRelativeHeight(100), 50px)
width: clamp(25vw, getRelativeWidth(130), 40vw)
margin: getRelativeWidth(10)

As for the record list, the candidate did not make any modifications upon the original
implementation, as the default style provided by the framework and previous work is
sufficient for our needs after properly setting the boundary for the profile page.

43



44



Chapter 6

Personal questionnaire

6.1 General introduction
As the thesis approaching the later stage of development on the user interface, it may
surprise readers that, among all the structures, layouts and components, it is the personal
questionnaire page that the candidate finds to be one of the most complicated pages to
implement, if not the most.

The personal questionnaire page is designed to be a view where the system collects
information that is more personal from the user, including non-identifiable information
such as age, job, education, and it will ask some general questions about the user’s
preferences and habits. The main difficulties come from two aspects in general;

• The information inside the view, especially one on a mobile screen, appears to be
rather saturated, so it has exhibited a form of "magnifying effect" on defects, such
as misalignment of contents. Any slight misconduct on the implementation may
lead to a overly negative user experience. Such, the candidate has explored through
multiple iterations of design and implementation to ensure maximum level of user
experience.

• Just like the IEQ questionnaire, the personal questionnaire is also generated in
advance by SurveyJS and has a certain degree of "immutability" we introduced in
section 2.10. This means that the candidate has to work around the code to reach
adequate level of code efficiency.

One may realize that reasons above will result in an excessive amount of trade-offs
between aesthetics and functionality during the development. Moreover, a questionnaire
is meant to be interacted with, which means not only should the user be able to see the
questions, but also be able to answer them. Considering all obstacles, perfection can be
a very challenging task to achieve, especially when the screen size is limited, in the next
sections the candidate will make a lot of design choices along the way.

45



Personal questionnaire

6.2 Questionnaire
The personal questionnaire consists of a two-page form asking about general user infor-
mation, such as age, job, country of origin, education alongside with several experience-
oriented close questions. In terms of the way the questionnaire is built, the questions can
be classified into two categories:

• Drop-down selectors

– Questions adopting drop-down selectors are in most cases open-questions that
can divide its answers into multiple sub-divisions. An example of this could
be acquiring the gender of the user, and the user can choose between several
answers that are defined beforehand. Another example of this could be the
requesting user’s age, where all the possible answers are distributed evenly into
several ranges of values.

• Radio selectors

– Radio selectors are used for close questions that can be answered by a binary
selection, oftentimes contradicting and completing another. One example be-
ing the question asking users if they are smoker or not, where users can only
choose one between the positive and negative option.

One specific issue about the personal questionnaire is that it shares an amount of its
class name with the IEQ questionnaire, which means that the candidate has to implement
extra logic to make sure that the personal questionnaire is not affected by the IEQ
questionnaire’s style sheet, and vice versa. This is done by adding extra id to each
main content container, which will only include content for personal questionnaire. In
PROMET&O, for personal questionnaire, the id is #personal, you can find it being
demonstrated in most of the SASS lines in this chapter.

46



6.2 – Questionnaire

Figure 6.1: Personal questionnaire (1-1) Figure 6.2: Personal questionnaire (1-2)

Figure 6.3: Personal questionnaire (1 landscape)

47



Personal questionnaire

Figure 6.4: Personal questionnaire (2-1) Figure 6.5: Personal questionnaire (2-2)

Figure 6.6: Personal questionnaire (2 landscape)

It is obvious that the horizontal space is more forgiving in the landscape mode, which
leads to a more relaxed layout. Although the candidate agrees that cramped layout
could impact user experience, the layout under portrait mode is considered a compromise
between functionality and user experience. We do alter some of the aspects under portrait

48



6.3 – An inspection in detail into the style sheets

mode, for example, making selectors aligned vertically in center to create an impression
of space thus more relaxing atmosphere. Let us start the introduction from the top.

6.3 An inspection in detail into the style sheets
6.3.1 Navigation
Before starting with the main container content, some potential doubts from external
need clarifying. Users can see the navigation button on the top-right corner of the view.
This button is the only way to navigate back to the homepage or the profile page. The
original button has itself styled as:

<p
id="btn-home"
role="button"
style={{

position: "fixed",
top: 25,
right: 25,
textDecoration: "underline",
fontSize: "130%",
margin: "0"

}}
onClick={() => navigate("/")}
>
Home

</p>

You can quickly understand the intended behavior of this button: it is fixed on the
top-right corner of the view, and when clicked, it will navigate the user back to the
homepage. The style of the button is set to be aligned with the high-fidelity prototype.

In this personal questionnaire view, as requested by the external requirements, the
"Home" button needs to follow the users’ view as they scroll down. But in way it will
inevitably overshadow part of the content. The candidate has decided to produce a half-
transparent background for the button, so that the content can maintain a certain degree
of readability while have a certain degree of aesthetics.

div.container-fluid:has(div#personal)
// Home button
+ #btn-home

background-color: #FFFFFF80
// Floating logo
+ #prometeoLogo

text-align: start
left: 3vw

The background-color: #FFFFFF80 line is used to set the background color of the
button to be half-transparent white, the candidate believes this is adequately friendly

49



Personal questionnaire

to the visual. the div.container-fluid:has(div#personal) is used to ensure that the
button is only applied to the personal questionnaire container, while + #btn-home is used
to select the button which is a sibling of the container. The subsequent + #prometeoLogo
is used to set the position of the PROMET&O logo at the bottom, which is also a
subsequent sibling of the container. Also note that the indentations here is not to be
messed with, as it regulates the cascaded relationship between said components, indeed
the SASS compiler is sensitive to indentations.

6.3.2 Main container
Now we can get into the main content container. Firstly, the candidate would like to in-
troduce the structure of the personal questionnaire; a list of .sv-row inside of a .sv-page
container. Before we start modifying the style sheets, we must clear out general margins
from all the containers to save space. If we need adding margins to some of the containers,
we will do it specifically as those cases are definitely minor ones. In fact, the candidate
has been making this type of modifications in most of previous style sheets, and it is now
formally introduced.

body.mobile-view #personal .sv-page
*

margin: 0

The main title, being the largest in scale in terms of font size, is often omitted in
the first sight as the attention from the user tends to be dragged onto the questionnaire
content. However, the candidate is aware of that if we leave the main title alone then
after the modification on other contents, the title will naturally stands out as a mess. So
we need to properly style the main title first. The style of the main title is shown below:

// Main Title
body.mobile-view #personal .sv-page

> .sv-title
display: flex
justify-content: start
font-size: getRelativeFontSize(24) + em
margin: zero()
border-bottom: 1px solid $color-theme

.sv-string-viewer
width: 100%
text-align: center

Those are merely modifications on font-size and boundaries on its container. This
style also assign the font-size into 24px in terms of the relative size, making it the
largest text in the whole view.

After that there are a piece of general configuration on each line of .sv-row. First
we have the titles, the selector .sv-row:not(:first-child) here chooses every .sv-row
except the first one, in which holds the main title.

50



6.3 – An inspection in detail into the style sheets

body.mobile-view #personal .sv-page
.sv-row

padding-bottom: zero()

:not(:first-child)
> .sv-title

display: flex
justify-content: start
font-size: getRelativeFontSize(24) + em
margin: zero()

Next we have some lines of more specific configurations on the selectors. At first we
center the text, solidify the bottom border of each line.

The selector &[style="..."] is used to set the padding of the selector to be 5%.
This line is seemingly more complicated than others but it will turn otherwise if we look
into it. Firstly it inherits the .sv-question selector which is the general selector for
the question. Originally, this component will have an inline-style --sv-...: 40px;"
generated by SurveyJS that adjusts the padding of the selector to specifically 40px,
however this value appears to be excessively large under the portrait mode view thus it
is replaced by a horizontal bias of 5% of container size.

In the end, we have the > .sv-question__header line that is to set the width of
the header to be 50%, it will keep the question text of every row to the left side.

body.mobile-view #personal .sv-page
.sv-row

// Question div
.sv-question

display: flex
justify-content: space-between
border-bottom: 1px solid $color-theme

:has(div:empty)
font-size: getRelativeFontSize(16) + em

&[style="--sv-element-add-padding-left: 40px;"]
padding-left: 5% !important

> .sv-question__header
width: 50%

The following part is applied to the specific case where a container that has .sv-radio
inside. The display: flex and justify-content: space-between lines are used to
properly divide the left and right part of the each line. Inside of it, The .sv-selectbase
stands for the selector part of the selector, which should be aligned in center vertically.
The label stands for the text part of the selector, in its corresponding line, it will properly
adjust the margin with respect to the selector.

51



Personal questionnaire

// Where there is a radio selector
body.mobile-view #personal .sv-page

.sv-row
&:has(.sv-radio)

display: flex
justify-content: space-between

.sv-selectbase
display: flex
align-items: center
padding: 0

label
margin-left: 2em

6.3.3 Question rows
The following part is the most complicated part of the personal questionnaire view. The
candidate has to make sure that the user can both see clearly the questions and answer
them properly. Like the candidate has mentioned in previous chapters, there were a lot of
back-and-forth on the design and implementation during the development of the personal
questionnaire view.

The candidate roughly divides each row of the questionnaire into two parts; one
that contains mostly text strings, and one that contains mostly interactive parts, more
specifically, the two kinds of selectors we talked about in the previous section 6.2.

For the left-hand side, we have the following style sheets:

body.mobile-view #personal .sv-page
.sv-row

.sv-question__header
width: 100%
max-width: 50vw
display: flex
align-content: center
margin: 0!important
border-bottom: none
flex-wrap: wrap

.sv-title
padding: zero()
font-size: getRelativeFontSize(16) + em
word-break: normal

The style sheet above demonstrates a general structure; the one labeled
.sv-question__header is the container that contains the question header, which is the

the half on left side of the row, and .sv-title is the actual text component.
The combination of width: 100% and max-width: 50vw ensures the text container

takes exactly half of the view width. The display: flex and align-content: center
lines are used to center the text vertically within the container. flex-wrap: wrap wraps

52



6.3 – An inspection in detail into the style sheets

the text when it exceeds the width of the container. Finally word-break: normal line
sets the text to break normally when it exceeds the width of the container. In a word, we
want the container to take half of the view width, and all its content positioned exactly
at center. The subsequent .sv-title is used to set the font size of the text to 16px in
terms of the relative size. word-break: normal breaks the question text properly.

As the candidate finishes introducing the left-hand side, now he will discuss the right
side, where the selectors are placed. The style sheets are shown below:

body.mobile-view #personal .sv-page
.sv-row

.sv-question__content
display: flex
align-content: center
font-size: getRelativeFontSize(16) + em
flex-wrap: wrap

&--left > fieldset
display: inline
justify-content: end

> div
align-content: center

.sv-selectbase
display: flex
justify-content: end

Above is the style sheet for general cases. Like the left-hand side, the right-hand
side is formed in a structured layout. The .sv-question__content is the container that
forces an centered justifications and alignment of the content. The flex-wrap: wrap line
is used to wrap the text when it exceeds the width of the container.

&--left, in combination of .sv-question__content, can be used to select
.sv-question__content--left. This and following couple of lines are used to set the
selector to be right-aligned, as contents on the right-hand side should be.

Now we can finally check the line specifically serves for the selectors. Firstly we have
the drop-down selector.

body.mobile-view #personal .sv-page .sv-row
.sv-dropdown

width: 100%
border-bottom: none

> .sv-dropdown__value
transform: translateX(-1vw)

Again, the selector appears to be container-content pair, where the .sv-dropdown
being the container and .sv-dropdown__value being the content. The width: 100% line

53



Personal questionnaire

is to set the width of the selector to be the same as the container, indicating it will take as
much space as it needs, then it clears the bottom border. transform: translateX(-1vw)
is used to move the selector to the left by 1vw, adapting to the portrait mode view.

As for the radio selector, we have the following style sheet:

body.mobile-view #personal .sv-page .sv-row
.sv-radio

align-content: center

.sv-selectbase__column
min-width: fit-content

.sv-selectbase__decorator.sv-item__decorator
left: -2em

Similar to the drop-down selector, those lines are mainly to adjust content to portrait
mode view.

One significant difference than the personal questionnaire that never existed in the
IEQ questionnaire is the addition of the "popups", where the user needs to interact with
a popup to answer the question. Under portrait mode, we need to properly adapt to the
view size, avoiding overflowing.

body.mobile-view #personal .sv-page .sv-row
.sv-popup__shadow

display: flex
justify-content: center
align-items: center

.sv-popup .sv-popup__container
.sv-popup__body-content

display: flex
max-width: 80vw
max-height: 80vh
overflow: hidden
margin: zero()
padding: zero()

.sv-action-bar
padding-top: zero()
padding-bottom: zero()

Main focus here being max-width: 80vw and max-height: 80vh which limits the size
of the dialog modal to at most 80% of the view width and height.

There is a potential conflict with an external component which also belongs to the
class .sv-action-bar, but adding this specific selector under .sv-popup will make sure
that the style is only applied to the action bar inside the popup.

54



6.3 – An inspection in detail into the style sheets

Figure 6.7: Personal popup (1) Figure 6.8: Personal popup (2)

Figure 6.9: Personal popup (landscape)

6.3.4 Buttons
Finally, the last part for our introduction is the buttons for navigating within the ques-
tionnaire. The button group is placed at the bottom of the view.

body.mobile-view #personal .sv-page .sv-row
.sv-action-bar

display: flex

55



Personal questionnaire

justify-content: end
margin: zero()
padding-top: 2vh
padding-bottom: 5vh

.sv-action
padding-bottom: zero()

input
text-align: center
background-color: $color-theme

The lines are mainly to adjust the buttons, along with its containers, to be fixed
at bottom of the view. The unbalanced padding-top and padding-bottom is actually
meant to avoid collapsing with the trademark logo.

56



Chapter 7

Dashboard

7.1 Overview
7.1.1 Dividing the devices
The original PROMET&O has its front-end user interface specifically designed for a cer-
tain device type, meaning it is heavily dependent on a specific resolution. But for the
dashboard, simple modifications on style sheets are not adequate anymore for adapting
to various screen sizes. Thus, after discussion, the candidate will use a separated JSX file
that is specifically designed for the dashboard on mobile devices. This file will be respon-
sible for rendering the gauges and other components that are unique to the dashboard.
This way, the candidate can ensure that the dashboard will appear decent on various
screen size, and it will be easier to maintain and update in the future.

The main method for differentiating device types and display modes are already dis-
cussed in the previous sections 2.6 2.8. Here we will show how to redirect to corresponding
JSX component according to current aspect ratio, and in turn, a new set of style sheets.

<Route
exact
path="/dashboard"
element={<ProtectedRoute logged={logged} anon={anon} />}
>
{!NO_DASH && (window.innerWidth < window.innerHeight || !isDesktop) ?

<Route path="/dashboard" element={<PDashboard ita={ita} />} />
: <Route path="/dashboard" element={<LDashboard ita={ita} />} />

}
</Route>

Above is the Route component from React Router, it checks for the aspect ratio of the
screen and the device type, and then renders the corresponding dashboard component.
The PDashboard component is for portrait mode, and the LDashboard component is for
landscape mode. Remember that the layout has to reserve the view for a certain device,
so the isDesktop variable is used to determine whether the device is a desktop or not.
The isDesktop variable contains this logic in its definition, which we demonstrated in
the previous section 2.6.

57



Dashboard

7.1.2 The display of data
In the very beginning of the thesis, the candidate has explained the structure and purpose
of the PROMET&O project. Its core feature evolves around the feedback loop for end
users to collect their personal comfort about IEQ indices. Thus it makes sense that
the "display of current data" has become one of the most, if not the most important
functionality among all of them.

In general, IEQ indices, being much related to human comfort, has itself deeply in-
tertwined with the concept of "range". For example, the temperature is considered com-
fortable when it is within a certain range, being it 20 ◦C to 27 ◦C or somewhat alike.
The same goes for other indices like humidity, CO2 concentration, etc. Therefore, it is
appropriate to choose a type of display that can effectively show the current value of an
index in relation to its range. In the end, the "gauge" type of display has been chosen for
this purpose. An demonstration of the gauge display used in PROMET&O can be seen
in Figure 7.1.

Although people have their own ranges defining personal comfort, there are guide-
lines on IEQ indices that are properly defined and widely accepted. One example being
the ASHRAE 55-2017 standard [2] provides a range of temperature that is considered
comfortable for the major popularity. It represents a balance between thermal comfort
of the occupants and the energy efficiency of the building. What the candidate is trying
to express is that, the choice for the range on the gauges are based on both objective and
subjective perspectives.

Figure 7.1: An overview of a gauge display

58



7.2 – Gauge view

7.1.3 Navigation
How to efficiently navigate users to where they desire can sometimes be challenging; on
a limited screen estate, there are choices that have to be made to perform constantly
trade-offs from space to functionality.

In an application that emphasizes on efficiency, whether on the energy perspective or
user experience, firstly the candidate does not want to add extra study curve for such
application, since the users are supposed to merely use it for no longer than five minutes
and forget about it ever since. Thus, a typical "header-bar, sidebar and main view"
combination has been the choice for the general layout. The header-bar contains the
title of the application and a couple of buttons that act as the navigation options. The
sidebar contains the navigation links to different parts of the application alongside with
other assistant features such as filters, and the main view is where gauges are displayed.
A showcase of a sidebar can be seen in Figure 7.2.

Figure 7.2: The sidebar

Also, the navigation on the same view is an important aspect that is worth for a
discussion. One can quickly realize that, as in the application the view is constantly
changing its content, a respective view size is adapting to it. The question is what is the
optimal way to notify the user that the view has changed. The candidate, continuing
the faith of "no extra study curve", has chosen to use a simple "cursor" animation. Such
cursor will only appear when the view has changed, more detailed introduction can be
found in the subsequent subsection 7.2.1.

7.2 Gauge view
The gauges view is the one that greets the users after they reaches the dashboard. It is
the most important view of the dashboard, as it is the place where the users can see the
current values of the IEQ indices. The gauges view is designed to be simple and straight-
to-the-point, users can quickly see the current values of the IEQ indices and understand
the current state of the environment.

59



Dashboard

Figure 7.3: The gauges view (portrait) 1 Figure 7.4: The gauges view (portrait) 2

As always we will start from top to bottom. The top of the view contains the header
bar, which contains the title of the application and a couple of icons that acts as naviga-
tors. The right side of the bar, namely a "house" icon and a "person" icon, will redirect
the user to the home page and the profile page respectively. The logo itself, acts as a
"reset" button for the current view, which means upon each tap, the button will reset all
the states in the view, including view states (e.g. redirecting back to gauge view from
graph view), and the data states (e.g. resetting the values of the filters).

The candidate omitted the icon on left side deliberately, as it is a part of the offscreen
sidebar component, which we will discuss in the sidebar section 7.3.

body.mobile-view
// Main view
#container-dashboard

// Main container
#row-nav

max-width: 100vw
margin: 0

By forcing max-width: 100vw, we ensure that the header bar will not overflow the
screen width.

Right under the header bar, there is the button group for the time range filter. Its
functionality is to let user choose the time range that will be used to filter out data. All
the buttons in the button group share the class name .btn-time.

60



7.2 – Gauge view

// Time range buttons (Container)
body.mobile-view

#container-dashboard
.col-btn-time

display: flex
justify-content: center
padding: 0

// Time range buttons (Button)
.btn-time

min-width: 12vw
padding: 0

The candidate fixes a min-width to avoid the buttons becoming too narrow in width
and thus difficult to interact with.

As we demonstrated in Fig. 7.3, the gauges in the view are divided into two classes.
One is the single IEQ gauge, which indicates an overall rating of IEQ indices, and a group
of four sub-gauges that represent corresponding values in detail. Firstly, we will look into
the IEQ gauge.

body.mobile-view
#container-dashboard

// The main IEQ gauge(s)
#gaugeIEQ

// Svg container
> .gauge-component-class

max-width: 100vw !important
// Actual svg
// The values are to reflect a relation in ratio
> svg

width: 66vw
height: 44vw

Due to the fact that IEQ gauge is the most important gauge in the view, it is logical
that it takes most space from the view. The actual svg element is set to a fixed width
and height, which has a ratio of 3:2. This ratio is chosen to ensure that the gauge will
appear decent while takes as less space as possible.

In the next row, we can see three unequally distributed sub-gauges, which are the
Temperature, Humidity and Visual gauges. The reason of this distribution is to form
a visual hierarchy, as one can see the icons from left and right side have different
stroke-color, meaning that some of them belong to one category while others from
another. This line is invisible by default, it is only when the corresponding gauge or the
IEQ gauge is tapped does the row appear.

61



Dashboard

Figure 7.5: gauge-port-subgauges-invisible Figure 7.6: gauge-port-subgauges-visible

As one can see, in this specific row the view has three sub-gauges in total, which is
quite ideal for a "gauge-gauge-divider-gauge" distribution, and this is what the candidate
has chosen in the JSX file. Note that all JSX components that are demonstrated in this
section are simplified by removing all properties for the sake of readability.
<Row className="row-sub-tmp-lgt">

<Col className="d-flex justify-content-start">
<Holder />
&nbsp;
<Holder />

</Col>
<Col className="d-flex justify-content-end">

<Holder />
</Col>

</Row>

By using the Row and Col we can construct a container-content layout. And naturally,
justify-content-start and justify-content-end will align the content to the left and
right side of the container respectively, dividing the columns naturally. Moreover, inside
the left side column, the candidate added an extra &nbsp; to create a space between the
two sub-gauges, we definitely have alternative methods for this purpose, but this is the
most straightforward way to do it.

Major gauges except the IEQ one are designed to be smaller than the IEQ gauge, the
rest are almost identical.

62



7.2 – Gauge view

body.mobile-view
#container-dashboard

div.subGauge
svg

width: clamp(125px, 40vw, 250px)

The candidate simply adjusts the width of the svg element to be a value between
125px and 250px, depending on the screen width. This way, it will generate a moderate
size of each sub gauge, the height will be automatically adjusted to maintain the aspect
ratio of the gauge.

Figure 7.7: gauge-land-subgauges-visible

The style sheets used here is shown below, first the Row has a flex-nowrap property,
which means that the columns will not wrap around (break) when the screen width is not
enough. The justify-content-start and justify-content-end will make the gauges
close to each other.

<Row className="row-tmp-lgt d-flex justify-content-start flex-nowrap">
<Col className="d-flex justify-content-end">

<HolderGauge />
</Col>
<Col className="d-flex justify-content-start">

<HolderGauge />
</Col>

</Row>
<Row className="row-snd-air d-flex justify-content-start flex-nowrap">

<Col className="d-flex justify-content-end">
<HolderGauge />

</Col>
<Col className="d-flex justify-content-start">

<HolderGauge />
</Col>

</Row>

The sub-gauges for CO2 and Noise are placed in the next row, each of them will have

63



Dashboard

three equally distributed sub-gauges except the first row. The same principle applies
here, the row is invisible by default, and only appears when the corresponding gauge is
tapped.

<Row
style={{

padding: "0",
display: expand ? "flex" : "none",
justifyContent: "center"

}}>
<Row className="row-sub-snd-air">

<Col className="d-grid justify-content-start">
<Holder />

</Col>
<Col />
<Col className="d-grid justify-content-start">

<Holder />
</Col>

</Row>
//...

</Row>

The line display: expand ? "flex" : "none" will let the react state expand
control the visibility of the whole container. Notice that, different from all the rest rows,
the Col here has a d-grid property, which is a shorthand for display: grid, instead
of display: flex. This will align the content on both side to their further end when
used in combination with justify-content-start. Below is a general JSX component
for the rest rows.

<Row className="row-sub-snd-air">
<Col className="d-flex justify-content-start ">

<Holder />
</Col>
<Col className="d-flex justify-content-start ">

<Holder />
</Col>
<Col className="d-flex justify-content-start ">

<Holder />
</Col>

</Row>

All above illustrates the layout and relevant styles sheets applied on the gauge view.
The candidate believes that it has successfully presented a clear visual hierarchy and is
effective on displaying the data.

7.2.1 Notification on scrolling
One might have noticed that in the pictures there is an indicator for users to notify
them when scrolling down is possible. This is an independent component that is defined
exclusively for the dashboard.

64



7.2 – Gauge view

const ScrollArrow = props => {
const [visible, setVisible] = useState(false);

useEffect(() => {
const checkScrollNeeded = () => {

const atBottom = window.innerHeight + window.scrollY >=
document.documentElement.scrollHeight - 1;↪→

const scrollNeeded = document.documentElement.scrollHeight >
window.innerHeight;↪→

setVisible(!atBottom && scrollNeeded);
props.setShowArrow(!atBottom && scrollNeeded);

};

const handleScroll = () => checkScrollNeeded();

const resizeObserver = new ResizeObserver(() => checkScrollNeeded());
resizeObserver.observe(document.documentElement);

window.addEventListener("scroll", handleScroll);

return () => {
resizeObserver.disconnect();
window.removeEventListener("scroll", handleScroll);

};
}, []);
// ...

}

The useEffect hook is used to add event listeners to the window object to check if
the user has scrolled to the bottom of the page. If the user has not scrolled to the bottom
of the page, the scroll arrow is displayed. This is achieved by comparing the height of
the document to the height of the window. The boolean value atBottom is true if the
scrollY value is greater than or equal to the height of the document minus the height of
the window. scrollNeeded is true if the height of the document is greater than the height
of the window. The scroll arrow is displayed if atBottom is false and scrollNeeded is
true.

ResizeObserver is used to observe the document element and check if the user has
scrolled to the bottom of the page when the window is resized. The handleScroll
function is called when the user scrolls the page, it calls the checkScrollNeeded function
to check if the user has scrolled to the bottom of the page. The handleScroll function
is then added as an event listener to the window object.

Now we can look at the style sheet for the scroll arrow.

const styles = {
arrow: {

position: "fixed",
bottom: "20px",
left: "50%",
transform: "translateX(-50%)",

65



Dashboard

cursor: "pointer",
animation: "waveShowHide 1s infinite",
fontSize: "2rem",
color: "#333",
opacity: 1,
transition: "opacity 0.3s ease-in-out"

}
};

where waveShowHide is a piece of animation that is defined as:

@keyframes waveShowHide
0%

opacity: 0
transform: translateY(-1em)

25%
opacity: 1
transform: translateY(0)

75%
opacity: 1
transform: translateY(0)

100%
opacity: 0
transform: translateY(1em)

.blink
animation: blink 1s infinite

In combination they will form a animation that can inform the user that the view can
be scrolled down. It offers advantages for both aesthetics and functionality.

7.3 Off-canvas sidebar
In the previous section, the candidate briefly mentioned the design on the navigation and
the entry point placed on the header bar. In this section, we will discuss the sidebar in
detail.

The sidebar is a crucial part of the dashboard, as it contains the navigation alongside
with assistant features such as filter groups to different parts of the application. The
sidebar is designed to be an off-canvas sidebar, which means that it is hidden by default
and can be toggled by tapping on a button. This design choice is made to save screen
space and to make the dashboard look cleaner. The candidate also pays attention on the
aesthetics and maintainability aspect.

If the user tap the left-side icon on header bar, the sidebar will slide in from the left
side of the screen. From the gauge view, the sidebar will provide explanatory information
on the current selected IEQ index. If the user did not select any specific index, the sidebar
will display the information on IEQ in general.

66



7.3 – Off-canvas sidebar

Figure 7.8: Sidebar (IEQ) Figure 7.9: Sidebar (sound)

The first row reports the current local time, which could be useful to determine an
"offset" with respect to normal values. For example, during the daytime, people in relevant
rooms are more likely to experience higher room temperature, higher sound pressure, etc.

Inside the next container we can find the current index and explanatory information
about the index. Below it is the reference values attached to each index. They are
handpicked before the development of the dashboard, the user can find the source of
those values in the display also.

The interactive part consists of a button that will lead the user to the graph view
with the currently selected topic and time range, and a pair of buttons namely "Hints"
and "More". The user can also find the button to close the sidebar.

The "Hints" and "More" button, upon tapping, will raise a modal dialogue box that
contains more detailed information about the current index. The "Hints" button will
provide the user with some tips on how to improve the current index, while the "More"
button will provide the user with more detailed information about the index.

67



Dashboard

Figure 7.10: "Hints" button dialogue Figure 7.11: "More" button dialogue

The style sheets for modal dialogues in this view is also under the effects of
.modal-content in 3.1.

body.mobile-view
#div-offcanvas-body

max-width: 90vw
padding: 1em
border-radius: 2em 2em 2em 2em

// Buttons in general
button:not(.accordion-button)

max-width: clamp(18em, 80vw, 20em)

// Accordion buttons that are not collapsed
.accordion-button:not(.collapsed)

color: #fff
background-color: $color-theme

// Filter buttons by topics
.col-btn-topic

button
font-size: getRelativeFontSize(16) + em !important
margin-bottom: 0.5em
width: 100%
padding-left: 0

68



7.4 – Graph display

padding-right: 0

// Container for filter buttons by time range
.col-btn-time-offcanvas

display: flex
justify-content: center
margin: 1%

// buttons
button

font-size: getRelativeFontSize(16) + em
height: clamp(2em, 2.25em, 10vh)
width: clamp(6em, 10vw, 70vw)

where specific values such as font-size are obtained through experiments.

7.4 Graph display
Another significant aspect about the sidebar is the navigation part of it. From the gauge
view to graph view, from graph display to graph comparison, the sidebar is the main, if
not the only entry point for the navigation.

We introduced the information section and the button group of "Hints" and "More"
in section 7.3, in between of those two sections there is a button that will lead the user to
the graph view with the currently selected topic and time range named "Show the graph".

Figure 7.12: Graph display (sound) Figure 7.13: Graph display (humidity)

69



Dashboard

Figure 7.14: Graph display (sound pressure) - landscape mode

The candidate believes the layout is self-explanatory enough. So the candidate will
directly jump into the SASS file.

body.mobile-view
#container-dashboard

#graphBox
> iframe

height: 50vh
width: 80vw
border: zero()
padding: zero()

From the SASS lines, we can have a direct look on restrictions imposed on the scale
of each graph. Note that this piece of code block is only applied to a single graph view
(as the > selector only selects direct descendants), whereas the style sheets for graph
comparison will eventually replace some of the properties, we will discuss them in the
following sections.

The height and width are defined as 50% and 80% of the height and width respec-
tively, where both values are subject to a personal preference of the candidate.

7.5 Graph comparison
7.5.1 The initial view
The graph comparison feature is one of the most stellar features of the dashboard. It
allows the user to compare different graphs side by side, which is particularly useful when
the user wants to compare the data of combinations from different topics and different
time ranges.

When the user is in the graph view, under the frame for graph display, there will be
a significant button that invites the user to compare the graph with another one. The
button is named "Compare the graph".

70



7.5 – Graph comparison

After the user tapping the button, it will show the same graph the user previously
saw in the display view, possibly with a different size, as the filter has not been changed
yet. The user can then change the filter either through selecting the button group under
the header bar, or tapping the icon on the same place where the original sidebar trigger
button was. Now the icon will still trigger the sidebar, but content of the sidebar will
be different than earlier, as there will be a filter group, with the button to exit the
comparison mode.

Figure 7.15: Graph comparison (sound) Figure 7.16: Graph comparison (humidity)

Figure 7.17: Graph comparison - landscape mode

71



Dashboard

At the first sight the user might find the comparison view is almost identical to the
display view. For the sake of the comparison, the candidate will highlight here the main
differences, namely:

• The filter tag

– There will be a filter tag on the top of the graph, indicating the current filter
settings. The tag is clickable, and will trigger the filter sidebar. In Fig. 7.15,
it presents as the "1 M", referring to "1 Month", over the diagram.

• The divider stroke

– The divider stroke is a vertical line that separates the two graphs. It is a thin
line with a color that is slightly darker than the background color of the graph.

Those differences are illustrated by the JavaScript code below:

<Container style={{ padding: "0" }}>
{graphs.map((graph, index) => {

return (
<Row key={index} className="d-grid justify-content-center">

// The filter tag
<p style={{ margin: 0, textAlign: "center" }}>

{time.length >= index + 1 ? time[index] : null}
</p>
<Row className="row-graph m-0 p-0">{graph}</Row>
// The divider stroke
<Row className="mx-0" style={{ borderBottom: "1px solid #bbbbbb",

marginTop: "10px" }} />↪→

</Row>
);

})}
</Container>

By using a grid display the view enforce an manageable layout for graphs. The time
is of type array and contains the selected time ranges, it is used to display the time
range of the graphs in the filter tag. The line there is used to avoid data leaks where the
content in time and graphs do not match. The divider stroke, as one can see, is a single
pixel thick line with a color of #bbbbbb.

7.5.2 The filter sidebar
The candidate has talked about the transform of the content in sidebar once the user
enters the comparison view. From the perspective of the candidates this is actually never
a good practice; it turns the initial knowledge about the sidebar all over and forces the
user to learn about the mutation of it. However, the candidate believes that the filter
sidebar is a necessary evil, as the user needs a component that includes sufficient view
space for various filters.

72



7.5 – Graph comparison

Figure 7.18: Filter sidebar (topic) Figure 7.19: Filter sidebar (time range)

Figure 7.20: Filter sidebar (topic) - landscape

The filter is made possible through the JSX component Accordion from
React-Bootstrap. The Accordion component is a container for a set of Accordion.Item
components, each of which can be expanded or collapsed.

The Accordion.Item component is a container for a collapsible element, with a header
and a body. The header is a clickable element that can be used to expand or collapse the
body. The body is the content that will be shown or hidden when the header is clicked.

const AccordionFilter = props => (

73



Dashboard

<div className="accord-filter justify-content-center" style={{ maxWidth:
"100vw", paddingTop: "20px" }}>↪→

<Accordion defaultActiveKey="0">
<Accordion.Item

eventKey="0"
onEntered={() => {

props.setCompareTime([]);
}}
onExited={() => {

props.setDisableTopics([]);
}}>
<Accordion.Header>By Topics</Accordion.Header>
<Accordion.Body>

<Container fluid style={{ padding: "0" }}>
<CompareGraphsListPortrait

measure={props.measure} />
</Container>

</Accordion.Body>
</Accordion.Item>
<Accordion.Item

eventKey="1"
onEntered={() => {

props.setDisableTopics([]);
}}
onExited={() => {

props.setCompareTime([]);
}}>
<Accordion.Header>By Time Range</Accordion.Header>
<Accordion.Body className="px-0 d-flex justify-content-center" style={{

flexWrap: "wrap" }}>↪→

{["RT", "3h", "24h", "3d", "1w", "1M"].map(tb => {
return (

<TimeButtonPortrait />
);

})}
</Accordion.Body>

</Accordion.Item>
</Accordion>

</div>
);

The AccordionFilter component is a container for two Accordion.Item compo-
nents, one for the topic filter and one for the time range filter.

Accordion.Item components are used to create the collapsible elements for the topic
and time range filters. Both of them has an onEntered and onExited event handler that
will be called when the element is expanded or collapsed; the onEntered event handler
will reset the time range filter when the topic filter is expanded, and onExited event
handler will reset the topic filter when the time range filter is collapsed, and vice versa.
Finally, the CompareGraphsListPortrait component is used to create the list of topics
for the topic filter.

74



7.5 – Graph comparison

Note that, by external requirement, the maximum number of possible concurrent
comparison graphs is four, being it a combination on different time range or different
topics, so only two possibilities: four different topics over the same time range, or two
different topics with two different time ranges.

7.5.3 Graph comparison view
After users choose the topics and time ranges for the graphs and collapsed the sidebar,
they can get in the view for graphs they chose. The graphs will be displayed over a grid
layout, with the same size and the same scale, like a waterfall.

Figure 7.21: Graph comparison (topic) Figure 7.22: Graph comparison (time)

75



Dashboard

Figure 7.23: Graph comparison - landscape mode

The candidate has to admit this is not the best solution for such a feature, but in
terms of maintainability this may come out as the optimal. The user can easily find
the graphs they have chosen, and the user can manipulate the order of the graphs by
adjusting their order of choice on the filter in the sidebar anytime they tap the icon on
the header bar. For programmers, the layout is easy to understand, and can be easily
decomposed if they have better ideas.

The candidate has already demonstrated the relevant JavaScript code in the previ-
ously on how the graphs are distributed in the waterfall view, and thanks to the responsive
nature of CSS and React.JS, the candidate does not need extra style sheets for the land-
scape mode. However, for the sake of comparison, it needs a proper value set on the size
of graphs, in order to allow the user to see at least two graphs in one view. After a few
testing, the fitting value for comparison for a balanced configuration between portrait
and landscape mode would be:

body.mobile-view
#container-dashboard

#graphBox
.row-graph > iframe

height: 40vh
width: 90vw
border: zero()
padding: zero()

Reminding that the candidate has demonstrated before, for a single-graph view, the
height and width value is 50% and 80% of the view port height and width respectively.
Comparing to the single-graph view, the style sheet takes advantage of more horizontal
space than under landscape mode, and the user get to see graphs in richer detail thanks
to the more lengthy x-axis.

76



Part II

Reorganizing the back-end:
integrating Apache APISIX®

77





Chapter 8

Background

8.1 A parallel in real life
Throughout the history of computer network, there existed many solutions on the model
of communication between a more distributed computer with a rather centralized system.
In most cases, the distributed computers can be named as "clients" while the centralized
system called "server".

If one simplifies the communication to an extreme, one may get a loop of "clients
send requests to the server, server respond with responses" until it ends. After gener-
ations of iterations the communication model has inevitably developed into protocols
consist of series of complicated interactions, with both internal and external components
participating in it.

Viewers can imagine the need of managing the request/response model of communi-
cation, if the candidate is required to provide a parallel, it is like two person talking to
each other; this is an extreme case, and the candidate will try to add up other aspects to
simulate the communication between server and clients.

The need of highest priority should be asking both person to speak the same language;
the parallel of this in the context of network communication is requiring both ends to use
the same protocol, preferably the same version, like one may experience obstacles when
communicating with a time traveler who speaks the same language from three hundred
years ago, the difficulty may come from the fact that the language itself has evolved,
also the context for it has shifted rapidly. So it is obvious that communications need
uniformed format and context.

Secondly, arguably is the security aspect of the communication. Depending on the
context, it is very common that the user has polar opposite requirements on different
types or context of the communication, but ultimately, the user needs containable, or
even better, controllable security properties. A person may go from having a secret
conversation about what he is hiding in his closet, to giving a speech on television to
millions of people, as long as the person is aware of it. In computer networks, it should
be among the top priorities for users to acknowledge the current state of security aspect
of the communication.

If the communication is happening in a public office where people come from all over

79



Background

the city to deal with official documents, then definitely a more complicated system is
needed for management. Further requirements may include a ticket system that puts
all requester in a order based on specific properties such as the date time when the
appointment was made, security staff at the door that keep both the communications
and people safe inside, officials at the door to deal with simpler daily tasks such as
checking when documents will be ready, answering if the staff inside are on lunch break,
or tell people that they need to go somewhere else, the list goes on.

The viewer may have guessed where the candidate is going to. If it is possible to
make a parallel from public office to the server, then the system that is in charge of such
management can also be found in the computer network world, for example, an API
gateway. The candidate will introduce the concept in the following section.

8.2 API gateway
It is difficult, at least to the candidate, to suddenly prompt a solid definition on what an
API gateway is. For its abstract nature, the candidate will continue to use the parallel
example he used in section 8.1 to illustrate the concept.

A public service office is usually busy all the time, which makes the management on
incoming guests a more crucial component among them all. More specifically, it might
as well be a post office. It is in charge of sending and receiving a huge amount of paper
mails and packets every single day, alongside banking services.

Every viewer might does not have experience in working in a post office but definitely
has visited one in their life. The first thing they need in front of the post office is a
ticket which confirms the guest’s presence and his position in a line if there is one, and
the management system is in charge of separating the traffic by types of services, and
maintain a flexible schedule to distribute tasks to each desk. When a ticket gets printed,
both the guest and the system will be aware of an approximate time slot for engaging
the service. Actually, if the office has a line that is so long the guests cannot even see the
end of it, then the guest is encouraged by staff at the door to look for another post office
in the neighborhood.

When the guest is called to the desk, he will state his purpose to the attendant
and optionally show relevant identity documents. The attendant will check for user
information stored in the system, and get all necessary information needed for the service.
If the guest is new to the postal office, the attendant can still manage the service in
anonymous at a cost of efficiency.

The guests may want to send a mail, the attendant acknowledges this and will inspect
the envelop. What the attendant will do is looking for specific information on specific
position on the envelop. There might be situations where the guest did not provide
sufficient information such as the postal code, or wrote it at a wrong position. The
attendant will either return the mail to the guest asking for correction, or do the job for
him by copying information to the right spot on the envelop. Anyway, the attendant will
make sure the correct information are located in correct positions. Once all information
are correctly filled, the attendant will put the mail in a queue or a box, waiting for further
management, and wave the guest goodbye to conclude the interaction.

80



8.2 – API gateway

The real life example more or less describes the role of an API gateway during the
communication between a host and a server. It reorders the incoming requests, possibly
redirect them for load balancing, managing authentication and authorization process,
and help forwarding requests by populating necessary blanks based on information the
requests is carrying. Here the procedure is not meant to be authenticate, but to provide
a simple glimpse on the concept.

8.2.1 Apache APISIX®
Apache APISIX® is a high-performance cloud native API gateway for API requests and
microservices. [1]. Apache APISIX® provides state-of-the-art features for API gateway,
thus introducing it has a huge potential in managing the RESTful API calls towards the
PROMET&O server. It includes two main components, namely Nginx and etcd, they
serves as reverse proxy and control center respectively.

Figure 8.1: APISIX

One significant feature that is worth mentioning is the "hot configuration". Apache
APISIX® supports configuration through both a local file, typically in .yaml format,
or in a way that is called "hot configuration", which means administrators are able to
configure the routes through API calls to administrative API endpoints without restarting
the server. It credits to the etcd component that is part of Apache APISIX®, the
topic of that is not much relevant to this thesis so the candidate will not dig deep into
it. In conclusion, hot configuration provides great efficiency comparing to traditional
maintenance procedure, where administrators typically need to modify local files and
restart the server for the modifications to take effect.

Another stellar advantage of Apache APISIX® is its library of plugins, which everyone
may would not like to call rich, but is adequate for majority of common operations over
an API gateway. For example, its redirect plugin supports overwriting contents in
the header from a HTTP request, the openid-connect plugin will hugely improve the
communication efficiency for communicating with a regular authentication service using
its prebuilt configurations based on openid-connect protocol. The list goes on.

81



Background

Other advantages including high performance and low latency, wide support on cur-
rent generation communication protocols like MQTT and WebSocket, and integrated
observability, are not so obvious to regular users but indeed makes a difference.

The motivation for integrating Apache APISIX® into PROMET&O is also an insight
for the future development. Previously, relevant colleagues have finished a magnificent
job on current architecture. However, as the development goes on, the technical debt
gets increased inevitably along the way, as Nginx may reveal to be less than sufficient for
development purposes – features such as custom plugins and load balancer are all those
who will gradually show their value for the long run. And, since APISIX includes Nginx
as a part of it, it will not increase current technical debt.

In the next section 8.3 the candidate will introduce the structure of the architecture
of PROMET&O and analyze potential risks.

8.3 Current state of the system
Right now, the architecture of PROMET&O is a regular client-server model. Currently
there exists three different name spaces standing for three different system configured on
different locations. Each name space can be divided into four parts in terms of function-
ality: the client, the back-end, the microservices, in addition to an external component
Nginx as a reverse proxy.

The client, self-explanatory enough, is the single-page application created using Re-
act.JS and relevant tools that the candidate has participated in developing. It serves as
the single user interface that users are supposed to interact with, whereas other services
such as the authentication, provided by Keycloak, also exposes its ports in certain situ-
ations but merely temporarily. It is hosted on a simple server which the candidate calls
"internal server".

The back-end is a simple server developed using Express.JS that is in charge of
communicating user requests with all the microservices, and external data sources through
the MTTQ protocol. In contrary to the "internal server", the candidate will refer to this
server as "external server", whereas "external" indicates an "external layer" comparing to
the internal one.

Next the candidate will list all microservices that currently resides in each name space:

• Authentication

– The authentication service is provided by Keycloak

• Data source

– Grafana is in charge of the accessing external data sources and transmitting
data stream

• Database

– The database for storing user feedback is written by MySQL

82



8.3 – Current state of the system

Those mere three microservices have composed adequate and well-functioned appli-
cation for user needs.

Figure 8.2: Original container using Nginx

The candidate will share some of his thoughts on possible improvement on current
system structure.

Firstly, and in general, the candidate argues that the container needs proper decou-
pling. Taking the matter to an extreme, if someone who is not an expert in the web
development field takes a look at this component list, he might have a hard time under-
standing what purpose each container serves.

Also, originally the microservices inside each docker compose are dependent on each
other, which can be a subject to an argue; Shown in Fig. 8.3, it is not reasonable to
prevent client from booting up simply because db is not starting properly. Doubts like
this are among the top reasons of proposing an evaluation on current architecture.

Secondly, despite having nonidentical data sources in the back-end, the front-end
user interface of each name spaces are majorly similar from each other. What’s more, it
actually does not make sense to have client coupled with other microservices both in
terms of the perspective from the user and the developer. The candidate believes reason
above are sufficient for a reorganization on the front-end component specifically.

Thirdly, it does make sense that each name space has its own authentication service
dedicated to itself, but considering the maintainability on the service, and the realm
feature that Keycloak expertise on, it would be more beneficial lifting the Keycloak
service up to the same level as the API gateway, i.e. a centralized authentication service
for all name spaces. The concept of realms will be further explained in section 10.1.

Above are the major points that can potentially benefit the system in terms of various
aspects. For example, lifting both authentication service and the user interface will have

83



Background

Figure 8.3: The dependency on db from client

great positive impact on maintainability and space resources at the cost of moderate
development time.

84



Chapter 9

The new architecture

9.1 An overview on the new architecture
The candidate has shown a list of components within each individual name space in
the previous section 8.3, as he discussed in that section, the first potential improvement
brought upon by Apache APISIX® is a reconstruction of current architecture, which is
the primary goal of this chapter. The candidate will follow a slowly progressing procedure
and demonstrate the process of transformation.

The candidate briefly introduced the current architecture of PROMET&O. It can be
summarized as Fig. 9.1.

User

Nginx (Reverse Proxy)

ns02ns01 ns03

Each has:
- Client
- Server
- Grafana
- Keycloak
- Database
- Nginx

Figure 9.1: The old architecture

Like the candidate has mentioned before, some microservices can benefit the struc-
ture by getting lift up to the top level, namely client and Keycloak. This can be real-
ized by simply separating the original docker-compose.yml file under each name space,
and distributed them in their new locations. For example, the new client may have its
docker-compose.yml file written like:
services:

client:

85



The new architecture

build:
context: ./
args:

VITE_APP_DOMAIN: ${DOMAIN}
environment:

CHOKIDAR_USEPOLLING: true
DATABASE_HOST: ${DATABASE_HOST}
MYSQL_PORT: ${MYSQL_PORT}
MYSQL_DATABASE: ${MYSQL_DATABASE}
MYSQL_USER: ${MYSQL_USER}
MYSQL_PASSWORD: ${MYSQL_PASSWORD}

restart: on-failure
networks:

apisix_apisix:
networks:

apisix_apisix:
external: true

The highlight here is the newly added network property that connects this docker
container with an external network that is created in another docker compose named
apisix, this ensures connectivity between microservices in different docker composes to
simulate domain resolution through DNS servers. Note that the container does not expose
any port, as other docker composes can communicate with each other without exposing
any port.

After the relocation, the general structure of each name space can be transformed
into Fig. 9.2. Once everything is properly placed, then as the viewer can see, the work
flow is already less confusing than the original architecture where client somehow resides
alongside with back-end servers.

User

Client

APISIX Keycloak

Server

Database

Grafana

Server

Database

Grafana

Server

Database

Grafana

Remote01 Remote02 Remote03

Figure 9.2: The new architecture

86



9.2 – Integrating the API gateway

Taking an HTTPS request as an example, once the user before the client sends HTTPS
requests to the remote server, and the request will pass through Apache APISIX® first,
it performs the authentication and authorization by communicating with Keycloak using
plain HTTP, then determines how to respond to the user.

9.2 Integrating the API gateway
Basically speaking, Apache APISIX® mainly performs according to the configurations
on various routes. A route in the context of Apache APISIX® can be considered a
rule set where it constitutes a specific way to handle requests based on its metadata like
host, uri, etc. For example, a route can mandate requests from https://localhost:443
requesting GET /api to the http://backend:3001.

The candidate deployed Apache APISIX® as an independent docker compose using
resources obtained from its official website. The docker-compose.yml file of it is shown
below:

services:
apisix:

image: apache/apisix:latest
restart: on-failure
volumes:

- ./apisix_conf/config.yaml:
/usr/local/apisix/conf/config.yaml:ro

- ./apisix_conf/apisix.yaml:
/usr/local/apisix/conf/apisix.yaml:ro

- ./conf/cert/server_win.crt:
/usr/local/apisix/conf/cert/server_win.crt:ro

- ./conf/cert/server_win.key:
/usr/local/apisix/conf/cert/server_win.key:ro

depends_on:
- etcd

ports:
- "9180:9180/tcp" #admin port
- "9080:9080/tcp" #default HTTP port
- "9091:9091/tcp" #prometheus
- "9443:9443/tcp" #default HTTPS port
- "9092:9092/tcp" #prometheus
- "443:443/tcp" #HTTPS port in use

networks:
apisix:

Here the candidate mounted a pair of self-signed certificate and the corresponding
secret key file, as the users are supposed to communicate with API gateway through the
HTTPS protocol only. The file also properly exposes relevant ports including ones for
requests and ones for administration. The candidate chooses to expose port 443 as it is
the default port number used by HTTPS protocol thus simplify configurations in future
development, but choosing other ports will not affect its functionalities.

87



The new architecture

When introducing Apache APISIX®, the candidate has highlighted its "hot configura-
tion" feature, it proves to be a better method in general comparing to static configuration
through modifying .yaml files, since during development the candidate will engage in a lot
of back-and-forth when experimenting the configuration, in the final stage of the thesis,
the candidate will export all dynamic settings into static file for consistent storage.

Now the candidate will first configure the route to the homepage, a simple piece of
configuration is performed:

{
"id": "entry",
"uri": "/*",
"upstream": {

"nodes": {
"client:5000": 1

}
}

}

Taking it as an simple example the candidate can explain the basic structure of a
route configuration request made to the admin control API of Apache APISIX®. The
mandatory components of a configuration like this are:

• id

– It is the sole identifier for every route, the administrator needs it for future
management on the route defined.

• uri

– It is used to match the incoming request. For example, for a request that is
a GET /api, the settings defined for /* will take effect. It generally follows a
"best-match" principle for multiple matches.

• upstream

– It tells the gateway where this request should be forwarded to. For example,
all requests relating to authentication should be forwarded to the upstream
defined for Keycloak. It is possible to define multiple up-streams for a single
route, thus achieving load balancing.

There are also optional fields such as plugins that will provide further help. In the
following sections, plugins such as serverless-pre-function will prove to be useful for
route configuration.

If the configuration is successful, Apache APISIX® will respond with a 200 OK and
the respond body that has been populated by the effective configuration on the domain,
like what is shown below:

88



9.3 – The authentication service

Figure 9.3: Successful configuration on a route

With knowledge on those components, it is obvious now what the candidate is at-
tempting to do here; it simply forward every single request to the client through HTTPS.
By default, everything still remains the original behavior; indeed, the web application
originally had all its functionalities started from client:5000.

After this section, the candidate will start demonstrating how configuration on in-
dividual route are applied to each of them. Since the candidate has explained on the
basics, he will omit some of the details in later sections and focus more on the purpose
or meaning behind each step.

9.3 The authentication service
The Keycloak is the sole authentication service provider in our project, and possibly the
single point of failure now in the new architecture, in exchange for higher maintainability.
By taking advantage of the realm feature, we will have the ability to separate each
name space into individual and independent realms, and maintain authentication and
authorization for each of them on a centralized manner.

keycloak:
ports:

# - "8080:8080" # Can expose for debugging
# - "8443:8443"

image: keycloak/keycloak:23.0.7
environment:

KEYCLOAK_ADMIN: ${KEYCLOAK_ADMIN}
KEYCLOAK_ADMIN_PASSWORD: ${KEYCLOAK_ADMIN_PASSWORD}
KC_FEATURES: declarative-user-profile
KC_PROXY: edge

volumes:

89



The new architecture

- ./keycloak/realm/.:/opt/keycloak/data/import
- ./keycloak/plugins/.:/opt/keycloak/providers
# - ./keycloak/data/:/opt/keycloak/data/h2/
# - ./keycloak/certs/keycloak.crt:/etc/keycloak/certs/keycloak.crt
# - ./keycloak/certs/keycloak.key:/etc/keycloak/certs/keycloak.key

command:
- start-dev
- --import-realm
- --hostname-url=https://${DOMAIN}/
# - --https-port=8443
# - --https-certificate-file=/etc/keycloak/certs/keycloak.crt
# - --https-certificate-key-file=/etc/keycloak/certs/keycloak.key

restart: unless-stopped
healthcheck:

test: "exit 0"
networks:

- apisix

There were some back-and-forth when determining whether to use HTTPS or HTTP
to communicate with the Keycloak, as one can see from the file that the candidate has
commented out all lines relating to the HTTPS option. This is mainly because the
concept of SSL termination.

SSL termination means that the API gateway, in this case Apache APISIX®, upon
receiving packets through SSL tunnel (HTTPS connection), terminates the SSL tunnel
on the spot, and redirect the message to internal services (also known as "offloading")
using plain HTTP connection. This is a common practice in network architecture as
the decryption is a resource intensive job, so by dividing the computation load with the
gateway it actually benefits performance on the back-end side, one can easily see this
improves the immunity to malicious attacks with huge waves of incoming requests like
the DDoS attack. The view can notice in the route configurations throughout this part
that all internal communications will be through regular HTTP.

Once the Keycloak container has been successfully set up, it will automatically import
data from local persistent storage thanks to the --import-realm option. This file is
periodically maintained by the candidate.

The route for accessing Keycloak through Apache APISIX® is shown below.

{
"id": "keycloak",
"uri": "/keycloak/*",
"plugins": {

"proxy-rewrite": {
"host": "keycloak:8080",
"regex_uri": [

"^/keycloak/(.*)",
"/$1"

]
}

},

90



9.4 – The Grafana routes

"upstream_id": "keycloak-upstream"
}

• host modifies the host field of the request to keycloak:8080, this will for example,
changing a request to ns01-prometeo.polito.it/keycloak/ to keycloak:8080/.
The main benefit of this is avoiding any potential cross-origin policy as it allows
sending all front-end request from a uniform origin. The line below indicates the
plain HTTP connection mentioned previously.

• regex_uri matches a sub-string of the URI and try to replace it with another string.
In this case, it will replace the part starting from /keycloak/ with all the things
after it, effectively remove /keycloak/. This will correctly constructs the new
request. For example, from ns01-prometeo.polito.it/keycloak/realms/... to
keycloak:8080/realms/.... Combining with host, it redirects the request to the
real internal address.

• "upstream_id" is referring to a predefined set of rules to be applied to a certain
upstream. In this case, it is referring to one named keycloak-upstream . Its
content is very self-explanatory. As shown below, it reads "redirecting all requests
to keycloak:8080".

{
"id": "keycloak-upstream",
"nodes": {

"keycloak:8080": 1
},
"scheme": "http",
"type": "roundrobin"

}

In some occasions, the requests will inevitably call for GET /realms directly without
adding the /keycloak/ part. In those cases, a specific route is defined. Since all requests
aimed for /realms naturally go to Keycloak, a simple switching on host is sufficient.

{
"id": "realms",
"uri": "/realms/*",
"plugins": {

"proxy-rewrite": {
"host": "keycloak:8080"

}
},
"upstream_id": "keycloak-upstream"

}

9.4 The Grafana routes
One vital feature for the dashboard is its communication with the data source set on
Grafana, so naturally we want to improve the performance on those requests for better

91



The new architecture

efficiency. The candidate has configured the routes in Apache APISIX® for Grafana,
specifically:

{
"id": "chart",
"uri": "/chart*",
"plugins": {

"proxy-rewrite": {
"host": "grafana:3000",
"scheme": "http",
"regex_uri": [

"^/chart/(.*)",
"/$1"

],
"headers": {

"set": {
"X-WEBAUTH-USER": "${cookie_User}",
"X-WEBAUTH-ROLE": "${cookie_Role}"

}
}

}
},
"upstream_id": "grafana-upstream"

}

This configuration is similar to the Keycloak one, where:

• host modifies the host field of the request to grafana:3000 avoiding cross-origin
issues.

• regex_uri removes /chart/ for the URL.

• headers is self-explanatory, indeed it adds new headers to the request for upstream
to use. It will be used by Grafana to differentiate user groups.

• upstream_id indicates all requests matched by the rule set are redirected to the
upstream defined for Grafana.

{
"id": "grafana-upstream",
"nodes": {

"grafana:3000": 1
},
"scheme": "http",
"type": "roundrobin"

}

The configuration on this route also enables the usage of the built-in dashboard of
Grafana for easier maintenance.

92



9.5 – Review

9.5 Review
In previous sections, the candidate has shown several examples on bridging the front-end
container (Client) with the back-end container (Remote) or the authentication service
(Keycloak). After correct configuration, the basic work flow of communications through
the architecture the candidate has demonstrated can be described by:

• The client sends a request through HTTPS

• Apache APISIX® receives it and offloads

• Apache APISIX® forward the request to the back-end through HTTP

Now the new architecture works just like what the candidate has proposed in sec-
tion 9.1. But it is easy to see that right now Apache APISIX® is merely a replacement
for Nginx as a reverse proxy, and currently its sole mission is to perform the SSL termi-
nation. In current stage, this is adequate as it demonstrated the viability of the current
architecture. In the next section, Apache APISIX® will appear as a powerful tool for
processing requests on behalf of the backend and easing the pressure for it.

Despite not reaching its full potential, Apache APISIX® has already displayed several
advantages and proves its value in the system, some of them could be:

• Flexibility

– By comparing the new and old cluster, the viewer can easily observe that
unlike the original Nginx reverse proxy, Apache APISIX® does not require an
component inside the remote docker-compose, as Apache APISIX® presents
itself as a replaceable plugin, which means upon unexpected error in the future
development or further iteration over the system, it will be easy to detach it
from the architecture.

• Efficiency

– By utilizing etcd, Apache APISIX® provides huge improvement on efficiency
by offering the possibility to modify its configuration over a snap of finger.
It appears more obvious when doing experimenting on it due to repeat of
identical operations.

• Performance

– Apache APISIX® takes advantage of asynchronous and non-blocking opera-
tions, it appears to be more efficient than the event driven mechanism from
Nginx in most cases.

On the other hand there are also several disadvantages against Apache APISIX®
such as a steeper study curve. For example, one might need to get accustomed to the
lua programming language to really take advantage on its plugin functionalities. Apache

93



The new architecture

APISIX® is also more focused on projects that is on larger scale, which PROMET&O
has yet to fully become at this stage, while Nginx is more light-weighted but solid. Thus
the candidate would never rule out the possibility of removing the gateway or replacing
it with its alternatives in the future. When making such comparison and attempting to
iterate, it oftentimes tends to be disagreement over philosophy rather than technique and
design, but the opportunity on creating major iterations on technologies has also always
been an excitement for developers.

94



Chapter 10

Centralizing the authentication
service

10.1 Introducing realms in Keycloak
Throughout the development of PROMET&O, the candidate and colleagues before him
have chosen Keycloak as the authentication service for the system. In Keycloak, the
concept of "realm" is core to its management mechanism.

The candidate would like to consider a realm as an "isolated security domain". The
keyword here is "isolated"; each authentication realm are supposedly independent to
each other, with their own set of rules and configuration, and more importantly user
information storage. To define it loosely, each realm can be seen as siblings with similar
look from the outside, but can be different internally in terms of personality or mindset.
They follow an identical data format, but the content of the data could differ. A pair of
configuration of different realms is shown in Fig. 10.1.

Figure 10.1: Realm settings (1)

Realm is ideal for the main goal of this chapter. By setting up different realms for
each name spaces, Keycloak could maintain independent configurations and data for each

95



Centralizing the authentication service

remote back-ends, combining with upstream settings from Apache APISIX®, the project
can have a true-to-the-name independent and centralized authentication service.

10.2 The indented workflow
As the candidate finished the introduction to the concept of realm, in this section he will
explain the intended workflow of the authentication, and how realms are used to help
building it.

User

Client

APISIX Keycloak

Server

Database

Grafana

Server

Database

Grafana

Server

Database

Grafana

Remote01 Remote02 Remote03

Figure 10.2: The new architecture

Let the candidate roll back to the content from previous chapter, as shown in this
diagram, to centralize Keycloak and lift it to the top level of this architecture, it is
necessary to have the following conditions.

• Keycloak does not belong to any other clusters, it will be on its own like Client,
APISIX and Remote, and eventually does not shared the network with anyone
except the gateway.

• Keycloak only contacts or gets contact by other components through the API gate-
way.

The first point is easy to implement, the candidate can simply move Keycloak to a new
docker-compose of its own, with an independent docker-compose.yaml file. The second
point, though it may not be as easy implementing, is fairly comprehensive; all requests
and responds sent from Keycloak is going through the gateway without acknowledging
other components, then Apache APISIX® is solely in charge of redirecting them.

To explain the workflow in its full extent, the candidate will make a more detailed
example.

• A user access the client.

96



10.3 – The login flow

• The client will send a GET /userInfo request for user information through the
gateway, Apache APISIX® will handle the request based on whether it has a valid
cookie.

– If the request does not possess a cookie, a 401 Unauthorized indicates the
user is currently anonymous and is able to perform a login.

– If the user has the cookie, it decodes the cookie and sends the decoded user
information back in a 200 OK, and the user does not need to log in again until
logged out.

• An anonymous user can choose to login through interacting with the front-end.

• Keycloak will respond with a self-generated form requesting credentials.

• The user fills the form and sends it back.

• Keycloak authenticates the credentials.

– If the credentials are legal, Keycloak will send an authentication code back
to the client.

– Else, again a 401 Unauthorized will be sent back.

• The client will use the code to request from Keycloak an access token which
is a base-64 encoded JSON object. The client will add the tokens in cookies for
continuous usage.

– This is the cookie that the first request is looking for.
– Upon decoding, the client will have all the user information it needs.
– If the user access the homepage again he will not be anonymous anymore thus

does need to log in again unless logged out.

The basic flow of the authentication is more or less the same as the Authentication
Code Flow defined in RFC 6749 [3] with some inevitable tweaks.

10.3 The login flow
10.3.1 GET /auth/login
As the candidate discussed in section 10.2, when anonymous taps on the login button,
the user will be able to claim a form generated by Keycloak. To request such form, it
is needed to send a request to the auth endpoint on Keycloak, where extra credentials
below needed:

• response_type should be code here to perform the Authentication Code flow
defined by OAuth 2.0 standard.

• client_id is fixed as Grafana the same way as they are created in each realm.

97



Centralizing the authentication service

• scope can be a various of values, in this case we will use the default value openid.

• redirect_uri specifies to Keycloak where it is supposed to redirect the user after
successful login claim, in this case, as the flow has a two-step token exchange, it is
needed to fill in https://$host/auth/login/callback, where $host is the built-in
variable indicating the host of the request, this uniforms format of requests.

Finally, the configuration used for the flow would be like:

{
"id": "auth-login",
"uri": "/auth/login",
"plugins": {

"serverless-pre-function": {
"phase": "rewrite",
"functions": [

"return function() local h=ngx.var.host or '';
local ns=h:match('^(.-)-')or'AuthRealm';
local r='https://'..h..'/auth/login/callback';
ngx.redirect(
'https://'..h..
'/keycloak/realms/'..ns..
'/protocol/openid-connect/auth?

response_type=code&
client_id=Grafana&
scope=openid&redirect_uri='..r,302);

ngx.exit(ngx.HTTP_OK)
end"

],
"priority": 10

}
}

}

If the host contains a -, which holds true for all possible URLs for this project, it
fetches the sub-string before it, so the possible outcomes are ns01, ns02 and ns03 in
current stage. Else it takes the value AuthRealm that is used for development. In the
end it save the string as a header. This is a common procedure shared by all routines for
differentiating realms according to name spaces. Then this string is used to redirect to
endpoints in different realms.

10.3.2 GET /auth/login/callback
At the end of last step, the user will eventually obtain an authentication code for
further token exchange. It will be carried over to /auth/login/callback with a code
parameter on the query. The token exchange will be performed by the API gateway on
behalf of the back-end to reduce pressure.

{
"id": "auth-login-callback",

98



10.3 – The login flow

"uri": "/auth/login/callback",
"plugins": {

"serverless-pre-function": {
"phase": "rewrite",
"functions": [

"..."
]

}
}

}

Where the inline functions can be expanded to the equivalent one demonstrated below.

local http = require("resty.http")
local cjson = require("cjson.safe")

local _M = {
version = 1.0,
priority = 1005,
name = "keycloak-callback",
schema = {}

}

function _M.rewrite(conf, ctx)
local host = ngx.var.host or "AuthRealm"

local realm_name = "AuthRealm"
local client_secret = os.getenv("keycloakSecretId")
local prefix = host:match("^([^%-]+)%-")

if prefix and prefix:lower():sub(1,2) == "ns" then
realm_name = prefix
client_secret = os.getenv("keycloakClientSecret"..prefix:upper()) or ""

end

local code = ngx.req.get_uri_args().code
if not code then

ngx.log(ngx.ERR, "Missing authorization code")
ngx.exit(400)

end

local params = {
grant_type = "authorization_code",
client_id = os.getenv("keycloakClientId"),
client_secret = client_secret,
code = code,
redirect_uri = "https://"..host.."/auth/login/callback"

}

local httpc = http.new()
httpc:set_timeout(5000)

99



Centralizing the authentication service

local res, err = httpc:request_uri(
"http://keycloak:8080/realms/"

..realm_name..
"/protocol/openid-connect/token", {

method = "POST",
body = ngx.encode_args(params),
headers = {

["Content-Type"] = "application/x-www-form-urlencoded",
},
ssl_verify = false

}
)

if not res then
ngx.log(ngx.ERR, "Keycloak request failed: ", err)
ngx.exit(502)

end

local data = cjson.decode(res.body)
if not data or data.error then

ngx.log(ngx.ERR, "Token response failed: ", data and
data.error_description or "Decoding failed")↪→

ngx.exit(401)
end

local cookie_value = cjson.encode({
token = data.access_token,
refresh_token = data.refresh_token,
id_token = data.id_token,
authenticated = true

})

ngx.header["Set-Cookie"] = {
"user_info="..ngx.escape_uri(cookie_value).."; Path=/; Secure;

HttpOnly; SameSite=Lax",↪→

"access_token="..data.access_token.."; Path=/; Secure; HttpOnly;
SameSite=Lax",↪→

"refresh_token="..data.refresh_token.."; Path=/; Secure; HttpOnly;
SameSite=Lax"↪→

}
ngx.redirect("https://"..host.."/")

end

return _M

The function does the following operations

1. Determining the realm by breaking down the host. The basic logic, being "splitting-
then-comparing" is similar to the last routine

2. Retrieving access code from the query returned by the first step of the login flow

100



10.3 – The login flow

3. Forming a new request using both realm , access code and environmental variables

4. Set all necessary cookies

10.3.3 GET /userInfo
The inspection on the required cookie is performed by Apache APISIX® using a cus-
tomized plugin. The route used for GET /userInfo are below:

{
"id": "userInfo",
"uri": "/userInfo",
// "upstream_id": "server-upstream"
"plugins": {

"serverless-pre-function": {
"phase": "rewrite",
"functions": [

"..."
]

}
}

}

To properly demonstrate the function used in serverless-pre-function, the can-
didate will demonstrate separately the code block because it was converted into a single
line to adapt to the JSON criteria. A well formatted function is shown below:

return function(c)
-- Get HTTP Cookie header
local h = ngx.var.http_Cookie
if not h then

ngx.exit(401)
end

-- Extract user_info from cookie
local u = h:match('user_info=([^;]+)')
if not u then

ngx.exit(401)
end

-- Clean and decode user info
local d = ngx.unescape_uri(u)

:gsub('^%s*[jJ]%%3A', '')
:gsub('^%s*j:?', '')
:gsub('[%c%z]', '')

-- Decode JSON user info
local j, e = pcall(require('cjson').decode, d)
if not j then

ngx.exit(400)

101



Centralizing the authentication service

end

-- Extract token
local t = e.token
if not t then

ngx.exit(401)
end

-- Extract and decode JWT payload
local p = t:match('[^.]+%.([^.]+)%.')
p = ngx.decode_base64(

(p:gsub('-', '+'):gsub('_', '/') .. string.rep('=', (4 - #p % 4) % 4))
)

-- Decode JWT payload JSON
local x, y = pcall(require('cjson').decode, p)
if not x then

ngx.exit(401)
end

-- Verify required fields
if not y.preferred_username or not y.realm_access.roles or

#y.realm_access.roles < 1 then↪→

ngx.exit(403)
end

-- Set cookies
ngx.header['Set-Cookie'] = {

'User=' .. y.preferred_username .. '; Path=/',
'Role=' .. y.realm_access.roles[1] .. '; Path=/',
'id_token=' .. (e.id_token or '') .. '; Path=/',
'refresh_token=' .. (e.refresh_token or '') .. '; Path=/'

}

-- Set response headers
ngx.header['Content-Type'] = 'application/json'

-- Prepare response
local response = {

active = true,
username = y.preferred_username,
role = y.realm_access.roles,
email = y.email

}

-- Copy all additional fields from JWT payload
for k, v in pairs(y) do

response[k] = v
end

102



10.4 – The logout flow

-- Send JSON response
ngx.say(require('cjson').encode(response))

end

This lengthy lua function effectively is trying to do the following things:

1. It extract tokens obtained from login flow from the cookie.

2. It sanitizes the token, and decodes it.

3. It reorganize the necessary information into a new JSON object, and sends it back.

4. Upon any error, it sends back corresponding status code.

10.4 The logout flow
The logout flow for each user is easy to operate, as the simplicity is one of the main
goal of the design. In fact, any user can simply tap on the logout button that resides on
top-right of the home view and that concludes the whole experience on the user’s side.
This is the original interaction logic that remains unchanged from previous architecture.

From the perspective of the developers, there are more complicated details behind
it. The logout flow, defined by OpenID-Connect or OAuth 2.0 standard, is similar to
the log-in flow. It is basically a request to the logout endpoint with some prerequisites
such as credentials (tokens) obtained through the login flow and should be stored in the
cookies. More specifically,

The client fetches from the logout endpoint set by Keycloak, with a query including

• client_id

– The client that the user logged into, in this project always "Grafana"

• id_token_hint

– The token that obtained though login that indicates the id of the user.

• post_logout_redirect_uri

– Similar to login, Keycloak needs to know where it should redirect the user to
after the logout

The client also needs to clear all the relevant cookies that are used to store user informa-
tion.

• Tokens, User, Role, etc...

103



Centralizing the authentication service

Figure 10.3: Successful logout (1) Figure 10.4: Successful logout (2)

The business logic of the logout flow has been constructed through an APISIX route
on POST /auth/logout, for more details, check the code below.

{
"id": "auth-logout",
"uri": "/auth/logout",
"plugins": {

"serverless-pre-function": {
"phase": "rewrite",
"functions": [

"..."
]

}
}

}

where a readable version of the functions is shown below.

function _M.rewrite(conf, ctx)
local host = ngx.var.host or "AuthRealm"

local realm_name = "AuthRealm"
local prefix = host:match("^([^%-]+)%-")
if prefix and prefix:lower():sub(1,2) == "ns" then

realm_name = prefix
end

local cookies = ngx.var.http_Cookie or ""
local id_token = cookies:match("id_token=([^;]+)")

if not id_token then
ngx.log(ngx.ERR, "Missing id_token in cookies")
ngx.status = 400
ngx.header["Content-Type"] = "application/json"

104



10.4 – The logout flow

ngx.say('{"error":"missing_id_token"}')
ngx.exit(400)

end

local params = {
clientId = "Grafana",
post_logout_redirect_uri = "https://"..host.."/",
id_token_hint = id_token

}

local logout_url = string.format(
"https://"

..host..
"/keycloak/realms/%s/protocol/openid-connect/logout?%s",

realm_name,
ngx.encode_args(params)

)

local cookie_list = {
"Role=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT",
"User=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT",
"refresh_token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT",
"connect.sid=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT",
"user_info=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT",
"id_token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT"

}

ngx.header["Set-Cookie"] = cookie_list
ngx.redirect(logout_url)

end

return _M

The function will perform the following operations. Overall, it is very similar to the
GET /auth/login/callback route introduced in last section.

1. Differentiate realms by breaking down the content of host

2. Retrieving id_token from the cookie

3. Forming a request to the logout endpoint exposed by Keycloak using available
information

4. Clear out all relevant cookies

105



106



Chapter 11

Review on the new architecture

11.1 The objectives achieved
In the first chapter 8.3 of this part, the candidate has named several main objectives
according to useful functionalities of Apache APISIX® and reorganizations in general.
Those objectives are:

• Decoupling the microservices in the backend for a more clear and independent
architecture. More specifically, by separating the microservices by its functionalities
(API endpoint, authentication, and general microservices) the system will benefit
in terms of efficiency and maintainability.

• Moving the client before the API gateway as the original placement does not make
sense, the client is supposed to be an edge component to the system.

• Centralizing the authentication service by exploiting realms in Keycloak to increase
efficiency by avoiding duplicate or repetitive configurations.

Now after a series of configuration and optimization, the candidate can declare that
at current stage, all of the three objectives have been achieved successfully. Looking back
on the original proposal of the new architecture, the system has also obtained in extra

• A "serverless" solution to the authentication service, as now there are no more
API endpoints relating to authentication are still remaining in the back-end. It
further proves that after proper immigration, eventually it is possible to convert all
kinds of functionalities in the back-end over to the gateway, if ever needed. The
candidate has not performed the same configuration on other microservices such
as the database and observations. The reasoning of it can be, for example, the
communication with the database can involve sensitive data and requires proper
care.

• Relatively independent microservices. For example, previously the client strictly
needs Keycloak since all functions in the back-end are built according to it. After
integrating the API gateway, client does not care anymore about which authenti-
cation service is in the system. Being it Keycloak or not, it is eventually Apache

107



Review on the new architecture

APISIX® that handles the requests based on route configurations are ensure that
client get what it needs from authentication. This significantly improves the main-
tainability of the system

What’s more interesting is the performance increase brought by Apache APISIX®.
The candidate has mentioned the potential improvement on that category but never
expected it to be worth highlighting. Indeed, in theory, the advantage from Apache
APISIX® comes from its capability of load balancing, and it will not become obvious
until multiple back-end nodes are deployed, which is not yet the case for PROMET&O.
However, a simple and not rigorous pressure test may appear to be a disagreement, as
shown in the pictures below:

Figure 11.1: Parallel test: APISIX vs Nginx

It is shown in the picture that in the 100 * 10 pressure test, the processed requests
achieved by Apache APISIX® is 22% higher than Nginx, which is indeed surprising to
see, but not such a shocking truth considering the capability of the API gateway.

What’s more, the candidate put a vertical test for Apache APISIX® under both
100 * 10 and 1000 * 10 pressure test, and the results are shown in Fig. 11.2.

Surprisingly, it appears that Apache APISIX® is able to perform better under rela-
tively higher concurrency pressure. This shows that daily pressure on PROMET&O has
not exceeded the limit of Apache APISIX®, which is inspiring to hear, and leave great
space for further development.

The experiments above are not very well designed as they are never meant to be
rigorous study on the performance. The meaning of them is to show the fact that APISIX
is very capable of its daily mission, and can provide extra benefits beyond its original
purposes.

108



11.2 – Limits and reasoning

Figure 11.2: Vertical test for APISIX

11.2 Limits and reasoning
The viewer may have already come up with some doubts or judges on whether the flow
is in its correct state or is performing with its full potential. Some of the questions could
be:

• The client is now an edge component, but at what cost?

– During the development, the candidate has kept the assumption that clients
for different remote servers are identical, thus the client can be uniformed into
one single node. But the candidate has come to understand that this will
results in lower capability on customization, as devices relating to different
name spaces can be distributed in different environment, which will eventually
ends in different configurations.

– In defend for the candidate himself, the client has reserved the capability
of duplicating itself and apply different set of configurations thanks to the
flexibility of Apache APISIX®. The topology of the architecture may change
under this condition, as shown in Fig. 11.3.

• Is communicating using cookies safe?

– The external communication channel is secured using HTTPS as one can see
from the configurations the candidate has showed, and cookies themselves are
also secured by setting their secure, httpOnly and SameSite to appropriate
values. To be meticulous, the cookie is never the perfect solution for security,
but mostly a compromise between security and efficiency.

– On the other hand, cookies are vulnerable to various of malicious attacks. It
can be overwritten pretty easily when being outside of HTTPS connection. It
also adds overload to regular communications that may not need cookies.

109



Review on the new architecture

User

Client

APISIX Keycloak

Client

Server

Grafana

Database

Client

Server

Grafana

Database

Client

Server

Grafana

Database

Remote01 Remote02 Remote03

Figure 11.3: New architecture with dis-
tributed clients

• Is it possible to achieve "authentic serverless"?

– The candidate has shown multiple routes in the gateway that originally handles
API calls towards back-end now do not require the involvement of the back-
end, so the possibility exists. Since the candidate has limited experience in lua
programming language and knowledge about nginx reverse proxy, he has to
admit the potential has shrink in his hand. Has a more experienced developer
involved in the process, "serverless" will not be theoretical anymore.

– But the candidate is thrilled that "serverless" being a amazing and inspiring
concept on the first sight, it may not be the optimal option for every scenario.
Taking PROMET&O as an example, the communication between microser-
vices such as MySQL database and client is both important and sensitive,
bold moves such as replacing back-end may introduce unforeseen risks that,
considering on the future of the project, could prove to be major losses.

In conclusion, the candidate is not hesitant to say that the current architecture is far
from a "prefect" one. To lay a basis for future development, the candidate most times
chooses the most comprehensive and optimal option for maintainability over maximizing
security and marginal efficiency.

110



11.3 – A perception to further development

11.3 A perception to further development
Throughout the chapter, the candidate has mentioned the concept of "serverless" multiple
times. In order to clarify potential misinterpretation on what the candidate actually
means, here the candidate will discuss this topic in a more detailed way.

The "serverless" architecture means that, by dynamically allocating resources over the
cloud in responding to real-time needs from actual use cases, the back-end server can be
seen as "intangible" or "shapeless" as it is not "solid" anymore.

Consider the traditional back-end server that is developed using Express.js, the
back-end will define each API endpoint for the client to call and communicate with,
and in turn inside it, layers such as services, Data Access Object will handle detailed
business logic and data manipulation. Each of the components should be defined explicitly
and unit tested before deployment.

Now, a "serverless" architecture will appear differently; it does not require each com-
ponent or function to be explicitly defined by the developer, but rather focus on higher
layer such as business logic. Taking the example of using SQLite and Google Firebase,
traditionally the developer needs to define DAOs and write specific functions to interact
with the database according to its policy, such as schema, locking mechanisms. But
Google Firebase simply provides the developer a rather predefined data fetching func-
tion like a regular function call, making the implementation details invisible and stay in
the cloud. A not-so-perfect example like this displays a fraction of differences in traits
between those two options.

The optimization performed through this thesis is the first step into a more general
concept of "serverless", as the functionalities of a tangible back-end server is gradually
replaced by routes and custom plugins from the API gateway, the back-end server becomes
more and more light-weighted. It is difficult for the candidate to predict if the back-end
server will eventually disappear or not, but he is aware that certain degree of such load
reducing for the server is generally beneficial to the system in terms of both performance
and resource efficiency.

111



112



Chapter 12

Conclusion

As the candidate reaches the end of his development journey for the PROMET&O project,
while looking back, the candidate is confident to say that he has completed all main goals
that was determined at the beginning, and has gained much more than what was expected
by himself in the beginning.

For the first part of the development, the candidate has finished the design and imple-
ment of the brand new user interface for the project on mobile views. Over the procedure,
the candidate has looked into various of ways to organize the components on screens with
limited size to emphasize visual hierarchy, and attempt to balance between the visual and
operational aspects of the user interface. The lengthy procedure of evaluating different
choices based on different requirements, each focusing on various aspects, has always been
memorable for the candidate, and he considers this experience to be even more valuable
than the final product. Although the design may appear to be not the most skillful as the
candidate does not expertise on such subject, he still manages to come up with different
methods and ideas on how to solve most problems he encounters.

For the second part, the candidate has finished the optimization on the network
architecture of the project, his main goals includes decoupling microservices, centralizing
the authentication service, along with other relatively minor improvements. The meaning
of the modification consists both current and future advantages in terms of efficiency and
maintainability. By experimenting towards the concept of "serverless", the candidate
maintains the effort on exploring different possibilities to solve most problem, and also
tries to establish a comprehensive and easy-to-development basis for future effort. Due to
the immature design, some choices may be overturned by colleagues coming afterwards,
but the candidate still believes that is exactly the point of his work in this part, as no
design is perfect, and the attempt on reaching perfect never seizes.

Imagining the future for PROMET&O, the candidate is able to foresee a lot of possibil-
ities; for example, the front-end user interface can benefit from more matured design and
more efficient implementation. What’s more, switching to other survey content providers
other than SurveyJS can also be optimal. As for the architecture, the candidate never
achieves the full potential of the gateway and its rich library of plugins. The candidate

113



Conclusion

can easily predict a more skilled colleague that will be able to take the advantage and
make the project much better in terms of efficiency. A further decoupling of microservices
can also be a good choice.

In conclusion, PROMET&O is a promising project; it has a divine objective of empha-
sizing on the environment and energy efficiency, and it has a solid basis for future effort,
which will potentially make real differences in IEQ management around workplaces. The
candidate is truly honored for having the opportunity to participate in the development
for it.

114



Chapter 13

Appendices

13.1 List of the SASS items
The candidate has discussed his motivation and methodology relating to SASS files in
section 2.4, one specific reasoning of using such a CSS super-set is the capability of
lightweight programming, which means simple functionalities such as defining variables,
numerical calculating, meanwhile it does not sacrifice most of the readability for the
benefit and ideally, a flat learning curve.

In this section, the candidate will compose a list and discuss all the variables and
functions he defined and used, and he will attempt to comment on the reason of their
existence, how much value they provided, and whether potential improvement exists.

// Default screen sizes (iPhone 14 Pro Max)
$default-width-portrait: 430
$default-height-portrait: 932
$default-size-font: 16

$threshold-width: 900px
$trigger-width: ($threshold-width + 1)

// Gaps
$default-gap-vert-outer-border: 16px
$default-gap-hor-outer-border: 16px

$color-theme: #ff9724
$color-theme-accent: #ffb347

The list above consists of all variables that are used in the development.
The first part defines the standard screen size defined for testings, which is an outdated

setting since the device mentioned there is not an extreme case, thus is not the most
appropriate choice. The choice for font-size, however, is one of the most popular
choice across the community.

Next block, it sets a threshold for determining whether the user is under landscape
mode or not. The choice is not supported by any authority, but is a legacy value that is

115



Appendices

consistent throughout the development life of PROMET&O, so the candidate decided to
keep the value unchanged. The candidate also would like to mention that, in most cases,
the user interface differentiates the display mode through the computed value of aspect
ratio, as the thesis explained in section 2.8.

The next two lines determines the default value for gaps between components, those
values are not very frequently used since in most situations the user interface has very lim-
ited space to handle, so it does not make much sense that the system having a uniformed
value for gaps.

Next we defined the theme color and an accent color, those are values that are obvi-
ously frequent during the implementation.

Then the candidate will show the functions.

// Returns the relative font size based on the default font size
@function getRelativeFontSize($num)

@return calc($num / $default-size-font)

// Returns the relative font size for landscape orientation
@function getRelativeLandFontSize($num)

@return clamp(#{$num}px, #{getRelativeFontSize($num)}em, #{$num * 2}px)

// Returns the relative height based on the default portrait height
@function getRelativeHeight($num)

@return calc($num / $default-height-portrait)*100 + vh

// Returns the relative height for landscape orientation
@function getRelativeLandHeight($num)

@return clamp(#{$num}px, getRelativeHeight($num), #{$num * 1.25}px)

// Returns the relative width based on the default portrait width
@function getRelativeWidth($num)

@return calc($num / $default-width-portrait)*100 + vw

// Returns the relative width for landscape orientation
@function getRelativeLandWidth($num)

@return clamp(#{$num}px, getRelativeWidth($num), #{$num * 2}px)

// Returns zero with !important flag
@function zero()

@return 0 !important

Most of the functions serve the purpose of transforming values between units. We
mentioned earlier that the usage of those functions are due to value settings in high-
fidelity prototype in early design stage which fixes values in pixel unit, which is obviously
not suitable for responsive design.

Throughout the user interface part, the candidate has demonstrated various functions
he has used during the implementation. As a matter of fact, although they do appear

116



13.1 – List of the SASS items

quite frequently, but the functionalities are either plain naive, or are results of temporary
needs and requires a revision considering its global value.

117



118



Bibliography

[1] Apache. Get apisix. Apache APISIX Official Website, 2025.
[2] ASHRAE. Ashrae standard 55. ASHRAE, 2017.
[3] Dick Hardt. The oauth 2.0 authorization framework. RFC 6749, October 2012.
[4] Wikipedia. Wikipedia - cascading style sheets. Wikipedia, 2016.
[5] Wikipedia. Wikipedia - visual hierarchy. Wikipedia, 2016.

119


	Introduction
	I Reassuring responsiveness: a development of user interface for PROMET&O on mobile devices
	Background
	Motivations
	Visual hierarchy
	Useful features from CSS
	SASS: a CSS pre-processor
	Typical user interfaces on mobile devices
	Determination of the device type
	Utilizing dynamic importing in React.js
	Differentiating display modes
	Avoiding overflow
	"Immutable" content and maintainability

	Homepage
	Welcome page for anonymous users
	Login and homepage

	IEQ questionnaire
	Overall Comfort
	Classification of Issues
	Thermal comfort questionnaire
	Acoustic comfort questionnaire
	Visual comfort questionnaire
	Air quality questionnaire
	Final comments
	Notification on completion

	Profile page
	Profile page
	Showcase
	Style sheets


	Personal questionnaire
	General introduction
	Questionnaire
	An inspection in detail into the style sheets
	Navigation
	Main container
	Question rows
	Buttons


	Dashboard
	Overview
	Dividing the devices
	The display of data
	Navigation

	Gauge view
	Notification on scrolling

	Off-canvas sidebar
	Graph display
	Graph comparison
	The initial view
	The filter sidebar
	Graph comparison view



	II Reorganizing the back-end: integrating Apache APISIX®
	Background
	A parallel in real life
	API gateway
	Apache APISIX®

	Current state of the system

	The new architecture
	An overview on the new architecture
	Integrating the API gateway
	The authentication service
	The Grafana routes
	Review

	Centralizing the authentication service
	Introducing realms in Keycloak
	The indented workflow
	The login flow
	GET /auth/login
	GET /auth/login/callback
	GET /userInfo

	The logout flow

	Review on the new architecture
	The objectives achieved
	Limits and reasoning
	A perception to further development

	Conclusion
	Appendices
	List of the SASS items

	Bibliography


