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Summary

This thesis explores the most suitable language models for improving the
interaction between users and databases via natural language, reducing
or completely neglecting the need for technical knowledge. We address
the increasing complexity of databases and the demand for intuitive query
interfaces by developing a proof-of-concept platform that transforms natural
language queries into SQL-like statements for efficient data retrieval. The
system supports multiple databases and enables users to analyze query results
in various formats. Key contributions include benchmarking state-of-the-art
models, exploring novel prompt enrichment approaches like Chain-of-Thought
reasoning and additional data samples, designing a comprehensive system
architecture, and conducting experiments to evaluate effectiveness. The
experimental results confirm that the aforementioned techniques improve
accuracy over zero-shot cases at a slight increase in cost and processing time,
demonstrating their potential for practical applications considering proper
trade-offs. Our work enhances database accessibility and usability, enabling
users to interact intuitively with complex data structures and improving
data-driven decision-making processes.
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Chapter 1

Introduction

1.1 Context and Motivation
In recent years, Natural Language Processing, a branch of Artificial Intel-
ligence, has experienced significant progress, driven by the development
of sophisticated algorithms, large language models, and the availability of
extensive datasets. These advancements have substantially improved the
ability of machines to understand, interpret, and generate human language.
NLP comprises a broad range of tasks, which can be grouped into several core
areas, such as text classification, machine translation, text summarization,
speech recognition, and text generation, among others.

While numerous NLP tasks are worthy of discussion, this thesis focuses
specifically on the text generation task, as it is central to the scope of our
research. Text generation is particularly noteworthy due to its broad range
of applications, including chatbots, virtual assistants, automated content
creation, and data retrieval systems. These applications present significant
opportunities for innovation, but also pose various challenges, both in terms
of research and real-world deployment.

While NLP is a dynamic and evolving sector characterized by its ability to
handle unstructured and ambiguous human language through sophisticated
algorithms and large language models, databases operate in a more deter-
ministic and structured environment. Databases are built upon well-defined
schemas and rely on precise query languages like SQL (Structured Query
Language) to retrieve and manipulate data. Text-to-SQL bridges these
two sectors by translating the flexibility of natural language into the rigid
structure of SQL queries. This task allows users to interact with databases
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Introduction

using conversational language, making complex data systems more accessible
to non-experts.

In this thesis, we focus on traditional relational databases and the task of
transforming natural language text into SQL queries for generic relational
databases. This field of research is relatively recent, gaining significant hype
over the past decade due to breakthroughs in deep learning technologies.

1.2 Problem Statement and Challenges
Recently, the field of Text-to-SQL has increasingly turned to machine learning
methods and large language models to improve the accuracy and robustness
of SQL query generation. Early approaches primarily relied on sequence-
to-sequence [1] models and Long Short-Term Memory [2] networks, which
were some of the first neural architectures applied to this task. However,
transformer-based models have now become the standard due to their superior
ability to capture complex patterns in natural language and effectively
translate them into structured SQL queries. Large language models, such as
BERT [3], T5[4], and GPT variants [5] [6], have shown exceptional promise in
understanding the nuances of natural language and generating syntactically
correct SQL queries. Recently, even more advanced models have been
published, further pushing the boundaries of what is possible in this domain.

Despite these advancements, user-database interaction remains a complex
and evolving process, requiring careful optimization to balance performance,
security, and scalability while ensuring a seamless user experience. To make a
more practical example in an enterprise context, an employee with a technical
background has the skills to interact with a database. However, people with
less technical roles, such as stakeholders, project managers, or marketing
team members, may not know the exact commands to extract the necessary
information. This information may be crucial for strategic decisions like
marketing campaigns or new product directions.

Then, this domain has many challenges, which can be broadly categorized
into two areas: challenges specific to the Text-to-SQL task itself, i.e., the
generation of text, and challenges associated with building robust and help-
ful Text-to-SQL systems or platforms to bridge the gap between database
querying and, especially, non-experts. These include issues related to under-
standing and generating SQL queries from natural language input, as well
as the complexities involved in creating end-to-end systems that can operate
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effectively in real-world scenarios.

Typical challenges of the task itself are the same related to the modern
approaches based on deep neural networks and large language models, there-
fore, for instance, hallucinations, since these are probabilistic models and
the output is just a prediction based on the given prompt, or difficulties in
capturing long context windows. Another significant challenge is the cost
of inference and/or fine-tuning or training, both in terms of resources and
expenses, if we opt for proprietary models that require paid access through
API keys.

Then, of course, the obvious challenge is to generate an accurate query
in SQL language. The latter requires to follow a precise syntax, making
even minor errors potentially disruptive. It demands strict adherence to
predefined rules, including correct keyword usage, proper table and column
references, and logical query structuring. Additionally, an optimal SQL
query should not just be correct but also efficient. Poorly written queries
can lead to significant performance bottlenecks. The challenges of building
end-to-end Text-to-SQL systems are equally significant. One particularly
challenging aspect is handling natural language variability, which may be
ambiguous and is usually context-dependent. Different users may phrase
the same query in multiple ways, using different synonyms and sentence
structures, or even writing grammatical errors. This variability complicates
the task of generating complex SQL queries, especially those that require
multiple joins and nested sub-queries, as the model must accurately interpret
and adapt to the complexity of each query.

Furthermore, in real-world scenarios, databases do not always follow best
practices. They are often much larger and more complex than small test
datasets, making query formulation and optimization even more challenging.
Structural inconsistencies, poor schema design, and non-intuitive table or
column naming conventions can introduce additional difficulties. Therefore,
capturing the intent of these diverse expressions and linking them to a
fixed database schema is another challenge, necessitating the development of
various specialized approaches.

Lastly, while real-time performance is not strictly necessary for this kind
of systems, they should still be fast and efficient. Achieving this performance
while maintaining high accuracy and scalability across various databases and
user queries remains a challenge.
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1.3 Objectives and Contribution
The challenges and considerations discussed in the previous section have been
explored in various studies, with several papers conducting benchmarks that
evaluate models using a range of metrics and perspectives. The primary focus
of this thesis will be on the insights provided by the DAIL-SQL paper [7],
which achieved state-of-the-art results on the Spider benchmark dataset
using mainly proprietary models tailored for the Text-to-SQL task, as well as
some open-source models. This paper provides a comprehensive analysis by
comparing different models proposing different prompt engineering strategies,
including in-context learning, few-shot learning, and other methods that will
be discussed in detail later.

Building upon the foundational research outlined in previous studies,
this thesis, developed in collaboration with Connect IT Reply, explores
the most suitable language models for improving the interaction between
users and databases via natural language, reducing or completely neglecting
the need for technical knowledge. The project extends the results of the
paper on DAIL-SQL by evaluating new models in the best-case scenarios
analyzed in the paper itself. Furthermore, a proof of concept was developed
to demonstrate the feasibility, utility, advantages, and limitations of the
proposed solution.

The contributions of this work can be broadly categorized into four main
areas:

• Model Evaluation in 0-Shot, 5-Shot, and 9-Shot Learning: We
assess the performance of various large language models on the Spider
dataset by providing contextual examples of other questions and queries
from the training set. The evaluated models include GPT-3.5 Turbo,
GPT-4o Mini, Gemini 1.5 Flash, and Gemini 1.5 Pro.

• Enhanced Prompting with INSERT Statements: To improve the
models’ understanding and accuracy, we introduce examples of INSERT
statements within the prompts. This includes explicit examples of table
entries, providing richer context to the models.

• Chain-of-Thought (CoT) Prompting: We design and test prompts
inspired by the Chain-of-Thought reasoning approach, aiming to enhance
logical inference and structured query generation.
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• Platform Proof of Concept (PoC): We develop a platform to enhance
user-database interactions. This platform is structured into four main
sections, enabling users to manage various databases, generate and
execute queries, and consult query results in multiple formats.

Additionally, the thesis discusses several minor contributions, including the
implementation of a basic Retrieval-Augmented Generation (RAG) pipeline
and the evaluation of small, open-source models to explore the feasibility of
locally hosting a model, relying solely on prompt engineering techniques.

1.4 Brief Overview
The following is a brief overview which serves as a roadmap to guide the
reader throughout the thesis.

Chapters 2 and 3 delve into the background knowledge, related works, and
state-of-the-art advancements in the NLP and Text-to-SQL fields. The former
provides a historical perspective on natural language processing, explores
existing database technologies, and discusses the main large language models
and tools of generative AI. Furthermore, Chapter 3 offers a comprehensive
overview of the Text-to-SQL task, highlighting recent developments and key
research directions, in particular dealing with the latest papers of this sector.

Chapter 4 focuses on the experimental setup, which leads to the evaluation
of various proprietary models and techniques. It introduces the datasets
used for evaluation, outlines the relevant metrics, and presents a detailed
review of the models under consideration, and the single experiments.

Chapters 5 and 6 provide a comprehensive analysis of the results, compar-
ing the performance of different models and approaches against established
baselines, and the discussion of these findings identifying areas for future
research and leading to the enterprise use case and proposed solution.

Chapter 7 shifts the focus to the proposed solution for implementing the
proof-of-concept platform. This chapter provides a detailed description of
the selected model and the strategies employed to generate SQL queries.
It outlines the specific requirements and objectives of the intended use
case, discusses the real-time data retrieval mechanism, and addresses system
integration and potential future developments.

Chapter 8 concludes the thesis, summarizing key contributions, highlight-
ing the significance of the research, and providing a final outlook on potential
future directions.
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Chapter 2

Preliminaries

This chapter aims to provide a concise yet comprehensive overview of the
foundational concepts necessary to thoroughly explore the topics, objectives,
and solutions presented in this thesis.

2.1 Natural Language Processing
This branch of Artificial Intelligence has evolved significantly since its incep-
tion in the 1950s. The field has seen several paradigm shifts, from rule-based
systems to statistical methods and, more recently, to deep learning ap-
proaches. Over time, these advancements have improved machines’ ability
to understand and interpret human language. Natural Language Processing
tasks can be divided into several macro-areas based on their specialization.

Text classification Categorizing and identifying specific elements in the
text based on the desired task.

Text generation Creating text from a given input, such as translation or
summarization.

Information retrieval Extracting information from text to provide an-
swers.

Speech modeling Recognizing, generating, and understanding speech in
various applications.
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This thesis is mainly focused on text generation, particularly Text-to-SQL.
Therefore, the text generated will be an SQL statement to analyze and query
an actual database. For this reason, the methods we will deal with are
related to the advancements in this application area.

2.1.1 Rule-based models
The initial approaches emerged from an interest in machine translation. They
were based on hard-coded rules, the goal of which was to find patterns in the
text and provide an output accordingly. Despite their application in specific
fields and elementary tasks nowadays, they have many limitations. They
must be adapted for different domains and subtasks, limiting their flexibility
and scalability and can work only with very precise structures and patterns
in the text. Therefore, they struggle to capture the complexity of human
language.

An example of these systems is ELIZA [8], a chatbot developed in the
mid-1960s at MIT to replicate a conversation between a patient and a
psychotherapist. It simply operates by rephrasing input text as a question,
similar to how a psychologist would respond. Although these methods are
basic, they can still be combined with more advanced approaches, as the
rules created are not static but are applied, processed, and iteratively refined.

2.1.2 Statistical Models, RNNs, and LSTMs
In the 1980s, the development of statistical models changed the perspective
and boosted the research in NLP after a slowdown. The idea is to predict
and output a word or a sentence according to probabilities. For instance,
the count-based approach involves calculating the frequency of a particular
word given the previous words. Significant models are Naive Bayes and
N-grams [9], where the parameter N is related to the number of words
considered to calculate the probability. The underlying theory is based on
conditional probability and Bayes’ theorem.

Statistical models struggled with long-range dependencies between words;
however, they introduced the community to probabilistic thinking in lan-
guage modeling. Neural networks brought a huge and significant shift from
feature engineering, typical of rule-based and statistical models, to end-to-end
learning. The link between input and output is no longer linear.

The inception of recurrent neural networks (RNNs) [10] [11] in 1985 was
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groundbreaking. This kind of architecture is peculiarly able to handle variable-
length sentences, keeping much more context than previous approaches. The
key innovation lies in the network’s recurrent connections, where the output
of one time step is fed as input to the next, thereby maintaining a form of
memory across time steps, as illustrated in the figure.

However, despite this architecture’s advantages, RNNs face challenges
during backpropagation. The issue of vanishing and exploding gradients
restrains the model’s ability to learn effectively over extended sequences,
leading to suboptimal performance. Therefore, the context over long time
windows is limited, restricting the model’s overall effectiveness in handling
complex linguistic patterns.

To address the limitations of traditional RNNs, Hochreiter and Schmid-
huber introduced the Long Short-Term Memory (LSTM) [2] architecture in
1997. LSTMs are a specific type of RNN that incorporates "gates" to control
the flow of information, allowing them to learn long-range dependencies more
effectively. These gates include input, output, and forget gates, allowing the
model to retain and transfer information across different layers, mitigating
the vanishing/exploding gradients effect. LSTMs are used as memory cells,
or blocks, in more complex architectures. On the one hand, this innova-
tive approach marked a significant advancement in sequential modelling,
outperforming traditional RNNs and becoming a popular choice for NLP
applications. On the other hand, it is computationally costly due to the
complex gating mechanisms.

2.1.3 Word Embeddings
As we work in the field of natural language processing, the input data for a
model are obviously words. However, a machine cannot directly interpret
words, so they are transformed into vectors of numbers. Traditionally, words
were converted using one-hot encoding or similar methods, creating sparse
high-dimensional vectors. Therefore, words are considered simply as a group
of letters without capturing their relationship with other words.

In 2013, the publication of “Efficient Estimation of Word Representations
in Vector Space” [12] revolutionized the way input data could be fed to
neural networks.

The core idea is to represent words as vectors in a continuous vector space,
where semantically similar words are close to each other. This mechanism
is based on neural networks that learn the embeddings after training over
text datasets. The NN learns semantic and syntactic relationships between

8
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words, allowing for more accurate and meaningful language modeling. Also,
this approach reduces dimensionality compared to previous approaches.
Nonetheless, it is essential to note that word embeddings can only represent
words encountered during training and may still face challenges when words
have multiple meanings.

Word2Vec (2013) [12], GloVe (2014) [13] , and FastText (2018) [14] are
pretty common approaches for computing and learning word embeddings.

2.1.4 Sequence to sequence models
This section is devoted to the so-called Seq2Seq [1] models. These models
combine the strengths of LSTM networks and word embeddings, integrating
them into a novel architecture known as encoder-decoder. As can easily be
guessed, the architecture has two blocks from a macroscopic point of view.
The encoder processes and compresses the input sequence into a fixed-length
vector representation, capturing its semantic and contextual information.
The decoder then utilizes this representation to generate an output.

Apart from the advantages of employing LSTMs, we can highlight two
main advantages of this approach. Firstly, since the encoder, in practice,
summarizes the context of the input sequence, context retention is enhanced.
Secondly, it is possible to process input sequences of varying lengths and
generate output sequences of different lengths, making them versatile for
tasks like machine translation or text summarization where input and output
lengths may differ significantly.

2.1.5 Transformer Architectures
All the above-mentioned methods and networks process data sequentially,
making the training computationally expensive and time-consuming. Vaswani
et al., in 2017, came up with a novel approach in their paper “Attention is
all you need” [15], where the new proposed architecture is totally built on
the new concept of attention.

Transformers still present an encoder-decoder structure, similar to Seq2Seq,
but have their innovation in the Multi-head Self-Attention layers. Their role is
to weigh the importance of a word in a sequence, which means that the model
can now focus on multiple parts of a sentence simultaneously. Therefore,
thanks to the structure of this neural network, as shown in the figure, input
data processing is now parallelized. This eliminates the need for recursion,
such as in RNNs, thus making models more computationally efficient and
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performing. Parallelization is obtained because the model processes the
entire sequence at once, making it easy to parallelize the training. For this
reason, it was necessary to incorporate information about the position of a
specific word in the sentence. So, there were not only word embeddings but
also positional embeddings. This mechanism is not limited to text; it can be
used for a variety of applications.

Some of the first and most important language models based on transformer
architectures are BERT [3] and GPT [5] [6]. Nowadays, these represent the
standard for large language models, which will be discussed in the next
section.

The idea behind both models is the pre-training on large corpora of
unlabelled text data, so that they will be task-agnostic after learning a
general distribution of words. After this, both can be fine-tuned to achieve
state-of-the-art performances in task-specific benchmarks. Therefore, these
models aim to exploit the exceptional availability of large text datasets using
unsupervised learning techniques. None of the two prevails over the other, it
is just a matter of which task one aims to address.

As regards GPT, the acronym stands for Generative Pre-Trained Trans-
former. It is an autoregressive model based on the transformer’s decoder
block and uses a left-to-right approach: given a sequence, it predicts the next
word based on the preceding words. Hence, the processing is unidirectional.
Due to this characteristic, GPT is particularly strong in generative tasks like
text generation.

On the contrary, BERT is based on the encoder part of a transformer.
The acronym, in fact, stands for Bidirectional Encoder Representations from
Transformers. Here, the model predicts masked tokens according to both left
and right dependencies in the sentence, capturing a richer context. Thanks
to this distinctive trait, BERT is more predisposed to understanding tasks,
such as summarization and question answering.

Beyond BERT and GPT, two other transformer-based architectures that
have significantly influenced the field of NLP are T5 (Text-to-Text Trans-
fer Transformer) [4] and BART (Bidirectional and Auto-Regressive Trans-
former) [16]. Both models adopt an encoder-decoder structure, making them
particularly suited for tasks requiring both understanding and generation of
text.

T5, developed by Google, treats every NLP task as a text-to-text problem,
meaning that all inputs and outputs are formatted as text. A distinctive
feature of this model is that the task is specified within the input prompt,
allowing it to generalize across different domains efficiently.
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On the other hand, BART, introduced by Facebook AI (Meta), is designed
as a denoising autoencoder. It is trained by randomly masking words or
shuffling sentence order and then learning to reconstruct the original version.
This pre-training approach makes BART highly effective for text generation
and correction tasks. Unlike GPT, which is only decoder-based, and BERT,
which is only encoder-based, BART combines both mechanisms, benefiting
from bidirectional context understanding while maintaining strong generative
capabilities.

These models, along with BERT and GPT, represent essential components
of modern Large Language Models.

2.1.6 Large Language Models
The development of the above-mentioned models marked a breakthrough in
natural language processing, becoming the foundation for what would come
to be known as Large Language Models (LLMs). These models exhibited
outstanding performance across various tasks, from text generation to seman-
tic understanding. The advancements gave the NLP community a clearer
understanding of how to leverage large-scale unsupervised pre-training, com-
bined with fine-tuning, to achieve state-of-the-art results. They can already
be considered “large” models, even if they have “only” a few hundred million
parameters, a very small number compared to current models. Further
research, which is still ongoing nowadays, is leading to the development
of LLMs characterized by their exponentially larger scale, both in terms
of model parameters and volume of data used for training. This has been
possible because technologies and resources to support such training have
increased enormously over the years.

In the following section, we explore the rise of LLMs, examining their struc-
ture, training paradigms, and their impact on AI-driven applications today
and in the future. We will then discuss open-source and proprietary models
that researchers, developers, and almost everyone who has access to the
Internet use today because of their impressive state-of-the-art performances.

Training and Learning Paradigms

Training LLMs is an articulated process that may include several stages,
including not only pre-training on large text corpora but also fine-tuning
to specialize them in specific tasks and using advanced prompt engineering
techniques to guide their responses. During pre-training, the model is exposed
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to extensive data from heterogeneous sources, learning to recognize linguistic
patterns and semantic relations without direct supervision.

Subsequently, fine-tuning allows the model to be adapted to specific tasks,
such as text-to-SQL, code generation, or answering questions in specific
contexts. This process can be performed with annotated datasets or by
exploiting few-shot learning strategies, in which the model learns from a
limited number of examples.

A recent approach gaining popularity is Retrieval-Augmented Generation
(RAG) [17], which combines the retrieval of relevant information from external
sources with the generation of text and thus inserts this information into the
input prompt. This method improves the accuracy of responses, reducing the
risk of hallucinations and increasing the model’s ability to provide up-to-date
information.

Scale-up fashion
Scaling up LLMs follows a fundamental principle: increasing the number
of parameters, the amount of data and the computational power generally
leads to better performance. This hypothesis has been confirmed in several
studies, including OpenAI’s famous paper “Scaling Laws for Neural Language
Models” [18], which showed that larger models tend to generalize better and
solve complex tasks more accurately.

In recent years, the number of parameters in LLMs has grown exponentially,
from models with a few billion parameters to models with over 500 billion.
In parallel, the expansion of training datasets has enabled these models to
become increasingly capable of understanding human language fluently and
coherently. However, this growth also brings significant challenges in terms
of computational costs, efficiency, and energy sustainability.

Capabilities
Large Language Models have a set of emerging capabilities that make them
outstanding tools for a wide range of applications. A fascinating aspect
is their ability to adapt to context and improve their responses through
subsequent interactions, making them particularly effective for advanced
conversational applications.

In recent years, some LLMs have demonstrated inductive and deductive
reasoning skills, solving logical problems previously considered out of their
reach. Unlike traditional models, which required specific datasets and tar-
geted training, LLMs can be used in different contexts without the need for

12



Preliminaries

explicit fine-tuning. This is made possible by the use of techniques such as
few-shot learning or in-context learning. Nevertheless, these models may
encounter difficulties in correctly interpreting questions that are ambigu-
ous or outside their domain of knowledge, revealing limitations in the deep
understanding of concepts.

An important recent development is the introduction of multi-modality,
which enables LLMs to process not only text but also images, audio, and
video. Models such as GPT-4o, Gemini, and Claude are demonstrating
the ability to combine different input modalities to offer richer and more
contextualized responses. This evolution opens up new possibilities, such as
the generation of images from text descriptions, enhanced speech synthesis,
and advanced understanding of visual content. In the business environment,
multimodal models could revolutionize the field of customer support and
intelligent user interfaces, offering smoother and more intuitive interactions
with users.

Limitations
Despite their advanced capabilities, LLMs have several limitations. One of
the main problems concerns their knowledge of the world, which is limited
to the data they have been trained with. This means they are not always up-
to-date with the latest information and may generate inaccurate or outdated
answers.

Another challenge is the phenomenon of hallucinations, in which the
model produces incorrect or fictional information with great confidence. This
problem is particularly critical in contexts where accuracy is paramount.

Finally, LLMs are often affected by bias inherited from training datasets.
Research is exploring different strategies to mitigate these effects, but the
problem remains open and represents a major ethical challenge.

SOTA Open-source and Proprietary Models
Currently, the LLM landscape is dominated by a mix of proprietary and open-
source models. Among the main proprietary models are GPT-4o [6] by Ope-
nAI [19], Gemini [20] [21] by Google DeepMind [22], and Claude [23] by An-
thropic [24], while open-source models include LLaMA by Meta [25] [26] [27],
Mistral [28], or the brand-new DeepSeek [29].

Open-source models are gaining popularity due to their accessibility, the
possibility of being customized for specific applications, and, above all, the
possibility of hosting them on one’s own clusters. Meanwhile, proprietary
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models continue to offer the best performance thanks to unique datasets
and infrastructures. The balance between accessibility and performance will
be a central issue for the future of LLMs in both academic and enterprise
environments.

2.2 Databases and challenges
Databases provide the fundamental infrastructure for the structured storage
and management of information, offering an efficient way to store, query,
and manipulate data. Unlike NLP systems, which operate in a flexible and
highly ambiguous context, databases are designed to handle data rigorously
and deterministically, using predefined schemas and formal query languages.

The main categories of databases include relational (SQL) and non-
relational (NoSQL) databases. Relational databases, such as PostgreSQL
(https://www.postgresql.org), MySQL (https://www.mysql.com), and
Microsoft SQL Server (https://www.microsoft.com/en-us/sql-server),
organize data into tables with well-defined relationships and use SQL (Struc-
tured Query Language) for query operations. This structure allows great
consistency and data integrity but can be complex for non-technical users,
especially when queries require joins between multiple tables or advanced
conditions.

On the other hand, NoSQL databases, such as MongoDB (https://www.
mongodb), Cassandra (https://cassandra.apache.org/_/index.html),
and Redis (https://redis.io), have been developed to handle unstruc-
tured or semi-structured data, offering greater scalability and flexibility
in contexts where the rigidity of SQL schema can be a limitation. These
databases are well suited to scenarios such as the analysis of big data and
real-time applications, however, they are not as well suited for operations
that require strong transactional consistency.

2.2.1 Database Interaction Systems
This thesis will focus on improving the interaction between users and rela-
tional databases, which will, therefore, be the main focus of our analysis.

After installing the necessary servers or drivers for hosting the database,
data can be accessed directly from the terminal of the machine on which
the database is hosted. However, for more intuitive use, it is common to use
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SQL interfaces, business intelligence tools, or web applications with interac-
tive dashboards. Although these tools improve usability, they still require
technical knowledge of SQL or the database structure, thus representing an
obstacle for less experienced users.

To facilitate the interaction between users and the database, several
approaches have been developed, including:

• Graphical user interfaces (GUIs): tools such as pgAd-
min (https://www.pgadmin.org) and SQLServer Manage-
ment Studio (https://learn.microsoft.com/en-us/ssms/
sql-server-management-studio-ssms), specific to certain
database providers, or more flexible solutions such as DBeaver
(https://dbeaver.io), which support multiple connections to different
providers, allow users to explore databases and build queries via visual
interfaces, reducing the need to write SQL manually.

• Advanced NLP-based systems: some advanced platforms
such as Oracle Autonomous Database (https://www.oracle.com/
autonomous-database/), with Select AI, allow users to formulate nat-
ural language queries to obtain answers from databases, improving
accessibility for users without technical skills. In addition, some existing
platforms are now integrating artificial intelligence to make interaction
with databases even more intuitive.

These tools have the potential to bridge the gap between users and
databases, simplifying access to information and making data more usable
even for those without direct experience with SQL. However, several chal-
lenges still remain, such as query accuracy, language ambiguity, and the
adaptability of these systems to databases with complex structures.
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Chapter 3

Related Works
In this chapter, we will focus on the main publications that have contributed
to the development and innovations of text-to-SQL, central topic of this
thesis. In order to understand the methods by which natural language can
be transformed into the rigid structure of SQL, it is essential to carefully
analyze these works.

We have already briefly introduced the task in Chapter 1 and discussed
the history of natural language processing, as well as the techniques and
approaches used in this major branch of artificial intelligence in the previous
chapter. We can now focus on the specific task for which we conducted
experiments, drawing on and referring to the literature that we will discuss
here. In particular, we will examine the datasets, evaluation metrics, and
strategies that have significantly impacted recent research and those that
still represent the state of the art in this field.

The aim of this chapter is thus to provide an overview of the most relevant
breakthroughs in the evolution of this discipline, which are therefore also
relevant to the context of our research. Specifically, as datasets, the Spider-
Dev benchmark dataset has a significant impact in this thesis. Furthermore,
the techniques for improving the automatic generation of SQL queries, such
as prompt engineering, Chain-Of-Thought reasoning, in-context and few-shot
learning, schema linking and post-generation query optimization approaches,
are essential. Finally, as we will discuss later, mention must be made of the
DAIL-SQL [7] approach, which was a great inspiration for this work.
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3.1 Introduction to Text-to-SQL
Text-to-SQL falls within the NLP task of text generation, or code generation,
and aims to automatically convert a query expressed in natural language into
a valid SQL query, as its name suggests. In the literature, we can also often
find references to this task simply as NL-to-SQL, NL2SQL, or Text2SQL.

The progress in this field of research increasingly allows users to interact
with databases without requiring in-depth knowledge of SQL. This approach
is particularly useful in business contexts, where non-technical professionals
need access to complex data for decision-making processes.

There are several main challenges to this task [30]. First of all, the
complexity and especially the ambiguity of human language challenge the
whole NLP context. Especially in this context, where a precise sequence
of commands has to be produced to obtain results from a database, it is
easy for something slightly ambiguous to lead to the generation of incorrect
queries.

The other major difficulty concerns understanding the schema of databases.
In experimental contexts, these schemas are often well-structured and follow
the best practices. However, in real-world contexts, it is possible to deal with
complex databases characterized by incorrect constraints, unclear structures,
or ambiguous table and column names, making them difficult to interpret
even for humans.

A further obstacle is the rigidity and complexity of SQL. Some queries, in
fact, may require uncommon constructs that are difficult to handle.

Finally, it is crucial to consider the ability to generalize across different
domains. The structure of a database may vary significantly depending on
the context of the application. For example, a relational database designed
for a given application might store information about users in a table called
Users, while a business management system might store the same data in
a table called Employees. Although they refer to the same concept, term
and structural differences can pose a significant challenge. Consequently, the
ability to adapt to different domains cannot be taken for granted.

3.2 Datasets
Before analyzing the different techniques that have characterized research
in recent years, let us look at the various datasets used to evaluate the
performance of models and approaches typical of text-to-SQL. We can
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subdivide the datasets primarily according to the objective for which they
were designed.

The first category is single-domain datasets, which contain data and
present queries related to specific domains. Some of these, among many
others, are ATIS [31], which includes data on flights; IMDb [32], famous for
data on films and cinema; and the recent BULL [33], which contains financial
data. This category of datasets has not always been created exclusively for
Text2SQL.

Subsequently, there are datasets characterized by multiple domains, with
the aim of creating test benchmarks for the models by evaluating their
generalization capacity. In chronological order, one of the main ones is
WikiSQL [34], a huge dataset with more than 80000 manually annotated
NL-SQL query pairs, whose data concerns information of mixed nature on
Wikipedia. It was published in 2017 and is one of the largest datasets used
in this field. Next, we have Spider (2018) [35], with its subsequent variants
Spider-Realistic [36] and Spider-DK [37]. Considering the importance of this
benchmark for the thesis project, we will provide more details here.

Spider is characterized by its greater complexity compared to earlier ones.
This is due to the presence of advanced queries that include JOINs, nested
queries, and more articulated commands than, for instance, the simple SELECT
and WHERE of WikiSQL. In fact, it introduces more complex challenges that
require the adoption of advanced techniques than previous datasets.

It consists of 200 databases covering 138 different domains. The number
of question-query pairs is 10181, all manually annotated, split between the
training set ( 90%) and the dev set ( 10%). Unlike WikiSQL, which has
only one table per database, Spider has a variable number of tables per
database, with an average of 5.1. This leads to the additional difficulty of
creating queries with JOINs and subqueries, making previously used methods
ineffective. It should be pointed out that the queries are purposely made in
a non-ambiguous manner to avoid poor data collection quality, however, not
representing the reality of natural language questions asked possibly by a
human.

Finally, we can mention the more recent BIRD (2023) [38], a dataset
designed to improve the evaluation of database reasoning skills by NLP
models. Unlike Spider and WikiSQL, BIRD is not limited to the accuracy of
SQL query execution, but also evaluates aspects such as logical reasoning
and question interpretation. Here, the queries are, in fact, more natural and
realistic, and therefore, the models have the added challenge of understanding

18



Related Works

the context and the association between words and database entities even
better.

Another area of interest concerns datasets built to evaluate the capabilities
of models in multi-turn interactions, i.e., situations in which the SQL query
is iteratively refined through a series of interactions with the user or model.
These include, for example, SParc [39], a multi-turn evolution of Spider to
evaluate the ability to capture the context of models, or CoSQL [40] and
CHASE [41].

Finally, many other datasets are designed to evaluate specific aspects of
text-to-SQL approaches beyond simple accuracy, such as the robustness or
computational efficiency of generated queries.

3.3 Evaluation Metrics
We find metrics developed in the literature to evaluate different aspects of
SQL query generation. In fact, the queries must mainly be correct from an
execution point of view on the database, i.e., return correct data, however, it
is also interesting to assess their efficiency and robustness against variations
in the natural language query. For this purpose, the principal metrics include:

• Execution Accuracy (EX) [35]: measures the accuracy of the results
obtained by executing the generated query compared to those obtained
by executing the ground truth query. It does not consider the syntactic
structure of the query but only evaluates the correctness of the output.
It is calculated as:

EX =
qN

i=1 1
1
Ogen

i = Ogt
i

2
N

(3.1)

• Exact-Match Accuracy (EM) [35]: evaluates the accuracy with
which the generated query matches the ground truth query, comparing
structure and syntax without executing the SQL code. Therefore, it
does not take into account possible variations that are syntactically
different but semantically equivalent. The metric is calculated as:

EM =
qN

i=1 1
1
Qgen

i = Qgt
i

2
N

(3.2)

• Component-Match Accuracy (CM) [35]: this metric is more granu-
lar than the previous one and evaluates the correctness of the generated
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query by analyzing its main SQL components individually, such as
SELECT, FROM, WHERE, GROUP BY, ORDER BY, and JOIN. This metric is
thus more tolerant to variations in query syntax, awarding a partial
score if some components are correct, even if the entire query does not
exactly match the ground truth. Below is the formula:

CM = 1
N

NØ
i=1

q
c∈C 1

1
Qgen

i,c = Qgt
i,c

2
|C|

(3.3)

• Valid Efficiency Score (VES) [38]: measures the efficiency of the
generated query in terms of execution time and optimization compared
to the ground truth query. This metric is beneficial for evaluating models
that not only produce correct SQL but also generate optimized database
queries. The formula follows:

V ES =
NØ
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1
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Ogen
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i
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i
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(3.4)

Symbols Explanation:
• N is the total number of queries evaluated.
• Qgen

i and Qgt
i are, respectively, the generated and ground truth query for the i-th

example.
• Ogen

i and Ogt
i represent, respectively, the output of the generated and ground truth

query for the i-th example.
• C is the set of main SQL components.
• Qgen

i,c and Qgt
i,c represent the individual SQL components of the generated and ground

truth queries, respectively.
• R(Ogen

i , Ogt
i ) is a function that measures the execution efficiency of the generated

query compared to the ground truth.

In particular, in this thesis, we will carry out the evaluation of our experiments
and the various models tested using Spider, so it is essential to talk about the
test suites developed to improve the evaluation of this dataset in particular,
even though they are not a proper metric. This technique, developed by
Zhong et al. [42] in 2020, introduces a method for evaluating the semantic
accuracy of text-to-SQL models through the use of distilled test suites. Their
approach involves the creation of a small database test suite with dummy data
that effectively covers the gold query code, allowing for efficient evaluation
of the accuracy of the query execution.
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3.4 Evolution of Text-to-SQL Approaches
The evolution of the models and methods used for this task follows the
same path described in the previous chapter since it is essentially a natural
language processing problem aimed at generating SQL queries.

Initially, the approaches used were mainly rule-based, i.e., based on
predefined rules for translating natural language into SQL. An example
of this approach is the direct association of terms such as “select”, “take”, or
“extract” with the SQL SELECT command. However, such methods are only
effective in restricted contexts and have poor scalability, as they require the
manual definition of specific rules for each use case.

Subsequently, there has been a transition towards statistical models, which
learn the relationships between natural language queries and SQL queries
through the use of annotated datasets. In contrast to rule-based approaches,
these models do not rely on explicit rules, but instead autonomously learn
the correspondences between input and output through the estimation of
probabilities from the training data. Although they represent an improvement
over rule-based methods, these models continue to exhibit limitations in
generalization across different domains and in handling complex databases.

The introduction of neural networks marked a significant advance in
this area of research. In particular, RNNs and LSTMs enabled a better
handling of ambiguities and complexity in natural language, allowing long-
term dependencies between words within complex sentences to be captured
more effectively.

Currently, research focuses mainly on the use of LLMs, based on sequence-
to-sequence architectures and, in particular, Transformers. Due to the
Attention mechanism, such models are able to more accurately identify the
relevant parts of a sentence, thus improving the understanding of the natural
language query and the association between words and related database
entities. In this context, the association between text query terms and SQL
components can be interpreted as a link between a query keyword and the
name of a table, column, or specific SQL command.

3.5 Advanced Techniques
This section explores the most advanced techniques in the Text-to-SQL field
especially concerning the application of deep neural networks and LLMs.
The various approaches are not mutually exclusive; rather, they are often
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combined to achieve more accurate results.

3.5.1 Prompt engineering
Prompt engineering involves composing input text in order to guide the
model to produce the desired output. In the context of text-to-SQL tasks,
this means designing prompts that encourage the LLM to generate accurate
SQL queries that correctly answer the given natural language questions. By
carefully constructing prompts, researchers and practitioners may:

- Provide relevant context about the database schema;

- Include examples of correct SQL translations;

- Specify the desired output format;

- Incorporate domain-specific knowledge or constraints.

The fascinating aspect of prompt engineering is the possibility to obtain
excellent results even without performing additional fine-tuning to the model.
Thus, this approach has very low costs both in terms of costs both in terms
of computational effort and time for inference. Therefore, nowadays it is
a widely used technique, useful in business contexts, an area in which this
thesis originates, where there is a need for quick and efficient developments.

It is worth noting that prompt engineering’s effectiveness can still vary
according to several factors, including the specific LLM being used, the
complexity of the database schema, the nature and ambiguity of the natural
language questions being asked, and the domain of the database.

Having established the importance of prompt engineering in the context
of LLMs for text-to-SQL tasks and its challenges, we will now delve into the
approaches in the literature applied to build information-rich and contextually
relevant prompts.

In-Context and Few-Shot Learning

These techniques, discussed in [43] and [5], permit more accurate generation
of SQL queries without the need for specific training, but rather by exploiting
contextual examples and additional knowledge to improve the understanding
of the natural language query. The model can thus learn precisely from the
additional context and N-examples provided.

22



Related Works

DIN-SQL [44], for example, uses few-shot learning at different stages
by inserting additional information regarding query type and schema link-
ing, or likewise, CodeS [45] inserts metadata for a better understanding of
ambiguities.

Some works, such as DAIL-SQL [7] and PET-SQL [46], exploit these
techniques by inserting examples of question-query pairs extracted through
an example selection mechanism. Precisely, DAIL-SQL masks the names
of tables and columns in the question and query before calculating their
similarity.

Chain-of-Thought

Chain-of-Thought (CoT) is a technique that aims to improve reasoning in
LLMs by incorporating a sequence of logical steps into the prompt to guide
the model toward the desired output. This methodology is particularly
useful in tasks that require structured reasoning, such as exactly SQL query
generation in which the model must understand the user’s question, identify
entities and relationships in the database, and generate a syntactically and
semantically correct SQL query.

The idea behind CoT is to enrich the prompt and, exploiting this technique
along with those seen previously and those we will present later, it allows for
excellent results. This approach was presented in the work of Wei et al. [47]
and later remarked in other works, including that of Zhou et al. [48].

Several studies have explored the application of CoT in the Text-to-SQL
domain, taking different approaches depending on the level of reasoning
required. Among these, we have basic CoT prompting, which consists of
asking the model to break the problem down into sub-steps as in DIN-SQL,
or CoT prompting combined with a self-consistency mechanism used, for
instance, in C3-SQL [49]. CHESS [50] also uses a series of steps to guide the
model in choosing the relevant tables, selecting the database schema, and
finally generating the query with possible validations.

Some methods also take advantage of CoT by first implementing a task
decomposition step into simpler tasks. For example, in the case of nested
queries, methods such as DIN-SQL and MAC-SQL [51] implement a com-
ponent that can decompose the problem into more straightforward parts
that are easier to solve. The former also categorizes queries according to
complexity.
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3.5.2 Schema Linking
Schema linking refers to the process of mapping words in a natural language
question to entities in a database (tables, columns, or even values). Proper
schema linking is crucial to avoid ambiguity and generate more accurate
SQL. The methods used to accomplish this process are based on different
techniques, moving from rule-based to transformer-based methods, thus
following the evolution of the whole NLP context.

In particular, we can mention a method proposed in IRNet [52], in which
an N -gram algorithm is used to find words within the question that exactly
or partially match the names of database tables and columns. This is a
simple mechanism that does not consider synonyms and fails very easily in
the case of compound names. ValueNet [53] later improves the understanding
of some associations by capturing words even in cases of misspellings, but it
still does not solve the problems that IRNet presents.

Moving on to approaches based on transformer architectures, we can
discuss works such as RAT-SQL [54] and RESDSQL [55]. One of the major
contributions of RAT-SQL was using a graph of relationships to represent the
structure of the database, in which each node represents a column or table,
and the arcs define the connections between them. This paper, moreover,
introduces a relational-aware self-attention mechanism, which allows the
model to keep track of semantic and structural relationships between query
words and database elements. RESDSQL then takes a step further by
streamlining the schema linking process and separating it from SQL query
generation. It uses a retrieval mechanism to identify similar examples in the
dataset and generates a skeleton for the query to be generated later.

Subsequent work explored commercially available modern LLMs, such as
OpenAI’s GPT family, pointing to the resolution of schema linking through
efficient prompt designs that guide the model in identifying tables and
columns most relevant to the NL query being asked. DIN-SQL, in this
context, guides the model by also incorporating chain-of-thought techniques.

3.5.3 Post-processing optimization
The approaches and patterns described above are often combined, and no
less frequently, these are complemented by mechanisms to optimize the SQL
query once it has been generated. For example, we have already mentioned
self-consistency [56]. This technique has a very simple idea behind it: it
requires the model to generate N queries and then evaluate the best candidate.

24



Related Works

This evaluation can be done in different ways, such as by majority vote or
scoring mechanisms.

Another technique, on the other hand, is self-correction [57], which DIN-
SQL and SelECT-SQL [58] use. Unlike the previous one, which sometimes
requires a large number of query generations, this technique aims to iteratively
improve the generated query through a module or feedback loop that can
actually "judge" the correctness of the query. However, this technique is also
often wasteful because of the number of iterations. For this reason, in both
cases, thresholds are often chosen in order to obtain an excellent trade-off
between potential accuracy and computational load.

3.6 State-of-the-art Papers on Spider-Dev
Since the experiments conducted in this thesis are based on the Spider dataset,
it is critical to analyze the SOTA approaches developed for this benchmark.
The official benchmark ranking is the one reported at https://yale-lily.
github.io/spider, which collects the best models evaluated on Spider,
although submissions were closed in May 2024, as reported on the website.
Lately, also, Spider 2.0 [59] has been released for advanced code generation
and evaluation of model capabilities even on cloud database systems such
as BigQuery (https://cloud.google.com/bigquery) or Snowflake (https:
//www.snowflake.com).

At the time this thesis project was conducted, the highest scoring model
was MiniSeek, a proprietary system whose technical characteristics were not
disclosed. Since no details are available on the methodology used, while
acknowledging its ranking in the leaderboard, it is not possible to include it
in the analysis.

After MiniSeek, the best publicly available model at the time was DAIL-
SQL (Alibaba Group) [7], which introduced innovative few-shot learning
strategies with an advanced example selection framework, exploiting a pre-
skeleton of the SQL query and the use of special tokens to mask table and
column names. This method achieves an execution accuracy of 86.6% on
Spider with GPT-4 (fine-tuned) + Self-Consistency.

It should also be pointed out that DAIL-SQL had a significant impact on
our work, representing a starting point and influencing part of the adopted
methodology.

Subsequently, two new models have achieved particularly relevant results:

• XiYan-SQL [60]: This model, also from Alibaba Group, has recently
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achieved state-of-the-art results not only on Spider (EX: 89.65%) but
also on the BIRD dataset (EX: 75.63%), demonstrating high general-
ization capability across different text-to-SQL benchmarks. XiYan-SQL
introduces a multi-generator ensemble to generate different queries and
select the best one, combines in-context learning with supervised fine-
tuning, and exploits new techniques for schema linking. In addition, the
team of researchers is actively contributing to the scientific community,
releasing various open-source models and fostering the progress of the
entire text-to-SQL field, as seen from their GitHub account.

• PET-SQL [46]: Another recent model that achieved excellent results
on Spider (EX: 87.6%), leveraging a different prompt representation, the
generation of a preliminary SQL, and the refinement of the final query
via cross-consistency between different LLMs.

The continuous development of models such as XiYan-SQL, PET-SQL,
DAIL-SQL, and other state-of-the-art systems demonstrates how rapidly the
field is evolving, always offering new opportunities for improvement.
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Experiments and Model
Evaluation
This chapter analyzes the experiments that contributed significantly to this
thesis. As highlighted in the previous chapter, recent advances in the field of
Text-to-SQL rely on a wide range of techniques aimed at improving the accu-
racy of query generation. In particular, Large Language Models are strongly
influenced by the prompt provided as input, thus making the construction of
effective and informative prompts crucial. However, this does not imply that
all available information must be included. Therefore, a strategic balance
is required in its selection and organization. Our experimental contribution
falls exactly in this context, focusing on prompt engineering. In particular,
we take as a starting point the work presented in the paper on the DAIL-SQL
method, discussed in the previous chapter, with the aim of extending it in
several directions. Firstly, we tested newer models, not considered in the
original study, better suited to the requirements of our business use case,
which will be discussed in more detail in the following chapter. Next, we
experimented with the enrichment of some of the prompts proposed in the
reference paper. Finally, after selecting a specific model, we designed and
evaluated prompts based on chain-of-thought reasoning techniques to analyze
their impact on the quality of query generation.

4.1 Dataset and Evaluation Metrics
To evaluate the performance of our experiments, we used Spider, a dataset
widely adopted in text-to-SQL research. Spider is a complex, cross-domain
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benchmark designed to test the ability of models to generalize in generating
SQL queries from natural language queries. One of its distinguishing features
is that the databases in the test set do not appear in the training set, forcing
the models to generalize instead of merely storing patterns or simply table
and column names already seen in the training phase.

We followed the standard split of the dataset between the training set and
the test set (or dev set). The former was used to extract similar questions
and queries to be included in the prompts for few-shot learning. In contrast,
the latter was used for the final evaluation and comparison with baselines
present in the literature. To measure the quality of the generated queries,
we adopted the standard metrics in the field of Text-to-SQL, namely:

• Exact Match (EM): measures the percentage of generated queries that
exactly match the ground truth query. It is a rigorous metric, as it does
not take into account semantically equivalent alternative queries.

• Execution Accuracy (EX): checks whether the generated query produces
the same result as the ground-truth query when executed on the database.
Unlike EM, this metric is more flexible, as it accepts queries written in
different ways as long as they return the same output.

We focus mainly on Execution Accuracy and Exact Match, as these are the
metrics most indicative of the model’s actual ability to produce correct and
functional queries in an application context. To improve the reliability of
the evaluation, we adopted the Test Suite Accuracy method. Based on the
automatic generation of dummy databases on which to test the queries, this
approach reduces the percentage of false negatives and guarantees a more
accurate measurement of the model’s performance.

4.2 Models Overview
For our experiments, we selected four proprietary models based on key
business requirements such as inference speed, cost per token, and provider
reliability. The choice reflects the goal of evaluating models that could
potentially be used in future in-house applications, including the platform
that will be presented in the following chapters. Specifically, we tested models
from OpenAI and Google, respectively, GPT 3.5 Turbo and GPT 4o Mini for
the first and Gemini 1.5 Flash and Gemini 1.5 Pro for the second. Among
these, GPT-3.5 Turbo was included to replicate the results obtained on the

28



Experiments and Model Evaluation

DAIL-SQL benchmark, thus ensuring an internal baseline comparable with
previous studies. A summary description of the models now follows, which
is useful for comparison during the discussion and analysis of the results.

Model Name Knowledge Cutoff Parameters Context Window
GPT 3.5 Turbo (0125) Sep 2021 ∼175B ∼16k
GPT 4o Mini (2024-07-18) Oct 2023 ∼8B* 128k
Gemini 1.5 Flash May 2024 >8B* ∼1M
Gemini 1.5 Pro May 2024 ∼200B* ∼2M

Table 4.1: Comparison of AI Models (Part 1: General Information)

Model Name Cost
Input
(1M

Tokens)

Cost
Output

(1M
Tokens)

Throughput
(tokens/s)

MMLU
Perfor-
mance

GPT 3.5 Turbo (0125) 0.5$ 1.5$ - 70%
GPT 4o Mini (2024-07-
18)

0.15$ 0.6$ 97* 82%

Gemini 1.5 Flash 0.075$ 0.3$ 166* 78.9%
Gemini 1.5 Pro 1.25$ 5$ - 85.9%

Table 4.2: Comparison of AI Models (Part 2: Cost and Performance)

* The exact value has not been disclosed; it is an estimate made by other researchers. [61]
[62]

As shown in the table, the choice was guided mainly by three factors: cost,
performance, and speed. Two of the selected models offer an exceptionally
competitive cost/performance ratio compared to other solutions on the
market. Despite having a higher cost, one of the models stands out due to
its superior performance in benchmarks such as MMLU. Depending on the
final application, the choice of the optimal model will have to balance these
aspects.

It should be noted that some of the information reported is derived from
third-party estimates and analyses, as providers do not always provide full
technical details. For this reason, it was essential to supplement the official
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data with independent evaluations and internal tests in order to obtain a
more reliable picture of actual performance. In our application domain, the
cost of input tokens has a more significant impact than that of output tokens.
Each query generated requires a prompt of varying length, influenced by
factors such as the prompt engineering techniques adopted, the information
included in the prompt, and the database size, since the approaches used
include the entire database schema in the prompt.

A limit in the context window, therefore, may exclude essential information.
However, in single-turn cases, where the query is generated in a single pass,
the prompts never exceeded 16k tokens, making the four models equivalent.
In contrast, the difference emerges in multi-turn contexts, where it may be
necessary to maintain a history of the messages passed to the model.

Another factor to consider is the knowledge cutoff date, i.e., the date up
to which the model has been updated. However, in our specific case, this
has little impact, as the SQL domain is relatively stable, with variations
occurring only in the event of updates in SQL dialects, which are infrequent.

In conclusion, the models’ analysis shows various options suitable for
different business scenarios. Models such as Gemini 1.5 Flash are particularly
suitable for applications requiring high throughput at a low cost, while GPT
4o Mini offers a good balance between performance and the width of the
context supported. On the other hand, models such as the Gemini 1.5 Pro
are the ideal choice for complex tasks or applications requiring the processing
of extensive contexts at higher operating costs. Therefore, the final choice
of model will depend on key factors such as the speed of response required
by the application, the operating costs and budget, the breadth of context
required, and the overall performance.

4.3 Experimental Setup
A significant contribution to our work was provided by the DAIL-SQL paper
by Gao, Hang et al. [7]. In particular, the GitHub repository published by
the authors proved to be an excellent starting point, allowing us to reuse part
of the code within the terms of the license recognizing their work. On this
foundation, we have extended and adapted their work for the platform, which
will be described later. Before discussing the details of our implementation,
let’s define the reference scenario on which our tests are based.

The paper analyzes and compares different prompt representation strate-
gies, i.e., different ways of representing the database and its query. For our
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experiments, we adopted a single method, the most promising one: Code
Representation (SQL). This representation includes in the prompt an SQL
statement for each table of the database, showing the entire DDL of the
table, including the name of the table itself, the columns with their data
types, and all the constraints, particularly primary keys and foreign keys.

Another fundamental component of the prompt concerns examples of
questions and queries similar to the one to be analyzed. This aspect falls
under the technique of in-context learning, for which it is essential to consider
both the method of selecting examples and how they are organized within
the prompt. The examples are extracted from Spider’s training set, following
two methodologies in which the names of tables and columns are masked
before calculating the similarity between the question in the training set
and the one to be evaluated in the test set. As regards the organization of
the examples in the prompt, we follow the approach proposed in the paper,
referred as “QA” example representation, whereby the questions and their
queries are presented in the following format:

1 /* Some SQL examples are provided based on similar problems: */
2 /* Answer the following: <QUESTION> */
3 SELECT <QUERY>
4

5 ...
6

7 /* Answer the following: <QUESTION> */
8 SELECT <QUERY>

The complete starting prompt is, therefore, as follows:

1 [Selected examples in case of k-shot scenarios, k > 0]
2 /* Some SQL examples are provided based on similar problems: */
3 /* Answer the following: <QUESTION> */
4 <QUERY>
5 ...
6

7 [Schema Representation]
8 /* Given the following database schema: */
9 CREATE TABLE <TABLE-NAME> (

10 <COLUMN-NAME> <COLUMN-TYPE> <OPTIONS>,
11 ...
12 <CONSTRAINTS>
13 );
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14 ...
15

16 [Actual Question]
17 /* Answer the following: <QUESTION> */
18 SELECT

4.3.1 Few-shot Learning with Masked Questions and
Queries

In these experiments, we will evaluate the performance of all four models
using two different example selection methods and varying the number of
examples included in the prompt. We will start with the basic zero-shot case
and then analyze the results in the 5-shot and 9-shot cases.

Before presenting the results, let us first describe the two example selection
methods adopted. Both are based on Euclidean distance as a metric to
measure the similarity between the question submitted to the model and
those in the dataset. Furthermore, in both methods, references to table
names, columns, and values are masked within the questions. However,
there are some key differences between the two approaches whose names are
adopted in the DAIL-SQL paper and this thesis.

• EUCDISQUESTIONMASK

After masking the fields and calculating the most similar natural language
questions, k examples are selected and included in the prompt using the
QA format described above.

• EUCDISMASKPRESKLSIMTHR

Again, the masking process is identical, but the criterion for selecting
examples changes. In this method, a preliminary model is initially
used to generate an initial SQL query prediction. The skeleton is then
extracted from the generated query, thus excluding table names, columns,
and values to calculate a structural similarity with the queries in the
training set. Eventually, questions are selected based on their semantic
similarity and similar query structures, ensuring a more cohesive and
impactful understanding. A threshold is nevertheless considered for the
similarity of the query skeleton.

The paper shows that the second method tends to produce better outcomes
than the first. However, it is evident that the use of a preliminary model
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influences the generation of the final query. Therefore, one of the purposes
of these experiments is to assess whether the models considered, which were
not tested in the original benchmark, are able to achieve good accuracy
without relying on this auxiliary model. To test the second variant based on
query similarity, we will directly use the results obtained from the Graphix
preliminary model, as reported in the paper.

4.3.2 Enhance Context with INSERT Statements
In this set of experiments, we enriched the prompt by adding INSERT state-
ments to provide the model with more detailed context on the actual contents
of the database. The idea behind this strategy is to integrate a few rows of
actual data in addition to the DDL of the tables and the examples of queries.
This data, represented via INSERT INTO statements, gives the model a more
complete picture, potentially improving the understanding and generation of
SQL queries.

The inclusion of real data in the prompt aims to test whether the model
can benefit from additional contextual information. In particular, we expect
that the presence of meaningful rows of data will help it to better understand
the relationships between tables, interpret the semantic meaning of queries,
and, most importantly, recognize the specific format of certain fields, such as
dates or enumerated values (ENUM). This enrichment could lead to a greater
ability to generalize the model, improving the queries’ quality. The final
format of the prompt, in this configuration, thus includes the table structure
(DDL), a set of example questions and queries, and a limited number of rows
of actual data, as shown below.

1 [Selected examples in case of k-shot scenarios, k > 0]
2 ...
3 [Schema Representation]
4 ...
5 [Samples of Actual Data]
6 /* Here you have some insert examples: */
7 INSERT INTO <TABLE-NAME> (<COLUMN-NAME>, ...) VALUES (<VALUE>, ...);
8 ...
9 [Actual Question]

10 ...

For the selection of sample data, we adopted a simple criterion: randomly
extract a small number of significant rows for each table. We tested two
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configurations, including either 1 or 3 rows of data per table. This approach
provides valuable context without making prompt and data processing ex-
cessively long and complex.

A further extension of this work could concern the non-random data
selection to be included in the prompt. In particular, a possible future
development would be the adoption of strategies based on a statistical
analysis of the database, preferring, for example, the most frequent data
or particularly representative aggregates. This approach would provide the
model with an even more informative context, highlighting recurring patterns
in the data.

Finally, to assess the impact of this technique, we compared the models’
performance by testing two example selection strategies. The analysis was
conducted in the zero-shot (as baseline) and 5-shot scenarios to better
understand the influence of context enrichment on the model’s capabilities.

4.3.3 Chain-of-Thought Prompting
In this section, we analyze the effectiveness of Chain-of-Thought (CoT)
prompting techniques applied to our experiments using Gemini-1.5-Flash with
a 5-shot approach, 1 INSERT example, and the EUCDISMASKPRESKLSIMTHR
selector. In the discussion of the results, we explain the reasons that led us
to these choices. Overall, however, we can state that, as these experiments
aim to evaluate the prompts themselves, we prefer to use the aforementioned
Google model for inference time and test costs.

This strategy aims to improve the generation of SQL queries through
a step-by-step reasoning process, subdivided into several logical steps, to
achieve greater accuracy and understanding of the relationships between the
database tables and data. We have, therefore, defined and tested different
types of CoT prompts, each offering a different approach to the reasoning
process and generation of SQL queries.

Below, we present a detailed description of each type of prompt, or more
generally, reasoning process, evaluated.

1. AHEAD_COT: This approach, in a single prompt, suggests the model to
follow steps in an orderly fashion before generating the final query. Key
steps include understanding the query, identifying the relevant tables
and columns, formulating the SQL structure, adding conditions and
joins, and finalizing the query. This approach focuses on organizing the
reasoning in a clear and sequential manner.

34



Experiments and Model Evaluation

2. AHEAD_COT_WQUESTS: A variant of AHEAD_COT that includes an addi-
tional step in which the question is restated in three simpler versions.
The final query must correctly answer all the reformulated questions.
These simplified versions allow the model to solve a simpler problem
while emulating a kind of self-consistency on the question side rather
than on the generated query side.

3. SQ_PROMPT_V1: This technique is based on a prompt decomposition
approach, where the model reformulates the initial question into simpler
versions (typically three). Unlike the previous prompt, however, it
requires the model to follow specific rules rather than actual steps.
Subsequently, in a second prompt, we provide the LLM with both the
database schema and the restated questions to generate an SQL query
that satisfies all the questions.

4. AUTO_REASONING_V1: In this approach, the model is asked to generate
a sequence of logical steps to construct the SQL query. Once these
steps are defined, they are used to guide the generation of the final
query by making a second call to the LLM separate from the first. The
objective of this technique is to ensure that each step is established and
then followed by the model itself, thus following a reasoning process not
created by us and potentially different for each request.

5. AUTO_REASONING_HISTORY_V1: Similar to AUTO_REASONING_V1, this
variant, however, preserves the history of the conversation, allowing the
model to interact with the previous message in which it generated the
sequence of steps to be followed. This approach is helpful in cases where
the initial logical steps need to be corrected or adjusted to improve the
quality of the final query.

6. REPROMPT_EXP_CORRECT: This approach prompts the model multiple
times. Specifically, the model is asked to identify and describe the
relevant tables for the query, then generate a first attempt at an SQL
query, and eventually validate the query using the database schema.
If the validation fails, the model is prompted to correct the error and
generate a new query. We could follow a validation and regeneration
loop; however, the query correction is not done following the execution
on the database because this would invalidate the test. This approach
could reduce errors in query generation, as it introduces a process, albeit
a simple one, of validation and correction.
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7. REPROMPT_EXP_CORRECT_GENNQUESTS: Variant of REPROMPT_EXP-
_CORRECT which includes rephrased questions in the reasoning process
using the same prompt as the SQ_PROMPT_V1 method. The final query
must correctly answer all reformulated questions. This approach thus
includes generating further questions as in other previous approaches.
It offers an additional level of difficulty, although it may bring benefits.

The prompts and detailed procedures are in the appendix for the sake of
readability. Regardless, we can briefly summarise some key common aspects
of several proposed CoT prompts.

N Simplified Versions of the Original Question Some techniques,
such as AHEAD_COT_WQUESTS, SQ_PROMPT_V1, and REPROMPT_EXP_CORRECT-
_GENNQUESTS, include the generation of n = 3 simplified versions of the
original question. This step could be useful for simplifying the problem by
providing the model with three technically equivalent questions, which must,
therefore, also obtain the same answer to be satisfied simultaneously. The
underlying concept is a sort of augmentation or self-consistency applied to
the question rather than the query. However, not all strategies adopt this
technique, as it may entail a higher computational cost without necessarily
guaranteeing an improvement in query quality.

Self-Validation (without query execution) Two approaches,
REPROMPT_EXP_CORRECT and REPROMPT_EXP_CORRECT_GENNQUESTS, imple-
ment a form of query self-validation. In these cases, the model verifies
the query’s correctness against the database schema before finalizing the
response. This mechanism could reduce the probability of logical or syntactic
errors without requiring the execution of the query.

Multi-turn prompts Some of these approaches require multiple requests
to the model before generating the final query, making them multi-turn
prompts. This means the model follows a sequence of interactions to pro-
gressively build the SQL query rather than generating it immediately at
the first prompt. Only AHEAD_COT and AHEAD_COT_WQUESTS are single-turn
since the query is generated directly in response to the first input. All other
methods require at least a second interaction with the model, with significant
variations in the number of steps and input tokens required. SQ_PROMPT_V1,
AUTO_REASONING_V1, and AUTO_REASONING_HISTORY_V1 involve a first phase
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in which the model generates intermediate elements (e.g., queries or logical
steps), followed by a second call in which the final SQL query is produced.
REPROMPT_EXP_CORRECT typically uses 3 or 4 rounds, as the model generates
an initial query, checks it against the database schema, and corrects it in
further iterations if necessary. Finally, REPROMPT_EXP_CORRECT_GENNQUESTS
extends the process further, going up to 4 or 5 rounds since, in addition to
validating and correcting the query, it also incorporates reformulated queries.
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Results and Discussion
This chapter presents and analyzes the results obtained through the experi-
ments described in the previous chapter. The main objective of our analysis
is to evaluate the effectiveness of different prompt engineering strategies
applied to the generation of SQL queries using advanced language models.
Recall that the comparison between models is carried out using Exact Match
(EM) and Execution Accuracy (EX) metrics to measure the quality of the
generated queries against the reference queries of the Spider dataset.

For each experiment, the leading data collected will be described and
analyzed, comparing the performance of the various models in terms of
accuracy, robustness, cost, and timing. Furthermore, the main criticalities
that emerged and possible margins for improvement will be highlighted.
Based on the data obtained, we will then draw some conclusive considerations
on the effectiveness of the various strategies adopted and their potential use
in real applications in the following chapter.

Let us now proceed to the detailed analysis of the results of each experi-
ment.

5.1 Few-shot Learning with Masked Ques-
tions and Queries

In this section, we analyze the results obtained from the models tested
with the two example selection strategies, EUCDISQUESTIONMASK and
EUCDISMASKPRESKLSIMTHR, with different few-shot learning configurations
(0, 5, and 9 examples). The objective is to evaluate the improvement in SQL
query generation as a function of the number of examples in the prompt and
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the selection technique adopted.

Proprietary Models K-Shots EUCDISQUESTIONMASK EUCDISMASKPRESKLSIMTHR

EM EX EM EX

GPT-3.5-Turbo
0 0.1934 0.6160 0.1934 0.6160
5 0.5889 0.6885 0.4690 0.6489
9 0.5870 0.6895 0.6489 0.7040

GPT-4o-mini
0 0.2350 0.6760 0.2350 0.6760
5 0.5918 0.6837 0.6460 0.7098
9 0.6054 0.6808 0.6605 0.7050

Gemini-1.5-Pro
0 0.4864 0.7127 0.4864 0.7127
5 0.6179 0.7408 0.6460 0.7466
9 0.6344 0.7427 0.6721 0.7591

Gemini-1.5-Flash
0 0.3249 0.6750 0.3249 0.6750
5 0.5725 0.7147 0.6411 0.7166
9 0.6063 0.6934 0.5580 0.7379

Table 5.1: Evaluation of proprietary models across K-shot values us-
ing EUCDISQUESTIONMASK and EUCDISMASKPRESKLSIMTHR example selection
strategies.

5.1.1 Comparison of Example Selection Strategies
From the results shown in the table, some key trends emerge.

Increasing the number of examples improves performance For all
models, both Exact Match and Execution Accuracy tend to improve as K
increases, confirming the effectiveness of few-shot learning over the zero-shot
case. However, the gain in accuracy between 5-shot and 9-shot is often
marginal, suggesting a potential plateau in the usefulness of adding more
examples.

Best results with the EUCDISMASKPRESKLSIMTHR strategy This tech-
nique, which includes a selection of examples based on the struc-
tural similarity of the generated queries, systematically outperforms the
EUCDISQUESTIONMASK variant. The improvement is evident on all models,
except in the 5-shots case, where GPT-3.5-Turbo shows an ambiguous decay.
This could be due to the selection of different examples from the other variant,
which confuses the model. Regardless of the number of shots, a significant
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improvement is observed for GPT-4o-Mini, with an average increase of 2.5%
in EX and over 5% in EM. The Google models also show a reasonable margin
of improvement in execution accuracy, especially in the 9-shot case: the Pro
model improves by 1.7%, while the Flash shows an exceptional 4.5% increase.

Model comparison Gemini-1.5-Pro achieves the best overall performance,
reaching a maximum value of EM = 67.2% and EX = 75.9% in the 9-shot
configuration with EUCDISMASKPRESKLSIMTHR. GPT-4o-Mini shows a good
balance between the two strategies, with a constant improvement between
0-shot and 9-shot. GPT-3.5-Turbo confirms itself as the model with the
lowest performance, especially in EM, which, however, has a lower importance
than EX. This suggests a more limited generalization capability than the
other models. Gemini-1.5-Flash, on the other hand, is in an intermediate
range, with competitive values in EX but a slightly lower EM than the Pro
model. In the overall comparison, Google’s models outperform OpenAI’s
models in terms of execution accuracy. OpenAI’s models, on the other hand,
exhibit almost identical performance between them, with GPT-4o-Mini being
a better choice due to higher speed and cost efficiency. Among the Google
models, the Pro consistently performs better in EX, outperforming the Flash
by about 2-3%, but at a higher cost and inference time.

5.1.2 Token Cost Analysis
The inclusion of examples within the prompt results in a significant increase
in the number of input tokens. The table below shows the number of tokens
calculated by the two providers as the result of a request to their respective
models. It is important to note that each provider uses a different tokenizer,
resulting in discrepancies in the token count. The marked difference between
the two results was partially unexpected, although the values remain in the
tens of thousands.

K-shots Google OpenAI

0 ∼ 435k ∼ 381k
5 ∼ 720k ∼ 648k
9 ∼ 945k ∼ 849k

Table 5.2: Token usage by K-shots for Google and OpenAI
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The data reported represents an average between two different example
selection techniques, whose differences were negligible. The output tokens
are not shown in the table, as they do not vary with the number of shots.
For Google, the number of input tokens increases linearly, starting at around
435k with 0-shots up to 945k with 9-shots, while the number of output tokens
settles at around 36k. For OpenAI, the growth follows a similar trend, going
from 381k to 849k input tokens, with around 27k instead. This is crucial
from the perspective of production use, as the increase in tokens directly
affects query costs. In addition, increased token consumption could impact
the model’s latency, with possible repercussions in real-time applications.

5.1.3 Key Insights and Takeaways
We can, therefore, conclude by summarizing what emerged from these first
experiments in the following points:

• Few-shot learning improves the quality of the generated queries, but
with decreasing results after K = 5.

• The EUCDISMASKPRESKLSIMTHR strategy is more effective than
EUCDISQUESTIONMASK.

• Gemini-1.5-Pro is the best performing model, while GPT-3.5-Turbo
achieves the worst results.

• Increasing the number of examples in the prompt increases the number
of tokens, which has implications for cost and inference time.

These results suggest that a 5-shot setup with selection based on query
similarity might be the most effective choice to achieve the best balance
between accuracy and cost.

5.2 Enhance Context with INSERT Statements
In this section, we analyse the impact of including real data in the prompts in
the form of INSERT statements, to provide the models with a richer and more
detailed context on the structure and content of the databases. We tested
this strategy in both the zero-shot (baseline) and 5-shot cases, evaluating
the effectiveness of the approach with 0, 1 and 3 rows of data per table.
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Proprietary Models K-Shots Selector Type Insert Samples

0 1 3
EM EX EM EX EM EX

GPT-3.5-Turbo
0 N/A 0.1934 0.6160 0.2388 0.6179 0.2475 0.6218
5 EUCDISQUESTIONMASK 0.5889 0.6885 0.4941 0.6682 0.5183 0.6721
5 EUCDISMASKPRESKLSIMTHR 0.4690 0.6489 0.5183 0.6702 0.5261 0.6760

GPT-4o-mini
0 N/A 0.2350 0.6760 0.2814 0.6827 0.2649 0.6789
5 EUCDISQUESTIONMASK 0.5918 0.6837 0.6025 0.6982 0.5967 0.7176
5 EUCDISMASKPRESKLSIMTHR 0.6460 0.7098 0.6411 0.7272 0.6441 0.7330

Gemini-1.5-Pro
0 N/A 0.4864 0.7127 0.5203 0.7466 0.5251 0.7359
5 EUCDISQUESTIONMASK 0.6179 0.7408 0.6489 0.7649 0.6703 0.7643
5 EUCDISMASKPRESKLSIMTHR 0.6460 0.7466 0.6634 0.7823 0.6905 0.7756

Table 5.3: Performance metrics across models, K-shots, and insert samples.

5.2.1 Impact of Real Data Insertion in Prompts
Improvements in query generation The addition of INSERT statements
increases Exact Match and Execution Accuracy for all models tested. This
effect is evident in both zero-shot and 5-shot settings, indicating that the
improvement is not directly related to the number of question-query examples
in the prompt. Comparing these results with those above, it is observed
that adding data further improves performance in few-shot learning (K = 5).
The most significant increase occurs on Gemini-1.5-Pro, which reaches EM
= 69.05% with three rows of data and EX = 78.2% with a single row. The
latter value represents an increase of +3.5% compared to the case without
data.

Decrease in performance increasing sample data Including a single
row of data results in a significant improvement in EX compared to the basic
configuration without data. However, the increase between 1 and 3 rows
is often less noticeable or, in some cases, even negative. The addition of
more data rows seems to favor EM more, albeit with improvements limited
to a few percentage points in the best cases. Execution Accuracy, on the
other hand, hardly benefits from the increase from 1 to 3 rows, probably
because the random data selection from the database does not provide useful
information to the model. On the contrary, it may introduce noise into the
prompt, unnecessarily expanding the context and reducing the effectiveness
of the prompt itself.
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Model comparison Also, in this set of experiments, the best configuration
is confirmed to be the 5-shot configuration, using the example selection
strategy EUCDISMASKPRESKLSIMTHR. In addition, Google’s models continue
to distinguish themselves with the best performance. Gemini-1.5-Pro achieves
the highest results in both EM and EX. Compared to previous experiments,
the performance gap with the other models widens further. With only one
INSERT statement in the best configuration, Gemini-1.5-Pro achieves 78.23%,
4.9% behind the second best model, GPT-4o Mini. A fascinating finding is
that Gemini-1.5-Pro, in zero-shot mode with a single row of data, matches
the previous best performance achieved with five question-query examples.
GPT-3.5-Turbo shows improvement, but still lags behind the other models.

5.2.2 Token Cost Analysis
The considerations regarding tokens fully mirror what was discussed in the
previous section, as the insertion of INSERT statements again significantly
impacts the number of input tokens processed. In addition, output tokens
are not reported in the table, as their number remains unchanged regardless
of the number of shots or rows of data inserted.

Google OpenAI

Data samples 0 1 3 0 1 3

K = 0 ∼ 435k ∼ 731k ∼ 1.24M ∼ 381k ∼ 631k ∼ 1.06M

K = 5 ∼ 720k ∼ 1.03M ∼ 1.54M ∼ 648k ∼ 898k ∼ 1.33M

Table 5.4: Token usage by K-shots and Insert Samples for Google and
OpenAI

For Google, the number of tokens increases to ∼ 1.24M in zero-shot and
∼ 1.54M in 5-shot with the insertion of 3 rows of data. For OpenAI, the
behavior is similar.

In both scenarios (zero-shot and 5-shot), the increase in INSERT statements
leads to a growth in the number of input tokens between 700k and 800k,
depending on the provider. However, this increase does not follow a linear
trend from 0 to 3 rows, as the data input involves both a fixed part in
the prompt (such as the introductory statement or the SQL commands
themselves) and a variable part that depends on the content of the data.
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Furthermore, since the data is selected randomly, it is not possible to check
whether it contains more or less extensive text fields, thus affecting the
overall length of the prompt.

5.2.3 Key Insights and Takeaways
Key points that emerged from the analysis of the above results follow.

• Including real data improves performance, with more promising effects
in few-shot learning.

• Increasing the number of rows beyond 1 has little impact, suggesting
that the model benefits more from a small representative sample rather
than a large volume of data.

• The cost in terms of tokens increases significantly, necessitating careful
evaluation in real-world contexts, especially for applications with budget
constraints or low latency requirements.

• Gemini-1.5-Pro benefits most from additional data, but it is less cost-
effective than other models now that input tokens are increasing in
volume.

These results suggest that, to balance accuracy and cost, the most effective
strategy may be to use a single row of data per table, avoiding token overload
without losing significant benefits.

5.3 Chain-of-Thought Prompting
In this section, we investigate the results obtained with different chain-of-
thought prompting strategies, tested with the Gemini-1.5-Flash model in a
5-shot configuration, with 1 example INSERT and example selection based
on EUCDISMASKPRESKLSIMTHR. The choice of this configuration is dictated
by the results obtained in the previous experiments. Although this model
is not the best performing, it represents an excellent compromise between
performance and cost. This is in fact the cheapest model of the four tested
and, in this series of experiments, we expect a large volume of tokens in both
input and output.

These experiments aim to test whether a structured approach to SQL
query generation, divided into several logical steps, can improve query quality
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over conventional strategies. In this case, the baseline is represented by the
results obtained from the model shown in the table above. Specifically, we
report EM = 64.5% and EX = 72.43% for the sake of readability.

COT TYPE CODE TOKENS RESULTS
INPUT OUTPUT EM EX

AHEAD_COT ∼ 1.094M ∼ 44.1k 0.5928 0.7611
AHEAD_COT_WQUESTS ∼ 1.138M ∼ 44.7k 0.5696 0.7533
SQ_PROMPT_V1 ∼ 1.270M ∼ 249.4k 0.5938 0.7649
AUTO_REASONING_V1 ∼ 2.017M ∼ 266.5k 0.5328 0.7379
AUTO_REASONING_HISTORY_V1 ∼ 2.535M ∼ 264.8k 0.5135 0.7475
REPROMPT_EXP_CORRECT ∼ 3.113M ∼ 238.8k 0.5406 0.7263
REPROMPT_EXP_CORRECT_GENNQUESTS ∼ 4.051M ∼ 314.9k 0.4274 0.6160

Table 5.5: Evaluation of CoT prompting strategies according to token usage
and performance results.

5.3.1 Comparison of CoT Prompting Techniques
The observation of the collected data reveals some significant trends.

Better results with more structured and less iterative approaches
The SQ_PROMPT_V1 technique performs best with EM = 59.4% and EX =
76.5%, confirming the effectiveness of decomposing the query into simpler
versions and generating the query in a second phase. The AHEAD_COT method
also shows good results (EM = 59.3%, EX = 76.1%), suggesting that a
well-defined sequential guide helps the model to structure the query correctly.
They both register an improvement of about 4% in execution accuracy,
however they deteriorate in producing a query exactly equal to ground truth.
This is an expected result at least in the first case, since the generation of
reformulated sentences leads the model to solve a problem that is slightly
different from the original one. Finally, we may note that the method
AHEAD_COT_WQUESTS, a variant of AHEAD_COT, obtains slightly lower results
than the latter.
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Self-reasoning methods slightly improve performance
AUTO_REASONING_V1 and AUTO_REASONING_HISTORY_V1, implement a
logical sequence of steps for constructing the query, and although they
do not achieve the best results, they still manage to exceed the baseline.
However, it must be remembered that in these settings, the model generates
the steps to be followed and therefore has great variability and dependence
on them. The slight advantage of AUTO_REASONING_HISTORY_V1 in EX
may indicate that maintaining the reasoning history helps to improve the
consistency of the query execution.

Reprompting and multi-turn does not lead to benefits
REPROMPT_EXP_CORRECT shows limited improvement over the more direct
CoT-based strategies, barely managing to equal the baseline. In contrast, the
REPROMPT_EXP_CORRECT_GENNQUESTS variant, which combines the former
with query reformulation, shows the worst performance (EM = 42.7%, EX =
61.6%), suggesting that excessive complexity in prompting may compromise
query generation. These results depend on the fact that, before generating
the query, the model follows an articulated process by generating an initial
response, describing and selecting the relevant tables, then produces a query,
validates it and, if necessary, regenerates a new one. However, this sequence
of intermediate steps introduces additional complexity, increasing the risk of
inaccuracies and cascading errors between one step and the next.

5.3.2 Token Cost Analysis
Using CoT and multi-turn prompts significantly increases the number of
tokens used.

The most efficient methods (AHEAD_COT, SQ_PROMPT_V1) use about 1.1M-
1.3M tokens in input, producing 44k and 249k tokens in output, respectively.
In this case, the first method is clearly to be preferred.

Techniques based on self-reasoning and reprompting show a sig-
nificant and even excessive increase in tokens. To give a few ex-
amples, AUTO_REASONING_V1 uses 2M tokens in input, sometimes
more than twice as many as the best direct CoTs. Furthermore,
REPROMPT_EXP_CORRECT_GENNQUESTS, with the highest number of rounds,
even reaches 4M tokens in input and 314k in output, with significantly worse
performance.

The increased token consumption significantly impacts cost and inference
time, making some of these strategies truly impractical in real-world scenarios.
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5.3.3 Key Insights and Takeaways
Finally, we can conclude that:

• The most direct and well-structured CoT strategies are the most effective,
with SQ_PROMPT_V1 and AHEAD_COT performing best in terms of EM and
EX.

• Techniques based on self-reasoning and multi-turn reprompting do not
necessarily guarantee improved performance and tend to have a high
computational cost for both input and output tokens.

• Using excessive steps or interactions with the model may compromise
query quality, especially if the model has to handle too much input
information.

These results suggest that, for optimal application, a well-structured
prompt with clear guidance is preferable to overly iterative or complex
techniques.

5.4 Discussion
The results obtained from the experiments confirmed the central role of
prompt engineering in the generation of SQL queries from natural language.
The analyses highlighted how different strategies of example selection, context
enrichment, and reasoning structuring can significantly impact the quality of
the queries produced, with significant variations in terms of Exact Match and
Execution Accuracy. However, new challenges and considerations emerge
beyond quantitative evaluation metrics as we move from the experimental
environment to a real application context.

5.4.1 Considerations of the Results
The analysis of the results revealed some key trends. First, the few-shot
learning technique proved effective in improving model performance, with
a gradual increase in the quality of queries generated as the number of
examples in the prompt increased. However, the marginal benefit tends to
decrease after a certain number of examples (typically 5 or 9), suggesting the
existence of a saturation point beyond which the addition of more examples
does not lead to significant improvements.
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The inclusion of real data by means of INSERT statements provided a
further increase in the quality of generation, especially with regard to un-
derstanding the relationships between tables and the format of the data.
However, adding too many rows of data did not produce proportional im-
provements and, indeed, in some cases, had a negative impact, increasing
noise and reducing the effectiveness of the model. This result suggests that a
balance between the amount of data provided and the model’s ability to use
it effectively is crucial to obtain the maximum benefit from this technique.

Chain-of-Thought (CoT) prompting strategies showed mixed results.
More structured and straightforward techniques, such as SQ_PROMPT_V1
and AHEAD_COT, proved to be particularly effective, improving contextual
understanding and the accuracy of SQL generation. In contrast, more com-
plex and iterative approaches, such as those based on self-reasoning and
self-validation, have introduced computational overhead and token usage
that is often excessive compared to the benefits obtained.

Everything we have discussed has direct implications for the adoption
of such techniques in production environments, where the balance between
accuracy, cost, and response speed is critical.

5.4.2 Towards a Real-World Application Context
Large Language Models represent extremely powerful tools with great po-
tential, even in real application contexts. Prompt engineering, compared to
fine-tuning, constitutes a considerable advantage, as it allows the generaliza-
tion capability of these models to be easily adapted to our specific use cases.
However, it is crucial to consider the divergence between the results obtained
under experimental conditions and the difficulties involved in implementing
these models in real enterprise environments. The Spider dataset, employed
in evaluations, provides clean and well-structured data, whereas, in concrete
scenarios, additional challenges arise, including:

• Noisy and inconsistent data: In business databases, data may contain
errors, duplicates, or missing values that could compromise the quality
of query generation.

• Ambiguities in database structures: Although best practices suggest
precise rules for database design, these are not always observed. The
absence of constraints on primary and foreign keys, as well as the use
of incorrect formats or data types, may lead LLM to generate incorrect
results.
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• Ambiguity in queries: Real users, especially non-technical ones, tend
to formulate queries ambiguously, using synonyms or complex language
structures, making it more difficult for the model to interpret them
correctly.

• Presence of numerous different SQL dialects: Although the exper-
iments focus on the SQL language, it is crucial to consider the existence
of numerous SQL dialects depending on the database server provider,
such as SQL Server, PostgreSQL, MySQL, and SQLite, among others.
This means some commands valid in one system may not be supported
in another.

• Data security and privacy: In a real-world context, databases no
longer contain dummy data, so it is essential to monitor the data flow
and processing and ensure that the system remains compliant with data
protection regulations.

In this context, it is therefore necessary to develop a more comprehensive
infrastructure and implement mechanisms to mitigate these challenges and
meet the various requirements.

The main objective of this thesis is to experiment with the latest LLM
available on the market and implement a platform, albeit in the form of a
Proof-of-Concept, that offers an intuitive interface for querying databases,
reducing the complexity of use and improving the user experience.

In this second phase, indeed, we encountered the difficulties previously
discussed, which will be analyzed in more detail in the following chapter.
The preliminary analysis, in fact, guided the design of the platform, which
was developed taking into account the needs of a real application context.

For the choice of the most suitable model, a compromise between accuracy,
cost, and inference speed was evaluated:

• High accuracy: Gemini 1.5 Pro, with a 9-shot configuration and the
use of 1-3 rows of real data, is optimal for scenarios where high accuracy
is required, albeit at a greater cost.

• Efficiency and speed: Gemini 1.5 Flash, with a 5-shot configuration
and a single row of sample data, is instead a good balance of performance
and cost.

The second configuration is the one adopted by default in the developed
platform.
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5.4.3 Final Remarks
The discussion shows that the success of a text-to-SQL system depends
not only on the strength of the model used but also on the prompting
strategy adopted and the ability to integrate the system into a real enterprise
environment. The most effective strategies are based on a balance between
structuring the reasoning, selection of examples, and use of actual data while
avoiding excessive complexity that could negatively impact the cost and
performance of the system.

The transition from the experimental environment to practical implemen-
tation requires, therefore, an approach that considers not only quantitative
metrics but also qualitative factors such as ease of use, robustness against
user error, the ability to adapt to imperfectly structured data, and, last
but not least, security, which should be implemented with a by-design and
by-default approach.

The developed platform fits in this direction, offering a concrete solution
for applying text-to-SQL in a business context. It has the potential to
improve and facilitate non-expert users’ access to and querying of databases.

In the following chapter, the platform’s concrete use case will be illus-
trated, delving into the technologies adopted, the implementation process,
its operational impact, and the possible optimizations that could transform
this Proof-of-Concept into a fully integrable and ready-to-use product.
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Chapter 6

Use Case and Proposed
Solution

6.1 Business Requirements and Challenges

6.1.1 Corporate Landscape And Fields of Application
Access to data is a fundamental need in any business context, regardless of
the sector or the user’s role. The platform developed responds to this need
by offering a centralized system for managing database connections, allowing
users to query them intuitively and display the results in multiple formats.

Compared to a simple text-to-SQL conversion via LLM, the platform’s
objective is to provide an integrated solution that simplifies interaction
with the data, minimizing the technical support required and improving
operational efficiency.

The project was realized in cooperation with Connect IT Reply, a company
specializing in IT consultancy for IoT platforms and connected products.
Having already played a role in the company, it was possible to directly iden-
tify internal dynamics and seize the opportunity to optimize the operational
flow, proposing solutions based on actual needs observed in the daily work
environment.

The proposed platform is ideally suited to companies that manage multiple
databases that are isolated from each other for security and confidentiality
reasons. This is a common situation in the IT consultancy.

In these scenarios, a single point of access to data allows both technical
and non-technical staff to operate more quickly and autonomously, reducing
the dispersion of resources and activity downtime due to context switching
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between different tools.

6.1.2 Categories of users involved
The use of the platform can be beneficial for several professionals, including:

• Developers: can speed up the database query process by centralizing
access to information and reducing the time spent writing repetitive
queries. Often, in fact, a developer engaged in developing a new func-
tionality needs to quickly understand the database’s structure to analyze
its impact or correctly define its design.

• Partners, Project Managers, and Business Analysts: They can
extract data without the need for technical support, improving the
speed with which they can obtain useful insights for their own activities.
In addition, the platform directly returns a graphical response, which
is particularly useful in the case of preliminary analyses as it reduces
the need for additional tools to visualize the data. Of course, this is
not a replacement for software dedicated to the creation of complex
dashboards, but it is a valuable tool for an initial exploratory analysis.

• Corporate customers: In some instances, they may need up-to-date
data without having to contact the technical team for every request.
From our point of view, this functionality could become an additional
service to be offered to customers, who would use it independently for
their internal needs.

6.1.3 Business context challenges
Users with non-technical roles face several obstacles in accessing data:

• Time and dependence on technical support: Requesting data from
the technical team causes operational delays.

• Lack of adequate tools: They often lack software to consult and
interpret data quickly.

• Cost and complexity of existing commercial tools: Commercial
solutions already available on the market often entail high costs or diffi-
culties integrating with internal company policies, making a dedicated
internal solution preferable.
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The proposed platform addresses these needs, offering a solution that is
cost-effective, secure, and easy to integrate into corporate workflows. It also
manages the complexity associated with the coexistence of databases with
different SQL dialects (e.g., MySQL, PostgreSQL, SQL Server), guaranteeing
flexibility and multi-provider compatibility.

6.1.4 Main technical challenges
The implementation of the platform presents several challenges, already
discussed in the previous chapter. One of the main difficulties concerns
the interpretation of natural language since the queries users ask are often
imprecisely or ambiguously formulated, making their correct understanding
complex. Another critical aspect is the balance between accuracy and cost,
which requires optimization of the generated queries to avoid excessive use
of tokens, therefore reducing both costs and response times. Finally, the
platform must manage the heterogeneity of business data, characterized
by non-standardized patterns, formats, and naming conventions, which
complicate its integration and processing.

6.1.5 Proposed Solution Objectives
Given the considerations mentioned above, the main objectives of the platform
are: Simplify and speed up data access by removing technical barriers related
to the use of SQL.

• Reduce the developers’ workload by decreasing interruptions due to data
requests.

• Centralize and standardize database access, improving the overall effi-
ciency of the workflow.

• Optimize the presentation of results through intuitive interfaces and
versatile visualizations (text, tabular, graphical).

• Maximize the potential of LLM, thanks to targeted prompt engineering
strategies for generating reliable queries consistent with user require-
ments.

The proposed platform thus represents a balanced solution between ease of
use, performance, and economic sustainability, designed to adapt effectively
to the observed real business context.
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6.2 Technological Stack and System Archi-
tecture

The platform’s development follows a modular and flexible approach. Cur-
rently a Proof of Concept (PoC), the architecture is designed to facilitate
experimentation and adapt to future evolutions, with the aim of improving
scalability, security, and maintainability.

The system’s structure allows for a possible extension towards a more
robust infrastructure, with the possible use of containers, orchestrators, and
advanced authentication mechanisms. This section provides an overview of
the main technologies adopted, while the implemented functionalities and
the complete flow of requests will be explored in the following chapters.

6.2.1 Backend
The backend is developed in Python and deals with query processing, database
integration, and functionalities based on artificial intelligence models. A
significant part of the code concerning query preprocessing was borrowed from
the work of the DAIL-SQL paper researchers. However, several modifications
and adaptations were made for our experiments and their integration with
the platform architecture.

For the API deployment, we chose a simple and fast framework, FastAPI,
since it is a PoC. APIs are REST, but we envisage the possibility of intro-
ducing WebSocket for chat management to make real-time interactions more
efficient.

Since the platform currently runs locally, an authentication system has not
been implemented. To improve security, JWT and OAuth could be adopted
in a future distributed version.

6.2.2 Frontend
The frontend was entirely developed as part of this thesis using React and
TypeScript, with Vite, a build tool to optimize project management and
speed up project builds. The interface is designed to offer a simple and
intuitive user experience without requiring specific technical skills.

Currently, the state of the application is managed locally in the React
components, without the use of state management libraries that could be
used in the future. The frontend communicates directly with the backend via
REST APIs. Chart.js is used for data visualization, allowing a minimalist,
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clear and interactive representation of the information.

6.2.3 Database and LLM Integration
The management of new database providers and integration with LLM
models were implemented by extending and adapting existing code.

Communication with the database occurs via the pyodbc library, which
guarantees persistent connections and optimizes the execution of SQL queries.
Currently, the platform supports SQLite and SQL Server, with the possibility
of extending support to other providers in the future.

For natural language query processing, the backend communicates with the
selected model via external APIs using an API key stored in the configuration
files. The architecture is designed to be modular, allowing the integration
of different models available on the market by simply implementing the
methods defined in the dedicated interface. Moreover, the platform natively
supports integration with available Hugging Face models, allowing them to
be used even in local environments without the need to connect to external
cloud services.

6.3 Platform functionalities
The platform offers users a centralized and intuitive environment to access,
query, and manage databases through an interface that takes advantage of
the advanced capabilities of artificial intelligence models. It consists of four
main functionalities that enable it to meet the needs of different types of
users while ensuring ease of use and technical flexibility.

6.3.1 Database Connections
The platform offers a centralized system for managing database connections,
allowing users to configure and access multiple databases easily and securely.
The interface allows users to:

• Add new connections by specifying an identifier, SQL dialect and au-
thentication method, which can be by connection strings or credentials.

• View and manage active connections, providing a clear list of configured
databases.
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• Remove connections that are no longer needed, with a confirmation
mechanism preventing accidental removal.

Figure 6.1: Database Connections: List of available connected databases

Figure 6.2: Database Connections: Dialog modal view to add a new
connection

6.3.2 SQL Dashboard
The SQL Dashboard is the operational heart of the platform, allowing users to
formulate natural language queries and execute SQL queries. The interface
integrates the advanced capabilities of LLM templates to automatically
translate textual queries into SQL queries, providing quick and intuitive
access to data. Key features of the SQL Dashboard include:
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• Automatic query generation: Users can type in a natural language
query, select the reference database, and get the corresponding SQL
query generated by the LLM model.

• Query execution and modification: Query execution is performed
directly after the natural language query; however, it can also be man-
ually modified and re-executed, providing flexibility and total control
over the queries.

• Visualization of results in different formats: Data can be consulted
in textual, tabular, or interactive graphical format, facilitating the
analysis and understanding of information.

• Query history: The platform stores executed queries, allowing users
to review, re-execute, or refine previous queries quickly and easily.

The aim of the SQL Dashboard is to combine simplicity and power, offering
an interface accessible even to non-technical users without compromising the
flexibility required by more experienced users.

Figure 6.3: SQL Dashboard: Query generation and execution

57



Use Case and Proposed Solution

Figure 6.4: SQL Dashboard: Query execution output in natural language
format

Figure 6.5: SQL Dashboard: Query execution output in tabular format

6.3.3 Chat Interface
The Chat Interface section aims further to facilitate interaction with the
database through a conversational interface. The virtual assistant is designed
to help users understand the database’s structure and suggest possible SQL
queries to be executed directly in the Dashboard.

This tool is particularly useful for non-technical users as well as for
those who need to quickly familiarize themselves with a database whose
internal structure they are unfamiliar with, thus improving their operational
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Figure 6.6: SQL Dashboard: Query execution output represented as a
chart

autonomy and significantly reducing the time needed to obtain answers and
results.

The leading chat functionalities include:

• Database selection, to ensure relevant queries to the desired databases.

• General inquiries for understanding databases, with markdown
text to enhance readability.

• Generation of SQL queries, translating textual queries into exe-
cutable code.

• Direct execution of queries, extracted from the conversation, with
the ability to execute them and look at the results in the SQL Dashboard
section.

6.3.4 LLM Settings
The LLM Settings section allows users to customize the parameters of the AI
models used in the platform to generate SQL queries and for conversational
features. This configuration enables users to optimize system performance
according to specific accuracy, speed, and efficiency requirements. The main
configurable options include:
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Figure 6.7: Chat interface: Select a database connection and start a new
chat

Figure 6.8: Chat interface: Markdown messages, query generation, and
“Execute query” button

• Provider and model: The user can choose between different providers
(e.g., Google, OpenAI) and LLM models (e.g., Gemini 1.5 Flash, GPT-
4o-mini).

• Temperature control: This parameter influences the creativity of
responses, with lower values for more predictable responses and higher
values for greater variability.

• Activation of the Chain-of-Thought technique: This guides the
model through intermediate reasoning, as in the experimental phase.
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• Saving customized settings: Users can save preferred configurations
to apply them in future interactions.

Figure 6.9: LLM Settings: Modify settings according to preferences

Figure 6.10: LLM Settings: Select among different CoT prompting methods

6.4 Real-time Data Retrieval Process
The SQL Dashboard represents the core of the platform and integrates the
various prompting techniques described in previous chapters. The processing
of the user’s requests follows a well-defined flow, which ensures the correct
interpretation of them, the generation of the SQL queries, and finally, the
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output of the results for visualization. Figure 6.11 shows a sequence diagram
of the whole process, summarizing the following section.

Figure 6.11: Sequence diagram of the user request when using the SQL
dashboard

Preliminary Steps Before discussing the details of the request flow, it
is essential to describe some preliminary operations that guarantee the
platform’s proper functioning.

Each time a new database connection is added, the platform analyzes its
structure and serializes it in a JSON file, including information on tables,
columns, and constraints. In parallel, the system maintains a library of
sample databases, which are used to enrich the prompt. These databases and
the corresponding queries need to be preprocessed beforehand, calculating
the schema linking and serializing data in an accessible format.

Thanks to this strategy, the platform has all the information needed to
speed up request processing right from the start, avoiding the need to repeat
parsing operations and analysis of the database structure with each query.

Phase 1: Sending the Query and Identifying the Context The
interaction begins when the user formulates a natural language query through
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the SQL Dashboard interface. The frontend sends a request to the API
exposed by the backend, specifying the textual query and the reference
database. The platform ensures that the selected database is valid and
accessible.

Phase 2: Schema and Value Linking One of the most complex aspects
of the conversion from natural language to SQL is schema linking, i.e., the
process of associating the keywords in the user’s question with database
entities, such as tables and columns. In parallel, value linking is performed,
allowing numeric values or strings in the question to be identified and
mapped to the data contained in the database. For this phase, we adopted
the approach described in the IRNet paper. This step is crucial for the
example query selection step, as the identified table names, columns, and
values are replaced with special masking tokens.

Phase 3: Constructing the Prompt for LLM A structured prompt is
built, which includes:

• The database schema representation, with tables, columns, and relation-
ships.

• Sample entries for each table, dynamically extracted from the database.
• The user’s original question, keeping the natural phrasing.
• A set of similar queries extracted from the dataset, to better guide the

model in generating the query.

Phase 4: Query Generation The prompt is sent to the selected LLM,
which generates the SQL query that answers the user’s question. The query
is then extracted and validated.

Phase 5: Query Validation Before executing the query on the database,
the platform verifies that it is read-only, thus avoiding write operations
that could compromise the data. In a future evolution of the system, this
validation could be adjusted according to user roles, allowing more advanced
operations for users with specific authorizations.

Phase 6: Query Execution and Data Retrieval After validation, the
query is executed on the database, and the results are retrieved.
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Phase 7: Formatting Results for Visualization The system performs
further processing to adapt them to the frontend presentation libraries:

• The data are formatted for clear visualization.

• The LLM model is prompted to interpret the data and generate an
explanatory textual response.

• The most suitable type of graph is selected to represent the data (only
tables, bar charts, line charts, and pie charts), facilitating user analysis.

Phase 8: Saving Query History Each executed query is saved in the
history, allowing the user to consult, modify, and re-execute previous queries.

Phase 9: Sending the Response to the Frontend Once the process is
complete, the API sends the response to the frontend, which displays the
results interactively. The user can explore the data and modify the query,
providing a smooth and intuitive experience.

6.5 Further Improvements, Security, and
Scalability

This section analyzes some improvements that could make the platform more
secure, scalable, and efficient, adapting it to more complex business scenarios.

6.5.1 Query Generation Optimizations
Experiments have shown the need to improve the efficiency and accuracy
of the models used to generate SQL queries from natural language. One of
the most promising directions concerns the implementation of a Retrieval-
Augmented Generation (RAG), allowing the most relevant tables to be
selected before the query is generated, reducing the number of tokens con-
sumed, and improving the relevance of the answers.

Another area of optimization concerns database schema caching. Storing
the structure of tables and relationships between data would reduce latency in
the query generation process, avoiding redundant calls to artificial intelligence
models. However,r, a mechanism for automatically updating metadata when
the database is updated should be considered.
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In addition, fine-tuning models on specific datasets could improve under-
standing of database structures and expressions commonly used by users,
leading to greater accuracy in generated queries.

The platform could then integrate automatic suggestions for query gen-
eration, making the experience more intuitive and guided. Furthermore,
expanding compatibility with other SQL dialects would extend the scope
of the platform, making it more versatile and suitable for different business
contexts.

6.5.2 Cost-effective Optimization
The use of AI models for generating SQL queries introduces inference costs
that must be balanced against the accuracy of the answers. One possible
solution is the integration of a dynamic model selection mechanism, which
may choose in real time between lighter, cheaper, or more advanced models
depending on the complexity of the request.

Another approach to reduce operational costs could be adopting open-
source or on-premise models, eliminating the dependence on external APIs,
and providing greater control over computational resources. Finally, the
implementation of caching strategies for prompts and responses would avoid
repeated calls to the model, improving efficiency, and reducing processing
time.

6.5.3 Data security and protection
Strengthening data security is essential in enterprise and production environ-
ments. To ensure adequate protection, it would be advisable to introduce
encryption systems for credentials and sensitive data, advanced access control
mechanisms to manage permissions according to corporate roles, and secure
session management through authentication protocols. These improvements
make it possible to limit access to sensitive data only to authorized users
with controlled access and improved traceability.

6.5.4 Infrastructure Scalability
The current implementation of the platform, being a proof of concept, is
designed to be easily extendable at the infrastructure level. To support an
increasing number of users and requests, a fundamental first step would
be the adoption of scalable cloud infrastructures or serverless architectures,
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exploiting technologies such as Docker and Kubernetes, which can efficiently
distribute the workload, and cloud providers such as AWS, GCP, or Azure.

A further development could be implementing a microservices structure,
further improving scalability and allowing modular management of platform
components. This approach would distribute the workload more efficiently,
facilitate the integration of new services without impacting the entire system,
and optimize the allocation of resources according to operational needs.
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Conclusions
This thesis has addressed the issue of user-database interaction through
the use of large language models for the generation of SQL queries from
natural language. The primary goal was to develop a platform that simplifies
data access for non-expert users, reducing the need for extensive technical
knowledge of SQL, and for more technical roles to speed up the querying
process and understandability of the database structure.

After a deep analysis of the literature and existing technologies in the
Text-to-SQL field, we implemented and tested different prompt engineering
strategies, evaluating the performance of different language models with
varying configurations. As expected, the experimental results demonstrated
that techniques such as Few-Shot Learning, the addition of INSERT statements
in the prompt, and the use of Chain-of-Thought prompting can significantly
improve query generation accuracy.

Among the tested models, Gemini-1.5-Pro performs better, achieving an
execution accuracy of 78.2% in the optimal configuration (without CoT).
However, its use entails a higher cost compared to other solutions like GPT-
4o-Mini or Gemini-1.5-Flash, which offer a better cost-performance ratio
even if slightly less performant. From a practical implementation perspective,
the developed platform represents an important step forward in facilitating
access to enterprise real data, allowing even non-technical users to query
complex databases through an intuitive natural language interface.

Some challenges remain open regarding both the model’s performance and
platform perspectives.

Implementing a retrieval-augmented generation (RAG) system would
improve query generation, especially for complex requests, particularly in
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databases with a large number of tables. Additionally, common text genera-
tion errors, such as model hallucinations, must always be managed, as they
can easily lead to incorrect or ineffective queries.

Another issue is also the computational cost and scalability of the system
for use in production environments with high request volumes. Further-
more, the integration with heterogeneous databases will further enhance the
usability of the platform.

In the future, possible developments include the adoption of open-source
models to reduce reliance on proprietary APIs, such as the brand-new
DeepSeek [29], the deployment of the platform using cloud provider resources,
and the optimization of the user experience.

In conclusion, this work has highlighted the potential of generative artificial
intelligence in data management, offering innovative solutions to enhance
accessibility and efficiency in database querying for both expert and non-
expert users. The results provide a foundation for further research and
developments in the Text-to-SQL field, opening up new opportunities for
practical applications in both the corporate and academic sectors.
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Appendix A

Experimental Setup: CoT
Prompts
In this appendix, we describe the prompts and procedures used for each type
of Chain-of-Thought involved in generating SQL queries. Throughout the
appendix, the term COMPLETE-PROMPT refers to the complete prompt pre-
sented in Section 4.3. This full prompt, as shown, is divided into key sections,
which we will refer to as QUERY-EXAMPLES, DB-SCHEMA, INSERT-SAMPLES,
and QUESTION.

A.1 AHEAD_COT
In this case, the following prompt is designed for a single interaction with
the LLM.

1 """
2 Let’s approach this step-by-step:
3 1. Understand the question and identify the key elements.
4 2. Determine the tables and columns needed.
5 3. Formulate the SQL query structure.
6 4. Add necessary conditions and joins.
7 5. Finalize the SQL query.
8

9 Now, let’s go through each step:
10

11 {COMPLETE-PROMPT}
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12 """

A.2 AHEAD_COT_WQUESTS
This prompt is pretty similar to the previous one plus the addition of a
question rephrasing step.

1 """
2 Let’s approach this step-by-step:
3 1. Understand the question and identify the key elements.
4 2. Rephrase the given question in 3 different ways maintaining

the same meaning but simplifying it.
5 3. Determine the tables and columns needed.
6 4. Formulate the SQL query structure that satisfies all the 3

rephrased questions.
7 5. Add necessary conditions and joins.
8 6. Finalize the SQL query that satisfies all the 3 rephrased

questions.
9

10 Now, let’s go through each step:
11

12 {COMPLETE-PROMPT}
13 """

A.3 SQ_PROMPT_V1
This is a two-stage approach where, first the LLM generates simplified
questions, and then generates the SQL query based on an enhanced prompt.

1 # Step 1: Generate simplified questions
2 """
3 Rephrase the given question in 3 different ways. Follow these

rules:
4 1. Maintain the original meaning.
5 2. Simplify the language so an 8-year-old child could easily

understand it.
6 3. Ensure each rephrasing is distinct from the others.
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7

8 Your response must be a numbered list of the 3 rephrased
versions without any explanations.

9

10 Given the following database schema:
11 {DB-SCHEMA}
12 {INSERT-SAMPLES}
13 {QUESTION}
14 """

1 # Step 2: Generate SQL query
2 """
3 {QUERY-EXAMPLES}
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6

7 Answer the following:
8 1. {REPHRASED-QUESTION-1}
9 2. {REPHRASED-QUESTION-2}

10 3. {REPHRASED-QUESTION-3}
11 """

A.4 AUTO_REASONING_V1
Firstly, the LLM generates reasoning steps as a guideline for the correct SQL
query using the following prompt:

1 # Step 1: Generate reasoning steps
2 """
3 Given this prompt:
4 {COMPLETE-PROMPT}
5

6 Generate the sequence of actions needed to generate the correct
SQL query.

7 Your response must be a numbered list of actions.
8 """
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Then the reasoning steps are injected into another prompt to generate
the SQL query.

1 # Step 2: Generate SQL query
2 """
3 Given the following database schema:
4 {DB-SCHEMA}
5

6 Follow this reasoning to generate the correct SQL query:
7 {GENERATED-REASONING}
8 """

A.5 AUTO_REASONING_HISTORY_V1
The initial step is identical to the previous one, where the LLM gener-
ates reasoning steps. In the second step, instead, we continue the current
conversation to generate the SQL query, with the following simple message:

1 # Step 2: Generate SQL query
2 """
3 Now write the correct SQL query without explanations.
4 """

A.6 REPROMPT_EXP_CORRECT
This approach queries the LLM three or four times to generate the correct
SQL query. The first prompt is designed to select and describe the relevant
tables.

1 # Step 1: Select and describe relevant tables
2 """
3 {QUERY-EXAMPLES}
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6 Select and describe the tables needed to answer the following: {

QUESTION}
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7 Follow this structure to respond:
8 1. Relevant tables:
9 2. Tables Description:

10 3. Relationships among relevant tables if any:
11 4. Other useful information:
12 """

Then a query is generated based on the tables selected in the previous
step.

1 # Step 2: Generate SQL query
2 """
3 {COMPLETE-PROMPT}
4 Some useful information you may need to answer:
5 {RELEVANT-TABLES-DESCRIPTION}
6 """

After generating the query, the LLM validates it with the following prompt:

1 # Step 3: Validate the generated query
2 """
3 Given the following database schema:
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6 Question: {QUESTION}
7 Query: {GENERATED-QUERY}
8 Tell me if the query answers the question correctly. Answer only

with YES or NO.
9 """

Finally, if needed, the LLM corrects the query based on the feedback
received in the previous step.

1 # Step 4: Generate corrected query
2 """
3 Then correct the query.
4 """
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A.7 REPROMPT_EXP_CORRECT_GENNQUESTS
Actually, this CoT reasoning is a combination of the previous one and the
SQ_PROMPT_V1. In this case the number of interactions can be up to five. The
initial step is, in fact, the same as the first step in SQ_PROMPT_V1, described
in A.3, where the LLM generates simplified questions. Then, the rest of the
interactions are very similar to the REPROMPT_EXP_CORRECT approach, with
the addition of the simplified questions in the prompts. Here we show only
the prompts which differ from the previous approach.

1 # Step 2: Select and describe relevant tables
2 """
3 {QUERY-EXAMPLES}
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6 Select and describe the tables needed to answer all the

following questions with a single query: {REPHRASED-QUESTIONS}
7 Follow this structure to respond:
8 1. Relevant tables:
9 2. Tables Description:

10 3. Relationships among relevant tables if any:
11 4. Other useful information:
12 """

1 # Step 3: Generate SQL query
2 """
3 {QUERY-EXAMPLES}
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6 Write a single SQL query to answer the following equivalent

questions: {REPHRASED-QUESTIONS}
7 Some useful information you may need to answer:
8 {RELEVANT-TABLES-DESCRIPTION}
9 """

1 # Step 4: Validate the generated query
2 """
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3 Given the following database schema:
4 {DB-SCHEMA}
5 {INSERT-SAMPLES}
6 Questions: {REPHRASED-QUESTIONS}
7 Query: {GENERATED-QUERY}
8 Tell me if the query answers all these equivalent questions

correctly. Answer only with YES or NO.
9 """
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