
POLITECNICO DI TORINO
MASTER’S DEGREE IN CINEMA AND MEDIA

ENGINEERING

Master’s Degree Thesis

Digital Shadow & Virtual Worlds
for VR Driving in CARLA

******

Supervisors:
Prof. Andrea Bottino
Prof. Francesco Strada

Candidate:

Andrea Spanu

Politecnico di Torino

April 2025



To my loving family, for their unwavering support and for always pushing me to do
my best. To those who have always seen my success as their own, thank you for

being a part of this journey.



Acknowledgements

I would like to express my sincere gratitude to Francesca Matrone from the DIATI
department of Politecnico for providing the point cloud data of the municipality of
Mappano, as well as for her kindness and patience in explaining how to handle the
data.

I am also deeply grateful to my supervisors for their invaluable support and
guidance throughout the duration of my thesis.

Lastly, thanks to my housemates for not only tolerating my endless complaints
but also for surviving them with impressive patience and resilience.



Abstract

Evaluating rare but critical driving situations, such as hazardous road events or
complex traffic interactions, is challenging yet essential. Physical tests for every pos-
sible scenario are expensive, difficult to manage reliably, and potentially dangerous.
Consequently, virtual simulations have become fundamental resources for research
in autonomous driving, traffic modeling, and safety analysis. Researchers take advan-
tage of these environments to replicate diverse driving scenarios. Sensor responses
allow them to analyze vehicle behavior in a controlled and highly adaptable setting.

Among the virtual simulation tools, CARLA (Car Learning to Act) stands out as
an open-source driving simulator widely used for autonomous vehicle research and
other multidisciplinary studies. Thanks to its realistic physics engine, customizable
sensors and high-quality rendering, CARLA is also used in areas such as computer
vision for neural network training, robotics through integration with the Robot
Operating System (ROS), human-machine interaction to analyze human behavior
in autonomous driving scenarios and urban planning. CARLA uses physically
based rendering (PBR) techniques in its rendering pipeline to achieve photorealistic
visuals while still maintaining real-time performance. Achieving the right balance
between realism and efficiency becomes essential to create meaningful and immersive
simulations.

This thesis explores methodologies for generating maps that are compatible
with the CARLA environment, focusing on two key objectives: achieving a precise
reconstruction of real-world environments through geospatial data and enhancing
visual realism to improve simulation immersion. The first approach focuses on
’Digital Shadows’, aiming to achieve a high-fidelity representation of real-world
environments by leveraging geospatial data sources such as LiDAR scans and Open-
StreetMap (OSM). These datasets provide precise topographic and infrastructural
details, ensuring that the generated maps closely match real-world road networks
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and layouts. The second approach prioritizes visual realism and immersion, utilizing
Unreal Engine assets to enhance graphical quality and the overall simulation experi-
ence. More generally, achieving high spatial accuracy is based on geospatial data
acquisition techniques, such as LiDAR scanning, to capture real-world structures
with precision. On the other hand, enhancing the visual fidelity of virtual assets
requires procedural generation and optimization methods to achieve both realism
and performance.
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Chapter 1

Introduction

Virtual simulations are computational environments designed to replicate real-world
scenarios with varying levels of accuracy and interactivity. They are increasingly
integral across a broad range of fields, from aerospace engineering to urban planning,
with particularly significant applications in the automotive industry. In driving
research, simulations enable controlled replications of road conditions, vehicle
dynamics, and driver behavior without the inherent risks and constraints of physical
testing. This is especially crucial in the study of autonomous driving and human-
machine interaction, where simulations provide a safe and versatile platform to
evaluate complex and potentially hazardous situations that would be difficult or
impossible to replicate in the real world.

One of the primary advantages of virtual simulations is their ability to create
highly flexible and reproducible testing environments. Unlike traditional physical
experiments, where factors such as traffic, weather, and road characteristics are often
unpredictable, simulations allow precise control over these elements, ensuring con-
sistency and repeatability across trials. This flexibility is invaluable for stress-testing
systems under extreme or rare conditions that might not typically be encountered
during real-world driving. Furthermore, in autonomous vehicle research, virtual sim-
ulations provide the opportunity to expose AI models to a wide variety of scenarios,
enabling the training and validation of autonomous systems without the need for
extensive physical testing.

However, to achieve optimal results, the realism of virtual simulations is para-
mount. High-fidelity simulations - which accurately model road geometries, traffic
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patterns, vehicle physics, and driver interactions - are critical to ensuring that virtual
testing provides valid, actionable data for real-world applications.

Studies on the effectiveness of virtual simulation-based training emphasize the
importance of the simulator’s realism, which can significantly influence the sense
of presence experienced by the trainee. As discussed in the study The Relationship
between Presence and Performance in Virtual Simulation Training by Jonathan A.
Stevens and J. Peter Kincaid (2015) [1], a higher sense of presence in virtual envi-
ronments is closely linked to improved performance outcomes. Their analysis shows
that the relationship between presence and performance is notably influenced by
simulator characteristics, particularly visual immersion. Stevens and Kincaid found
that higher visual immersion led to both higher presence and better performance
from trainees. This finding is crucial, especially when considering the potential of
virtual simulations to enhance training transfer, the ability to apply learned skills
to real-world situations. In their study, the strongest positive correlation between
presence and performance was observed in the treatment where visual immersion
most significantly affected the trainees’ experience, underscoring the value of realism
in fostering effective training environments.

This concept is crucial for driving simulations, especially when creating environ-
ments for autonomous vehicle testing and human-machine interaction. To enhance
the sense of presence, simulations need to integrate immersive technologies such as
high-fidelity rendering, real-time physics, and interactive models. These elements
help create a simulation that not only replicates real-world scenarios accurately
but also engages the user in a way that maximizes their sense of immersion and
interaction. This is particularly relevant in the context of Digital Twin or Digital
Shadow methodologies, where high-definition spatial data (e.g., LiDAR point clouds
and GIS-based road networks) can significantly enhance the realism of the virtual
environment, leading to a stronger connection between the trainee and the simulated
world.

This thesis, therefore, aims to explore workflows for creating highly realistic
and immersive environments, as well as environments derived from real-world
data, tailored for driving simulations in virtual reality (VR). The goal is to identify
efficient, automated methods for generating simulation-ready maps that integrate
seamlessly into driving simulators. By improving the quality and applicability of
virtual simulations, particularly in the context of autonomous vehicle testing and
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human-machine interaction, this research seeks to advance simulation-based training
and development in the automotive industry.

1.1 CARLA as a Tool for Simulation

CARLA (Car Learning to Act) is an open-source simulator specifically designed
for autonomous driving research in urban environments. Its flexibility and realism
make it a powerful tool for testing autonomous systems in diverse and complex
scenarios. CARLA allows researchers to evaluate perception, planning, and control
strategies by providing detailed sensor simulations, dynamic traffic interactions, and
customizable environmental conditions.

Given its capabilities, CARLA serves as the primary simulation platform for this
study. The effectiveness of virtual environments in autonomous driving research
depends not only on their visual fidelity but also on the accuracy of road networks, the
responsiveness of traffic systems, and computational efficiency—especially in Virtual
Reality applications. Ensuring seamless integration of high-quality environments
into CARLA is therefore crucial for maintaining simulation performance while
enhancing immersion and interactivity.

This research leverages CARLA’s framework to assess the feasibility of auto-
mated workflows for generating digital shadows and realistic urban environments,
optimizing them for VR-based driving simulations. By refining these methods,
the study aims to contribute to more robust and adaptable simulation ecosystems,
supporting advancements in both autonomous vehicle testing and human-machine
interaction research.

The following chapters will delve into the methodologies for generating these
environments, detailing the processes of data acquisition, map generation, and
integration into CARLA. Additionally, we will explore the implementation of force
feedback to enhance immersion in virtual reality and examine the structure of the
conducted tests.



Chapter 2

State of the Art

This chapter provides an overview of the key concepts and technologies that are
essential for understanding immersive driving simulators, with a particular focus on
the interrelationship between the concepts of Digital Twin and Digital Shadow. A
comprehensive understanding of Digital Twin technology is crucial for grasping the
role of Digital Shadow, which lies at the heart of this research. The chapter explores
various related fields, including city building, driving simulations, and the integration
of Virtual Reality, to lay the groundwork for the development of advanced simulation
systems. Additionally, the use of CARLA and Unreal Engine as tools for creating
realistic virtual environments will be discussed, highlighting their role in enhancing
simulation fidelity and immersion.
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2.1 Digital Twin: Definition and Applications

The Digital Twin (DT) is a rapidly evolving technology that has become essential in
the context of digital transformation and intelligent system upgrades. By integrating
data and models, the DT enables functionalities such as monitoring, simulation,
prediction, and optimization. At the heart of this concept, Digital Twin modeling en-
sures an accurate representation of physical entities, allowing it to provide functional
services and meet application-specific requirements.

According to the IT Glossary by Gartner, a leading research and advisory com-
pany in the field of information technology, "A digital twin is a digital representation
of a real-world entity or system. The implementation of a digital twin is an en-
capsulated software object or model that mirrors a unique physical object, process,
organization, person or other abstraction. Data from multiple digital twins can be
aggregated for a composite view across a number of real-world entities, such as a
power plant or a city, and their related processes."[2]

In 2020, Gartner also published its "Hype Cycle for Emerging Technologies"
identifying five key trends driving this hype cycle, including Digital Twins. Brian
Burke, Research VP at Gartner, stated, "This Hype Cycle highlights technologies
that will significantly affect business, society, and people over the next five to 10
years."[3]

In 2022, Tao et al. [4] analyzed 296 academic papers to explore the various
application areas of Digital Twin technology.

Fig. 2.1 Application Domains of Digital Twin Models [4]
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The graph shown in the figure indicates that DT models cover a wide range of
disciplines, promoting interdisciplinary research. Overall, Digital Twins (DTs) have
great potential to change traditional fields, support emerging areas, and advance
research in complex domains.

2.1.1 Differences from Digital Models

It is important to define the difference between a Digital Twin and a model. Wright
and Davidson [5] analyzed various definitions to highlight three important compo-
nents in the DT of an object:

• a representation or model of a physical object,

• a set of evolving data related to the object,

• a process for continuously updating or adjusting the model based on the data.

While the model in a Digital Twin does not need to be inherently data-driven, it must
be capable of producing results that correspond directly to measurable quantities.
This allows the updating process to rely on real-world data. Additionally, the model
will often incorporate other measured factors, such as boundary conditions, loads, or
material properties.

A significant advantage of the Digital Twin approach is its ability to account for
changes over time, thanks to the use of evolving data. A validated model offers a
snapshot of how an object behaves at a specific point in time, but integrating this
model into a DT allows for extended use, covering longer periods where both the
object and its behavior may change significantly.

A key factor to highlight is that a Digital Twin must always correspond to an
actual physical object. If there is no real-world counterpart, what remains is simply
a model.

Digital Twins are most effective when an object changes over time, rendering the
initial model of the object inaccurate, and when data related to these changes can be
captured and correlated. If the object remains largely unchanged or if the associated
data cannot be collected, the utility of a DT diminishes significantly.
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Digital Twins can be classified based on the hierarchical nature of physical
entities and their virtual representations. Tao et al. [4] suggest that DT models can
be generally divided into three levels: unit level, system level, and system of systems
(SoS) level, according to their structure and functionality.

In urban applications, individual constructions are considered at the unit level,
while larger complexes, such as industrial parks or residential districts, belong to
the system level. At the highest level, the entire city is represented at the SoS level.
Most Digital Twin models for cities are focused on the unit and SoS levels.

City-Scale Digital Twin: A Practical Example

Wright and Davidson [5] highlight the use of city-scale Digital Twins as a practical
example for testing autonomous systems, especially the decision-making processes
in autonomous vehicles (AVs). These vehicles face a broad range of potential hazards
on the road. Many of the most dangerous situations, however, are rare, making them
unlikely to occur during everyday driving. Conducting physical tests for every
possible scenario would be extremely expensive, difficult to manage reliably, and
potentially dangerous. For this reason, using a Digital Twin to simulate these tests is
a much more efficient and safer approach. In this context, a DT would incorporate:

• an accurate and regularly updated model of the driving environment, including
vehicles, pedestrians, weather conditions, and other environmental factors,

• simulations of how the vehicle’s sensors would respond, based on real-world
data from sensor tests,

• a model of the vehicle’s physical responses to driving commands (e.g., steering,
braking), considering road surface conditions,

• and the AV’s decision-making algorithms.

CARLA implements several of these functionalities, offering a high-fidelity
simulation environment for testing autonomous vehicles. It allows for the simulation
of dynamic traffic scenarios, pedestrian interactions, and various weather conditions.
However, while it provides realistic sensor modeling and driving physics, it does
not fully account for complex real-time physical interactions such as variable road
surface adhesion.
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2.1.2 Digital Twin Modelling

Tao et al. [6] introduced a five-dimensional Digital Twin model, consisting of the
following components: physical entity, virtual model, connection, data, and service.
Among these, the virtual model is further divided into four distinct sub-models, each
of which contributes to the accurate representation of the physical entity. These
sub-models are:

Geometric Model defines the shape, structure, and spatial position of the entity,
balancing fidelity and efficiency for applications like motion analysis and
virtual interaction.

Physical Model supports quality control and property analysis, distinguishing be-
tween static models (fixed properties) and dynamic models (time-dependent
phenomena like heat transfer).

Behavioral Model is designed to capture the various behaviors (sequential, random,
periodic) of physical entities, addressing uncertainties and anomalies that may
affect accuracy.

Rule Model uncovers implicit knowledge and highlights the evolutionary trends and
patterns of physical entities over time. It extracts knowledge from life cycle
data and expert insights to reveal patterns and evolutionary trends, enhancing
decision-making.

By integrating these sub-models, the virtual representation closely mirrors the
physical entity, ensuring accurate simulation and interaction within the Digital Twin.

Framework for Digital Twin Development

In a separate study, Tao et al. [7] introduced a theoretical framework for Digital Twin
modeling that dissects and examines the various components involved in the Digital
Twin process. Their framework encompasses six key aspects: model construction,
model assembly, model fusion, model verification, model modification, and model
management. Each of these elements plays a crucial role in ensuring that DT models
are not only accurate representations of their physical counterparts, as discussed in
Subsection 2.1.1 regarding the distinctions between models and Digital Twins, but
also capable of adapting to changing conditions and requirements.
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Model construction integrates multidisciplinary knowledge to create unit-level DT
models, which can later be expanded.

Model assembly combines unit models into larger structures, balancing complexity,
accuracy, and efficiency.

Model fusion merges geometric, physical, behavioral, and rule-based dimensions,
ensuring coherence across disciplines.

Model verification ensures that the DT accurately reflects the physical system by
comparing outputs under identical conditions.

Model modification adjusts parameters when verification reveals deviations, focus-
ing on relevant and error-prone elements.

Model management oversees DT models and knowledge bases, ensuring data in-
tegrity, access control, and efficient usage.

2.1.3 Conclusions on Digital Twins

In summary, Digital Twins serve a broad range of applications, with varying require-
ments for computational speed and update frequency. While some implementations
demand real-time synchronization with their physical counterparts, others operate
effectively within longer update cycles, allowing for greater model complexity and
detail. Understanding the hierarchical and dimensional structures of Digital Twins is
essential for selecting the most suitable approach for a given application.

However, the focus of this thesis is not on a fully bidirectional Digital Twin but
rather on a Digital Shadow, where data flows unidirectionally from the physical
world to its virtual representation. This approach ensures an accurate and detailed
reconstruction within CARLA, leveraging external datasets to generate realistic
urban environments. The following section will introduce and define this concept in
greater depth, outlining its role in the proposed framework.
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2.2 From City Digital Twin to Digital Shadow

As urban environments become more complex, information technologies are increas-
ingly central to managing and optimizing city systems. Traditional city management
models are giving way to innovative approaches driven by Big Data 1, which enables
real-time analysis and enhances decision-making accuracy. Unlike static statistical
samples, Big Data continuously captures dynamic patterns in urban behaviors and
interactions, spanning areas such as population, economic growth, construction, and
infrastructure.

The integration of Digital Twin technology further amplifies this approach,
enabling the development of real-time virtual models of city systems. DTs collect
and process data from distributed “Internet of Things” (IoT) sensors throughout the
urban landscape, creating a continuously updated digital counterpart of the city. This
digital representation supports predictive analysis of infrastructure, provides insights
into the interactions between people and transportation, and answers complex “what-
if” scenarios. By simulating urban dynamics under various economic, environmental,
and social conditions, DTs offer a foundation for understanding how “smart cities”
can function optimally and for identifying potential vulnerabilities in city operations.

According to Ivanov et al. [9], a Smart City represents a strategic framework that
leverages data and digital technologies to promote sustainability, enhance citizen
welfare, and support economic growth within urban environments. This concept
envisions a unified space where core urban infrastructure — such as environmental
systems, emergency management, traffic, and power — interconnect seamlessly,
fostering synergy both among existing functions and with future technological
advancements.

Yet, achieving a full-scale visualization of an entire city through a digital twin
presents substantial hurdles, particularly concerning the thoroughness and precision
of urban information. Numerous digital twin models developed to date exhibit issues
with accuracy, completeness, and the quality of graphical representations. Addition-
ally, efforts to mitigate the limitations of sensory data using participatory sensing and
crowdsourcing have highlighted concerns, including localization inaccuracies and

1"Big data is high-volume, high-velocity and/or high-variety information assets that demand
cost-effective, innovative forms of information processing that enable enhanced insight, decision
making, and process automation." [8]
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the potential for unreliable or unverified information. These flaws not only detract
from the visual fidelity of the model but also hinder situational awareness, which is
crucial for interpreting urban dynamics in real time.

Furthermore, a comprehensive understanding of a city’s current condition is often
compromised by the omission of contextual elements and non-physical systems,
such as social, economic, and political frameworks. The intricate interactions
among people, infrastructure, and technology are frequently overlooked, which can
significantly undermine the predictive and planning capabilities of digital twins.
Without sufficient situational awareness, the effectiveness of urban planning and
forecasting diminishes, and an incomplete or inaccurate city model may lead to
flawed or suboptimal decision-making. Consequently, the usefulness of a digital
twin in urban analysis and future scenario planning depends heavily on the accuracy
and richness of the data it integrates.

2.2.1 Conceptualizing the City Digital Twin

The concept of a City Digital Twin entails a comprehensive network of interconnected
digital models that simulate various aspects of urban operations and development.
These models are engineered to dynamically adjust in real time to the actual con-
ditions of urban infrastructure, harnessing data from diverse sources. Examples
of such data streams include [9] information about the movement of residents and
vehicles — spanning private, commercial, and public transportation — and conges-
tion metrics from traffic monitoring systems. Additionally, real-time environmental
data collected by smart sensors provide measurements of air temperature, humidity,
pollution levels, noise, radiation, and water quality, all linked to specific geographic
locations. Insights from outdoor cameras contribute by offering traffic conditions,
road quality assessments, and event detection, while public portals, meteorological
services, and business reports further enrich intelligent data analysis.

However, developing a holistic City Digital Twin requires addressing several
complexities. One of the primary challenges lies in ensuring a high degree of
integration among the diverse urban domains and information sources. A City
Digital Twin must accommodate varying levels of detail and fidelity across different
parts of the city. For instance, buildings from different centuries may need to be
scanned and integrated at different fidelity levels, often as a byproduct of unrelated
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activities like construction or maintenance. Consequently, certain districts may
receive high-fidelity updates when scanned in detail, while other areas retain their
previous, lower-resolution data.

Despite these variations, the City Digital Twin should adhere to the foundational
principle, similar to the manufacturing industry, where all urban planning occurs
within a unified, shared digital model. This integration is not merely about the
technical characteristics of the model but also how urban services are coordinated.
A City Digital Twin must be designed with human factors in mind, facilitating the
orchestration of city ecosystems. This consideration ensures that changes to city
plans or services can be digitally simulated to predict their impact on urban dynamics.
Furthermore, such digital planning capabilities should be accessible to third parties
to foster innovation and optimize service delivery.

To truly represent the pinnacle of urban digitization, a City Digital Twin must
consist of four essential components as outlined by Lehtola et al. [10]:

1. The model must address the specific needs of the city.

2. It should support both high-fidelity content, like mature Building Information
Modeling (BIM) data, and accommodate areas with lower fidelity, acknowl-
edging local differences.

3. Continuous updating of the model is crucial, as cities are perpetually evolving.
Autonomous updates from sensor systems — such as IoT networks, drones,
and robotic vehicles — are essential, along with professional survey data.

4. The usability and safety of the system are paramount, enabling stakeholders to
visualize, share, and interpret information effectively for improved decision-
making. Adopting a human factors perspective is essential to unlock the full
potential of City Digital Twin systems and enhance city management through
informed, collaborative planning.

This integrated approach ensures that a City Digital Twin not only reflects the
physical and operational aspects of the city but also serves as a robust tool for future
urban development, policy analysis, and ecosystem orchestration.
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Digital Representation and Information Linkages in City Digital Twins

City Digital Twins require that our urban environments are digitally recreated with
essential features, such as buildings, infrastructure, terrain, vegetation, and other
elements. Beyond replicating physical attributes, City Digital Twins must also
enable the integration of data from diverse urban processes, an effort that involves
understanding how information content is perceived. Cognition, however, differs
between humans and computers, with Digital Twins relying on specific digital
structures, or representations, to store information in a comprehensible format for
machines.

Digital Twin 3D models are generally derived from raw data collected through
point clouds or imagery. Key representations include [10]:

Point Clouds: The direct output from various sensor systems, these provide raw,
dense data for urban modeling.

Voxels: Aggregated point data represented as cubes with a fixed spatial resolution,
voxels facilitate physical simulations, such as visibility analysis, traffic noise
mapping, solar radiation assessment, and wind flow studies. The trade-off
with voxels lies in their high memory demands, often necessitating a balance
between accuracy and scalability.

Mesh Surface Models: Created by triangulating point clouds, these models are
valuable for topographic mapping and terrain analysis.

3D Models: Finalized models utilized within Geographic Information Systems
(GIS) or BIM platforms, they serve both functional and visualization purposes
in city management.

City Digital Twins build upon and extend the foundations of two well-established
ecosystems: GIS and BIM, merging them to address the unique demands of urban en-
vironments. This dual heritage equips City Digital Twins with a more comprehensive
and versatile set of tools and representations.

2.2.2 Geographic Information Systems

Geographic Information Systems are frameworks designed for gathering, managing,
analyzing, and visualizing spatial and geographic data. They allow for the mapping
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and examination of relationships, patterns, and trends through a combination of
geographic features - like buildings, roads, or landscapes - and additional data
layers that represent various attributes of those features. The key power of GIS
lies in its ability to spatially organize data, enabling users to analyze the impact of
physical features on different processes or environments. For example, GIS can help
urban planners visualize infrastructure, assess environmental impacts, or manage
emergency response strategies effectively.

Modern GIS has evolved significantly from its roots in paper-based cartography.
Today’s GIS systems leverage digital mapping techniques and powerful database
management tools to provide a comprehensive view of urban environments. Vector
data, which represent objects as points, lines, or polygons, forms the core of GIS
analysis, and these elements can be enriched with additional attributes stored in rela-
tional databases. Spatial extensions to databases, such as PostGIS and Oracle Spatial,
facilitate the efficient management of spatial data, while specialized platforms like
3DcityDB and DB4Geo handle complex 3D urban datasets.

Two primary standards dominate urban GIS applications: CityGML and CityJ-
SON. CityGML, established by the Open Geospatial Consortium, provides a multi-
level detail (LoD) framework, ranging from simple, flat building footprints (LoD 0)
to highly detailed models that include interior structures (LoD 4). This hierarchical
representation allows for various applications, from basic city planning to detailed
indoor navigation. Additionally, CityJSON, a newer format proposed to the Open
Geospatial Consortium in 2021, simplifies the exchange of urban data and is poised
to enhance interoperability between platforms.

These standards are crucial for developing comprehensive city models that
support digital twins. By structuring data in formats compatible with widely used
GIS software like ArcGIS and QGIS, city planners and developers can integrate
diverse datasets to create a dynamic digital replica of the urban environment. This
integration is essential for monitoring city operations, conducting simulations, and
optimizing infrastructure through predictive modeling.

2.2.3 Building Information Modeling

Building Information Modeling provides a detailed digital representation of physical
structures, encompassing geometric, spatial, and infrastructural information. It has
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revolutionized the Architecture, Engineering, and Construction (AEC) fields by
offering a more intelligent modeling process compared to traditional 3D models.
While 3D models mainly depict the physical aspects of structures, BIM goes a step
further by integrating comprehensive metadata about these structures. This added
dimension of information facilitates collaboration among professionals, optimizes
project planning, and minimizes errors. One of the central benefits of BIM is its
ability to improve cost management and streamline construction processes, enhancing
efficiency across the project lifecycle.

The Industry Foundation Class (IFC) standard plays a pivotal role in BIM’s
ecosystem, ensuring data interoperability across various software platforms. By
standardizing data formats, IFC enables seamless collaboration between stakeholders,
though challenges remain due to the use of proprietary software in the industry. Open
standards like OpenBIM are gaining traction to address this issue, promoting wider
adaptability and integration.

Despite its advantages, BIM has limitations when applied to the concept of
city digital twins. One significant shortcoming is that traditional BIM models are
not equipped for real-time updates. Typically, these models are refreshed only at
specific milestones, such as post-construction, which restricts their applicability in
scenarios requiring dynamic monitoring and continuous data flow. While methods
like Scan-to-BIM allow for periodic updates by incorporating as-is conditions, these
updates are often infrequent and insufficient for real-time urban management.

In contrast, a digital twin represents a comprehensive, continuously updated
virtual counterpart of a physical entity, facilitated by sensors and IoT technologies.
This real-time interaction enables predictive simulations, allowing urban planners to
forecast and optimize city operations. As such, while BIM serves as a foundational
component for digital twins by providing detailed structural data, it requires further
integration with real-time technologies to achieve the full potential of smart city
management.

2.2.4 Combining BIM & GIS

The integration of GIS and BIM technologies is fundamental to realizing the potential
of City Digital Twins. Combining these systems allows urban planners to enrich
GIS-based city models with detailed architectural and infrastructural data from BIM.
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For example, transforming BIM models into CityGML formats can significantly
enhance the level of detail in 3D city models, facilitating simulations and analyses
for urban management. However, this integration comes with significant challenges.
Processing and managing vast data sets on a city scale require substantial computa-
tional resources, and BIM-GIS conversions often face technical obstacles, especially
when dealing with large, complex urban environments. Moreover, achieving real-
time updates across integrated models is essential but difficult. Automated data
acquisition from IoT devices, drones, and other sensor systems becomes necessary to
maintain the relevance and accuracy of city models. These updates enable predictive
simulations, optimize city infrastructure performance, and support efficient decision-
making. The ultimate goal is to create an extended, sensor-integrated city model that
goes beyond static representation, enabling dynamic analysis and adaptive urban
governance.

2.2.5 The Limitations of Achieving a True Digital Twin

Understanding the limitations of a true digital twin is crucial. As Batty [11] high-
lights, a digital twin is often envisioned as a real-time mirror of a physical process,
matching the system’s operations with high precision. However, any model that
reflects another system remains, by necessity, an abstraction. Models simplify the
complexity of real systems, discarding details that are not essential for the purpose
of study or simulation.

This inherent simplification means that models can never replicate every detail
of a real system. Instead, they emphasize select features, leading to an unavoidable
difference between the model and the original system. Even when digital representa-
tions are composed similarly to the physical systems they depict, they remain distinct.
The notion that a digital twin could fully mirror a system raises the question: if the
twin were perfectly synchronized, how could it be used for simulations, planning, or
learning about the system without being indistinguishable from it?

In urban applications, this limitation is apparent. Digital twins of cities derive
from the representation of physical assets, with GIS and BIM technologies providing
detailed but ultimately incomplete snapshots. These models, even when enhanced
with real-time data like energy consumption or traffic flow, lack the integration of
social and economic processes that define urban life. They remain, as Batty describes,
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mere abstractions that simplify a city’s complexity, capturing only a fraction of its
dynamic nature.

As technology blurs the line between digital and physical realms, digital twins
increasingly merge with their physical counterparts. Yet, the idea of a perfect digital
twin — a complete, real-time replica — remains an idealization. The goal of refining
digital models to better reflect reality is valuable, but we must acknowledge that a
true digital twin, in every sense, may never be fully realized.

2.2.6 Complex Digital Twin examples

In January 2020, the Urban Planning and Development Institute "Giprogor Proekt"
compiled a list of the top ten urban digital twins worldwide, featuring cities such as
Singapore, Amaravati, Boston, Newcastle, Jaipur, Helsinki, Rotterdam, Stockholm,
Rennes, and Antwerp [12].

Fig. 2.2 An example of a complex Digital Twin, showcasing Virtual Singapore, a detailed
and dynamic 3D model used for urban planning and simulation. [13]

Virtual Singapore serves as a prominent example of a city digital twin, created to
unify diverse 3D modeling initiatives within a collaborative platform accessible to
public agencies, citizens, private sector organizations, and research institutions. This
digital twin provides a detailed visualization of the city-state, supports real-time data
gathering and analysis, and enables simulations as well as “what-if” scenarios that
improve planning and decision-making. Nevertheless, it hasn’t yet achieved the level
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of a complete digital twin, as data flow remains unidirectional from the physical
environment to the digital.

Another notable example, as summarized by Shahat et al. [14], is the devel-
opment process behind Zurich’s city digital twin. The process begins with data
acquisition, which is structured around the spatial data from Zurich’s existing 3D city
model. This model includes three main components: a terrain model, a block model,
and a roof model. The data sources for these models are diverse: LiDAR imagery
supports the terrain model, floor plans from the city’s cadastral survey inform the
block model, and semi-automated photogrammetry aids in creating the roof model.
Each component is built with varying levels of detail to suit different visualization
needs. Zurich’s digital twin enables a detailed view of street spaces, underground
infrastructure, and select public buildings with enhanced levels of detail.

Fig. 2.3 An example of Zurich’s city Digital Twin, a sophisticated 3D model used for urban
analysis and real-time simulation of city dynamics. [15]

To improve accessibility and interoperability, spatial data and metadata standards
were formally established under a federal act, which also underpins Zurich’s digital
twin governance framework. Open government data is leveraged to facilitate contri-
butions from various stakeholders, while a geoportal aggregates and updates geodata
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automatically. This portal also includes a visualization tool that allows users to view
3D city components and ongoing construction projects. The Zurich digital twin has
demonstrated several applications in urban planning, including scenario comparison
for urban development, integration of urban climate considerations into planning,
and facilitation of public participation.

To enhance Zurich’s digital twin further, increasing the detail levels of buildings
and city elements, integrating BIM and GIS applications, and reducing data update
intervals and processing times for 3D models have been identified as priorities.

2.2.7 Research Agenda

Shahat et al. [14] undertook a comprehensive review aimed at assessing the landscape
of city-scale digital twin research and formulating a research agenda to propel
advancements in this domain. Their analysis involved a thorough search across
major academic databases, including Scopus, Web of Science, and Google Scholar,
using a broad approach to encompass relevant studies not only on individual buildings
but also on larger urban and district scales. This method resulted in a collection of
171 articles as of October 2, 2020.

Following the removal of duplicates and a careful relevance assessment, a final
selection of 42 articles was made, which included both theoretical and empirical
research while excluding non-peer-reviewed publications and works not in English.
Notably, some studies focused on large infrastructure projects were retained for their
potential insights into city-scale digital twins. Through this review and thematic
classification, significant gaps and challenges in achieving a fully realized city digital
twin were identified.

For example, although there have been multiple proposals for creating integrated
data models, the existing literature does not yet present a practical application
that fully utilizes standardized data schemas to encompass all urban functions and
processes. The visualization of the city’s intricate physical details also poses a
challenge, given the vast amount of data and the computational resources required to
manage such extensive digital models.

Consequently, the formulated research agenda outlines three essential elements
designed to assist city digital twin researchers, city managers, and developers in their
pursuit of developing a comprehensive and accurately mirrored city digital twin.
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Optimizing Data Collection and Processing Methods

The enhancement of data management within the city digital twin is an area that
warrants continuous research. As a fundamental component in developing a success-
ful city digital twin, the quality and precision of data are crucial for establishing an
effective digital platform. While significant strides have been made in areas such as
data transfer, storage, and processing, several challenges still prevent the complete
realization of the city digital twin’s potential as an integrated platform. A key issue
is the standardization of data; the diverse and often incompatible data generated
from different urban domains underscores the necessity for cohesive data standards
that can facilitate the integration of various software applications used in city digital
twins.

Some research efforts have suggested the adoption of standardized data models
or open standards, but these practices have not yet achieved widespread acceptance.
The multitude of methodologies and software in use across different city digital twin
projects, coupled with the rapid advancement of technology and the variety of data
produced, makes it challenging to establish a one-size-fits-all approach.

Additionally, improving the Level of Detail within city models is vital for pro-
ducing a more thorough and accurate representation. However, increasing the LOD
can result in larger model sizes, which in turn complicates processing capabilities.
Consequently, there is a need to find a balance between enhancing the LOD for
better visual representation of the city digital twin and keeping the model size man-
ageable to ensure efficient data handling, essential for conducting analyses, making
predictions, and implementing various applications.

Enhancing the Integration of Socio-Economic Dimensions

The city, as a complex SoS, necessitates an intricate model that accurately reflects its
various systems and domains. One of the most significant challenges in visualizing
and operationalizing this complex urban environment lies in the integration of non-
physical systems, including socio-economic processes and activities. Although some
research has explored aspects of incorporating these non-physical elements into city
digital twin models — such as behavior modeling based on the needs and mental
attributes of agents — much potential remains untapped. The integration of socio-
economic components can significantly enhance various urban domains, including
urban planning, transportation, and environmental management.
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By improving the modeling of socio-economic behaviors and activities, while
also accounting for contextual factors like political frameworks, governance struc-
tures, and cultural dynamics, we can gain deeper insights into urban dynamics. This
approach will facilitate more comprehensive analyses and simulations of future
scenarios, ultimately leading to improved planning and decision-making. However,
challenges extend beyond data collection and modeling; they also encompass issues
related to privacy and data security. The ability of authorities to access personal in-
formation raises serious concerns about public privacy, necessitating transparent and
constructive dialogue with citizens. Moreover, risks associated with data breaches
by third parties or hackers present significant threats. Therefore, while it is crucial
to explore how to effectively model these non-physical components, understanding
their potential impacts on the digital twin model is equally important.

Fostering Synergistic Integration of Digital and Physical Entities

Achieving a fully mirrored city digital twin necessitates a strong mutual integration
with its physical counterpart, a concept that has not been extensively addressed
in the existing literature. The capability to update the digital twin with real-time
or near-real-time information from the physical environment is well established.
However, facilitating the reverse data transfer, which would allow control over the
city’s physical aspects, presents significant challenges. In manufacturing contexts,
Kritzinger et al. [16] differentiated between a digital model, digital shadow, and
digital twin. In a digital model, data transfer is manual, while in a digital shadow,
data flows automatically from the physical entity to the digital one. Conversely, a
true digital twin allows for seamless bi-directional data flow. Currently, no existing
city digital twin has achieved this level of interaction, leading to the characterization
of many as merely digital shadows rather than fully functional digital twins.

To develop a genuine mutual integration between the digital twin and its physical
counterpart, the model must possess the capability to issue control commands to
the physical environment. This integration can enhance urban management by
improving efficiency and service delivery. Implementing artificial intelligence and
actuators for feedback to the physical environment has been proposed as a strategy
for achieving this control. While this approach has shown promise in areas like
energy management and construction, research is still needed for broader urban
applications. Additionally, leveraging advancements in robotics and automation is
critical for realizing the full integration of the city digital twin and enhancing its
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operational control capabilities. Nonetheless, it is essential to address the potential
risks associated with increased automation in urban management, such as social
inequality and regulatory issues.

2.2.8 Conclusions on Digital Shadows and City Building

In this section, we explored the concepts of Smart Cities and City Digital Twins,
highlighting their importance in urban planning. While the idea of a true Digital
Twin remains elusive due to the inherent simplifications of digital models, the
concept of Digital Shadows offers a more achievable solution. Unlike Digital
Twins, which require continuous data exchange, Digital Shadows rely on static
digital representations of physical systems, making them more practical for urban
monitoring and analysis.

Examples like Zurich and Virtual Singapore showcase the potential of City
Digital Twins, but the challenge lies in the lack of clear guidelines for evaluating
their effectiveness. The integration of BIM and GIS is essential to bridge the
gap between digital models and real-world dynamics. Ultimately, while the full
realization of a Digital Twin for a city is still distant, Digital Shadows present a
viable alternative for enhancing urban decision-making and planning.



2.3 Driving Simulations 23

2.3 Driving Simulations

Building upon the concept of City Digital Twins and Digital Shadows, driving simu-
lation plays a crucial role in translating digital urban environments into interactive
and testable scenarios. The ability to replicate real-world road networks and traffic
conditions within a simulated environment enhances urban planning, transportation
analysis, and vehicle development.

Driving simulation is a powerful tool for studying human driving behavior,
developing advanced driver assistance systems (ADAS), and evaluating complex
scenarios in a controlled and safe environment. The ability to recreate driving
conditions realistically allows researchers and engineers to analyze responses to
various situations without the risks associated with real-world testing. This aspect
is particularly crucial in scenarios that involve hazardous conditions, emergency
maneuvers, or distracted driving studies, where real-life experiments would be
impractical or unsafe.

One of the main advantages of driving simulation lies in its ability to provide a
highly controlled and repeatable environment. Unlike real-world testing, where con-
ditions can vary unpredictably due to traffic, weather, and human factors, simulations
allow for precise manipulation of variables. This capability makes it an essential
tool for studying driver decision-making processes under different circumstances,
such as drowsy driving, reaction times to sudden obstacles, or the cognitive load
induced by in-vehicle distractions. Furthermore, the cost-effectiveness of simulations
compared to real-world testing makes them an attractive solution for both research
institutions and the automotive industry, significantly reducing development times
while ensuring driver safety [17].

The technological advancements in driving simulation have led to highly im-
mersive systems that integrate advanced vehicle physics modeling with interactive
interfaces, including virtual reality environments, motion platforms, and haptic
feedback. These innovations enhance the realism of simulations, ensuring that test
subjects experience a highly representative driving environment. For example, mod-
ern simulators can replicate road textures, vehicle dynamics, and even the forces
acting on the driver, making them an effective alternative for training and system val-
idation. These aspects are particularly relevant for autonomous vehicle development,
where vast amounts of driving data are needed to train machine learning models. By
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using simulations, developers can expose autonomous systems to a wide range of
driving conditions, including rare but critical edge cases that would be difficult or
dangerous to reproduce on real roads.

Another crucial application of driving simulation is the development and testing
of ADAS. These systems, designed to improve vehicle safety and driving comfort,
require extensive validation before deployment. Simulators provide a risk-free
environment where engineers can test features such as automatic emergency braking,
lane-keeping assistance, and pedestrian detection in diverse and repeatable conditions.
Additionally, simulations allow for fine-tuning of these systems based on human-in-
the-loop studies, where real drivers interact with the technology to assess usability
and effectiveness before real-world implementation.

In terms of driver education and training, simulators are widely used to enhance
driver preparedness for challenging situations. Training programs can expose drivers
to scenarios such as icy roads, sudden mechanical failures, or emergency braking
conditions, helping them develop better situational awareness and response strategies.
This application is particularly beneficial for professional drivers, including those
in law enforcement, emergency response, and heavy transport, who need to be
well-equipped to handle high-risk scenarios.

2.4 The CARLA Simulator and Unreal Engine

CARLA [18] is an open-source driving simulator that has played a pivotal role in
the advancement of autonomous vehicle research, particularly within urban environ-
ments. Initially developed using Unreal Engine 4 (UE4), CARLA was designed
to provide high-fidelity simulations for the testing and validation of autonomous
driving systems. The simulator’s architecture takes full advantage of UE4’s advanced
rendering capabilities, allowing for realistic environments and dynamic simulations
that mimic real-world scenarios, such as the presence of traffic, pedestrians, and
varying weather conditions. Additionally, CARLA utilizes a server-client system,
where the server runs the simulation and renders the environment, while the client,
connected via Python, controls the vehicle and gathers sensor data.
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Fig. 2.4 The Client-Server architecture of CARLA separates simulation logic from execution,
with the client handling control via the Python and C++ APIs, while the server runs the
environment in Unreal Engine 5 with CARLA Plugins.

Recently, CARLA has transitioned to Unreal Engine 5 (UE5), which brings
a wealth of new capabilities that significantly enhance the realism and flexibility
of the simulator. UE5 introduces several cutting-edge technologies that broaden
CARLA’s potential for urban driving simulation. One of the key advancements
is Nanite, which allows for highly detailed and complex environments without
sacrificing performance. Nanite’s virtualized geometry system enables the rendering
of billions of polygons in real time, providing a level of detail that was previously
unattainable in large-scale open-world simulations. This is particularly important
when simulating urban environments, where the complexity of the architecture and
infrastructure must be accurately captured.

Another major improvement brought by UE5 is Lumen, a fully dynamic global
illumination system that allows for more realistic lighting and shadows. This technol-
ogy ensures that the lighting in the simulated environment reacts to changes in time
of day and weather conditions in a natural and consistent manner. Lumen’s advanced
capabilities enhance the visual fidelity of simulations, ensuring that autonomous
driving models are tested in environments that closely resemble real-world scenarios.

In addition to these graphical advancements, UE5 provides improved physics and
material handling, which significantly enhance the realism of vehicle interactions
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with road surfaces, traffic, and pedestrians. CARLA’s NPC behavior is another key
feature contributing to the simulator’s realism. Non-player vehicles (NPVs) are based
on the standard UE vehicle model, but with adjusted kinematic parameters to improve
their realism. These vehicles follow lanes, respect traffic lights and speed limits,
and make decisions at intersections. The presence of pedestrians further enriches
the environment, with their movements randomized but guided by navigation maps
that allow them to avoid collisions with vehicles. Pedestrians are also equipped
with accessories like smartphones or shopping bags, adding a layer of detail that
heightens the simulation’s immersive quality [18].

Fig. 2.5 CARLA’s simulation environment supports dynamic weather conditions, influencing
both the scene appearance and NPC behaviors, such as using umbrellas in rainy scenarios.
[18]

Furthermore, CARLA offers exceptional flexibility in configuring the sensor suite
of the autonomous agent. The simulator supports a wide range of sensors, including
RGB cameras and pseudo-sensors that provide ground-truth depth and semantic
segmentation. These sensors can be configured for specific positions, orientations,
and parameters, such as field of view and depth of field, allowing for a high degree
of customization. Notably, CARLA also includes a semantic segmentation pseudo-
sensor that categorizes the environment into 12 different classes, such as road, lane
markings, traffic signs, and pedestrians. This suite of sensors is crucial for evaluating
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the performance of autonomous driving policies, providing accurate data for testing
and training in highly detailed and varied conditions.

Fig. 2.6 Different sensor modalities in CARLA provide diverse environmental perceptions,
including standard RGB vision, depth estimation, and semantic segmentation for scene
understanding. [18]

CARLA goes further by tracking the vehicle’s state in real time, providing data
such as GPS-like coordinates, speed, acceleration, and collision impacts. It also
tracks compliance with traffic regulations, such as lane adherence and speed limits,
ensuring that the vehicle responds appropriately to dynamic scenarios. These metrics
are vital for assessing the performance of autonomous driving models and ensuring
that they are capable of navigating urban environments safely and effectively.

The transition to Unreal Engine 5 significantly expands CARLA’s capabilities,
offering not only improved graphical fidelity but also enhanced physics, NPC be-
havior, and sensor configurability. These advancements enable the simulation of
even more complex and realistic urban environments, providing researchers and
developers with a powerful platform for testing autonomous driving systems in a
highly customizable, controlled virtual environment. With the improvements brought
by UE5, CARLA continues to be at the forefront of autonomous driving research,
supporting the development, training, and evaluation of next-generation autonomous
vehicle technologies.
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2.5 Virtual Reality in Driving Simulations

Virtual reality technology has revolutionized driving simulators by enhancing immer-
sion, spatial awareness, and overall user experience. Traditional simulators, which
rely on large panoramic screens and high-resolution projectors, often lack the depth
and realism necessary to fully replicate real-world driving conditions. Additionally,
some simulators incorporate motion platforms to simulate accelerations, such as cen-
trifugal forces and braking effects, but these setups require complex and expensive
hydraulic systems [19].

The development of smaller and portable simulators for training purposes has
led to the substitution of large projection screens with single flat screens or multiple
monitors, along with simplified motion or vibration systems. VR devices present a
natural solution for compact and cost-effective driving simulation while maintaining
a high degree of immersion. Head-mounted displays (HMDs) eliminate the limitation
of viewing angles, allowing drivers to turn their heads naturally while maintaining
a continuous virtual experience. Furthermore, VR enhances the realism of driving
simulation by providing high-quality stereoscopic depth perception and spatialized
3D sound.

A key advantage of VR-driven simulators is their ability to create an immersive
environment where users perceive depth and motion more naturally. The stereo-
scopic rendering provided by HMDs enhances depth perception, while head-tracking
mechanisms ensure that changes in perspective align with the user’s movements.
This level of realism positively influences driver behavior, as participants respond
more naturally to virtual scenarios, leading to more accurate behavioral studies and
training exercises [20].

However, VR-based driving simulation is not without challenges. Motion sick-
ness, or simulator sickness [21], is a common issue, primarily caused by discrep-
ancies between visual stimuli and physical motion. The latency in head tracking,
frame rate inconsistencies, and the limited field of view of HMDs can exacerbate dis-
comfort and impact user performance. Addressing these issues requires optimizing
rendering techniques, reducing latency, and refining motion synchronization between
the virtual and physical environments.
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Another technical limitation involves computational constraints. High-fidelity
VR simulations require significant processing power to maintain high frame rates and
ensure real-time responsiveness. Achieving an optimal balance between graphical
detail and performance remains a challenge, particularly when simulating complex
driving scenarios that involve dynamic objects, changing weather conditions, and
detailed urban environments.

Bayarri et al. [19] propose a multi-layered structure for organizing driving
simulation environments. This framework consists of three hierarchical levels: the
topological layer, the visual representation layer, and the motion description layer.
The topological layer defines the abstract road network, decomposing the urban
environment into links and junctions. The visual representation layer maps these
elements to their physical counterparts, such as buildings, sidewalks, and traffic
infrastructure. The motion description layer, though not directly visible, is essential
for modeling vehicle dynamics by defining lanes and traffic rules. This structure
enables efficient database management and optimizes rendering and simulation
performance.
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Fig. 2.7 Bayarri et al. hierarchical organization of driving simulation data, structured into
three layers: the road network (links and junctions), the visual entities (buildings, sidewalks,
traffic elements), and the motion-related structures (lanes). This layered approach optimizes
database navigation, spatial organization, and real-time rendering efficiency. [19]

In addition to visual immersion, realistic driving simulation requires an accu-
rate representation of vehicle dynamics. The behavior of a car in a simulation is
influenced by parameters such as mass, engine power, tire friction, and suspension.
Vehicles are typically represented as rigid bodies with multiple wheel colliders,
and the configuration of the suspension model determines the applied forces. A
detailed cockpit model, accurate traffic signals, and other environmental factors
further contribute to the realism of a virtual driving experience.
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Despite these challenges, VR-based driving simulators present clear advantages
over traditional systems. Their ability to replicate real-world conditions in a con-
trolled environment makes them highly useful for testing driver reactions, evaluating
vehicle safety features, and training individuals in hazardous driving situations with-
out real-world risks. Training software in traditional setups, such as single-screen
environments, suffers from limited immersion, as a standard monitor does not pro-
vide an adequate field of view, nor does it replicate intuitive head movement and
acceleration feedback.

As technology advances, improvements in VR rendering, real-time physics
simulation, and haptic feedback integration are expected to further enhance the
effectiveness of these simulators. Learning how to drive requires extensive training
and cognitive effort, and VR-based training has demonstrated benefits in adapting
to individual learners’ needs. Studies have shown that VR simulations have been
successfully used for security training and infrastructure analysis, demonstrating
their potential in various fields beyond driving simulation.

In conclusion, virtual reality is reshaping the landscape of driving simulation by
providing a more immersive and interactive experience. While challenges related
to motion sickness and computational performance persist, ongoing developments
in VR hardware and software promise to make VR-driven driving simulators an
indispensable tool for research, training, and vehicle development.



Chapter 3

Designing the Pipeline

Designing a pipeline for generating realistic and structured environments in CARLA
requires a careful evaluation of available tools and methodologies. Initially, CARLA’s
approach to map creation relied on manually designed assets and procedural road
generation, which, while effective, posed limitations in terms of scalability and
fidelity to real-world environments. To overcome these challenges, an analysis was
conducted to identify external tools that could enhance the accuracy and efficiency
of the process, enabling the integration of geographic and 3D data into CARLA.

This chapter examines the methods originally used for map creation in CARLA
and explores various tools that allow for the utilization of real-world data to gen-
erate playable environments. Specifically, it discusses tools such as Cesium and
BlenderGIS, analyzing their role in extracting, processing, and converting geograph-
ical data into a structured format suitable for CARLA. The objective is to define
a workflow that improves the integration of real-world elements into the simulator
while maintaining flexibility and accuracy in the generated maps.
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3.1 CARLA’s Original Map Creation Method

CARLA proposes the Digital Twin Tool as a solution for the procedural generation
of 3D environments based on road networks extracted from OpenStreetMap (OSM).
Through its interface within CARLA’s Unreal Engine editor, users can select a
specific map region, download the corresponding road network, and generate a
CARLA-compatible environment. The tool procedurally fills the areas between
roads with automatically generated buildings, adjusting their shape and dimensions
to fit the layout. This approach allows for the rapid creation of diverse and complex
urban scenes with minimal manual effort.

Fig. 3.1 Workflow of the Digital Twin Tool, from selecting an OpenStreetMap region to
generating a procedural CARLA map. [22]

The generation process begins with the extraction of road networks from OSM
data, forming the foundation of the map. The tool then applies realistic road textures,
markings, and surface details. Next, the empty spaces between the roads are popu-
lated with buildings whose footprints and height information are derived from OSM.
These virtual buildings are further enhanced with procedurally generated facades,
including windows, doors, and balconies. The architectural style varies depending
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on the building dimensions: taller structures are typically assigned an office-like
appearance, while smaller ones adopt residential or commercial designs. Additional
vegetation elements are placed along sidewalks to enhance the scene’s realism.

While this method is highly efficient for quickly generating large environments,
its procedural nature makes it unsuitable for applications requiring high accuracy
and real-world fidelity. Since the buildings and urban elements are not direct digital
replicas but rather approximations generated from limited OSM attributes, this
approach lacks the precision necessary for Digital Twin applications.

As an alternative, the CARLA documentation also suggests using RoadRunner
or TrueVision Designer for road network generation and OpenDRIVE (.xodr) export.
These tools provide greater control over road layout and structure, making them
more suitable for detailed and accurate environment reconstruction. Once the road
network is generated, the map can be further refined using CARLA’s built-in assets
or Unreal Engine’s Foliage tool for additional environmental details.

These methods were used in CARLA for Unreal Engine 4, but they are no
longer available in the current versions of the simulator. Furthermore, they do not
represent viable solutions for the objective of creating a City Digital Shadow, as they
rely on procedural generation rather than accurately replicating real-world urban
environments.

3.2 BlenderGIS

BlenderGIS is an add-on for Blender that facilitates the integration of geospatial data
into 3D modeling workflows. It allows users to import and manipulate geographic
datasets, including terrain elevation models (DEM), OpenStreetMap (OSM) data,
and satellite imagery, enabling the reconstruction of real-world environments within
Blender. Through its tools, BlenderGIS supports the import of road networks,
building footprints, and elevation data, offering a way to generate large-scale urban
environments with georeferenced accuracy.

In the context of this work, BlenderGIS was considered as a potential tool for
processing and converting geographic data into a format suitable for integration
within CARLA. The ability to import OSM data directly into Blender provides a
structured way to generate city layouts, while the support for DEM data allows for
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the recreation of realistic terrain. However, despite its capabilities, BlenderGIS has
significant limitations that make it unsuitable for accurately constructing Digital
Shadows.

One of the primary drawbacks is the way buildings are generated. The add-on
creates basic block structures that do not accurately reflect real-world architectural
details. This lack of precision can lead to misalignment and intersection issues when
combining the generated buildings with OSM-based road data. Additionally, the
procedural nature of its building generation results in structures that do not always
correspond to their real-world counterparts, making it difficult to achieve a level of
detail and fidelity necessary for realistic simulations.

Fig. 3.2 A 3D city model created using BlenderGIS, showing imported OpenStreetMap data
with basic building footprints.

Due to these limitations, BlenderGIS does not provide the accuracy required
for this project. While it can serve as a preliminary tool for visualizing geospatial
data, its simplified approach to urban modeling makes it unsuitable for generating
structured environments that align precisely with the requirements of a City Digital
Shadow.

3.3 VectorZero (RoadRunner)

RoadRunner supports a variety of Geographic Information System formats, allowing
users to import external GIS data as references for road construction. This approach
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aims to improve the accuracy of generated maps by integrating real-world elevation,
imagery, and point cloud data into the scene.

The proposed workflow involves downloading aerial imagery, elevation data,
and point clouds from the U.S. Geological Survey (USGS) National Map Explorer
Interface. These datasets serve distinct purposes: aerial imagery provides a visual
reference for road alignment and surface textures, elevation data defines terrain
height variations, and point cloud data offers detailed object positioning for elements
like trees, buildings, and road markings. Once imported, RoadRunner’s tools allow
for further customization of the scene, refining road geometry and urban layouts.
Since these tools are fundamental to the map creation process, a more detailed
explanation of their functionalities will be provided in Chapter 5.

However, the USGS National Map Explorer Interface no longer allows direct
downloads of these datasets, and even when available, its coverage is limited to
U.S. territory, making it unsuitable for applications outside the United States. This
limitation required an evaluation of alternative data sources to follow the workflow
for locations outside the US, particularly for Italian regions. Several alternative
platforms and tools were identified to acquire equivalent datasets:

Copernicus Sentinel: The Copernicus Programme, operated by the European Space
Agency (ESA), provides free Earth observation data. The Sentinel satellites,
particularly Sentinel-2, offer high-resolution optical imagery, making them a
valuable alternative to USGS aerial imagery. Sentinel data can be accessed
through Copernicus Open Access Hub and processed using GIS software.
However, Sentinel-2 imagery may lack the same level of detail as dedicated
aerial photography.

OpenTopography: A platform that provides high-resolution elevation and LiDAR
point cloud data from various global sources. Although highly accurate, data
availability varies significantly by region, with detailed datasets often restricted
to specific research projects or governmental releases.

TINitaly: A high-resolution Digital Elevation Model (DEM) dataset specifically for
Italy, offering a 10-meter resolution terrain model based on national surveys.
This dataset serves as an effective alternative for elevation data in the Italian
territory.
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QGIS: Several plugins within QGIS, an open-source GIS software, allow users to
retrieve and process multiple geographic datasets:

• QuickOSM: Extracts OpenStreetMap (OSM) data, including road net-
works and building footprints.

• SRTM: Provides Shuttle Radar Topography Mission (SRTM) elevation
data, useful for terrain modeling.

• LAStools: Processes LiDAR point cloud datasets, offering the ability to
extract detailed 3D environmental features.

Fig. 3.3 Visualization of satellite imagery and OpenStreetMap road data of Mappano within
QGIS.

Despite these alternatives, finding high-resolution datasets for all three required
elements — imagery, elevation, and point clouds — remains a challenge, especially
for regions outside the United States. In Italy, for instance, high-quality LiDAR
datasets are often restricted or available only for specific areas, limiting their applica-
bility for large-scale digital twin generation. This difficulty in acquiring complete
datasets increases the complexity of the workflow, requiring additional processing
and data integration steps to achieve results comparable to those originally intended
by the RoadRunner workflow.
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3.4 Cesium for Unreal

Cesium is a platform designed for 3D geospatial visualization, enabling the rendering
and interaction with large-scale geographic datasets. It is widely used in applications
that require real-time visualization of terrain, satellite imagery, and 3D city
models, such as simulations, urban planning, and geospatial analysis. The core of
Cesium’s technology is based on a tile-based streaming system, which allows for the
efficient visualization of vast datasets without requiring extensive local storage.

To integrate Cesium’s capabilities within Unreal Engine, the Cesium for Unreal
plugin was developed. This plugin enables users to import 3D tilesets using API
requests to Cesium’s data services, which include terrain models, satellite imagery,
and photogrammetric city reconstructions. However, a key limitation of this approach
is that Cesium’s API access is paid, meaning that continuous use of the system
requires an active subscription. This dependency on commercial data services makes
it a less flexible solution for long-term or large-scale simulations.

Beyond the API restrictions, another major drawback of Cesium is its limited
mesh resolution, which makes it unsuitable for a City Digital Shadow in CARLA.
Driving within a simulated environment requires precise road geometry to ensure a
realistic and immersive experience. The terrain and road surfaces provided by Cesium
often lack the necessary detail, resulting in uneven surfaces and imprecise alignments
that make driving simulations unrealistic. Given these constraints, Cesium was not
adopted as a primary method for generating environments in CARLA.

Despite these limitations, a test was conducted using Cesium as a background
layer for a map set in Val Susa. In this test, Cesium provided the underlying terrain
and imagery, while the roads were exported from RoadRunner using OpenStreetMap
(OSM) data. This hybrid approach allowed for a more structured driving experience
by maintaining precise road geometry while benefiting from Cesium’s large-scale
terrain visualization.

To enhance environmental realism, Unreal Engine’s foliage tool was also used in
this test, in combination with procedural tree generation techniques. The reason for
this approach was that foliage in Unreal Engine can only be applied to Landscape
actors, while Cesium’s map is not recognized as a Landscape. This limitation was
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overcome by procedurally placing trees, ensuring that the scene contained natural
elements without requiring direct integration with the Cesium terrain.

Fig. 3.4 Test scenario featuring a road generated in RoadRunner, integrated into an environ-
ment provided by Cesium for Unreal.

The results of this test highlighted several key insights. As mentioned previously,
the API cost limitations restricted the use of Cesium to the trial period provided
by Google Cloud, making it impractical as a long-term solution. Additionally, the
resolution constraints of Cesium tilesets necessitated a hybrid approach, rather than
relying solely on Cesium for road generation. However, Cesium for Unreal does
offer some notable advantages: it features an efficient Level of Detail (LOD) system,
intuitive performance parameters that allow users to easily control computational
load, and a straightforward way to navigate large-scale environments by simply
adjusting latitude and longitude. These aspects make it useful for exploratory
applications, but ultimately unsuitable for high-fidelity driving simulations such as
those required in CARLA.

Overall, the evaluation of different methods for generating Digital Shadows
highlighted significant limitations in terms of detail and accuracy. None of the
approaches analyzed provided a sufficient level of fidelity to be directly applied
to high-quality driving simulations. The observed constraints—whether related to
resolution, adaptability, or long-term feasibility—demonstrate the need for a more
effective strategy. The next chapter introduces the selected approach, detailing the
reasoning behind its choice and its implementation.
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Point Clouds for Digital Shadow

LiDAR (Light Detection and Ranging) is a remote sensing technology that emits
laser pulses to measure distances and create high-precision 3D point clouds. A point
cloud is a dense collection of spatial data points that represent the geometry of an
environment, capturing surfaces, buildings, and other structures with remarkable
detail. This technique is widely used for urban modeling, terrain reconstruction,
and autonomous driving simulations due to its ability to generate accurate digital
representations of real-world environments.

According to Wang et al. [23], LiDAR point clouds offer significant advantages
over traditional photogrammetry methods, particularly in geometric accuracy and
structural completeness, making them an essential tool for 3D urban modeling.
LiDAR data can be processed to extract road networks, classify urban features, and
generate structured models suitable for simulation environments.

Given these capabilities, LiDAR-based point clouds were explored as a method
for generating a testable version of a City Digital Shadow within CARLA. Unlike
procedural generation or low-resolution GIS-based workflows, LiDAR data provides
an accurate foundation for simulation environments, improving realism and ensuring
a more precise representation of urban spaces. This chapter details the process of
utilizing the point cloud to generate a Digital Shadow.
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4.1 SyntCity

SynthCity [24] is a large-scale synthetic point cloud dataset designed to support
research in automatic point cloud classification and segmentation. The dataset
consists of 367.9 million points and represents an urban/suburban environment,
generated using a simulated Mobile Laser Scanner (MLS) within Blender using the
Blensor plugin.

Fig. 4.1 Visualization of SynthCity point cloud data, categorized by area and object type.
[24]

One of the key motivations behind SynthCity is the lack of large-scale, high-
quality annotated point cloud datasets for training deep learning models. While
datasets such as Paris-Lille-3D and Semantic3D exist, they often suffer from class
imbalances, static scanning methods, or insufficient coverage for deep learning
applications. In contrast, SynthCity was designed to simulate real-world MLS data
while providing complete and noise-free ground-truth annotations for nine object
categories: roads, sidewalks, ground surfaces, vegetation, buildings, poles, street
furniture, and vehicles.

In the context of this work, SynthCity was used for preliminary testing in its
reduced version, as processing the full dataset requires substantial computational
resources. However, some significant challenges were encountered when working
with this dataset. First, SynthCity is stored in the .parquet format, a highly efficient
but less commonly supported format in traditional point cloud processing tools.
Converting it to more widely used formats such as .xyz or .ply proved to be non-
trivial, requiring additional data preprocessing steps.
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Listing 4.1 Script for converting SynthCity point cloud data from Parquet to XYZ format.

1 import pandas as pd

2

3 def converter(file_path, filename):

4 # Load the Parquet file

5 df = pd.read_parquet(file_path)

6

7 # Select the required columns (with or without color)

8 columns = [’X’, ’Y’, ’Z’] + ([’R’, ’G’, ’B’] if {’R’, ’G’,

’B’}.issubset(df.columns) else [])

9

10 # Save directly in .xyz format without header and index

11 df[columns].to_csv(f"{filename}.xyz", sep=’ ’, index=False,

header=False)

Another issue observed was the presence of shadowed areas in the point cloud
regions where points were missing due to occlusions caused by other objects. This is
a common artifact in LiDAR-based datasets, where objects such as buildings or trees
obstruct the laser scanner, resulting in incomplete reconstructions of certain areas.
These gaps in the data can affect the accuracy of models relying on the dataset and
highlight one of the challenges of using synthetic LiDAR scans for detailed urban
modeling.

Fig. 4.2 Visualization of the SynthCity Area1 point cloud in CloudCompare.
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Despite these limitations, SynthCity provided a useful test dataset for preliminary
experiments. However, issues related to format compatibility and missing data
made it unsuitable for direct use in the City Digital Shadow pipeline. The need for
additional processing, both for file conversion and for handling incomplete areas,
limited its practicality within this workflow.

4.2 Mappano Point Cloud

The Mappano point cloud consists of 156 million points and represents a portion
of the municipality, with a particular focus on a local school, which was captured
with higher resolution. Despite the high point density, the dataset exhibits occlusion
shadows, where certain areas lack points due to obstructions during the LiDAR scan.
Additionally, unlike SynthCity, this point cloud lacks segmentation and requires
extensive cleaning before use.

Fig. 4.3 The Mappano point cloud displayed in CloudCompare.

The initial goal was to use this point cloud to reconstruct a mesh of the neigh-
borhood and import it into CARLA. However, this approach presented several
challenges. CloudCompare, the software used for processing, allows mesh recon-
struction but does not support texture export, making it necessary to use MeshLab
for texturing. During testing, it was observed that MeshLab introduced artifacts in
the reconstruction, whereas CloudCompare produced a cleaner but untextured mesh,
limiting its usability for a realistic simulation.
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Fig. 4.4 Result of the Poisson mesh reconstruction algorithm applied in MeshLab, highlight-
ing unwanted artifacts generated during the process.

Before generating the mesh, it was necessary to compute the normals of the point
cloud, as they are essential for mesh reconstruction. CloudCompare [25] provides
two methods for this:

HoughNormals Plugin, which detects normals based on geometric structures.

Normals > Compute, which estimates normals based on neighboring points.

Once the normals were computed, the Poisson Surface Reconstruction algorithm
(Plugins > PoissonRecon) was applied to generate the mesh. However, this method
tends to close open surfaces, introducing unwanted geometry in urban environments
where discontinuities (e.g., roads, open spaces) should be preserved. Increasing
the depth parameter enhances detail but exacerbates this issue. A useful strategy to
mitigate this problem is the export of scalar fields, which allows filtering out the
artificially generated surfaces, leading to a cleaner final result.

Fig. 4.5 Comparison of the point cloud before and after filtering with scalar fields in Cloud-
Compare to remove artificially closed surfaces.
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Given the difficulties in achieving a usable mesh, an alternative workflow was
explored. To prepare the dataset for this new approach, the main road was manually
cleaned using CloudCompare’s selection and deletion tools, removing unnecessary
points and refining the data for further processing.

4.3 Integration into Unreal Engine

The LiDAR Point Cloud Support plugin for Unreal Engine was used to create a
testable Digital Shadow, enabling the import, visualization, and editing of point
cloud data within the engine. This plugin offers multiple coloration and shading
techniques, as well as dynamic Level of Detail scaling, which optimizes performance
even when working with large datasets.

To integrate the Mappano point cloud into Unreal Engine, it was first converted
from .e57 to .ply using CloudCompare. This step was necessary to ensure that
the RGB color information was preserved, as Unreal supports point clouds with
embedded color data. Unreal Engine allows the import of various point cloud formats,
including .xyz, .pts, .las, .laz, and .e57, with different performance characteristics.
The global point budget system in Unreal determines the maximum number of points
rendered at a given time, balancing visual fidelity and performance.

Fig. 4.6 The Mappano point cloud imported into Unreal Engine through the LiDAR Point
Cloud Support plugin.
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The plugin provides different scaling methods to manage point rendering:

• Per Node: Scales points based on the estimated density of their containing
node.

• Per Node Adaptive: Adjusts density adaptively based on the current view.

• Per Point: Scales points individually based on depth.

• Fixed Screen Size: Uses screen-space scaling for consistent sprite rendering.

By utilizing these features, the Mappano point cloud was successfully imported
into Unreal Engine, allowing for real-time rendering and interaction while maintain-
ing a reasonable performance-cost balance. However, managing large-scale point
clouds within Unreal requires careful configuration of rendering parameters, such as
the r.LidarPointBudget, which defines the total number of points displayed on-screen
simultaneously.

After analyzing the results obtained from the point cloud visualization, an ad-
ditional test was conducted by generating a mesh of Mappano in CloudCompare
and importing it into Unreal Engine. Since CloudCompare does not support texture
export, the resulting mesh was untextured (white) upon import. To address this, a
lower-density version of the point cloud was used in Unreal, essentially serving as a
color reference for the mesh.

Fig. 4.7 The Mappano mesh and point cloud integrated in Unreal Engine.
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The test results were not satisfactory, as the generated mesh still contained
imperfections that prevented achieving the desired outcome. Consequently, it was
decided to rely solely on the point cloud, limiting the rendering budget to 7 million
points simultaneously on screen. To enhance the environment, part of the vehicles
and trees from the point cloud were replaced with CARLA assets. This approach
aimed to create an explorable virtual space while achieving a distinctive aesthetic in
VR.

Fig. 4.8 The Mappano point cloud is combined with CARLA assets in Unreal Engine,
creating an interactive simulation environment.

4.4 Road Generation in RoadRunner

To generate the road network of Mappano in RoadRunner, OSM data for the mu-
nicipality was first downloaded from OpenStreetMap and then imported using the
SD Map Viewer Tool. This process provided an initial road layout, serving as a
foundation for further adjustments.

Once the roads were generated from the OSM data, they needed to be refined
and adapted to match the real environment of Mappano. This step was carried out
using municipal reference data and RoadRunner’s editing tools. The details of this
adaptation process are discussed in Section 5.2 (Adaptation for CARLA) in Chapter
5.
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Once the desired road network was finalized, it was exported using the CARLA
export option in RoadRunner, including the .filmbox (FBX) format. This export was
necessary because the generated roads could serve as a more uniform collider for
vehicles in CARLA, improving driving physics and interactions.

Before exporting, the OpenDRIVE Export Preview Tool was used to compute
the OpenDRIVE data, ensuring that the generated road network contained all the
necessary information for CARLA’s navigation system.

Back in Unreal Engine, the FBX file was imported, while the .xodr file was
placed inside an OpenDrive folder within the project’s file structure. It is crucial to
ensure that the OpenDRIVE file has the same name as the Unreal Engine level, as
CARLA relies on this naming convention for proper integration.

Finally, the BP_OpenDrive actor was added to the Unreal scene. By selecting this
actor, the Generate Routes option was used to create splines for vehicle navigation,
enabling CARLA’s autonomous driving system to interact with the imported road
network.

Fig. 4.9 The final Mappano map in CARLA integrates LiDAR point cloud data, CARLA
assets, and OpenDrive information to create a navigable Digital Shadow simulation environ-
ment.
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Matrix City Sample

This chapter examines the City Sample [26], developed by Epic Games, as a case
study for integrating large-scale, highly realistic urban environments into simulation
platforms. Built with Unreal Engine 5, this sample leverages advanced technologies
such as World Partition, Nanite, and Lumen, enabling efficient rendering and
dynamic lighting in an extremely detailed cityscape.

The first section provides an in-depth analysis of the structure and key com-
ponents of the Matrix City Sample, highlighting its technical foundations and the
strategies employed to achieve high fidelity and performance. The second section fo-
cuses on adapting this environment for CARLA, outlining the integration techniques
required to make it compatible with the simulator’s framework. The third section
presents the additional steps necessary to further refine the map for VR, ensuring
an optimized and immersive experience. Finally, the last section explores the use of
computer vision techniques to automate parts of the adaptation process, reducing
manual effort.
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5.1 Overview

The City Sample project represents a significant step forward in the generation of
large-scale, high-fidelity urban environments. Originally developed as a demon-
stration of Unreal Engine 5’s rendering and simulation capabilities, it provides a
highly detailed digital city that serves as a testing ground for real-time interactive
applications. This virtual environment, which draws from the assets and design prin-
ciples used in The Matrix Awakens: An Unreal Engine 5 Experience, was conceived
to explore new methodologies in world-building, procedural city generation, and
real-time cinematic production.

"Sixteen kilometers square, photoreal, and quickly traversable, it’s populated
with realistic inhabitants and traffic. The experience is a tangible demonstration
that UE5 offers all the components you need to build immersive, ultra-high-fidelity
environments." [27]

While its initial purpose was to demonstrate the potential of next-generation
rendering and simulation, the City Sample also offers an adaptable framework for
applications beyond cinematic storytelling. In particular, its urban environment
provides a valuable base for driving simulation in virtual reality, where realism,
spatial coherence, and system responsiveness are critical.

Given the computational complexity of such environments, this thesis adopts
the Small City version of the project, which maintains the core structural and visual
elements of the original city while optimizing performance for real-time applications.
Unlike the Big City variant, which spans approximately 16 square kilometers and
was designed for high-end hardware, the Small City provides a more manageable
yet equally detailed setting for testing navigation, perception, and user experience in
virtual reality.

Furthermore, the transition from conventional level management to a streaming-
based architecture ensures that only relevant portions of the environment are loaded at
any given time. This optimization is essential in VR applications, where maintaining
stable performance and minimizing latency are critical for user immersion. The
ability to dynamically manage assets without sacrificing visual fidelity allows for
scalable virtual environments that can be tailored to specific simulation needs.
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Integrating this environment into a VR-based driving simulator, this thesis aims
to assess the level of immersion provided by a procedurally generated urban setting.
By analyzing factors such as visual fidelity and system responsiveness, the study
explores how real-time rendering and scalable asset management contribute to the
perception of presence and realism in virtual driving simulations.

To effectively simulate large-scale urban environments in real-time, it is essential
to leverage advanced rendering, asset management, and level streaming techniques.
The following subsections provide an overview of the key Unreal Engine 5 technolo-
gies that enable the creation and optimization of expansive virtual cities, ensuring
both high visual fidelity and performance efficiency.

5.1.1 Lumen

Lumen plays a crucial role in ensuring that lighting within the City Sample environ-
ment remains both dynamic and photorealistic. Unlike traditional methods that rely
on precomputed global illumination, Lumen enables real-time adjustments to indirect
lighting, making it particularly well-suited for interactive and immersive applications
such as virtual reality driving simulations. This system adapts to changes in direct
lighting and scene geometry, combining ray tracing techniques with screen-space
approximations to deliver high-quality results within the constraints of real-time
rendering.

In the City Sample, Lumen operates using Hardware Ray Tracing, which
enhances the fidelity of reflections and indirect illumination by tracing rays against
actual geometry rather than relying solely on lower-resolution approximations. This
method proves particularly beneficial for rendering complex urban environments
where lighting conditions vary significantly between open streets, enclosed alleyways,
and interior spaces. Moreover, emissive materials, such as illuminated signs or
streetlights, contribute to scene lighting dynamically, reinforcing the overall realism
of the simulation.

Given the need for real-time performance, Lumen employs a combination of
different ray-tracing methods, prioritizing efficiency while maintaining visual fidelity.
It utilizes Screen Traces as an initial pass to gather lighting information before
applying more accurate techniques, such as Signed Distance Fields for software-
based ray tracing or Hardware Ray Tracing for systems that support it. In the context
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of this thesis, the integration of Lumen within the VR driving simulator ensures that
lighting conditions respond dynamically to environmental changes, enhancing the
user’s sense of presence and depth perception in the virtual city.

Fig. 5.1 Effect of Lumen Global Illumination and Reflections: disabled (left) vs. enabled
(right).

5.1.2 Virtual Shadow Maps

Virtual Shadow Maps (VSM) are an advanced shadow mapping technique introduced
in Unreal Engine 5, offering consistent, high-resolution shadows in complex, dy-
namically lit environments. VSM works seamlessly with other UE5 technologies
like Nanite, Lumen, and World Partition, making it particularly effective for virtual
reality simulations that require realistic lighting and shadowing.

Traditional dynamic shadowing techniques often face limitations in maintaining
high-quality results over large areas without compromising performance. VSM
addresses this challenge by providing a unified shadowing system that intelligently
applies quality where needed most. This allows for consistent shadow quality
on both small and large objects, even over greater distances, with natural soft
penumbra and contact hardening effects. This capability is essential for achieving
visual realism in virtual simulations, where precise and natural lighting is critical
for creating a believable experience. VSM ensures high-quality shadows without
significantly impacting performance, making it a valuable tool for demanding real-
time applications.
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Fig. 5.2 Comparison of Cascaded Shadow Maps (left) and Virtual Shadow Maps (right).

5.1.3 Post Processing Local Exposure

Local Exposure is a new technique in Unreal Engine 5 that allows for dynamic,
scene-specific exposure adjustments. Unlike the traditional global exposure system,
this technique automatically modifies exposure locally, within parameters set by
the artist, to preserve details in both highlights and shadows. In environments
with high dynamic range (HDR) content, such as those featuring dynamic lighting,
global exposure alone often struggles to balance bright highlights with dark shadows
effectively.

In the context of this thesis, where a VR-based driving simulator is used to test
a procedurally generated urban environment, Local Exposure plays a crucial role
in ensuring consistent visual quality. In environments like the City Sample, where
lighting can be dynamically adjusted or changed depending on the time of day, areas
of the scene may become overexposed or underexposed. Local Exposure addresses
this issue by applying localized adjustments, ensuring that each part of the scene is
exposed correctly, even when the overall lighting varies. This method helps maintain
a consistent visual experience in real-time applications, where per-scene lighting
adjustments might not always be feasible, as is the case in an open world like the
City Sample, where users can freely navigate and explore the environment.
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Fig. 5.3 Comparison of Post Processing Local Exposure: with (right) and without (left)
applied adjustments.

5.1.4 Nanite

Nanite is a revolutionary technology in Unreal Engine 5, enabling the use of vir-
tualized geometry for rendering highly detailed static meshes. In the City Sample,
Nanite is applied to all Static Meshes, eliminating the need for traditional LOD
systems. By rendering pixel-scale detail and only processing geometry that can be
perceived, Nanite optimizes performance without sacrificing visual fidelity. Similar
to how Virtual Texturing handles texture detail, Nanite ensures that the system only
computes the necessary detail for what is visible to the camera, making it highly
efficient.

Nanite’s dynamic mesh format and rendering capabilities allow for real-time
adjustments to the level of detail as the player moves through the world. This
adaptive system automatically adjusts the level of detail for objects based on their
proximity to the camera, rendering high levels of detail for nearby objects while
reducing the detail for those farther away. Non-visible geometry is culled, further
enhancing performance.

In the City Sample, which consists of billions of polygons from tens of thousands
of objects, Nanite enables the use of film-quality assets in real-time applications.
This technology simplifies the creation of large-scale environments, requiring little to
no additional setup beyond enabling Nanite for static meshes. The City Sample thus
demonstrates how Nanite can effectively manage and render vast, complex urban
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environments with exceptional detail and efficiency, a critical factor for immersive
simulations in VR, as explored in this thesis.

Fig. 5.4 Nanite Visualization Methods.

5.1.5 Temporal Super Resolution

The increasing complexity of large, dynamic environments, like the ones found in the
City Sample project, demands high levels of detail while maintaining performance
efficiency. Rendering at native 4K resolution is a common challenge when aiming
for cinematic quality in vast open worlds with millions of polygons.

Temporal Super Resolution (TSR) is a next-generation anti-aliasing method
designed to balance the visual fidelity of high-resolution rendering with the perfor-
mance constraints of modern hardware. By utilizing a temporal upscaling algorithm,
TSR allows for rendering at lower input resolutions while still delivering images
with quality approaching native 4K resolution. This approach significantly reduces
GPU frame time, enabling higher performance without sacrificing image clarity, as
seen in the City Sample environment.

5.1.6 World Partition

In the context of simulating real-world environments, such as the City Sample,
managing vast, dynamic spaces is crucial. World Partition is a system in Unreal
Engine 5 that addresses the challenges of creating and managing large-scale environ-
ments by dynamically dividing the world into smaller, manageable sections. This
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allows for more efficient handling of assets as players traverse large areas without
compromising performance.

Previously, developers needed to manually manage levels and sublevels, care-
fully streaming in and out assets based on proximity. The World Partition system
automates this process by dividing the world into grid-based cells, which are then
dynamically loaded and unloaded based on the player’s location. This system en-
sures that only relevant parts of the environment are rendered at any given time, thus
optimizing performance in large urban settings like those used in this thesis.

For VR-based driving simulations, where real-time performance and responsive-
ness are paramount, World Partition’s seamless data management and streaming
are key in creating an immersive and efficient experience. This technology en-
ables expansive and interactive virtual cities without the performance limitations of
traditional methods.

Fig. 5.5 World Partition Map in Editor.
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5.1.7 HLODs & Streaming

A key component of World Partition is Hierarchical Level of Detail (HLOD), which
enhances performance by simplifying distant objects. HLOD works by grouping
adjacent actors and replacing them with a single static mesh when they are far
enough from the player or streaming source. This significantly reduces the number
of rendered objects while maintaining visual consistency.

HLOD generation is based on the lowest Level of Detail available for each asset.
If a custom asset does not have predefined LODs, the system generates an HLOD
from the full-resolution model, which can be computationally expensive. The LOD
system follows a hierarchy where LOD0 represents the highest fidelity asset, LOD1
is a lower-resolution version, and subsequent LODs progressively reduce mesh
complexity.

The effectiveness of HLOD is directly linked to draw distance. When combined
with World Partition Streaming, HLODs become visible at a minimum distance
determined by the configured grid loading settings. If they are loaded only when
they appear small on the player’s screen, they occupy minimal memory while still
maintaining an immersive environment.

This system plays a crucial role in optimizing large-scale open worlds, making it
particularly relevant for simulations and digital twin applications that require both
extensive environments and real-time performance.

5.1.8 Data Layers

In Unreal Engine 5, Data Layers complement the World Partition system by providing
an additional layer of control over which assets are loaded based on specific criteria.
While World Partition handles the automatic streaming of world cells, Data Layers
allow for the grouping and management of objects into distinct categories, which
can be individually loaded or unloaded as needed. This approach replaces the older
Layer system in Unreal Engine 4, which often required manual curation to manage
content efficiently.

In the context of the City Sample, Data Layers are used to organize various
world elements, such as procedural objects, rooftop props, and freeway assets. The
Data Layers Outliner provides an intuitive interface to manage these layers, allowing
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developers to toggle visibility, add, or remove objects based on the requirements of
the simulation. This functionality supports dynamic loading and unloading in both
the Editor and during gameplay.

Fig. 5.6 Data Layers Outliner.

5.1.9 Procedurally Generated City

The procedural generation approach used in the City Sample project showcases how
large-scale urban environments can be efficiently created using SideFX’s Houdini in
combination with Unreal Engine 5. Every element of the city, from road networks and
freeway systems to buildings and street furniture, is generated procedurally, allowing
for the rapid creation of detailed urban landscapes. This process is particularly
relevant for simulations requiring large, highly detailed city environments without
the need for extensive manual asset placement, which is precisely the case in this
thesis.

In the workflow, Houdini is responsible for generating the city structure, provid-
ing a rich set of metadata that Unreal Engine 5 can use to refine the final layout. The
Rule Processor, a tool developed specifically for City Sample project, converts point
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cloud data from Houdini into thousands of instances in Unreal Engine, ensuring
an efficient rendering pipeline. This procedural approach enables the generation of
diverse urban layouts while maintaining consistency and performance.

For this thesis, procedural generation offers an effective method for creating
detailed urban environments for VR-based driving simulations. While the focus is on
smaller, test-scale environments rather than large-scale cityscapes, leveraging Hou-
dini and procedural techniques can streamline the creation of realistic environments.

5.1.10 Houdini City Generation Project

The City Sample project provides a Houdini project that includes all the necessary
tools and assets to generate cities procedurally. This project serves as a foundation
for creating urban environments with a high level of automation, allowing users to
define city layouts, road networks, and building placements with minimal manual
intervention.

In Houdini, the city generation process is based on curves that define key struc-
tural elements such as the overall city dimensions, the freeway layout, and the City
Arteries. These curves act as the framework upon which the rest of the procedural
generation is built, ensuring logical road connectivity and urban density distribution.

Fig. 5.7 Curves used to define the city layout in Houdini. The closed grey curve represents
the city boundary, while the two lines indicate the primary City Arteries that structure the
road network.
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Fig. 5.8 City zones added in Houdini to define building heights, such as skyscrapers, within
the procedural city generation workflow.

Fig. 5.9 Preliminary city layout representation in Houdini. The added curve defines the
freeway, integrating it into the procedural city generation process.
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Fig. 5.10 Final city layout generated in Houdini using the City Processor, showcasing the
complete procedural workflow.

Once the city layout is defined, Houdini generates a point cloud representation
that includes metadata for buildings, roads, and additional street elements. This data
is then exported and processed in Unreal Engine 5 using the Rule Processor, a tool
developed to convert procedural data into optimized assets within the game engine.

For a more detailed breakdown of the Houdini city generation process, Epic
Games provides a dedicated document [28] that outlines each step. Additionally, a
second document [29] focuses on the import workflow into Unreal Engine, explaining
how to convert and optimize the procedural city data for real-time rendering.
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5.2 Adaptation for CARLA

The adaptation of the Matrix City Sample for CARLA was carried out in three
main phases. The first phase involved gathering reference data directly from Unreal
Engine to guide the subsequent steps. The second phase focused on the creation
of road networks using RoadRunner, ensuring compatibility with CARLA’s road
system. Finally, the third phase integrated the generated data into CARLA, enabling
its use within the simulator.

5.2.1 Reference Extraction

The first step in adapting the city environment for CARLA involved capturing a
structured set of reference images directly within Unreal Engine. To achieve this,
a Blueprint system was developed to automate the process using an orthographic
camera with an orthowidth of 7000. The goal was to generate a high-resolution
mosaic of images that could serve as a visual reference for the subsequent steps of
road creation and integration.

To define the coverage area, two input parameters were introduced: the number
of images to be captured along the X and Y axes. In this case, 5 images were taken
along the X-axis and 10 along the Y-axis, thus determining the grid subdivision of
the map. This configuration ensured the capture of a total of 50 images (5 × 10),
with the mosaic centered around the Pawn’s (Player Start) origin. Additionally, the
algorithm used for image capture was iterative, progressively adjusting the camera’s
position to determine the optimal offset values between each shot. These values
were empirically derived through a series of trials to ensure precise alignment and
minimize overlap between consecutive images. The final offset values used were
13450 for the X-axis and 7000 for the Y-axis.

To maintain consistency across different display settings, the scene was config-
ured to run in windowed mode with a fixed resolution of 1920×1080, preventing any
unintended variations in output. Additionally, to simplify the visualization and focus
on the essential ground elements, Data Layers — discussed in Subsection 5.1.7 —
were leveraged to selectively hide unnecessary assets, leaving only the Ground and
Ground Decals active for the next steps.
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This structured approach ensured that a precise and organized set of images was
generated, providing a reliable reference for the subsequent road network reconstruc-
tion.

Fig. 5.11 The figure illustrates the initial offset application, positioning the camera at the
top-left corner of the mosaic grid to begin the image capture process.

Fig. 5.12 The figure shows the iterative algorithm used to displace the camera across the grid,
applying offsets between each shot and utilizing a console command to capture the images at
each step.

Subsequently, the images were captured and processed through a Python script
that reconstructs the mosaic. The script takes as input the number of images along the
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X and Y axes, along with overlay values, which are independent from the previous
ones and used to apply corrections. In this case, the values for the images were set to
5 along the X-axis and 10 along the Y-axis, with overlay values of 8 for the X-axis
and 0 for the Y-axis.

Listing 5.1 Script for processing images and applying overlay adjustments.

1 def create_mosaic(img_folder, out_path, len_x, len_y, ol_x, ol_y):

2 image_files = [f for f in os.listdir(img_folder)]

3 images = []

4

5 for f in image_files:

6 image_path = os.path.join(img_folder, f)

7 img = Image.open(image_path)

8 images.append(img)

9

10 if len(images) < len_x * len_y:

11 print("Insufficient number of images for the specified grid.")

12 return

13

14 width, height = images[0].size

15

16 mosaic_width = width * len_x -(len_x -1) * ol_x

17 mosaic_height = height * len_y -(len_y -1) * ol_y

18 mosaic = Image.new(’RGB’, (mosaic_width, mosaic_height))

19

20 for row in range(len_y):

21 for col in range(len_x):

22 index = row * len_x + col

23 if index >= len(images):

24 break

25 x_offset = col * (width -ol_x)

26 y_offset = row * (height -ol_y)

27 mosaic.paste(images[index], (x_offset, y_offset))

28

29 mosaic.save(out_path)

30 print(f’Mosaic created and saved as {out_path}’)
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Fig. 5.13 This figure shows the reconstructed mosaic obtained by combining the captured
images. The grid is generated based on the defined parameters, with the overlay corrections
applied: len_x = 5; len_y = 10; ol_x = 8; ol_y = 0.

5.2.2 Road Definition and Export

In the second phase of adapting the City Sample map for CARLA, the mosaic
created in the previous step was used as a reference for reconstructing the road
network. Specifically, the mosaic image was imported into RoadRunner and set as
the Aerial_Image for the project.

To ensure the image was correctly aligned with real-world coordinates, a Custom
Projection was applied. The projection was defined in Well-Known Text (WKT) for-
mat, a standard for representing coordinate system definitions in a text-based format.
This enabled proper projection of the image within the RoadRunner environment.
The Scene’s Projection was selected to configure the Custom Projection settings.
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Next, the Meter Offset was adjusted to account for the positioning of the Player
Start, which is placed at the center of the mosaic. It was important to note the
differences in coordinate systems between RoadRunner and Unreal Engine: the
Y-axis is inverted between the two platforms, and the units of measurement change
from meters in RoadRunner to centimeters in Unreal Engine. For instance, if the
Player Start position in Unreal Engine is (-32000, -12500), the corresponding offset
to be applied in RoadRunner is (-320, 125). Applying this offset is crucial since the
OpenDrive data to be generated is tightly linked to the coordinates relative to the
origin.

Finally, the Resolution setting was empirically determined, with a value of
0.07036, based on the parameters chosen in the previous steps.

The same offset was then applied to the World Origin by selecting the World
Settings tool and adjusting the Center with the previously calculated offset. This
ensured that the entire scene in RoadRunner was correctly aligned with the Player
Start position in Unreal Engine.

Next, the Aerial_Image was placed in the workspace. Once the image was
selected, the World Settings tool was used to adjust the workspace size by applying
the Fit Bounds To Selected command. This command automatically scaled the
workspace to fit the selected image, ensuring that the reference image occupied the
correct area in the project and was aligned with the world coordinates.
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Fig. 5.14 Aerial image set as a reference in RoadRunner.

Fig. 5.15 RoadRunner toolbar, displaying the essential tools used for road creation, editing,
and export.

With the reference image properly positioned, the next step was to construct the
road network using the Aerial_Image as a guideline. Roads were created using the
Road Plan Tool [A], which allowed for the placement of road segments aligned
with the reference. Once the basic structure was in place, the Road Chop Tool [B]
was used to divide longer segments into smaller sections, enabling finer adjustments
and facilitating the creation of intersections.

To define speed regulations, the Road Speed Limits Tool [C] was applied to as-
sign appropriate limits to each road segment. The intersections were then configured
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using the Custom Junction Tool [D], which allowed for the creation of complex
junctions. Additionally, the Maneuver Tool [E] was used to specify permitted
vehicle movements, ensuring that all turning restrictions and lane connections were
correctly defined.

Traffic control elements were incorporated through the Signal Tool [F], which
enabled the assignment of stop signs, yield signs, or traffic lights at intersections.
Lanes were adjusted through several tools: the Lane Tool [G] enabled the selection
and editing of lanes, including the direction of travel; the Lane Width Tool [H]
modified lane widths to fit realistic road dimensions; the Lane Add Tool [I] allowed
for the addition of extra lanes when required; and the Lane Carve Tool [J] was used
to narrow the roadway where necessary.

Once the road network was fully constructed, the OpenDRIVE Export Preview
Tool [K] was used to generate the OpenDRIVE data. These files contained all the
necessary information for CARLA’s simulation, including road geometry, lane con-
nectivity, and traffic regulations, ensuring that autonomous vehicles could navigate
the environment realistically.

For the integration of the City Sample map, which already included traffic signals
and signage as separate assets, traffic signals were intentionally excluded from
the OpenDRIVE export. This was because CARLA manages traffic signals using
trigger boxes that notify autonomous vehicles of nearby traffic control elements.
Had the traffic signals been included in the OpenDRIVE export, they would have
been dynamically generated in the simulation. However, by omitting them, manual
adjustments were required within Unreal Engine to ensure the correct operation of
the traffic system.
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Fig. 5.16 Road network created in RoadRunner with OpenDRIVE data preview.

To finalize the export process in RoadRunner, the CARLA export option was
selected, including only the .udatasmith and .xodr files. The .fbx file containing the
road assets was excluded, as it was not required for this integration.

5.2.3 CARLA Data Integration

Once the .xodr data has been exported, it is crucial to rename the file to match
the corresponding level name in Unreal Engine. This ensures proper recognition
and integration within the project. The .xodr file is then placed inside the project’s
OpenDrive folder, where it can be imported into the map using the OpenDriveActor.

Within the OpenDriveActor Detail Panel, the Generate Routes option can be
selected, along with Generate Vehicle Spawn Points. Enabling these options auto-
matically generates splines that define the road network and creates spawn points at
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intersections. This highlights the importance of correctly setting the world origin
in RoadRunner beforehand, since OpenDRIVE data cannot be repositioned within
the level, it must be accurately placed during the export process to ensure proper
alignment in Unreal Engine.

As mentioned earlier, OpenDRIVE data alone is not enough to handle intersec-
tions properly, as it does not manage traffic signals. To ensure vehicles respond
correctly to traffic lights, trigger boxes must be used to inform them of the current
signal state.

This was achieved by modifying and adapting three key blueprints:
BP_TrafficLightNew, BP_CustomTriggerComponent, and BP_TrafficLightGroup. A
crucial aspect of BP_TrafficLightGroup is that it organizes traffic lights into phases,
ensuring that only one phase is active at a time. This means that in a standard setup,
no two traffic lights within the same group will turn green simultaneously.

However, at four-way intersections, it was necessary to allow vehicles traveling in
opposite directions along the same road axis to move at the same time. To accomplish
this, instead of using a single TrafficLightGroup, each intersection was assigned two
separated BP_TrafficLightGroup instances.

For example, consider an intersection with four traffic lights: A, B, C, and D,
where A and C control one direction, and B and D the perpendicular direction. To
ensure synchronized movement, one TrafficLightGroup managed A and B, while
the other controlled C and D. This setup guaranteed that vehicles traveling along the
same road axis (A and C, or B and D) received green signals simultaneously. Any
other configuration — such as grouping A and D together — would have resulted in
conflicting traffic phases.

To integrate the City Sample traffic light assets, the modified version of the
BP_TrafficLightNew blueprint was first adjusted by replacing the Static Mesh with
the desired model. Then, the blueprint was further modified to assign the dynamic
version of the material controlling the lights: M_StopLight_Main. This modification
allows the traffic light state to be updated by adjusting the Crosswalk Control
parameter, which controls the signal phase: a value of 1.0 corresponds to green, 0.5
to yellow, and 0.0 to red.

The BP_CustomTriggerComponent only required modifications to update its
references to the newly modified BP_TrafficLightNew actor. This ensured that
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the trigger component correctly interacted with the updated traffic light system,
maintaining proper signal behavior within the simulation.

Fig. 5.17 comparison between CARLA’s default traffic lights (top) and the City Sample
traffic lights (bottom), highlighting differences in design and detail.
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5.3 Optimization for Virtual Reality

The optimization of the City Sample map played a crucial role in achieving a balance
between visual fidelity and performance, particularly in the context of virtual reality
applications. One of the most significant steps in this process was the calculation of
Hierarchical Level of Detail, which allowed for a substantial reduction in rendering
complexity by merging multiple assets into simplified versions displayed at a distance.
This approach proved particularly beneficial in reducing draw calls and improving
overall performance.

A key consideration when using HLODs is their impact on Unreal Engine’s
Scalability Settings. Once HLODs are generated, these settings lose much of their
effectiveness because the HLODs are precomputed with specific rendering parame-
ters that remain fixed unless they are recalculated. This means that modifications
to scalability settings after HLOD generation will not influence the appearance of
objects represented by HLODs, making it essential to determine the optimal settings
before initiating the HLOD computation.

To implement HLODs effectively, two hierarchical levels were created. The first
level involved generating a new Open World level, which provided the foundation
for the hierarchical structure. Building upon this, a second level was introduced as
a child layer, using the "Approximated Mesh" type, which works seamlessly with
Nanite. This integration allows Unreal Engine to dynamically manage the complexity
of geometries, ensuring that only the necessary level of detail is rendered based on
the viewer’s distance.
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Fig. 5.18 A comparison of scene rendering in Unreal Engine without (top) and with (bottom)
HLOD.

Before HLOD generation, additional optimizations were applied by carefully
tuning the Engine Scalability Settings. Given the visual complexity of the City
Sample map, particular attention was given to elements that significantly impact the
VR experience. Anti-aliasing was set to Epic to reduce jagged edges and shimmering,
which are particularly noticeable in VR. Despite this adjustment, aliasing remains
somewhat intrusive, especially over long distances. Reflections were another crucial
factor, given the reflective nature of the environment. During testing, it became
apparent that setting reflections to High introduced noticeable artifacts in VR. This
led to a choice between Medium and Epic, with the latter being selected to maintain
a higher level of realism, despite the increased computational load.

Other settings were adjusted to balance quality and performance. Global Illu-
mination and Shadows were both set to High, ensuring a realistic representation of
lighting and depth without excessively straining performance. Effects were also kept
at High to preserve environmental realism. The View Distance was configured at the
Far setting to prevent abrupt pop-in effects, which can be particularly disruptive in
VR. In contrast, parameters such as Foliage, Shading, Landscape, Post-Processing,
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and Texture were set to Medium, as their impact on the overall visual experience
was deemed less critical compared to other factors.

Several additional settings were specifically tailored to enhance VR performance.
Occlusion Culling was enabled to optimize rendering efficiency by ensuring that
objects outside the player’s view were not processed. Lumen and Nanite were both
utilized to enhance real-time lighting and optimize high-detail mesh rendering. To
support these technologies, DirectX 12 was selected as the default RHI. Additionally,
Static Lighting was disabled in favor of a fully dynamic lighting approach, which is
more suitable for large open-world environments. Virtual Textures were also enabled
to improve texture memory management, allowing for more efficient handling of
high-resolution assets.

Regarding reflections, Lumen was chosen as the primary reflection method, with
the Reflection Capture Resolution set to 128 to balance performance and quality.
Similarly, Dynamic Global Illumination was configured to use Lumen, ensuring
realistic indirect lighting. Virtual Shadow Maps were enabled as the shadow mapping
method to enhance shadow fidelity and reduce artifacts. Another key optimization
was the activation of Stereo Foveation, with the level set to Medium and Dynamic
Foveation enabled. This technique reduces rendering resolution in the peripheral
areas of the field of view, optimizing performance without compromising visual
clarity in the central vision.

One feature that was deliberately left disabled was Instanced Stereo. While this
option is designed to reduce GPU workload by merging the two render passes into a
single process, it introduced an issue where decals were only rendered in one eye,
breaking immersion in VR. Given this drawback, Instanced Stereo was not used in
the final configuration.

In conclusion, the combination of HLOD calculations, fine-tuned scalability
settings, and targeted VR optimizations allowed for a well-balanced environment
that maintains high visual quality while ensuring stable performance in VR. These
adjustments provide a solid foundation for further refinements, particularly in ad-
dressing remaining anti-aliasing limitations and optimizing reflections to enhance
overall immersion.
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5.4 SPIN

SPIN (Spatial and Interaction Space Graph Reasoning) [30] is a deep learning model
designed for road extraction from high-resolution aerial images. Traditional convolu-
tional neural networks (ConvNets) often struggle with this task due to their limited
ability to capture long-range dependencies between road segments and their difficulty
in distinguishing roads from surrounding elements such as vegetation, buildings, or
shadows. To address these challenges, SPIN introduces a graph reasoning approach
that operates in two distinct spaces: the spatial space, which improves connectivity
between separate road segments, and the interaction space, where image features
are projected into a latent space that facilitates the separation of roads from other
topographical features.

The model is built on a stacked hourglass architecture, which combines convolu-
tional layers with residual connections to extract and refine features at different levels.
Additionally, it employs the SPIN Pyramid, a multi-scale reasoning mechanism that
enhances segmentation accuracy by processing information at different resolutions.
SPIN has demonstrated strong performance in road segmentation tasks, achieving
high accuracy even in challenging conditions where roads are partially occluded
or have varying widths. Another advantage of this approach is its computational
efficiency, as it requires fewer resources compared to transformer-based models
while still achieving competitive results.

A possible application of SPIN in the context of this work is the automatic ex-
traction of road networks from satellite or digital images, with the goal of converting
the output into a format compatible with OpenStreetMap. The segmentation output
is a binary mask distinguishing roads from other areas, but to be useful in GIS
applications, it needs to be processed into a structured road network graph composed
of nodes and connections. This graph can then be exported in GeoJSON format, a
widely used standard for geographic data, and subsequently converted into OSM
data using tools like osmium or ogr2osm. Automating this process could signifi-
cantly reduce the manual effort required to generate detailed road maps, whether for
real-world applications or for digital twin simulations.

The SPIN model is publicly available on GitHub, although its training process
is not fully documented. Despite this, it represents a promising approach for auto-
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mated road extraction, with potential applications in autonomous driving, digital
cartography, and the generation of realistic simulation environments.

Fig. 5.19 Road segmentation pipeline using SPIN, from aerial image input to extracted road
network for autonomous driving and navigation systems. [30]



Chapter 6

Enhancing Immersion in the
Simulation

To improve the realism and immersion of the driving experience, additional hardware
components were integrated into the simulation setup. These elements were designed
to provide physical feedback, making the interaction with the virtual environment
more natural and responsive.

The system included a force feedback steering wheel, an inertial seat, and a
pedal set with distinct mechanisms for acceleration, braking, and clutch control.
Each of these components contributed to a more engaging and dynamic simulation,
enhancing the perception of vehicle behavior and road conditions.

This chapter explores the role of these haptic feedback systems and their integra-
tion into Unreal Engine to enhance the overall driving experience.
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6.1 Steering Wheel and Force Feedback Integration

The steering wheel plays a fundamental role in the realism of a driving simulation,
as it provides haptic feedback that allows drivers to perceive road conditions, tire
grip, and vehicle dynamics. While visual information is the primary source of
feedback for a driver, additional sensory cues, such as steering torque and resistance,
significantly enhance the perception of vehicle behavior. As noted in the literature,
"although drivers obtain a substantial amount of information for driving from vision,
information from other sensory modalities may also provide relevant information
about the state of the car or even the surrounding environment” [31].

A key aspect of force feedback steering systems is their ability to simulate torque
variations based on road interactions. These forces allow the driver to experience
understeer, oversteer, and road irregularities, making the simulation feel more natural
and engaging. Studies have shown that "the addition of steering torque decreased
steering variance when the driver is controlling the vehicle after a turn or skid”
[31], emphasizing the importance of realistic force feedback in maintaining vehicle
control.

Beyond basic force feedback, high-fidelity simulation environments must ensure
that the steering system accurately replicates real-world vehicle behavior. The
interaction between the steering wheel, road surface, and vehicle physics is critical
to a convincing experience. According to research, "a fundamental haptic cue is the
feedback force at the steering wheel. It renders the vehicle–road interaction and is
considered very important for driving a vehicle” [32]. However, achieving this level
of fidelity requires precise calibration of damping, inertia, and resistance, ensuring
that the driver receives realistic counterforces when maneuvering the vehicle.

In this project, the force feedback steering wheel was integrated into the simu-
lation environment to enhance driver immersion and vehicle control. The system
was calibrated to reflect realistic torque resistance and dynamic steering responses,
ensuring that users could perceive road grip variations and vehicle weight shifts
naturally.
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6.2 Motion Seat Integration

Motion seats play a crucial role in driving simulations by replicating the forces
experienced in real-world driving, thereby enhancing the user’s sense of presence
and control. Unlike purely visual or force-feedback-based systems, motion platforms
introduce kinesthetic feedback, allowing users to perceive acceleration, braking,
and lateral forces in a way that closely mimics reality. This multisensory input is
particularly valuable in improving driver behavior studies, training applications, and
overall simulation realism.

Fig. 6.1 The complete simulation setup featuring the Atomic A3 racing seat, highlighted
Fanatec equipment including the steering wheel, pedals, and shifter, providing an immersive
driving experience.

Ghafarian et al. [33] highlight that "dynamic vehicular motion simulators are es-
sential tools for evaluating driving behavior, vehicle dynamics, and human-machine
interactions, as they provide controlled and repeatable conditions while mimicking
real-world motion cues". The ability to generate precise motion responses is espe-
cially beneficial in scenarios requiring high situational awareness, such as urban
driving, where road irregularities, sudden maneuvers, and varying speeds affect
vehicle handling. By integrating a motion seat, the simulator does not merely present
a visual scene but also engages the driver’s proprioceptive senses, reinforcing the
realism of the experience.
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For this project, the Atomic A3 motion seat was employed, managed via the
Actuate GUI plugin. This tool allows users to select from a variety of pre-configured
motion profiles or develop custom ones tailored to specific simulation needs. A
custom configuration was created to better adapt the motion response to the driving
conditions simulated, ensuring a more coherent and immersive experience. Through
this integration, the simulation delivers a more physically engaging environment,
bridging the gap between virtual representation and real-world driving dynamics.

6.3 Experimental Additions

As part of the effort to enhance immersion within the simulation, two additional fea-
tures were explored: Hand Tracking and Motion Compensation. While both were
initially considered promising, practical limitations led to their eventual exclusion
from the final setup.

Hand Tracking was introduced as a means to increase realism by allowing users
to interact with the virtual environment using their real hands. The potential benefits
of this approach included a greater sense of presence, more intuitive interactions,
and a reduction in the need for physical controllers. However, its implementation
proved problematic due to several limitations related to both hardware and software
constraints.

One major issue was the necessity of aligning the physical and virtual driving
components. Specifically, in order to use Hand Tracking effectively, the positions of
the virtual steering wheel and gear shifter had to match their real-world counterparts.
This requirement introduced two significant challenges. The first issue stemmed
from the racing-style seating position of the simulator, which features a relatively
high steering wheel and a reclined posture. Aligning the virtual steering wheel with
the physical one resulted in an elevated windshield position in the virtual scene,
which significantly restricted the user’s field of view.

The second problem was related to the gear shifter. In the physical setup, the
shifter is positioned low and at nearly the same depth as the steering wheel, making
it quite different from traditional vehicle layouts. To accommodate this layout
in the virtual space, a highly unconventional car configuration would have been
required. During its implementation, interaction with the UI menu was designed to
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be controlled through direct hand gestures. However, the lack of haptic feedback in
this context posed a challenge, as users could not receive tactile confirmation of their
gestures, potentially reducing usability. Studies have also highlighted the difficulties
of hand tracking in scenarios where the hands are outside the optimal tracking range,
such as when they are positioned below the field of view of the headset’s cameras.

Moreover, the issue of "uncanny valley" effects (Gavin Buckingham, 2024 [34])
arose when the virtual hands did not perfectly synchronize with the user’s real
movements, potentially leading to discomfort. Given the precision required in a
driving simulation, even slight discrepancies in hand position and responsiveness
could negatively impact usability.

Due to these constraints, Hand Tracking was ultimately removed from the setup.

Motion Compensation was also tested as a potential enhancement but encountered
technical difficulties when used in conjunction with Hand Tracking. The primary
issue stemmed from API conflicts: OpenXR relies on Oculus APIs for Hand Tracking,
whereas SteamVR requires its own APIs to implement Motion Compensation. This
incompatibility made it impossible to run both features simultaneously. After Hand
Tracking was removed, Motion Compensation was tested separately using a Vive
Tracker attached to the motion seat. However, the results were not as expected. Users
reported that enabling Motion Compensation introduced continuous vibrations in
the virtual vehicle, which significantly detracted from the experience. As a result,
participants ultimately preferred to disable this feature.

This exploration of additional features highlights the challenges of integrating
new immersive technologies into a VR driving simulation. While hand tracking
and motion compensation showed potential, their practical limitations ultimately led
to their exclusion. These findings emphasize the importance of balancing techno-
logical advancements with usability and realism to enhance the overall simulation
experience.



Chapter 7

Testing the Generated Environments

To evaluate the maps generated using the workflows discussed in this study, a series
of comprehensive tests were carried out involving 20 participants. These tests aimed
to assess various aspects of the simulation experience, including the effectiveness of
different navigation interfaces and the impact of environmental representation on
both immersion and simulator sickness.

Given the focus on integrating large-scale, highly detailed virtual environments
into a driving simulator, the tests were designed to evaluate how well these maps
perform in a VR context and how they affect user experience, particularly in terms of
navigation ease, comfort, and overall realism. By combining objective performance
metrics with subjective user feedback, the study sought to gain valuable insights
into the strengths and limitations of the generated maps, providing a more nuanced
understanding of their viability for real-world applications in autonomous driving
simulations and virtual reality experiences.



7.1 Test Structure and Methodology 83

7.1 Test Structure and Methodology

Each participant began by completing a demographic form and a pre-simulation
Simulator Sickness Questionnaire (SSQ) to establish their baseline condition
before exposure to the virtual environment.

The first simulation took place in the City Sample environment, where partici-
pants were asked to drive from point A to point B while following a navigation system.
Two different types of interfaces were tested: a Head-Down Display (HDD), which
resembled a traditional GPS navigation screen, and a Head-Up Display (HUD),
where a projected line was overlaid directly onto the scene to indicate the correct
route. To ensure balanced exposure, participants were divided into two groups: one
began with the HUD interface and switched to HDD in the second simulation, while
the other followed the opposite order.

Fig. 7.1 The HDD navigation system showing the route and surroundings without any active
hazard warnings.
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Fig. 7.2 The HDD interface marks a detected hazard with a triangular warning symbol on
the navigation display.

Fig. 7.3 The HUD navigation interface displaying standard information without any detected
hazards.
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Fig. 7.4 The HUD interface highlights a detected hazard using a red bounding box, alerting
the driver in real time.

Beyond navigation, the study also investigated how drivers reacted to hazard
warnings integrated into each interface. In the HDD system, warnings appeared as a
triangle symbol on the navigation screen when approaching an obstacle, such as a
vehicle or a pedestrian. The HUD system, on the other hand, marked the obstacle
directly in the environment using a red bounding box, making hazards more visually
prominent. During their route, participants encountered two predefined dangers: an
erratic car and a pedestrian crossing against the traffic light.

Upon completing the first simulation, participants filled out three questionnaires.
The post-simulation SSQ measured any changes in simulator sickness symptoms,
the User Experience Questionnaire (UEQ) assessed the usability and effectiveness
of the navigation system they had just tested, and the NASA-TLX questionnaire
provided insights into the perceived workload and cognitive effort required during
the task.

The second simulation followed the same structure but inverted the navigation
interface according to the participant’s assigned group. Additionally, the route was
altered to introduce a different driving scenario, ensuring that any observations
were not tied to a single road layout. At the end of this session, participants were
again asked to complete the SSQ, UEQ, and NASA-TLX, along with an Igroup
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Presence Questionnaire (IPQ) to evaluate their sense of presence and immersion in
the simulation.

Following these structured driving tasks, participants engaged in a third and
final session within the point cloud-based map of Mappano. Unlike the previous
tests, this session had no predefined objectives or navigation instructions; instead,
participants were encouraged to freely explore the environment, allowing them to
form impressions of the visual style and spatial coherence.

At the conclusion of this last session, they completed a final round of question-
naires, including another post-simulation SSQ, an IPQ specifically focused on the
Mappano environment, and an additional survey designed to assess their sense of
familiarity with the area and any discomfort caused by the point cloud representation.

Overall, each testing session lasted approximately 45 minutes, providing a com-
prehensive evaluation of navigation systems, environmental perception, and user
experience across different virtual driving scenarios.

7.2 Results and Analysis

The results of the tests reveal several interesting trends regarding user adaptation,
motion sickness, and environmental perception. Overall, most participants found the
second simulation less discomforting than the first, suggesting that their brains were
gradually adapting to the experience. This trend is further supported by the fact that
many testers started with a certain level of discomfort, as indicated by the SSQ-Pre
questionnaire, but concluded the sessions with lower SSQ scores. This could suggest
the presence of mild pre-test anxiety or even a certain degree of engagement and
appreciation for the simulation itself.

Despite this adaptation, some participants reported a decrease in perceived
smoothness when navigating curves, which were the primary moments where mo-
tion sickness symptoms emerged. Additionally, some movements of the driving
station, such as braking, were found to be overly pronounced compared to real-world
driving dynamics. Nevertheless, the majority of testers considered the motion plat-
form a valuable enhancement to the overall experience, despite these occasional
inconsistencies.
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Regarding the evaluation of the virtual environments, the City Sample was
generally perceived as highly realistic. The sense of "Being There" received an
average rating of 5.7 on a scale from 1 to 7, with relatively consistent responses
across participants. However, when assessing the perceived consistency of the
simulation with the virtual environment, the issues mentioned earlier played a
significant role, resulting in a lower average score of 4.2. These ratings varied more
significantly among testers, as their individual approaches influenced the experience.
It is worth noting that, although the vehicle’s speed was limited during the tests, some
participants instinctively reduced their speed even further out of concern for potential
discomfort, while others approached the simulation with a more playful mindset,
leading to lower levels of motion sickness. This observation suggests that, beyond
individual predisposition, the mental approach to the test itself may influence the
perception of discomfort—where the fear of an experience can amplify its effects.

When shifting the focus to the Mappano point cloud map, the average "Being
There" score was 5.1 out of 7. Despite the lower level of detail and realism in
comparison to the City Sample, many testers still found this environment immersive,
in some cases even more so than the highly detailed urban setting. One possible
explanation for this lies in the psychological adjustment of expectations, participants
seemed to lower their demands for realism when engaging with the point cloud,
which, in turn, enhanced their enjoyment and sense of presence within the simulation.
Furthermore, despite the unconventional aesthetic of the point cloud environment,
testers reported minimal discomfort, with an average score of 2.4. Interestingly, the
environment was also perceived as familiar, with several participants recognizing its
distinctively Italian character.



Chapter 8

Conclusions and Future Work

The results obtained from user tests have confirmed the strong potential of proce-
dural techniques in generating high-definition virtual environments for immersive
experiences. The City Sample, in particular, demonstrated an impressive level of im-
mersion, showcasing how procedural methods can bring virtual urban landscapes to
life. Despite this success, the complexity inherent in these environments introduces
challenges, particularly regarding performance optimization to ensure smoother
interactions in virtual reality. Frame rate stability, although generally good, remains
an important aspect for future improvements. By focusing on enhancing rendering
efficiency and refining asset management, the usability of these virtual environments
within CARLA can be significantly improved.

Another promising avenue for further work involves the integration of advanced
Computer Vision models, such as SPIN, to automate the process of OpenDRIVE
data generation. This automation could streamline the conversion of procedurally
generated maps into CARLA, bypassing some of the limitations of the current
manual workflows. Specifically, while RoadRunner’s conversion of OpenStreetMap
data into road networks is functional, there is still a noticeable lack of precision,
necessitating manual intervention to correct inaccuracies. Incorporating AI-driven
techniques for automated error correction could lead to a more efficient, scalable
workflow for road network generation.

While progress has been made in various areas, the generation of Digital Shadows
remains a particularly challenging aspect of the research. Initial tests have shown
potential, but the lack of sufficient detail and realism in point cloud-based represen-
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tations limits their applicability for driving simulations that require high levels of
validity and realism. The absence of an efficient, automated workflow for Digital
Shadows across urban environments is a notable barrier. Moreover, the quality of
LiDAR scan data, often requiring extensive manual cleaning, further complicates
this task. Future efforts should explore leveraging Computer Vision models for
point cloud segmentation to automate part of the cleaning process, improving the
feasibility of realistic Digital Shadow implementation.

Additionally, the user experience tests provided valuable insights into the im-
portance of seamless interaction between physical and virtual elements. While
the removal of hand tracking due to hardware limitations is a notable challenge, it
highlights the need for a more integrated approach between real-world ergonomics
and virtual representation. Similarly, motion compensation, despite its theoretical
promise, was hindered by API conflicts and did not yield the desired improvements
in immersion. Future work should focus on refining hardware-software integration
and exploring alternative tracking methodologies to better align physical movements
with virtual representations, thus enhancing user experience and immersion.

In summary, while this research successfully demonstrates the feasibility of
creating immersive virtual environments using procedural techniques and integrating
real-world road data into CARLA, there is still significant room for improvement.
Future work should focus on addressing performance optimization, increasing the
level of automation in data conversion, and developing more effective workflows
for Digital Shadows. These efforts will contribute to the creation of more realistic,
efficient, and scalable driving simulations, paving the way for future advancements
in the field.
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