F ‘3-,' Y
’; %\‘i “‘\:’
U
Y ‘%_ _A’e‘ Y
R
\.I [Ty 1 T Y 4

) Y]
\\\ 1859 g
“‘.\a‘ﬂ:"

POLITECNICO DI TORINO

Master degree course in Ingegneria Informatica

Master Degree Thesis

Quantum Safe TPM

Supervisor
Prof. Antonio Lioy
Ing. Grazia D’Onghia

Candidate
Davide PALATRONI

April 2025

Questa tesi e dedicata a tutte
le persone che mi hanno
accompagnato e sostenuto
lungo il mio percorso fino a
oggi. Alla mia famiglia, in
particolare a mia madre
Raffaella, a mio padre Ettore,
e alle mie sorelle Aurora e
Giota: grazie per avermi
supportato e sopportato con
amore, pazienza e fiducia,
anche net momenti pii
difficili. A Chiara, la mia
ragazza, che anche da lontano
¢ ruscita a trasmetterma
serenita e a farmi sentire
sempre il suo sostegno. A chi
e presente 0gqi, 1n questo
giorno speciale, e a chi non
Puo esserci pil ma continua
a vivere nei miei ricordi. Ai
mier compagni di viagqio
durante ['universita, in
particolare Riccardo e
Andrea: la vostra presenza e
calma mi ha aiutato ad
affrontare ogni esame con pitu
leggerezza. A chi mi conosce

da sempre e 0qgqi € qui a
festeggiare con me. Al mio
amico Davide, con cui,
nonostante tutto, ogni sabato,
da ormat 8 anni, ci
ritroviamo come sempre. Ai
maiet 2i1 e ai miet nonni, che
non mi hanno mai fatto
mancare nulla, reqgalandom:
affetto e valori. Grazie a tutti
voi e grazie alle esperienza
vissute insieme: se 0gqgi SOno
la persona che sono, lo devo
anche a voi.

Contents

1 Introduction 10
1.1 Context 10
1.2 Usecase o i e e 11
1.3 Solution 12
1.4 Thesis Structure 12

2 Post-Quantum Cryptography 14
2.1 Imtroduction L 14
2.2 Evolution of Quantum Computing 15
2.3 Threat to Modern Cryptography 16

2.3.1 Symmetric Key Cryptography 16
2.3.2 Cryptographic Hash Functions 16
2.3.3 Public Key Cryptography 17
2.4 Challenges in Advancing Quantum Computing 17
2.5 Mitigate Quantum Threat 18
2.6 Post-Quantum Algorithms 18
2.6.1 Lattice-based Cryptography 19
2.6.2 Multivariate-based Cryptography 19
2.6.3 Hashed-based Signatures. 20
2.6.4 Code-based Cryptography 20
2.6.5 Super Singular Elliptic Curve Isogeny Cryptography 20
2.7 Choice of Algorithm: SPHINCS-SHAKE-256f-simple 21
271 Overview of SPHINCS 21
2.7.2 Design Considerations 21
2.7.3 Variants and Selection Criteria, 21
2.7.4 Strengths of SPHINCS-SHAKE-256f-simple 21
2.7.5 Proposed Solution: Integration into an fTPM 22

6

3 Trusted Computing 23

3.1

3.2
3.3

34

3.5

3.6

3.7

Introduction 23
3.1.1 Motivation and Background L. 23
3.1.2 Conceptual Framework 23
3.1.3 Trusted vs Trustworthy 23
3.1.4 Relevance in Cybersecurity 24
Trusted Computing Group 24
Foundation of Trust: The Root of Trust 24
3.3.1 Definition and Purpose 24
3.3.2 Static vs Dynamic Trust 25
333 Typesof Rootof Trust. 25
Trusted Platform Module, 25
34.1 Role in Trusted Computing 25
34.2 Key Security Features L 26
34.3 Limitations of TPM 27
344 TPM Versions i 27
3.45 TPM Implementations 28
Trusted Execution Environment (TEE) 29
3.5.1 Introduction 29
3.5.2 TEE Security Guarantees, 30
3.5.3 Remote Attestation and Secure Storage 30
3.5.4 Lifecycle Management and Hybrid Trust Model 31
3.5.5 TEE Architecture 31
3.5.6 Applications 33
ARM TrustZone e e 33
3.6.1 Introduction 33
3.6.2 Processor Mode Separation 33
3.6.3 Exception Levels and Execution Contexts 34
3.6.4 World Identification and the NSBit 34
3.6.5 Memory and Peripheral Isolation 35
3.6.6 Virtual Memory 35
3.6.7 Secure Boot and Chain of Trust 35
3.6.8 Secure Storage and Replay Protection 36
3.6.9 World Switching and Secure Monitor 36
3.6.10 Interrupts in ARM TrustZone 37
3.6.11 Key Management in ARM TrustZone 38
3.6.12 Shortcomings of ARM TrustZone 38
3.6.13 Comparison between technologies 39
Remote Attestation. 41
3.7.1 Introduction 41
3.7.2 Attestation Workflow oL 41
373 PCRUsagein PCClients 42

4 Technologies Used

4.1

4.2

4.3

4.4

OP-TEE
4.1.1 OP-TEE Architecture
4.1.2 Communication Between REE and TEE in OP-TEE
4.1.3 Security and Protection of Trusted Applications
4.1.4 OP-TEE APIs and Advanced Features
Tpm2-tS8 e e e e e e e e
4.2.1 Tpm2-tss Architecture
422 Roleof Tpm2-tss e
4.2.3 Benefits of Tpm2-tss
Tpm2-tools e
4.3.1 Features of Tpm2-tools.
Libogs e e e
44.1 Supported Algorithms o

5 Design and Implementation

5.1

5.2

5.3
5.4

5.5
5.6

5.7

Design Choices 0 o e e
5.1.1 General Architecture oL
Technological Choices
Project Structure
Ms-tpm-20-ref e
5.4.1 Project Architecture and Structure
54.2 Execution in OP-TEE
5.4.3 Cryptographic Function Extension
544 TPM Hierarchies
Optee fTPM
Tpm2-tss and Tpm2-tools
5.6.1 Reasons for modifications L
5.6.2 Technical Details

Considerations i e e e

6 Tests and Results

6.1
6.2
6.3

6.4

6.5

Introduction
Configuration of Test Environment
Test Methodology
6.3.1 Functional Tests

6.3.2 Performance Tests e

6.4.1 Key and Signature Generation Performance Analysis
6.4.2 OP-TEE Overhead

Comparison and Final Observations

43
43
43
43
46
46
47
47
48
48
48
48
49
50

52
52
53
54
54
55
55
55
55
55
56
56
56
57
58

7 Conclusions

A User Manual

A.1 Requirements

A.2 Build Steps

A21
A22

A31

Install Dependencies . . .
Build Project
A.3 fTPM Use

Example of commands . .

B Developer Manual

B.1 Requirements

B.2 Installation

B.21
B.2.2

B.3 Project Configuration
Build

B.3.1
B.3.2
B.3.3
B.34
B.3.5
B.3.6

Bibliography

Install Dependencies . . .

Cloning of repositories . .

Optee ftpm

Tpm2-tss and Tpm2-tools

66

68
68
68
68
68
69
69

71
71
71
71
71
72
72
72
74
74
86
87

92

Chapter 1

Introduction

This chapter provides an initial definition of the problem, explaining why and how quantum
computers threaten communications and data integrity, identifying the main targets of quantum
attacks, and outlining the solution proposed to mitigate these risks.

1.1 Context

The evolution of quantum technology presents one of the most significant challenges for mod-
ern cybersecurity. Once quantum computers reach sufficient maturity, they can break many of
the cryptographic algorithms currently in use, compromising the security of protected commu-
nications and data. To address this potential threat, the scientific community has initiated the
development of post-quantum cryptographic algorithms designed to withstand quantum attacks.

As quantum computing capabilities advance, most cryptographic algorithms currently in use face
to risk of becoming vulnerable. Algorithms such as Rivest-Shamir-Adleman (RSA) and Elliptic
Curve Cryptography (ECC) could be easily broken by a sufficiently powerful quantum computer,
primarily due to the efficiency of quantum algorithms like Shor’s algorithm [1]. Shor’s algorithm
enables the factoring of large numbers in polynomial time, rendering asymmetric key algorithms
insecure. This vulnerability necessitates the transition to new cryptographic schemes that are
resistant to quantum attacks.

A fundamental concept in securing modern computing systems is the Root of Trust (RoT). The
RoT is a foundational security mechanism that ensures the integrity and authenticity of a device’s
operations by establishing a chain of trust. It consists of hardware, firmware, or software compo-
nents that provide a secure foundation for cryptographic operations. Secure boot, cryptographic
key management, and device identity verification are among the key features enabled by the RoT,
ensuring that a system remains protected. Hardware-based RoT implementations, such as those
integrated into TPMs, play a critical role in anchoring trust within a device. These mechanisms
ensure that only authenticated and unaltered software is executed, mitigating risks posed by both
classical and quantum threats.

All computational devices relying on asymmetric encryption, particularly embedded devices, are
at risk of quantum attacks. In this context, the Trusted Platform Module (TPM) plays a crucial
role in device security by providing secure cryptographic functions and ensuring data integrity
and confidentiality [2]. Specifically, TPMs provide several critical security functionalities. They
generate and store cryptographic keys in a secure, tamper-resistant manner, preventing unautho-
rized access and ensuring the confidentiality of sensitive data. Through encryption and decryption
mechanisms, TPMs protect information from being intercepted or altered by unauthorized enti-
ties. Digital signature verification ensures that authentication processes remain intact and data
integrity is maintained. Additionally, TPMs enable remote attestation, allowing a device to prove
its trustworthiness by generating cryptographic proofs of its hardware and software state. They

10

Introduction

also support measured boot, which verifies the integrity of system components at startup, ensur-
ing that only trusted software is executed. These features collectively provide a robust security
foundation, especially in embedded environments where resources are constrained and security is
paramount.

TPMs make extensive use of asymmetric key algorithms for secure authentication, encryption, and
digital signatures [3]. However, with the advent of quantum computers. These traditional cryp-
tographic methods will no longer be secure. Consequently, TPMs must adopt quantum-resistant
(QR) algorithms to continue protecting sensitive data within embedded environments [4]. This
transition is particularly challenging due to the computational and memory constraints typical of
embedded systems, necessitating efficient implementations of post-quantum cryptographic prim-
itives.

The adoption of these new algorithms is not straightforward for several reasons. QR primi-
tives require a paradigm shift and must be translated into a new set of performance and memory
constraints due to the limited resources available in embedded devices. Additionally, it is not
possible yet to obtain a physical TPM, but software-based TPM is a viable solution [3]. By em-
ulating a TPM in software, it is possible to integrate QR primitives into existing TPMs securely.

Recognizing the urgency of this transition, the National Institute of Standards and Technology
(NIST) has taken a proactive approach by evaluating and standardizing post-quantum crypto-
graphic algorithms. After extensive analysis and multiple rounds of assessment, NIST has selected
four candidates for standardization [5]. These selected algorithms are designed to address different
security requirements while balancing computational efficiency and resource constraints, making
them viable for a variety of applications, including embedded systems and TPMs. Each has its
advantages and limitations. For instance, SPHINCS+ provides a highly secure signature but can
take up to two minutes to generate a single signature, making it unsuitable for real-time applica-
tions [2]. Therefore, careful selection of the appropriate algorithm is necessary based on specific
requirements.

This thesis explores key challenges in integrating post-quantum algorithms within TPMs, an-
alyzing security implications, hardware and software constraints, and strategies for a smooth
transition to quantum-resistant encryption.

1.2 Use case

A primary concern for embedded devices is how to implement security mechanisms, as these
devices form the foundation of security in more complex systems. This leads to the concept of
Trusted Computing, which describes technologies that establish trust in local and remote com-
puting systems by leveraging trustworthy components, known as trust anchors, to ensure system
integrity [6]. The Trusted Computing Group (TCG) has made significant efforts toward standard-
izing trusted computing practices, defining a set of requirements compiled in the GlobalPlatform
Specifications [7].

A key component of trusted computing is the Trusted Execution Environment (TEE), a sep-
arate and tamper-resistant processing environment that operates independently from the Rich
Execution Environment (REE) [8]. The REE represents the standard operating environment
where general-purpose applications run, often exposed to potential security threats due to its
openness and accessibility. Unlike the REE, the TEE is designed to provide a higher level of se-
curity by ensuring that sensitive operations are executed in an isolated and protected space. The
TEE is used for sensitive operations that require higher security levels, while the REE handles
non-sensitive operations. TEE ensures critical security features such as remote attestation and
measured boot, both of which are central to this study.

One approach to implementing a TEE in an embedded device is through a secure and isolated

11

Introduction

processing mode, as seen in ARM TrustZone technology. TrustZone is widely used in modern mo-
bile devices and embedded systems. Typically, embedded devices have small processors, limited
computational resources, minimal I/O capabilities, small storage, and stringent power constraints
[9]- In contrast, many post-quantum cryptographic algorithms are computationally intensive and
require larger sizes, making them less suitable for embedded environments.

The hardware platform chosen for this study is the Xilinx ZynQ UltraScale+, a System-on-a-
Chip (SoC) that integrates a traditional processor with an FPGA. Specifically, the processor
under consideration is the ARM Cortex-A53, which utilizes ARM TrustZone to implement a TEE
within embedded systems.

1.3 Solution

There are multiple approaches to implementing a TPM. For example, discrete hardware TPMs
and integrated TPMs provide strong protection against physical attacks but are difficult to mod-
ify and update [3]. Consequently, software-based TPM emulation is a more practical option for
development and testing, as it enables rapid experimentation without reducing the lifespan of
non-volatile (NV) memory [3].

The technology selected for TEE implementation is ARM TrustZone, developed by ARM in
2002 [10]. TrustZone enables a system-wide security approach across various devices. It parti-
tions system resources into two distinct environments: the Secure World (SW), where sensitive
operations are executed and correspond to the TEE, and the Normal World (NW), where gen-
eral applications run and correspond to the REE [11]. This separation guarantees security while
executing sensitive applications. Additionally, the transition between these two worlds required a
dedicated system call, further enhancing security.

Applications are also categorized accordingly: Trusted Applications (TA) execute within the
Secure World, while Client Applications (CA) run in the Normal World and can invoke sensitive
data only through TA calls [10].

A practical first step toward quantum-resistant TPMs is to integrate PQ algorithms into a
firmware TPM (fTPM), which operates as a Trusted Application within TrustZone. This ap-
proach leverages TrustZone's security features to protect critical operations and sensitive data.

Using an fTPM offers several advantages over a physical TPM, Firstly, an fTPM is more flexible
and can be easily updated. Unlike physical TPMs, which require hardware modifications to be
upgraded, f{TPMs can integrate new cryptographic algorithms dynamically through firmware up-
dates. Furthermore, an fTPM can be deployed across a wide range of devices without requiring
hardware changes, making it a scalable and cost-effective solution. Additionally, it facilitates
backward compatibility, easing the transition to next-generation TPMs.

By integrating PQ algorithms into an OP-TEE-based fTPM, this study aims to provide an ad-
vanced security solution that anticipates the future challenges posed by quantum computing.
This approach ensures the protection of critical data and operations in an increasingly digital and
quantum-aware world.

1.4 Thesis Structure

This work focuses on the integration of post-quantum (PQ) algorithms within TPMs and their
application in embedded environments. The second chapter will discuss the threats posed by
quantum computers, their impact on cybersecurity, and the solution proposed by NIST. The
third chapter will introduce the concept of trusted computing, the role of the Trusted Computing
Group, and the implementation of the Trusted Execution Environment (TEE). The fourth chapter
will describe the technologies used to counteract the quantum threat, followed by an explanation of

12

Introduction

the design choices made in this project. The last two chapters will focus on testing and conclusions.
Additionally, a manual is included at the end, serving as a reference both for developers and for
individuals who wish to utilize the proposed solution.

13

Chapter 2

Post-Quantum Cryptography

This chapter focuses on post-quantum cryptography, providing an overview of its context and im-
portance. It begins by delving into the history and development of quantum computing, offering a
foundational understanding of the technology. The chapter then explains the quantum threat and
the potential risks posed by quantum computers to current cryptographic systems and explores
how these advancements challenge traditional cryptography. Finally, it introduces the counter-
measures being developed to address this threat, including the emerging field of quantum-resistant
algorithms and their role in securing communication in a post-quantum era.

2.1 Introduction

In today’s digital world, technological advancements in electronic communications have made
security and privacy essential concerns. The need to protect data integrity, confidentiality, au-
thentication, and non-repudiation has placed cryptography at the heart of modern information
security.

Cryptography, whose name originates from the Greek words for "hidden" and "writing", is the
practice of securing information during transmission and storage [12]. Its primary purpose is to
prevent unauthorized access and tampering, ensuring that data remains private and intact. This
discipline supports fundamental security principles such as the CIA triad, which stands for Confi-
dentiality, Integrity, and Availability [13]. At its core, cryptography relies on encryption, a process
that converts readable data, known as plaintext, into an unreadable format called ciphertext. This
transformation is achieved using a secret key, which varies depending on the encryption scheme.
In symmetric encryption, the same key is shared between communicating parties and must be
kept confidential. In asymmetric encryption, a keypair enhances security by allowing encryption
and decryption to be handled separately.

The rapid evolution of quantum computing presents a major challenge to traditional crypto-
graphic systems. Originally theorized by Richard Feynman in 1982 [14], quantum computing
has since grown into a field that could potentially disrupt modern security protocols. Quantum
algorithms such as Shor’s and Grover’s have demonstrated the ability to solve complex mathe-
matical problems far more efficiently than classical computers [15]. Specifically, Shor's algorithm
can factor in large numbers and break widely used encryption methods, while Grover’s algorithm
can speed up search processes significantly. These advancements raise serious concerns about the
security of current cryptographic standards, particularly those that rely on mathematical prob-
lems once considered computationally infeasible.

Although large-scale quantum computers have not yet been fully realized, ongoing research sug-
gests that their development is only a matter of time. Some experts believe that recent break-
throughs indicate they could become viable shortly [16]. If this happens, many existing security
systems, including those used in Internet of Things (IoT) infrastructures, could be at risk. The

14

Post-Quantum Cryptography

ability of quantum computers to break encryption could compromise data confidentiality and in-
tegrity on a massive scale, creating vulnerabilities in critical communication systems.

To address this challenge, researchers are actively developing new cryptographic techniques re-
sistant to quantum attacks. This emerging field, known as post-quantum cryptography, focuses
on designing algorithms that can withstand the power of quantum computing. This chapter ex-
plores the implications of quantum threats, their impact on current security protocols, and the
innovative solutions being developed to safeguard communications in a post-quantum era.

2.2 Evolution of Quantum Computing

Quantum computing was first conceptualized by Richard Feynman [14], who envisioned a machine
capable of simulating natural physical phenomena. While initially theoretical, this field gained
momentum towards the end of the 20th century when researchers like Peter Shor [1] and Lov
Grover [17] demonstrated its potential in cryptography and search algorithms.

Unlike classical computing, which processes data using bits that exist as either 0 or 1, quan-
tum computing operates with QuBits or quantum bits. These QuBits differ significantly from
classical bits because they can exist in multiple states at once through a phenomenon called
superposition [18, 19]. This property allows quantum computers to process vast amounts of in-
formation simultaneously, vastly increasing computational efficiency.

Another fundamental principle of quantum computing is entanglement. When two QuBits be-
come entangled, their states remain intrinsically linked regardless of the physical distance between
them [20]. A change in one QuBit instantaneously affects its entangled partner [12]. This unique
characteristic enhances the computational power of quantum systems, enabling them to perform
highly complex calculations with unprecedented speed.

Quantum computers leverage these properties to solve certain problems exponentially faster than
classical computers. A theoretical system with n QuBits can execute 2" operations in parallel [12],
making it particularly effective in areas where classical algorithms struggle. Table?? summarizes
the differences between QuBits and classical bits that permit quantum computers to improve their
performances.

Feature Classical Bits QuBits
State Can only be 0 or 1 Can be 0, 1 or a superposition
of both
Physical Unit 'I.‘ypu':ally transistors or electrical | Quantum particles
circuits
Underlying Principle | Based on binary logic Based on quantum mechanic
Errors and Rarely affected by external Sensitive to decoherence and
decoherence interference quantum errors
Measura]f)le Always deterministic (0 or 1) The result is probabilistic until measured
Information
Scalability Easior to scale Challenging to scale due to quantum

phenomena

Can offer exponential advantages

Computational Speed | Limited by classical principles for certain problems

Table 2.1: Comparison between classical bits and QuBits

15

Post-Quantum Cryptography

2.3 Threat to Modern Cryptography

The capabilities of quantum computing pose a significant risk to cryptographic systems currently
in use. Many encryption protocols depend on mathematical problems that are infeasible for clas-
sical computers to solve but could be efficiently tackled by quantum algorithms.

Shor’s algorithm [1], for instance, enables the rapid factorization of large numbers, threaten-
ing the security of public key encryption methods like RSA. Similarly, Grover’s [17] algorithm
accelerates search operations, reducing the security of symmetric encryption by cutting the time
required to break an encrypted key in half. These breakthroughs demonstrate how quantum com-
puting could undermine encryption methods that form the backbone of modern cybersecurity.

If quantum computers reach a sufficient level of stability and scalability, they could break widely
used cryptographic protocols, endangering secure communications, online banking, and digital
authentication. This growing threat has led researchers to explore alternatives that can resist
quantum attacks.

2.3.1 Symmetric Key Cryptography

Symmetric-key cryptography (SKC) relies on a single shared key for both encryption and decryp-
tion. While this approach is computationally efficient, it presents challenges in securely distribut-
ing the key between parties, a problem that led to the development of asymmetric cryptography.

SKC algorithms fall into two main categories: stream ciphers and block ciphers. Stream ci-
phers encrypt messages one bit at a time, processing data as a continuous stream, whereas block
ciphers encrypt fixed-size blocks of data. Some of the most widely used symmetric key algorithms
include AES, IDEA, Blowfish, and RCA4.

Despite its efficiency, SKC is vulnerable to certain attacks, such as the known-plaintext attack
(KPA), where an attacker obtains pairs of plaintext and ciphertext to reconstruct the encryption
key [13]. The emergence of quantum computing further exacerbates this issue. In 1996, Lov
Grover introduced a quantum algorithm that can search an unsorted database in approximately
the square root of the required operations. While Grover’s algorithm does not completely break
symmetric encryption, it effectively reduces the brute-force complexity of the key search, making
encryption methods with smaller key sizes more vulnerable [17].

However, symmetric cryptography can remain secure against quantum attacks if key sizes are
sufficiently large. According to NIST, the Advanced Encryption Standard (AES) is considered
quantum-resistant when implemented with key sizes of 192 or 256 bits. AES-256, in particular,
offers strong protection against quantum threats.

2.3.2 Cryptographic Hash Functions

Cryptographic hash functions are mathematical algorithms that convert input data or messages of
arbitrary size into fixed-length output, called a hash or digest. For a hash function to be effective,
it must meet several key requirements. First, it should be computationally efficient, producing
the hash value quickly. Second, it must be deterministic, meaning the same input always produces
the same output. Lastly, it must be resistant to collisions, where two different outputs produce
the same hash value, which should be computationally infeasible to achieve [13].

Quantum computing presents a serious challenge to hash functions, much like it does to symmet-
ric cryptography. Grover’s algorithm can significantly speed up the process of finding collisions
in a hash function, reducing the time required to find two different inputs that produce the same
hash. Combined with the principles of the birthday paradox, this greatly increases the risk of
hash function vulnerabilities [21].

16

Post-Quantum Cryptography

To maintain security against quantum threats, hash functions must have a sufficiently large output
size. A function designed to provide b-bit security against classical attacks would need an output
length of at least 3b-bits to remain secure against quantum algorithms [12]. Increasing the digest
length is one of the most effective countermeasures. As a result, modern hash functions such
as SHA-2 and SHA-3, when configured with longer outputs, are considered resilient to quantum
attacks[12].

2.3.3 Public Key Cryptography

Public key cryptography (PKC) relies on key pairs, consisting of a public key that can be openly
shared and a private key that must be kept secure [13]. PKC is widely used for both encryption
and digital signatures.

For encryption, the public key is used to encode messages so that only the corresponding pri-
vate key can decrypt them, ensuring confidentiality. Digital signatures, on the other hand, use
the private key to sign a message digest, allowing recipients to verify the authenticity and integrity
of a document using the public key.

The security of PKC is based on hard mathematical problems, primarily the Factorization Prob-
lem and the Discrete Logarithm Problem (DLP). The Factorization Problem relies on the difficulty
of breaking down large numbers into their prime components, while the Discrete Logarithm Prob-
lem involves solving modular exponentiation equations. Modern encryption schemes, such as RSA
and Diffie-Hellman (DH), depend on these problems to ensure security.

However, quantum computing threatens the foundations of PKC. Shor’s algorithm [1], designed
for quantum computers, can efficiently solve both the Factorization Problem and the Discrete
Logarithm Problem [22]. If large-scale quantum computers become practical, they could break
RSA encryption and other public-key systems by solving these problems exponentially faster than
classical computers.

Although quantum computers capable of breaking PKC do not yet exist, research into quan-
tum algorithms has demonstrated their potential. In 2001, IBM successfully implemented Shor’s
algorithm on a small 7-qubit quantum computer, factoring in the number 15 [23]. While this was
a limited demonstration, it proved the feasibility of quantum attacks on encryption.

The growing threat of quantum computing has led the cryptographic community to seek new
encryption methods that can resist quantum attacks. As quantum technology advances, the need
to transition toward quantum-resistant encryption is becoming increasingly urgent.

2.4 Challenges in Advancing Quantum Computing

Despite its potential, quantum computing still faces several technical challenges that must be over-
come before it can pose a widespread threat to encryption. Stability and scalability are among
the most pressing issues. QuBits are highly sensitive to external disturbances, such as temper-
ature fluctuations and electromagnetic interference, which can disrupt their quantum state. To
maintain coherence, quantum computers must operate at extremely low temperatures, close to
absolute zero [24].

Another significant obstacle is the high error rate associated with quantum computations. Un-
like classical bits, which maintain stable states, QuBits are prone to errors due to decoherence,
requiring sophisticated error correction mechanisms to ensure reliable results. Additionally, the
development of large-scale quantum computers with enough QuBits to break modern encryption
remains an ongoing challenge, though experts estimate that within a decade there is a one-in-six
chance of breaking RSA-2048, increasing to a fifty percent likelihood within fifteen years [25].

17

Post-Quantum Cryptography

Given these uncertainties, researchers emphasize the importance of proactively developing quantum-
resistant encryption before quantum computers reach their full potential. The urgency of this
transition cannot be overstated, as waiting until quantum computers become powerful enough to
break existing security protocols could leave critical systems vulnerable.

2.5 Mitigate Quantum Threat

In response to the growing risks posed by quantum computing, governments, research institutions,
and cybersecurity organizations have intensified their efforts to develop post-quantum cryptogra-
phy (PQC). These efforts focus on designing cryptographic algorithms that remain secure even
against large-scale quantum attacks.

One of the most significant initiatives in this area is the National Institute of Standards and
Technology (NIST) Post-Quantum Cryptography Standardization Project, launched in 2016. The
goal of this project is to evaluate and standardize new cryptographic algorithms that can with-
stand quantum attacks. After multiple rounds of analysis, NIST has selected several promising
quantum-resistant encryption schemes based on mathematical problems that are believed to be
difficult even for quantum computers.

In 2022, NIST concluded the standardization process by selecting four algorithms deemed suitable
for resisting quantum attacks:

o CRYSTALS-Kyber: Designed for general encryption purposes
o CRYSTALS-Dilithium: Designed for digital signatures

e SPHINCS+: Designed also for digital signatures, but using a different mechanism from
CRYSTALS-Dilithium

e FALCON: Another digital signature algorithm, although no draft standard was provided

for it.

In addition to developing new cryptographic standards, some governments and organizations are
adopting hybrid encryption models, which combine classical and quantum-resistant encryption
methods to ensure long-term security while maintaining compatibility with existing systems.

2.6 Post-Quantum Algorithms

Post-quantum cryptography aims to create cryptographic systems that remain secure against
both quantum and classical computers while seamlessly integrating with existing communication
protocols and networks [26]. Post-quantum cryptography relies solely on classical cryptographic
principles, avoiding the use of quantum effects [27]. To address the potential threats posed by
quantum computers, researchers are designing new cryptographic algorithms resistant to quan-
tum attacks, known as post-quantum algorithms. These algorithms are grounded in mathematical
problems believed to be difficult to solve, even for quantum computers. Notably, they are im-
mune to solutions based on the Hidden Subgroup Problem (HSP) [12], which is the key concept
of modern public key cryptographic schemes.

The primary challenge for post-quantum algorithms is to ensure long-term security while main-
taining resilience against advancements in future computing technologies. Currently, five main
categories of post-quantum implementations have been developed:

e Lattice-based cryptography

o Multivariate-based cryptography
18

Post-Quantum Cryptography

e Hashed-based signatures
e Code-based cryptography

e Super Singular Elliptic Curve Isogeny Cryptography

2.6.1 Lattice-based Cryptography

Lattice-based cryptography refers to a broad category of cryptographic constructions that incorpo-
rate lattices into their design or security proofs. Lattice-based cryptography relies on challenging
geometric problems associated with the structure of lattices in multidimensional space [28]. These
problems, such as finding the shortest vector in a lattice or reducing short vectors, are considered
extremely difficult to solve, even for quantum computers. The security of lattice-based cryptosys-
tems primarily hinges on the complexity of two core problems: the Short Integer Solution (SIS)
and the Learning With Errors (LWE) problems [20].

Several notable algorithms in this category include Kyber, NewHope, FrodoKEM, and FALCON.
These algorithms offer significant security benefits and provide a balanced trade-off between per-
formance, key size, and security guarantees [2].

e Kyber is based on LWE problem and is renowned for its efficiency and ease of implementation
on standard hardware

e NewHope also relies on LWE and related lattice problems, demonstrating strong resistance
to attacks and effectively securing communications

e FrodoKEM is another LIWE-based algorithm, valued for its semplicity and robust security.
However, it requires more computational resources compared to other lattice-based algo-

rithms.

e CRYSTALS-Dilithium is a digital signature algorithm whose security is based on the com-
putational complexity of solving lattice problems within modular lattices.[29].

e FALCON, short for "Fast-Fourier Lattice-based Compact Signatures over NTRU", leverages
the lattice structure of NTRU combined with the Fast Fourier Transform (FFT) to enhance
performance. Its primary benefit lies in the compact size of the signatures it produces,
making it particularly well-suited for scenarios involving high-volume data transmission

[30].

These characteristics make lattice-based cryptographic algorithms some of the most promising
options for post-quantum security.

2.6.2 Multivariate-based Cryptography

Multivariate cryptographic schemes leverage the inherent difficulty of solving systems of multi-
variate polynomial equations over a finite field, a problem that has been proved to be NP-hard
[20]. By capitalizing on the complexity of algebraic problems, these algorithms achieve secure
encryption. Notable examples of multivariate cryptography include the Hidden Field Equations
(HFE) and Rainbow systems. While these schemes are often faster in encryption and decryption
compared to traditional methods, they tend to require larger keys.

e Hidden Field Equations (HFE) relies on polynomial equations to construct a system that
resists attacks. Though it is designed to be robust, its computational complexity poses
challenges

e Rainbow is widely recognized for generating secure digital signatures. It is more efficient
than many other multivariate approaches, but ongoing research aims to further enhance its
security and implementation

19

Post-Quantum Cryptography

2.6.3 Hashed-based Signatures

Hash-based signature schemes rely on cryptographic hash functions, which are considered secure
against quantum attacks, and require fewer security assumptions compared to number-theoretic
signature schemes. This minimizes the security requirements needed to develop robust signature
schemes [20]. Algorithms such as SPHINCS+ utilize combinations of hash functions to produce
attack-resistant digital signatures. These schemes provide strong security while avoiding reliance
on complex mathematical problems, making them simpler to analyze and implement.

e SPHINCS+ combines hash trees with advanced hash techniques to construct a secure digital
signature system. It is noted for its efficiency and quantum-resistance. Although it has
slower signing operations and larger signature sizes, it compensates with a very small public
key size and fast verification times [2].

e Ertended Merkle Signature Scheme (XMSS) uses Merkle trees to generate digital signatures.
Designed for simplicity and safety, XMSS ensures strong resistance to potential future at-
tacks.

2.6.4 Code-based Cryptography

Code-based encryption is founded on the principles of error-correcting codes [12]. Classic cryp-
tosystems in this domain include the McElience (1978) and Niederreiter (1986) cryptosystems.
In these systems, encryption involves the use of linear code, represented by generating or check
matrix, which is masked through a series of transformations [27]. The strength of these cryp-
tosystems lies in the computational difficulty of decoding a general linear code, a problem known

to be NP-hard.

Code-based algorithms, such as McElience and NTS-KEM, are highly resistant to quantum at-
tacks. While they offer exceptional security, their key sizes are significantly larger than those used
in traditional cryptographic systems.

e McFlience utilizes Goppa codes to build a highly secure encryption system. Although it
requires large keys, it is widely regarded as one of the most robust algorithms against
quantum threats.

e NTS-KEM is another code-based algorithm that balances security with computational effi-
ciency. It is designed to be more practical for implementation compared to other code-based
systems.

These features make code-based encryption a reliable option for post-quantum cryptography,
especially for applications where robust security is a priority. NTS-KEM is another code-based
algorithm, which offers a balance between security and computational efficiency. It is designed to
be more practical in terms of implementation than other code-based systems.

2.6.5 Super Singular Elliptic Curve Isogeny Cryptography

This approach is relatively new, with development beginning in the early 21st century. It lever-
ages the properties of isogenies between elliptic curves to construct cryptographic schemes. The
foundation of these systems lies in the computational complexity of determining the isogeny be-
tween two elliptic curves over a finite field [27].

A major advantage of isogeny-based cryptosystems is their small key sizes compared to other
post-quantum cryptographic schemes. However, their low operating speed currently limits their
practicability [27]. Efforts are underway to improve their efficiency and make it more viable.

e Supersingular Isogeny Key Encapsulation (SIKE) relies on the difficulty of finding isogeny
between supersingular elliptic curves. However, recently it was cracked by experts outside
NIST with a classic computer [31].

20

Post-Quantum Cryptography

e Commutative Supersingular Isogeny Diffie- Hellman (CSIDH) is another isogeny-based scheme
designed for secure cryptographic key exchange. While it is simple and secure in concept,
further research is needed to enhance its efficiency and implementation

2.7 Choice of Algorithm: SPHINCS-SHAKE-256f-simple

2.7.1 Overview of SPHINCS

For the post-quantum integration within the firmware TPM, the algorithm chosen is SPHINCS+,
specifically the SHAKE-256f-simple variant. SPHINCS+ is one of the four digital signature
schemes officially standardized by NIST as part of its Post-Quantum Cryptography project.
What sets SPHINCS+ apart from many other post-quantum algorithms is its foundation on
hash-based constructions, rather than more complex mathematical problems such as lattices or
error-correcting codes. This choice of primitive reflects a conservative and well-understood secu-
rity approach, which is particularly attractive when long-term trust and reliability are essential.

2.7.2 Design Considerations

A key characteristic that makes SPHINCS+ well-suited for this application is its stateless design.
In contrast to stateful hash-based signature schemes, SPHINCS+ does not require tracking or
updating internal state across signing operations. This simplifies its integration into embedded
systems like a firmware TPM, where maintaining a persistent secure state can be both difficult
and risky.

Another important advantage is the algorithm’s clean and modular architecture. SPHINCS+- is
built entirely on top of cryptographic hash functions, which not only avoids the need for complex
mathematical structures but also makes it relatively easy to implement. In particular, updating
or adapting the algorithm in the future is straightforward: it is sufficient to replace or modify the
underlying hash functions, without requiring changes to the overall structure of the scheme.

This flexibility allows for easier adaptation to evolving standards or security requirements and
ensures that SPHINCS+ remains a maintainable and future-proof solution. Furthermore, being
entirely software-based, it does not rely on specific hardware features or accelerators, further
simplifying deployment across different platforms and architectures.

2.7.3 Variants and Selection Criteria

SPHINCS+ offers different parameter sets that allow for trade-offs between performance and sig-
nature size. The two main variants are known as "s", the small variant, and "f", the fast variant.
The "s" variant aims to reduce the size of the resulting signatures, while the "f" variant prioritizes
speed in the signing process.

In this work, the "f" variant was chosen. This decision is based on the fact that signature
generation is a critical operation in a firmware TPM, particularly in tasks such as attestation.
While the "s" variant does offer some reduction in signature size, the difference is not significant
enough to justify the performance overhead. In practice, the signatures produced by the "s"
variant are still relatively large for a constrained environment, and the slower signing speed could
impact the responsiveness of the system. The "f" variant, on the other hand, improves signing
efficiency, which has a direct positive effect on the TPM’s performance.

2.7.4 Strengths of SPHINCS-SHA KE-256f-simple

SPHINCS+ presents a series of advantages that make it an ideal candidate for secure post-
quantum applications in embedded systems. First and foremost, its hash-based construction

21

Post-Quantum Cryptography

relies on well-established and thoroughly studied primitives, offering strong theoretical security
guarantees even in the face of future quantum adversaries.

The algorithm’s statelessness simplifies its integration into systems like a firmware TPM, where
securely managing state over time is often impractical. The absence of a state not only reduces
implementation complexity but also eliminates a common source of vulnerability in signature
schemes.

Additionally, SPHINCS+ is entirely software-based, meaning it does not require dedicated cryp-
tographic hardware or specific processor features. This increases the flexibility and portability
of the implementation, allowing it to be deployed across a wide range of platforms with minimal
adaptation effort.

Finally, the choice of the SHAKE-256f-simple variant offers a good balance between performance
and practicality. The faster signature generation aligns well with the demands of TPM function-
ality, and the modular structure of the algorithm supports clean integration into the firmware’s
existing architecture.

2.7.5 Proposed Solution: Integration into an fTPM

The proposed solution involved integrating SPHINCS+ directly into the firmware TPM (fTPM),
to enable post-quantum digital signatures while maintaining full compatibility with existing TPM
specifications. One of the guiding principles of this integration was to preserve adherence to the
current Trusted Computing Group (TCG) standards so that the fTPM could remain interoperable
with existing systems, software stacks, and protocols.

To achieve this, the algorithm was inserted into the TPM’s key management and signing compo-
nents in a way that extends the original design, rather than replacing it. The result is a hybrid
architecture where SPHINCS+ can coexist alongside traditional algorithms like RSA and can be
activated through specific configuration parameters.

The integration was designed to be minimally invasive, modifying only the components necessary
to support the generation and verification of post-quantum signatures. Internally, the system
was adapted to handle SPHINCS+’s larger key and signature sizes, and appropriate serialization
formats were introduced to ensure compliance with TPM data structures.

By embedding SPHINCS+ in this way, the implementation remains fully aligned with current
TPM specifications, ensuring backward compatibility and reducing the risk of introducing in-
consistencies at the interface level. This approach also facilitates the gradual adoption of post-
quantum security features without disrupting existing workflows or infrastructure.

22

Chapter 3

Trusted Computing

This chapter provides an overview of the technological foundations, historical development, and
key components of Trusted Computing. We will explore the evolution of Trusted Computing
through the work of the Trusted Computing Group, understand the role and structure of the
Root of Trust, and examine in depth the functionalities and types of the Trusted Platform Mod-
ule (TPM). The goal of this chapter is to offer a comprehensive understanding of how Trusted
Computing operates and why it is essential in the context of modern cybersecurity frameworks.

3.1 Introduction

3.1.1 Motivation and Background

In a world increasingly reliant on digital infrastructure, the need for secure and reliable computing
systems is paramount. Trusted Computing (TC) was conceived to address this need by embed-
ding trust mechanisms directly into computing platforms. It ensures security, privacy, and data
protection through the integration of hardware-based security foundations [8].

3.1.2 Conceptual Framework

Trusted Computing is more than a set of technologies; it is a framework that redefines how we
approach digital security. What sets it apart is its foundational reliance on hardware-level trust.
Unlike traditional security models that rely heavily on software, Trusted Computing establishes
a root of trust at the hardware level [32]. This means that the integrity and security of a sys-
tem begin not with code that can be rewritten or compromised, but with physical components
designed to be immutable and verifiable.

At the core of this architecture is the Trusted Platform Module (TPM), a dedicated microcontroller
embedded in computing devices. The TPM provides a secure enclave for critical operations such
as key generation, identity authentication, and platform integrity measurement. Because this
trust anchor resides in hardware, it is significantly more resistant to tampering, malware, and
unauthorized software modifications. By leveraging these hardware elements, Trusted Computing
enables systems to measure, report, and attest their integrity, establishing a chain of trust from
the firmware up through the operating system and applications.

3.1.3 Trusted vs Trustworthy

An essential distinction in this context is the difference between "trusted" and "trustworthy."
A trusted component behaves as expected, though not necessarily secure; it simply means its
behavior is known and predictable. Conversely, a trustworthy component guarantees it will not
violate security policies, backed by formal verification or certification [33].

23

Trusted Computing

3.1.4 Relevance in Cybersecurity

TC is especially relevant in scenarios where attackers may gain full control over a system. In such
cases, hardware-based protection is indispensable. The Root of Trust (RoT) [32], often realized
via the TPM, serves as the initial anchor in the chain of trust, enabling mechanisms like secure
boot, sealed storage, and remote attestation.

Later, this chapter will introduce what is the Trusted Computing Group, the entity that takes
care of the trusted computing group, what are the the cornerstones of trusted computing, and
the state of the art of modern trusted computing technologies.

3.2 Trusted Computing Group

The formalization of Trusted Computing began with the U.S. Department of Defense’s (DoD) 1983
Trusted Computer System Evaluation Criteria (TCSEC) [34], which introduced foundational con-
cepts such as the Trusted Computing Base (TCB). This was followed by the Trusted Network
Interpretation (TNI) and Trusted Database Interpretation (TDI), forming the earliest technical
framework for TC.

In 1999, major industry players including IBM, HP, Intel, and Microsoft established the Trusted
Computing Platform Alliance (TCPA). This initiative was rebranded in 2003 as the Trusted Com-
puting Group (TCG) [35], marking a significant expansion in both scope and technical develop-
ment. TCG produced specifications [36] for the Trusted Platform Module (TPM), Trusted Soft-
ware Stack (TSS), Trusted Network Connect (TNC), and mobile platforms, which continue to
evolve. In 2006, the European Open Trusted Computing (OpenTC) project [37] aimed to cre-
ate open-source TC implementations. Comprising over ten academic and industrial partners,
OpenTC tackled trusted computing through secure architectures for e-commerce, collaborative
environments, and data centers. Today, T'C is a standard feature in many commercial products.
TPMs are embedded in almost all modern laptops and desktops. Technologies such as BitLocker,
Windows Defender Credential Guard, and secure boot processes leverage TC to enforce platform
integrity and protect user data.

3.3 Foundation of Trust: The Root of Trust

3.3.1 Definition and Purpose

Trust in computing must be rooted in a component that is verifiable, immutable, and resistant
to tampering: the Root of Trust (RoT). To fully appreciate the significance of this concept, it is
important to understand the notion of trust itself in the context of computing systems.

In everyday human interaction, trust is an abstract and often subjective notion, built on re-
lationships, experience, and expectations. However, in computing, trust must be made concrete,
measurable, and enforceable. Trust in this domain refers to the assumption that a given com-
ponent will behave predictably and reliably, in alignment with defined policies and security ob-
jectives. In Trusted Computing, this trust must be rooted in hardware, as hardware is far less
susceptible to manipulation than software.

The Root of Trust serves as the initial and most critical building block in any trusted computing
architecture. Its integrity is essential, as every other trust decision within the platform is ulti-
mately derived from it. If the RoT is compromised, all subsequent security operations, such as
secure boot, measurement, and attestation, lose their foundation of reliability.

By anchoring trust in hardware, the RoT provides a hardened environment capable of perform-
ing security-critical functions without relying on potentially vulnerable software components. Its
design prioritizes resistance to tampering, with carefully isolated execution paths and storage
mechanisms. The presence of a reliable RoT ensures that trust in the system can be established

24

Trusted Computing

and extended upward through higher layers of the computing stack, from firmware to operating
systems and application software.

In this sense, the Root of Trust is not just a technical feature but the fundamental enabler
of all Trusted Computing guarantees. Without it, the ability to verify system integrity, protect
cryptographic keys, and assure remote entities of a system’s secure state would not be feasible.
RoT is the anchor of all security functions in Trusted Computing. It provides mechanisms for
integrity measurement, secure storage, and reporting.

3.3.2 Static vs Dynamic Trust

Generally, an entity is deemed trustworthy if its behavior aligns with expectations, both in the
past and in the future. This concept extends to computing systems, where trust is typically di-
vided into two categories: static and dynamic [§].

Static trust is established through a one-time evaluation based on predefined security criteria.
The Common Criteria [38], an international standard for security evaluation, provides a struc-
tured framework for such assessments. These criteria define seven Evaluation Assurance Levels
(EAL), with each higher level including the requirements of the levels below it. In static trust, a
system’s reliability is determined before its deployment and does not change over time.

Dynamic trust, on the other hand, adapts based on the system’s real-time state and evolves
through its operation. Here, the system’s trustworthiness is continuously reassessed. If the cal-
culated trust value deviates from the expected level, the system is no longer considered reliable.
Dynamic trust relies on secure mechanisms that provide evidence of the system’s current state.
Trust in this context refers to the expectation that the system operates in a manner consistent
with its security requirements. Dynamic trust often relies heavily on hardware components like
the TPM, which can measure, store, and report the current system state. These real-time evalua-
tions form the basis for decisions in secure boot processes, access control, and remote attestation
protocols. While more complex to implement, dynamic trust provides a stronger and more flexible
foundation for modern security architectures, especially in environments where system configura-
tions and threats evolve frequently.

Together, static and dynamic trust models can complement each other, with static evaluations
providing a certified baseline and dynamic mechanisms ensuring ongoing compliance and system

integrity.

3.3.3 Types of Root of Trust

There are several types of Roots of Trust. The Root of Trust for Measurement (RTM) performs
initial integrity measurements, typically via the Core Root of Trust for Measurement (CRTM).
The Root of Trust for Storage (RTS) provides a secure storage area, only modifiable by trusted
components. The Root of Trust for Reporting (RTR) ensures secure and verifiable communication
of system states to external verifiers. These RoT elements interact to form a chain of trust where
the RTM performs measurements, the RTS stores them securely, and the RTR reports them when
requested.

3.4 Trusted Platform Module

3.4.1 Role in Trusted Computing

The Trusted Platform Module (TPM) is a critical cornerstone of trusted computing, implementing
key RoT functions [32]. Essentially, the TPM is a cryptographic co-processor that can be either
a physical hardware module or a virtualized entity. Its primary function is to secure sensitive
operations, verify the integrity of systems, and enable trusted computing environments through

25

Trusted Computing

cryptographic mechanisms. By offering a root of trust, the TPM ensures that systems can be
booted securely, secrets remain protected, and platform integrity is reliably measured and attested.
It is a passive piece of hardware, meaning that software can interact with the TPM, but needs to
do so explicitly. To give local or remote party guarantees, any software that runs on the target
device needs to be measured successively by the TPM.

3.4.2 Key Security Features

The TPM incorporates advanced mechanisms to safeguard sensitive data, authenticate devices,
and validate system integrity [39)].

One of the core features of the TPM is its ability to generate and securely store cryptographic
keys. These keys are held in an isolated environment, protecting them from system-wide threats.
The TPM also supports device authentication using a unique Endorsement Key (EK), which is
embedded during manufacturing. This key allows for the secure identification of devices.

The TPM measures the integrity of critical software components by calculating cryptographic
hashes and storing them in Platform Configuration Registers (PCRs). These registers act as
tamper-resistant logs, recording the system’s state in a verifiable manner. The process of updat-
ing these registers is known as the extension operation. During this operation, when new data
needs to be measured, the TPM does not overwrite the existing PCR. value. Instead, it concate-
nates the current PCR value with the new hash (digest) of the data being measured and then
applies a cryptographic hash function (typically SHA-1 or SHA-256) over the concatenated result.
Mathematically, this is expressed as:

PCRpew = hash(PCRyy || digest_of mnew data)

This method ensures that the final value of a PCR is uniquely dependent on the entire sequence
of measurements performed up to that point. As a result, even a single change in the order or
content of the data being measured will lead to a different PCR value, making it infeasible for an
attacker to recreate a legitimate system state by altering the measurement sequence.

This extension mechanism is fundamental for ensuring the integrity and authenticity of the sys-
tem’s state during operations such as secure boot and remote attestation. These registers act
as tamper-resistant logs, recording the system’s state in a verifiable manner. When new data is
added, PCRs are extended using a cryptographic function that hashes the previous value with
the new digest. This ensures that a given state can only be produced by a specific sequence of
events.

Another critical feature of the TPM is sealed storage, which allows data to be encrypted in
such a way that it can only be decrypted when the system is in a specific, trusted state. This
functionality is further enhanced through the process known as secret sealing. With secret sealing,
the data is bound not only to the TPM but also to a specific set of PCR values. This means that
even if an attacker copies the sealed data to another system or attempts to change the system
configuration, decryption will fail unless the platform is in the same state as when the data was
originally sealed. This capability is essential for protecting sensitive information, such as cryp-
tographic keys or credentials, in environments where system configurations might change or be
exposed to tampering.

Through these mechanisms, the TPM forms the backbone of hardware-rooted trust in modern
computing systems. to generate and securely store cryptographic keys. These keys are held in an
isolated environment, protecting them from system-wide threats. The TPM also supports device
authentication using a unique Endorsement Key (EK), which is embedded during manufacturing.
This key allows for the secure identification of devices.

TPM serves as both the RTS and RTR. It functions as a secure storage unit and trusted entity
for reporting, ensuring that only securely stored data is communicated. Additionally, through
remote attestation, the TPM enables systems to prove their integrity to remote entities, fostering
trust between different parties.

26

Trusted Computing

By integrating these capabilities, the TPM plays a vital role in trusted computing, ensuring the
confidentiality of data, the integrity of the system, and secure device authentication.

3.4.3 Limitations of TPM

Despite its strengths, the TPM has limitations [32]. It is a passive component that only acts
when called upon by the software. Its connection via the Low Pin Count (LPC) bus limits data
throughput and introduces a potential attack vector. Specifically, an attacker with physical access
to the system could tap into the LPC bus to intercept or manipulate communication between the

TPM and the CPU [40].

In addition to LPC-related risks, the TPM offers only limited protection against physical attacks.
Sophisticated adversaries may exploit physical tampering techniques or employ side-channel at-
tacks to gain access to protected data. The TPM’s reliance on asymmetric cryptography can
be less efficient for some operations, and it was initially designed for PC platforms, limiting its
adaptability to embedded systems, mobile environments, or high-performance servers without
significant modifications. Lastly, the TPM was originally designed for PC platforms, which lim-
its its adaptability for servers, embedded systems, and mobile computing environments without
significant modifications.

3.4.4 TPM Versions

There are two TPM implementations that have defined the evolution of Trusted Computing:
TPM 1.2 and TPM 2.0. The TPM 1.2 specification [41], released in 2011, laid the foundation
for trusted platform security. It introduced critical features such as RSA cryptography with a
minimum 2048-bit key size and a Random Number Generator (RNG) for generating secure ran-
domness. The module also employed the SHA-1 algorithm for calculating integrity measurements.
Although effective at the time, SHA-1 has since become cryptographically weak, necessitating im-
provements in future versions.

In TPM 1.2, each chip is provisioned with an Endorsement Key (EK), which serves as the im-
mutable root of trust. Device manufacturers are expected to provide a certificate for the EK.
The specification also introduced Attestation Identity Keys (AIKs) for digital signing and storage
keys for securely encrypting and decrypting data. Platform Configuration Registers (PCRs) are
included to store hash measurements of the system’s state, a critical element for remote attesta-
tion.

Despite its foundational contributions, TPM 1.2 suffered from inconsistent implementations and
reliance on aging cryptographic algorithms, driving the need for an updated architecture. An
overview of the architecture of the TPM version 1.2 is shown in Figure 3.1.

Introduced in 2014, TPM 2.0 [42] addresses the limitations of its predecessor and offers sig-
nificant enhancements. It includes support for modern cryptographic algorithms such as SHA-2
for hashing and Elliptic Curve Cryptography (ECC) for more efficient cryptographic operations.
TPM 2.0 also increases the number of PCR banks, providing more flexibility in measurements
and enhancing integrity reporting.

A notable improvement in TPM 2.0 is its hierarchical key management. Unlike TPM 1.2, which
relied on a single key hierarchy, TPM 2.0 introduces separate hierarchies for Endorsement, Plat-
form, and Storage keys. This structure enhances both security and manageability. Additionally,
TPM 2.0 aligns closely with reference standards, improving consistency and interoperability across
different devices and platforms.

Looking ahead, future TPM implementations will likely address quantum threats. Quantum-
Resistant TPMs (QR TPMs) are expected to adopt co-processors specialized in lattice-based
algebra. These would operate over polynomial rings defined by n dimensions modulus g, where

27

Trusted Computing

/ Cryptographic processor \ Persistent Memory

Endorsement Key

Random Number Generator (RNG)

Storage Root Key (SRK)

)
/ Versatile Memory \

Platform Configuration Registers
(PCRs)

RSA Key Generator

SHA-1 Hash Generator

Attestation Idendity Keys (AlKs)

Encryption-Decryption Signature Engine
\ / Storage Keys

Figure 3.1: TPMv1.2 Architecture

q is a prime number. Operations in this model include addition, subtraction, multiplication, and
division of polynomials, all performed modulo 1. QR TPMs will require a specialized vector en-
gine in their cryptographic co-processor to efficiently handle such ring algebra.

To further optimize performance, QR TPMs will employ the Number Theoretic Transform (NTT)
domain to reduce the complexity of algebraic operations. Research has shown that QR TPMs will
require significantly larger buffers, with memory demands increasing by an order of magnitude
due to the larger key sizes inherent in lattice-based cryptography. This evolution is anticipated
to be reflected in future TPM architectures with an overall layout similar to current models but
enhanced with expanded computational and storage capacity to cope with the increased size of
post-quantum keys [3]. An example of future QR TPM is shown in Figure 3.2

3.4.5 TPM Implementations

TPM functionality can be implemented in various forms, each offering different trade-offs between
performance, flexibility, and security. The most common types include hardware-based TPMs,

software-based TPMs, and firmware-based TPMs.

Hardware-based TPMs

Hardware-based TPMs, also known as discrete TPMs (dTPM), are standalone chips integrated
directly into a system’s motherboard. These chips operate independently from the main CPU
and system memory, offering a high degree of physical isolation. This makes them particularly
resistant to software-level attacks and tampering. Their security benefits come with trade-offs,
however. Because they often connect through the Low Pin Count (LPC) bus, they may suffer
from limited data throughput. Furthermore, their static nature makes it difficult to update or
patch them in response to new wvulnerabilities, potentially requiring firmware updates or even
hardware replacement. Physical attacks, such as side-channel or bus tapping, also pose a risk if
an attacker has direct hardware access.

28

Trusted Computing

Cryptographic Coprocessor Persistent Memory
g ™
Random Number G t
ndom Number Generator Endorsement Key
RSA and ECC Key PQ Algorithm Key)
Generator Generator Storage Root Key
.) .. -
g SHA-1 and SHA-2 Hash Generator ’ Versatile Memory
2 |\ i))
o p Platform Configuration Registers
2 (PCRs)
SHA-3 Hash Generator
. '
(]]] Attestation Idendity Keys (AlKs)
Asymmetric Key Encryption/Decryption and
Signature Engine
p.
p
Simmetric Key Encryption/Decryption Engine } L-DAA Signature Protocol State

Legend: :NewEIemenl Proposed
Figure 3.2: Architecture Proposed for QR TPM

Software-based TPM

In contrast to discrete TPMs, software-based TPMs emulate TPM functionality entirely through
software. These implementations are commonly used in virtualized environments or for develop-
ment purposes where physical TPM access is limited or unavailable. They offer greater flexibility
and ease of deployment, particularly in systems that cannot accommodate additional hardware.
However, this flexibility comes at the cost of security. Without the protection of physical isolation,
software TPMs are vulnerable to a wide range of attacks, including memory snooping, privilege
escalation, and exploitation of software bugs. They also face challenges in meeting compliance
standards, especially for true random number generation, which in hardware TPMs relies on
physical entropy sources.

Firmware-based TPM

Firmware-based TPMs (fTPMs) [43] represent a hybrid approach. They are implemented within
the system'’s firmware and leverage the built-in security features of modern processors, such as
ARM TrustZone or Intel SGX. These TPMs provide improved integration and performance over
hardware-based solutions while maintaining a logical separation from the main operating system.
Despite this, fTPMs are still susceptible to firmware vulnerabilities and do not offer the same level
of isolation as discrete hardware TPMs. They are often used in consumer devices or cost-sensitive
applications where full hardware TPMs are not practical.

3.5 Trusted Execution Environment (TEE)

3.5.1 Introduction

In recent years, the rapid expansion of sensitive applications across domains such as mobile bank-
ing, digital healthcare, cloud computing, and the Internet of Things (IoT) has brought increasing
attention to the need for robust mechanisms to protect data and ensure secure execution. A key
response to this demand is the Trusted Execution Environment (TEE), a secure and integrity-
protected area of a processor that enables the isolated execution of code and management of

29

Trusted Computing

sensitive data [6].

Most modern processors integrate hardware-supported TEEs, which function in isolation from
the standard operating environment, commonly referred to as the Rich Execution Environment
(REE) [44]. The REE typically includes the device's operating system and user applications. The
term "rich" refers to the extensive functionality offered by modern operating systems. However,
this richness comes at the cost of a significantly larger and more vulnerable attack surface.

In contrast, the TEE operates as a lightweight and self-contained environment, dedicated to
handling critical operations in a secure context. Its isolation ensures that, even if the REE is
compromised, operations and data inside the TEE remain protected.

TEEs enhance both the security and usability of REE applications by restricting sensitive op-
erations to the trusted environment. This guarantees that critical assets never leave the protected
domain of the TEE. As a result, even when exposed to potentially untrusted software in the
REE, sensitive computations remain safe. The TEE’s security properties ensure confidentiality
and integrity of all computations performed within its boundaries.

In addition, the TEE abstraction defines mechanisms for secure provisioning of both code and
data into the environment. It also establishes trusted communication channels through which
computational results and error messages can be securely retrieved by external entities, including
REE applications or remote systems [45].

3.5.2 TEE Security Guarantees

The TEE provides strong guarantees of confidentiality, integrity, and authenticity for both code
and data within its scope. These guarantees are made possible through a combination of hardware-
enforced isolation and carefully designed software mechanisms. In addition to secure processing
capabilities, a TEE also enables the secure provisioning of code and data, as well as trusted com-
munication channels for reporting computation results and system errors.

A fundamental advantage of TEEs lies in their minimal Trusted Computing Base (TCB). Un-
like systems that rely on large, complex secure subsystems or external secure elements, the TEE
isolates only the essential components, significantly reducing the risk of security breaches. By
acting as a trust anchor for the broader system [8], the TEE supports execution environments
that demand high assurance without incurring unnecessary overhead.

3.5.3 Remote Attestation and Secure Storage

To establish trust with external systems, a TEE typically supports remote attestation. This pro-
cess allows remote parties to verify the integrity and authenticity of the TEE before any sensitive
data is exchanged or critical operations are requested. Remote attestation serves as a foundational
step in building secure channels between the TEE and remote services, enabling protected and
trusted communications even over untrusted networks [46, 47, 48].

In addition to these attestation capabilities, a TEE often has access to private secure storage,
which is used to store sensitive application data such as cryptographic keys, certificates, or bio-
metric templates. This storage is isolated from the rest of the system and is accessible only from
within the TEE, thereby ensuring that the data remains protected even in the event of a compro-
mise in the Rich Execution Environment [49].

TEEs enforce their security properties through a combination of hardware-based Root of Trust
(HRT) and software-based mechanisms, creating a layered defense against both software and
hardware threats. In some scenarios, TEEs are also used to implement the functionality of a
Trusted Platform Module (TPM) entirely in software, effectively removing the need for additional
specialized hardware [50]. This flexibility allows devices to support secure operations even when

30

Trusted Computing

dedicated security chips are not available, while still maintaining a high assurance level.

Together, secure storage and remote attestation enable the TEE to maintain a persistent, ver-
ifiable, and trusted state across multiple execution sessions and device reboots. These features
are essential for the TEE’s role as a long-term trust anchor in a wide range of security-sensitive
applications.

3.5.4 Lifecycle Management and Hybrid Trust Model

One of the strengths of the TEE architecture is its ability to securely manage and update both
code and data during the device’s lifecycle. Unlike fixed secure elements or hardware coproces-
sors, the TEE is flexible and allows for the deployment of new trusted applications or updates as
needed, without compromising its security guarantees.

The trust model adopted by TEEs is often referred to as hybrid trust [8]. This model incor-
porates both static trust, established during manufacturing or deployment, and semi-dynamic
trust, which persists throughout runtime. During the initial boot process, the Root of Trust
(RoT) verifies that only a certified TEE implementation is loaded onto the device. In ARM
TrustZone-based systems, for instance, components like secureROM or eFuse serve as founda-
tional trust anchors [51].

Once the TEE is running, its integrity is enforced and preserved by a separation kernel, which
continues to isolate the TEE from the potentially compromised REE. This isolation ensures that
the TEE’s trustworthiness remains unchanged during operation, which is why it is considered
semi-dynamic.

3.5.5 TEE Architecture

At the core of every Trusted Execution Environment (TEE) lies the architectural principle of
isolation. The TEE operates as a secure and separate area within the main processor, running
independently from the Rich Execution Environment (REE), where the standard operating sys-
tem and user applications reside. This separation is enforced through a combination of hardware
and software mechanisms, ensuring that sensitive operations and data remain protected even in
the presence of a compromised REE.

he TEE hosts the execution of Trusted Applications (TAs), small, security-critical programs
responsible for tasks such as cryptographic operations, biometric processing, or authentication.
These applications are managed by a lightweight TEE runtime environment or Trusted OS, which
controls memory allocation, access permissions, and execution flow.

Platform Integrity

Ensuring the integrity of the platform code is essential to maintaining the trustworthiness of the
TEE. Integrity verification can take place both during the boot process and at runtime. During
boot, two primary approaches are used: secure boot and authenticated boot.

In secure boot, the system verifies each stage of the boot sequence using code signing. The
processor begins execution from an immutable memory region containing the initial bootloader,
often stored in ROM. This bootloader verifies the next component in the chain using certificates
and digital signatures, typically anchored to a public key provided by the manufacturer. If any
verification fails, the boot process halts immediately. This approach ensures that only authen-
ticated software is executed from the very first instruction. Cryptographic mechanisms used in
this process can be secured by storing the required algorithms in read-only memory (ROM). The
combination of an immutable boot sequence, a verification root, and protected cryptographic
mechanisms provides the necessary trust anchors for a secure boot.

31

Trusted Computing

Authenticated boot, by contrast, involves measuring each component during startup, rather than
verifying it directly. These measurements are stored in a tamper-evident log. They provide a
verifiable record of the system state and can be used for local access control or remote attestation.

Since boot-time checks are not sufficient to prevent tampering at runtime, many systems im-
plement runtime integrity verification. A trusted software or firmware component continuously
monitors the state of platform code, and if any unauthorized modifications are detected, the
system can restore original components or take corrective action [52, 53].

Secure Storage

Secure storage refers to a protected subsystem that allows sensitive data to be stored safely, even
in the presence of a compromised REE. This storage mechanism typically relies on a device-specific
hardware key, initialized during manufacturing and stored in a protected region of the chip. This
key is accessible only by trusted code running within the TEE.

To defend against physical attacks, hardware-level protections such as coating, fuse-based keys,
or tamper-evident packaging may be applied. Additionally, the secure storage system relies on
trusted cryptographic primitives, including authenticated encryption and key derivation mecha-
nisms.

To prevent rollback attacks, where an attacker attempts to restore an older, potentially vulnerable
version of stored data, secure storage uses non-volatile writable memory, often with monotonic
counters that persist across reboots and maintain the freshness of stored data.

Isolated Execution

The concept of isolated execution is fundamental to TEEs. It ensures that security-sensitive code
can run independently of the REE, which is considered untrusted. When combined with secure
storage, isolated execution enables applications such as credential handling, key management, and
digital rights enforcement.

A TEE can securely load and execute custom trusted applications, which may implement ei-
ther standard or proprietary cryptographic algorithms. These applications are granted controlled
access to sensitive resources through the use of code certificates. These certificates also define the
platform states in which the code is allowed to run, based on authenticated boot measurements.

A component known as the TEE management layer is responsible for enforcing access control
policies and managing the lifecycle of trusted applications. Its integrity must be verified at boot
time or dynamically during application loading, to ensure that only approved and untampered
code is executed [54].

Attestation and Provisioning

Remote attestation is a security process that enables a device to produce an externally verifi-
able statement about its current software configuration. It allows service providers to determine
whether a device complies with platform requirements before sharing secrets or granting access.
This is typically achieved by signing cryptographic measurements of loaded firmware and software
using a certified device key.

The secure delivery of secrets, credentials, or code into the TEE is known as provisioning. Es-
tablishing a secure provisioning channel requires that the device first authenticate itself using
its unique key material. Since device certificates generally do not contain user identities, user
authentication is handled through a separate mechanism.

32

Trusted Computing

Provisioned data is usually encrypted using the TEE’s certified key, ensuring that only the target
TEE can decrypt and access the information. This process enables a secure, verifiable relationship
between the service provider and the device, forming the basis for a wide range of trusted services.

Role of the Hardware Root of Trust

Underlying all the above components is the Hardware Root of Trust (HRT), a minimal set of
hardware functions that establish the foundation for trust. The HRT is responsible for verifying
the integrity of the TEE at boot and ensuring the authenticity of all code and data loaded into
it.

TEEs enforce their security properties by leveraging this HRT in conjunction with their software
stack. In some implementations, TEEs are also used to emulate the functionality of a Trusted
Platform Module (TPM) entirely in software, eliminating the need for separate secure elements
while still delivering a comparable level of assurance [50].

3.5.6 Applications

Several notable implementations of the TEE concept exist today. Intel Software Guard Extensions
(SGX) and ARM TrustZone are two of the most widely used platforms, each offering different
architectural approaches and use cases. Other examples include AMD SEV (Secure Encrypted
Virtualization) and Google’s Titan M chip.

The next chapters will provide a detailed overview of ARM TrustZone, explaining its architec-
ture, operational model, and security mechanisms. This will be followed by a comparative analysis
with Intel SGX, highlighting the key differences in their design choices, isolation strategies, and
real-world use cases. This comparison will serve to illustrate the trade-offs between flexibility,
performance, and security in contemporary TEE implementations.

3.6 ARM TrustZone

3.6.1 Introduction

ARM TrustZone, introduced in [55] and [56], is a hardware-based security extension designed to
support secure execution environments within a single system-on-chip. It is widely adopted in
mobile, embedded, and IoT platforms to isolate sensitive code and data from the rest of the sys-
tem. TrustZone introduces a dual-world model, dividing execution into the Secure World, which
handles security-critical tasks, and the Normal World, which runs the main operating system and
general-purpose applications.

These two worlds coexist on the same processor but are strictly separated through hardware-
enforced mechanisms. This separation is orthogonal to the traditional ARM privilege model and
operates across all exception levels. As a result, each privilege level (ELO to EL3) exists in both
secure and non-secure contexts.

3.6.2 Processor Mode Separation

The separation between the two worlds is enforced through dedicated hardware mechanisms. Soft-
ware running in the Normal World is entirely barred from accessing resources belonging to the
Secure World. One of the key architectural elements involved in this separation is the System
Control Coprocessor, known as CP15. CP15 is a privileged coprocessor present in ARM proces-
sors that manages system-level operations such as virtual memory translation, cache behavior,
exception handling, and other low-level system controls.

33

Trusted Computing

In TrustZone-enabled systems, CP15 registers are logically duplicated to maintain independent
configurations for the Secure and Normal Worlds. For instance, memory management units
(MMUs) and translation look-aside buffers (TLBs) have separate secure and non-secure states,
ensuring that sensitive memory regions configured by the Secure World cannot be altered or ac-
cessed by software in the Normal World. Additionally, critical processor status bits are either
hidden from the Normal World or have access permissions strictly governed by the Secure World.

3.6.3 Exception Levels and Execution Contexts

In addition to world separation, ARM introduced the concept of Exception Levels (EL), which
provide a hierarchical model of privilege. These levels, ranging from ELO to EL3, determine access
rights to hardware and system resources [57]. ELO is typically used for user-space applications,
EL1 for the operating system kernel, and EL2 for hypervisors in virtualized environments. The
highest privilege level, EL3, is exclusively reserved for trusted firmware operating in the Secure
World. This layered approach allows fine-grained control over access to the system and plays a
critical role in enforcing the platform’s security policies.

The EL model provides the foundation for the separation of roles and isolation, not just be-
tween the operating system and applications, but also across secure and non-secure domains.
This model allows TrustZone to assign specific exception levels to each world, thereby tightly
controlling which components can perform critical operations such as context switching, memory
management, or interrupt handling.

In TrustZone-enabled systems, both the Secure and Normal Worlds have their own stack of ex-
ception levels. At the top of this hierarchy, EL3 operates only in the Secure World and hosts the
Secure Monitor, which acts as a gatekeeper between the two worlds.

his layered model not only reinforces privilege boundaries within a world but also across worlds,
forming the architectural basis for TrustZone’s world isolation and secure control low. A diagram
summarizing the relationship between Exception Levels and TrustZone’s execution environments
is provided in Figure 3.3.

Normal World : Secure World
|
b . |
ELD [Normal Application } | r Trusted Application I
—————————————————————— - —— — — — — —
EL1 f Normal OS J :
______________________ | TrustZone OS
3 ¥ (OP-TEE)
EL2 [Hypervisor J |
_____ S ee————————————— N
EL3 [ARM TrustZone Firmware]

Figure 3.3: ARM TrustZone Priviligies Architecture

3.6.4 'World Identification and the NS Bit

The processor identifies its current execution world using a dedicated signal known as the Non-
Secure (NS) bit. This is effectively the 33rd bit in the memory addressing scheme and acts as a
flag to distinguish between Secure and Normal World execution contexts. Hardware components
and system software use this bit to enforce security boundaries, ensuring that access permissions
and execution rights are applied consistently across the platform.

34

Trusted Computing

3.6.5 Memory and Peripheral Isolation

TrustZone systems include dedicated hardware to support memory and device partitioning. No-
tably, the TrustZone Address Space Controller (TZASC) and the TrustZone Memory Adapter
(TZMA) provide low-level mechanisms for isolating memory access between worlds [58, 59].

The TZASC enables the partitioning of DRAM into secure and non-secure regions. These mem-
ory regions are configured via control registers that are only accessible from the Secure World.
Applications running in the Secure World may access memory assigned to the Normal World, but
the reverse is strictly prohibited. This guarantees unidirectional access and prevents unauthorized
reads or writes from non-secure software.

The TZMA performs a similar role of TZASC but for off-chip ROM and SRAM. It also supports
the configuration of coprocessors that extend core instructions or register sets. These extended
instructions and registers are specific to their respective worlds and can only be accessed or mod-
ified within their corresponding domain.

To complement memory isolation, TrustZone also enables protection at the peripheral level. Us-
ing optional components such as the TrustZone Protection Controller (TZPC), devices can be
assigned to either the Secure or Normal World. Any access attempt from the wrong domain
triggers hardware exceptions or is silently blocked. This mechanism protects critical resources
such as secure key storage, interrupt controllers, and debug interfaces from being tampered with
by non-secure software.

3.6.6 Virtual Memory

The Memory Management Unit (MMU) in ARM TrustZone is aware of TrustZone’s execution
context and maintains separate translation tables for each world. It distinguishes between secure
and non-secure entries using the Non-Secure TLB ID (NSTID), an additional bit used within the
Translation Lookaside Buffer (TLB) [60].

This enables each world to define its own virtual-to-physical memory mappings, ensuring com-
plete isolation in address translation. Secure applications, known as Trusted Applications (TAs),
are generally confined to a small amount of on-chip memory. Due to the high cost and limited
capacity of secure memory, these applications are intentionally designed with minimal memory
footprints, including only the functionality strictly necessary for their operation. This constraint
not only optimizes performance but also reduces the attack surface, enhancing overall system
security.

3.6.7 Secure Boot and Chain of Trust

TrustZone plays a fundamental role in establishing a secure boot process, which is essential to
guarantee the integrity and authenticity of all software components from the very first instruction
executed. To ensure the overall security of the system, protection must be enforced from the very
beginning of the boot sequence.

When the device is powered on and reset, the processor begins execution in the Secure World. A
first-stage bootloader, typically stored in ROM, is automatically loaded and executed. This initial
firmware is implicitly trusted since it resides in read-only memory and cannot be modified. It is
responsible for initializing critical peripherals and performing an integrity check on the second-
stage bootloader, which is usually stored in non-volatile memory such as flash memory.

If the verification of the second-stage bootloader succeeds, control is passed to it. The second-
stage bootloader then performs a similar validation step on the Secure World operating system,
ensuring that only authenticated and untampered code is loaded. Once the secure OS is verified
and launched, the Normal World operating system is started. Some secure OS implementations

35

Trusted Computing

further extend the chain of trust by verifying the integrity of Trusted Applications (TAs) before
allowing them to execute.

The entire process forms a chain of trust, where each layer verifies the next before transfer-
ring control. TrustZone relies on standard public-key cryptography to perform these integrity
checks. Code images are signed by the vendor using a private key, and the firmware uses a cor-
responding public key to verify these signatures at runtime. To support multiple vendors and
enable flexibility in deployment, the architecture allows for the storage and use of multiple public
keys, enabling devices to validate software signed by different trusted authorities.

Through this mechanism, TrustZone ensures that all code executed in the Secure World is au-
thenticated and trusted, effectively preventing the execution of malicious or unauthorized software
during boot.

3.6.8 Secure Storage and Replay Protection

TrustZone supports persistent data storage for Trusted Applications (TAs) through a secure stor-
age mechanism. This storage is designed to ensure the confidentiality, integrity, and authenticity
of sensitive data, even when stored on potentially untrusted media.

Objects stored by TAs are encrypted on disk and digitally signed as an anti-tampering mea-
sure. Although the data resides in encrypted form externally, TAs access it in cleartext, as the
TEE layer handles all cryptographic operations transparently. This abstraction allows developers
to store sensitive data securely without manually managing encryption or signatures.

Each file stored in secure storage is assigned a unique numeric identifier, typically derived from
a monotonic counter. An encrypted index of all stored objects is maintained in parallel, which
maps these identifiers to their respective locations. To protect the consistency and integrity of
this index, TrustZone uses a hash tree data structure, which allows file system operations such as
reads, writes, and deletions to be performed atomically and verifiably.

To defend against storage replay attacks, in which an attacker attempts to roll back secure stor-
age to a previously valid state, TrustZone systems leverage features of modern storage hardware.
Specifically, secure storage is backed by eMMC devices (embedded MultiMediaCards), which are
non-volatile, soldered memory modules commonly found in mobile and embedded systems [61].
These devices include a special secure region known as the Replay Protected Memory Block
(RPMB) [62]. The RPMB allows authenticated, write-protected access to monotonic counters
and protected data, ensuring that old or replayed data cannot be injected after reboot.

3.6.9 World Switching and Secure Monitor

Switching between the Secure and Normal Worlds is a key operational mechanism in TrustZone.
This functionality is handled through a dedicated privilege level, Exception Level 3 (EL3), where
the processor operates in Secure Monitor Mode. This mode is responsible for managing world
transitions, ensuring the integrity and isolation of the two execution domains.

TrustZone introduces a specialized processor mode specifically designed to switch between the
two worlds by saving and restoring the processor’s full state [63]. When a transition occurs, the
Secure Monitor saves the current context (including registers and processor status) upon entering
the Secure World and restores it upon returning to the Normal World. This operation is tightly
coupled to the Non-Secure (NS) bit, a critical flag that indicates the current security domain of
execution: a value of NS = 1 denotes the Normal World, while NS = 0 corresponds to the Secure
World. The Secure Monitor toggles the NS bit during the transition, which is managed internally
by the monitor mode logic.

36

Trusted Computing

At privilege level EL1 or PL-1 in ARMv7 terminology [64], transitions are triggered by a dedi-
cated hardware instruction known as Secure Monitor Call (SMC). When software running in the
Normal World requires access to a trusted service, such as a cryptographic operation handled by
a Trusted Application (TA), it issues an SMC instruction. This instruction signals the CPU to
pause the Normal World’s workflow and transfer control to the Secure World, where the requested
task is executed. Upon completion, another SMC call is issued to return control to the Normal
World and resume its operation flow.

Modern ARM processors, such as those based on the Cortex-A family [65], support this mechanism
natively and allow the operating system kernel to issue SMCs as part of inter-world communica-
tion. Importantly, world switching is core-specific, meaning that each CPU core can only execute
instructions in one world at a time. Consequently, the number of available cores may limit the
degree of parallelism when interacting with TAs from multiple threads.

A kernel thread in the Normal World typically initiates a transition by invoking the Secure Mon-
itor, which then carries out the SMC. If an SMC instruction is issued by a process not operating
in privileged mode, the processor triggers an undefined instruction exception [66], preventing un-
privileged software from accessing Secure World services directly.

From a software architecture perspective, applications in the Normal World access TrustZone
functionalities indirectly, by calling APIs exposed by the REE kernel or middleware layers, which
in turn issue SMCs to the Secure World. Trusted Applications may also call one another inter-
nally within the Secure World, a capability that enables modular design and helps minimize code
duplication and reduce the attack surface.

Communication between worlds typically occurs through shared memory pointers or via direct
memory copies. This approach provides efficiency, while the Secure Monitor and TEE enforce
strict validation and memory access policies to prevent data leakage or tampering across domains.

3.6.10 Interrupts in ARM TrustZone

Interrupt handling is a critical component of the TEE as it helps protect the system from ma-
licious software attempting to exploit interrupt vectors. The TrustZone architecture enhances
the Generic Interrupt Controller (GIC) by supporting prioritized secure and non-secure interrupt
sources. This prioritization is essential to mitigate denial-of-service (DoS) attacks from non-secure
software, as secure interrupts can take precedence over non-secure ones. Depending on the GIC
configuration, various interrupt models can be implemented for handling normal interrupts (IRQs)
and fast interrupts (FIQs). The FIQ mode is reserved for devices allocated to the secure world’s
memory region, ensuring that lower-priority IRQs cannot interrupt secure world execution. If an
interrupt occurs in its respective environment, no context switch is required. However, when an
IRQ triggers while in the TEE, the monitor must switch to the appropriate execution environment
to address the interrupt.

TrustZone employs the CP15 coprocessor [67] to safeguard interrupt management. The CP15
includes a control register accessible only in the secure world, preventing software in the REE
from altering the F and A bits in the Current Program Status Register (CPSR). The F bit masks
FIQ interrupts, while the A bit masks external interrupts. This mechanism ensures that malware
in the REE cannot block interrupts destined for the TEE.

Separate exception vector tables are used to define interrupt service routine addresses for the
secure world, normal world, and monitor mode. Each mode has its own vector table base address,
which can only be updated by the corresponding mode, ensuring that secure interrupt sources
remain unaffected by normal-world software manipulation.

The interrupt management features of TrustZone-enabled ARM cores provide flexibility, allowing
for various approaches to handling secure and non-secure interrupts. As detailed in [68], two key
properties of IRQ) and FIQ interrupts can be configured by secure-world privileged code:

37

Trusted Computing

e Non-secure world access to the global interrupt disable bit for FIQ interrupts can be re-
stricted, preventing unauthorized modifications

e IRQ and FIQ interrupt destinations can be directed either to the regular vector tables of
the current world or to the Secure Monitor Mode vector table

A recommended configuration, as highlighted in [68], involves disallowing the normal world from
modifying the FIQ) disable bit and using a Secure Monitor Mode FIQ handler. This setup enables
deterministic secure interrupts. A straightforward interrupt strategy could assign IRQs exclu-
sively to the normal world and FIQs to the secure world. This approach works well in systems
with a single secure world OS and a single normal world OS.

To prevent interference between non-secure world compartments, the secure world kernel must
have complete control over interrupt handling. Non-secure compartments must not be allowed to
mask or disable interrupts assigned to other compartments running concurrently.

3.6.11 Key Management in ARM TrustZone

The key manager starts with a device-specific key, the Secure Storage Key (SSK). It is derived
from two pieces of information unique to each device's processor: the chip identifier and the
hardware key. The TA Storage Key (TSK) is a per-TA key, derived from the SSK and the TA’s
UUID identifier. The File Encryption Key (FEK) is a per-file key generated upon file creation.
It is used to protect the file contents, including its metadata, and is encrypted using the TSK.

3.6.12 Shortcomings of ARM TrustZone

Although the ARM TrustZone specification describes how the processor and memory subsystem
are protected in the secure world and provides mechanisms for securing I/O devices, the specifi-
cation is silent on how many other resources should be protected. This has led to a fragmentation
of implementations, which at the same time has its pros and cons. the observations below held
across all the major SoCs vendors when products based on this work shipped.

No Trusted Storage

Surprisingly, the ARM TrustZone specification offers no guidelines on how to implement secure
storage for TrustZone. The lack of secure storage drastically reduces the effectiveness of TrustZone
as trusted computing hardware. Naively, one might think that code in TrustZone could encrypt
its persistent state and store it on untrusted storage. However, encryption alone is not sufficient

because one needs a way to store the encryption keys securely, and encryption cannot prevent
rollback attacks [69].

Lack of Secure Entropy and Persistent Counters

Most trusted systems make use of cryptography. However, the TrustZone specification is silent
on offering a secure entropy source or a monotonically increasing persistent counter. As a result,
most SoCs lack an entropy pool that can only be read from the secure world, and a counter that
can persist across reboots and cannot be incremented by the normal world [70].

Limitation on the memory isolation

Although TrustZone offers a separation between the secure world and the normal world, some
vulnerabilities can compromise this separation. ARM TrustZone is based on low-level language,
Assembly, and C. In these languages, developers have to manage every allocated memory checking.
One of the major limitations in the ARM TrustZone framework is, it does not have any in-built
memory management support, even for secure zones. This opens the door for the overflow of the
memory in a secure zone and possible leakage of valuable data.

38

Trusted Computing

Lack of access

Most SoC hardware vendors do not provide access to their firmware. As a result, many developers
and researchers are unable to find ways to deploy their systems or prototypes to TrustZone. SoC
vendors are reluctant to give access to their firmware [43]. They argue that their platforms
should be "locked down" to reduce the likelihood of "hard-to-remove" rootkits. Informally, SoC
vendors also perceive firmware access as a threat to their competitiveness. They often incorporate
proprietary algorithms and code into their firmware that takes advantage of the vendor-specific
features offered by the SoC. Opening firmware to third parties could expose more details about
these features to their competitors.

3.6.13 Comparison between technologies

ARM TrustZone and Intel SGX are mainstream TEE technologies that aim to create a secure and
isolated environment for sensitive task computing and private data storage to prevent attackers
from obtaining data and harming system security. They are used on different platforms and
application scenarios, so they adopt other design concepts, making a massive difference. This
section analyses the security protection of ARM TrustZone and SGX from the perspectives of
their design concepts, isolation protection principles and operation mechanism. In Table 3.1 are
summarized the differences between ARM TrustZone and Intel SGX.

Design Concept

ARM TrustZone and SGX both guarantee a trusted execution environment at runtime, so that
malicious code cannot access and tamper with the protected content of other programs at runtime,
enhancing the security of the system, but they adopt different design concepts. The design
concept of TrustZone is based on the CS model design, which constructs two separate worlds, set
the Trusted Execution environment for the secure world. The SGX is based on the P2P model
design. The CPU in TrustZone works in the secure world and the normal world, and the two
worlds communicate with each other through SMC instructions. But in SGX, a CPU can run
multiple secure enclaves and can run parallelly, and the memory occupied by the enclave will
encrypt the hardware.

Trusted Basis Design

The TrustZone uses the entire secure world as the trust base, including security components,
secure operating systems, and secure applications. Normal world applications share the same
trust base. The secure world is configured by device manufacturers, thereby simplifying user
development and use. However, there is a lack of effective isolation between secure applications
in the secure world. The failure of any secure application will lead to the loss of the entire trust
base. SGX regards enclave as an independent, trusted base, which corresponds to applications
one by one. Enclave does not pose a threat to the system and other enclave security but increases
the difficulty of user development and maintenance.

Security Service Design

TrustZone deploys vendor-designed secure code in the secure world ahead of time, and normal
world applications can only request fixed generic security services through vendor-provided secu-
rity interfaces. TrustZone can not provide dedicated services for the normal world beyond secure
code. SGX security service is more specialized. SGX applications are divided into secure part
and nonsecure part, which are developed by users. The secure part is deployed in the enclave and
runs in isolation, creating different secure codes according to different functions.

39

Trusted Computing

Task Scheduling

TrustZone and SGX are designed for multi-core systems and support virtual machines. The
TrustZone processor makes only one secure call at a time per core, supported by the Monitor
module for world state switching. SGX endorses the execution of multiple enclave threads, and
the running process processor can respond to interrupt execution, so the task scheduling is more
flexible than TrustZone.

Isolation Protection Principle

ARM TrustZone and SGX adopt different Isolation protection principles. TrustZone provides a
secure world that operates independently of the host which contains all secure operations. Since
TrustZone is only divided into secure world domain and normal world domain, TrustZone only
needs to formulate isolation protection policies around the secure world, which uses software
and hardware to divide resources between the secure world and the normal world. In software, a
dedicated operating system in the secure world is a complex, but powerful, design. It can simulate
concurrent execution of multiple independent secure world applications, runtime download of new
security applications, and secure world tasks that are completely independent of the normal world
environment. Secure bits are extended on hardware to isolate resources such as memory and I/0
using auxiliary controllers such as Adavanced eXtensible Interface AXI, TZASC, TZMA, and
TrustZone Protection Controller to provide hardware resources required for the operation of the
secure world. The Monitor is a security critical component, as it provides the interface between
the two worlds. The Monitor module runs in the highest privileged state. The Monitor module
runs in the highest privileged state. It connects the normal world and the secure world, isolates
access between different worlds, and provides system-level secure protection.

SGX allows users to actively create and maintain enclaves, deploy and apply secure code and
private data, and provide application-level protection. Each enclave acts as an independent secure
environment. Unlike TrustZone, SGX needs to protect different enclaves, so SGX adopts different
isolation protection methods. SGX offers a set of instructions that applications can use to create a
private region of memory that is isolated from all other processes, even those with higher privilege
levels. Thus, even if a malware or an insider has access to operating system (OS) root privileges, or
if the virtual machine manager (VMM) or BIOS are compromised, the SGX-protected application
can still operate with integrity and be able to help protect both its code and data.

Operating Mechanism

In ARMTrustZone, the normal world and secure world are two independent environments. A
secure service request in normal world contains two procedures:

e World state switch, which includes switching from the normal world to the secure world and
from the secure world to the normal world.

e Execute secure operations: the Monitor module switches to the secure world when the
normal world sends a secure service request. After that, the secure world responds to the
normal world request, executes secure operations, and returns the result to the normal world.

In Intel SGX, users create enclaves and deploy secure codes and private data in the enclave.
SGX protects them from being accessed by external software. Enclave can prove its identity
to remote authenticators and provide the necessary functional structure for securely providing
keys. Users can also request a unique key, which is unique by combining the enclave’s identity
with the platform’s identity, and can be used to protect keys or data stored outside the enclave.
The application requests the secure enclave operation when executing, which needs to set the
processor to the enclave model. The processor executes the secure operations and returns the
processing results. Compared to TrustZone, SGX executes enclave switching with fewer costs.
Although frequent encryption and decryption steps are involved in SGX, the complete hardware
design reduces the encryption and decryption time. However, besides normal, secure operations,

40

Trusted Computing

Trust-Zone also executes world status switching and save a large amount of context information,
which results in a long time for a single secure request. In [10] was demonstrated how the single
switching cost of the TrustZone world state is about seven times of the single switching cost of

the SGX enclave.

Feature ARM TrustZone Intel SGX
Divides the system into two worlds: Creates independent enclaves
Design Concept normal world and secure world, that isolate sensitive code and
communicating via SMC data through hardware encryption
The entire secure world is considered Each enclave is a separate trust
Trust Base the trust base. A failure compromises base. A compromise does not affect
the whole system other enclaves
Generic services predefined by Custom services: secure code is

Security Service device manufacturers; limited flexibility | developed by users and isolated
within enclaves

Supports only one secure service per Supports parallel execution of
Task Scheduling core at a time. World state switches multiple threads within enclaves.

(normal/secure) are slow More efficient task scheduling

Isolation between normal and secure Application-level isolation with
Isolation Principle | worlds via dedicated software and private memory protected even

hardware from privileged processes

World state switches between normal Enclave state switches are faster
Performance and secure worlds are slow and due to advanced hardware design

time-consuming
Development Simple for users: configured by More complex: users must create
Flexibility device manufacturers and manage enclaves

Limited protection: the secure world Strong protection: enclaves are
Protection is vulnerable if the OS or secure independent and isolated even

applications fail against compromised OS or insiders

Table 3.1: Differences between ARM TrustZone and Intel SGX

3.7 Remote Attestation

3.7.1 Introduction

Remote Attestation is the process by which an authorized party verifies that a particular platform
is in a trustworthy and unaltered state. This mechanism plays a fundamental role in building
trust in distributed environments, especially when direct control over a system cannot be assumed.
Trusted computing architectures, such as those involving a Trusted Platform Module (TPM), are
designed to support both local and remote attestation. While local attestation occurs between
software modules within the same platform, remote attestation involves a verifier that resides
outside the system, typically communicating over a network.

Remote Attestation is particularly important when assessing whether a platform has been com-
promised. Due to the inherent limitations of self-assessment, the TPM cannot be solely relied
upon to evaluate its own platform; instead, it must work in conjunction with an external verifier.
This external party is responsible for evaluating the integrity of the system based on cryptographic
evidence provided by the TPM.

3.7.2 Attestation Workflow

The process involves two main actors: the attesting platform, equipped with a TPM, and a re-
mote verifier. When the verifier wishes to assess the platform’s trustworthiness, it sends a unique

41

Trusted Computing

challenge to the platform. The TPM responds by collecting the current values stored in its Plat-
form Configuration Registers (PCRs), which are cryptographic hashes representing the integrity
of various software and hardware components. These values are then digitally signed using a
device-specific key, often referred to as the Device Identity Key (DevID). Since the response is
bound to the received challenge, replay attacks are prevented: the signed evidence is valid only
for that specific request.

The remote verifier performs two verification steps. First, it checks the digital signature to ensure
the integrity and authenticity of the evidence and to confirm that it was produced by the correct
TPM. This is done by identifying the TPM’s public key and matching it with the signed response.
Second, it compares the PCR. values with a set of pre-established reference measurements, also
known as golden values. If the measurements match the expected values, the platform can be
considered trustworthy.

Importantly, these measurements depend not only on the software present on the system, but
also on the order in which components were loaded. This sequence sensitivity adds an additional
layer of protection, making it more difficult for an attacker to replicate a trusted state through
simple substitution.

3.7.3 PCR Usage in PC Clients

According to the specifications provided by the Trusted Computing Group (TCG), PCRs are
assigned specific roles in measuring platform integrity. For instance, PCRO stores a hash of the
platform firmware located in the motherboard’s ROM and is expected to remain constant for a
given firmware version. PCR1 extends this measurement to include additional firmware compo-
nents, while PCR2 records the hashes of drivers loaded from disk. PCR4 reflects components
related to the UEFI or legacy OS loader, and PCRS5 captures aspects of the underlying platform
hardware. PCRY7, on the other hand, contains the Secure Boot policy enforced by the platform.

A further explanation of the content of those PCRs is shown in Table 3.2. Registers from PCRS8
onwards are typically left to the operating system, which may use them to monitor dynamic as-
pects of the system. However, the values stored in PCRs 0 through 7 are considered predictable
and verifiable. Their expected states are part of the golden measurements, and any deviation
from these values indicates a potential compromise. Thus, if incorrect or unexpected values are
found in these registers during attestation, the system cannot be considered trusted.

PCR Index | PCR Usage

0 SRTM, BIOS, Host Platform Extensions, Embedded Option
ROMs and Pi Drivers

1 Host Platform Configuration

2 UEFI Driver and Application Code

3 UEFT Driver and Application Configuration and Data

4 UEFT Boot Manager Code and Boot Attempts

5 Boot Manager Code Configuration and Data and
GPT/Partition Table

6 Host Platform Manufacturer Specific

7 Secure Boot Policy

8-15 Defined for use by the static OS
16 Debug
23 Application Support

Table 3.2: PCRs Usage

42

Chapter 4

Technologies Used

This chapter presents the technologies used in the development of the project, outlining their key
features and explaining the rationale behind their selection of the established objectives.

4.1 OP-TEE

When developing applications for TEEs, available options are limited. However, OP-TEE stands
out as an ideal choice due to its fast development cycle and native support for ARM TrustZone.
This technology allows the creation of a secure execution environment, protecting sensitive data
and critical operations from potential threats.

OP-TEE is an open-source project that implements TrustZone technology. It is managed and
distributed by Linaro, a nonprofit organization dedicated to supporting open-source software on
ARM platforms. Thanks to its flexibility, OP-TEE can be used alongside a Linux-based operating
system running in the REE, providing a balance between security and usability.

4.1.1 OP-TEE Architecture

OP-TEE is designed to offer a secure execution environment composed of several key components
that work together to ensure reliable execution of Trusted Applications (TAs).

At the core of this system is Op-tee Os [T1], a minimal operating system running in the Se-
cure World. Supporting this architecture is the tee-supplicant [72], a service operating in the
Normal World, which helps the TEE access resources from the main operating system.

To facilitate development it provides a complete toolchain 73] for building and debugging TAs,
along with a testing suite [74] to verify system functionality. Additionally, it includes a set of
utilities that simplify security management and integration with different hardware platforms.

OP-TEE is highly adaptable and can be deployed on ARM platforms where the manifest file
specifies the necessary dependencies and hardware characteristics. Developers can also use the
QEMU emulator [75] to run OP-TEE in a virtual environment, allowing for testing and evaluation
without requiring ARM hardware.

Another crucial aspect of OP-TEE is its compliance with GlobalPlatform specifications, ensuring
compatibility with industry security standards.

4.1.2 Communication Between REE and TEE in OP-TEE

Since the Normal World (REE) and Secure World (TEE) are isolated, they cannot communicate
directly. Instead, OP-TEE defines a structured interface for Client Applications (CAs) running

43

Technologies Used

in the REE to interact with Trusted Applications (TAs) in the TEE.

How Communication Works

When a Client Application (CA) in the Normal World requires a secure operation, it sends a
request to OP-TEE using the TEE Client API. This request must include a Universally Unique
Identifier (UUID), which serves as a unique identifier for the requested Trusted Application (TA).
Every TA must have a UUID defined at compile time, ensuring that it remains uniquely identifiable
across different applications. Figure 4.1 illustrates the interaction between the CA and TA. Once

Normal World Secure World
Context

TEEC_InvokeCommand '

Client Application
(CA)

Trusted Application
(TA)

SESSION

Client API Internal API

REE TEE

Figure 4.1: TEE CA and TA Communication

the UUID is provided, OP-TEE initializes a context via the function TEEC InitializeContext,
which references the TEE driver. With this context, the CA then invokes TEEC OpenSession
to establish a session with the TA. At this stage, OP-TEE loads the TA from the Normal World
into the Secure World with the help of the tee-supplicant, which ensures that the requested TA
is properly initialized and ready for execution.

Invoking Commands in a TA

Once a session is established, the CA can invoke services within the TA using the function
TEEC InvokeCommand. This function allows the CA to execute specific commands within the
TA while passing parameters that contain either values or references to shared memory.

An important feature of OP-TEE is that within a single session, the TEEC InvokeCommand
function can be called an unlimited number of times, enabling flexible and efficient execution
of multiple commands without requiring the session to be reopened. This design significantly
improves performance by reducing session-handling overhead while maintaining a secure commu-
nication channel between the CA and TA.

When the execution is complete, the session can be closed using TEEC CloseSession, and the
context is released by calling TEEC FinalizeContext, ensuring proper resource management. Ta-
ble 4.1 summarizes the client-side functions used to interact with and establish a connection to a
Trusted Application (TA).

44

Technologies Used

Function Description

Create a context, a logical connection

between TEE and CA

Release the logical connection stored

in the context

Create session by connecting TA and

CA specified by UUID

Service request by function or service

ID of TA connected to Session

Terminate TA connection with CA

stored in Session

Register CA’s memory block in shared

memory in context scope

Allocate CA memory block to shared

memory in context scope

TEEC ReleaseSharedMemory Deallocate the block of memory from
- shared memory

TEEC ReguestCancellation Create Session or Stop TA Service

Set parameter directionality of
TEEC PARAM TYPES TEEC_Operation

TEEC Initiliaze Context

TEEC FinalizeContext

TEEC OpenSession

TEEC InvokeCommand

TEEC CloseSession

TEEC RegisterSharedMemory

TEEC AllocateSharedMemory

Table 4.1: CA Operation function of Client API

Client API Data Types

To support structured communication between the CA and TA, OP-TEE defines specific data
types for API calls. These data types ensure that data is exchanged securely and predictably.
Table 4.2 provides a detailed overview of all data types and their scope within OP-TEE.

Struct Description
Defined to contain the return code
TEEC Result that is the result of calling

a TEE Client API function

Contains a UUID type defined in RFC4122
and used to identify the TA

Logical container that associates

the CA with a specific TEE

Logical container linking a CA

with a particular TA

TEEC UUID

TEEC Context

TEEC Session

TEEC Shared CA memory blocks registered or allocated
Memory to shared memory
TEEC Temp Shared memory temporarily created by TA

Memory Reference service requests

TEEC Registered Define a memory reference to use some of

Memory Reference TEEC SharedMemory for TA service requests
32-bit unsigned integer that does not refer

TEEC_ Value to shared memory but it is passed by value

TEEC Parameter Define the parameters of TEEC Operation

TEEC Operation Define TEEC Parameter and Data Delivery

Direction

Table 4.2: Data Types of Client API

45

Technologies Used

Pseudo TAs

Apart from standard Trusted Application, OP-TEE also supports Pseudo TAs, which are in-
tegrated directly into the OP-TEE os kernel. Unlike regular TAs, these do not rely on Glob-
alPlatform APIs but instead use OP-TEE’s internal APIs. While pseudo-TAs come with certain

restrictions, they are useful for executing privileged operations within the TEE efficiently.

4.1.3 Security and Protection of Trusted Applications

Ensuring the integrity of TAs is a fundamental aspect of OP-TEE’s security model. To prevent
unauthorized code execution, OP-TEE signs each TA using a private RSA key. However, a
current limitation of the toolchain is that all TAs are signed with the same device key, rather
than individual keys per TA. Despite this, OP-TEE enforces strict signature verification during

the TA loading process, ensuring that only properly signed applications are executed within the
TEE.

4.1.4 OP-TEE APIs and Advanced Features

Trusted Application Structure and Implementation

To implement a TA, OP-TEE follows a standardized structure that defines how the TA should
be built and which functions it must implement.

Each TA must provide interface functions that act as entry points for handling client requests.
These functions include session initialization, command handling, and session termination. OP-
TEE provides a framework that standardizes this process, ensuring that Tas interact consistently
with the Secure World. Table 4.3 provides an overview of the essential interface functions required
for the proper implementation of a TA.

Function Description

Run the first time the CA to TA
connection is run

Run the first time the CA to TA
connection is run

Paired withe TEEC InvokeCommand
TA InvokeCommandEntryPoint to provide the service in according to
the function or service ID of the TA
Paired with TEEC _CloseSession to
disconnect CA and TA

Run when CA to TA is completely
terminated

TA CreateEntryPoint

TA_OpenSessionEntryPoint

TA _CloseSessionEntryPoint

TA_ DestroyEntryPoint

Table 4.3: TA Interface function of internal API

Secure Storage API and Data Encryption

One of OP-TEE’s key security features is its secure storage system, designed to encrypt and
protect sensitive data using a three-tier system:

e The Secure Storage Key (SSK) is derived from the device’s unique hardware key

e The Trusted Application Storage Key (TSK) is generated for each TA using the SSK and
the TA’s UUID

46

Technologies Used

e The File Encryption Key (FEK) is dynamically created using a pseudorandom number
generator (PRNG) for every stored file

By layering these encryption mechanisms, OP-TEE ensures that sensitive data remains secure,
even if the REE storage is compromised. Encrypted data is transferred to the tee-supplicant via
Remote Procedure Calls (RPCs) and securely stored in protected files.

Additional Libraries for Secure Operations

Beyond secure storage, OP-TEE includes various specialized libraries to support TLS and SSL en-
cryption (libmbedtls), mathematical computations (libmpa), and a subset of standard C functions
(libututils). These libraries allow developers to implement secure communication, cryptographic
functions, and optimized arithmetic operations within TAs.

4.2 Tpm2-tss

To enable standardized interaction with TPM across different hardware and operating systems,
the Trusted Computing Group developed the TPM Software Stack (TSS). This software stack
provides various APIs that allow applications to access TPM functionalities in a structured way.

The tpm2-tss is an open-source library that implements the TPM2.0 stack in compliance with
TCG specifications, The project provides a set of APIs for interacting with TPM at different
levels of complexity. The System API (SAPI) allows direct access tO TPM commands, provid-
ing maximum control but requiring detailed operation management. The Enhanced System API
(ESAPI) simplifies SAPI usage by offering a more intuitive interface for applications. Finally, the
Feature API (FAPI) represents the highest level of abstraction, providing an easy-to-use interface
for common cryptographic operations.

4.2.1 Tpm2-tss Architecture

The tpm2-tss stack is structured into different layers, each responsible for a specific aspect of
TPM communication. The Transmission Interface (TCTI) serves as the bridge between software
and the TPM hardware or its software emulator, abstracting transport mechanisms and ensur-
ing flexible access. The System API (SAPI) provides a direct interface with TPM commands,
establishing a one-to-one correspondence between function calls and TPM operations, granting
extensive control but requiring detailed knowledge of TPM internals.

Building on this, the Enhanced System API (ESAPI) simplifies interactions by handling ses-
sion data, policies, and cryptographic functions. It is designed to reduce complexity of TPM
operations while still allowing significant control over security processes. At highest level, the
Feature API (FAPI) offers a streamlined abstraction that enables developers to execute crypto-
graphic operations and manage keys without delving into lower-level TPM functionalities.

Each layer works cohesively, ensuring that applications and operating systems can integrate TPM-
based security mechanisms efficiently. Whether detailed control over TPM operations is required
or high-level cryptographic functionalities are preferred, the tpm2-tss stack provides a structured
and accessible approach to leveraging TPM security features.

47

Technologies Used

4.2.2 Role of Tpm2-tss

The TPM was originally conceived as a passive cryptographic processor designed to protect the
system from software-based threats. Thanks to the TSS, TPM can be used not only to ensure
system integrity but also to provide advanced security functionalities such as authentication and
encryption.

The official project documentation is available in the tpm2-tss Github repository, where detailed
information about APIs, practical examples, and implementation guidelines can be found. Ad-
ditionally, the tpm2-software community provides a series of tutorials and resources to facilitate
the integration of this stack into existing applications.

One of the most critical elements within tpm2-tss is the Enhanced System API (ESAPI) layer,
which plays an essential role in managing cryptography, session data, and policies. This layer
is divided into two main parts. The first part is the API component, which defines functions
that directly correspond to TPM commands. For example, the Esys Create function in TSS di-
rectly maps to the TPM2 Create command of the TPM. The second part is the back-end, which
implements the core functionalities of ESAPI. Each API invokes several back-end functions to pro-
cess command parameters before interacting with lower layers and ultimately with the TPM itself.

The ESAPI layer relies on a structure called ESYS CONTEXT, which stores data between calls
without maintaining a global state. This structure, defined for external applications as an opaque
entity, includes all necessary information for TPM communication, metadata for TPM resources,
and operational state data. The specification does not impose a strict data structure, allowing
developers to define an appropriate implementation for their needs.

4.2.3 Benefits of Tpm2-tss

The modularity of the tpm2-tss stack enables clear and separate management of TPM function-
alities. Its flexibility allows developers to access TPM through different API levels based on their
requirements. Due to the standardization of APIs, interaction with TPM remains consistent re-
gardless of the underlying hardware or operating system. Additionally, advanced security ensures
the protection of cryptographic keys and secure management of sessions.

4.3 Tpm2-tools

Tpm2-tools is a suite of command-line tools designed to interact with TPM2.0 devices. This
library enables users to leverage the security functionalities of the TPM, such as encryption, key
generation, identity management, and system integrity protection. With these tools, advanced
operations can be executed without the need to write specific code, significantly simplifying TPM
management.

4.3.1 Features of Tpm2-tools

Tpm2-tools are implemented using the Trusted Software Stack (TSS) provided by the tpm2-tss
project, which serves as the foundation for TPM communication and control. Tpm2-tools allows
access to almost all the available TPM functionalities via shell commands and seripts, streamlining
automation and integration into various environments. Therefore, tpm2-tools acts as a Command-
Line Interface (CLI) wrapper for tpm2-tss, providing a simplified interface for interacting with
the TPM module through command-line commands. In particular, in this part, the key features
of tpm2-tools are. Table 4.4 summarizes the main commands that provide those security features.

48

Technologies Used

Cryptographic Key Management

Tpm2-tools allows users to create and manage RSA and ECC keys within the TPM. Users can
import existing keys, generate new ones, and store them securely within the module. This ensures
the protection of cryptographic keys, restricting their use to authorized devices only.

Digital Signature and Verification

Another crucial function provided by the suite is the ability to sign data digitally using keys pro-
tected by the TPM. The module enables the generation of reliable signatures and their verification,
ensuring the integrity and authenticity of signed data.

Data Protection: Sealing and Encryption

Tpm?2 tools include tools for protecting sensitive information through data sealing and encryption.
Sealing allows data to be accessible only under a specific TPM software state. This mechanism
helps prevent unauthorized access to critical information.

Attestation and Quote Generation

The TPM can be used to collect cryptographic measurements of the system’s state and generate
quotes that attest to the integrity of the device. This function is particularly useful for ensuring
that a system has not been compromised before being authorized to access a secure network.

Access Policy Definition

Tpm2-tools provides the ability to create and manage access policies to control the use of keys and
cryptographic operations. These policies can be based on password, or other conditions defined
by the user, enabling advanced security management.

TPM Initialization and Management

The library also includes tools for initializing, configuring, and resetting the TPM. These tools
allow users to configure the module to fit the system’s requirements, ensuring optimal use of its
security functionalities.

4.4 Libogs

The libogs library is a set of post-quantum algorithms developed as part of the Open Quantum Safe
project [76]. It is an open-source and free C library that implements cryptographic algorithms
designed to withstand quantum attacks. The library includes key encapsulation mechanisms
(KEMs) and post-quantum digital signature algorithms. Additionally, it provides a standardized
API to facilitate the integration of these algorithms into existing software, along with a testing
and benchmarking system to assess their performance. The library was designed as a testing and
evaluation platform for researchers and developers, allowing them to experiment with a range of
cryptographic schemes believed to be resistant to attacks from quantum computers.

49

Technologies Used

Command Description
tpm2_startup Initializes the TPM
tpm2_clear Resets the TPM to factory settings
tpm2_createprimary Creates a primary key within the TPM
tpm?2_ create Creates a new key within the TPM
tpm2_load Loads a key into the TPM
tpm2 _ evictcontrol Makes a key persistent within the TPM
tpm2 _sign Signs a file using a TPM key
tpm2_wverifysignature Verifies a digital signature
tpm2_seal Seals data within the TPM
tpm2_ unseal Unseals previously sealed data
tpm2 quote Generates a quote
tpm2_perread Reads the value of a PCR

tpm2_encryptdecrypt | Encrypts and decrypts data using the TPM

tpm2_ policypassword Creates a policy based on a password

Table 4.4: Main Commands of tpm2-tools

4.4.1 Supported Algorithms

The libogs library implements numerous algorithms that have been proposed for standardization
in the NIST Post-Quantum Cryptography Standardization Process. These algorithms are classi-
fied based on the security levels defined by NIST, ranging from Level 1, which provides minimal
protection, to Level 5, which ensures the highest level of security. The NIST security level is a
criterion used to evaluate the robustness of cryptographic algorithms against both classical and
quantum attacks. This classification helps determine which algorithm to adopt based on the re-
quired protection level.

Table 4.5 provides a detailed overview of the available algorithms [77], indicating security

levels and their specific characteristics, including the sizes of public keys, secret keys, and signa-
tures.

50

Technologies Used

Algorithm Claimed Public Key Secret Key Signature
NIST Level Size (Bytes) Size (Bytes) Size (Bytes)

Dilithium?2 2 1312 2528 2420
Dilithium3 3 1952 4000 3293
Dilithium5 D 2592 4864 4595
Falcon-512 1 897 1281 752
Falcon-1024 D 1793 2305 1462
Falcon-padded-512 1 897 1281 666
Falcon-padded-1024 5 1793 2305 1280
ML-DSA-44 2 1312 2560 2420
ML-DSA-65 3 1952 4032 3309
ML-DSA-87 D 2592 4896 4627
SPHINCS+-SHA?2-128f-simple 1 32 64 17088
SPHINCS+-SHA?2-128s-simple 1 32 64 7856
SPHINCS+-SHA2-192f-simple 3 48 96 35664
SPHINCS+-SHA2-192s-simple 3 48 96 16224
SPHINCS+-SHA?2-256f-simple D 64 128 49856
SPHINCS+-SHA?2-256s-simple D 64 128 29792
SPHINCS+-SHAKE-128f-simple 1 32 64 17088
SPHINCS+-SHAKE-128s-simple 1 32 64 7856
SPHINCS+-SHAKE-192f-simple 3 48 96 35664
SPHINCS+-SHAKE-192s-simple 3 48 96 16224
SPHINCS+-SHAKE-256f-simple D 64 128 49856
SPHINCS+-SHAKE-256s-simple D 64 128 29792

Table 4.5: Available PQ Algorithms for digital signatures and Specifications

51

Chapter 5

Design and Implementation

This chapter aims to provide an overview of the design choices made to integrate fTPM into OP-
TEE and introduce support for post-quantum algorithms. The architectural and technological
decisions behind the project will be analyzed, highlighting the advantages and limitations of the
adopted solutions.

5.1 Design Choices

During the implementation process of the fTPM in OP-TEE, several alternatives were considered
to ensure an optimal balance between security, efficiency, and compatibility. One of the most
important aspects was identifying the most suitable execution environment. Among the available
options, OP-TEE proved to be the most advantageous choice due to its open-source nature and
its compatibility with ARM TrustZone, allowing seamless integration with a secure execution
environment.

The use of a hardware TPM was ruled out since there was no access to a physical TPM. This
led to the selection of fTPM as an alternative solution, allowing the implementation of a software
architecture capable of emulating TPM functionalities without requiring dedicated hardware. The
approach not only ensured compatibility with modern cryptographic systems but also provided
greater flexibility in managing TPM functionalities within the OP-TEE environment. For the
fTPM source code, we opted for Microsoft’s implementation, as it is open source and compati-
ble with OP-TEE, ensuring smoother integration and a well-documented and supported codebase.

The selection of the most suitable post-quantum also required in-depth analysis. Algorithms
such as Dilithium and Kyber were considered. Still, ultimately, SPHINCS-SHAKE-256{-simple
was chosen for its robustness based on hash functions, making it independent of mathematical
problems that could be vulnerable to quantum attacks. The choice was further motivated by
the fact that, despite its large key size and slow signature generation, it provides the highest
security guarantees among post-quantum algorithms. For a detailed discussion of the criteria and
reasoning behind the algorithm selection, refer to Section 2.7, where the post-quantum algorithm
evaluation is covered comprehensively.

Additionally, the integration of the libogs library, which supports a wide range of post-quantum
algorithms, was evaluated. One of the key advantages of libogs is its modular nature, which allows
easy integration and testing of different algorithms without requiring individual implementations.
Libogs remains an interesting solution for those looking to experiment with various post-quantum
algorithms without having to develop them from scratch.

52

Design and Implementation

5.1.1 General Architecture

The fTPM implementation was developed as an early-TA (Early Trusted Application), a mode
that allows the application to be loaded and initialized during the system boot phase. This
approach ensures that TPM functionalities are immediately available, avoiding any latency in
accessing critical security services.

In OP-TEE, early TAs are not a new concept but a key mechanism for ensuring security operations
right from the system boot. For example, there are early TAs dedicated to boot authentication
and key initialization, essential for establishing a secure environment from the very start of the
device. The integrity of early TAs is ensured through the authentication of the entire firmware,
which prevents unauthorized code execution and protects the system from potential compromises.

All early TAs, including the fTPM implementation, are executed entirely within the Secure World
of OP-TEE. This design choice is fundamental for ensuring a high level of security, as it prevents
execution within the Normal World, where applications are exposed to potential threats and
exploits. Running early TAs in the Secure World guarantees that sensitive operations, such as
cryptographic key handling and authentication mechanisms, remain isolated from potentially com-
promised components of the system. This isolation mitigates attack vectors, including privilege
escalation, code injection, and memory tampering, making the entire boot and initialization pro-
cess more resilient against security threats.

The presence of fTPM from the boot phase is essential because it ensures that security-critical
services are available from the earliest stages of system execution. This prevents scenarios where
an untrusted or compromised environment could interfere with TPM operations before it is fully
initialized. By integrating fTPM as an early TA, secure storage, key management, and authen-
tication mechanisms are established before the Normal World is even operational, eliminating a
potential attack window. This also allows the enforcement of secure boot mechanisms, ensuring
that only signed and verified firmware and software components are executed, further reducing
the risk of tampering and unauthorized modifications.

Figure 5.1 illustrates the project’s framework, detailing the interaction between the secure and
non-secure components and their integration within a remote attestation context.

Secure MNormal
World World
PMTA e N
f {tpm2-toals and tpm-ss)
Extemal Verffier

Figure 5.1: Implementation Architecture

53

Design and Implementation

5.2 Technological Choices

The choice of OP-TEE as the Trusted Execution Environment was motivated by its open-source
nature and its compatibility with ARM TrustZone, ensuring security at the hardware level. Fur-
thermore, OP-TEE adheres to GlobalPlatform standards, making it a robust and widely adopted
solution for trusted applications. For classical cryptographic management, mbedTLS was used,
while fTPM was modified to be executed as an early TA, leveraging OP-TEE’s capabilities to the
fullest.

One of the most relevant aspects of the project was adapting the tpm2-tools and tpm2-tss libraries
to the new algorithm and allowing TPM command management directly from the Rich Execution
Environment (REE). This modification improved the interoperability between the virtual TPM
and the management tools available in the system, facilitating TPM use and configuration across
different environments.

The tpm2-tools and tpm2-tss libraries play a crucial role in interacting with a TPM 2.0. Tpm2-
tools provides a set of command-line tools that enable cryptographic operations, key management,
and security enhancements. Tpm2-tss, on other hand, implements the Trusted Software Stack for
TPM 2.0, facilitating TPM integration with other applications and allowing more detailed control
over low-level operations.

5.3 Project Structure

. The overall structure of the project is the following:

optee_ftpm
Hbuild

I buildroot

"] 1ibogs

-EI linux

|| ms-tpm-20-ref
| Joptee_client
L7] optee_examples
" Joptee_ftpm

|7 Joptee_os

L7 Joptee_test

] out

H out-br

7] qemu

-El toolchains

H | tpm2_tools

L] tpm2_tss
-El trusted-firmware-a

-Elu—boot

54

Design and Implementation

5.4 Ms-tpm-20-ref

Microsoft has made available ms-tpm-20-ref, an open-source reference implementation of TPM2.0
primarily intended for educational and development purposes. It was specifically chosen for this
implementation due to its compatibility with OP-TEE, enabling seamless integration with the
trusted execution environment.

5.4.1 Project Architecture and Structure

The ms-tpm-20-ref project is structured around three main components. The TPM core man-
ages internal states and TPM hierarchies, ensuring the correct execution of security operations.
The cryptographic modules support various algorithms, including RSA, ECC, AES, and SHA-256
hash functions, providing the necessary support for data protection. Finally, the simulator allows
testing the TPM’s behavior without the need for dedicated hardware, facilitating software-based
development and experimentation.

The source code is organized hierarchically to ensure clear and modular management of function-
alities. In this implementation, particular attention has been given to the TPMCmd directory,
which contains the source code for fTPM and serves as the core of cryptographic operations and
key management. The integration of new post-quantum algorithms required the introduction of
four new data structures specifically designed for managing public and private keys, along with two
structures dedicated to digital signature management. To ensure the proper integration of these
structures, Marshalling, and Unmarshalling functions were developed to serialize and deserialize
information in TPM data flows.

5.4.2 Execution in OP-TEE

In this implementation, the simulator provided by the ms-tpm-20-ref project was not used, as
the code was adapted to run directly in OP-TEE as an Early Trusted Application (early TA).
This approach allowed for realistic testing in a protected environment, ensuring a higher fidelity
to actual operational conditions.

5.4.3 Cryptographic Function Extension

To make new post-quantum algorithms directly available within the TPM, the libogs library was
integrated, significantly expanding the cryptographic capabilities available in the TPM. During
this implementation, high-level TPM functions such as TPM2 CreatePrimary, TPM2 Create,
TPM2 Sign, and TPM2 Quote were not directly modified. However, necessary cryptographic
management functions such as CryptCreateObject for object creation and CryptSign for digital
signature generation were extended to include support for the newly introduced algorithm.

5.4.4 TPM Hierarchies

TPM2.0 defines three fundamental hierarchies: Owner, Endorsement, and Platform. The Owner
hierarchy is responsible for the administrative management of the TPM, allowing for policy def-
inition and key management. The Endorsement hierarchy ensures the unique identification and
attestation of the TPM, providing a trust base for cryptographic operations. Finally, the Plat-
form hierarchy manages the control of the hardware platform and ensures the integrity of the
boot process, contributing to a secure environment from system setup. The three hierarchies are
summarized in the Table 5.1.

Internally, these hierarchies are represented by cryptographic seeds, which are initialized during
the boot phase or retrieved from the non-volatile memory of the hardware board, if available.
In this implementation, it was necessary to fix the Endorsement hierarchy seed, known as the
Endorsement Primary Seed (EPSeed), to ensure deterministic generation of an Endorsement Key

55

Design and Implementation

Hierarchy Function
Owner TPM management, policy definition and key management
Endorsement Unique TPM identification and attestation
Platform Hardware platform control and boot integrity

Table 5.1: TPM Hierarchies in TPM2.0 specification

(EK). This key must remain constant to allow the creation of a stable and reliable certificate.
However, the seed value varies from board to board, depending on the specific value injected by
the manufacturer into the hardware.

5.5 Optee fTPM

This is the directory in which f{TPM TA is contained. In this sense, the fTPM implementation
was developed as an Early Trusted Application (early TA), a mode that allows the application
to be loaded and initialized during the system boot phase. This approach ensures that TPM
functionalities are immediately available, avoiding latency in accessing critical services.

In OP-TEE, early TAs are a key mechanism for ensuring security operations right from the system
boot. For example, there are early TAs dedicated to boot authentication and key initialization,
essential for establishing a secure environment from the very start of the device. The integrity of
early TAs is ensured through firmware, which prevents unauthorized code execution and protects
the system from potential compromises.

All early TAs, including the fTPM implementation, are executed entirely within the Secure World
of OP-TEE. This design choice is fundamental for ensuring a high level of security, as it prevents
execution within the Normal World, where applications are exposed to potential threats and ex-
ploits. Running early TAs early TA in the Secure World guarantees that sensitive operations, such
as cryptographic key handling and authentication mechanisms, remain isolated from potentially
compromised components of the system. This isolation mitigates attack vectors, including privi-
lege escalation, code injection, and memory tampering, making the entire boot and initialization
process more resilient against security threats.

The adoption of an early TA for fTPM has proven advantageous in several ways. It ensures
that the TPM is operational from the very beginning, eliminating the need for late initialization,
which could expose the system to vulnerabilities.

Additionally, it provides stronger protection for critical data, as the application is launched when
the system is still in a controlled and secure state. Finally, direct integration with the firmware
allows a smoother interaction between the TPM and another system component.

5.6 Tpm2-tss and Tpm2-tools

The integration of post-quantum algorithms into an fTPM required modifications to the tpm2-tss
and tpm2-tools libraries, which are fundamental for interfacing with the TPM. These libraries
respectively provide support for the TPM2.0 software layer and a set of tools for interacting with
the hardware or software module.

5.6.1 Reasons for modifications

These modifications were primarily necessary to ensure support for post-quantum algorithms,
as the original libraries did not include definitions and functions compatible with these new
cryptographic standards. Furthermore, some internal APIs of tpm2-tss did not account for the

56

Design and Implementation

management of keys and signatures using post-quantum algorithms, necessitating a revision of
the command structure and hashing functions. Additionally, the tools in the tpm2-tools were
modified to allow the generation and importation of post-quantum keys, expanding their capabil-
ities. Finally, new test routines were introduced to verify the proper functioning of cryptographic
operations, ensuring reliability and stability within the TPM.

To enable communication between the REE and the TPM, as well as to verify the correct func-
tionality of post-quantum algorithms, these two libraries were integrated into the implementation.
These libraries provide a reliable interface between the application layer and the TPM, facilitating
the interaction with keys and commands required for managing post-quantum cryptography.

5.6.2 Technical Details

The modifications affected various areas of the tpm2-tss and tpm2-tools code.

Tpm2-tss

Specifically, regarding tpm2-tss, it was necessary to extend the source files related to key manage-
ment and digital signatures to include the post-quantum algorithm SPHINCS+. To support this
algorithm’s specifications, the TPM key formats were updated, and the hashing and signing APIs
were adapted to accept and process the new formats. Additionally, new test cases were added to
verify the correct functionality of hashing and signing operations using post-quantum algorithms.

Another significant modification involved adding new data structures within tpm2-tss, neces-
sary to support these new algorithms. Four new structures were introduced: one for the public
key, one for the private key, and two for digital signature. These structures efficiently handle
the specific parameters of SPHINCS+ within the TPM architecture, ensuring proper storage and
manipulation of the generated keys and signatures. Additionally, these four structures were in-
tegrated into existing structures, allowing SPHINCS keys to be included alongside the existing
algorithms.

Moreover, a new constant was added to identify the new algorithm. This constant was appended
to the long list of supported algorithms and serves to check whether the algorithm is recognized
and usable by the system.

Another fundamental aspect concerns the Marshalling and Unmarshalling functions in tpm2-
tss. In this case, some existing functions were modified, and new ones were added to ensure
compatibility and proper data transfer. These functions are essential for the structured conver-
sion of information between the various TPM components, ensuring that post-quantum keys and
signatures are correctly serialized and deserialized during key generation and signing operations.

The modifications made to tpm2-tss are symmetric to those implemented in the TPM, as en-
suring this symmetry is crucial. Without this alignment, the TPM would not be able to recognize
and correctly utilize the implemented algorithms, compromising interoperability and proper sys-
tem functionality.

Tpm2-tools

In the case of tpm2-tools, several commands were modified to allow the management of post-
quantum keys and signatures. Specifically, the tpm2 createprimary, tpm2_create, tpm2_sign,
tpm2 quote, tpm?2 createek and tpm2 createak commands were updated to support these new
algorithms, introducing specific options. The modifications in tpm2-tools also included the prop-
agation of the newly introduced constant, as it affects a switch case responsible for setting al-
gorithm parameters. While in this implementation the addition was only necessary for a single
post-quantum algorithm, this change lays the groundwork for future implementations where mul-
tiple algorithms with different parameters could be supported.

57

Design and Implementation

5.7 Considerations

The integration of fTPM in OP-TEE as an early TA, combined with the adoption of SPHINCS-
SHAKE-256f as a post-quantum algorithm, represents a crucial step forward in ensuring the
security and resilience of embedded systems against both classical and future quantum threats.
By leveraging OP-TEE, a trusted execution environment fully compatible with ARM TrustZone,
this implementation provides strong isolation between critical security functions and the rest of
the system, minimizing the risk of unauthorized access or tampering.

The choice of Microsoft’s fTPM as the foundation for the implementation ensured an open-source,
well-documented, and reliable base, while the adaption of tpm2-tools and tpm2-tss allowed full
compatibility with existing TPM-based security mechanisms. The evaluation of libogs further
highlighted the potential for future expansion, demonstrating the flexibility of this approach in
integrating advanced cryptographic algorithms.

A key design decision was to execute all early TAs in the Secure World, guaranteeing a strong
security posture at system boot. This ensures that all eryptographic operations, key management,
and authentication of the entire firmware further reinforce the integrity of the system, preventing
unauthorized modifications and mitigating attacks that could compromise the boot process.

While SPHINCS-SHAKE-256f was chosen for its unparalleled security guarantees, its computa-
tional cost, and large key sizes remain challenges for resource-constrained environments. However,
the trade-off between security and performance was carefully balanced, ensuring the feasibility of
this implementation in real-world applications.

58

Chapter 6

Tests and Results

This chapter will introduce the test that has been performed, detailing their setup, the measured
metrics, and their impact on the integration within the fTPM.

6.1 Introduction

The primary objective of these tests is to assess the feasibility, performance, and security of
PQ-based cryptographic operations in a constrained environment. The evaluation is conducted
through a series of functional and performance tests, ensuring compliance with expected crypto-
graphic standards and TPM specifications.

The testing process involves verifying the correct implementation of PQ algorithms, measuring
execution times, analyzing resource consumption, and assessing potential security vulnerabili-
ties. Specifically, the tests ensure the correct integration of the libogs library with OP-TEE, the
proper incorporation of fTPM into the Secure World, and the successful execution of PQ algo-
rithms within the fTPM. Additionally, comparisons with classical cryptographic implementations
are performed to evaluate the impact of PQ integration on fTPM efficiency.

For these tests, the SPHINCS-SHAKE-256f-simple algorithm was selected due to its lower cryp-
tographic requirements, making it more suitable for integration into modern TPMs, as well as its
strong security guarantees and ease of upgradability. The evaluation focuses on PQ key genera-
tion and signature generation, comparing these operations in terms of resource consumption and
execution time against RSA-2048, one of the most secure cryptographic standards in use today.

The results obtained from these tests will provide valuable insights into the readiness of PQ
cryptographic solutions for practical deployment within TPM-based security infrastructures. Fur-
thermore, they will help identify potential bottlenecks and optimization strategies for future im-
plementations.

6.2 Configuration of Test Environment

Configuring an appropriate test environment was essential to ensure reliable and reproducible re-
sults. Since no physical development board was available, QEMU was used to create a virtualized
environment that emulates an ARMv7 board. This setup allowed for the execution of OP-TEE
and an fTPM within the Secure World, simulating conditions as close as possible to those of real
hardware. The entire system was tested on Ubuntu 22.04, ensuring compatibility with all required
components.

The software stack consisted of various elements necessary for the execution of tests. OP-TEE

59

Tests and Results

served as TEE running in the ARM TrustZone, while the Linux Kernel supported OP-TEE
and TPM functionalities. The fTPM implementation was completed by tpm2-tools, a suite of
command-line utilities facilitating interaction with the TPM, and tpm2-tss, which enabled the
seamless execution of TPM commands while ensuring compatibility. To integrate post-quantum
cryptographic algorithms, libogs were included, providing the required cryptographic functional-
ities.

During the testing phase, different Trusted Applications (TAs) were deployed within the envi-
ronment. The libogs TA was developed to validate the integration of post-quantum algorithms.
A separate Benchmarking TA was implemented to measure system performance overhead.

Setting up the environment involved multiple steps. Initially, OP-TEE was compiled and de-
ployed within the QEMU virtual machine. This was followed by configuring the fTPM in the
Secure World and installing tpm2-tools and tpm2-tss on the REE to facilitate TPM command
execution. The next step involved building and integrating the libogs library within OP-TEE
secure applications to enable post-quantum cryptographic operations. Finally, custom scripts
were deployed to automate both functional and performance tests, ensuring efficient execution
and data collection.

For accurate measurements, the POSIX library was employed, providing highly precise time coun-
ters capable of measuring execution times down to the nanosecond level.

By leveraging this well-configured virtualized test environment, it was possible to conduct ex-
tensive and reliable testing without the need for physical hardware. This setup provided a robust
platform for evaluating the integration of post-quantum cryptographic algorithms in OP-TEE
and fTPM while allowing for in-depth performance analysis under controlled and repeatable con-
ditions.

6.3 Test Methodology

This section describes the testing methodologies adopted to ensure the quality and reliability of
integrating post-quantum algorithms within OP-TEE and an fTPM running in the Secure World.
The primary goal of the tests is to verify that post-quantum algorithms are correctly implemented,
providing an adequate level of security without compromising system performance.

Functional tests were conducted to ensure that post-quantum cryptographic operations were ex-
ecuted correctly, meeting the requirements of integrity, authentication, and sensitive data pro-
tection. Specifically, these tests analyzed whether these algorithms could replace or complement
traditional cryptographic solutions already present within the OP-TEE and fTPM architecture,
ensuring a stable and reliable integration.

In parallel, performance tests evaluated the impact of adopting these new algorithms on the
overall system. Since post-quantum security introduces computational overhead, it was crucial
to measure the time required for cryptographic operations such as key generation and digital sig-
natures, comparing performance with traditional algorithms like RSA-2048. Beyond this direct
comparison, the computational cost of the world switching between Normal World and Secure
World was analyzed, along with the necessary metrics to ensure efficient communication between
a Client Application (CA) and a Trusted Application (TA).

Through this structured testing approach, it was possible to identify potential integration issues,
assess performance sustainability, and optimize the system to guarantee a high level of security
with minimal impact on the device’s available resources.

60

Tests and Results

6.3.1 Functional Tests

Functional tests verify that the integration of post-quantum algorithms within OP-TEE and fTPM
is correctly executed and that the system meets the expected functional requirements.

Two main tests were conducted. The first verified that post-quantum algorithms were properly
integrated and operational within the OP-TEE environment. For this test, a Trusted Application
(TA) was created following the guidelines in the official OP-TEE documentation [78]. Within
the TA, the basic functionalities provided by the libogs library were tested, including context
generation, key generation, signature generation, and signature verification. The objective was
to confirm the correct integration of the libogs library and, consequently, the post-quantum al-
gorithms within OP-TEE. The TA can be invoked from the Rich Execution Environment (REE)

using the command optee ezample libogs.

The second test analyzed the addition of post-quantum algorithms to fTPM to ensure they could
be utilized in the Secure World. For this phase, shell scripts were developed to test the correct
execution of tpm2-tools commands thrown from REE, which were then executed within the fTPM
in the Secure World. These scripts simulated various operational scenarios, including generating
an endorsement key, an attestation key, a digital signature, and a quote. The goal was to verify
the ability to invoke post-quantum algorithms directly from the REE, ensuring that the system
could leverage the new cryptographic functionalities even outside the Secure World.

6.3.2 Performance Tests

Performance tests measured the impact of integrating post-quantum algorithms on the perfor-
mance of OP-TEE and fTPM, analyzing resource consumption and execution times.

In the first performance test, scripts were developed to test the execution of tpm2-tools commands
and measure the execution time of each operation. To ensure more accurate results, each command
was executed 100 times for both algorithms, collecting all execution times to calculate the mean,
standard deviation, and relative error. The tested commands included ¢tpm2 createprimary, for
generating a primary object such as endorsement key, tpm2 create, for creating a child object
such as an attestation key, {pm2 sign, for digitally signing an object, and tpm?2 quote, for gen-
erating a quote. The objective of this test was to analyze the performance differences between
the operations performed with the sphincs-shake-256f-simple algorithm and the same operations
performed with RSA-2048. This evaluation provides insights into how these algorithms perform
under different conditions, highlighting differences in computational requirements and execution
time.

In the second performance test, another TA was created, callable from a CA via the optee example
__benchmark command. This TA is empty and serves solely to measure the overhead introduced
when launching a TA from the REE. The necessary steps for the launch of the TA and the estab-
lishment of the connection between the CA and the TA were analyzed and shown in Figure 6.1.
On the CA side, the time required to create the context, open the session, switch worlds, and close
the context and session was measured. To obtain more precise measurements, each command was
executed 100 times, collecting data to calculate the average time, standard deviation, and relative
erTor.

6.4 Results

This section presents the results of the performance tests. As stated before, the testing process
was designed to analyze two key aspects: the computational performance of key and signature
generation for both cryptographic schemes and the additional overhead introduced by OP-TEE
when interacting with the Client Application (CA). This evaluation is particularly relevant for
understanding the cost of the world switch operation, which is a critical factor in ARM-based

61

Tests and Results

Normal World Secure World
i N é L ~
Open context and session _wm_ﬂuv\ TA Call
Y, i \ + ,
' s ~
' TA Execution
L v,

Close context and session TA Finish Execution

Figure 6.1: Example of execution of a CA

systems.

The results obtained from these tests contribute to assessing the feasibility of using SPHINCS and
RSA in security-critical applications, considering both performance and operational constraints.
The following sections detail the findings of each test category and provide a comparative analysis
of their impact on system performance.

6.4.1 Key and Signature Generation Performance Analysis

To better analyze the differences in performance between SPHINCS and RSA, the test was con-
ducted by simulating a digital signature operation, measuring the computational cost of each step.
This approach allowed for an in-depth analysis of the most time-consuming operations in both

algorithms, highlighting their respective bottlenecks. Figure 6.2 further illustrates these differ-

RSA Signature Generation Time SPHINCS Signature Generation Time

Figure 6.2: Comparison between RSA and SPHINCS signing operations

ences. Even though the total execution times of the two algorithms are vastly different, analyzing
the individual operations reveals critical insights. In RSA, the most computationally expensive
operation is key generation, which accounts for 96.9% of the total process. This is due to the
complexity of generating large prime numbers and verifying their ecryptographic strength, which
requires extensive probabilistic tests. In contrast, in SPHINCS, the signing process dominates the

62

Tests and Results

execution time, contributing to 85.6% of the entire procedure. This is primarily due to the inten-
sive hash function computations required to produce a SPHINCS signature, which significantly
increases the computational cost.

Examinating the numerical results, SPHINCS demonstrated a significant advantage in the gener-
ation, completing the creation of an Endorsement Key (EK) in 8.30 seconds and an Attestation
Key (AK) in 8.31 seconds, both with a 1% relative error. On the other hand, RSA exhibited
considerably higher key generation times, with the EK taking 33.84 seconds and the AK requiring
32.55 seconds.

The signature generation results reveal a stark contrast. SPHINCS required 97.10 seconds to
generate a signature, whereas RSA completed the same task in just 2.15 seconds, achieving a
98% efliciency gain. The reason for this drastic difference lies in the fundamental design of the
two algorithms. SPHINCS, being a post-quantum cryptography scheme, relies on a hash-based
approach, necessitating multiple layers of hash function evaluations to construct a secure signa-
ture. This significantly inflates computational requirements, making SPHINCS impractical for
real-time applications. Conversely, RSA employs modular exponentiation, which, despite its com-
putational cost, is highly optimized in modern processors, allowing it to generate signatures at a
significantly faster rate. All numerical values are summarized in Table 6.1. These findings high-

Feature SPHINCS-SHAKE-256f-simple | RSA-2048
EK Generation 8.30s 33.84s
AK Generation 831s 32.55s
Digital Signature 97.10 s 2.15s
Total 113.71 s 69.54 s

Table 6.1: Comparison cryptographic operations between SPHINCS-SHAKE-256f-simple and
RSA-2048

light the trade-offs between security and efficiency. SPHINCS offers superior resilience against
quantum attacks, making it a robust choice for future cryptographic needs, but at the cost of
significantly higher signature generation times. RSA, while must faster, remains vulnerable to
quantum threats and may eventually be replaced by post-quantum alternatives. The observed
performed trends indicate that, for applications prioritizing fat cryptographic operations, RSA
remains the preferable choice, while SPHINCS should be reserved for scenarios where quantum
security is a primary concern.

6.4.2 OP-TEE Overhead

The second test was conducted independently to analyze the performance impact of invoking a
Trusted Application (TA) from a Client Application (CA) within OP-TEE. Unlike the crypto-
graphic performance evaluation, this test specifically aimed to measure the computational over-
head introduced by OP-TEE when performing a world switch operation, a fundamental aspect of
ARM-based architectures.

The evaluation considered multiple factors contributing to the overall overhead. The creation
of the execution context was measured at 542 microseconds, followed by session opening, which
took 365 milliseconds, making it the most time-consuming operation in this process. The world
switch itself, which represents the transition between the Normal World and the Secure World,
had an overhead of 827 microseconds. Once the operation was completed, closing the session
required 3.31 milliseconds, while the final step of closing execution context was measured at 82.7
microseconds. All measured data related to OP-TEE invocation overhead have been presented in
tabular format in Table 6.2 to facilitate analysis.

From the measured execution time of the world switch, the number of CPU cycles required for the

63

Tests and Results

operation was calculated. To estimate this, the BogoMIPS variable was introduced. BogoMIPS is
an approximated system-calculated value that represents the frequency of the processor, providing
a rough estimation of the number of million instructions per second that the CPU can execute.
By leveraging this value, it was possible to compute the number of cycles required for the world
switch operation, offering insight into the actual processing cost.

The calculation resulted in 51679 CPU cycles for the world switch operation. Comparing this
result to state-of-the-art expected values, which range between 50000 and 90000 cycles, confirms
that OP-TEE’s performance aligns with theoretical expectations. However, while the results fall
within the expected range, OP-TEE remains significantly less efficient than its Intel SGX counter-
part, where the same operation requires seven times fewer cycles. This efficiency gap underscores
the architectural differences between ARM-based and x86-based trusted execution environments
and highlights the necessity of further optimizations in OP-TEE’s secure execution transitions.

Feature Execution Time
Open Context 542 us
Open Session 365 ms
World Switch 827 us
Close Session 3.31 ms
Close Context 82.7 us

Table 6.2: Analysis overhead in OP-TEE

6.5 Comparison and Final Observations

The results of this study confirm that RSA offers significantly better performance in key and sig-
nature generation, making it less practical for applications requiring high-speed operations. RSA,
on the other hand, benefits from well-established optimizations that allow for faster execution,
making it more suitable for real-time or resource-constrained environments.

The second test on OP-TEE overhead revealed that the world switch operation plays a cru-
cial role in secure application performance. While OP-TEE’s switching performance aligns with
expected values, its efficiency is still limited when compared to Intel SGX, which can complete
the same transition in seven times fewer CPU cycles. The high overhead associated with ses-
sion initialization and world switching indicates the need for optimizations in OP-TEE’s secure
execution framework, particularly in ARM-based architectures where frequent secure/non-secure
transitions can introduce significant delays.

From a broader perspective, these findings suggest that the choice between SPHINCS and RSA
should be driven by the balance between security and performance. SPHINCS is essential for
future-proof cryptographic security, especially in a post-quantum era, but its computational de-
mands must be carefully considered. RSA, while faster and more efficient, remains vulnerable
to future quantum computing threats and may eventually be phased out in favor of quantum-
resistant solutions.

For real-time applications, SPHINCS is not an optimal solution due to its high signing costs.
However, it remains the most secure option against quantum computing threats. A possible alter-
native for real-time applications is Kyber-Dilithium, which provides a trade-off between security
and performance, offering a viable middle ground for systems requiring both speed and future-
proof cryptographic strength.

For OP-TEE, reducing world switch latency and session overhead would be beneficial for im-
proving system efficiency, particularly in embedded and real-time systems where performance

64

Tests and Results

constraints are critical. Future work should focus on further optimizing the secure world tran-

sition mechanisms, exploring hardware acceleration strategies, and refining session handling to
minimize computational delays.

Overall, these results provide valuable insights into the trade-offs between cryptographic per-

formance and secure execution overhead, highlighting areas for future research and development
in both cryptographic algorithms and trusted execution environments.

65

Chapter 7

Conclusions

This thesis explored the integration of post-quantum algorithms within a Trusted Platform Module
(TPM), addressing the challenges related to security, efficiency, and compatibility with embed-
ded environments. In particular, the work focused on implementing a firmware TPM (fTPM) in
OP-TEE, a Trusted Execution Environment compatible with ARM Trust Zone, and introducing
cryptographic algorithms resistant to quantum attacks.

One of the central aspects that emerged concerns the choice of OP-TEE as the execution plat-
form for fTPM. This decision ensured seamless integration with a secure execution environment,
leveraging its compatibility with ARM TrustZone and adherence to GlobalPlatform standards.
Furthermore, implementing fTPM as an Early Trusted Application (early-TA) strengthened secu-
rity by ensuring that critical services were available from the earliest system boot stages, reducing
potential attack vectors.

Several candidates were evaluated regarding the choice of post-quantum algorithms, including
Dilithium and Kyber. However, SPHINCS-SHAKE-256f-simple was selected primarily due to
its strong security guarantees, prioritizing security over performance. Its robustness, based on
hash functions, eliminates dependencies on mathematical problems that could be vulnerable to
quantum attacks. Although it has some limitations in terms of key size and signature generation
speed, its high security makes it a reliable option for TPM integration.

The implementation also involved adapting the tpm2-tools and tpm2-tss libraries to ensure com-
patibility with the new algorithms. These modifications improved interoperability between the
virtual TPM and available management tools, facilitating usage and configuration across different
environments.

The conducted tests aimed to assess the feasibility, performance, and security of post-quantum
cryptographic operations in a resource-constrained environment. Functional and performance
tests were carried out to ensure proper integration of the algorithms, measuring execution times
and resource consumption. In particular, the integration of the libogs library with OP-TEE and
the inclusion of fTPM in the Secure World were successfully verified.

The results showed that SPHINCS-SHAKE-256f-simple offers advantages in terms of security
but has significant performance limitations. Key generation proved to be more efficient than
RSA-2048, while signature generation required significantly more time. This difference is not due
to the cost of hash functions per se, but rather to the need to reconstruct the entire Merkle Tree
during the signing process and the large size of the resulting signature, both of which contribute
substantially to the computational overhead.

The comparative analysis with RSA-2048 highlighted a trade-off between security and perfor-
mance: while SPHINCS protects against quantum attacks, its high latency makes it difficult to
use in real-time applications. The analysis of world-switching metrics between the Normal World
and the Secure World also enabled the evaluation of the efficiency of communication between

66

Conclusions

management applications and the virtualized TPM.

Despite the obtained results, the research presents some limitations. The absence of a hardware
TPM necessitated the exclusive use of a software implementation, which may not fully reflect
the challenges associated with adopting post-quantum algorithms on real devices. Additionally,
the performance of SPHINCS-SHAKE-256f-simple, particularly its signature generation times,
represents a constraint to consider in real-time applications. For this reason, in scenarios where
performance is a critical factor, it may be preferable to evaluate the use of algorithms such as
Dilithium, which offers a better balance between security and execution speed.

In the future, further research could focus on optimizing the performance of post-quantum al-
gorithms in TPMs and integrating them with hardware TPMs when available. Evaluating op-
timization strategies to reduce signature generation times could make post-quantum algorithms
more feasible for scenarios with stringent time constraints. Another future step could be inte-
grating additional post-quantum algorithms, expanding the available choices, and allowing the
selection of the most suitable solution based on security and performance requirements.

This thesis aims to provide an initial solution to the quantum threat, which is expected to be-
come a reality within less than a decade. The work conducted represents a first step toward
the transition to secure systems against quantum attacks, offering a significant contribution to
research and future developments in cybersecurity. Additionally, this research demonstrated that
it is possible to integrate post-quantum algorithms within modern specifications while maintain-
ing compatibility with current standards, ensuring a gradual transition to the post-quantum era
without compromising existing infrastructures.

Overall, this work demonstrates how a well-structured, modular, and secure TPM implementa-
tion in OP-TEE can provide a robust foundation for future embedded systems. As cryptographic
standards continue to evolve, the flexibility of this approach will allow for future improvements,
ensuring long-term security and adaptability. Future work may focus on optimizing performance,
integrating additional post-quantum algorithms, and further enhancing hardware acceleration ca-
pabilities to meet the demands of next-generation secure computing environments.

In conclusion, this thesis contributed to demonstrating the feasibility of integrating post-quantum
algorithms into TPMs, providing a foundation for the transition to systems resistant to quantum
attacks. The identified challenges and proposed solutions offer valuable insights for future devel-
opments and strengthening security in embedded devices.

67

Appendix A

User Manual

This user manual provides a practical guide for interacting with a firmware-based Trusted Plat-

form Module (fTPM) within OP-TEE Trusted Execution Environment.

This manual assumes all configuration and build steps described in Appendix B have been com-
pleted. The procedures described here refer to the implementation developed as part of this thesis
project, which integrates an fTPM Trusted Application into the OP-TEE framework.

A.1 Requirements

e OP-TEE (GitHub OP-TEE)
e Libogs (GitHub Libogs)
e Linux OS

A.2 Build Steps

A.2.1 Install Dependencies

Install dependencies on Ubuntu:

$ sudo apt install device-tree-compiler bison flex libssl-dev g++
libgmp-dev libmpc-dev ninja-build pkg-config libglib2.0-dev
libpixman-1-dev meson cmake gcc python3-pytest python3-pytest-xdist
unzip xsltproc doxygen graphviz python3-yaml valgrind

A.2.2 Build Project

Once all dependencies are installed, compile the project using the following command:

cd build
make run MEASURED_BOOT_FTPM=y

This command must be executed from the build directory, where all build targets are defined.
The MEASURED_BOOT_FTPM option enables the integration of the fTPM during the build process
and ensures its initialization after boot.

During the first compilation, the process may take a significant amount of time, in some cases up
to an hour.

68

https://github.com/OP-TEE
https://github.com/open-quantum-safe/liboqs

User Manual

A.3 fTPM Use

After executing the command, QEMU will launch along with two UART consoles: one for the
Secure World and one for the Normal World. The main QEMU console will pause, waiting for
user input. To proceed with the system boot, enter the following command:

Cc

Instead, to close the program, enter:

q

Additional options are available; to explore them, simply enter the help command in the QEMU
console. This will display a list of all available QEMU commands.

After that, log in by entering either root or test as a password. At this point, the setup is
complete. A short wait is required for the system to load the fTPM into the kernel. Once the
process is completed, a confirmation message will appear on the screen:

I Normal World

ettore@MyUbuntu: ~/... Normal world Secure World

9pnet: Installing 9P2000 support
Registering SWP/SWPB emulation handler
Key type trusted registered
Key type encrypted registered
clk: Disabling unused clocks
ALSA device list:
No soundcards found.
Freeing unused kernel image (initmem) memory: 1824K
Run finit as init process
Saving 256 bits of non-creditable seed for next boot
Starting syslogd: OK
Starting klogd: OK
Running sysctl: OK
Set permissions on /dev/tee*: OK
Create/set permissions on fvar/lib/tee: OK
Starting tee-supplicant: Using device /dev/teeprive.
0K
Starting network: OK
Starting network (udhcpc): 0K

Welcome to Buildroot, type root or test to login
buildroot login: root
random: crng init done

A.3.1 Example of commands

This subsection illustrates an example of a tpm2-tools command using the newly integrated algo-
rithm, and how the system handles and displays the response.
To create a SPHINCS Endorsement Key, the tpm2 createek command can be executed as follows:

tpm2_createek -G sphincs -u ek.pub -c 0x81010001
It creates a SPHINCS Endorsement Key and makes it persistent in the TPM. All other commands

follow the syntax defined in the official tpm2-tools documentation [79]. In Figure A.1, there is a
demonstration of the command shown above.

69

User Manual

M~ Normal World

ettore@MyUbuntu: ~/... Normal World

clk: Disabling unused clocks
ALSA device list:
No soundcards found.
Freeing unused kernel image (initmem) memory: 1024K
Run /init as init process
Saving 256 bits of non-creditable seed for next boot
Starting syslogd: OK
Starting klogd: OK
Running sysctl: OK

Set permissions on /dev/tee*: OK
Create/set permissions on fvar/lib/tee:

Starting tee-supplicant: Using device fdev/teeprive.
0K

Starting network: OK

Starting network (udhcpc): OK

(0].4

Welcome to Buildroot, type root or test to login
buildroot login: root

random: crng init done

tpm2_createek -G sphincs -u ek.pub -c 0x81010001
DEBUG: Algoritmo: @x45

DEBUG: Mame Alg: @xB

DEBUG: Object Attributes: 8x388B2

#

Secure World

Figure A.1: Example of a TPM command

70

Appendix B

Developer Manual

This developer manual describes the implementation of a firmware TPM (fTPM) running in the
Secure World of OP-TEE. This manual is intended for developers who wish to understand the
changes made to the system, as well as those who want to replicate or further modify the project.

B.1 Requirements

e OP-TEE (GitHub OP-TEE)
e Libogs (GitHub Libogs)

e Linux OS

B.2 Installation

B.2.1 Install Dependencies

Install dependencies on Ubuntu:

$ sudo apt install device-tree-compiler bison flex libssl-dev g++
libgmp-dev libmpc-dev ninja-build pkg-config libglib2.0-dev
libpixman-1-dev meson cmake gcc python3-pytest python3-pytest-xdist
unzip xsltproc doxygen graphviz python3-yaml valgrind

B.2.2 Cloning of repositories

For the first step, you have to download and install the OP-TEE project

$ mkdir optee

$ cd optee

$ repo init -u https://github.com/0P-TEE/manifest.git
$ repo sync

Then you have to download the libogs project

$ cd optee
$ git clone -b main https://github.com/open-quantum-safe/libogs.git

71

https://github.com/OP-TEE
https://github.com/open-quantum-safe/liboqs

Developer Manual

B.3 Project Configuration

B.3.1 Build

The build directory contains all the mk files needed to build the entire project. There are different
kinds of files, but the one that needs to be implemented is the gemu.mk file. It was added a few
lines of code to build also the libogs project. Now we have to set two new targets inside the
gemu.mk file:

L L g g L g L L g L g L i e i a
LIBOQS
L L g g L g L L g L g L i e i a
ogs:
if [! -d $(LIBOQS_PATH)/build]; then \
mkdir -p $(LIBOQS_PATH)/build; \
cmake -S $(LIBOQS_PATH) -B $(LIBOQS_PATH)/build
-DCMAKE_TOOLCHAIN_FILE=$(LIBOQS_PATH)/toolchain-arm.cmake \
-DCMAKE_C_COMPILER=$ (AARCH32_CROSS_COMPILE)
-DOQS_PERMIT_UNSUPPORTED_ARCHITECTURE=ON \
-DOQS_ENABLE_KEM_CLASSIC_MCELIECE:BOOL=0FF
-DOQS_USE_OPENSSL=0FF -DOQS_BUILD_ONLY_LIB=0N; \
fi
$(MAKE) -C $(LIBOQS_PATH) \
TA_DEV_KIT_DIR=$ (OPTEE_OS_PATH)/out/arm/export-ta_arm32 \
CROSS_COMPILE=$ (AARCH32_CROSS_COMPILE) \
--no-builtin-variables
$(MAKE) -C $(LIBOQS_PATH) install \
TA_DEV_KIT_DIR=$ (OPTEE_OS_PATH)/out/arm/export-ta_arm32

ogs-clean:
$ (MAKE) -C $(LIBOQS_PATH) clean \
TA_DEV_KIT_DIR=$ (OPTEE_OS_PATH)/out/arm/export-ta_arm32
$ (MAKE) -C $(LIBOQS_PATH) uninstall \
TA_DEV_KIT_DIR=$ (OPTEE_OS_PATH)/out/arm/export-ta_arm32

In this context, special attention should be given to the flags -DOQS_PERMIT_UNSUPPORTED_ARCHITECTURE
and -DOQS_USE_OPENSSL. The former is necessary when building the project on architectures other

than ARM, while the latter is required because OP-TEE does not provide OpenSSL, making it
necessary to disable OpenSSL in the compilation of libogs. In this project, OpenSSL is not used;
instead, cryptographic primitives from libogs or standard library functions like getrandom are
utilized. Additionally, the -DOQS_BUILD_ONLY_LIB flag is included solely to accelerate the build
process.

They are needed to enable the build of the libogs project inside the OP-TEE project. Then they

must be added in the make target:

all: ogs arm-tf u-boot buildroot linux optee-os gemu

clean: ogs-clean arm-tf-clean u-boot-clean buildroot-clean linux-clean
optee-os-clean \
gemu-clean check-clean

B.3.2 Libogs

This directory contains all the source code needed to implement PQC algorithms. The libogs
source code is taken from [80]. The structure of the libogs project is the following.

72

Developer Manual

libogs
Hbuild
-El docs

] src

- tests
H.0 zephyr
U™ Makefile

—E toolchain-arm.cmake

Figure B.1: Directory tree of libogs project

In the libogs directory must be added two files: toolchain-arm-cmake e Makefile. These two files
are added to automatize the build procedure. In particular, in the Makefile are defined the make
and make install commands able to start the building procedure. In the toolchain-arm.cmake are
defined all the flags needed to configure the project. Next, it will be discussed the content of these
two files. In Makefile:

ROOT 7= $(CURDIR)
LIBOQS_ROOT 7= $(ROOT)/build

.PHONY: all
all: build

.PHONY: build

build:
$(MAKE) -C $(LIBOQS_ROOT) \
PLATFORM=$ (PLATFORM) \
CROSS_COMPILE=$(CROSS_COMPILE) \
TA_DEV_KIT_DIR=$(TA_DEV_KIT_DIR)

.PHONY: install
install:
mkdir -p $(TA_DEV_KIT_DIR)/1lib
cp $(LIBOQS_ROOT)/1ib/libogs.a $(TA_DEV_KIT_DIR)/1lib/. && \
mkdir -p $(TA_DEV_KIT_DIR)/include/ogs && \
cp $(LIBOQS_ROOT)/include/oqgs/* $(TA_DEV_KIT_DIR)/include/oqgs/.

.PHONY: clean
clean:
rm -rf build

.PHONY: uninstall

uninstall:
rm -r $(TA_DEV_KIT_DIR)/include/ogs; \
rm $(TA_DEV_KIT_DIR)/1lib/libogs.a;

The build directive builds the ogs project and generates the library named libogs.a. It is a static
library needed to add all the post-quantum functions inside it. It is possible also to build the
project to create the shared library, but it is not needed for this implementation. Then, the install
directive is run to transfer the static library inside the OP-TEE project. The last two directives
are needed only to clean the project. The other important file is the toolchain-arm.make, in which
are defined all the flags needed to build libogs.

In toolchain-arm.cmake:

73

Developer Manual

toolchain-arm.cmake
SET (CMAKE_SYSTEM_NAME Linux)
SET (CMAKE_SYSTEM_PROCESSOR arm)

SET (CMAKE_C_COMPILER arm-linux-gnueabihf-gcc)
SET (CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++)
SET (CMAKE_AR arm-linux-gnueabihf-ar)

SET (CMAKE_LINKER arm-linux-gnueabihf-1d)

SET (CMAKE_C_FLAGS "-march=armv7-a,,-mfpu=neon,,-02,,-fPIC")
SET (CMAKE_CXX_FLAGS "-march=armv7-a,,-mfpu=neon,,-02 ,-fPIC")
SET (CMAKE_EXE_LINKER_FLAGS "-march=armv7-a,,-mfpu=neon,-02 ,-fPIC")

It sets the architecture for which it is built and the processor. It is important because, inside the
Open Quantum Project, some optimizations depend on the architecture and the operating system
of the device.

B.3.3 Optee os

Now you have to link the libogs library with optee os and all the TAs inside OP-TEE. This can be
done inserting two lines in optee o0s/ta/mk/build-user-ta.mk and optee os/ta/mk/ta_dev kit.mk.
In build-user-ta.mk:

libnames = utils utee ogs

In ta dev kit.mk:

libnames += ogs
libdeps += $(ta-dev-kit-dir$(sm))/1ib/libogs.a

These lines enable the integration of the static libogs library within OP-TEE. In this implementa-
tion, libogs has been incorporated separately into both OP-TEE and fTPM to ensure that f{TPM
functions can execute independently of libogs. This approach allows libogs functions to be utilized
by all Trusted Applications (TAs) within OP-TEE. Additionally, the static library and its corre-
sponding headers must be located in specific directories: optee_os/out/arm/export-ta_arm32/1ib
for the library optee_os/out/arm/export-ta_arm32/include for the headers.

Furthermore, it is necessary to implement certain functions that are not provided by OP-TEE
but are required for the integration of libogs. In this particular implementation, the functions
forintf chk, memcpy chk, explicit bzero chk, and assert fail were added, although the required
functions may vary depending on the target board. These implementations have been placed
within the libutils library directory, and the corresponding sub.mk file has been updated accord-

ingly.

B.3.4 Ms-tpm-20-ref

In this directory is contained all the source code needed to implement the fTPM. In order to add
new algorithms, first of all it must be registered among the algorithms managed by the TPM.
This requires adding two new constants: one to define the algorithm’s identifier and another to
allow the TPM to recognize and accept it. The first constant is added to TpmTypes.h, while the
second is included in the TpmProfile.h file.

/* New Value that identifies the new algorithm */
#define ALG_SPHINCS_SHAKE_256F_VALUE 0x0045
#define TPM_ALG_SPHINCS_SHAKE_256F

(TPM_ALG_ID) (ALG_SPHINCS_SHAKE_ 256F_VALUE)

/* Abilitate the TPM to accept the new algorithm */

74

Developer Manual

#ifndef ALG_LIBOQS
#define ALG_LIBOQS ALG_YES
#endif

Additionally, it is necessary to introduce new structures required for managing the new algorithm.
This was achieved by adding the following lines to the TpmTypes.h file:

typedef union {
struct {
UINT16 size;
BYTE buffer[ALG_SPHINCS_PUBLIC_KEY_BYTES];
} ot
TPM2B b;
} TPM2B_PUBLIC_KEY_SPHINCS

typedef union {
struct {
UINT16 size;
BYTE buffer[ALG_SPHINCS_PRIVATE_KEY_BYTES];
} ot
TPM2B b;
} TPM2B_PRIVATE_KEY_SPHINCS;

typedef union {
struct {
UINT16 size;
BYTE *buffer;
} ot
TPM2B b;
} TPM2B_SIGNATURE_SPHINCS;

typedef struct {
TPMI_ALG_HASH hash;
TPM2B_SIGNATURE_SPHINCS sig;
} TPMS_SIGNATURE_SPHINCS;

These structures follow a common design: a size field specifies the length of the key or signature,
while a buffer stores the actual key or signature. The key difference to highlight is between the
signature structure and two key structures. In the case of the signature, the buffer is not statically
allocated because the size of SPHINCS-SHAKE-256f-simple is too large to fit into the stack.
Instead, the solution relies on heap memory and dynamic allocation to store the signature, as the
heap is generally larger than the stack. However, this approach introduces the typical challenges
associated with dynamic memory management in C, requiring careful handling to ensure memory
is properly released when no longer needed.

Next, these structures must be integrated into the existing ones responsible for handling public
keys, private keys, and digital signatures to support the new algorithm:

typedef union {

#if ALG_KEYEDHASH
TPM2B_DIGEST keyedHash;

#endif // ALG_KEYEDHASH

#if ALG_SYMCIPHER
TPM2B_DIGEST sym;

#endif // ALG_SYMCIPHER

#if ALG_RSA
TPM2B_PUBLIC_KEY_RSA rsa;

#endif // ALG_RSA

#if ALG_ECC

75

Developer Manual

TPMS_ECC_POINT ecc;
#endif // ALG_ECC
#if ALG_LIBOQS
TPM2B_PUBLIC_KEY_SPHINCS sphincs;
#endif // ALG_LIBOQS
TPMS_DERIVE derive;
} TPMU_PUBLIC_ID;

typedef union {

#if ALG_RSA
TPM2B_PRIVATE_KEY_RSA rsa;

#endif // ALG_RSA

#if ALG_ECC
TPM2B_ECC_PARAMETER ecc;

#endif // ALG_ECC

#if ALG_KEYEDHASH
TPM2B_SENSITIVE_DATA bits;

#endif // ALG_KEYEDHASH

#if ALG_SYMCIPHER
TPM2B_SYM_KEY sym;

#endif // ALG_SYMCIPHER

#if ALG_LIBOQS
TPM2B_PRIVATE_KEY_SPHINCS sphincs;

#endif // ALG_LIBOQS
TPM2B_PRIVATE_VENDOR_SPECIFIC any;

} TPMU_SENSITIVE_COMPOSITE;

typedef union {
#if ALG_ECC
TPMS_SIGNATURE_ECDAA ecdaa;
#endif // ALG_ECC
#if ALG_RSA
TPMS_SIGNATURE_RSASSA rsassa;
#endif // ALG_RSA
#if ALG_RSA
TPMS_SIGNATURE_RSAPSS rsapss;
#endif // ALG_RSA
#if ALG_ECC
TPMS_SIGNATURE_ECDSA ecdsa;
#endif // ALG_ECC
#if ALG_ECC
TPMS_SIGNATURE_SMZ2 sm2;
#endif // ALG_ECC
#if ALG_ECC
TPMS_SIGNATURE_ECSCHNORR ecschnorr;
#endif // ALG_ECC
#if ALG_HMAC
TPMT_HA hmac;
#endif // ALG_HMAC
#if ALG_LIBOQS
TPMS_SIGNATURE_SPHINCS sphincs;
#endif
TPMS_SCHEME_HASH any;
} TPMU_SIGNATURE;

A new folder named libogs has been added to the implementation, containing all the necessary
source files from the libogs library for key generation and SPHINCS signature operations. This
approach allows direct integration of the required functions within fTPM, avoiding reliance on an

76

Developer Manual

external library while ensuring that modifications affect only fTPM and not the entire OP-TEE
system.

This directory is located in TPMCmd/tpm/src/crypt to maintain consistency by keeping all cryptographic-
related files in the same location.

To support SPHINCS-SHAKE-256f-simple, a new file named CryptLibogs.c has been added to

the ms-tpm-20-ref source code. This file utilizes the newly integrated libogs functions to han-

dle key generation, signature creation, and signing operations within the TPM. Additionally, a
corresponding header file has been included to properly structure and expose the required func-
tionalities within the implementation.

#include "Tpm.h"
#include "CryptLibogs.h"
#include "nistapi.h"

#define OQS_SIG_sphincs_shake_256f_simple_length_public_key 64
#define OQS_SIG_sphincs_shake_256f_simple_length_secret_key 128
#define OQS_SIG_sphincs_shake_256f_simple_length_signature 49856

TPM_RC CryptSphincsGenerateKeyPair (
TPMT_PUBLIC *publicArea,
TPMT_SENSITIVE *sensitive,
RAND_STATE #*rand){

uint8_t
publicKey [0QS_SIG_sphincs_shake_256f_simple_length_public_key];
uint8_t
privateKey [0QS_SIG_sphincs_shake_256f_simple_length_secret_key];

if (crypto_sign_keypair(publicKey, privateKey) != DQS_SUCCESS)

return TPM_RC_FAILURE;
}

publicArea->unique.sphincs.t.size =
0QS_SIG_sphincs_shake_256s_simple_length_public_key;

memcpy (publicArea->unique.sphincs.t.buffer, publicKey,
0QS_SIG_sphincs_shake_256s_simple_length_public_key);

sensitive->sensitive.sphincs.t.size =
0QS_SIG_sphincs_shake_256s_simple_length_secret_key;

memcpy (sensitive->sensitive.sphincs.t.buffer, privateKey,
0QS_SIG_sphincs_shake_256s_simple_length_secret_key);

return TPM_RC_SUCCESS;
}

TPM_RC CryptSphincsSign(TPMT_SIGNATURE* sigOut,
OBJECT* key,
TPM2B_DIGEST* digest,
RAND_STATE* rand
M

TPM_RC retVal = TPM_RC_SUCCESS;
UINT16 modSize;

77

Developer Manual

pAssert(sigOut != NULL &% key != NULL && digest !=
NULL) ;

/* Dynamically allocate the signature buffer */
siglut->signature.sphincs.sig.t.buffer =
malloc(0QS_SIG_sphincs_shake_256f_simple_length_signature);

modSize = key->publicArea.unique.sphincs.t.size;
if (retVal == TPM_RC_SUCCESS){

if (crypto_sign_signature(
sigOut->signature.sphincs.sig.t.buffer/*
Signature buffer */,
&sigOut->signature.sphincs.sig.t.size /*
Signature size */,
digest->b.buffer /* Signing message */,
digest->b.size /* Message size */,
key->sensitive.sensitive.sphincs.t.buffer
/* secret key#*/) != DQS_SUCCESS)
return TPM_RC_FAILURE;
free(sigOut->signature.sphincs.sig.t.buffer);

return TPM_RC_FAILURE;
H

These two new functions are added to handle the generation of the SPHINCS+ key or SPHINCS+
signature respectively. These new functions use the libogs primitives to create a key or sign a mes-
sage. Then, this functions are inserted into existing TPM functions, to extend their functionalities
and to include the new algorithm. These functions are inserted in this way:

#if ALG_LIBOQS
// Create SPHINCS+ key
case TPM_ALG_SPHINCS_SHAKE_256F:
result = CryptSphincsGenerateKeyPair(publicArea, sensitive, rand);
break;
#endif // ALG_LIBOQS

This line is inserted inside CryptCreateObject function. It is added in a switch case in order to
generate a SPHINCS keypair. If the field type of publicArea is the new algorithm, the TPM runs
the CryptShincsGenerateKeyPair that generates the new SPHINCS+ keypair and stores them
into the appropriate structures.

#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
result = CryptSphincsSign(signature, signKey, digest, NULL);
break;
#endif //ALG_LIBOQS

This line is added inside CryptSign function in CryptUtil.c file. It only provides the possibility
to sign with SPHINCS. In this case, because of the signature length, the signature is not stored
inside the TPM otherwise running out of space inside the TPM and would be a real problem.
Additionally, in order to be able to move data from one world to another, it is essential to tell how
the data should be serialized or deserialized. This is the scope of Marshalling and Unmarshalling
functions, which have been extended to include new added structures. This is done within the
fTPM support folder, specifically within the Marshal.c file. The following lines of code have been
added to it:

78

Developer Manual

#if ALG_LIBOQS
TPM_RC
TPM2B_PUBLIC_KEY_SPHINCS_Unmarshal (TPM2B_PUBLIC_KEY_SPHINCS *target, BYTE
*xxpuffer, INT32 *size)
{
TPM_RC result;
result = UINT16_Unmarshal ((UINT16 *)&(target->t.size), buffer, size);
if (result == TPM_RC_SUCCESS)
{
if ((target->t.size) > 64)
result = TPM_RC_SIZE;
else
result = BYTE_Array_Unmarshal ((BYTE *) (target->t.buffer), buffer,
size, (INT32) (target->t.size));
}
return result;

}

UINT16
TPM2B_PUBLIC_KEY_SPHINCS_Marshal (TPM2B_PUBLIC_KEY_SPHINCS *source, BYTE
*xxpuffer, INT32 *size)

{
UINT16 result = 0;
result = (UINT16) (result + UINT16_Marshal ((UINT16 *)&(source->t.size),
buffer, size));
// if size equal to 0, the rest of the structure is a zero buffer. Stop
processing
if (source->t.size == 0)
return result;
result = (UINT16) (result + BYTE_Array_Marshal ((BYTE *) (source->t.buffer),
buffer, size, (INT32) (source->t.size)));
return result;
H

#endif // ALG_LIBOQS

#if ALG_LIBOQS
TPM_RC
TPM2B_SIGNATURE_SPHINCS_Unmarshal (TPM2B_SIGNATURE_SPHINCS *target, BYTE
*xxpuffer, INT32 *size)
{
TPM_RC result;
result = UINT16_Unmarshal ((UINT16 *)&(target->t.size), buffer, size);
if (result == TPM_RC_SUCCESS)
{
if ((target->t.size) > 64)
result = TPM_RC_SIZE;
else
result = BYTE_Array_Unmarshal ((BYTE *) (target->t.buffer), buffer,
size, (INT32) (target->t.size));
}

return result;

}

UINT16

TPM2B_SIGNATURE_SPHINCS_Marshal (TPM2B_SIGNATURE_SPHINCS #*source, BYTE
*xxpuffer, INT32 *size)

{

79

Developer Manual

UINT16 result = 0;

result = (UINT16) (result + UINT16_Marshal ((UINT16 *)&(source->t.size),
buffer, size));

// if size equal to 0, the rest of the structure is a zero buffer. Stop
processing

if (source->t.size == 0)
return result;

result = (UINT16) (result + BYTE_Array_Marshal ((BYTE *) (source->t.buffer),
buffer, size, (INT32) (source->t.size)));

return result;

}
#endif // ALG_LIBOQS

#if ALG_LIBOQS
TPM_RC
TPM2B_PRIVATE_KEY_SPHINCS_Unmarshal (TPM2B_PRIVATE_KEY_SPHINCS *target, BYTE
*xxpuffer, INT32 *size)
{
TPM_RC result;
result = UINT16_Unmarshal ((UINT16 *)&(target->t.size), buffer, size);
if (result == TPM_RC_SUCCESS)
{
if ((target->t.size) > 128)
result = TPM_RC_SIZE;
else
result = BYTE_Array_Unmarshal ((BYTE *) (target->t.buffer), buffer,
size, (INT32) (target->t.size));
}
return result;

}

UINT16
TPM2B_PRIVATE_KEY_SPHINCS_Marshal (TPM2B_PRIVATE_KEY_SPHINCS *source, BYTE
*xxpuffer, INT32 *size)

{
UINT16 result = 0;
result = (UINT16) (result + UINT16_Marshal ((UINT16 *)&(source->t.size),
buffer, size));
// if size equal to 0, the rest of the structure is a zero buffer. Stop
processing
if (source->t.size == 0)
return result;
result = (UINT16) (result + BYTE_Array_Marshal ((BYTE *) (source->t.buffer),
buffer, size, (INT32) (source->t.size)));
return result;
H

#endif //ALG_LIBOQS

#if ALG_LIBOQS

TPM_RC

TPMS_SIGNATURE_SPHINCS_Unmarshal (TPMS_SIGNATURE_SPHINCS *target, BYTE
*xxpuffer, INT32 *size)

{
TPM_RC result;
result = TPMI_ALG_HASH_Unmarshal ((TPMI_ALG_HASH *)&(target->hash),

buffer, size, 0);

80

Developer Manual

if (result == TPM_RC_SUCCESS)
result = TPM2B_SIGNATURE_SPHINCS_Unmarshal ((TPM2B_SIGNATURE_SPHINCS
*)&(target->sig), buffer, size);
return result;

}

UINT16
TPMS_SIGNATURE_SPHINCS_Marshal (TPMS_SIGNATURE_SPHINCS *source, BYTE **buffer,
INT32 *size)

{
UINT16 result = 0;
result = (UINT16) (result + TPMI_ALG_HASH_Marshal ((TPMI_ALG_HASH
*)& (source->hash), buffer, size));
result = (UINT16) (result +
TPM2B_SIGNATURE_SPHINCS_Marshal ((TPM2B_SIGNATURE_SPHINCS
*)& (source->sig), buffer, size));
return result;
}

#endif // ALG_LIBOQS

TPM_RC
TPMU_SIGNATURE_Unmarshal (TPMU_SIGNATURE *target, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch(selector) {
#if ALG_ECDAA
case TPM_ALG_ECDAA:
return TPMS_SIGNATURE_ECDAA_Unmarshal ((TPMS_SIGNATURE_ECDAA
*)& (target->ecdaa), buffer, size);
#endif // ALG_ECDAA
#if ALG_RSASSA
case TPM_ALG_RSASSA:
return TPMS_SIGNATURE_RSASSA_Unmarshal ((TPMS_SIGNATURE_RSASSA
*)&(target->rsassa), buffer, size);
#endif // ALG_RSASSA
#if ALG_RSAPSS
case TPM_ALG_RSAPSS:
return TPMS_SIGNATURE_RSAPSS_Unmarshal ((TPMS_SIGNATURE_RSAPSS
*)& (target->rsapss), buffer, size);
#endif // ALG_RSAPSS
#if ALG_ECDSA
case TPM_ALG_ECDSA:
return TPMS_SIGNATURE_ECDSA_Unmarshal ((TPMS_SIGNATURE_ECDSA
*)& (target->ecdsa), buffer, size);
#endif // ALG_ECDSA
#if ALG_SM2
case TPM_ALG_SM2:
return TPMS_SIGNATURE_SM2_Unmarshal ((TPMS_SIGNATURE_SM2
*)&(target->sm2), buffer, size);
#endif // ALG_SM2
#if ALG_ECSCHNORR
case TPM_ALG_ECSCHNORR:
return
TPMS_SIGNATURE_ECSCHNORR_Unmarshal ((TPMS_SIGNATURE_ECSCHNORR
*) & (target->ecschnorr), buffer, size);
#endif // ALG_ECSCHNORR
#if ALG_HMAC

81

Developer Manual

case TPM_ALG_HMAC:
return TPMT_HA_Unmarshal ((TPMT_HA *)&(target->hmac), buffer, size,
0);
#endif // ALG_HMAC
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return TPMS_SIGNATURE_SPHINCS_Unmarshal ((TPMS_SIGNATURE_SPHINCS
*)& (target->sphincs), buffer, size);
#endif // ALG_LIBOQS
case TPM_ALG_NULL:
return TPM_RC_SUCCESS;

H

return TPM_RC_SELECTOR;
H
UINT16

TPMU_SIGNATURE_Marshal (TPMU_SIGNATURE *source, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch(selector) {
#if ALG_ECDAA
case TPM_ALG_ECDAA:
return TPMS_SIGNATURE_ECDAA_Marshal ((TPMS_SIGNATURE_ECDAA
*)& (source->ecdaa), buffer, size);
#endif // ALG_ECDAA
#if ALG_RSASSA
case TPM_ALG_RSASSA:
return TPMS_SIGNATURE_RSASSA_Marshal ((TPMS_SIGNATURE_RSASSA
*)& (source->rsassa), buffer, size);
#endif // ALG_RSASSA
#if ALG_RSAPSS
case TPM_ALG_RSAPSS:
return TPMS_SIGNATURE_RSAPSS_Marshal ((TPMS_SIGNATURE_RSAPSS
*)& (source->rsapss), buffer, size);
#endif // ALG_RSAPSS
#if ALG_ECDSA
case TPM_ALG_ECDSA:
return TPMS_SIGNATURE_ECDSA_Marshal ((TPMS_SIGNATURE_ECDSA
*)& (source->ecdsa), buffer, size);
#endif // ALG_ECDSA
#if ALG_SM2
case TPM_ALG_SM2:
return TPMS_SIGNATURE_SM2_Marshal ((TPMS_SIGNATURE_SM2
*)& (source->sm2), buffer, size);
#endif // ALG_SM2
#if ALG_ECSCHNORR
case TPM_ALG_ECSCHNORR:
return TPMS_SIGNATURE_ECSCHNORR_Marshal ((TPMS_SIGNATURE_ECSCHNORR
*) & (source->ecschnorr), buffer, size);
#endif // ALG_ECSCHNORR
#if ALG_HMAC
case TPM_ALG_HMAC:
return TPMT_HA_Marshal ((TPMT_HA *)&(source->hmac), buffer, size);
#endif // ALG_HMAC
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:

82

Developer Manual

return TPMS_SIGNATURE_SPHINCS_Marshal ((TPMS_SIGNATURE_SPHINCS
*)& (source->sphincs), buffer, size);
#endif // ALG_LIBOQS
case TPM_ALG_NULL:

return 0;
H
return O;
H
TPM_RC

TPMU_PUBLIC_ID_Unmarshal (TPMU_PUBLIC_ID *target, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch(selector) {
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPM2B_DIGEST_Unmarshal ((TPM2B_DIGEST
*) & (target->keyedHash), buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:
return TPM2B_DIGEST_Unmarshal ((TPM2B_DIGEST #*)&(target->sym),
buffer, size);
#endif // ALG_SYMCIPHER
#if ALG_RSA
case TPM_ALG_RSA:
return TPM2B_PUBLIC_KEY_RSA_Unmarshal ((TPM2B_PUBLIC_KEY_RSA
*)&(target->rsa), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return
TPM2B_PUBLIC_KEY_SPHINCS_Unmarshal ((TPM2B_PUBLIC_KEY_SPHINCS
*)& (target->sphincs), buffer, size);
#endif //ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_POINT_Unmarshal ((TPMS_ECC_POINT *)&(target->ecc),
buffer, size);
#endif // ALG_ECC
}
return TPM_RC_SELECTOR;
}

UINT16
TPMU_PUBLIC_ID_Marshal (TPMU_PUBLIC_ID *source, BYTE **buffer, INT32 *size,
UINT32 selector)
{
switch(selector) {
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPM2B_DIGEST_Marshal ((TPM2B_DIGEST *)&(source->keyedHash),
buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:

83

Developer Manual

return TPM2B_DIGEST_Marshal ((TPM2B_DIGEST *)&(source->sym),
buffer, size);
#endif // ALG_SYMCIPHER
#if ALG_RSA
case TPM_ALG_RSA:
return TPM2B_PUBLIC_KEY_RSA_Marshal ((TPM2B_PUBLIC_KEY_RSA
*)& (source->rsa), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return TPM2B_PUBLIC_KEY_SPHINCS_Marshal ((TPM2B_PUBLIC_KEY_SPHINCS
*)& (source->sphincs), buffer, size);
#endif //ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_POINT_Marshal ((TPMS_ECC_POINT *)&(source->ecc),
buffer, size);
#endif // ALG_ECC

H

return O;
H
TPM_RC

TPMU_SENSITIVE_COMPOSITE_Unmarshal (TPMU_SENSITIVE_COMPOSITE *target, BYTE
**xpuffer, INT32 *size, UINT32 selector)
{
switch(selector) {
#if ALG_RSA
case TPM_ALG_RSA:
return TPM2B_PRIVATE_KEY_RSA_Unmarshal ((TPM2B_PRIVATE_KEY_RSA
*)&(target->rsa), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return
TPM2B_PRIVATE_KEY_SPHINCS_Unmarshal ((TPM2B_PRIVATE_KEY_SPHINCS
*)& (target->sphincs), buffer, size);
#endif ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPM2B_ECC_PARAMETER_Unmarshal ((TPM2B_ECC_PARAMETER
*)&(target->ecc), buffer, size);
#endif // ALG_ECC
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPM2B_SENSITIVE_DATA_Unmarshal ((TPM2B_SENSITIVE_DATA
*)& (target->bits), buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:
return TPM2B_SYM_KEY_Unmarshal ((TPM2B_SYM_KEY *)&(target->sym),
buffer, size);
#endif // ALG_SYMCIPHER
}
return TPM_RC_SELECTOR;

84

Developer Manual

UINT16
TPMU_SENSITIVE_COMPOSITE_Marshal (TPMU_SENSITIVE_COMPOSITE *source, BYTE
**xpuffer, INT32 *size, UINT32 selector)
{
switch(selector) {
#if ALG_RSA
case TPM_ALG_RSA:
return TPM2B_PRIVATE_KEY_RSA_Marshal ((TPM2B_PRIVATE_KEY_RSA
*)& (source->rsa), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return
TPM2B_PRIVATE_KEY_SPHINCS_Marshal ((TPM2B_PRIVATE_KEY_SPHINCS
*)& (source->sphincs), buffer, size);
#endif ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPM2B_ECC_PARAMETER_Marshal ((TPM2B_ECC_PARAMETER
*)& (source->ecc), buffer, size);
#endif // ALG_ECC
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPM2B_SENSITIVE_DATA_Marshal ((TPM2B_SENSITIVE_DATA
*)& (source->bits), buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:
return TPM2B_SYM_KEY_Marshal ((TPM2B_SYM_KEY *)&(source->sym),
buffer, size);
#endif // ALG_SYMCIPHER

H

return O;
H
TPM_RC

TPMU_PUBLIC_PARMS_Unmarshal (TPMU_PUBLIC_PARMS *target, BYTE **buffer, INT32
*size, UINT32 selector)
{
switch(selector) {
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPMS_KEYEDHASH_PARMS_Unmarshal ((TPMS_KEYEDHASH_PARMS
*) & (target->keyedHashDetail), buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:
return TPMS_SYMCIPHER_PARMS_Unmarshal ((TPMS_SYMCIPHER_PARMS
*) & (target->symDetail), buffer, size);
#endif // ALG_SYMCIPHER
#if ALG_RSA
case TPM_ALG_RSA:
return TPMS_RSA_PARMS_Unmarshal ((TPMS_RSA_PARMS
*)& (target->rsaDetail), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:

85

Developer Manual

return TPMS_RSA_PARMS_Unmarshal ((TPMS_RSA_PARMS
*)& (target->rsaDetail), buffer, size);
#endif //ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_PARMS_Unmarshal ((TPMS_ECC_PARMS
*)& (target->eccDetail), buffer, size);
#endif // ALG_ECC
}
return TPM_RC_SELECTOR;
H
UINT16
TPMU_PUBLIC_PARMS_Marshal (TPMU_PUBLIC_PARMS *source, BYTE **buffer, INT32
*size, UINT32 selector)
{
switch(selector) {
#if ALG_KEYEDHASH
case TPM_ALG_KEYEDHASH:
return TPMS_KEYEDHASH_PARMS_Marshal ((TPMS_KEYEDHASH_PARMS
*) & (source->keyedHashDetail), buffer, size);
#endif // ALG_KEYEDHASH
#if ALG_SYMCIPHER
case TPM_ALG_SYMCIPHER:
return TPMS_SYMCIPHER_PARMS_Marshal ((TPMS_SYMCIPHER_PARMS
*) & (source->symDetail), buffer, size);
#endif // ALG_SYMCIPHER
#if ALG_RSA
case TPM_ALG_RSA:
return TPMS_RSA_PARMS_Marshal ((TPMS_RSA_PARMS
*)& (source->rsaDetail), buffer, size);
#endif // ALG_RSA
#if ALG_LIBOQS
case TPM_ALG_SPHINCS_SHAKE_256F:
return TPMS_RSA_PARMS_Marshal ((TPMS_RSA_PARMS
*)& (source->rsaDetail), buffer, size);
#endif ALG_LIBOQS
#if ALG_ECC
case TPM_ALG_ECC:
return TPMS_ECC_PARMS_Marshal ((TPMS_ECC_PARMS
*)& (source->eccDetail), buffer, size);
#endif // ALG_ECC
}

return O;

These functions are crucial to ensure seamless data transmission between components. Without
them, errors may occur on one end, depending on the direction of data flow, as the receiving side
may fail to recognize the transmitted data.

B.3.5 Optee ftpm

The optee_ftpm module contains the Trusted Application (TA) that must run within the Secure
World in OP-TEE. Its source code derived from the ms-tpm-20-ref folder. Since additional files
have been introduced into the source code, they must be included in the TA’s sub.mk file to ensure
they are compiled during the build process. The lines to be added are as follows:

global-incdirs_ext-y += $(CFG_MS_TPM_20_REF)/TPMCmd/tpm/src/crypt/libogs
86

Developer Manual

srcs_ext-y += crypt/CryptLibogs.c

srcs_ext-y += crypt/libogs/address.c
srcs_ext-y += crypt/liboqgs/context_shake.c
srcs_ext-y += crypt/libogs/fors.c
srcs_ext-y += crypt/libogs/hash_shake.c
srcs_ext-y += crypt/libogs/merkle.c
srcs_ext-y += crypt/libogs/sign.c
srcs_ext-y += crypt/liboqs/thash_shake_simple.c
srcs_ext-y += crypt/libegs/utils.c
srcs_ext-y += crypt/libogs/utilsxl.c
srcs_ext-y += crypt/libogs/wots.c
srcs_ext-y += crypt/libogs/wotsxl.c
srcs_ext-y += crypt/liboqs/fips202.c
srcs_ext-y += crypt/liboqgs/fips202x4.c

If these files are not added in this way, they will not be compiled and therefore the changes made
in these files will not be executed by fTPM.

B.3.6 Tpm2-tss and Tpm2-tools

To build tpm2-tools and tpm2-tss, the Buildroot build system was used as a foundation. However,
in order to tailor the build process to the specific needs of the project, some manual changes were
made. Specifically, the .mk files located in the tpm2-tools and tpm2-tss package directories within
the Buildroot tree were edited. These adjustments made it possible to customize configuration
options, handle dependencies more appropriately, and apply any required patches. The lines
required are the following:

TPM2_TOOLS_SITE = /home/ettore/optee_linaro/tpm2-tools
TPM2_TOOLS_SITE_METHOD = local

TPM2_TSS_SITE = /home/ettore/optee_linaro/tpm2-tss
TPM2_TSS_SITE_METHOD = local

The TPM2 TSS SITE and TPM2 TOOLS SITE variables must be set to the path where the
new or custom implementation of the respective packages is located. This ensures that Buildroot
pulls the correct source code during the build process.

Another significant modification involved adding new data structures within tpm2-tss, neces-
sary to support these new algorithms. Four new structures were introduced and added inside the
tss_tpm2 types.h file: one for the public key, one for the private key, and two for the signature.

#define TPM2_ALG_SPHINCS_SHAKE_256F ((TPM2_ALG_ID) 0x0045)

/* Definition of SPHINCS TPM2B_PUBLIC_KEY_SPHINCS Structure*/
typedef struct TPM2B_PUBLIC_KEY_SPHINCS TPM2B_PRIVATE_KEY_SPHINCS;
struct TPM2B_PUBLIC_KEY_SPHINCS {

UINT16 size;

BYTE buffer [TPM2_SPHINCS_PUBLIC_KEY_BITS];
}

/* Definition of SPHINCS TPM2B_PRIVATE_KEY_SPHINCS Structure */
typedef struct TPM2B_PRIVATE_KEY_SPHINCS TPM2B_PRIVATE_KEY_SPHINCS;
struct TPM2B_PRIVATE_KEY_SPHINCS {

UINT16 size;

BYTE buffer [TPM2_SPHINCS_SECRET_KEY_BITS];

87

Developer Manual

/* Definition of SPHINCS TPM2B_SIGNATURE_SPHINCS Structure */
typedef struct TPM2B_SIGNATURE_SPHINCS TPM2B_SIGNATURE_SPHINCS;
struct TPM2B_SIGNATURE_SPHINCS {

UINT16 size;

BYTE buffer [TPM2_SPHINCS_SIGNATURE_BITS];
H

/* Definition of SPHINCS TPMS_SIGNATURE_SPHINCS Structure */
typedef struct TPMS_SIGNATURE_SPHINCS TPMS_SIGNATURE_SPHINCS;
struct TPMS_SIGNATURE_SPHINCS {

TPMI_ALG_HASH hash;

TPM2B_SIGNATURE_SPHINCS sig;

All the structures follow a commond design: they include a size field, which indicates the length
of the corresponding key or signature, and a buffer that stores the actual key or signature.
These structures are modeled similarly to RSA and ECC keys and signatures to mantain com-
patibility with existing TPM keys. The TPMS SIGNATURE SPHINCS structure, although
it may seem redundant, has been preserved to ensure compatibility with current algorithms
and to facilitate future developements. Additionally, these four structures have been integrated

into existing structures such as TPMU PUBLIC 1D, TPMU SENSITIVE COMPOSITE, and
TPMU SIGNATURE, enabling SPHINCS keys to coexist with other supported algorithms.

/* Definition of TPMU_PUBLIC_ID Union <INOUT S> */
typedef union TPMU_PUBLIC_ID TPMU_PUBLIC_ID;
union TPMU_PUBLIC_ID {
TPM2B_DIGEST keyedHash;
TPM2B_DIGEST sym;
TPM2B_PUBLIC_KEY_RSA rsa;
TPMS_ECC_POINT ecc;
TPM2B_PUBLIC_KEY_SPHINCS sphincs;
s

/* Definition of TPMU_SENSITIVE_COMPOSITE Union <INOUT S> */

typedef union TPMU_SENSITIVE_COMPOSITE TPMU_SENSITIVE_COMPOSITE;

union TPMU_SENSITIVE_COMPOSITE {
TPM2B_PRIVATE_KEY_RSA rsa; /* a prime factor of the public key */
TPM2B_ECC_PARAMETER ecc; /* the integer private key */
TPM2B_PRIVATE_KEY_SPHINCS sphincs; /* the sphincs private key*/
TPM2B_SENSITIVE_DATA bits; /* the private data */
TPM2B_SYM_KEY sym; /#* the symmetric key */
TPM2B_PRIVATE_VENDOR_SPECIFIC any; /* vendor-specific size for key

storage */

};

/* Definition of TPMU_SIGNATURE Union <INOUT S> */

typedef union TPMU_SIGNATURE TPMU_SIGNATURE;

union TPMU_SIGNATURE {
TPMS_SIGNATURE_RSASSA rsassa; /* all asymmetric signatures */
TPMS_SIGNATURE_RSAPSS rsapss; /* all asymmetric signatures */
TPMS_SIGNATURE_ECDSA ecdsa; /#* all asymmetric signatures */
TPMS_SIGNATURE_ECDAA ecdaa; /#* all asymmetric signatures */
TPMS_SIGNATURE_SM2 sm2; /* all asymmetric signatures */
TPMS_SIGNATURE_ECSCHNORR ecschnorr; /* all asymmetric signatures */
TPMS_SIGNATURE_SPHINCS sphincs;
TPMT_HA hmac; /* HMAC signature required to be supported */

88

Developer Manual

TPMS_SCHEME_HASH any; /* used to access the hash */
s

These structures efficiently handle specific parameters of SPHINCS+ within the TPM architec-
ture, ensuring proper storage and manipulation of the generated keys and signatures. Additionally,
a new constant was added to identify the new algorithm, with a hexadecimal value of 0x45. This
constant was appended to the long list of supported algorithms and serves to identify the new
algorithm and to check whether the algorithm is recognized and usable by the system.

Another fundamental aspect concerns the Marshalling and Unmarshalling functions in tpm?2-tss.
In this case, some existing functions were modified, and new ones were added to ensure compat-
ibility and proper data transfer. These functions are essential for the structured conversion of
information between the various TPM components, ensuring that post-quantum keys and signa-
tures are correctly serialized and deserialized during key generation and signing operations. For
this purpose, these lines of code have been added:

TPM2B_UNMARSHAL (TPM2B_PUBLIC_KEY_SPHINCS, buffer);
TPM2B_MARSHAL (TPM2B_PRIVATE_KEY_RSA);
TPM2B_UNMARSHAL (TPM2B_PRIVATE_KEY_RSA, buffer);
TPM2B_MARSHAL (TPM2B_SIGNATURE_SPHINCS);
TPM2B_UNMARSHAL (TPM2B_SIGNATURE_SPHINCS, buffer);
TPM2B_MARSHAL (TPM2B_PRIVATE_KEY_SPHINCS) ;
TPM2B_UNMARSHAL (TPM2B_PRIVATE_KEY_SPHINCS, buffer);

TPMS_MARSHAL_2 (TPMS_SIGNATURE_SPHINCS,
hash, VAL, Tss2_MU_UINT16_Marshal,
sig, ADDR, Tss2_MU_TPM2B_SIGNATURE_SPHINCS_Marshal)

TPMS_UNMARSHAL_2 (TPMS_SIGNATURE_SPHINCS,
hash, Tss2_MU_UINT16_Unmarshal,
sig, Tss2_MU_TPM2B_SIGNATURE_SPHINCS_Unmarshal)

TPMU_UNMARSHAL2 (TPMU_SIGNATURE,
TPM2_ALG_RSASSA, rsassa, Tss2_MU_TPMS_SIGNATURE_RSA_Unmarshal,
TPM2_ALG_RSAPSS, rsapss, Tss2_MU_TPMS_SIGNATURE_RSA_Unmarshal,
TPM2_ALG_ECDSA, ecdsa, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_ECDAA, ecdaa, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_SM2, sm2, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_ECSCHNORR, ecschnorr, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_HMAC, hmac, Tss2_MU_TPMT_HA_Unmarshal,
TPM2_ALG_SPHINCS_SHAKE_256F, sphincs,
Tss2_MU_TPMS_SIGNATURE_SPHINCS_Unmarshal)

TPMU_MARSHAL2 (TPMU_SIGNATURE,
TPM2_ALG_RSASSA, ADDR, rsassa, Tss2_MU_TPMS_SIGNATURE_RSA_Marshal,
TPM2_ALG_RSAPSS, ADDR, rsapss, Tss2_MU_TPMS_SIGNATURE_RSA_Marshal,
TPM2_ALG_ECDSA, ADDR, ecdsa, Tss2_MU_TPMS_SIGNATURE_ECC_Marshal,
TPM2_ALG_ECDAA, ADDR, ecdaa, Tss2_MU_TPMS_SIGNATURE_ECC_Marshal,
TPM2_ALG_SM2, ADDR, sm2, Tss2_MU_TPMS_SIGNATURE_ECC_Marshal,
TPM2_ALG_ECSCHNORR, ADDR, ecschnorr, Tss2_MU_TPMS_SIGNATURE_ECC_Marshal,
TPM2_ALG_HMAC, ADDR, hmac, Tss2_MU_TPMT_HA_Marshal,
TPM2_ALG_SPHINCS_SHAKE_256F, ADDR, sphincs,
Tss2_MU_TPMS_SIGNATURE_SPHINCS_Marshal)

TPMU_UNMARSHAL2 (TPMU_SIGNATURE,

TPM2_ALG_RSASSA, rsassa, Tss2_MU_TPMS_SIGNATURE_RSA_Unmarshal,
TPM2_ALG_RSAPSS, rsapss, Tss2_MU_TPMS_SIGNATURE_RSA_Unmarshal,
TPM2_ALG_ECDSA, ecdsa, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_ECDAA, ecdaa, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,

89

Developer Manual

TPM2_ALG_SM2, sm2, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_ECSCHNORR, ecschnorr, Tss2_MU_TPMS_SIGNATURE_ECC_Unmarshal,
TPM2_ALG_HMAC, hmac, Tss2_MU_TPMT_HA_Unmarshal,
TPM2_ALG_SPHINCS_SHAKE_256F, sphincs,
Tss2_MU_TPMS_SIGNATURE_SPHINCS_Unmarshal)

TPMU_MARSHAL2 (TPMU_SENSITIVE_COMPOSITE,

TPM2_ALG_RSA, ADDR, rsa, Tss2_MU_TPM2B_PRIVATE_KEY_RSA_Marshal,

TPM2_ALG_ECC, ADDR, ecc, Tss2_MU_TPM2B_ECC_PARAMETER_Marshal,

TPM2_ALG_KEYEDHASH, ADDR, bits, Tss2_MU_TPM2B_SENSITIVE_DATA_Marshal,

TPM2_ALG_SYMCIPHER, ADDR, sym, Tss2_MU_TPM2B_SYM_KEY_Marshal,

TPM2_ALG_SPHINCS_SHAKE_256F, ADDR, sphincs,
Tss2_MU_TPM2B_PRIVATE_KEY_SPHINCS_Marshal)

TPMU_UNMARSHAL2 (TPMU_SENSITIVE_COMPOSITE,
TPM2_ALG_RSA, rsa, Tss2_MU_TPM2B_PRIVATE_KEY_RSA_Unmarshal,
TPM2_ALG_ECC, ecc, Tss2_MU_TPM2B_ECC_PARAMETER_Unmarshal,
TPM2_ALG_KEYEDHASH, bits, Tss2_MU_TPM2B_SENSITIVE_DATA_Unmarshal,
TPM2_ALG_SYMCIPHER, sym, Tss2_MU_TPM2B_SYM_KEY_Unmarshal,
TPM2_ALG_SPHINCS_SHAKE_256F, sphincs,
Tss2_MU_TPM2B_PRIVATE_KEY_SPHINCS_Unmarshal)

This code tells which structures to serialize and deserialize based on the type of algorithm chosen
and how to pass them, allowing communication between TPM and the software stack.

The modifications made to tpm2-tss are symmetric to those implemented in the TPM, as ensuring
this symmetry is crucial. Without this alignment, the TPM would not be able to recognize and
correctly utilize the implemented algorithm, compromising interoperability and proper system
functionality.

In the case of tpm2-tools, several commands were modified to allow the management of post-
quantum keys and signatures. Specifically, the tpm2 createprimary, tpm2_create, tpm2_quote,
tpm2 sign tpm2 createek and tpm2 createak commands were updated to support these new
algorithms, introducing specific options. The main modified file has been tpm2 alg wutil ¢, in
which all the functions are inserted for the various algorithms. In particular, the handle object
function has been modified, whose task is to call the correct parameter management function.

static alg_parser_rc handle_object(const char *object, TPM2B_PUBLIC
*public) {

if (!strncmp(object, "rsa", 3)) {
object += 3;
return handle_rsa(object, public);

} else if (!strncmp(object, "ecc", 3)) {
object += 3;
return handle_ecc(object, public);

} else if (!strncmp(object, "aes", 3)) {
object += 3;
return handle_aes(object, public);

} else if (!strncmp(object, "camellia", 8)) {
object += 8;
return handle_camellia(object, public);

} else if (!strncmp(object, "sm4", 3)) {
object += (object[3] == ’_?) 7 4 : 3;
return handle_sm4(object, public);

} else if (!strcmp(object, "hmac")) {
return handle_hmac(public);

} else if (!strcmp(object, "xor")) {
return handle_xor(public);

} else if (!strcmp(object, "keyedhash")) {

90

Developer Manual

return handle_keyedhash(public);
} else if (!strcmp(object, "sphincs")){
return handle_sphincs(public);

}

return alg_parser_rc_error H

}

The handle sphincs function has been added, which must set the parameters necessary to carry
out the algorithm.

static alg_parser_rc handle_sphincs(TPM2B_PUBLIC #public) {
public->publicArea.type = TPM2_ALG_SPHINCS_SHAKE_256F;
TPMS_RSA_PARMS *r = &public->publicArea.parameters.rsaDetail;
r->exponent = 0;
r->keyBits = 2048;
r->scheme.scheme = TPM2_ALG_RSAES;

return alg_parser_rc_continue;

}

In this case, it was necessary to explicitly specify the variable type TPMS RSA PARMS, as
the system would otherwise be unable to correctly handle the parameters for the TPM2 ALG
SPHINCS SHAKE 256F algorithm. Future implementations may introduce new parameter
types to be used in similar contexts. Additionally, the required handling was added within the
tpm2 alg wtil for each alg function.

{ .name = "sphincs", .id= TPM2_ALG_SPHINCS_SHAKE_256F, .flags =
tpm2_alg_util_flags_asymmetric|tpm2_alg_util_flags_base },

Thanks to this line of code, it has been possible to make the new string recognized by all the
commands of tpm2-tools and use the new command line commands. The modifications in tpm2-
tools also included the propagation of the newly introduced constant, as it affects a switch case
responsible for setting algorithm parameters. While in this implementation the addition was
only necessary for a single post-quantum algorithm, this change lays the groundwork for future
implementations where multiple algorithms with different parameters could be supported.

91

Bibliography

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proceed-
ings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124-134, DOI
10.1109/SFCS.1994.365700

[2] S. Paul, F. Schick, and J. Seedorf, “TPM-Based Post-Quantum Cryptography: A Case Study
on Quantum-Resistant and Mutually Authenticated TLS for IoT Environments”, Proceedings
of the 16th International Conference on Availability, Reliability and Security, New York, NY,
USA, 2021, DOI 10.1145/3465481.3465747

[3] L. Fiolhais, P. Martins, and L. Sousa, “Software Emulation of Quantum Resistant Trusted
Platform Modules”, August 2020, DOI 10.5281/zenodo.3979200

[4] L. Fiolhais and L. Sousa, “QR TPM in Programmable Low-Power Devices”, arXiv preprint
arXiv:2309.17414, September 2023

[5] NIST, “NIST to Standardize Encryption Algorithms That Can Resist Attack
by Quantum Computers”, https://www.nist.gov/news-events/news/2023/08/
nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers

[6] N. Asokan, J.-E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A.-R. Sadeghi, S. Schulz, and
C. Wachsmann, “Mobile Trusted Computing”, Proceedings of the IEEE, vol. 102, no. 8, 2014,
pp. 1189-1206, DOI 10.1109/JPROC.2014.2332007

[7] GlobalPlatform, “GlobalPlatform Card Specification v2.3.1". GlobalPlatform, March
2018. Document Number: GPC_SPE 034. Available at https://globalplatform.org/
specs-1library/card-specification-v2-3-1/

[8] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Environment: What It
is, and What It is Not”, 2015 IEEE Trustcom/BigDataSE/ISPA, 2015, pp. 57-64, DOI
10.1109/Trustcom.2015.357

[9] A. Khalid, S. McCarthy, M. O'Neill, and W. Liu, “Lattice-based Cryptography for IoT in A
Quantum World: Are We Ready?”, 2019 IEEE 8th International Workshop on Advances in
Sensors and Interfaces (IWASI), 2019, pp. 194-199, DOI 10.1109/TWASI.2019.8791343

[10] Q. Zhu, Q. Chen, Y. Liu, Z. Akhtar, and K. Siddique, “Investigating TrustZone: A Compre-
hensive Analysis”, Security and Communication Networks, vol. 2023, no. 1, 2023, p. 7369634,
DOI https://doi.org/10.1155/2023 /7369634

[11] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Survey”, ACM
Comput. Surv., vol. 51, jan 2019, DOI 10.1145/3291047

[12] V. Mavroeidis, K. Vishi, M. D., and A. Jgsang, “The Impact of Quantum Computing on
Present Cryptography”, International Journal of Advanced Computer Science and Applica-
tions, vol. 9, no. 3, 2018, DOI 10.14569/ijacsa.2018.090354

[13] A. Menezes, P. C. van Qorschot, and S. A. Vanstone, “Handbook of Applied Cryptography”,
CRC Press, 1996, ISBN: 0-8493-8523-7

[14] R. P. Feynman, “Simulating Physics with Computers”, International Journal of Theoretical
Physics, vol. 21, no. 6-7, 1982, pp. 467-488, DOI 10.1007/BF02650179

[15] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L.
Chuang, and R. Blatt, “Realization of a scalable Shor algorithm”, Science, vol. 351, March
2016, pp. 1068-1070, DOI 10.1126/science.aad9480

[16] C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, “Securing the Internet of Things in a Quantum
World”, IEEE Communications Magazine, vol. 55, 02 2017, pp. 116-120, DOI 10.1109/M-
COM.2017.1600522CM

92

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/3465481.3465747
https://doi.org/10.5281/zenodo.3979200
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://doi.org/10.1109/JPROC.2014.2332007
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/IWASI.2019.8791343
https://doi.org/https://doi.org/10.1155/2023/7369634
https://doi.org/10.1145/3291047
https://doi.org/10.14569/ijacsa.2018.090354
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1109/MCOM.2017.1600522CM
https://doi.org/10.1109/MCOM.2017.1600522CM

Bibliography

[17] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC), 1996, pp. 212-219,
DOI 10.1145/237814.237866

[18] M. A. Lépez and M. M. da Silva, “Quantum Technologies: Digital Transformation, Social
Impact, and Cross-sector Disruption”, 2019, DOI http://dx.doi.org/10.18235/0001613

[19] N. Liu and P. Rebentrost, “Quantum machine learning for quantum anomaly detection”,
Physical Review A, vol. 97, April 2018, DOI 10.1103/physreva.97.042315

[20] A. Alomari and S. A. Kumar, “Securing IoT systems in a post-quantum environment: Vul-
nerabilities, attacks, and possible solutions”, Internet of Things, vol. 25, 2024, p. 101132, DOI
https://doi.org/10.1016/j.i0t.2024.101132

[21] G. Brassard, P. Hgyer, and A. Tapp, “Quantum cryptanalysis of hash and claw-free functions”,
SIGACT News, vol. 28, June 1997, pp. 14-19, DOI 10.1145/261342.261346

[22] D. Simon, “On the power of quantum computation”, Proceedings 35th Annual Symposium
on Foundations of Computer Science, 1994, pp. 116-123, DOI 10.1109/SFCS.1994.365701

[23] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and 1. L.
Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear mag-
netic resonance”, Nature, vol. 414, December 2001, pp. 883-887, DOI 10.1038/414883a

[24] K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A. Mouedenne, A. Yadav, A. Krol,
I. Ashraf, and C. G. Almudever, “Quantum Computer Architecture Toward Full-Stack Quan-
tum Accelerators”, IEEE Transactions on Quantum Engineering, vol. 1, no. 1, 2020, pp. 1-12,
DOI 10.1109/TQE.2020.2988277

[25] M. Mosca, “Cybersecurity in an Era with Quantum Computers: Will We Be Ready?”, IEEE
Security & Privacy, vol. 16, no. 5, 2018, pp. 38-41, DOI 10.1109/MSP.2018.3761723

[26] NIST, “What Is Post-Quantum Cryptography?”, https://www.nist.gov/cybersecurity/
what-post-quantum- cryptography

[27] E. Malygina, A. Kutsenko, S. Novoselov, N. Kolesnikov, A. Bakharev, I. Khilchuk, A. Sha-
porenko, and N. Tokareva, “Post-Quantum Cryptosystems: Open Problems and Solutions.
Lattice-Based Cryptosystems”, Journal of Applied and Industrial Mathematics, vol. 17, 02
2024, pp. 767-790, DOI 10.1134/51990478923040087

[28] D. Micciancio and O. Regev, “Lattice-based Cryptography”, pp. 147-191. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009

[29] “PQ-CRYSTALS”, https://pq-crystals.org/, Accessed on 21 January 2025

[30] T. Pornin, “New Efficient Constant-Time Implementations of Falcon”, https://
falcon-sign.info, Accessed on 21 January 2025

[31] C. Q. Choi, “"Quantum-Safe" Crypto Hacked by 10-Year-Old PC”, https://spectrum.
ieee.org/quantum-safe-encryption-hacked

[32] C. Shen, H. Zhang, H. Wang, J. Wang, B. Zhao, F. Yan, F. Yu, L. Zhang, and M. Xu, “Re-
search on trusted computing and its development”, SCIENCE CHINA Information Sciences,
vol. 53, 03 2010, pp. 405433, DOI 10.1007/s11432-010-0069-x

[33] C. Mundie, P. de Vries, P. Haynes, and M. Corwine, “Trustworthy computing”, tech. rep.,
Technical report, 10, 2002

[34] U.S. Department of Defense, “Department of Defense Trusted Computer System Eval-
uation Criteria (TCSEC)”, Tech. Rep. DoD 5200.28-STD, National Computer Security
Center (NCSC), December 1985. Part of the Orange Book series. Available at https:
//fas.org/irp/nsa/rainbow/std001.htm

[35] Trusted Computing Group, “Trusted Computing Group (TCG)”, 2024, Available at https:
//trustedcomputinggroup.org/

[36] Trusted Computing Group, “Trusted Computing Group Specifications”, 2024. Available at
https://trustedcomputinggroup.org/specs/

[37] A.-R. Sadeghi, C. Stiible, and N. Pohlmann, “European Multilateral Secure Computing Base
Open Trusted Computing for You and Me”, 2004

[38] ISO/IEC, “Common Criteria for Information Technology Security Evaluation”, 2017. Version
3.1 Revision 5

[39] Y. Kim and E. Kim, “hTPM: Hybrid Implementation of Trusted Platform Module”, Pro-
ceedings of the 1st ACM Workshop on Workshop on Cyber-Security Arms Race, New York,
NY, USA, 2019, pp. 3-10, DOI 10.1145/3338511.3357348

93

https://doi.org/10.1145/237814.237866
https://doi.org/http://dx.doi.org/10.18235/0001613
https://doi.org/10.1103/physreva.97.042315
https://doi.org/https://doi.org/10.1016/j.iot.2024.101132
https://doi.org/10.1145/261342.261346
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1038/414883a
https://doi.org/10.1109/TQE.2020.2988277
https://doi.org/10.1109/MSP.2018.3761723
https://www.nist.gov/cybersecurity/what-post-quantum-cryptography
https://www.nist.gov/cybersecurity/what-post-quantum-cryptography
https://doi.org/10.1134/S1990478923040087
https://pq-crystals.org/
https://falcon-sign.info
https://falcon-sign.info
https://spectrum.ieee.org/quantum-safe-encryption-hacked
https://spectrum.ieee.org/quantum-safe-encryption-hacked
https://doi.org/10.1007/s11432-010-0069-x
https://fas.org/irp/nsa/rainbow/std001.htm
https://fas.org/irp/nsa/rainbow/std001.htm
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/specs/
https://doi.org/10.1145/3338511.3357348

Bibliography

[40] K. Kursawe, D. Schellekens, and B. Preneel, “ Analyzing Trusted Platform Communication”,
ECRYPT Workshop, CRASH — CRyptographic Advances in Secure Hardware, 2005

[41] Trusted Computing Group, “TCG TPM Specification Version 1.2”, November 2003. Available
at https://trustedcomputinggroup.org/resource/tpm-main-specification/

[42] Trusted Computing Group, “TCG TPM 2.0 Library Specification”, March 2016. Available
at https://trustedcomputinggroup.org/resource/tpm-library-specification/

[43] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshumann,
J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D. Wooten,
“fTPM: a software-only implementation of a TPM chip”, Proceedings of the 25th USENIX
Conference on Security Symposium, USA, 2016, pp. 841-856

[44] Global Platform, “TEE System Architecture v1.3”, https://globalplatform.org/
wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_
PublicRelease_signed.pdf

[45] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. McCune, “Trustworthy Execution on
Mobile Devices: What Security Properties Can My Mobile Platform Give Me?”, Trust and
Trustworthy Computing (A. P. Fuchs and P. L. P. da Silva, eds.), pp. 159-178, Springer,
Berlin, 2012, DOI 10.1007/978-3-642-30921-2 10

[46] K. Kostiainen, N. Asokan, and J.-E. Ekberg, “Practical Property-Based Attestation on Mobile
Devices”, Trust and Trustworthy Computing, 2011, pp. 78-92, DOI 10.1007/978-3-642-21599-
5 6

[47] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT: Secure Channel Between Rich
Execution Environment and Trusted Execution Environment”, Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2015, DOI 10.14722/ndss.2015.23189

[48] J. Jang and B. B. Kang, “Retrofitting the Partially Privileged Mode for TEE Communication
Channel Protection”, IEEE Transactions on Dependable and Secure Computing, 2018, pp. 1-
1, DOT 10.1109/TDSC.2018.2840709

[49] J. Gonzélez and P. Bonmet, “Versatile Endpoint Storage Security with Trusted Integrity
Modules”, technical report, IT University, 2014

[50] J. Winter, “Trusted Computing Building Blocks for Embedded Linux-based ARM TrustZone
Platforms”, Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing, New
York, NY, USA, 2008, DOI 10.1145/1456455.1456460

[51] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing Embedded Security
on Dual-Virtual-CPU Systems”, IEEE Design & Test of Computers, vol. 24, November 2007,
pp. 582-591, DOI 10.1109/MDT.2007.178

[52] N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a Coprocessor-based Kernel
Runtime Integrity Monitor”, Proceedings of the 13th USENIX Security Symposium, San
Diego, CA, 2004

[63] M. S. Kirkpatrick, G. Ghinita, and E. Bertino, “Resilient Authenticated Execution of Critical
Applications in Untrusted Environments”, IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 4, 2012, pp. 597-610, DOI 10.1109/TDSC.2012.51

[54] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker: An Execution
Infrastructure for TCB Minimization”, Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008, New York, NY, USA, 2008, pp. 315-328, DOI
10.1145/1352592.1352625

[65] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software Security - Enabling
Trusted Computing in Embedded Systems”, July 2004, Available online at: http://www.
arm. com/pdfs/TZ_Whitepaper.pdf

[56] ARM Ltd., “TrustZone Technology Overview”, Introduction available at: http://www.arm.
com/products/esd/trustzone_home.html

[67] M. Kuhne, S. Sridhara, A. Bertschi, N. Dutly, S. Capkun, and S. Shinde, “Aster: Fixing
the Android TEE Ecosystem with Arm CCA”, arXiv preprint arXiv:2407.16694, 2024, DOI
10.48550/arXiv.2407.16694

[58] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “SeCloak: ARM Trustzone-based Mo-
bile Peripheral Control”, New York, NY, USA, 2018, pp. 1-13, DOI 10.1145/3210240.3210334

[59] ARM Ltd., “ARM CoreLink TZC-400 TrustZone Address Space Controller”, 2014. Available

online at: https://developer.arm.com/documentation

94

https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://doi.org/10.1007/978-3-642-30921-2_10
https://doi.org/10.1007/978-3-642-21599-5_6
https://doi.org/10.1007/978-3-642-21599-5_6
https://doi.org/10.14722/ndss.2015.23189
https://doi.org/10.1109/TDSC.2018.2840709
https://doi.org/10.1145/1456455.1456460
https://doi.org/10.1109/MDT.2007.178
https://doi.org/10.1109/TDSC.2012.51
https://doi.org/10.1145/1352592.1352625
http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://www.arm.com/products/esd/trustzone_home.html
http://www.arm.com/products/esd/trustzone_home.html
https://doi.org/10.48550/arXiv.2407.16694
https://doi.org/10.1145/3210240.3210334
https://developer.arm.com/documentation

Bibliography

[60] ARM Ltd., “Cortex-A9 Technical Reference Manual - 6.3 Memory Access Sequence”. Ac-
cessed 12 September 2018

[61] Kingston Technology, “Kingston Embedded Solutions”, https://www.kingston.com/en/
embedded/emmc, Accessed on January 13, 2025

[62] A. K. Reddy, P. Paramasivam, and P. B. Vemula, “Mobile Secure Data Protection Using
eMMC RPMB Partition”, 2015 International Conference on Computing and Network Com-
munications (CoCoNet), 2015, pp. 946-950, DOI 10.1109/CoCoNet.2015.7411305

[63] X. Zhu et al., “Analysis and Research on TrustZone Technology”, Journal of Computer Se-
curity, vol. 30, no. 2, 2023, pp. 123-145, DOI 10.1155/2023 /7369634

[64] ARM Limited, “SMC Calling Convention System Software on ARM@®)Platforms”, 2016

[65] P. Greenhalgh, “big. LITTLE Processing with ARM Cortex-A15 & Cortex-A7”, ARM White
Paper 17, ARM Ltd., 2011. Available online at: https://www.arm.com/whitepapers

[66] ARM Ltd., “ARM1176JZF-S Technical Reference Manual - 2.12.13 Secure Monitor Call
(SMC)”, n.d. Accessed on January 13, 2025

[67] X. Li, Z. Li, Z.-h. Li, and Z.-j. Li, “Extension Implementation of TCM in the Embedded
System Based on FPGA”, Proceedings of the 2013 International Conference on Computer
Sciences and Applications (CSA), 2013, pp. 180-183, DOT 10.1109/CSA.2013.180

[68] ARM Ltd., “ARM1176JZF-S Technical Reference Manual, Revision: tOp7”, 2008. Available
online at: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_
arml176jzfs_rOp7_trm.pdf

[69] Y. Chen, Y. Zhang, Z. Wang, and T. Wei, “Downgrade Attack on TrustZone”, arXiv preprint
arXiv:1707.05082, 2017, DOI 10.48550/arXiv.1707.05082

[70] A. K. Sarker, M. K. Islam, and Y. Tian, “MVAM: Multi-variant Attacks on Memory for IoT
Trust Computing”, Proceedings of the 2023 Workshop on CPS & IoT Security and Privacy,
2023, pp. 13-18, DOI 10.1145/3576914.3587486

[71] OP-TEE, “OP-TEE OS”, https://github. com/0P-TEE/optee_os, n.d., Accessed: January
13, 2025

[72] OP-TEE, “OP-TEE Supplicant”, https://github.com/0P-TEE/optee_client/tree/
master/tee-supplicant, Accessed: January 13, 2025

[73] OP-TEE, “OP-TEE Build”, https://github.com/0P-TEE/build, n.d., Accessed: January
13, 2025

[74] OP-TEE, “OP-TEE Sanity Test Suite”, https://github.com/0P-TEE/sanity-testing,
n.d., Accessed: January 13, 2025

[75] QEMU Project, “QEMU”, https://www.qgemu.org, Accessed: January 13, 2025

[76] D. Stebila and M. Mosca, “Post-quantum Key Exchange for the Internet and the Open
Quantum Safe Project”, Selected Areas in Cryptography - SAC 2016, 2017, pp. 14-37, DOI
10.1007/978-3-319-69453-5 2

[77] “Open Source Libogs Library”, https://openquantumsafe.org/libogs, Accessed on 21
January 2025

[78] OP-TEE Project, “OP-TEE Documentation”, 2024, Accessed: 2024-03-09

[79] tpm2-software project, “tpm2-tools Documentation”, https://tpm2-tools.readthedocs.
io/, 2024, Accessed: March 22, 2025

[80] Open Quantum Safe Project, “Libogs: C library for quantum-safe cryptography”, https:
//github.com/open-quantum-safe/liboqgs, Accessed: 2025-01-25

95

https://www.kingston.com/en/embedded/emmc
https://www.kingston.com/en/embedded/emmc
https://doi.org/10.1109/CoCoNet.2015.7411305
https://doi.org/10.1155/2023/7369634
https://www.arm.com/whitepapers
https://doi.org/10.1109/CSA.2013.180
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf
https://doi.org/10.48550/arXiv.1707.05082
https://doi.org/10.1145/3576914.3587486
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/build
https://github.com/OP-TEE/sanity-testing
https://www.qemu.org
https://doi.org/10.1007/978-3-319-69453-5_2
https://openquantumsafe.org/liboqs
https://tpm2-tools.readthedocs.io/
https://tpm2-tools.readthedocs.io/
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs

	Introduction
	Context
	Use case
	Solution
	Thesis Structure

	Post-Quantum Cryptography
	Introduction
	Evolution of Quantum Computing
	Threat to Modern Cryptography
	Symmetric Key Cryptography
	Cryptographic Hash Functions
	Public Key Cryptography

	Challenges in Advancing Quantum Computing
	Mitigate Quantum Threat
	Post-Quantum Algorithms
	Lattice-based Cryptography
	Multivariate-based Cryptography
	Hashed-based Signatures
	Code-based Cryptography
	Super Singular Elliptic Curve Isogeny Cryptography

	Choice of Algorithm: SPHINCS-SHAKE-256f-simple
	Overview of SPHINCS
	Design Considerations
	Variants and Selection Criteria
	Strengths of SPHINCS-SHAKE-256f-simple
	Proposed Solution: Integration into an fTPM

	Trusted Computing
	Introduction
	Motivation and Background
	Conceptual Framework
	Trusted vs Trustworthy
	Relevance in Cybersecurity

	Trusted Computing Group
	Foundation of Trust: The Root of Trust
	Definition and Purpose
	Static vs Dynamic Trust
	Types of Root of Trust

	Trusted Platform Module
	Role in Trusted Computing
	Key Security Features
	Limitations of TPM
	TPM Versions
	TPM Implementations

	Trusted Execution Environment (TEE)
	Introduction
	TEE Security Guarantees
	Remote Attestation and Secure Storage
	Lifecycle Management and Hybrid Trust Model
	TEE Architecture
	Applications

	ARM TrustZone
	Introduction
	Processor Mode Separation
	Exception Levels and Execution Contexts
	World Identification and the NS Bit
	Memory and Peripheral Isolation
	Virtual Memory
	Secure Boot and Chain of Trust
	Secure Storage and Replay Protection
	World Switching and Secure Monitor
	Interrupts in ARM TrustZone
	Key Management in ARM TrustZone
	Shortcomings of ARM TrustZone
	Comparison between technologies

	Remote Attestation
	Introduction
	Attestation Workflow
	PCR Usage in PC Clients

	Technologies Used
	OP-TEE
	OP-TEE Architecture
	Communication Between REE and TEE in OP-TEE
	Security and Protection of Trusted Applications
	OP-TEE APIs and Advanced Features

	Tpm2-tss
	Tpm2-tss Architecture
	Role of Tpm2-tss
	Benefits of Tpm2-tss

	Tpm2-tools
	Features of Tpm2-tools

	Liboqs
	Supported Algorithms

	Design and Implementation
	Design Choices
	General Architecture

	Technological Choices
	Project Structure
	Ms-tpm-20-ref
	Project Architecture and Structure
	Execution in OP-TEE
	Cryptographic Function Extension
	TPM Hierarchies

	Optee_fTPM
	Tpm2-tss and Tpm2-tools
	Reasons for modifications
	Technical Details

	Considerations

	Tests and Results
	Introduction
	Configuration of Test Environment
	Test Methodology
	Functional Tests
	Performance Tests

	Results
	Key and Signature Generation Performance Analysis
	OP-TEE Overhead

	Comparison and Final Observations

	Conclusions
	User Manual
	Requirements
	Build Steps
	Install Dependencies
	Build Project

	fTPM Use
	Example of commands

	Developer Manual
	Requirements
	Installation
	Install Dependencies
	Cloning of repositories

	Project Configuration
	Build
	Liboqs
	Optee_os
	Ms-tpm-20-ref
	Optee_ftpm
	Tpm2-tss and Tpm2-tools

	Bibliography

