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Abstract

In today’s interconnected digital world, assessing and managing cybersecurity risks, es-
pecially in the landscape of enterprises, becomes fundamental to equally protect human
rights and business. Enterprises are by definition the best playhouse for cyber attackers,
since information leakages or asset compromise could lead to catastrophic impacts over
people and companies. Considering the enormous technological improvement of capa-
bilities and assets, and their spreading all over the sectors, makes this task even more
challenging.

Modern IT infrastructures continue growing in complexity, while cyber threats are
constantly evolving to exploit vulnerabilities and find ways to spread across the inter-
connected assets within a system. This constant change makes it hard, even for experts,
to study the companies’ attack surfaces in order to predict, counter, and mitigate cyber
threats from internal and external malicious actors. Security analysts are required with
more and more efforts to correctly assess cybersecurity risk and to apply suitable counter-
measures. Moreover, nowadays the huge amount of information to handle makes it almost
impossible, or at least insufficient, to produce consistent predictions with modern tools,
that usually make use of Intrusion Detection System’s (IDS) logs to perform their jobs.

This thesis will present threat propagation and, more in detail, the semi-automatic
detection of possible attack paths that can be followed by an attacker to reach a target.
Many ideas and works exist in the literature regarding threat propagation, but all of these
works focus only on specific steps of the process and often do not consider the synergy
between them, which is crucial to improve both the efficiency and the effectiveness of the
entire risk assessment process.

With this work, I want to open the door to possible implementation of a pipeline
that consider three main steps: using ontology-based methods to model the IT infras-
tructure, with particular reference to the ThreMA project; using the open source tool
MulVAL (Multihost, multistage Vulnerability Analysis), which is able to create attack
graphs starting from properly converted infrastructure files and the provided rules for
modeling attacks; and finally taking advantage of the Bayesian Network (BN) properties
to build a structure, called Attack BN, that, given the appropriate probability inputs, can
infer the propagation of an attack from a starting point to the target through the various
intermediate nodes. This solution does not eliminate the need for human support, as the
presence of experts feeding the tool is considered fundamental. The work of this thesis
focused on the realization of an initial Proof-of-Concept of the Attack BN, focusing on
part of the proposed pipeline and the generation of attack graphs using MulVAL. This
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will provide a starting point for future studies and improvements leveraging already ex-
isting AI engines or reasoners that, along with other technologies, could fully automate
the proposed pipeline.
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Chapter 1

Introduction

In recent years, the growing sophistication of cyber threats has underscored the impor-
tance of Cybersecurity Risk Assessment as a foundational practice for safeguarding digital
infrastructures. Modern organizations face a constantly landscape of threats, where at-
tackers exploit vulnerabilities to disrupt systems, compromise data, and cause financial
and reputational damage. With these threats becoming more diverse and persistent, un-
derstanding and mitigating the complex pathways through which an initial vulnerability
can propagate across an entire network has become essential.

As technology and methodologies rapidly advance, the associated threats and vulner-
abilities also evolve. In this fast-paced environment, people often are not able to prevent
malicious events proactively, which can lead to catastrophic outcomes. As this sentence
can be applied for several fields where the mankind is involved, the cybersecurity one is
not outdone.

The wide spreading of cyber threats and the always more frequent attacks to IT in-
frastructures lead the researchers to invest their time to find a solution to avoid, or at
least significantly reduce, the impact they may have over systems and people, in order to
protect both economical interests but also the human rights, against the so called zero-
days, namely those vulnerabilities that are not well known to vendors and from which it is
possible to defend applying some predictive mechanisms, since no patches to fix the issue
have been released yet. Such predictions are usually based on a paradigm called Tech-
nique, Tactics and Procedure (TTP) [16], aimed to analyse the potential behaviour of an
attacker or, more in general, of a threat actor, by including into the analysis the several
steps involved into an attack and other observations that can give important information
about possible flaws of the IT systems.

Cybersecurity risk assessment methodologies vary significantly, from asset-centric ap-
proaches focused on evaluating critical systems, to threat-focused assessments that an-
ticipate attacker behaviour, to vulnerability-based scans that detect specific weaknesses.
Despite the advancements offered by each approach, existing methodologies face key lim-
itations in scalability, adaptability, and accuracy. These issues become particularly evi-
dent in complex systems where the interconnectedness of assets and threats creates highly
dynamic attack surfaces. Traditional methods often struggle to account for these relation-
ships comprehensively, limiting their effectiveness in predicting how threats may spread
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Introduction

from one component to another. Moreover, many current solutions are dependent on the
expertise of analysts, which, while valuable, introduces potential for inconsistency and
overlooks hidden threats in large-scale or rapidly changing systems.

An emerging response to these challenges is the ontology-based approach, which lever-
ages structured knowledge representation to establish formal relationships between assets,
threats, vulnerabilities, and security controls. By creating a semantic model that connects
various components within a system, ontology-based cybersecurity risk assessment enables
a more systematic and automated threat propagation analysis. This structure can enhance
the detection of hidden attack pathways, making it possible to infer new relationships that
may not be immediately apparent. However, while promising, even ontology-based models
often lack robust mechanisms for predicting threat evolution dynamically or quantifying
the probability of different attack paths in real time.

Building upon the foundation of ontology-based assessment, this thesis proposes a novel
approach to automating threat propagation analysis by integrating Bayesian Network
modelling. Our goal is to enhance the accuracy and scalability of threat prediction by
creating a probabilistic model that can dynamically evaluate the likelihood of various
attack paths. This model goes beyond static representation, allowing for real-time updates
as new threats, vulnerabilities, or interconnections are discovered within the system. By
leveraging Bayesian Networks, we can quantify the conditional probabilities associated
with each threat path, providing a more nuanced assessment of potential risks.

The contribution of this research is twofold: first, it aims to address the limitations
of existing cybersecurity risk assessment approaches by automating threat propagation
predictions, reducing reliance on manual analysis; second, it introduces a probabilistic
framework that can adapt to new threats and attack techniques, ultimately providing
organizations with a more resilient and responsive risk assessment tool.

The remainder of this document is organized as follows: Chapter 2 provides the nec-
essary background, outlining the core concepts of cybersecurity risk assessment method-
ologies and their respective strengths and limitations. Chapter 3 presents related works,
analysing current solutions and identifying areas for improvement. Chapter 4 details the
proposed Bayesian Network model for threat propagation, explaining its structure, advan-
tages, and potential applications. Chapters 5 and 6 discuss experimental results, validate
our approach, and conclude with future directions.
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Chapter 2

Background

The purpose of this chapter is to give the basic understanding for the cybersecurity risk
assessment and to explore the landscape of the latter, including the role of attack graphs
and in understanding the threat propagation.

2.1 Cybersecurity Risk Assessment Approaches
A cybersecurity risk assessment is a systematic process with the scope to identify vulner-
abilities and threats within an organization’s IT environment, evaluating the likelihood of
a security event and the potential impact of the latter on the CIA triad (Confidentiality,
Integrity, Availability) [4], so to identify the risks to organizational assets, individuals,
other organizations, and the Nation, resulting from the operation of an information sys-
tem. The CIA triad is used as model designed to guide experts in securing the systems
involved in an IT infrastructure and it represents the assets’ properties to be protected,
depending on the typology of the asset itself, and providing the possible targets of threats
or attackers exploiting vulnerabilities. This process typically provides guidance and rec-
ommendations for implementing additional security controls designed to counter the orga-
nization’s threats. In particular, these controls aim to reduce the risk stemming from the
exploitation of vulnerabilities, that is, any weakness in an information system, its security
procedures, internal controls, or implementation that could be exploited by a threat to
trigger a security event.

The paper written by Paulsen [25] gives a complete list of the terminology definitions
typically used in the cybersecurity context, including the description of assessment, CIA
triad, vulnerability and everything else can be applied to the cybersecurity landscape.

The cybersecurity risk assessment process is composed of multiple interconnected steps,
that are generally followed to perform it:

1. Scope Definition: establish the boundaries and objectives of the assessment by
identifying the systems, processes, and assets to be evaluated.

2. Asset Identification: catalog critical assets, such as hardware, software, data, and
human resources, that support the organization’s operations.
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3. Threat Identification: recognize potential threats, including cyberattacks, natural
disasters, and insider risks, which could compromise the identified assets.

4. Vulnerability Identification: detect weaknesses in systems, procedures, and con-
trols that may be exploited by the identified threats.

5. Risk Analysis: assess the likelihood of threat exploitation and the potential impact
on the confidentiality, integrity, and availability (CIA) of assets.

6. Risk Evaluation: prioritize risks based on their severity and the potential business
impact, guiding where immediate attention is required.

7. Risk Mitigation: develop and implement strategies, such as enhanced security
controls or disaster recovery plans, to reduce or eliminate the identified risks.

8. Monitoring and Review: continuously oversee the risk environment and the ef-
fectiveness of mitigation measures, updating the assessment as needed.

However, there are several approaches for experts to evaluate risks, and the decision of
which approach is the best is usually controversial. In fact, each approach differs on the
order of those steps and on which step they focus more, in order to emphasize different
aspects. Of course, each one has pros and cons, and thus experts often choose the approach
based on their experience and knowledge.

Contextually, cybersecurity risk assessment approaches are many and differ on what
they are focusing on as basement for the risk analysis, even if they pass through the same
elements of the process, but the most used are the following [27]:

• the asset/impact-oriented approach, in which the purpose of the assessment is
to firstly identify which are the primary and secondary assets of a company (e.g.
server, data, networks and so on), such that they are important for the company’s
stakeholder, meaning they may compromise some economical and legal aspects. As-
sets are prioritized following the economic impact they have for the company and
at the same time which of them disrupt the business continuity in case they are
compromised. With this approach, for each of the identified asset, the focus is on
studying the factors exposing those critical assets to possible compromising to reach
some goals, along with the evaluation of the possible impact of those attacks on the
CIA triad on several fields of interest for the company. Vulnerabilities are usually
identified by using the support of online platform as the NVD1. At the end, an ex-
pert is able to define which are the controls to be applied to each asset, in order to
mitigate the threats or, at least, to reduce the risk of the threat to compromise the
asset. This approach is generally used because of the focus on the assets, so that the
most critical can be paid attention, but they may not keep trace of possible external
threats, since the attention on the internal assets may not consider zero-days or new
attackers’ techniques and tactics.

1https://nvd.nist.gov/
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• the threat-oriented approach, in which the focus is moved to the identification of
both internal and external threats that may compromise the system, rather than the
assets themselves. With this approach, it is easier for the expert to try to predict
attackers’ Techniques, Tactics and Procedures (TTP), since known and potential
attacks are studied and identified and placed as starting point for the vulnerabilities
individuation and the evaluation of their impacts. It usually relies on frameworks
such as CAPEC2 and MITRE ATT&CK3, how threats can develop throughout the
IT environment. In particular, CAPEC provides a catalogue of common attack pat-
terns, showing how adversaries are able to exploit weaknesses of applications and
giving to the users a way to analyse threats using a standardized way, enumerating
and describing them by providing the prerequisites, the consequences, the likelihood
and the skill required by the attacker, along with the description of the pattern it-
self. Usually, it is used in combination with MITRE ATT&CK, which provides a
knowledge base about the attackers’ TTP, both external and internal, giving to the
experts information that can be useful to determine which are the most appropriate
security controls to be applied and, furthermore, to proactively apply countermea-
sures to avoid attacks or to circumscribe them, rather than to be reactive, and so
to apply countermeasures after the security event. This leads to the possibility to
detect external threats and to mitigate even emerging ones, such as the zero-days,
but at the same time it may open the door to some attacks targeting less critical
assets or exploiting old vulnerabilities, or, even more, it can lead to the possibility
to find false positives.

• the vulnerability-oriented approach, in which the first focus is moved to the spe-
cific vulnerability identification, in order to assess the risk by detecting the weak-
nesses of the system that can lead to the realization of a threat. Usually it relies
on vulnerabilities scanners such as Nessus4 and OpenVAS5, that are able to analyse
the system in a way to find well known vulnerabilities and often indexed taking
advantage by the CVSS (Common Vulnerability Scoring System) [29]. It is usually
used in combination with other approaches, since it is not able to identify emergent
vulnerabilities or to detect new threats that use several vulnerabilities in combi-
nation, deviating the attention from the assets, and so leaving the possibility to
underestimate the criticality of the latter.

All advantages and disadvantages of the above methods are summarized in Table 2.1,
to give the reader a way to better understand the bullet points of each assessment method
previously presented.

However, the list is not exhaustive, since many other approaches exist, even if they are
less used or known, but it is enough to have the needed overview of the work behind the

2https://capec.mitre.org/
3https://attack.mitre.org/
4https://www.tenable.com/products/nessus
5https://www.openvas.org/
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Background

cybersecurity risk assessment and, at the same time, to avoid the reader to be overwhelmed
by a very large amount of information, which would not be further useful in this document.

Assessment
Approach

Advantages Disadvantages

Asset-Oriented
• Focuses on critical assets.

• Helps prioritize resources
based on asset
importance.

• Limited consideration of
dynamic threat
landscape.

• May overlook
vulnerabilities not
directly linked to key
assets.

Threat-Oriented
• Targets known threats,

enabling proactive
defences.

• Adaptable to changing
threat intelligence.

• Relies heavily on
up-to-date threat
intelligence.

• May miss vulnerabilities
unrelated to active
threats.

Vulnerability-
Oriented • Identifies weaknesses that

could be exploited.

• Provides a detailed view
of security gaps.

• Can result in overload of
low-priority issues.

• Less focus on specific
threat scenarios or asset
impact.

Table 2.1. Advantages and Disadvantages of Different Cybersecurity Assessment Approaches

2.2 Ontology and Its Applications
The ontological approach in the sciences has been widely used since the XVII century to
bridge the gap between researchers’ interpretations of reality, approving it. It facilitates
the definition of a common language for discussing a specific topic, including the termi-
nology and the relationships between the entities involved in an ontology. Ontology is a
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philosophical term that can be applied to various scenarios and is particularly useful in
science when complex subjects need to be modeled and discussed. It allows for the formal-
ization of semantics and the rules governing the study environment, while also providing
a cutting-edge representation of the underlying domain as the ontology evolves alongside
the relevant literature. In fact, to develop an ontology, one must define the entities and
the relationships between them, often based on rules and constraints that can also be
specified by the user. Nowadays, numerous tools and descriptive languages are available
to define ontologies from scratch, or even to build upon other related (or unrelated) on-
tologies. For example, one of the most famous ontology, developed by W3C6 is the Wine
Ontology, which employs one of the most used knowledge representation language for au-
thoring ontologies, that will be briefly presented later in Chapter 3. Some tools are also
able to make the ontology more human-readable, giving the possibility to represent it as
a graph, hence made of nodes, the entities, and links, the relations, and showing how the
entities of the ontology are involved into the connections, providing information about the
relations acting as links between two nodes.

Figure 2.1. Example of visual representation of the Human Ontology.

Figure 2.1 shows a very simplified representation of the human ontology. From the
point of view of the ontology, we can figure out three main characteristics in the graph,
that in general are very close to Object Oriented (OO) languages and typical high level
representation of classes:

6https://www.w3.org/
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• the Entities, labeled with a yellow circle. The entities are the nodes defining a class,
hence an object having some properties, subclasses, relations and a key role into the
ontology.

• the Properties, represented as directed arrows, defining details about the relation-
ships between two or more entities.

• the Individuals, labeled with a violet rhombus. The individuals are, instead, nodes
representing instances of a specific entities: the biological gender can be male or
female, the eye colour can be brown, green, blue.

For this reason, it is smart to apply ontological approaches to the cybersecurity envi-
ronment, a field that continues to evolve over the years and that is becoming increasingly
more complex as technology and knowledge progress. For instance, Quantum Computing
is one of the most important topics of interest for several countries, opening the door to
new opportunities in both IT and the cybersecurity domains.

Ontologies can represent the cybersecurity knowledge in a structured and semantic
fashion by defining the relations between assets, threats, vulnerabilities and cybersecurity
controls, easing the assessment process. Thus, the construction of an ontology provides
a knowledge model capable of describing IT systems and other complex systems, espe-
cially in the context of companies, where their complexity often makes difficult to infer
interdependent threats and link assets, making hard to detect hidden threats or data
correlation.

In a nutshell, we can define the ontology from an high level as the main representation
of a model having entities with relationships between them, and so defining what are the
main components of the system from an abstract point of view, in order to visualize the
potential connections between the several nodes of a system.

Instead, we refer to sub-ontologies, when applying an ontology to a specific system and
using the defined inference rules on that system. As an example of application, we can
consider the cybersecurity ontology, which links asset entities with vulnerability entities,
thereby inferring the existence of a threat. Consequently, whenever a new asset is added
to the sub-ontology and a new vulnerability is linked to that asset, we can infer that a
new threat exists, which may lead to potential attacks from external or internal vectors.

The usage of an ontology brings very interesting features, since having a structured
model to represent the elements involved in the risk assessment process makes possible to
automatize the creation of inference rules, allowing to delete or partly remove the human
error and the misinterpretation of the information by experts, that only relies on their
experience and knowledge. Moreover, having ontologies leads to very important advan-
tages on the efficiency of the system representation due to the possibility to dynamically
and promptly be updated and evolved whenever new threats or vulnerabilities are found.
In fact, the object-oriented representation of entities offers the advantage of allowing the
system to grow both vertically and horizontally, incorporating additional relationships
between nodes. However, although the ontological approach is recommended for the rea-
sons discussed above, its downside is the complexity encountered when creating a new
ontology. It is not trivial to organize the domain’s elements and avoid errors in complex
systems. Moreover, the ontology must be updated to align with emerging threats and
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remain consistent with the state of the art, which requires significant effort from the op-
erators. For this reason, ontologies are usually not built from scratch; rather, they are
developed by building on existing, even if incomplete or partially developed, ontologies,
making it easier for authors to create coherent sub-ontologies tailored to specific cases or
studies.

2.3 Threat Propagation and Attack Graph
As briefly discussed in section 2.1, there are several cybersecurity risk assessment ap-
proaches, that differ in the way the assessment is performed, the starting and the inter-
mediate points, and sometimes the metrics that are used to achieve the final goal.

However, another aspect that must be highlighted and that it is not fully covered by the
cybersecurity risk assessment nowadays is how the threats in a node of the IT environment
can propagate over the system and how it can affect the evaluation of the risks. In fact,
the cybersecurity risk assessment performs an evaluation regarding the so called "well-
known vulnerabilities", even if nowadays automatic tools are able to significantly help
the assessment process, by founding the vulnerabilities and the potential threats in the
system, supported by many open technologies that are accessible by any one in the web
and that are widely used by the experts.

Companies and whatever entities involved in the cybersecurity assessment must be
aware of the state of the art of the new attacks, that are not known a priori and so it is
impossible to be assessed in a "static" way. Moreover, attackers may overpass cybersecu-
rity controls and protections by exploiting the vulnerabilities in other nodes, performing
complex and articulate attacks, that usually are composed by many steps before reaching
the final goal. The sequence of the steps are commonly known as attack patterns and
are, even in the past, used to try to predict the possible tactical layers and techniques
involved by adversaries to create threat models to overcome the weakness of the basic
cybersecurity risk assessment. The attacker can be driven to target a company asset by
many reason, and understanding which are these reason is crucial for the interpretation of
an attack pattern, along with the technique that is used to compromise the target (lateral
movement, privilege escalation, and so on), that can give a lot of information considering
which are the adjacent nodes that can be apparently be not related to the target node,
but that rather opens the door to possible attack patterns.

Due to the complex IT systems and to the unstoppable evolution of the state of the
art of the attacks, the analysis of the attack patterns is not trivial, considering the several
amount of information to be analysed in an organization environment. Furthermore, the
complexity of the possible scenarios does not ease the automatization of the processes
involved into the attack patterns analysis and their application to the IT environments
and no final solutions exist nowadays.

This document wants to go into the details of the threat propagation analysing the
solutions in the literature, along with their advantages and disadvantages, in order to find
a possible proposal leveraging on the automation of this process.

Several papers exist, of researchers that studied the possible solutions in the last tens
of years and that gave their contribution to the deployment of proposal, even if only in

17



Background

theory.
Attack graph is a widely used model for network-security analysis, that is able to

analyse the attack paths that can be followed by an attacker in the described system, in
order to achieve a specific goal. Understanding this will lead cybersecurity experts and
companies to predict complex attacks and to apply cybersecurity countermeasures in a
proactive way, highlighting which are the weaknesses of the system and at the same time
being hand in hand with the state of the art and avoid catastrophic consequences.

As Zenitani [33] explains, an attack graph is composed by nodes describing the ma-
licious event caused by the attacker and the edges correspond to the causal relations
between events. Attack graphs can have many representations, and in particular the pa-
per highlights the evolution of the latter. However, the main components are usually the
same:

• Network configuration, namely the list of the hosts and the connection structure
among them, including the software configuration on each host.

• Vulnerability distribution, hence the list of pairs of a vulnerability and a host to
highlight the ones the host is affected by.

• Threat, namely whatever entity that is able to exploit a vulnerability to gain access
to the system.

• Attack template, finally the description of the mechanisms and techniques the
threats act to exploit the vulnerabilities to reach the target.

An attack graph merges all this information and creates a chain of exploits, the so
called attack path. The attack path is not in general the smallest piece of the chain, as
long as each chain can include smaller chain of exploits. In general, we can point out that
the longer is an attack path, the more secure is the system, in the sense it is required
more effort from an attacker that wants to compromise in such a manner the system.

Moreover, given the nature of an attack, the representation of the attack graph is
usually described as a cyclic structure. The reason behind this sentence is that an attacker
could need to come back to a previously compromised node (e.g. after having performed
privilege escalation) to exploit a vulnerability, allowing the creation of cycles in the attack
path.

The very first representation of an attack graph, early abandoned for the complexity
of the generation algorithm, was the state enumeration graph. This type of graph needs
a generation algorithm with exponential complexity: if we consider a network of N ma-
chines, each of them having M vulnerabilities, the graph will need a node for each possible
state according to the machine and the vulnerability, namely 2NM combinations. This
situation clearly led to scalability problem even for small networks, and it is not applica-
ble to real cases, as the first attempters Swiler et al. [31] and Ritchey and Ammann [26]
highlight in their researches.

Figure 2.2 shows a perfect example of a very complex state-enumeration graph, that
underlines the complexity of such network, taken from the paper written by Li et al. [17].

18



2.3 – Threat Propagation and Attack Graph

Figure 2.2. Example of state-enumeration graph [17]. We can observe the complexity of
this kind of representation to be analyzed and traversed to infer the threat propagation

Finally, to overcome this problem, the exploit-dependency graph took hold in the sub-
sequent papers. The concept paternity is to be given to Ammann et al. [1], while the
node organization to Jajodia et al. [15]. This structure is a bipartite graph having two
different types of node, and it is very important to understand this to go forward with
this document. The graph includes the exploit node and the condition node, whereas the
edges link the conditions to the exploits or vice versa. It is forbidden to have nodes of
the same types linked together. With this configuration, it is additionally possible to
differentiate the condition nodes into preconditions and postconditions. The preconditions
are those conditions that are needed by a threat in order to make an exploit happens,
hence they are necessary for that exploit. Rather, the postconditions are the fruits of the
exploitation of a vulnerability or, more in general, of the success of the exploitation. In
order to make a chain of exploits, the postconditions can be the precondition of other ex-
ploits. Given this macro categorization, we can further split the conditions into creachable,
cvulnerable and ccompromised. The first two are possible preconditions, while the last one is
the postcondition.

Figure 2.3 shows an explanatory example of the dependency-graph representation with
the relevant nodes.

Since we can say an exploit node is reachable if and only if the preconditions are
all satisfied, we can imagine the exploit node as an AND gate having the precondition
nodes as inputs. The postconditions, instead, can have multiple parent exploit nodes,
but actually it is enough for the attacker to reach only one exploit node, in order to gain
the postcondition, namely we can interpret the condition node as an OR gate having as
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Figure 2.3. A minimal attack graph [33].

inputs the exploit nodes.
Once an overview about the attack graphs representation at an high level is given in

this Section, we have the foundation of the threat propagation analysis, based, mainly
on the exploit-dependency graph, which generation algorithm has a computational cost
O(N2 + NM).

However, even if the representation of the attack graph is given, there is no specifi-
cation about how to describe each node of the graph. In fact, the attack graph can be
considered as an aggregation of the several attack paths involved during the analysis, so
the representation of the attack templates.

2.4 MulVAL in a nutshell
One of the most important research in the field of attack graphs is the one conducted by
Ou et al. [24], that proposed a Datalog-based open source solution, called MulVAL (Multi
host, multi stage Vulnerability Analysis). Datalog is a logic programming language, subset
of the Prolog language, that is used to create clauses which are used by the tool to gather
information. Ceri et al [5] provided a full Datalog guide, describing how clauses can be
built in a general context.

The main inputs to MulVAL are the listed below, followed by a brief description one
by one and an example, taken from the paper:

• Advisories, such as the detected vulnerabilities.
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• Host Configuration, in order to describe the list of software and services running
on the host.

• Network Configuration, in order to describe the network devices’ configuration
(i.e. routers, firewalls, etc).

• Principals, namely the users of the network.

• Interactions between the components.

• Policies, to declare access permissions.

The Advisory is represented by a Datalog clause that describes the vulnerability that
was detected in previous scans.

1 vulExists (webServer , ‘CAN -2002 -0392 ‘ , httpd)

The Host Configuration can be retrieved by scanners as well, exporting information
such as some parameters referred to a service program.

1 networkService (webServer , httpd , TCP , 80, apache )

The clause specifies that a webserver is running a program called httpd as user apache
and listening at port 80 using TCP protocol.

The Network Configuration is modelled as the host access-control list (HACL), that
can be provided by network tools such as firewall management tools. An example of
Prolog clause is the following.

1 hacl(internet , webServer , TCP , 80)

The clause specifies the incoming traffic from the internet to the webserver is allowed
to flow to port 80 with TCP protocol.

The Principal is a binding between a user and its account. Of course, each principal
is related to specific policies, so it is important to specify this clause.

1 hasAccount (user , projectPC , userAccount )
2 hasAccount (sysAdmin , webServer , root)

The Interaction is crucial when we want to analyze possible attack paths. In fact, each
stage of an attack can be influenced by some specific configuration, operating system or
the vulnerability running on the specific node. The clause, in this case, is represented
as a Prolog Horn clause, meaning that the first line stands for the Conclusion, while the
following ones, preceded by the symbols ":-", are the Conditions.

1 execCode (Attacker , Host , Priv) :-
2 vulExists (Host , VulID , Program ),
3 vulProperty (VulID , remoteExploit ,
4 privEscalation ),
5 networkService (Host , Program ,
6 Protocol , Port , Priv),
7 netAccess (Attacker , Host , Protocol , Port),
8 malicious ( Attacker )
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This apparently hard to be understood clause is not actually complex, knowing how
to read it. As the conditions must be verified, it is important to start from them, before
reading the conclusion. If we have a potential attacker having access to a specific host,
which is running a program on a specific port and protocol and with a specific privilege
level, the attacker can exploit a vulnerability and execute arbitrary code on that host.

Finally, Policies describe which principal can have access to data and whit which
permissions.

1 allow(Everyone , read , webPages )
2 allow( systemAdmin , write , webPages )

Taking in account the Horn clause, we can define some more points. The left-hand
side is called Head, while the right-hand one is called Body. When an Horn clause has
an empty body is called Fact, otherwise, it is called Rule. In this way, we can define
Interaction Rules that can be used by the tool by its reasoning engine, avoiding the
necessity to update them frequently, since they are as general as possible, characterizing
general attack methodologies instead of specific ones.

The algorithm of this tool is divided into two main phases:

• the Attack Simulation stage, which analyzes all possible data accesses that can
result from multistage, multihost attacks deriving them from the interaction rules

• the Policy Checking stage, in which the attack simulation output is analyzed and
compared with the policies, in order to detect violations related to the permissions,
and so outputting those violations.

However, it is important to point out that MulVAL is a flexible tool: even if this com-
ponents are described, it can work even if it is not very complete (e.g. it can work without
using any policy), but at the same time can be enriched with many other information,
such as metrics, more specific interaction rules and so on. The options are described in
the public project repository7.

At the very end, providing all this files and inputs, the tool exploits its engine, the
XSB Logic Engine [28], that is able to interact with databases and produce the attack
graph into csv files, or in pdf format to visualize it, if you want, just embedding the tool
called Graphviz [10], that is able to produce graphs.

The tool comes with two versions, so that it can be installed both in Linux-based
systems or over other platforms. To have information on how to setup correctly the
environment, Lin’s Treasure 8 has written a very useful guide, even for the Docker version.
Finally, the embedded graph generator is able to produce the output given the input files
with a simple command.

1 graph_gen .sh input .P -v -p

7https://github.com/risksense/mulval
8https://kazumi.blog/posts/2023/07/how-to-setup-mulval/#mulval-from-scratch

22



2.5 – Bayesian Network

2.5 Bayesian Network
The last section of this chapter is focused on the Bayesian Network (BN) and its properties.
The attack graph alone is not able to provide the medium to analyse the attack paths:
it allows to represent them, but it doesn’t give to the user any information about the
probability an attack is successful, that is the primary interest of experts when the attack
pattern are studied.

Stephenson [30] wrote a paper to explain how a BN works, mixing together theory and
usage. The BN is a peculiar structure that relies on a Directed Acyclic Graph (DAG). It
means that, rather than allowing cycles and allowing bidirectional moves between nodes,
it only allows to go from a node (called Parent or Ancestor node) to another one (the
Child or Descendant) in just that direction, and, moreover, it does not allow the creation
of cycles, but a child can’t have more than one edge linked with the parent, that is an
incoming one. Figure 2.4 and Figure 2.5 clarify the differences between the two, showing
very simple examples to identify the differences.

Figure 2.4. On the left an example of Graph model, with bidirectional edges. On the
right, an example of Directed Acyclic Graph.
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Figure 2.5. Example of graph with a cycle (the gray one). By definition, it cannot
be considered as structure for a Bayesian Network, since it could allow to return
back to a previous node.

We can represent a BN as a set of edges E = {e1, e2, e3, ...}, each one connecting two
nodes with the explained constraints, so respecting the DAG rules. If we consider two
nodes, A and B, connected by an edge starting from A and ending at B, eAB, it implies
that node B is conditionally dependent on node A, meaning that the probability node
B is True depends on the probability of node A is equal to True. In this case we speak
about Conditional Probability and, accordingly to the paper, we speak about Inference.
Inference is the task to calculate the probability of a node in a BN when the values of
the other nodes are known. This property of the BN gives us the possibility to create
Conditional Probability Tables (CPT) for each node, in order to be then inferred when
we want to find a path. We can think the CPT as a table including some variables that
must be evaluated, depending on the values of the ancestors, and so a table including
the variables as rows and the ancestors’ values as columns. The intersections will be the
current variables’ values in the specific node. The possible values are True or False, with
their probabilities.

Figure 2.6 shows an example of Bayesian Network, including the Conditional Proba-
bility Tables.

24



2.5 – Bayesian Network

Figure 2.6. Each node of the Bayesian Network has its own CPT. Node C depends on
the values of the ancestors A and B.

Creating the Bayesian Network implies knowing the local probabilities of each node,
but it does not mean those probabilities are related each other, so they are not generated
because of the connections between the nodes themselves. Rather, the conditional prob-
abilities, called also Marginal Probabilities need to be computed via the inference in the
BN. There is no a unique method to compute such probabilities, but they are many with
their pro and cons. Depending on the necessities, we can distinguish two main categories:

• the Exact Inference, which computes the probabilities precisely, but they are com-
putational expensive.

• the Approximated Inference, which rather computes the probabilities with faster
algorithms, providing a degree of imprecision.

For the scope of this Thesis, this chapter will provide a description of only two methods
belonging to the first category. In the field of security, it is important to achieve an
high accuracy when calculating the probabilities as they are computed as quantitative as
possible, but they are usually evaluated qualitatively; it is hard to quantify a probability,
because it usually depends on several factors, strictly related to both technical or human
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aspects. Even more, the probability diminishing we want to obtain can be meaningless
if we don’t give the right weight to the latter. To understand this sentence, I propose
two toy questions: is it worth to spend more money to implement additional controls and
achieve a 5% less probability of an attack to be successful? How much does the attacker
effort increase if it wants to compromise a critical asset?

For this reason, the two methods that are summarized in Table 2.2, with advantages
and disadvantages are the Variable Elimination and the Belief Propagation, which belong
both to the category of Exact Inference. Actually, even hybrid solutions can be explored,
since in complex systems and networks the number of nodes can be increasingly costly to
be analyzed through a BN, with particular attention to enterprises.

Inference
Method

Description Advantages Disadvantages

Variable
Elimination (VE)

It simplifies the
process of conditional
probability
calculation by
eliminating the
hidden variables from
the computation.

Suitable for
single queries.

Limited
scalability, and it
must be repeated
for each query.

Belief
Propagation
(BP)

It propagates beliefs
via messages through
nodes, first with a
bottom-up approach,
then with a top-down
one, to update the
marginal probability.

Suitable for
multiple queries,
even if there are
cycles.

It may converge
very slowly or not
at all in networks
with loops.

Table 2.2. Advantages and Disadvantages of Variable Elimination and Belief Propagation
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Chapter 3

Related Works

While Chapter 2 gives information about the cybersecurity risk assessment methodologies,
the theory about what concerning the attack graph in the context of threat propagation
and about the Bayesian network, along with the technology used to generate the attack
graph itself, this chapter of the thesis will focus on the works that were useful to under-
stand which is the state of the art of threat propagation and threat analysis, aligning
them with the current used technologies and synergies on what discussed in the previous
chapter. The information gathered from the following sources have been used to design a
possible solution to automate the cyber attack simulation in IT infrastructures, presented
in Chapter 4, with the goal to compute the attack paths probabilities and to predict
the possible attacker behaviour, since they discuss frameworks that have been already
validated with positive results.

3.1 IT Ontology Model
The papers by De Rosa et al. [9] and Maunero et al. [19] show how ontology can be
applied in the field of cybersecurity, highlighting the bullet points and showing a project
called ThreMA, that is placed at the foundation of the idea behind this document, since
this work pretends to be a kind of continuation of such a project.

As the name suggests, the concept of threat propagation requires a thorough under-
standing of the threats that are present in an IT infrastructure. ThreMA is designed to
support this understanding by automatically identifying and mapping these threats to spe-
cific ICT components, enabling analysis of possible propagation paths using a structured
ontology.

ThreMA [9] is a threat management tool suitable for various ICT environments, work-
ing in coordination with a security team to provide insights into potential security risks.
By leveraging an ontological model, ThreMA offers both scalability and adaptability,
which are essential for handling complex and changing cybersecurity challenges.

In Figure 3.1, the architecture of ThreMA is shown, standing thanks to an ontology-
metamodel divided into three sub-ontologies:

• ICT sub-ontology: Contains the vocabulary and rules required to model the ICT
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Figure 3.1. The ThreMA architecture [9].

infrastructure. This sub-ontology describes each component of the system’s archi-
tecture, enabling detailed representation of assets and their relationships.

• Data Flow sub-ontology: Represents the data flows between components, en-
abling a traceable path for information exchanges across the system. This level
of traceability is essential for identifying how threats could potentially propagate
through the system.

• Threat sub-ontology: Models various types of threats based on their properties
and potential behaviour patterns. This sub-ontology enables ThreMA to system-
atically map threat types and their relationships with system assets, supporting a
structured approach to threat modelling.

ThreMA’s ontology is developed using the Protégé [21] tool, with OWL2 [6] as the
ontology description language, allowing for detailed and formal representations. To rea-
son over the threats and ICT components, ThreMA utilizes SWRL (Semantic Web Rule
Language) [14], specifying rules that allow for automated reasoning across the ontology.
Through these inference rules, ThreMA automates the identification and classification of
threats, providing the insights necessary for a proactive approach to cybersecurity. The
inference engine applies these rules across the ontology’s components to enable the detec-
tion of potential threat scenarios, which is fundamental for understanding and predicting
how threats may propagate.

The paper by De Rosa et al. [8] introduces a framework that supports cybersecurity
governance through a dedicated ontology for ICT systems. The objective of this work is
to provide a structured and semantically rich model to manage and secure complex ICT
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infrastructures, where the relationships among various assets and security requirements
demand an organized and adaptable approach.

The developed ontology enables a systematic representation of key ICT system compo-
nents, including assets, actors, vulnerabilities, and threat vectors. This structured model
facilitates the identification of security gaps and interdependencies that may impact the
overall security of the system. One of the primary features of this model is its integra-
tion of risk assessment within the governance structure, explicitly representing threats
and vulnerabilities. This setup allows for a dynamic risk evaluation, supporting security
teams in proactive responses as the threat landscape evolves. The vulnerability and attack
ontology represented in this paper is shown in Figure 3.2 to give an abstraction of the
concept behind this work.

Figure 3.2. Vulnerability and attack ontology [8].

Additionally, the ontology aims to automate various aspects of cybersecurity gover-
nance by leveraging inference engines for tasks like compliance verification, risk prioriti-
zation, and policy enforcement, thus reducing human error and improving the efficiency
of security management. The authors include real-world scenarios and case studies to
demonstrate how this model can be applied across different ICT contexts, confirming the
ontology’s effectiveness in capturing the complexities of cybersecurity governance.

Building on the foundations of ThreMA, the paper by Maunero et al [19] takes a step
further, proposing a method to automate the entire cybersecurity risk assessment process.
While ThreMA is focused on threat modelling in ICT infrastructures, this approach ex-
pands the use of ontologies to support risk assessment, from threat identification to the
evaluation of possible impacts.

This framework uses ontologies not only for threat detection but also for risk analysis,
taking into account aspects such as asset criticality, likelihood of threats, and potential
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impacts. This additional detail allows for an analysis that not only models threats but
also prioritizes them based on risk levels, facilitating the identification of high-risk paths
in the infrastructure.

The ontological framework proposed by Maunero et al. is structured to support rea-
soning that goes beyond ThreMA’s basic threat mapping, offering:

• Extended Threat Modeling: Beyond detecting threats, this approach incorpo-
rates attributes like vulnerability severity and asset exposure, allowing for a more
comprehensive assessment of threat propagation paths.

• Automated Risk Scoring: Each threat is assigned a risk score based on its impact
and likelihood, enabling the system to prioritize threat responses. This scoring sys-
tem supports more precise mitigation strategies by focusing on high-priority threats.

• Propagation Analysis: The ontology allows for simulations of potential threat
propagation scenarios across interconnected assets, evaluating the likelihood of dif-
ferent propagation paths within the infrastructure.

This approach creates a complete risk assessment model that automates threat and
risk management processes. The ontological methodology aligns with the objectives of this
document, which aims to implement threat propagation analysis to not only detect threats
but also assess their potential impact on system security. Expanding on the principles
established in ThreMA, this work provides a foundation for a cybersecurity assessment
framework capable of adapting to evolving threats through automated, ontology-based
reasoning. This ontology serves as a basis for implementing threat propagation analysis,
enabling the systematic prediction and response to complex threat scenarios.

Finally, the paper written by Fenz Stefan [11] bridges the conceptual clarity of ontol-
ogy with the inferential power of Bayesian networks to address the complex challenge of
threat probability estimation in cybersecurity. By leveraging ontology, developed based
on the guidelines provided by the NIST SP 800-12 [22], the work introduces a structured
model of ICT systems, integrating assets, data flows, and associated threats into a coher-
ent framework. The ontology not only defines the relationships between these entities but
also serves as the foundation for reasoning about their interactions and potential vulnera-
bilities. What sets this approach apart is the seamless incorporation of Bayesian Networks
into the ontology-driven model. While the ontology defines the semantic structure, the
Bayesian network adds a probabilistic dimension to the framework, enabling dynamic
threat propagation analysis. The probabilistic model allows to assess how specific vul-
nerabilities or compromises in certain nodes (e.g., assets) can lead to cascading effects
throughout the system, thereby quantifying the likelihood of an attack reaching critical
assets. This approach exemplifies the potential of combining declarative and probabilistic
methods to address cybersecurity challenges. It builds on existing works that use ontology
for threat modelling, such as ThreMA, but innovates by linking this formalism to prob-
abilistic reasoning. The result is a framework capable of handling both the qualitative
understanding of threats and the quantitative estimation of their impacts. In fact, even
if it is now impossible to work on standard metrics and measures allowing experts to use
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quantitative approached to the evaluation of the risk, it is in any case possible by an enter-
prise to switch from a qualitative approach to a quantitative one, following internal rules
and policies. However, the work also highlights the challenges associated with integrat-
ing these two paradigms, particularly in managing the scalability of Bayesian networks
as the system complexity grows. Overall, the paper underscores the value of unifying
ontology-based models with Bayesian reasoning to provide a more holistic approach to
threat assessment. This methodology lays the groundwork for an automated system that
not only models ICT infrastructures but also predicts the likelihood of specific threats
materializing, offering a valuable tool for risk management and decision-making.

3.2 Attack Graph and Bayesian Network
Along with the work by Zenitani described in Section 2.3, used as explanatory guide by
the latter in order to create attack graph and considered as milestone for the same, other
papers were deeply analysed, in order to better understand the literature behind the threat
propagation and the state of the art.

The following works still include concepts and ideas that rely upon Ontolgy and
Bayesian Networks, even if in a different way, but at the same time highlighting the
potentiality of the model based on that kind of structure, that opens the door to several
researches and possible implementations. Since the Thesis speaks about MulVAL in the
previous chapter, it won’t be mentioned in this one, even if it can be considered as a point
of departure for many other paper.

D’Ambrosio et al. [7] heavily relies on the paper written by Zenitani and on MulVAL
to show a possible implementation of the attack graph using Bayesian Networks. The
authors propose a Bayesian Threat Graph model that represents potential threat propa-
gation paths in a system, allowing for a structured analysis of both external and internal
threats. This approach demonstrates how Bayesian networks can model dependencies
and conditional probabilities associated with various attack paths, offering a probabilis-
tic perspective on risk exposure. A core focus of the work is on capturing the unique
risk dynamics introduced by insider threats—an area often overlooked in traditional at-
tack modelling. By quantifying insider threat probabilities and incorporating them into
a broader threat graph, the paper enables a more comprehensive risk assessment. This
methodology is particularly relevant for systems where insider actions can directly impact
security, as it offers a means of identifying and prioritizing high-risk scenarios based on
probability-based threat propagation.

The paper written by Tong Li et al. [18] highlights the efficiency and practical value
of leveraging attack patterns in security analysis, demonstrating how these structured
patterns can significantly enhance threat identification and response. By using attack
patterns, the authors show that security professionals can proactively anticipate various
attack vectors and apply pre-defined strategies to counter specific types of vulnerabilities,
improving both the accuracy and speed of threat modelling. One of the core concepts
presented is that attack patterns serve as a bridge between known vulnerabilities and the
tactics used to exploit them, thereby aiding in vulnerability assessment and risk man-
agement. The paper demonstrates how attack patterns can be mapped to specific threat
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actions, revealing the underlying mechanics of various attacks. This mapping allows for a
more comprehensive view of how certain vulnerabilities may be exploited across different
scenarios, making it easier to predict and mitigate similar threats in the future. However,
the study also underscores a critical limitation: the manual effort required to build and
maintain the attack models developed in the paper is substantial, making this approach
less feasible for real-world, large-scale systems. The process of manually constructing
and updating these models is time-consuming and complex, which presents a significant
barrier to implementing such methodologies on a broader scale. This limitation indicates
a gap between the theoretical effectiveness of attack patterns and their practical appli-
cation, suggesting a need for automation or alternative methods to make these models
sustainable in a dynamic threat landscape.

The paper by Hankin et al. [13] presents a framework for automatically generating
attack graphs by combining system topology, CAPEC attack patterns, CWE weaknesses,
and CVE vulnerabilities. The approach focuses on representing potential attack paths
within a network by integrating information about assets, vulnerabilities, and exploit
conditions. The framework models attacks using nodes and relationships, where exploit
nodes represent specific actions taken by attackers (e.g., exploiting a vulnerability) and
condition nodes represent system states required for an attack to progress. This combina-
tion allows the dynamic generation of graphs that trace possible pathways attackers could
use to compromise a system. By integrating threat databases and automating the pro-
cess, the framework emphasizes efficiency and scalability in generating attack scenarios,
making it a significant step toward automated cybersecurity risk analysis.

The idea to use frameworks like CAPEC to map attack patterns is valuable, but
however it requires too much technological effort in order to achieve the expected result.
In fact, nowadays there are no ways to easily link CAPEC patterns to the CVEs, but a
link to the CWEs must be found first, and that link not always exist. So, at the very end,
the possibility to use CAPEC as main instrument to create attack graph was discarded,
even if other works talk about it as a possible solution for future works, since a common
evaluation scale to evaluate threats and vulnerability in a quantitative way is always more
needed nowadays and, for this reason, the frameworks are growing up during the years
and many researchers are collaborating in such a way, so future integration are taken into
account in the literature.
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Contribution

The previous chapters allow the reader to understand which are the technologies, tools
and mathematical theories that are applied into the work described into this Thesis, giving
a general vision of the current literature in the field of cybersecurity risk assessment and
threat propagation, highlighting the major works done in what can be an attempt to
automatize a very complex process that nowadays is mostly done manually and with no
agreement between experts about which metrics to use and which frameworks to apply
into the assessment.

This Thesis claims to propose a methodology that can partly overcome the non-
automation problem, achieving good results basing on the papers presented in Chapter
3 and combining them, taking advantage from frameworks and tools that are used, but
that are not integrated each other to ease still mechanical and hard operations. The full
code can be found into the Appendix ?? and into my GitHub 1.

The idea behind the semi-automation of the threat propagation analysis process is to
split the pipeline into three main steps:

1. create the Cybersecurity IT Ontology to represent the enterprise network infras-
tructure and characteristics of the nodes.

2. give the adapted ontology to MulVAL, in order to generate the attack graph.

3. take the MulVAL’s output and the suitable metrics to generate an Attack Bayesian
Network and compute the attack paths probabilities.

Figure 4.1 shows graphically which the pipeline is composed of.
The remaining of this chapter aims to expand each step of the proposed solution and

to give some more details about how it can be implemented. In particular, the focus of
this chapter will point out the third step, since the Thesis provide a Proof-of-Concept
realized with Python [32], that will be further shown, with its classes and main methods,
relying in modules such as Pandas [20], NetworkX [12], PgmPy [2] and Arango [23].

1https://github.com/StefanoSIIacono/TP-Thesis
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Figure 4.1. The proposed pipeline. The first step is represented by the ontology created
with tools like Protégé, to represent the IT infrastructure. The ontology is than parsed
to Prolog, passed to MulVAL, that runs the reasoning engine to create the attack graph,
used, along with the CVEs weights taken from ArangoDB, to generate the ABN, with
the tool provided in this thesis.

4.1 Ontology-based Infrastructure
The first step of the pipeline is crucial for understanding and describing the infrastructure
and topology of an enterprise’s network as comprehensively as possible. This means that
every logical and physical component that could potentially contribute to the compromise
of business continuity must be mapped within the Cybersecurity IT Ontology.

To achieve this, tools like WebProtégé 2 can be used to create classes and represent
each node of the topology. The core idea is to model all assets, vulnerabilities, threats,
controls, data flows, and other cybersecurity-related elements as Objects and to establish
relationships between them using Properties. Each class, that is the high visualization
of the instances, includes a certain number of Individuals, namely the real instances that
model the IT infrastructure under analysis. This approach follows a logical structure that
allows for future updates to the ontology. As mentioned in previous chapters, the strength
of an ontology lies in its flexibility and adaptability, enabling it to stay up to date with
state-of-the-art developments, including zero-day vulnerabilities and emerging threats.

2https://webprotege.stanford.edu/
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Figure 4.2. The WebProtégé Dashboard. In section Classes it is possible to create
new instances with the button highlighted in yellow. The list of the created classes
is highlighted in orange.

Figure 4.3. In section Properties it is possible to create the links between the classes.
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Figure 4.4. It is possible to select the relationships a class owns, accordingly
to the logic of the ontology.

Figure 4.5. The individual creation. It is possible to specify the important parameters,
given by the WebProtégé GUI.

With WebProtégé it is possible to create complex ontologies, represented as complex
networks of classes. The main actions it is possible to perform on WebProtégé are the
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following:

• Class creation, inserting the name of the class (Figure 4.2).

• Property creation, inserting the name of the property, along with the Domain, hence
the source class, and the Range, namely the destination Class (Figure 4.3).

• Relationships creation (Figure 4.4).

• Individual creation, inserting the class it belongs to and the relations it is related to
(Figure 4.5).

As a starting point, however, the thesis builds upon a project that is, in a way, related
to this one, namely ThreMA, previously described in Section 3.1. This project is already
quite complete and makes use of frameworks that are expected to expand further in the
future. Moreover, despite its current complexity, it can be easily updated. For these
reasons, the ontology proposed in that framework perfectly fits the content of this thesis,
even cause it is common to take an already existing ontology to be updated and enriched.

Nevertheless, as mentioned before, the issue with MulVAL is that it currently only
accepts Prolog input files, whereas ontologies typically use different languages to represent
their instances, such as OWL2. To figure out it, the proposed solution designs an Ontology-
to-Prolog converter, capable of systematically transform an individual from the ontology
into a Prolog clause that describes that component of the topology. Since the ontology
is complete, it only requires a mapping from its classes to the clauses that MulVAL can
interpret in order to generate an attack graph, so clauses describing the assets, the hosts,
the network configuration, the vulnerabilities and so on.

Additionally, ThreMA is capable of scanning the network to identify vulnerabilities
and threats affecting assets. This feature can also be leveraged to map vulnerabilities into
Prolog, further enhancing the integration between the ontology and MulVAL.

4.2 From MulVAL to the Attack Bayesian Network
The second and third steps are closely related to each other, to the point that they can be
merged into one. In fact, when the inputs are provided, MulVAL is able to automatically
generate the attack graph in the form of csv files, or even graphically into a pdf file,
and, moreover, it also gives the running rules, namely the subset of the rules included in
interaction_rules.P and affecting the graph generation, that are applied to the specific
case defined in the input file. This rules will be further integrated into the Attack Bayesian
Network, since they also gives information about the probability of the nodes and they
are fundamental for the conditional probability tables building.

The interaction_rules.P file is the default one, also used in this thesis, even if it can
be customized by the user, since MulVAL is also able to be provided of metrics to be used
in the graph generation. It defines how entities (e.g., hosts, programs, users) interact in
a cybersecurity context. These rules are used to model the dynamics of a cyber attack,
specifying how vulnerabilities, permissions, and network configurations can lead to com-
promises or unauthorized access. Into this file, the primitive and derived predicates are
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declared, followed by the tabled derived predicates and the interaction rules. Figure 4.6
and Figure 4.7 show the list of predicates the interaction_rules.P file is made of.

Figure 4.6. The primitive predicates included into the interaction rules file.
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Figure 4.7. The derived predicates included into the interaction rules file.

Below, we break down the key sections and rules in the file. Since the list is very long,
only some instances will be explained.

The predicates define the basic entities and relationships in the model. For example:
1 primitive ( vulExists (Host , VulID , Program )).

This indicates that a vulnerability (VulID) exists on a program (Program) on a host
(Host).

1 primitive (hacl(Src , Dst , Prot , Port)).

This defines a network access rule, where a host (Src) can access another host (Dst) via
a protocol (Prot) and port (Port).

1 primitive ( attackerLocated (Host)).

This specifies that the attacker is located on a particular host.
1 primitive ( hasAccount (Principal , Host , Account )).
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This indicates that a user (Principal) has an account on a host with specific permissions
(Account).

Rather, tabling is used to optimize rule evaluation by storing intermediate results and
avoiding redundant calculations, such as

1 :- table execCode /2.

The interaction rules describe how security conditions (e.g., vulnerabilities, per-
missions) can lead to compromises or unauthorized access. Below are some of the most
significant rules. There several types of interaction rules. For example, the Code Exe-
cution (execCode), the Network Access (netAccess), the File Access (accessFile), the
User Compromise (principalCompromised), the Vulnerabilities (vulExists), the Mali-
cious Input Access (accessMaliciousInput). Some example is listed below.

1 execCode (Host , Perm) :- hasAccount (Principal , Host , Perm).

If a user (Principal) has an account on a host (Host) with certain permissions (Perm),
they can execute code on that host.

1 execCode (Host , Perm) :- principalCompromised ( Victim ), hasAccount (Victim ,
Host , Perm).

If a user (Victim) is compromised and has an account on a host (Host), they can execute
code on that host.

1 execCode (Host , root) :- vulExists (Host , _, Software , localExploit ,
privEscalation ).

If a local vulnerability (localExploit) exists on a host, a user with permissions can
execute code as root.

1 netAccess (H2 , Protocol , Port) :- execCode (H1 , _Perm), hacl(H1 , H2 ,
Protocol , Port).

If a host (H1) can execute code and has access to another host (H2) via a network rule
(hacl), it can access H2.

1 netAccess (H, Protocol , Port) :- attackerLocated (Zone), hacl(Zone , H,
Protocol , Port).

If the attacker is located in a zone (Zone) and there is a network access rule (hacl) between
Zone and a host (H), the attacker can access H.

1 accessFile (Host , Access , Path) :- execCode (Host , User), canAccessFile (
Host , User , Access , Path).

If a user can execute code on a host (execCode) and has access to a file (canAccessFile),
they can access that file.

1 principalCompromised ( Victim ) :- hasAccount (Victim , Host , _Perm),
execCode (Host , root).

If a user (Victim) has an account on a host (Host) and the host is compromised (execCode
as root), the user is compromised.
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1 vulExists (Host , ID , Software , Range , Consequence ) :-
2 vulExists (Host , ID , Library , Range , Consequence ), dependsOn (Host ,

Software , Library ).

If a vulnerability exists in a library (Library) and a program (Software) depends on that
library, the program is vulnerable.

1 accessMaliciousInput (Host , Victim , Software ) :- inCompetent ( Victim ),
hacl(Host , MaliciousMachine , httpProtocol , httpPort ),
attackerLocated ( MaliciousMachine ).

If an inexperienced user (inCompetent) browses a malicious website (attackerLocated),
they may be exposed to malicious input.

Figure 4.8 shows the beginning of the interaction rules section.

Figure 4.8. The first portion of the interaction rules into the file interaction_rules.P.
The full content of the file can be found in Appendix ??.

The file, hence, describes the general interaction rules that the user is interested in for
its test case, giving to the tool’s engine the logic and the inference rules for the creation of
the attack graph. In fact, the interaction rules declared here are based on the predicates,
but they will be also used to generate the running_rules.P file, that is the list of the more
general used rules taken from the first file and applied, coherently to the test case.

Consider now the file listing the nodes called VERTICES.CSV, in which each record
describes a specific node of the attack graph, giving some information:
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• the number

• the label, related to the interaction rule

• the node type, namely if it is a LEAF node, an OR node or an AND node

• the initial value

This file is crucial to re-build the attack graph and, more important, to compute the
CPDs. The other file is the list of the edges, called ARCS.CSV. Its records describe the
arcs of the attack graph, but it follows a different logic with respect to the classic "parent-
to-child" relationship. Otherwise, the file contains records describing this type of relation:
"precondition-to-postcondition". So, in a way, it is like a "child-to-parent" connection.
This behaviour is indicated with a "-1", following the nodes belonging to the edge, like
describing a negative weight.

As mentioned before, the nodes can be of three types, LEAF, AND or OR. The node
type is used for the CPT computation, since it defines the methodology it is built, ac-
cordingly to the Zenitani’s work. In fact, a LEAF node can be a starting precondition or
a statement defining the existence of a vulnerability vulExist, and so the probability must
be taken from somewhere and cannot be computed, since this nodes have no parents.
The AND and OR nodes, rather, have parents, that can be of any type, and so their
probability is affected by the probability of the parent nodes, so that the computation of
the conditional probability depends on that factors. This distinction is crucial because
it makes harder to structure the Bayesian Network, since each node can have zero par-
ents, one parent only, as well as two or more parent nodes, and of course it makes the
probability computation more dynamic.

This phase of the pipeline involves the usage of the tool object of this thesis, that is
structured in this way:

• main.py is the main file, where the user must select the input file. It runs a minimal
GUI with Tkinter, that opens dialog windows to select the correct files.

• attack_graph.py is the file including the AttackGraph class, that contains the
attack graph variable, provided by NetworkX, the list of nodes and the list of edges.
It provides the following methods

– load_data loads the vertices and the arcs from the provided files, storing them
into the Dataframes that Pandas provides.

– build_graph adds the nodes and the edges to the attack graph.
– get_node_info to get the information of a specific node.

• bayesian_network.py that fully relies in PgmPy, includes the class Security-
BayesianNetwork, that builds the ABN. It provides the following methods

– build_network converts the attack graph into the ABN, also validating the in-
puts. In fact, if there is any inconsistency, it allows to arise a warning.
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– _create_node_cpd is the method that wraps the class building the CPD (Con-
ditional Probability Distribution) tables.

– perform_inference that performs the probabilistic inference on the network.

• probability_calculator.py that contains all the classes involved in the CPD cre-
ation, namely the MulValRuleExtractor, that extracts the probability for the LEAF
nodes in case it is not a vulExist node, the CVSSCalculator, that manages the CVSS
scores, and the ProbabiltyCalculator, that is the main calculator managing the CPD
tables building. Further explanation will be provided about their methods.

• arango_client.py includes the ArangoClient class that allows to query the database
to retrieve the information about the CVEs needed for the Bayesian Network.

Once the attack graph is created, all the information can be used to produce an ABN.
However, as said before, the LEAF nodes’ probabilities cannot be computed, but they
have to be taken from somewhere. In order to figure out it, I decided to integrate a
database that collects all the information concerning the threats data from the major
frameworks in the cybersecurity fields.

Figure 4.9. The BRON login page.
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BRON 3 uses ArangoDB [3] as engine, since it supports graph, document, and key/-
value data models, increasing performances, scalability and flexibility, to link together
information taken from MITRE and NVD with bidirectional edges, so that it can be more
flexible to be queried and easy to keep up to date. For this reason, it has the potential to
grow along with the major frameworks and can be embedded in this project, since even
this project claims to be improved in the future. The database can be easily installed
via Docker, building the containers as shown in Figure 4.10, and exposing a service at
localhost:8529 that will provide the dashboard as in Figure 4.9, giving a login page and
the possibility to select the right collection.

Figure 4.10. The containers running the BRON service.

The BRON database includes several collections, that are shown as in Figure 4.11 of
documents, but we are interested to the CVE one, since it includes the metric weight, that
refers to the CVSS score and can be found into the metadata, as shown in Figure 4.12.
The CVSS score will be normalized and used to take the probability of the nodes of type
vulExist as shown in Figure 4.13.

3https://github.com/ALFA-group/BRON
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Figure 4.11. The BRON dashboard, presenting all the collections belonging to the database.

Figure 4.12. Each document gives information about a specific CVE, including the weight.

BRON is one of the two sources that is used to retrieve the probability of the LEAF
nodes. However, it is not enough since we can also have LEAF nodes that are not strictly

45



Contribution

Figure 4.13. The CVSSCalculator class.

related to the existence of a vulnerability. To cope with this, the running_rules.P pro-
vides some probabilities by itself, attaching them to the rules. The MulValRuleExtrac-
tor shown in Figure 4.14 is able to read the predicate of the running rules using the
method _extract_rules and to get the probability of the referring rule with the method
get_rule_probability when a node references it, so that it is possible to have a marginal
probability also for this kind of nodes.
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Figure 4.14. The MulValExtractor class.

Since the ABN needs each node has its CPD table to perform the inference, a default
value is set in the case no matches are found. In fact, the code also assign a probability
in the case of root nodes, namely nodes that haven’t the characteristics of the above
mentioned nodes. This kind of assignment is added to cope with potential errors of
interpretation.

Figure 4.15, Figure 4.16 and Figure 4.17 show the code referring to the methods that
actually build the CPD tables for the nodes.

Once the CPD tables are computed, the ABN is built and can be queried to perform
the inference and to give back the marginal probabilities of each node, or the probability
of the target node. The used method to perform the inference is the VariableElimination
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Figure 4.15. The method to create the CPD for AND nodes.

one, provided by PgmPy, for the reason explained in Section 2.5.
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Figure 4.16. The method to create the CPD for OR nodes.

Figure 4.17. The method to create the CPD for LEAF nodes.
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Chapter 5

Experimental Results

5.1 Proof-of-Concept of the ABN Generator
This chapter provides an example of how the proposed tool works and how the results are
presented. As it is a PoC, the following case is a toy example. Moreover, the probabilities
are computed as explained in the previous chapter, but the strength of the tool is that
it can be potentially enriched with many other metrics and enterprises provided data, so
that, even if they are meaningless in this thesis, it may be further improved to become
meaningful instead.

The following code is the content of the input.P file, provided by the authors for testing.
1 attackerLocated ( internet ).
2 attackGoal ( execCode ( workStation ,_)).
3

4 hacl(internet , webServer , tcp , 80).
5 hacl(webServer , _, _, _).
6 hacl(fileServer , _, _, _).
7 hacl( workStation , _, _, _).
8 hacl(H,H,_,_).
9

10 /* configuration information of fileServer */
11 networkServiceInfo (fileServer , mountd , rpc , 100005 , root).
12 nfsExportInfo (fileServer , ‘/export ‘, _anyAccess , workStation ).
13 nfsExportInfo (fileServer , ‘/export ‘, _anyAccess , webServer ).
14 vulExists (fileServer , vulID , mountd ).
15 vulProperty (vulID , remoteExploit , privEscalation ).
16 localFileProtection (fileServer , root , _, _).
17

18 /* configuration information of webServer */
19 vulExists (webServer , ‘CAN -2002 -0392 ‘ , httpd).
20 vulProperty (‘CAN -2002 -0392 ‘ , remoteExploit , privEscalation ).
21 networkServiceInfo ( webServer , httpd , tcp , 80 , apache ).
22

23 /* configuration information of workStation */
24 nfsMounted ( workStation , ‘/usr/local/share ‘, fileServer , ‘/export

‘, read).
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input.P describes the 3 host scenario that is tested in their paper and shown in Figure
5.1. The senario represents a network architecture divided into several zones, each with
specific components and security configurations:

• The Internet, depicted as the entry point for a potential attacker (attackerLocat
ed(internet)).

• The Demilitarized Zone (DMZ), located between two firewalls:

– fw1 controls traffic from the Internet to the DMZ.
– fw2 regulates traffic from the DMZ to the Internal Network.

The DMZ includes a Web Server exposed to the Internet but isolated from the
Internal Network. It runs an HTTP service on port 80 (networkServiceInfo(webS
erver,httpd,tcp,80,apache)) and is vulnerable to a known exploit (vulExists(
webServer, ’CAN-2002-0392’, httpd)) that allows remote privilege escalation (v
ulProperty(’CAN-2002-0392’,remoteExploit,privEscalation)).

• The Internal Network contains critical assets:

– The Workstation used by employees has an NFS mount to the file server for
shared file access (nfsMounted(workStation,’/usr/local/share’,fileServ
er,’/export’,read)).

– The File Server provides storage services via an NFS service on port 100005 (ne
tworkServiceInfo(fileServer,mountd,rpc,100005,root)). It is vulnerable
to an unidentified remote exploit (vulExists(fileServer,vulID,mountd))
enabling privilege escalation (vulProperty(vulID,remoteExploit,privEsca
lation)). The server exports the /export directory to both the Workstation
and Web Server (nfsExportInfo(fileServer,’/export’,_anyAccess,workS
tation) and nfsExportInfo(fileServer,’/export’,_anyAccess,webServe
r)).

– The Project Plan, Web Pages, and Binaries are internal resources critical
to the organization.

The attacker’s goal is to execute code on the workStation (attackGoal(execCode(wor
kStation,_))). The scenario represents the attacker aiming to compromise an employee’s
workstation to gain access to sensitive data or further infiltrate the network. Furthermore,
the hacl (host access control list) predicates define the network access rules. In particular
the Internet can access the webServer on port 80 (hacl(internet,webServer,tcp,80)),
the webServer, fileServer, and workStation have unrestricted access to themselves (hacl
(H,H,_,_)). The fileServer and workStation have additional access rules, allowing NFS
communication and file sharing.

Using the MulVAL framework, the scenario can be analyzed to identify potential attack
paths. MulVAL will generate the attack graph in Figure 5.2, also producing the equivalent
csv files. The latter will be used by the tool to generate the ABN. From the figure, it is
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Figure 5.1. Multi host scenario.

possible to visualize three types on nodes: the rectangular ones are the LEAF nodes, the
rhomboidal ones the OR nodes, while the circular ones the AND nodes.

The tool is able to automatically compute the CPD tables and to print out the results
in the form of tables. In the test case, node 1 (execCode(workstation,root) is indeed the
target node, representing the attacker’s ultimate goal: executing code with root privileges
on the workstation.

The attack path can be summarized in this way:
attackerLocated(internet) (18)
↓
hacl(internet,webServer,tcp,80) (17)
↓
RULE 6 (direct network access) (16)
↓
netAccess(webServer,tcp,80) (15)
↓
RULE 2 (remote exploit) (14) → vulExists(webServer,’CAN-2002-0392’,httpd) (20)
↓
execCode(webServer,apache) (13)
↓
RULE 5 (multi-hop access) (11) → hacl(webServer,fileServer,rpc,100005) (12)
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Figure 5.3. The marginal probability output.

↓
netAccess(fileServer,rpc,100005) (10)
↓
RULE 2 (remote exploit) (9) → vulExists(fileServer,vulID,mountd) (22)
↓
execCode(fileServer,root) (8)
↓
RULE 10 (execCode implies file access) (6) → accessFile(fileServer,write,’/export’) (5)
↓
RULE 17 (NFS shell) (23) → nfsExportInfo(fileServer,’/export’,write,webServer) (25)
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↓
accessFile(workStation,write,’/usr/local/share’) (3)
↓
RULE 4 (Trojan horse installation) (2)
↓
execCode(workStation,root) (1)

Figure 5.4. The target node probability.

Finally, the marginal probability of each node, as in Figure 5.3, followed by the target
node’s probability, Figure 5.4 are printed out. We can observe that, with the analyzed test
case, at the end the probability to perform the arbitrary code execution on the workstation
has a probability of 29%.
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Chapter 6

Conclusion

This Thesis proposes a framework for cybersecurity risk assessment, offering a founda-
tional pipeline that integrates ontologies, MulVAL, and Bayesian Networks to compute
the probabilities of attack patterns. The approach leverages formal ontologies to model
relationships between assets and vulnerabilities, MulVAL for automated attack graph gen-
eration, and Bayesian Networks to dynamically assess the likelihood of attack success. It
opens the door to further improvements, even including the exploration of Artificial Intel-
ligence (AI) integration within this pipeline, highlighting its potential to enhance threat
prediction, automate probability calibration, and enable adaptive risk modeling in future
studies.

While the framework is implemented as a proof of concept (PoC), it faces limita-
tions inherent to early-stage research. A significant challenge lies in the assignment of
node probabilities, which currently relies on manual input or simplified heuristics. To
address this, the thesis identifies opportunities to integrate established frameworks such
as MITRE’s CAPEC (for attack pattern taxonomies) and NVD’s CVSS (for standard-
ized vulnerability scoring). Synergies between these resources could enable automated
probability derivation, ensuring consistency and scalability in real-world deployments.

Furthermore, the proposed model does not yet incorporate security controls (e.g., fire-
walls, intrusion detection systems) that could mitigate attack success probabilities. Future
work should explore dynamic adjustments to Bayesian Network parameters based on im-
plemented controls, enabling "what-if" analyses for defence optimization. This aligns with
emerging research in adaptive cybersecurity frameworks, where AI-driven systems contin-
uously update risk assessments in response to evolving threats and countermeasures.

The pipeline’s modular design allows for incremental improvements, such as:

• AI-driven threat intelligence, using machine learning to correlate historical at-
tack data with real-time network telemetry.

• Automated CPD generation, leveraging CVSS scores or attack simulation tools
(e.g., Metasploit) to infer conditional probabilities.

• Integration with SIEM systems, hence embedding the framework into security
operations centers for proactive risk prioritization.
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Conclusion

While challenges remain, particularly in scalability and validation across heteroge-
neous environments, this work establishes a methodological foundation for unifying se-
mantic modeling, attack graph analysis, and probabilistic reasoning in cybersecurity risk
assessment.
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