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Abstract

Creating realistic and expressive character animations is a major challenge in video
game development and interactive applications. Traditional methods, such as
keyframing and motion capture, demand considerable time and resources. Recently,
AI-driven text-to-motion models, especially diffusion models, have emerged as
a promising alternative, allowing for the automatic creation of animations from
textual descriptions.

This thesis offers a comparative analysis of different motion generation models,
focusing primarily on diffusion-based techniques. The evaluation examines crucial
factors like motion quality, realism, and adherence to prompts. To connect AI-
generated animations with game engines, a specialized tool was developed to enable
the seamless integration of these models into Unity, providing a practical workflow
for developers.

In addition to technical evaluation, this work explores whether text-to-motion
models can effectively express emotions through movement. By drawing on insights
from body language research, a structured approach was created to enhance motion
prompts for generating emotionally expressive animations. An experiment was
conducted where participants identified emotions in AI-generated animations. The
responses were analyzed to evaluate the strengths and weaknesses of these models
in producing believable emotional expressions.

Finally, this thesis points out significant limitations of prompt-based AI models,
such as the quality and diversity of training datasets, which greatly affect the
expressiveness and generalization of the generated animations. The study concludes
with suggestions for future research directions and improvements to enhance the
adaptability and quality of AI-generated animations for upcoming applications in
gaming and interactive media.
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“You miss 100% of the shots you don’t take.
Wayne Gretzky”

Michael Scott
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Chapter 1

Introduction

Animating virtual characters convincingly is a central and enduring challenge within
the fields of video game development and interactive media. Traditional animation
methods, such as keyframing and motion capture, while effective, often require
extensive manual labor, specialized expertise, and substantial resources. These
approaches are frequently impractical or prohibitively expensive, particularly for
independent developers or projects with constrained timelines. In recent years,
generative artificial intelligence (AI) has emerged as a transformative solution,
offering powerful tools capable of synthesizing realistic human motion from textual
descriptions alone.

Among these AI-driven methods, diffusion models have shown particular promise.
These models generate detailed and diverse animations by iteratively refining
random noise into coherent, lifelike movements, bridging the gap between ease of
use and animation quality. Nonetheless, integrating these AI-generated motions
into environments, such as game engines like Unity, presents its own set of technical
and practical challenges. Ensuring seamless output compatibility demands careful
consideration.

This thesis explores the potential of different text-to-motion generative models for
animating virtual characters within Unity, addressing both technical implementation
and the expressive capabilities of AI-driven animations. A dedicated Unity-based
tool has been developed to facilitate easy integration and utilization of state-of-the-
art generative models, enabling the direct synthesis and application of animations
from simple textual prompts.

Furthermore, this work investigates an often-overlooked aspect of generative
motion synthesis: emotional expressiveness. While generative models can create
realistic animations, their ability to convey nuanced emotions through movement
remains unclear. By drawing upon established frameworks from body language
research this thesis introduces structured prompt engineering approaches aimed at
enhancing the emotional clarity and expressiveness of AI-generated animations.
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Introduction

Through experimental evaluations involving human participants, this study sys-
tematically assesses the ability of current generative models to produce emotionally
believable and prompt-adherent animations. Preliminary results of the experiments
indicate that certain emotions, such as sadness and anger, can be effectively con-
veyed through full-body animations alone. In contrast, other emotions, like surprise
and disgust, pose greater challenges due to the absence of nuanced expressive details,
such as facial expressions and detailed hand gestures. Additionally, the evaluation
revealed significant differences in performance among models, highlighting that
some text-to-motion models are more effective than others in producing emotionally
recognizable animations.

These insights underline the strengths and current limitations of text-to-motion
models, pointing toward promising directions for future advancements in emotionally
expressive animation generation.

Part of the work presented in this thesis has been selected for presentation at
the XR Salento 2025-Internation Conference on eXtended Reality and
will contribute to an upcoming scientific publication. This reflects the relevance
and applicability of the research conducted.
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Chapter 2

Background

Generative Artificial Intelligence (AI) is a rapidly evolving field focused on creating
new content, such as text, images, and even videos, through machine learning
models. In contrast to traditional AI systems built for classification or predictive
tasks, generative models analyze patterns and structures from their training data
to create completely new realistic outputs that exhibit similar characteristics.

The foundation of generative AI lies in probabilistic modeling, where neural
networks are trained to understand and replicate the underlying distribution of
data. These models can interpolate between known data points, generate variations
of existing content, and even create completely new samples based on their training.
Over the past decade, advances in deep learning have pushed generative AI forward,
enabling applications across various domains, such as natural language processing
(NLP), computer vision, game development, and animation.

In recent years, AI has significantly advanced the field of motion synthesis,
leading to the development of various generative models that generate human
motion from various inputs. The main architectures include Variational Autoen-
coders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows,
Transformer-based architectures, and, more recently, Diffusion Models. Each
of these approaches offers distinct advantages and trade-offs regarding realism,
diversity, and controllability of generated motion.

This chapter examines the architectural aspects of each approach and provides
insights into their methodologies for motion synthesis. Additionally, it gives a first
look at the current state-of-the-art in generating expressive animations for virtual
humans (VHs), highlighting existing limitations and outlining the aim of this study.
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2.1 Generative AI Architectures
2.1.1 Generative Adversarial Networks
Generative Adversarial Networks (GAN) [1] are based on an adversarial learning
process in which two neural networks, the generator and the discriminator,compete
against each other in a zero-sum game (see Fig. 2.1):

• The generator is responsible for creating synthetic data that resemble real-
world samples.

• The discriminator attempts to distinguish between the real data from the
training set and the synthetic data produced by the generator.

Through iterative training, the generator continually improves by producing
outputs that become increasingly indistinguishable from real data, while the dis-
criminator refines its ability to differentiate real from fake content. Eventually, the
adversarial process reaches a balance where the generator produces highly realistic
samples.

Despite their success, GANs are known to suffer from mode collapse, where the
generator learns to produce only a limited variety of outputs instead of capturing
the full diversity of the training data. Furthermore, training GANs is computation-
ally intensive and requires careful balancing to ensure both networks improve at
comparable rates.

Figure 2.1: GAN: Generator and discriminator

2.1.2 Transformers
Transformers arrived as a milestone in generative AI and ushered in a whole
spectrum of tasks, including machine translation and language modeling [2]. Their
design has been one of the most influential works in the history of neural network
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architecture, mainly because of the pioneering use of attention mechanisms, which
have become one of the most crucial elements in sequence-to-sequence processing.

Transformers can learn complicated relations and patterns in data sequences by
self-attention and multi-head attention, irrespective of the distance between the
elements. In this way, transformers can realize many relations and patterns in the
input.

This is the typical use case for transformers in NLP, where positional encoding is
applied to the input sequence, allowing the model to retain the order of words and
maintain context. Thus, transformers lend themselves particularly to being used
in the construction of powerful generative models, such as Generative Pre-trained
Transformers (GPT), which can produce coherent and contextually relevant text.

Models like OpenAI’s GPT and BERT (Bidirectional Encoder Representations
from Transformers) exemplify the transformative impact of this architectural
approach on generative AI and NLP.

2.1.3 Variational Autoencoders
Another important generative AI model is the Variational Autoencoder [3]. VAEs
consist of two major parts: an encoder and a decoder. An encoder compresses the
input into lower-dimensional space—what is referred to as the latent space—and
the decoder reconstructs this compressed form back into the original input form
(see Fig.2.2).

One of the most defining characteristics of VAEs is introducing variation into
the latent space by mapping the data to a standard Gaussian distribution. This
allows the model to generate outputs with the same mean and variance as the
original input, thereby creating realistic samples with coherent features.

By learning compact, meaningful representations of the data, VAEs can do more
than just reproduce the input data; they generate new samples from scratch by
following the learned distribution. This makes VAEs a potentially very useful class
of algorithms for tasks in image generation, where generating outputs with similar
characteristics to those of the training data is heavily desired.

2.1.4 Diffusion models
Diffusion models, introduced by [5], represent a recent and powerful approach in
the field of generative artificial intelligence. They are designed to generate data by
gradually refining random noise into coherent and realistic outputs.

These models operate through a two-step process, namely a forward process
and a reverse process [6]. In the forward process, data (such as an image or motion
sequence) is progressively transformed into noise by applying small amounts of
Gaussian noise over a series of steps, effectively ’diffusing’ the data into a noisy
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Figure 2.2: The basic scheme of a variational autoencoder. The model receives x
as input. The encoder compresses it into the latent space. The decoder receives as
input the information sampled from the latent space and produces x′ as similar as
possible to x [4].

representation. In the reverse process, the model learns to reverse this noisy state
step-by-step, ultimately recovering a realistic, noise-free sample that resembles the
training data (see Fig.2.3).

The principal strength of diffusion models is their capacity to generate high-
quality outputs with fine details. In contrast to GANs, which can exhibit instability
and mode collapse (resulting in limited diversity), diffusion models are more stable
and generate diverse samples with minimal artifacts.

Furthermore, diffusion models possess inherent control over the generative
process, allowing for flexible sampling at various stages. This has made them
particularly effective for applications requiring fine-grained detail, such as image
and motion generation, where realistic textures, smoothness, and nuanced features
are essential.

Moreover, diffusion models have demonstrated adaptability across a range
of domains, including natural language processing, audio synthesis, and motion
animation. This versatility makes them a valuable tool in the field of generative
AI. Their ability to produce detailed, high-fidelity results has established diffusion
models as a leading approach in state-of-the-art generative techniques.

2.2 Generative AI for Motion Synthesis
A key distinction between different architectures is how they internally represent
motion. The two main approaches are:
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Figure 2.3: Diffusion model processes moving to and from data and noise [7]

1. Continuous Representations: the model learns a latent space where motion
sequences are encoded as continuous vectors. These vectors capture high-level
motion features and are typically used in autoencoder-based architectures.

2. Discrete Representations: motion sequences are transformed into tokenized
representations, with each frame or segment mapped to a limited set of learned
motion codes. This approach is often seen in vector quantization methods.

The choice of representation significantly affects how models generate and refine
motion sequences.

Autoencoder-based architectures focus on compressing and reconstructing mo-
tion sequences. These models are made up of two primary components: an encoder,
which maps an input motion sequence into a lower-dimensional latent space, and a
decoder which reconstructs a motion sequence from the latent space. The latent
space can be structured as either deterministic (standard autoencoders) or proba-
bilistic (variational autoencoders, VAEs). Deterministic Autoencoders learn a direct
mapping between motion and its latent encoding, aiming to optimize reconstruction
accuracy while Variational Autoencoders (VAEs) introduce a probabilistic latent
space, which allows for the generation of diverse motion sequences by sampling
various points in the distribution. A significant challenge in autoencoder-based
methods is ensuring that the latent space captures enough semantic information
from text while also maintaining high-frequency motion details.

Autoregressive models create motion by generating each frame one at a time,
using the previously created frames as a basis for the next. These models are
generally implemented through Recurrent Neural Networks (RNNs) which analyze
motion sequences frame by frame, effectively capturing short-term dependencies,
or Transformers which utilize self-attention mechanisms to understand long-range
dependencies, which enhances their ability to manage complex motions. Autoregres-
sive models handle data in a sequential manner, which can lead to the accumulation
of errors over time (known as exposure bias). During training, a method called
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teacher forcing is often used, where the model learns from actual sequences, but
during inference, it must depend on its own predictions.

On the other hand, diffusion models approach motion generation as a process of
iterative refinement. These models begin with a sequence of random noise and grad-
ually denoise it to produce a coherent motion output. A noise function is applied to
the original motion data across several steps, which degrades the information while
a neural network is trained to reverse this degradation, reconstructing a believable
motion sequence. Unlike autoregressive models, diffusion models generate all frames
at once, thus avoiding exposure bias. However, they do require a significant number
of inference steps, which can make them computationally intensive.

In terms of animation quality, each architecture has strengths and weaknesses
regarding motion realism, diversity, and controllability. VAE-based methods provide
good diversity but often fall short on fine details. GAN-based techniques can create
realistic animations, yet they are difficult to train and tend to lack diversity.
Transformer-based models strike a balance between realism and controllability,
although they encounter issues with exposure bias. On the other hand, diffusion
models excel in both motion realism and diversity, positioning them as the most
promising options for text-driven motion generation.

2.3 Expressive Animations
The use of generative AI techniques for motion synthesis, as discussed in the
previous section, has the potential to greatly simplify and accelerate the animation
pipeline. This is particularly valuable in the development of applications involving
Virtual Humans (VHs), where large quantities of human-like motion are often
required. Automatically generating realistic and varied motion can reduce the
manual effort involved in animating characters, making it easier to prototype and
scale interactive scenarios, especially in XR environments where motion diversity
and believability play a crucial role in enhancing immersion.

2.3.1 Why VHs?
VHs are digital agents with anthropomorphic features widely used in entertainment,
gaming, education, therapy, training, and customer service. Their ability to
simulate human-like behaviors and emotions significantly enhances user immersion
and engagement, making them crucial in applications requiring believable human-
computer interactions (HCI) or realistic crowds in extended reality (XR) scenarios.

Emotional expressiveness of Virtual Humans is key to their success as it plays a
critical role in facilitating credible interaction that generates empathy, social pres-
ence, and a stronger sense of being in virtual environments. High-profile applications
include virtual therapists capable of expressing true empathy to achieve therapeutic
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Figure 2.4: Examples of Virtual Humans [8, 9, 10]

results [9], emotionally expressive virtual agents that add realism to simulated
public service training scenarios [11], interactive NPCs that add storytelling depth
and player immersion in gaming [12], and very realistic virtual civilians employed
in complicated peacekeeping operations or evacuation scenarios to gain insights
into crowd dynamics and human reactions under critical circumstances [10]. Thus,
the integration of emotionally expressive and socially attentive virtual humans is
needed to promote more realistic, effective, and compelling interactions in virtual
worlds. This approach enhances user satisfaction and performance in a range of
applied domains.

2.3.2 Emotional Body Language
The communication of emotions in virtual humans relies on three main channels:
facial expression, body language, and prosody. While Virtual Humans research has
focused heavily on facial expressions [13] and vocal prosody [14], body language
remains an equally important but less researched aspect of emotional expression in
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VHs [15].
Body language is a powerful means of nonverbal communication that comple-

ments or even replaces facial expressions in conveying emotions. According to [16],
body language plays an important role in recognizing emotions because it is visible
from a distance, can express emotions when facial expressions are not available,
and is cross-cultural. Certain postures and movements are consistently associated
with specific emotions. For example, pride is often expressed through an upright
posture and an expanded chest, while sadness is manifested in slumped shoulders
and a hunched posture. Other studies also confirm that body movements alone
can significantly influence the perception of emotions [17, 18], underscoring their
importance in non-verbal communication.

To better understand how emotions are conveyed through body movements,
researchers have developed structured frameworks such as the Body Action and
Posture Coding System (BAP) [19] and the Laban Movement Analysis (LMA) [20,
21]. These systems do not generate animations but provide valuable tools for
analyzing and categorizing expressive body language.

BAP

The BAP is a structured method designed for the detailed and precise coding of
body movements, particularly in the studies of emotional expression. The BAP
system addresses a significant gap in nonverbal behavior research, where consensus
on a common, detailed approach to coding body movements, particularly those
related to emotions, was lacking.

BAP codes movement at anatomical, form, and functional levels. At an anatom-
ical level, it identifies movements in terms of body parts such as head, trunk, arms,
and legs. Form-level coding specifies directions and orientations of movement in
three-dimensional space relative to an anatomical reference. Functionally, BAP dis-
tinguishes movements as emblems (culturally defined gestures), illustrators (speech
support), and manipulators (self-regulatory physical interactions).

BAP concisely identifies action segmentation, i.e., preparation, stroke, and
retraction. This increases the precision of timing and sequence analysis. Validation
using the Geneva Multimodal Emotion Portrayals (GEMEP) corpus [22] has
confirmed its reliability.

LMA

Laban Movement Analysis (LMA), originally developed by Rudolf Laban, provides
a structured framework for analyzing human movement in fields such as dance,
communication, and therapy. LMA classifies movements into six main categories:
Body, Space, Effort, Shape, Relationship, and Phrasing (see Fig.2.6). Each category
offers specific parameters for systematically observing movements.
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Figure 2.5: BAP coding platform

For example, Effort describes the qualitative energy and dynamics of movements,
while Shape analyzes how the form of movements changes in relation to space
and relationships. LMA also utilizes notation methods such as Phrase Writing,
Motif Writing, and Labanotation, along with coding sheets, to facilitate precise
documentation and analysis. This versatility allows observers to capture movements
comprehensively at both macro and micro levels.

Limitations

Despite their potential, these frameworks have only been used to a limited extent
in animation systems and remain primarily tools for motion analysis rather than
motion generation. Some attempts have been made to integrate LMA into inter-
active and procedural animation frameworks, such as spatial motion doodles [24],
which use hand gestures in VR to create expressive character animations, or models
such as EMOTE [25], which apply LMA principles to synthesize shape variations
in movement. Similarly, efforts have been made to incorporate emotion-driven
gestures into embodied conversational agents [26]. However, these approaches
remain limited in scope and are not widely used in current animation pipelines.
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Figure 2.6: LMA categories [23]

2.3.3 Text-to-Motion Animation
As a result, expressive body language in animation is still predominantly generated
through traditional animation workflows, where experienced animators manually
design the movements based on artistic expertise and psychological research. While
this approach can produce high-quality results, it is labor intensive and requires
significant artistic and technical skills. Animators must carefully craft each move-
ment to ensure that the character’s movements align with the intended emotional
state, often relying on observational studies, acting techniques, and psychological
insights.

Motion capture (MC) offers an alternative by allowing actors to perform move-
ments that naturally incorporate emotional body language. However, capturing new
MC data specifically for emotional performances is often just as time-consuming
and resource-intensive as hand-keyed animation. As a result, many studies turn to
existing MC datasets, which typically focus on general motion sequences rather
than explicitly capturing emotion-driven body language. This reliance on neutral
datasets introduces further challenges, since adapting emotion-neutral MC data to
create expressive animations often requires significant post-processing and manual
refinement to create the necessary emotional depth. This limitation makes it
difficult to generate animations that are not only realistic, but also believable in
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their emotional intent.
Recent advances in Artificial Intelligence (AI) have opened new possibilities.

Modern speech synthesis technologies now allow the procedural generation and
real-time modulation of vocal prosody, enabling Virtual Humans to convey varied
emotional states dynamically. Similarly, AI-driven motion synthesis, especially
latent diffusion models such as MDM [27] and LADiff [28], has made procedural gen-
eration of realistic body movements possible from textual descriptions or contextual
prompts. However, current AI-driven models often prioritize physical realism and
coherent motion rather than emotional expressivity. The few notable exceptions
are L3EM [29], which unfortunately do not investigate emotion believability, and
co-speech gesture models like ZeroEGGS [30] or EMoG [31].

Co-speech gesture models have notably advanced in synthesizing expressive
upper-body gestures aligned with speech rhythm, prosody, and semantics. However,
these models have significant limitations: they typically rely on spoken audio or
speech transcripts rather than textual or descriptive prompts, restricting their
broader applicability. Furthermore, they focus primarily on upper-body gestures
accompanying speech, neglecting the wider range of full-body movements necessary
for everyday actions like walking, sitting, or object interactions.

2.4 Research Objectives
Considering the limitations of existing generative models (the lack of emotional
believability investigations using text-to-motion, and the restricted focus on co-
speech models), this study investigates how effectively advanced text-to-motion
models can generate emotionally expressive animations through carefully designed
textual prompts.

To achieve this, two preliminary experiments are conducted using state-of-the-art
full-body text animation models. The first experiment evaluates the degree to which
each animation adheres to the specific instructions detailed in the textual prompts.
This step validates the clarity and precision of prompts, ensuring they effectively
guide the models in generating animations that accurately reflect intended emotions
and actions.

Building on the validated prompts from the first experiment, the second exper-
iment then specifically investigates the effectiveness of advanced text-to-motion
models in generating emotionally expressive animations. Both experiments incorpo-
rate user studies for a human-centered evaluation, making this research among the
first to directly assess the emotional expressiveness of text-generated animations
by explicitly prompting users to recognize emotions.

Ultimately, this approach confirms not only that animations convey emotions
convincingly but also that they faithfully embody the specific, context-dependent
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cues provided in the textual instructions. This foundational analysis supports
future research into integrating generative AI with the animation workflows of
virtual humans (VHs), particularly aiming to enhance non-verbal communication
in immersive applications.
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Chapter 3

Related Works

3.1 Text-to-Motion Models

The evolution of text-to-motion models has progressively shifted from deterministic
motion mapping to probabilistic diffusion-based approaches. MotionDiffuse [32]
introduced this paradigm, where motion sequences emerge through a denoising
process. A significant advancement in this area is Motion Latent Diffusion (MLD)
[33], which presents a new method by transitioning the diffusion process from raw
motion sequences to a more compact latent space (see Fig.3.1). This approach
minimizes computational demands while maintaining high-quality motion syn-
thesis. MLD utilizes a variational autoencoder (VAE) to develop a structured
latent representation of motion, greatly enhancing efficiency in both training and
inference. By taking advantage of this latent space, MLD demonstrates competitive
performance across various human motion generation tasks, such as text-to-motion,
action-to-motion, and unconditional motion synthesis.

Expanding on these ideas, AttT2M [34] enhances text-driven motion generation
by using a multi-perspective attention mechanism. Unlike earlier models that
view motion-text relationships as a one-dimensional issue, AttT2M incorporates
body-part attention to boost spatial encoding and employs a global-local attention
mechanism to strengthen the connection between text and motion (see Fig.3.2).
By utilizing VQ-VAE for motion quantization, the model creates a more refined
representation, leading to improved semantic alignment and greater control in
motion generation.

In parallel, research has increasingly focused on improving the quality and
diversity of the generated animations. Models like ReMoDiffuse [35] combines
retrieval-based augmentation with the diffusion process. Unlike traditional diffusion
models that create motion sequences solely from a learned latent space, ReMoDiffuse
uses external motion samples that are retrieved based on both semantic and
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Figure 3.1: MLD Architecture

kinematic similarities. This hybrid retrieval approach enhances the denoising
process.

Figure 3.2: AttT2M Architecture

The Human Motion Diffusion Model (MDM) is a transformer-based classifier-free
diffusion model (see Fig.3.3) specifically designed for human motion generation
that allows the application of geometric losses to motion attributes, thus helping to
enforce foot contact constraints [27]. MDM supports various conditioning modes
that enable tasks such as text-to-motion and action-to-motion. Its effectiveness
as a generative prior for motion synthesis has led to several advancements aimed
at enhancing spatial control and efficiency. One notable advancement is Guided
Motion Diffusion (GMD) [36], which improves MDM by adding spatial constraints,
such as predefined trajectories and obstacle avoidance. GMD features an emphasis
projection mechanism to ensure that the generated motion aligns more closely with

16



Related Works

spatial information, while also utilizing a dense signal propagation technique to
spread sparse keyframe constraints throughout the sequence, allowing for accurate
motion trajectories and the synthesis of more realistic motions in applications
where the synthesized motions need to follow certain constraints. OmniControl
[37] takes a more general approach, enabling spatial control over any joint at any
time. Unlike GMD, which focuses primarily on the pelvis trajectory, OmniControl
simultaneously incorporates spatial guidance for multiple joints and refines the entire
motion sequence for greater realism. Using a combination of spatial and realism
guidance, OmniControl dynamically adjusts motion to adhere to control signals
while maintaining coherence and natural movement. This makes OmniControl
particularly suitable for applications that require fine-grained control, such as
ensuring that a hand reaches a specific object or a head maintains a safe distance
from an obstacle. To tackle the efficiency challenges of MDM, the Efficient Motion
Diffusion Model (EMDM) [38] introduces a new acceleration strategy for motion
diffusion models. Traditional diffusion models typically require numerous denoising
steps to preserve motion quality, but EMDM incorporates a conditional denoising
diffusion GAN, allowing for high-fidelity motion generation with significantly
fewer sampling steps. Another significant extension is PriorMDM [39], which
utilizes MDM as a generative prior to facilitate composition-based motion synthesis.
PriorMDM presents three types of motion composition: sequential composition for
creating long, continuous motion sequences, parallel composition for interactions
involving multiple characters, and model composition for blending various motion
priors. This framework effectively broadens MDM’s capabilities beyond generating
short-duration motion for a single person, enabling it to handle complex, structured
motion synthesis scenarios. Lastly, Diffusion Noise Optimization (DNO) [40]
enhances MDM by treating motion editing and refinement as an optimization
challenge within the diffusion noise latent space. Rather than retraining a diffusion
model for every individual task, DNO adjusts the latent noise during inference
through gradient-based optimization. So DNO is model agnostic and can be
used with any diffusion model. This approach allows for detailed motion editing,
including changes to joint trajectories, pose refinement, and adherence to constraints,
all without the need for extra training data or alterations to the base model. These
advancements collectively showcase the adaptability of MDM as a foundational
model for motion generation.

Beyond spatial control and efficiency, researchers have begun integrating tempo-
ral control with Length-Aware Latent Diffusion (LADiff) [28]. Unlike MDM-based
models, LADiff addresses the challenge of controlling the duration of synthesized
motions by introducing a length-aware variational autoencoder that learns motion
representations with length-aware latent codes. Furthermore, a length-conformant
latent diffusion model is used to generate motions with a level of detail propor-
tional to the length of the target sequence. This enables the adaptation of motion
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Figure 3.3: MDM Architecture

dynamics based on the specified animation duration.
Further extending the capabilities of diffusion-based models, FLAME [41] offers

a cohesive method for motion synthesis and editing. Unlike earlier models that were
limited to generation, FLAME empowers users to manipulate motion sequences
through free-form textual descriptions directly. This capability allows for precise
adjustments to motion at both the frame and joint levels without the need for
fine-tuning, representing a major advancement in interactive motion design.

Motion decomposition techniques have also emerged as a key area of improve-
ment. LGTM [42], employs a distinctive local-to-global strategy for text-driven
motion generation. By utilizing large language models (LLMs) to break down
textual descriptions into motions specific to body parts, LGTM achieves better
semantic alignment between motion segments and their corresponding textual cues.
The inclusion of specialized body-part motion encoders refines local details, while a
full-body optimizer maintains coherence in the overall motion sequence. This hierar-
chical approach addresses the shortcomings of existing text-to-motion methods that
often misassign actions to individual body parts. Moreover, MoFusion [43] presents
a motion synthesis framework that goes beyond text conditioning by integrating
music as an additional input. By aligning generated motions with the rhythmic
and structural elements of an audio track, MoFusion creates new opportunities
for dance choreography and interactive character animation, showcasing enhanced
adaptability across various conditioning inputs.

The challenge of physical awareness has been addressed by PhysDiff [44], which
integrates a physics-aware strategy for motion diffusion by ensuring physical plausi-
bility during the denoising process. By integrating a physics-based motion projection
module, it significantly enhances realism in generative motion models.

Exploring different paradigms, T2M-GPT [45] adopts a GPT-like framework
for text-to-motion generation (see Fig.3.4). This model uses a Vector Quantized
Variational AutoEncoder (VQ-VAE, Fig.3.4a) to map motion sequences to discrete
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(a) Motion VQ-VAE (b) T2M-GPT

Figure 3.4: T2M-GPT Architecture

code indices, followed by a Generative Pre-trained Transformer (GPT, Fig.3.4b)
that generates sequences of code indices from pre-trained text embeddings. T2M-
GPT has proven to be particularly effective in processing longer and more detailed
text prompts, generating complex motion sequences that closely are found more
adherent than other models to the given descriptions.

In contrast, MoMask [46] presents a completely new approach to motion genera-
tion, drawing inspiration from masked modeling techniques used in image and NLP
tasks. Rather than generating motion sequences autoregressively (like T2M-GPT)
or through a denoising process (as seen in diffusion models), MoMask iteratively fills
in missing motion tokens using a two-stage framework. This includes a hierarchical
residual vector quantization (RVQ) system that breaks down motion into several
layers of tokens, along with a masked transformer architecture that predicts the
missing motion tokens in a non-autoregressive, bidirectional way (see Fig.3.5).

Figure 3.5: MoMask Architecture
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Recent advancements in text-to-motion technology have led to models that
enhance generative capabilities by focusing on human-object and multi-character
interactions. HOIAnimator [47] and HOI-Diff [48] are designed to create realistic
human-object interactions (HOI) by simulating the movements of both humans
and objects within a diffusion-based framework. HOIAnimator employs Perceptive
Diffusion Models (PDM) to independently model the motions of humans and
objects, ensuring smooth interactions through a perceptive message-passing system.
In contrast, HOI-Diff utilizes a dual-branch diffusion approach along with an
Affordance Prediction Diffusion Model (APDM) to predict likely contact points
between humans and objects, thereby improving physical realism. InterControl [49]
addresses the challenge of multi-character interactions, enabling the generation of
synchronized movements among multiple humans. It features a motion controller
and inverse kinematics guidance to accurately position joint locations across different
agents. By using a diffusion-based framework, InterControl achieves zero-shot
generalization for any number of interacting characters, marking a significant
advancement in the creation of realistic group behaviors.

3.2 Limitations
Despite these advancements, current methods predominantly prioritize coherence,
physical realism, and motion diversity, leaving explicit emotional expressiveness
relatively unexplored. Addressing this gap is crucial for improving the realism and
effectiveness of Virtual Human interactions.

Co-speech models such as ZeroEGGS [30], EMoG [31], GestureDiffuCLIP [50],
Speech2AffectiveGestures [51] and AMUSE [52] have made notable progress in gen-
erating expressive animations linked to actual spoken content. They can integrate
stylistic and emotional nuances into the resulting gestures; however, they typically
rely on audio or text transcripts from spoken dialogue rather than descriptive
prompts, limiting their usability in broader animation scenarios. Moreover, in
virtual reality applications requiring virtual humans’ crowds, it is often unnecessary
to generate co-speech movement. In this context dyadic user-agent interactions
do not occur, making co-speech animation worthless while pivoting the focus on
agent-to-agent speech animations not associated to any specific spoken text. In this
scenarios generic speech gestural animations can still convey emotional significance
to the user, in addition to saving computational resources and avoiding tedious
animation authoring. Since these models usually focus on upper body gestures that
accompany speech, they often lack the ability to produce general body movements
such as walking, sitting, or interacting with objects while expressing emotions [53,
54].

Prior research, whether on general text-to-motion models or specific to co-speech
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ones, rarely conducts user evaluations focused on the believability of the emotional
expressions. Instead, investigations predominantly assess factors such as human
likeness, naturalness, appropriateness to the accompanying speech or audio, and
how well the generated motion represents a given target style or emotion, explicitly
stating it. This inherently limits the assessment of true emotional believability, as
users are not independently identifying the emotional expression.

The first text-to-motion model that attempts to incorporate emotion in motion
generation is SMooDi (Stylized Motion Diffusion Model) [55], but its primary
goal is not to generate emotional animations. Instead, SMooDi focuses on style
transfer, adapting a pre-trained text-to-motion model to generate stylized motion
by conditioning on both textual descriptions and reference motion sequences. The
model is trained on the 100STYLE dataset [56], which predominantly captures
movement styles rather than emotional expressions. While the dataset includes a
few emotion-related categories, such as angry, depressed, and proud, the majority of
its styles are centered around locomotion patterns, personality traits, and movement
styles (e.g. airplane pose, zombie or childlike walk). As a result, SMooDi does
not generate animations explicitly driven by emotional intent but rather applies
style transfer to modify an existing motion sequence to reflect a given stylistic
attribute. Another example is [29], which focused on Emotion-enriched Text-to-
Motion Generation (ETMG) with L3EM, an LLM-driven approach that introduces
emotional expression at the limb level in full-body animations. Although the
method improves motion realism, it has the disadvantage that its evaluation is
purely quantitative and it lacks user studies on the believability of the expressed
emotions. In addition, the source code is not publicly accessible, which prevents a
direct comparison with competing approaches.

Thus, while SMooDi and the L3EM approach represent a step towards incorpo-
rating emotion in motion synthesis, the challenge of generating motion that is both
emotionally believable and expressive remains an open research question. In this
preliminary study, the aim is to start addressing these limitations, investigating to
what extent the current state-of-the-art text-to-animation AI models are capable
of generating believable body language for VHs.
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Methods

Traditionally, animating characters involves manual techniques such as keyframing
or motion capture, which can be time-consuming and resource-demanding. However,
with the rise of AI-driven generative models, it has become possible to automate
the creation of realistic animations directly from text descriptions, opening up new
opportunities for developers and digital artists.

The first part of the chapter focuses on the experimental setup, outlining the
criteria for selecting generative models, the rationale behind designing specific
text-to-motion prompts, and the systematic creation of a dataset of animations
used for user studies. Then, the implementation of a tool in Unity that allows for
the use of text-to-motion models to generate and apply animations within the game
engine is outlined. The aim is to establish an efficient integration between Unity
and motion generation models, enabling users to create animations from simple
text prompts without the need for manual input, offering a flexible and automated
tool that enhances the animation workflow for developers and interactive content
creators.

Communication between the game engine and the generation system is handled
via ZeroMQ, a protocol that facilitates data exchange between Unity and a Python
script managing the models. The system’s output is then converted into a Unity-
compatible format (FBX) to be applied to 3D models through the Humanoid
rig.

This chapter aims to provide an in-depth look at the choices made during
implementation, the tool’s architecture, and the challenges faced throughout devel-
opment.
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4.1 Experiments Setup
In order to generate believable emotional animations, this study systematically
compares state-of-the-art AI motion synthesis models evaluating their ability to
generate animations that effectively convey a defined emotion and match the given
prompts. This study followed a three-stage approach:

1. Generating a dataset of AI-driven animations using refined text-to-motion
prompts informed by research on emotion and body language [16].

2. Conducting a first user study to evaluate the prompt affinity of AI-generated
animations.

3. Conducting a second user study to evaluate human perception of the emotional
expressiveness of AI-generated animations.

Specifically, all six universally recognized basic emotions (happiness, sadness,
anger, fear, surprise, and disgust) [57], three common actions, and four text-to-
motion models were considered. The following sections discuss how the models
(Section 4.1.1) and the actions were selected (Section 4.1.2), and explain the
prompt design approach (Section 4.1.3) that guides each model toward generating
emotionally meaningful motion.

4.1.1 Model selection
In order to conduct an effective evaluation, four text-to-motion generative models
have been selected among the state-of-the-art plethora. The model selection phase
followed a structured filtering process that combined both theoretical considerations
and empirical evaluations. Initially, key criteria were defined to guide model
selection based on the objectives of generating emotionally expressive animations:

1. Public availability: only models with publicly accessible implementations
were considered, facilitating reproducibility and comparative analysis.

2. Quality assessment: an initial empirical evaluation was conducted through
a visual assessment of animations generated from preliminary prompts to
judge motion quality and coherence qualitatively. In particular, models were
excluded if they (1) consistently generated physically impossible animations
such as joint intersections (e.g., arms intersecting with torso) or impossible
rotations (e.g., knees rotated backward to the facing direction); (2) persistently
failed to depict the action described in the input prompt.

3. Architectural diversity: models representing diverse generative paradigms
(diffusion-based and transformer-based approaches) were prioritized to broadly
evaluate different technological solutions.
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4. Up-to-date coverage: preference was given to models that have been
released or updated recently, ensuring that the selected solutions reflect current
practices within the field.

MotionDiffuse [32] and its sub-model SMooDi [55], as well as MoMask [46],
exhibited relatively lower quality in preliminary tests and were therefore excluded
from further analysis. Similarly, specialized variants derived from MDM [36, 37, 38,
44] were excluded since preliminary evaluations indicated no significant qualitative
improvement over the foundational MDM model. To the best of our knowledge,
the unique ETMG-oriented model [29] has no publicly available code by now, thus
it was discarded in this evaluation as not compliant with the selection criteria.

The outcome of this filtering process led to the selection of four generative
models, each offering distinct advantages aligned with this study’s goals:

• LADiff [28], a length-aware latent diffusion approach chosen for its ability
to handle motions of varying durations. By subdividing the latent space into
subspaces specialized for different temporal spans, it provides a controllable
framework for modulating sequence length.

• MDM [27], a diffusion-based model developed around a transformer archi-
tecture, featuring iterative denoising steps that refine noised motion data
into coherent animations. Selected as the main foundational diffusion model,
which has been continuously updated by the present time as compared to its
derivatives.

• T2M-GPT [45], a transformer-based model that employs discrete latent codes
to process textual prompts but does not implement motion data diffusion
techniques. Chosen as designed to handle more detailed and extended descrip-
tions, possibly translating linguistic nuances into expressive and varied motion
sequences.

• Muse Animate [58], selected primarily due to its direct compatibility with
Unity and relevance as the main industry solution, despite the absence of
public information about its architecture.

4.1.2 Action Selection
To evaluate each model’s capacity to convey emotion in realistic scenarios, three
actions that frequently occur in everyday life and XR contexts were carefully
selected. This choice not only guarantees practical relevance but also provides
distinct movement patterns where emotional variations are readily recognizable
and can be systematically studied. The selected actions are:
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• Standing: often referred to as the “Idle” animation in XR contexts, this
action represents minimal movement when a VH is not actively engaging
in other explicit tasks. Standing animations are critical to study emotional
expressivity as they test the model’s capability to convey nuanced emotional
states through subtle posture variations and minimal body movements, making
it highly relevant in scenarios with limited explicit action [59, 60].

• Speaking: unlike co-speech animation, which synchronizes upper-body ges-
tures with speech content, speaking in this study refers to a more general
animation depicting a character engaged in speech-related body movements.
This approach allows for evaluating full-body emotional expressivity inde-
pendent of verbal content, making it relevant for VH interactions where
speech synchronization is unnecessary, such as background characters in XR
environments.

• Walking: gait and posture variations during walking have been widely studied
in emotion recognition research. Walking provides a clear and consistent
context to evaluate how effectively models embed emotion into dynamic,
commonly occurring movements [61, 62].

4.1.3 Prompt design
The prompt design process followed an iterative approach to determine the most
effective way to generate emotionally expressive animations. Initially, a simple
prompt structure that combined only an emotion and an action was experimented,
using the following template:

a [emotion] person [action] (4.1)

This format was intended to test whether generative models could interpret ab-
stract emotional descriptors and produce coherent animations accordingly. However,
the results varied significantly across models. Among the four models tested, Muse
Animate (in the following referred as Muse) was the only one that consistently
produced expressive and recognizable emotional animations using this prompt
structure. For example, prompts such as “an angry person is walking” led to
animations that exhibited noticeable tension and abrupt movement, suggesting
that Muse may have been trained with explicitly labeled emotion data or that it
employs a mechanism that effectively links textual emotional cues to movement
patterns.

In contrast, LADiff, MDM, and T2M-GPT struggled with this prompt format.
Their outputs were often neutral, overly generic, or physically realistic but emotion-
ally ambiguous. These models failed to consistently differentiate between emotions,
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frequently generating similar animations regardless of the specified emotional state.
This inconsistency likely stems from the fact that their training datasets do not
contain explicit emotion labels or enough contextual examples associating textual
emotion descriptors with distinct movement variations. Furthermore, repeated
generations with the same prompt sometimes resulted in vastly different motions,
revealing weak emotional consistency while tending to default to animations lacking
clear emotional intent.

Recognizing the limitations of the initial prompt template, the approach was
refined by incorporating bodily behavior descriptors, explicitly defining postures,
movement characteristics, and gesture patterns to provide clearer guidance for gen-
erating emotionally expressive animations. The new prompt format was structured
as follows:

a person [action] with [bodily behavior]1, . . . , and [bodily behavior]n (4.2)

The term bodily behaviors refers to specific motion cues—such as arm positioning,
head inclination, or gait patterns—that are strongly associated with particular
emotional expressions. These behaviors were drawn from the table in Witkower et
al. [16] (with additional insights from Depraz et al. [63]), which compiles empirical
evidence from multiple studies on how postural and gestural features contribute to
emotion recognition. The study identifies behaviors that have been consistently
validated across different research contexts, providing a structured basis for defining
emotional movement patterns. For example, sadness is often associated with
slumped shoulders and a downward-tilted head, while anger is characterized by
tense posture and forceful, abrupt limb movements.

Although template 4.2 significantly improved generation results, many anima-
tions generated by MDM, LADiff and T2M-GPT were still not able to fully portray
the described bodily behaviors. Therefore, these prompts were further refined
following an iterative approach until coherence between prompt and motion was
achieved (Tab. 4.1). Specifically, refinements included:

• Sentence structure: long sentences were divided using punctuation and
varying conjunctions (e.g., in (sadness, walking, T2M-GPT) the prompt was
rephrased in three sentences).

• Word synonym: variations in wording were used where specific nouns
or verbs were incorrectly depicted (e.g., in (happiness, speaking, T2M-GPT)
“speaking” was replaced with “talking”).

• Verb tense: when models were unable to portray the specified action correctly
verb tenses were adjusted. T2M-GPT in particular often struggled when
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using present continuous, then present simple was used instead (e.g., in
(sadness, walking, T2M-GPT) present simple is used instead of continuous).

• Parameter omission: bodily behaviors or actions that were not effectively
substituted by a synonym were omitted. Standing action in particular was
often omitted (e.g., in (fear, standing, MDM) prompt is missing “standing”)
as it represents a lack of deliberate activity, thus involving no actual motion.

To empirically validate the resulting prompts, a pre-evaluation survey was
submitted (reported in Section 5.2.1), asking participants to quantify the coherence
between prompts and the resulting animation clips. Results of prompt-coherence
(Section 6.2) were considered satisfying and ratified the prompt design method.

Emotion Action Model Generated Prompt

Happiness Speaking

T2M-GPT
A person is talking and jumping with their head
tilted upward. They use energetic and rhythmic
hand gestures swinging freely.

LADiff A person is speaking with head tilted up and rhyth-
mic arm movements as if happy.

MDM A person is speaking with head tilted up and rhyth-
mic arm movements almost dancing.

Muse A happy person is speaking.

Sadness Walking

T2M-GPT

A person walks with a sluggish pace, their head
tilted downward and shoulders slumped. Their arms
hang loosely at their sides with little movement.
They occasionally drag their feet slightly or look
downward as if avoiding eye contact.

LADiff A person is walking slowly with head tilted down,
collapsed body, and with a little swing of arms.

MDM A person is walking slowly with head tilted down.
Muse A sad person is walking.

Fear Idle

T2M-GPT
A person stands nervously, their body slightly
hunched and their hands held up near their chest
or face.

LADiff A person is covering his face with hands collapsing
his upper body and arms.

MDM A person is covering his face with his hands collaps-
ing his upper body and arms with slow movements.

Muse A person is standing in fear.

Table 4.1: Examples of Prompt Design for Different Emotions and Actions.

With this refined prompts, LADiff and MDM demonstrated a noticeable im-
provement in emotional expressivity, particularly for high-intensity emotions such
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as anger and sadness. Their ability to generate distinct movements aligned with
the described emotional states became more reliable, suggesting that explicit bodily
behavior cues helped the models create more meaningful animations. T2M-GPT,
which relies on a transformer-based architecture, required even more detailed
descriptions to produce consistent emotional variations. Prompts that included
multiple bodily cues, such as “a person walks with slow, dragging steps, hunched
shoulders, and head tilted downward”, yielded better results than simpler formula-
tions. Meanwhile, Muse continued to perform well with both simple and detailed
prompts, reinforcing the hypothesis that its underlying model integrates emotional
concepts more effectively than the others.

4.2 Implementation of the Unity-based Tool

4.2.1 Environment configuration
To effectively integrate these generative models into Unity, a careful management
of the Python environment was essential. Virtual environments are a key tool for
managing Python projects that require specific libraries or versions of them, or
even different versions of Python itself. The use of virtual environments avoids
conflicts between the dependencies of different projects, ensuring that each project
has its own isolated space with the versions needed for proper operation. So, It is
often necessary to enable a dedicated virtual environment for each model to ensure
that all required libraries are properly installed and compatible.

The Anaconda 1 tool was chosen to manage the environments because it provides
a very powerful and user-friendly interface for creating, managing, and deploying
Python virtual environments. Anaconda simplifies package installation and setting
up separate environments, all while supporting multiple versions of Python and
complex libraries that might require special configuration. Using Anaconda, it is
quite simple to set up and manage virtual environments for each generative model,
which greatly ensures a smooth workflow tuned for the particular needs of each
project.

4.2.2 Output conversion
One of the main challenges in effectively integrating text-to-motion models within
Unity was accurately converting their generated outputs into compatible formats.
None of the models analyzed were designed for direct integration with graphics
engines or game engines such as Unity. The outputs generated by the models

1https://www.anaconda.com/
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consist of a description of human joint positions (XYZ coordinates) in numpy array
format (.npy), as well as a video file (.mp4 ) showing a stick figure visualization of
the result. However, the availability of joint positions alone introduces a significant
challenge: to convert this data into a format that can be used by 3D software, such
as BVH or FBX, the gap regarding joint rotation information must be bridged.
Inaccurate conversion could introduce physical or visual inconsistencies, with
undesirable effects on the animated characters.

A first alternative for converting the output is offered by a feature in some
models, which allows animations to be generated by exploiting the SMPL [64]
model. SMPL (Skinned Multi-Person Linear) model is a widely used statistical
body model that can generate realistic human meshes controlled by pose and shape
parameters. However, SMPL does not directly accept raw joint coordinates as
input. Instead, it requires a specific set of parameters describing the body’s pose
(i.e., joint rotations) and shape (i.e., body proportions). To bridge this gap, the
SMPLify optimization method is typically employed.

SMPLify is an iterative optimization process that aims to recover the pose and
shape parameters of the SMPL model such that the joints of the generated mesh
align as closely as possible with the target joint positions. Given a set of observed
3D joints, SMPLify minimizes a cost function that penalizes discrepancies between
the SMPL-predicted joint locations and the provided target positions.

This optimization generally includes several terms: a data term that measures
the Euclidean distance between the predicted and observed joints, and regularization
terms that ensure the resulting pose remains within plausible human limits. The
optimization is performed frame-by-frame in the case of an animation, which allows
the generation of a temporally coherent sequence of SMPL meshes corresponding
to the original motion.

Once the optimization converges, the resulting parameters can be passed to
the SMPL model, which outputs a detailed 3D mesh of the human body in the
specified pose (see Fig.4.1). Repeating this process over time enables the creation of
a smooth and realistic animated mesh that mirrors the original joint-based motion.

This method is particularly useful when the input data consists of only sparse
joint positions, as SMPLify allows the reconstruction of full-body geometry and
articulation. Furthermore, it is actually the same used by some text-to-motion
models to visualize their results, making it a natural choice for data conversion.

This approach produces a more complete file than just joint positions, providing
for each frame:

• An OBJ file, representing the body mesh for each frame.

• A detailed description of the motion parameters, including:

1. motion, global motion.
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Figure 4.1: SMPL mesh for each frame of the animations [27]

2. thetas, joint rotations expressed in 6D format.
3. root translation, the translation of the root of the body in space.
4. faces, a list of the faces of the SMPL mesh.
5. vertices, the positions of the vertices of the SMPL mesh for each frame.
6. text, the textual prompt that generated the animation.
7. length, the total number of frames of the animation.

This algorithm needs GPU resources and takes a relatively long conversion time.
Once the SMPL parameters have been calculated, an SMPL to FBX converter2

can be used to transform the data into an FBX format, compatible with Unity.
This method provides a detailed and physically accurate representation, providing
good visual quality and consistency in animation.

Another approach for this conversion is to go through the BVH (Biovision
Hierarchy) format, commonly used in motion capture. Since the BVH format
requires both positions and rotations of the joints relative to their parent, it is
necessary to compute these rotations from the positions alone. For this purpose, an

2https://github.com/softcat477/SMPL-to-FBX
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IK (Inverse Kinematics) body solver3 can be used, based on the observation
that if the directions to which the joints point correspond to the directions of
the vectors between the target joints, then the resulting pose will be aligned with
the target pose. The solver’s iterative process involves rotating each joint so that
the vectors between the joint and its children coincide with those computed from
the target poses. Once the BVH file has been generated, it can be exported as a
Unity-compatible FBX file through Blender scripts. However, this method has
some limitations, particularly for animations that include significant root rotations
(e.g., rotations close to 360 degrees). In such cases, bugs, such as unnatural behavior
of bones, can occur, compromising the quality of the animation. These issues can
be mitigated by increasing the number of iterations of the IK solver algorithm,
at the cost of longer generation times. Despite this, with a sufficient number of
iterations, this method becomes accurate enough for this thesis’s purposes, and it
is the approach chosen for further development.

4.2.3 Integrating Python with Unity
To utilize the motion generation models mentioned earlier, it is necessary to
configure the appropriate Python environment and execute commands via the shell.
This process, entirely written in Python, must be integrated with Unity, which
primarily uses C#. Therefore, a system was developed to enable sending commands
directly from Unity’s interface. The key steps in the process include:

1. Activating the Conda environment corresponding to the selected model.

2. Send the command to generate the animation.

3. Send the command to convert the animation into FBX format.

To establish communication between Unity and Python, two main approaches were
tested:

• Using C# processes: launching terminal sessions and sending commands via
StreamWriter.

• ZeroMQ 4: a library enabling asynchronous and bidirectional communication
between Unity and Python.

The final choice fell on ZeroMQ due to its flexibility and scalability, as it simplifies
implementation for potential future extensions. Additionally, its asynchronous

3https://github.com/sigal-raab/Motion
4https://zeromq.org/

31

https://github.com/sigal-raab/Motion
https://zeromq.org/


Methods

nature enhances performance by reducing bottlenecks and allows the use of the
Unity editor even during generation.

However, the performance in terms of time of the two approaches does not
show significant differences. This is because the Python server, even when using
ZeroMQ, launches external processes via the subprocess library, introducing a
similar overhead to that of direct execution from C#. Nonetheless, this overhead
has minimal impact on animation generation, as the duration depends almost
entirely on model generation and conversion.

Looking ahead, the goal is to import Python scripts directly as modules, allowing
Unity to call Python functions without relying on the shell. This solution would
eliminate the overhead associated with launching new processes.

Python-Unity Messaging System with ZeroMQ

ZeroMQ is an open-source messaging library that supports multiple messaging
patterns, including REQ / REP (Request / Reply) and PUB / SUB (Publish /
Subscribe). The REQ/REP pattern is straightforward: a client sends a request to
a server, and the server replies. This enables bidirectional communication where
the client retains control over the interaction. On the contrary, the PUB/SUB
pattern allows a server to broadcast messages to all subscribed clients, creating a
unidirectional communication flow where clients passively receive data.

For this implementation, the REQ/REP pattern was chosen to enable a struc-
tured exchange of commands and results between Unity and the Python server.

ZeroMQ supports exchanging any serializable data, from primitives to complex
objects like images. In this project, communication involves JSON -formatted
strings due to their simplicity and ease of manipulation.

Python Server Setup. The Python server initializes by importing the zmq
library and creating a context. Within this context, a REP socket is instantiated
and bound to a specific port (e.g., 5554) to listen for incoming messages from Unity.
Although ZeroMQ supports various transport protocols, TCP is commonly used
due to its reliability. The server runs in an infinite loop, waiting for client messages.
Upon receiving a message, it processes the data and sends a reply back to Unity.

1 import zmq
2 context = zmq . Context ( )
3 socke t = context . socke t (zmq .REP)
4 socke t . bind ( " tcp : //∗ : 5 554 " )
5

6 whi le True :
7 t ry :
8 message = socket . recv_json ( )
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9

10 prompt = message . get ( . . . )
11 model = message . get ( . . . )
12 [ . . . ]
13 r e s u l t = execute_model ( model , prompt , . . . )
14 socke t . send_str ing ( r e s u l t )
15

16 except zmq . ZMQError as e :
17 l o gg ing . e r r o r ( f "ZMQ Error : { s t r ( e ) } " )
18 except Exception as e :
19 l o gg ing . e r r o r ( f " Unexpected e r r o r : { s t r ( e ) } " )

Unity Client Setup. On the Unity side, a RequestSocket is used to establish
communication with the Python server. Before initiating communication, the
Python server is launched via a Unity script using the System.Diagnostics.Process
class. Once the server is running, the Unity client establishes a connection and
sends a JSON -formatted message containing the generation parameters. The client
sends the JSON message to the Python server, waits for the response,and processes
the returned result.

1 AsyncIO . ForceDotNet . Force ( ) ;
2 c l i e n t = new RequestSocket ( " tcp :// l o c a l h o s t :5554 " ) ;
3 t ry
4 {
5 var messageObj = new JsonMessage
6 {
7 prompt = promptText ,
8 model = se lectedModel ,
9 [ . . . ]

10 } ;
11

12 var message = J s o n U t i l i t y . ToJson ( messageObj ) ;
13 c l i e n t . SendFrame ( message ) ;
14

15 i f ( c l i e n t . TryReceiveFrameString ( TimeSpan . FromSeconds (1 ) , out
s t r i n g re sponse ) )

16 {
17 processResponse = response ;
18 break ;
19 }
20

21 }
22 catch ( Exception ex )
23 {
24 Debug . LogError ( " Exception : " + ex . Message ) ;

33



Methods

25 }
26 f i n a l l y
27 {
28 i f ( c l i e n t != n u l l )
29 {
30 c l i e n t . Close ( ) ;
31 ( ( ID i sposab l e ) c l i e n t ) . Dispose ( ) ;
32 NetMQConfig . Cleanup ( ) ;
33 }
34 TerminatePythonServer ( ) ;
35 }

4.2.4 Unity Editor
The most user-friendly way to allow users to generate animations directly within
Unity is to use custom windows in the editor. Editor scripts in Unity are special
scripts that extend the functionality of the game engine editor, allowing develop-
ers to create custom user interfaces, add advanced editing tools, and automate
operations within the editor itself.

Unlike MonoBehaviours, which are designed to be used during game execution
and are attached to GameObjects, editor scripts run exclusively in the Unity
editor. MonoBehaviours allow code to be written that responds to game lifecycle
events, while editor scripts focus on operations related to creating and modifying
the scene and assets within the editor before the game is executed.

The main advantages of script editors lie in the ability to customize Unity’s user
interface and automate complex operations that would otherwise require multiple
manual steps. Custom tools, such as windows, buttons, and context menus, can
simplify interaction with the engine, improving efficiency during the development
process.

This tool allows users to input parameters, trigger the generation process, and
automatically apply the resulting animations to character rigs.

Interface Design

The custom Editor Window, illustrated in Fig. 4.2, consists of several key compo-
nents designed to streamline the animation generation workflow:

1. Text Prompt: this field (Fig.4.2-1) allows users to enter the textual de-
scription of the desired motion, which is then sent to the selected generative
model.

2. IK Iterations: this numerical input field (Fig.4.2-2) specifies the number of
iterations for the inverse kinematics (IK) algorithm used during the conversion
process. Higher values improve accuracy but increase processing time.
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3. Model: dropdown menu (Fig.4.2-3)for selecting the desired generative model.
The available options are displayed in a dropdown list, allowing users to switch
between models with ease.

4. Animation Duration: when supported by the chosen model, this slider
(Fig.4.2-4) controls the duration of the generated animation, enabling fine-
tuning of motion length.

5. Generate/Stop: this button (Fig.4.2-5) starts or stops the animation gener-
ation and conversion process. When clicked, the system triggers the model
execution, processes the generated data, and converts it into FBX format.

6. Working Paths: these fields (Fig.4.2-6) display the current working directo-
ries for the Python path and the server path. These paths are essential for
the tool to locate the necessary scripts and resources.

Figure 4.2: A screenshot of the GenerateAnimation script window.
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4.2.5 Process overview
To systematically generate the animation video dataset, this Unity automated tool,
given a motion model (m) and a text prompt encapsulating both the action (a)
and the emotion (e), produces a recorded video clip under consistent rendering
conditions.

In simple terms, animations were generated through an integrated pipeline
involving two main environments: a Python environment for inference and
animation data preparation, and a Unity environment for rendering and recording
(see Fig.4.3).

The Unity client collects user input from the editor window (user interface, UI),
which is then sent via ZeroMQ to the Python server. The server processes this
input and retrieves execution parameters from a JSON configuration file, which
includes paths to the generative models and the necessary commands to run them.
By using a JSON -based configuration file, the process remains fully customizable;
developers can easily modify the file to change model paths, adjust execution
parameters, or add new models without needing to alter the code.

The server then executes the relevant commands based on the selected model,
applies the IK solver, runs a Blender script for FBX conversion, and finally saves
the resulting file directly in Unity’s Resources folder. After the generation and
conversion, the Unity client applies a Humanoid rig to the generated FBX file,
extracts the animation clip, and deletes unnecessary files. The animation is then
assigned to the Unity Animation System.

Finally, Unity Recorder was used to capture 1280x720 MP4 video clips of each
animation.

To avoid potential bias or confounding variables related to gender, age, or ethnic-
ity—factors beyond the scope of this preliminary study—a neutral, mannequin-like
character for all animations was employed. Since the chosen generative models
do not currently animate hands, fingers, or faces, using a simplified mannequin
prevents incomplete or distracting content that might otherwise distort partici-
pants’ emotional perception [16, 57]. This approach is especially well suited to this
exploratory research, as it provides a controlled assessment of how effectively the
generated movements convey emotion solely through body language.

Figure 4.3: Process overview
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Experiments

This chapter describes the experiments conducted to evaluate the quality and
effectiveness of the generated animations. The evaluation process includes two
distinct experimental setups, each designed to assess different aspects of the an-
imations: emotional expressiveness and alignment with textual prompts. The
subsequent sections provide the detailed voting system and metrics definitions for
each experiment.

5.1 Voting System
The user evaluation phase was conducted through an online survey managed by a
custom web-based system responsible for distributing the animation video clips
and collecting responses. The survey link was publicly shared—primarily among
students of Politecnico—on a voluntary basis. Before participating, individuals
provided basic demographic information (age, gender, nationality), which was used
exclusively for aggregated analysis without storing any personally identifying data.

The system assigns each participant a personalized, randomized queue with all
the animation clips to be evaluated. This randomized order was intended to prevent
similar animations (e.g. those depicting sadness) from being grouped together,
which could lead to a bias in the rating. The participants were then presented with
the videos one after the other.

5.2 Metrics

5.2.1 Promp-coherence experiment
For each video v, they were asked to rate how well the prompt matched the
animation (rated affinity, ri) on a Likert scale from 1 (Low Affinity) to 7 (High
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Affinity), generating a selection si = (vi, ri). Figure 5.1 shows the survey’s voting
interface.

Figure 5.1: First experiment interface

Considering a desired S as a subset of the total selections, filtered by any
combination of m, egen and a, Affinity Score Rs is calculated.

Affinity Score Rs is defined as the mean value of the rated affinity ri across all
selections si ∈ S. This value is used to assess how well the generated animation clips
align with the given textual prompt. Higher values indicate a better correspondence
between the generated animation and the described action. Collected values are
represented on a seven-point Likert scale ranging from low affinity (one point) to
high affinity (seven points) with neutral in the middle (four points), which are
then mapped to a scale from zero to one, thus Rs ∈ [0, 1].

5.2.2 Emotion perception experiment
Participants were asked to watch each animation exactly once and then select which
of the six basic emotions (happiness, sadness, anger, fear, surprise, disgust) they
believed it conveyed. They also rated the difficulty of making that decision on a
seven-point Likert scale, ranging from easy (1) to hard (7). Thus, each selection (si)
was recorded as (vi, es

i , di) where vi indicates the depicted video, es
i is the emotion

selected by the participant, and di is the difficulty rating.
Figure 5.2 illustrates the survey’s voting interface. By combining emotion

selection and difficulty assessment, it has been gathered not only recognition
accuracy—how well participants identified the intended emotion—but also insights
into each participant’s subjective confidence or uncertainty in making that choice.
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This dual-metric approach allowed for a more nuanced evaluation of how effectively
each generative model conveyed emotional expressivity in its animations.

Figure 5.2: Second experiment interface

To evaluate performance at different levels of granularity, different subsets of all
user selections were extracted to analyze specific factors (e.g., a single emotion, a
model, an action, or any combination thereof). In this way, for example, metrics
can be calculated only for the anger animations generated by model A or for the
happiness on walking animations generated by all models.

Let S be an arbitrary subset of the user selections obtained by filtering for any
combination of model (m), action (a), and intended emotion (egen).

The accuracy AS defined as the number of correctly recognized emotions divided
by the total number of selections in S and the difficulty DS as the normalized mean
of the difficulty di of all selections si ∈ S, i.e. DS = (µ − 1)/6 where µ = 1

n

qn
i=1 di.

Therefore, an accuracy closer to 1 corresponds to higher believability, while an
accuracy closer to 0 corresponds to lower believability. Conversely, higher difficulty
values mean greater uncertainty in identifying the emotion depicted. Intuitively,
a negative correlation between AS and DS is expected, i.e. lower believability is
associated with higher difficulty.
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Results

6.1 Emotion perception experiment
The primary aim of this study was to explore the believability and human recogniz-
ability of emotionally expressive animations generated by different text-to-motion
AI models. Specifically, recognition accuracy across various emotions and actions
was analyzed to gain preliminary insights into their potential to convey realistic
emotional states. Given the exploratory nature of this research, it is crucial to
contextualize the results within existing body language literature. By qualitatively
comparing this study’s findings with previous studies focused on human recognition
of emotions from real human motion [65, 66, 67, 68], it can better understand
whether the limitations observed in this study are specific to the virtual and
AI-generated context or if they reflect broader challenges inherent in recognizing
certain emotions through body language alone.

Participants

The survey resulted in a total of 39 participants with 33 who fully completed the
survey, the others’ selections were discarded. Participants were nine females and 24
males, of which 31 of them are Italian with a mean age of 27 ± 7 years old. Overall,
the data collection resulted in 2376 selections, with a mean selection time of 23.75
seconds for a single video.

6.1.1 Emotions analysis
Considering overall metrics subdivied by emotions 6.1a, anger and sadness achieved
the highest recognition accuracies (0.74 and 0.72, respectively). The higher ac-
curacy for anger can be attributed to the presence of distinct body movements
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(a) AS (bars) and DS (red line) (b) Confusion matrix

Figure 6.1: Aggregate results grouped by emotion.

typically associated with intense emotions—such as abrupt gestures, tense mus-
cular postures, and forward-leaning stances—that are universally identifiable and
consistently documented across multiple body language studies [68, 65]. Simi-
larly, sadness benefits from highly recognizable bodily expressions such as slumped
shoulders, lowered heads, and minimal limb movements [67, 66], providing clear
visual cues even in the absence of facial details [68]. Conversely, disgust and
surprise recorded significantly lower accuracy rates (0.14 and 0.31, respectively).
The particularly low accuracy for disgust highlights its reliance on subtle facial
expressions, including movements around the mouth and nose [57], typically dif-
ficult to convey effectively using body motion alone [66, 65]. Surprise, despite
generally involving noticeable bodily cues such as sudden backward movements or
raised limbs, suffers from ambiguity in body posture interpretation without comple-
mentary facial or hand cues, leading to increased confusion and lower recognition
accuracy [68]. Additionally, considering that usually surprise emotion is expressed
toward a sudden occurring environmental event[57], the lack of context may have
added more selection uncertainty [67, 66]. Happiness achieved moderate accuracy
(0.55), reflecting the complexity in interpreting this emotion solely through body
language. Happiness is often expressed through dynamic and energetic gestures
such as bouncing, rhythmic limb movements, or open and expansive postures [67,
68]. However, these cues can closely resemble other high-arousal emotions, resulting
in ambiguity and recognition challenges when isolated from facial expressions or
contextual elements [68, 66]. Similarly, fear showed moderate recognition accuracy
(0.52), indicating variability and complexity in bodily expression. Fear can manifest
in multiple distinct motor behaviors—ranging from freezing and subtle defensive
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postures to overtly escaping movements—making it inherently context-dependent
and less universally recognizable without facial or environmental context cues.
These findings underscore well-documented challenges in previous studies, where
subtler and context-dependent emotions heavily rely on specific expressive details
harder to isolate in body movements alone [68, 66].

To gain insights on the incorrect selection of emotions, it is useful to consider
their confusion matrix 6.1b. Disgust, frequently confused with sadness (0.35) and
fear (0.32), has consistently been recognized as difficult to identify through body
motion alone, as it heavily relies on subtle, facially-centered cues—particularly
around the mouth and nose—that are not effectively conveyed through posture or
gross motor gestures [57, 66, 65]. Prior research has emphasized that, when facial
and hand information is absent, observers tend to misclassify it with emotions
exhibiting similarly contracted or protective postures—i.e. sadness or fear— [67].
Similarly, surprise was commonly confused with all of the others, aligning with past
literature indicating that surprise is inherently ambiguous without complementary
facial cues, as its bodily expression often overlaps with positive (e.g., happiness) or
negative (e.g., disgust, fear) reactions due to sudden and expansive gestures [68].
Fear, while moderately well recognized (0.52), was most commonly misclassified as
sadness (0.20), hinting to common perceptual cues. This confusion is consistent
with prior findings showing that fear-related movements can vary widely—from
freezing and crouching to defensive or escape behaviors—and that, in the absence
of facial expressions or contextual stimuli, such motions may resemble the inward,
subdued posture of sadness [67, 66]. Equivalently, happiness was misclassified
as anger (0.22), revealing a perceptual overlap in their bodily expressions. Prior
studies have shown that both emotions are conveyed through expansive, high-energy
movements—such as arm-raising or vigorous gestures—which, in the absence of
facial features, can appear visually similar [68, 67, 66]. This suggests that observers
may rely on motion dynamics as a proxy for intensity or arousal, leading to
systematic confusion between highly activated emotional states. Conversely, anger
and sadness showed fewer confusions with other emotions, consistent with previous
findings highlighting their universally recognized and distinct body cues, such as
forward-leaning and tense postures for anger, and closed, slouched postures for
sadness [68, 66, 65].

Across all emotions, difficulty ratings range from easy to neutral. This outcome
hints that even if the actual selected emotion was incorrect, participants perceived
the produced animations as fairly coherent and natural. Although this distribu-
tion implies a negative relationship between recognition correctness and perceived
difficulty, a strong monotonic correlation does not materialize 6.1a (Spearman’s
rank correlation resulted in ρ = −0.15, p < 0.001, and a 95% confidence interval of
[−0.19, −0.11]). Similar results are obtained considering correctness and emotion
selection times (Spearman’s rank correlation resulted in ρ = −0.10, p < 0.001,
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and a 95% confidence interval of [−0.14, −0.06]). Contrarily, an interesting finding
emerges when examining the relationship between selecting time and perceived
difficulty. While accuracy shows no significant correlation, a moderate and sta-
tistically significant monotonic relationship is observed between voting time and
difficulty ratings (Spearman’s rank correlation resulted in ρ = 0.44, p < 0.001,
and a 95% confidence interval of [0.41, 0.47]). This suggests that participants who
perceived a stimulus as harder also took longer to cast their selection, reflecting
greater cognitive effort or uncertainty in emotion attribution.

Varying accuracies observed across emotions emphasize the importance of dis-
tinctive and universal non-verbal cues in accurately conveying emotional states
in VHs animation as well as real human motion. Emotions characterized by
well-defined, cross-culturally consistent gestures and postures, such as anger and
sadness, are more successfully communicated through body movements, whereas
emotions that rely predominantly on subtle or facial-dependent details, such as
disgust and surprise, present inherent limitations for effective recognition without
complementary expressive channels.

6.1.2 Actions and Models analysis
To better interpret the performance outcomes, it is useful to take a closer—though
not exhaustive—look at how different generative models behave across various
actions and emotional contexts. While the analysis that follows is only preliminary,
it attempts to hypothesize potential explanations for model behavior by examining
their outputs in relation to specific body movement cues and emotional expressions.
These interpretations are speculative and should be considered as an initial step
toward understanding the models’ capabilities, informed by body language literature
and the structural characteristics of the models involved.

Speaking

MDM demonstrates relatively higher accuracy across multiple emotions 6.2a, espe-
cially for happiness, fear, sadness. While these results might partly stem from the
universally expressive nature of these emotions [67, 65], the model’s transformer-
based architecture, which is designed to manage the temporal and spatial irreg-
ularities of motion data, may also support slightly more coherent and believable
emotional animation in speech scenarios. While this remains speculative in terms
of expressive clarity, the model’s use of geometric losses on joint locations and
velocities [27] suggests a technical basis for improved motion continuity. Muse
and LADiff follow, performing moderately well, in particular better than MDM
on anger, potentially benefiting from possible learned emotional embeddings for
Muse, or diffusion-based smoothing for LADiff [28], which may stabilize emotional

43



Results

(a) Speaking accuracy. (b) Standing accuracy.

(c) Walking accuracy. (d) Overall accuracy.

Figure 6.2: Aggregated accuracies for models and emotions. Subfigures (a), (b)
and (c) by actions, subfigure (d) overall.

portrayals in specific Speaking poses. Interestingly, LADiff’s accuracy regarding
fear is close to zero due to its consistent confusion with sadness (ratio of 0.76),
probably due to inherent animation characteristics leading to consistent ambiguity
as seen in overall findings 6.1b. This confusion likely stems from the model’s
latent space denoising process, during which emotional nuances may be overly
smoothed or collapsed, particularly for emotions with overlapping low-energy pos-
tures like fear and sadness. In contrast, this confusion is less evident in MDM,
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which does not rely on a latent-space diffusion mechanism and instead generates
motion sequences directly in pose space, preserving more distinct structural features
between similar low-activation emotions. On the other hand, the non-diffusion
architecture of T2MGPT, relying on tokenized motion representation [45], appears
less consistent, possibly due to the discretization of motion into symbolic units that
can limit fluidity and nuance. While this process enables structured prediction
and scalability, it may constrain the model’s ability to represent continuous and
context-sensitive emotional cues, especially in subtle or complex gestures. On the
other hand, this architectural characteristic might interestingly enhance T2MGPT
at portraying anger, in which the required strong and abrupt movements might be
naively portrayed by the intrinsic limited motion fluidity.

The portrayals of surprise and disgust remain particularly challenging across all
models, which is consistent with broader findings in body language literature [68].
While the overall performance remains limited, MDM and Muse appear to handle
basic emotions slightly better.

Standing

Again, MDM shows slightly higher accuracies, particularly for fear, happiness, and
sadness. This might reflect the model’s ability to capture subtle posture changes
even in limited-motion contexts, possibly benefiting from its transformer-based
structure [27]. Standing poses inherently offer fewer dynamic cues, making emotion
conveyance more reliant on posture and subtle weight shifts [67, 65], areas where
MDM’s design might offer an advantage. LADiff’s performance only slightly lags
behind MDM overall due to a noticeable dip in expressing happiness, which seems
to stem from specific characteristics of the generated animations—mainly confused
with anger with a 0.52 rate, consistent to overall results 6.1b. Muse shows modest
improvements in conveying ambiguous emotions like surprise and disgust. This
may be due, similarly to Speaking action, to mechanisms that promote stylistic
coherence or learned patterns from expressive training examples. These results
remain tentative and should be interpreted cautiously—in particular regarding
Muse, being undocumented—, especially as suprise and disgust emotions continue to
challenge recognition even under optimal modeling conditions [68]. Lastly, T2MGPT
is outperformed by other models except for anger, where it excels among others,
possibly reflecting its capacity to tokenize the tense posture shifts associated with
the emotion. This difference remains speculative and warrants further verification
but highlights how even minimal shifts in stance may be expressed more distinctly
by some architectures than others.
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Walking

Results show a heterogeneous landscape, with each model highlighting a different
emotional strength. Muse shows relative proficiency in conveying anger and
sadness, possibly owing to naturally embedded emotional comprehension, which
may help capture the slow, heavy gait characteristic of sadness-related motion. In
the case of anger, the model may benefit from its ability to correctly reproduce
increased joint rigidity and greater arm swing amplitude, with sharper elbow and
shoulder angles—features often associated with high-arousal, confrontational body
language [68]. As well, T2MGPT captures anger effectively, which might be due
again to its token-based generative mechanism, enabling sharp and intense motion
bursts that align with the high-activation, aggressive gait typically associated with
anger in body language research [66]. Conversely, LADiff appears somewhat better
at portraying fear, likely benefiting from its latent diffusion process that emphasizes
smooth temporal coherence while still allowing for subtle retreating or defensive
kinematic cues typical of fearful walking [68]. Meanwhile, MDM appears to excel at
conveying happiness, presumably due to its transformer-based architecture’s ability
to capture the vibrant, upper-body gestures often associated with this upbeat
emotion. Nonetheless, surprise and disgust continue to yield poor results across all
models, highlighting the persistent difficulty of conveying these emotions through
body movement alone [68, 65].

Overall

Overall, MDM and Muse perform slightly better than the others, though all models
show room for improvement 6.2d. MDM overall succeeds in conveying nuanced
emotional cues across different actions, possibly due to its transformer-based
architecture and use of geometric loss functions, which support more structured
motion sequences. Muse shows a degree of emotional expressivity, perhaps due to
training on motion-emotion semantics, which helps it capture some recognizable
cues, especially in high-energy emotions like anger. LADiff and T2MGPT show
limitations overall. LADiff struggles particularly with emotions like fear and
happiness, sometimes confusing them probably due to its latent diffusion approach,
which may blur subtle emotional differences during denoising. T2MGPT, utilizing
tokenization-based generation, struggles with fluidity and subtlety in most emotions
but interestingly excels at anger, where abrupt and sharp movements align well
with tokenization strengths.

In conclusion, while all models exhibit considerable limitations—especially in
conveying complex or subtle emotions like surprise and disgust—MDM and Muse
offer comparatively better performance. Their relative advantages suggest that
certain architectural choices and training approaches may provide a more promising
direction for improving emotional motion generation, though much work remains
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to be done.

6.2 Prompt-coherence Experiment
This experiment was conducted prior to the emotion perception experiment to
validate the prompts used. However, this section discusses the results retrospec-
tively, incorporating insights gained from the outcomes of the subsequent emotion
recognition experiment to provide explanatory context.

The user evaluation phase registered 21 participants, 5 females, and 16 males,
all of whom are Italian. Most participants are 20 ÷ 30 years old, with only one of
them over 50. Overall, the data collection resulted in 1512 selections, with a mean
selection time of 34.27 seconds for a single video.

6.2.1 Overall Analysis

Figure 6.3: Overall affinity across models and emotions.

Considering the affinity score grouped by models and emotions in Fig. 6.3, the
highest-ranked emotions remain the same: Anger and Sadness. This indicates that
the animations for these emotions were clearly recognizable to users and consistent
with the initial prompt. It also suggests a strong correspondence between the
bodily behaviors described in the prompt and the conveyed emotion.

In contrast, the other ones exhibit a more noticeable divergence between affinity
and accuracy. Although users rated the alignment between the prompt and the
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generated animation relatively high (Rs > 0.55), they had greater difficulty correctly
identifying these emotions compared to Anger and Sadness. As illustrated in the
confusion matrix (Fig. 6.1b), this is likely due to the frequent misclassification of
these emotions, which share similar bodily expressions with others: Happiness is
often confused with Anger, Fear with Sadness, and Disgust with both Fear and
Sadness. Thus, while the animation may closely match the prompt, it may still be
misinterpreted in the emotion recognition experiment.

Regarding Surprise, as noted in the previous experiment, this emotion remains
particularly challenging for current AI models to reproduce due to its unique
characteristics. Additionally, research on body language indicates that Surprise
is not always clearly identifiable through gestures alone [69, 70]. This ambiguity
could explain why the affinity scores were relatively acceptable. For instance,
the T2M-GPT prompt for Surprise during a speaking action is described as "A
person is talking with gestures and then suddenly lifts their arms". Although the
mannequin may not have lifted its arms abruptly as intended, it still performed
the described movement, leading participants to assign ratings above the neutral
level (four out of seven). Nevertheless, the underlying emotional intent of Surprise
remained ambiguous to users.

As regards the models, MDM and LADiff best adhere to the given prompt.
Surprisingly, Muse performed the worst in this aspect, despite ranking second in
emotion perception. This discrepancy is likely due to the nature of the prompts
used in the emotion evaluation, which were more general, such as “A person is
sad”. In this case, participants may have judged based on simple cues—such as
a character with its head down—which, when compared to distinct emotional
categories, strongly suggests that sadness is the right choice. However, when
evaluating prompt affinity, they might have questioned whether the model’s output
truly conveys sadness to its full extent (i.e., if it is deeply expressive or just
minimally suggestive).

6.2.2 Action Analysis
Speaking

Considering the Speaking action (Fig. 6.4a), all models show a generally consistent
performance, with values clustering around the 0.6-0.8 range for most emotions.
There is no single model that clearly outperforms in all emotions. MUSE is the best
for Anger, Sadness, and Disgust, while MDM leads in the other three (Surprise,
Happines, and Fear). Observing the accuracy for T2M-GPT and MUSE in Fig.
6.2a (on the right), it is evident that Happiness is not well recognized. However, it
achieves good results in prompt affinity, likely due to its bodily behaviors being
similar to those of Anger. The same for Disgust misclassified with Sadness or Fear.
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(a) Speaking action (b) Standing action

(c) Walking

Figure 6.4: Actions’ affinity

Standing

Unlike the Speaking action, where models were relatively balanced, there is greater
variation in how models interpret emotional cues in the Standing pose (Fig. 6.4b).
LADiff excels in Anger and Fear, achieving the highest affinity. But struggles in
Surprise. MDM is more balanced. MUSE shows the strongest affinity for Fear
and Anger. T2M-GPT performs unexpectedly well in terms of affinity for Surprise,
achieving the highest score despite having the lowest emotion accuracy. This
is likely due to the lack of sudden movements typically associated with Surprise,
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making the emotion less distinguishable even if the generated motion aligns with the
prompt. The description itself—"A person stands still then suddenly makes a step
backward toward an unexpected stimulus"—can result in a deceptively high-affinity
score, as even a simple backward step may be sufficient to fulfill the prompt.

Walking

The variation across models is more pronounced than in Standing and Speaking
actions, suggesting that emotional cues are harder to capture while walking (Fig.
6.4c). LADiff excels in Fear and Anger, MDM is best in Happiness as expected,
MUSE is the strongest model for Anger and Sadness, and T2M-GPT in Disgust.

6.2.3 Limitations and Future Works
Due to the preliminary nature of this study, some important limitations, which are
discussed in the following, should be noted.

Firstly, the used prompt engineering iterative method for animation clips gener-
ation, although being systematically conducted and evaluated with a pre-screen
user study, may still have introduced an evaluation bias. Text-to-motion bases
itself on text input which needs to be carefully crafted to achieve desired motion
results. This is a well-known complex task for AI text-to-image models [71] but still
unexplored for text-to-motion ones. Future research should focus on this aspect,
evaluating different prompting strategies applied to the broad text-to-motion task
as well as the ETMG one.

Secondly, as mentioned previously, cues such as finger gestures, facial expressions,
and general visual appearance heavily influence emotional perception. Furthermore,
the gender-neutral appearance of the model made possible perception differences
between male and female VHs unfeasible, thus limiting this analysis. Future research
should explore diverse character models with explicit demographic attributes and
possibly consider adding hands and facial animations to better understand how
these variables influence the emotional believability of generated animations.

Thirdly, generative models were trained on data without explicit emotional state
labeling, with the only notable exception of L3EM [29], which has no publicly
available code by now. This constrains the models’ ability to accurately interpret
and create fine-grained emotional body language. Future research should focus
on developing specific datasets for ETMG and training state-of-the-art models to
directly encode emotional motion nuances—e.g., posture, velocity, acceleration, and
amplitude—into neural network embeddings, with the aim of naturally reproducing
them.

Fourthly, this exploratory study restricted the set of emotions explored and
its application. Body language research has also investigated emotions beyond
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Ekman’s basic set, such as Shame and Pride [16], revealing distinctive associated
cues. Moreover, only three daily actions were considered, significantly limiting
the investigation within typical Virtual Human (VH) scenarios. Future research
must broaden its exploration to include a wider range of emotions, behaviors,
and complex interactions—particularly those involving objects or other VHs—in
immersive XR environments. Crucially, the actual animations generated should
be tested and evaluated directly in VR, where embodiment, presence, and spatial
perception can significantly influence the interpretation of nonverbal behavior.

Finally, the vast majority of participants were Italian with ages spanning from
20 to 30 years old. Participants’ evaluation could have been affected because of
possible cultural differences, referring to nationality, and expectations regarding
computer-generated animation videos, especially referring to age. Future research
should try to diversify its participants’ demography in order to reduce any potential
bias.
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Chapter 7

Conclusions

The advancements in AI-driven animation synthesis explored in this thesis demon-
strate the potential of generative models, particularly diffusion-based architectures,
in creating expressive and realistic motion sequences. Through a comprehensive
evaluation of state-of-the-art models, it is evident that AI-generated animations
have made significant strides in terms of quality and coherence.

The varying accuracies observed across emotions underscore the central role
of distinctive and culturally consistent non-verbal cues in conveying emotional
states, not only in human communication but also in AI-driven text-to-motion
animation. The experiments results, derived from the generation of emotional full-
body motions based solely on textual emotion prompts, reflect patterns consistent
with findings from body language research. Emotions such as anger and sadness,
which are associated with well-defined and universally recognizable postures and
movement patterns, are more accurately conveyed by text-to-motion models. In
contrast, emotions like disgust, surprise, and to a moderate extent happiness
and fear, rely more heavily on subtle cues or facial expressions, making them
inherently more difficult to represent through body motion alone. While these
limitations highlight the current boundaries of text-to-motion systems, the observed
alignment with established non-verbal communication literature suggests that this
approach may hold strong potential. With further development, such as integrating
multi-modal cues or refining body-part-specific expressiveness, and more in-depth
investigation on models architecture regarding animation dynamic—considering
emotion-related parameters such as posture, motions’ speed, acceleration and
amplitude—text-to-motion could become a valuable tool for generating believable
emotional animations.
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7.1 Limitations and Future Works
In addition to the challenges related to emotional expressiveness, current text-
to-motion models also present technical limitations that need to be addressed to
enhance their applicability in real-world scenarios. Challenges remain in ensuring
fine-grained control, physics realism, and prompt adherence. Furthermore, future
research should focus on:

• Real-time applicability: current generative text-to-motion models are
generally not optimized for real-time animation, which limits their use in
interactive applications and gaming. While initial efforts are emerging in this
direction, real-time capabilities remain an underexplored and rapidly evolving
research area.

• Built-in solutions: most generative models are not inherently designed for
game development workflows, often requiring additional conversion steps that
may be inefficient or suboptimal. Future research should prioritize aligning
text-to-motion models with game engine requirements, similar to initiatives
like Unity Muse, to improve overall workflow efficiency.

• Human-Object Interaction (HOI) and Multi-Character Animations:
existing generative models predominantly focus on single-character scenarios
and lack robust capabilities in generating coherent interactions involving mul-
tiple characters or precise manipulations of objects within the environment.
Future work should emphasize developing models capable of understanding
and producing context-aware animations that realistically depict interactions
between multiple characters and their environment, including accurate repre-
sentation of object usage, collaborative tasks, and complex social dynamics.
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