
POLITECNICO DI TORINO

Master degree course in Electronic Systems

Master Degree Thesis

Development of demo designs
for VE2302-DK based on

AMD Versal Edge adaptive
SoC VE2302

Supervisor
Prof. Mario Roberto Casu

Candidate
Francesca Franzese
Student ID: 315092

Co-Supervisor
Ing. Maurizio Cignetti

April 2025

Summary

The AMD Versal™ architecture is a heterogeneous compute platform
that combines programmable logic (PL), processing system (PS), and AI
Engines-ML (AIE-ML), along with leading-edge memory and interfacing
technologies. The Versal™ adaptive SoCs family delivers powerful
acceleration to support a variety of applications in embedded systems.

The work presented in this thesis aims to develop a demo design for
VE2302 Development Kit by Avnet, which is a board based on AMD
Versal Edge adaptive SoC VE2302. This design consists in a Linux-based
system running on AI Engine, PS, and PL. The design implements a simple
image processing core based on the bilinear interpolation algorithm, which
can be used, for example, as a pre-processing stage for AI models.

The AI Engine domain contains a graph consisting of a bilinear
interpolation kernel. The PL domain includes data movers between the
global memory and the AI Engine-ML array, along with an RTL IP that
pre-processes image pixels before they are elaborated by the AI Engine
kernel. The PS domain contains a host application that controls the entire
system. Despite the final target device being the VE2302-DK, the platform
on which this system was targeted and tested is the AMD Versal™ AI
Edge Series VEK280 Evaluation Kit. Indeed, the VEK280 board is based
on a SoC of the same Versal family (the VE2802), which has the same
architecture and a larger number of available resources.

In the first part of the thesis, the two involved platforms are described,
and a brief analysis of the architecture of the Versal SoC is provided. This
part is followed by a description of the bilinear interpolation algorithm,
to explain the implementation choices. The second part describes the
individual system components: AI Engine-ML kernels, HLS kernels, and
RTL IP in programmable logic, and host application. The focus of this

2

section is mainly on AI Engine programming. This part also illustrates the
integration of an RTL IP in this heterogeneous environment, along with
the interfacing rules that must be followed. The interaction between the AI
Engine-ML devices and the RTL IP is analyzed by considering two different
design approaches.

In the first case, IP and AIE-ML operate sequentially, without direct
interaction. The IP fully processes the input frame and writes the output
data to DDR before the AIE execution begins. In this approach, the AIE-ML
and RTL kernel exchange data using buffers in global memory.

In the second design, the IP and AIE-ML work concurrently. The IP
provides data to the AIE array in packets via an AXI-Stream interface, and
the AIE processes data between the reception of each packet.

The outcomes obtained from hardware emulation on an x86 host machine
and from synthesis and testing on the target hardware are presented. The
results are described in terms of performance and resource utilization.

Furthermore, an alternative implementation using only AI Engine-ML is
explored, demonstrating the feasibility of a purely AI Engine-based approach
and also the limits of this choice.

Overall, this thesis demonstrates the implementation of a bilinear
interpolation system on the AMD Versal™ AI Edge platform, integrating
AI Engine-ML, programmable logic, and the processing system, considering
different design approaches. This work becomes a starting point for the
implementation of an image processing system on Versal: the result is a
reference design that can be used by the final users to explore the platform’s
heterogeneity and the powerful performance of the Versal devices.

3

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 Context . 11
1.2 Motivations . 12
1.3 SoC programming tools . 13

2 The VE2302 Development Kit 15
2.1 VE2302 SoM . 15

2.1.1 AMD Xilinx Versal AI Edge XCVE2302 15
2.1.2 Platform Management Controller 17
2.1.3 Programmable logic I/O banks 19
2.1.4 Micro Header JX connectors 19

2.2 AI Edge IO Carrier Card . 19
2.2.1 Main features and block diagram 19

3 The VEK280 Evaluation Kit 25
3.1 Board features . 25
3.2 AMD Versal™-AI Edge SoC XCVE2802 28

3.2.1 AI Engines-ML . 30

4 Implementation of bilinear interpolation algorithm 35
4.1 The bilinear interpolation algorithm 35
4.2 Bilinear interpolation kernel on AI Engine-ML 40

4.2.1 Introduction to AI Engine-ML programming 41
4.2.2 Bilinear kernel graph code 42
4.2.3 Bilinear Kernel algorithm code 44
4.2.4 Bilinear kernel graph compilation 47

4

4.3 PL kernels requirements . 52
4.3.1 HLS interfaces from/to global memory 55
4.3.2 Integration of RTL IP in programmable logic 57

4.4 Generation of input and golden data 67

5 System Integration 69
5.1 Introduction to Versal Integration 69
5.2 Design linking . 70
5.3 Software host application . 75

5.3.1 Host application code 76
5.4 Design packaging . 79

6 Bilinear Interpolation with AI Engine based approach 85
6.1 AI Engine array programming 86

6.1.1 Bilinear kernel graph code 86
6.1.2 Reorder kernel code . 87
6.1.3 Bilinear graph compilation 90

6.2 Software host application . 91

7 Running the design on hardware 97
7.1 Design 2: system execution . 98

7.1.1 Hardware emulation 98
7.1.2 Hardware execution . 100

7.2 Design 1 system execution . 103
7.2.1 Hardware emulation 103
7.2.2 Hardware run . 103

7.3 Design 3: system execution . 105
7.4 Resources utilisation . 108
7.5 Final considerations and design comparison 109

7.5.1 Performances . 109
7.5.2 Resources utilization 111

8 Conclusions and future developments 115

9 Appendix 117
9.1 Appendix A . 117

9.1.1 bilinear_graph.h . 117
9.1.2 bilinear_kernel.h . 119
9.1.3 bilinear_kernel.cpp . 120
9.1.4 config.h . 122

5

9.1.5 buffers.h . 123
9.1.6 reorder_kernel.cpp . 124

9.2 Appendix B . 129
9.2.1 s2mm.cpp . 129

9.3 Appendix C . 130
9.3.1 Input and golden file matlab script 130
9.3.2 Output coordinate grid generation matlab script 137

9.4 Appendix D . 138
9.4.1 Host application for design 1 138
9.4.2 Host application for design 2 146
9.4.3 Host application for design 3 152

Bibliography 161

6

List of Tables

2.1 Main features and interfaces of the VE2302 SOM 21
2.2 Versal AI Edge XCVE2302 Adaptive SoC features 22
2.3 Versal AI Edge XCVE2302 - Performance AI/ML 22
2.4 Versal AI Edge Carrier Card Features 23
3.1 Comparison of key features: Versal AI Edge XCVE2302 vs

XCVE2802 Adaptive SoC . 27
4.1 Software controllable kernels 53
4.2 Software controllable kernels 54
5.1 Software controllable kernels 75
5.2 Packaging options . 80
7.1 Registers and LUT utilisation 108
7.2 CLB, BRAM, URAM and DSP utilisation 108
7.3 Clocking and NOC/AI Engine resources – Part 1 109
7.4 Clocking and NOC/AI Engine resources – Part 1 109
7.5 Performance comparison, evaluated on a scaling of a

1024x1024 image by half . 110
7.6 Design 1 and design 2 comparison 114

7

List of Figures

2.1 Versal AI Edge XCVE2302 Block Diagram[2] 16
2.2 Versal AI Edge Carrier Card Block Diagram 20
3.1 The VEK280 Evaluation Kit [7] 26
3.2 Block diagram of the VEK280 board [6] 29
3.3 Versal Adaptive SoC: overview [3] 30
3.4 AI Engine-ML array [9] . 31
3.5 AI Engine-ML tile [9] . 32
3.6 AIE-ML Engine tile [3] . 33
3.7 AIE-ML Tile [3] . 34
4.1 Bilinear Intepolation [8] . 36
4.2 Bilinear Intepolation [6] . 37
4.3 Pixel grid [7] . 38
4.4 Functional block diagram . 40
4.5 Bilinear kernel graph: functional representation 42
4.6 AI Engine-ML graph after compilation 48
4.7 AI Engine-ML array after compilaition 49
4.8 AI Engine-ML array with bilinear interpolation kernel - zoom 49
4.9 AI Engine-ML array - data movement 50
4.10 Bilinear interpolation kernel trace 51
4.11 Vitis PL kernels development flow 52
4.12 Design 1 - top level datapath 59
4.13 Design 2 - top level datapath 60
4.14 Pixel reorder RTL kernel datapath 62
4.15 Representation of output data order in FIFOs 63
4.16 Algorithm finite state machine with AXI Stream interface . . . 64
4.17 Algorithm finite state machine with output data written in DDR 65
4.18 DMA management finite state machine 66
4.19 Scaling of an input image of resolution 1024x1024 by factor 2 . 68
5.1 Functional block diagram of system 1 71

8

5.2 Functional block diagram of system 2 72
5.3 Integration of PL and AIE kernels 73
5.4 Platform block design . 81
5.5 Platform block design - Vitis region of system 1 82
5.6 Platform block design - Vitis region of system 2 83
5.7 Packaging the design . 84
6.1 Bilinear kernel graph with pre-processing: functional

representation . 86
6.2 Bilinear kernel graph after compilation 91
6.3 Bilinear kernel graph after compilation - array view 92
6.4 Bilinear kernel graph after compilation - zoom 93
7.1 Waveforms - design 2 . 98
7.2 Waveforms - design 2 . 99
7.3 Waveforms - design 2 . 99
7.4 Waveforms - design 2 . 100
7.5 Hardware trace - design 2 . 101
7.6 Hardware trace - design 2 . 102
7.7 XRT trace - design 2 . 102
7.8 Hardware emulation waveforms - design 1 103
7.9 Hardware emulation waveforms of RTL IP processing - design 1104
7.10 Hardware emulation waveforms of AI Engine execution -

design 1 . 104
7.11 Hardware run - design 1 . 105
7.12 Hardware run - design 3 . 106
7.13 AI Engine graph end - design 3 106
7.14 Data transfer after xclbin loading - design 3 107
7.15 AI Engine graph run - design 3 107
7.16 Registers, LUTs and SLICE utilization on VE2302 111
7.17 BRAM, URAM, AI Engines tiles utilization on VE2302 112
7.18 Registers, LUTs and SLICE utilization on VE2802 112
7.19 BRAM, URAM, AI Engines tiles utilization on VE2802 113

9

10

Chapter 1

Introduction

1.1 Context
In recent years, unprecedented growth in the artificial intelligence market
has been witnessed by the investments of millions of companies seeking
innovation in various fields by this route. Since 1957, when the first
Perceptron algorithm was implemented, the Machine Learning approach has
captured the attention of the scientific and engineering world. In particular,
Machine Learning aims to obtain better performance from ultra-parallel
architectures, such as GPUs, Vector processors, and FPGAs.

Responding to the demands of this market means designing and producing
hardware that is able to offer very high computing power and performance
and support the increasing complexity of the applications into which artificial
intelligence is being integrated. Important are embedded applications, where
the system can benefit from various features improved and supported by AI
algorithms such as imaging techniques, real-time management of multi-sensor
systems, or predictive analysis that make many applications more secure and
reliable.

In this scenario, AMD stands as one of the leaders in producing solutions
capable of supporting the implementation of AI in various embedded
applications. In particular, AMD’s response to these requirements is the
Versal™ AI Edge series of products, with a portfolio of systems capable of
offering more computational power than a simple GPU while maintaining
adequate power consumption for embedded applications.

The platforms belonging to the Versal™ AI Edge series are adaptive
SoCs (System-on-Chips); The real strength of AMD’s solution lies in its
heterogeneity, and thus in the presence of:

11

Introduction

• Programmable Logic (FPGA), for sensor fusion and maximum flexibility;

• Intelligent Engines, i.e. devices optimized for processing by AI/ML
algorithms;

• Scalar Devices, for real-time control in critical applications.

However, new applications exploiting the Versal Edge SoC potential could
not be designed without development boards equipped with all the resources
necessary to access the chip’s capabilities. The development kit consists of an
SOM (System-On-Module) and a carrier card with peripheral support. The
VE2302-DK development kit produced by Avnet Embedded is designed
exactly for this purpose: the VE2302 SOM offers developers the flexibility
and versatility needed to realize projects with the AMD Versal™ AI Edge
series [1]. In particular, the purpose of the work presented in this thesis is
the realization of a reference design to provide the users a guide to explore
and exploit the capability of the hardware.

In this section are presented the elements underlying the development
of the reference design, considering the entire hardware and software
environment:

• Vitis-AI, the development platform provided by AMD-Xilinx;

• The Versal™-AI Edge series of adaptive SoC, with its special features;

• The VE2302 board, at the center of this project, based on the Versal™
Edge XCVE2302 chip, composed of a SoM and a carrier board.

1.2 Motivations
This thesis’s aim is the development of the reference design for the
VE2302-DK development kit, describing the realization process. A reference
design for an electronic device is an example design provided by the
manufacturer to show how to use the device in question. The advantage
is that engineers and designers have a tested and optimized starting point
to develop their applications. Some advantages that demonstrate the
importance of using a reference design are:

• Reduction of development time: starting from a working schema,
designers do not have to start from scratch but can use the reference
design as a basic model for their devices, saving time in the design phase.

12

1.3 – SoC programming tools

• Performance optimization: reference designs are usually created
by experts who know the component inside out. These
designs are optimized for maximum performance and often include
recommendations for the best energy utilization, heat management, and
minimization of electromagnetic interference.

• Reduction of errors: using a design that has already been tested
reduces the risk of errors, which can be costly in terms of time and
resources during development and production.

• Compatibility: a reference design often shows how to integrate
different components to ensure compatibility between them, such as
connectors, memories, sensors, and communication modules.

In this specific case, considering the complexity and heterogeneity of the
Versal SoC components, the presence of a reference design becomes vital for
the future designer to ensure a full understanding of the product’s potential.

1.3 SoC programming tools
The SoC represents a heterogeneous environment in which different elements
work together. Therefore, for the target board programming, several tools
are required, combined in the Unified Vitis™ environment:

• To program the processing system (PS), the PetaLinux tools are required
to generate the Linux image; the Vitis environment is used for the
embedded software development flow, compiling the host application
that runs on the Arm processor. Also, simulators such as QEMU are
present, providing debugging possibilities.

• To configure the programmable logic (PL), Vivado’s IP integrator is used
to create the block design according to requirements. This can include
either classic RTL blocks or HLS components described in C/C++. The
Vivado simulator is used for functional verification of the PL behavior.

• To program the AI Engines, the Vitis platform (which includes the AI
Engine tools) is used to compile the projects into a graph object. The
AIE simulator is used to simulate the graph before running on hardware.

13

14

Chapter 2

The VE2302 Development
Kit

The purpose of this chapter is the introduction of the VE2302 development
kit architecture, which is the target platform of the reference design. The
board is presented with a focus on its main parts, i.e. the System-On-Module
and the Carrier Board.

2.1 VE2302 SoM
The VE2302 SOM offers developers the flexibility and versatility to realize
projects with the AMD Versal™ AI Edge series. The SOM is based on
the Versal AI Edge SoC XCVE2302. In table 2.1 are summarized the main
features and also the interfaces with the carrier card.

2.1.1 AMD Xilinx Versal AI Edge XCVE2302
As mentioned, the SOM is based on the Versal AI Edge SoC
XCVE2302-1LSESFVA784-E. As can be read on the official website, the
product aims at "high performance, low latency AI inference for intelligence in
automated driving, predictive factory, and healthcare systems, multi-mission
payloads in aerospace and defense, and a breadth of other applications"[2].
It is, therefore, a product that aims not only to accelerate the AI part but
also the monitoring of sensors and real-time controls, speeding up the whole
application, while maintaining safety and reliability requirements in critical
applications. The characteristics of the SoC are summarised in the table 2.2,

15

The VE2302 Development Kit

and a block diagram is provided in figure 2.1.

Figure 2.1. Versal AI Edge XCVE2302 Block Diagram[2]

The processing system of the device is based on a dual-core Arm
Cortex-A72, an application processor used to execute Linux applications,
and on a dual-core Arm Cortex-R5F (real-time processor) to execute
critical code fragments. Flexibility is enhanced by the programmable logic
(PL) which allows the integration of different sensors and interfaces. Edge
applications are supported by AI engines-ML (AIE-ML) and Digital Signal
Processors (DSPs), arranged according to an architecture based on an array
of vector processors and distributed memories. As can be seen from the
diagram, there is also the presence of a RAM accelerator, which has 4 MB of
on-chip memory, accessible from all computation engines. This is crucial for
AI inference, as it removes the dependency on external memory and enhances
performance per watt. Finally, the Versal SoC’s programmable I/O allows
the connection of different sensors, offering a wide range of speeds and sensors
to adapt to both traditional and next-generation standards.
In terms of AI/ML performance, the Versal SoC is capable of achieving the
levels summarised in table 2.3.

16

2.1 – VE2302 SoM

2.1.2 Platform Management Controller
The Platform Management Controller (PMC) contains several I/O banks
that can be connected to various peripherals via the MIO pins of the versal
chip. The specific connections of each MIO bank of the PMC are explained
below.

PMC MIO Bank 500

This bank consists of 26 MIO pins (MIO[25:0]). The voltage of the bank is
+1.8 V. There are three interfaces implemented on the pins of this bank:

• Octal SPI Flash, used for primary boot functionality;

• USB2.0 ULPI, whose physical connector is on the Carrier Card;

• Interrupt general purpose PMC.

PMC MIO Bank 501

This bank also consists of 26 MIO pins (MIO[51:26]), with a supply voltage
of 1.8 V. With these pins, various interfaces are implemented:

• SD3.0 for microSD card, to the carrier card, used for both boot and
storage;

• eMMC x8 Flash, also to be used as a secondary boot or for storage;

• I2C MAC EEPROM (2Kb);

• I2C 8-Bit I/O Expander (low power);

• I2C 2-Channel Switch/MUX;

• I2C Interface to the Carrier Card: master/slave communication is
possible with the I2C devices connected to the carrier card;

• PMBus I2C Interface;

• PMC User LEDs;

17

The VE2302 Development Kit

LPD MIO Bank 502

Also for this bank there are 26 MIO pins, MIO[25:0]. There are MIO pins
of Bank 502 dedicated to implementation. The pins are dedicated to various
uses:

• Part of them are dedicated to the implementation of a Gigabit Ethernet
interface for a PHY RGMII;

• The rest of the Bank 502 pins are routed to the JX connectors, to enable
proper implementation on the Versal AI Edge Carrier Card of different
interfaces, such as UART, I2C, CAN, SPI...

PMC Configuration Bank 503

The 503 PMC Configuration bank consists of JTAG, RESET, reference clock
input, BOOT MODE, RTC crystal input, and other associated configuration
pins. Some of these signals are implemented on the Versal AI Edge SOM,
the others are connected to a JX connector for implementation on the Versal
AI Edge Carrier Card. The following pins include:

• Pin LED DONE: a BLUE LED indicating that the configuration is
complete;

• Pin LED ERROR OUT: turns red in case of problems.

• Some pins of the SOM are used to implement a JTAG interface;

• BOOT Mode pins: there is a small 4-position DIP switch for the pins
that sets the boot mode.

• Real Time Clock (RTC): a 32.768 kHz crystal is connected to two of the
pins of this bank, and also makes use of the backup battery;

• RESET structure of the SOM. The facility is also equipped with a power
line monitoring system, to check when the minimum voltage values have
been reached. In addition, there is also a button to manually generate
the reset signal for the SOM.

• Reference Clock: one of the pins of the bank is dedicated to providing
the SOM with a 33.333MHz (+/-20ppm), single-ended, reference clock
input at 1.8 V voltage.

18

2.2 – AI Edge IO Carrier Card

2.1.3 Programmable logic I/O banks
The programmable logic portion of the design consists of several I/O banks
that can be connected to various peripheral devices via GPIO programmable
logic. In detail, the following connections can be mentioned:

• XPIO Banks 700-701-702: LPDDR4 interface. The SOM is equipped
with 4 GB of LPDDR4 memory, whose pins connected to the
above-mentioned banks operate at 1.1 V.

• XPIO Bank 702: contains also ab interface to a JX connector (only 4 of
the XPIO pins of Bank 702 are used by the LPDDR4 interface);

• Bank HDIO 302: interface towards JX connector;

• Banks 103-104: GTYP Transceiver. The SOM is equipped with 8 GTYP
transceivers, supporting line rates from 1.25 Gbps to 32.75 Gbps. They
are highly configurable and tightly integrated with the programmable
logic resources of the Versal architecture. [5]

2.1.4 Micro Header JX connectors
The Versal AI Edge SOM uses 3 micro header connectors to provide
connections to the Versal AI Edge Carrier Card. These connectors have
a pitch of 0.635 mm and are rated to support data transmission up to 56
Gbps, with a current rating of 1.4 A per pin.

2.2 AI Edge IO Carrier Card

2.2.1 Main features and block diagram
The Versal Edge Carrier Card is designed to support a single Versal AI Edge
SoM. The features are summarised in the table 2.4, while the block diagram
can be found in figure 2.2.

19

The VE2302 Development Kit

Figure 2.2. Versal AI Edge Carrier Card Block Diagram

20

2.2 – AI Edge IO Carrier Card

AMD Xilinx Versal AI Edge
XCVE2302-1LSESFVA784-E
Micron LPDDR4 SDRAM (4GB, 2x32)
Micron OSPI Flash (64MB up to 256MB)
Micron eMMC Flash (32GB up to 64GB)
Gigabit Ethernet RGMII PHY
USB 2.0 ULPI PHY
I2C MAC EEPROM

SOM Features I2C 8-Bit I/O Expander
2-Channel I2C Switch/Mux
Reference Clock
Real Time Clock
Carrier Card JTAG and UART Debug
Interface
TDK µPOL™ Voltage Regulators
3 Micro-Header Connectors JX1/JX2/JX3
(4x40-pin)
Connections to the Carrier Card
104 User XPIO Pins
22 User HDIO Pins
12 User LPD MIO Pins
13 User PMC MIO Pins
8 GTYP Transceiver
8 GTYP Reference Clock Inputs
SYSMON Interface
USB 2.0 Connector Interface

SOM-to-Carrier Gigabit Ethernet RJ45 Connector Interface
Interfaces PMBus Interface

Carrier Card I2C Interface
SOM VCC-BATT Battery Input
SOM Reset Input
Carrier Card Reset Output
SOM Power Good Output
SOM to Carrier Card Ground Pins
SOM Input Voltages and Output Sense Pins

Table 2.1. Main features and interfaces of the VE2302 SOM
21

The VE2302 Development Kit

XCVE2302 SoC features
AI Engine-ML Tiles 34

DSP Engines 464
System Logic Cells (K) 329

LUTs 150272
Programmable NoC Ports 5

Application Processing Unit Dual-core Arm® Cortex®-A72
Real-Time Processing Unit Dual-core Arm Cortex-R5F
Total AI Compute (INT8) 23 TOPS

GTYP Transceivers 82

PCIe (PL PCIE4) 1 x Gen4x8
40G Multirate Ethernet MAC 1

Table 2.2. Versal AI Edge XCVE2302 Adaptive SoC features

Operation type TOPS
AI Engine - INT8x4 45
AI Engine - INT8 23

DSP Engine - INT8 3.2
Programmable Logic - INT4 19
Programmable Logic - INT8 5

Table 2.3. Versal AI Edge XCVE2302 - Performance AI/ML

22

2.2 – AI Edge IO Carrier Card

Versal AI Edge SOM Slot
2x SFP28 interfaces

6x 22-pin MIPI-CSI connectors for camera/display
HSIO GTYP / HDIO Connector

HDMI RX/TX Interface
2x Industrial CAN Header Connectors

RJ45 Connector
USB 2.0 Connector (Type-A)

XPIO Push Buttons
Versal AI Edge Carrier XPIO LEDs

Card Components PMC Buttons
GPIO LEDs (connected via I2C)

microSD Card Connector
microUSB-UART-JTAG Interface

PC4 JTAG Header
Differential Clock Generator

PMBus Header
VBATT Battery Connector

SOM Reset Button
3x 160-Pin JX Micro-Header Connectors

Table 2.4. Versal AI Edge Carrier Card Features

23

24

Chapter 3

The VEK280 Evaluation
Kit

The VEK280 Evaluation Kit is an evaluation platform based on the
Versal AI Edge VE2802 series device. This board is designed for AIE-ML
applications, offering higher computing performance, low latency and high
level of integration. Its main objective is to enable the evaluation and
development of applications based on the Versal AI Edge series [5]. The
SoC XCVE2802, which is the device core, belongs to the same Versal AI
Edge family of the XCVE2302 presented in the precedent chapter.
Having the physical availability of using this board, the designs presented
below have been tested on this board. In fact, the SoC architecture is
completely the same: the difference between XCVE2302 and XCVE2802
regards only the number of resources. Therefore, given the compatibility
ensured by the fact that the two chips belong to the same family, a design
running on VEK280 can also be considered compatible with VE2302 as long
as it does not require more resources than those offered by the XCVE2302
SoC. Figure 3.1 shows the VEK280 Evaluation Kit.

3.1 Board features
As anticipated, the board is based on the Versal AI Edge XCVE2802
Adaptive SoC, whose features are summarized in table 3.1. This table
provides also a comparison with XCVE2302 features.

The board is equipped with a large amount of resources described in the
following:

25

The VEK280 Evaluation Kit

Figure 3.1. The VEK280 Evaluation Kit [7]

• XCVE2802(-VSVH2802 package) SoC ;

• Onboard configuration block, consisting of:

– USB-to-JTAG bridge;
– JTAG pod 2 mm 2x7 flat cable connector;
– Quad SPI (QSPI)/eMMC;
– microSD card;
– OSPI (octal serial peripheral interface).

• Different clocks:

– Versal device bank 702/5/6 RC21008A SYS_CLK_0/1/2 (DIMM)
200 MHz;

26

3.1 – Board features

Feature XCVE2302 XCVE2802
AI Engine-ML Tiles 34 304
DSP Engines 464 1312
System Logic Cells (K) 329 1139
LUTs 150,272 520,704
Programmable NoC Ports 5 21
Application Processing Unit Dual-core Arm®

Cortex®-A72
Dual-core Arm®

Cortex®-A72
Real-Time Processing Unit Dual-core Arm

Cortex-R5F
Dual-core Arm

Cortex-R5F
Total AI Compute (INT8) 23 TOPS 228 TOPS
GTYP Transceivers 82 322

PCIe Support 1 x Gen4x8 (PL
PCIE4)

1 x Gen4x16
(CPM), 4 x Gen4x8

40G Multirate Ethernet MAC 1 2
Video Decoder Engines – 4

Table 3.1. Comparison of key features: Versal AI Edge XCVE2302 vs
XCVE2802 Adaptive SoC

– Versal device bank GTY205/6 RC21008A_GTCLK1_OUT6/7 100
MHz;

– Versal device bank GTY106 RC21008A
RC21008A_GTCLK1_OUT8 156.25 MHz;

– Versal device bank GTY106 626L15625 HSDP_156_25_REFCLK
156.25 MHz;

– Versal device bank GTY204 8T49N241 HDMI_8T49N241_OUT
design dependent;

– Versal device bank GTY204 TMDS1204 HDMI_RCLK_OUT
design dependent;

– Versal device bank 503 RC21008A PS_REF_CLK 33.3333 MHz;
– Versal device bank 503 RTC Xtal 32.768 kHz.

• Three pin-efficient mode LPDDR4 interfaces (2x32-bit 4 GB components
each);

27

The VEK280 Evaluation Kit

• PL FMCP HSPC (FMC+) connectPL GPIO connections

• PL GPIO connections;

– PL UART1 to FTDI;
– PL GPIO DIP switch;
– PL GPIO LEDs (4 LEDs in total);
– PL GPIO pushbuttons (2 pushbuttons);
– PL SYSCTLR_GPIO[0:7];
– PL 1588_GPIO[0:7, SMA_CLK I/O].

• 32 PL GTYP transceivers (8 quads), used for example for USB-C, PCIe
Gen 4, SFP28...

• PS PMC MIO connectivity;

• Security: PSBATT button battery backup;

• SYSMON (System Monitor) header;

• Operational switches (power on-off, boot mode DIP switch...);

• Operational status LEDs (INIT, DONE, PS STATUS, PGOOD)

• Power management;

• System controller (XCZU4EG); [6]
The block diagram of the VEK280 board can be seen in figure 3.2.

3.2 AMD Versal™-AI Edge SoC XCVE2802
The core element of this board is the XCVE2802 SoC, which combines a
powerful processing system (PS), programmable logic (PL) and engines for
AI/ML application in the same device.
The Versal AI Edge series offers high-performance and low-latency AI
inference, as required in various applications such as automated driving, or
in factory predictive systems. It is an adaptive computing acceleration
platform because it combines several processing technologies in a single
device, allowing developers to optimise performance according to the specific
needs of their applications.

Adaptive acceleration is achieved through resource heterogeneity, as it can
be seen on the SoC overview in figure 3.3:

28

3.2 – AMD Versal™-AI Edge SoC XCVE2802

Figure 3.2. Block diagram of the VEK280 board [6]

• Processor system (Scalar Engines): the Versal device’s processing
system is based on the Arm® dual-core Cortex®-A72 processor and
the dual-core real-time Cortex-R5F processor. The former is ideal for
running Linux applications, while the latter is exploited for running
critical code, making it suitable for real-time applications. These
processors are commonly used to manage the loading of the various
components of the Versal device and to monitor their status.
The application processing unit, based on the Arm Cortex-A72
processor, is equipped with a system memory management unit, coherent
cache interconnect, and interface channels for the remaining systems and
peripherals. The maximum working frequency is 1.7 GHz, and is ideal for
running applications, with support for Linux or bare-metal environment.
The real-time processing unit is based on the dual-core Arm Cortex-R5F
processor. The main features are low latency, determinism and real-time
control.

• Programmable Logic (Adaptable Engines): the SoC has millions of
programmable logic cells allowing maximum flexibility. They can be

29

The VEK280 Evaluation Kit

programmed runtime, offering support for pipelined, parallel or hybrid
architectures. The system is completed by the presence of several
memory cells (LUTRAM, Block-RAM, UltraRAM) and their memory
interfaces.

• AI Engines-ML (Intelligent Engines): this is the real special feature
of Versal SoCs, and will be explored in more detail in section 3.2.1.

The entire technology is based on the TSMC 7 nm technology process.

Figure 3.3. Versal Adaptive SoC: overview [3]

The system is also equipped with all the necessary hardware for
connectivity and data exchange. The programmable NOC (Network On
Chip) ensures adequate bandwidth and high efficiency when moving data
through the different parts of the device. As can be seen from figures
3.2 and 3.3, the SoC includes the presence of different programmable
I/O peripherals, a DDR4 memory with its respective memory controller,
and protocol engines that allow optimization and acceleration of different
communication protocols. In addition, high-performance serial transceivers
enable data transfer rates from 32 to 112 gigabits per second.

3.2.1 AI Engines-ML
As mentioned above, the special feature of the Versal AI Edge series is the
presence of AI Engines-ML (AIE-ML), which provide significant speed-ups

30

3.2 – AMD Versal™-AI Edge SoC XCVE2802

for a wide range of applications. The AIE-ML Engines are blocks that offer
different levels of parallelism, at the instruction and data level. They are
organised in a two-dimensional matrix structure where the AIE-ML tile is
the basic unit. In figure 3.4 it is possible to see the diagram of the Versal
Adaptive SoC, where the AI Engine-ML array is shown.

Figure 3.4. AI Engine-ML array [9]

The AI Engine-ML array consists of a 2D array of AI Engine-ML tiles.
Each AI Engine-ML tile contains an AI Engine-ML accelerator, memory
module, and tile interconnect module. Figure 3.5 shows the top-level block
diagram of the Versal device, where it is possible to see the main three
component of the SoC: the processor system (PS), the programmable logic
(PL) and the AI Engines-ML array.

It also can be noted the presence of a separate functional block, which is
the memory tile. Each memory tile has 512 KB data memory and is used
to reduce PL resources as LUTs and URAMs utilisation in machine learning
applications.
In figure 3.4, each black or green box represents an individual AI Engine
tile, while the blue boxes represent the interface tiles of the AIE-ML Engine
matrix, including interfaces with PL, PS, and peripherals. It is a modular
architecture, which means it can scale to include more tiles to meet higher
computing needs.

Overall, each AIE-ML tile consists of 3 high-level modules, as can be seen
in figure 3.6:

31

The VEK280 Evaluation Kit

Figure 3.5. AI Engine-ML tile [9]

• The AIE-ML Engine, which is the ISA-based instruction processor;

• The block interconnect module, handling input/output traffic
on AXI streams, memory mapped streams or from/to cascade
interconnection;

• The memory module: each tile has 64 KB of data memory, divided
into eight memory banks, with a memory interface, a DMA for data
transfer, and a locks block. The data memory of each tile is shared
between its north, south, and west tiles. Therefore, each AI Engine-ML
tile can access also the memory module of the neighboring tiles. The
connection is provided by an AXI4-Stream switch that is a fully
programmable 32-bit AXI4-Stream crossbar (black arrow in figure 3.6).

32

3.2 – AMD Versal™-AI Edge SoC XCVE2802

Figure 3.6. AIE-ML Engine tile [3]

By looking inside the engine structure (figure 3.7), it is possible to see
that the AI Engine-ML is a highly-optimized processor, single-instruction
multiple-data (SIMD) and very long instruction word (VLIW). It
contains:

• A scalar unit, i.e. a 32-bit scalar RISC processor, consisting of scalar
registers, special registers, 32-bit multiplier, 32-bit adder/subtractor,
and ALU operators;

• A 512 bit vector unit, which supports fixed point and floating point
operations. It also supports operations such as FFT and sparsity for
ML inference applications, with fixed point and floating point numbers;

• Two 256-bit load units;

• A single 256-bit store unit;

• An istruction fetch and decode unit.

This means that each VLIW instruction support a maximum of two loads,
one store, one scalar operation, one vector operation (fixed-point or bfloat16),

33

The VEK280 Evaluation Kit

Figure 3.7. AIE-ML Tile [3]

and one move instruction. Therefore, for each clock cycle, a single VLIW
instruction corresponding to a maximum of seven operations can be executed.

In addition, each engine has a 16 KB code memory, a stall management
unit, a FIFO to accumulate data from the stream, and a debug/trace unit.

In Vitis IDE, there are special Engine tools for compiling and simulating
projects involving AI-Engines. The AI Engine compiler (aie-compiler)
compiles the user code into graphs that describe the algorithm executed on
the AIE-ML array and how the AI Engines interacts with PL elements. It
also compiles the code executed on each AI engine tile, generating an ELF
file, which will be loaded into the code memory of the assigned tile. The AI
Engine simulator (aie-simulator) simulates the AI Engine kernels running
in the AI Engine array. The simulator also includes global memory (DDR)
and on-chip network modeling in addition to the AI Engine array, for detailed
simulation.

34

Chapter 4

Implementation of bilinear
interpolation algorithm

In this chapter, the realization of the reference design platform has been
described, considering all the hardware components. The design of the
hardware platform includes:

• Realization of the board definition file (BDF);

• Design of the Vitis platform, which includes the kernels defined in
Vivado, the software (baremetal or with Linux operating system
support), and the definition of all other resources (such as clock, reset,
connectivity...);

• Design of the Vitis Overlay, i.e. the accelerators that will be
implemented and executed on the platform, such as the bilinear
interpolation kernel on AI Engines.

The fundamental idea is the implementation of a bilinear interpolation
algorithm, which is an interpolation method for functions of two variables.
It is used not only for image processing as in this particular case, but also for
finite element analysis, computer graphics, and much more. In the following,
an analysis of the algorithm is proposed, which is useful for understanding
the implementation choices in this case study.

4.1 The bilinear interpolation algorithm
Bilinear interpolation is an algorithm often used in image processing to
improve the quality of images after performing certain operations on them or

35

Implementation of bilinear interpolation algorithm

to achieve transformations such as rescaling and cropping. A common class
of image processing operations is spatial transformations, which redefine the
arrangement of pixels on the image plane. These are, for instance, rotations,
zooms, and corrections of geometric image defects, such as perspective or
radial distortion caused by the lens, as illustrated in figure 4.1.

Figure 4.1. Bilinear Intepolation [8]

A spatial transformation can be conceived as a mapping function defined
by the following equation:

p′ = f(p) (4.1)

where
p′ =

C
x′

y′

D
p =

C
x
y

D

p’ is the matrix of distorted coordinates, while p is the matrix of coordinates
of the original pixels. The equation 4.1 is a direct mapping, which calculates
the coordinates of pixels in the undistorted image as a function of those in
the distorted image. For correction purposes, the inverse mapping function
is required to determine which pixel of the distorted image should be output
in the corrected grid, f−1. In practice, each pixel in the corrected image is
obtained from the corresponding point in the original image.

The coordinates calculated by the inverse mapping function, which are
the coordinates of the output image, rarely are integer values: usually,
the new positions lie ‘between’ the pixels of the original image. Simplistic
methods such as rounding off or truncation can be used. Still, they introduce
significant errors in the pixel position, distorting lines and producing artifacts
with jagged edges. Therefore, methods such as bilinear interpolation are used
to deal with this problem.

36

4.1 – The bilinear interpolation algorithm

Although bilinear interpolation can introduce artifacts such as blurring
or aliasing, it is still widely used in favor of more advanced methods. It
is true that algorithms such as bicubic or spline interpolation can produce
smoother and more accurate results, but they are also more computationally
expensive. Instead, bilinear interpolation is an extremely simple and fast
method that represents a good compromise between computational cost and
image quality.

From a mathematical point of view, bilinear interpolation is a method
for interpolating functions of two variables using repeated linear
interpolations. The algorithm calculates the value of the ‘new’ pixel as
a weighted sum of the pixel values of the four nearest neighbors surrounding
the calculated position, as shown in figure 4.2.

Figure 4.2. Bilinear Intepolation [6]

The calculations involved are very simple. First, interpolation is applied
in x-direction, obtaining the equations:

R1 = f(x, y1) = x2 − x

x2 − x1
f(Q11) + x − x1

x2 − x1
f(Q21) (4.2)

R2 = f(x, y2) = x2 − x

x2 − x1
f(Q12) + x − x1

x2 − x1
f(Q22) (4.3)

Then, interpolation is applied on y-direction:

P = f(xq, yq) = y2 − y

y2 − y1
f(x, y1) + y − y1

y2 − y1
f(x, y2) (4.4)

37

Implementation of bilinear interpolation algorithm

By substituting equations 4.2 and 4.3 in 4.4, the interpolated point is
obtained:

f(x, y) = 1
(x2 − x1)(y2 − y1)

(f(Q11)(x2 − x)(y2 − y) + f(Q21)(x − x1)(y2 − y)

+f(Q12)(x2 − x)(y − y1) + f(Q22)(x − x1)(y − y1))
(4.5)

Or, in matricial form:

f(xq, yq) = 1
(x2 − x1)(y2 − y1)

è
x2 − x x − x1

é C
f(Q11)f(Q12)
f(Q21)f(Q22)

D C
y2 − y
y − y1

D
(4.6)

In the case of this reference design, the aim is to use this algorithm to
interpolate an image of a certain resolution xres, yres. The pixels of the image
are assumed to be uniform, as the grid in figure 4.3.

Figure 4.3. Pixel grid [7]

Also it can be assumed that the original image pixels are stored in a
LUT by column. Assuming the image is greyscale, individual pixels have
values in the range [0,255]. The coordinates of the distorted grid (i.e.
the grid corresponding to the new image to be obtained) are expressed as
floating-point numbers, in single precision, having an integer and fractional

38

4.1 – The bilinear interpolation algorithm

parts:
xq = xint.xfrac

yq = yint.yfrac

In fact, it was said earlier that the coordinates of the new pixels are located
"between" the coordinates of the original image.

For processing purposes, only the integer part of each new coordinate
(xq, yq) can be used to extrapolate from the LUT the 4 points required for
the interpolation of each point of interest, according to the equations:

P11 = f(x1, y1) = LUT (xint · yres + yint)
P12 = f(x1, y2) = LUT (xint · yres + yint + 1)

P21 = f(x2, y1) = LUT ((xint + 1) · yres + yint)
P22 = f(x1, y1) = LUT ((xint + 1) · yres + yint + 1)

(4.7)

Once the four points surrounding the computing position have been
extrapolated from the original image, only the fractional part of (xq, yq)
is needed for the calculation. Indeed, the four points define the region
within the new pixel value is calculated. The equations 4.2 and 4.3 useful
for calculating the point of interest are rewritten by considering only the
fractional part of the coordinates (xq, yq):

f(x, y1) = xfracf(P21) + f(P11) − xfracf(P11)
f(x, y2) = xfracf(P22) + f(P12) − xfracf(P12)

(4.8)

Same can be done for equation 4.9:

f(x, y) = yfracf(x, y2) + f(x, y1) − yfracf(x, y1) (4.9)

It can be seen that each of the equations required for the bilinear
interpolation of a pixel is a MAC (multiply and accumulate) followed by
a MSC (multiply and subtract).

From the analysis of the algorithm, it is now possible to define all the
operations required for pixel interpolation. In summary, for each coordinate
point (xq, yq) of the output image grid, the calculation of the interpolated
pixel value requires two steps:

1. The identification of the 4 closest pixels (of the original image) to
the one to be interpolated. This operation requires retrieving data from
memory and separating the integer and fractional parts of floating-point
numbers. These operations suit better implementation in programmable
logic.

39

Implementation of bilinear interpolation algorithm

2. The interpolation of the point, by calculating 3 MACs and 3
MSCs. In this case, AI engines can be programmed to perform the
calculation efficiently, also taking advantage of the vectorization of
multiple operations.

In addition, it is required the implementation of interfaces to allow
communication from/to global memory, and the presence of a host
application controlling the system. A functional block diagram of the design
is provided in figure 4.4.

Figure 4.4. Functional block diagram

As an example of a chosen transformation, this reference design uses the
bilinear interpolation algorithm on an input image to scale its dimensions. A
scaling factor of 2 is applied to an image of 1024x1024 resolution to obtain
an image of 512x512 resolution.

4.2 Bilinear interpolation kernel on AI
Engine-ML

In this section, a brief introduction about the fundamental concept of AI
Engine-ML programming is provided, to better understand design choices
and the elements involved. Then, the code of the bilinear interpolation kernel
is presented.

40

4.2 – Bilinear interpolation kernel on AI Engine-ML

4.2.1 Introduction to AI Engine-ML programming
In section 3.2.1, the AI Engine-ML array architecture has been described.
Instead, the purpose of this section is to describe how this structure can be
programmed with the tools available in Vitis.
The AI Engine-ML programming is based on adaptable data flow graph
specification (ADF) written in C++, which can be compiled by the AI
Engine compiler. The basic idea is to describe the operations executed
on tiles and the data movement in the array using a DFG (Data Flow
Graph) representation written in C++ language. The ADF graph application
consists of nodes and edges where nodes represent compute kernel functions,
and edges represent data connections. The conceptual view of the ADF
programming consists of the following items:

• The AI Engine-ML tile architecture, introduced before;

• The AI Engine Kernel: is a C/C++ program written using the AI
Engine API that targets the VLIW scalar and vector processors of
an AIE-ML tile. The kernel code is compiled using the aie-compiler,
included in the AMD Vitis™ development kit.

• The AI Engine graph, described above. An ADF graph is a Kahn
process network 1 with a single or multiple AI Engine kernels connected
by data streams and/or buffers.

The ADF graph includes interactions not only between AIE-ML tiles but
describes also the interactions between the array and the PL, the PS and the
global memory. Each interaction requires specific constructs:

• PLIO port attribute: used to make stream connections to or from the
programmable logic;

• GMIO port attribute: used to make external memory-mapped
connections to/from the global memory;

• RTP (runtime parameters): used by the PS to configure at runtime the
graph execution.

1A Kahn process network is a distributed model of computation where a group of
deterministic sequential processes communicate through unbounded first in - first out
channels.

41

Implementation of bilinear interpolation algorithm

Starting from these considerations, it is possible to describe the AI
Engine programming for the bilinear interpolation kernel case. Figure 4.5
illustrates the graph in this specific application from a functional point of
view, considering the kernel and also the interaction with programmable
logic through PLIO ports.

Figure 4.5. Bilinear kernel graph: functional representation

4.2.2 Bilinear kernel graph code
The following code was written starting from a version available in the AMD
Xilinx GitHub repository[12], for execution on the VEK190 board. The code
has been adapted to run on the VEK280, which is equipped with AIE-ML
engines. The original version can be found in Xilinx repository [7]. In fact,
the code cannot be compiled on the VEK280 or VE2302 board as it is but
requires modifications due to the different architecture of the AI engines
on the VEK190 board, the target hardware of these codes. The latter is
equipped with AI Engines, which differ from the AI Engines-ML presented
above. Therefore, the first part of the work has been studying the APIs
supported by the AIE-MLs. The modified code for compatibility with the
AIE-ML compilation is presented in this section.

As seen in figure 4.4, the bilinear interpolation kernel requires 6 values
per pixel (xfrac, yfrac, p11, p12, p21, p22), represented as floating point values,
coming from programmable logic. For this reason, PLIO interfaces are used
to support data transfer between PL and AI Engine array.

Each PLIO interface supports transfer rates of 32 bits per cycle, meaning
that one floating-point value per cycle can be transferred. Since for each
interpolation are required 6 floating-point values, the design choice is to
use 3 PLIO-ports 64-bit wide (2 values per stream), in order to match the

42

4.2 – Bilinear interpolation kernel on AI Engine-ML

computational efficiency. In this way, ideally are required to 2 cycles to get
the required data for each interpolation.

The kernel graph code is shown in listing 4.1.
1 #include <adf.h>
2 #include "bilinear_kernel.h"
3 #include "buffers.h"
4

5 using namespace adf;
6

7 class bilinear_graph : public adf::graph {
8 private:
9 kernel bli_krnl;

10

11 public:
12 std::array<input_plio, NCORE> iplio_A, iplio_B, iplio_C;
13 std::array<output_plio, NCORE> oplio;
14

15 bilinear_graph()
16 {
17 //...
18

19 iplio_A = input_plio::create(iplio_A_name, plio_64_bits,
20 iplio_A_file, 156.25);
21 iplio_B = input_plio::create(iplio_B_name, plio_64_bits,
22 iplio_B_file, 156.25);
23 iplio_C = input_plio::create(iplio_C_name, plio_64_bits,
24 iplio_C_file, 156.25);
25 oplio = output_plio::create(oplio_name, plio_64_bits,
26 oplio_file, 156.25);
27

28 bli_krnl = kernel::create_object<bilinear_kernel>();
29

30 connect(iplio_A.out[0], bli_krnl.in[0]);
31 connect(iplio_B.out[0], bli_krnl.in[1]);
32 connect(iplio_C.out[0], bli_krnl.in[2]);
33 connect(bli_krnl.out[0], oplio.in[0]);
34

35 source(bli_krnl) = "src/bilinear_kernel.cpp";
36

37 runtime<ratio>(bli_krnl) = 0.9;
38 }
39 };

Listing 4.1. Bilinear kernel graph code

In the code, the graph class is instantiated by using the objects defined
in the adaptive data flow (adf) namespace. All user graphs are derived

43

Implementation of bilinear interpolation algorithm

from the adf::graph class, which contains kernels and interface definitions.
It is possible to see that kernels and interfaces are instantiated using
kernel::create() and input_plio::create() function of the class graph.
Also, the connectivity information (i.e. the nets of the ADF graphs) are
present. The last parameter is the runtime ratio: it is a user-specified
constraint that allows the AI Engine-ML tools to put multiple AI Engine
kernels into a single AI Engine-ML, if their total runtime ratio is less than
one. The runtime ratio of a kernel is defined as:

runtime ratio = cycles for one run of the kernel
cycle budget (4.10)

The cycle budget is the number of cycles allowed to run one invocation of
the kernel, which depends on the system throughput requirement.

4.2.3 Bilinear Kernel algorithm code
The kernel code is the program executed on the VLIW processor. It is
transformed into an ELF file by the aie-compiker and it is loaded into the
program memory of the tile. The first part of the code is shown in listing
4.2.

1 #include <adf.h>
2 #include "aie_api/accum.hpp"
3 #include "aie_api/vector.hpp"
4 #include <aie_api/aie.hpp>
5

6 using namespace adf;
7

8 void bilinear_kernel::interp(
9 input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_A,

10 input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_B,
11 input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_C,
12 output_buffer<int32, extents<BUFFER_SIZE_OUT>>& __restrict out)
13 {
14 // kernel code
15 }

Listing 4.2. Bilinear kernel code

The first thing to notice is that the kernel uses buffered I/O for input and
output. Input and output buffers are blocks of data stored contiguously on
the tile’s physical data memory, accessible by the kernel code. The origin of
this data can be either other kernels, or data coming from the PL (as in this

44

4.2 – Bilinear interpolation kernel on AI Engine-ML

specific case). The interaction between the kernel and the buffer port is the
following:

• At input side, a kernel waits for the input buffer to be fully available
before starting the execution. This means that the buffer must be
entirely filled by data, then the AI Engine processor starts to elaborate.

• At the output, the kernel can write a block of data to the local memory
that can be used by other kernels after it has finished execution.

The main advantage of using buffer is a more efficient VLIW parallelism,
at the cost of an increased initial latency. Another possibility (not exploited
in this design), is to use input/output stream of data.

Buffer ports are declared in the prototype of the kernel function by using
specific type. For each port, the data type and the dimension of the buffer
is specified. In this way, the compiler will place input and output buffers in
the tile data memory of size specified by BUFFER_SIZE_IN/BUFFER_SIZE_OUT
parameters.

The algorithm code is present in listings 4.3 and 4.4, and shows the
use of the AI Engine-ML API [14]. It is a portable AI Engine kernel
programming interface targeting AI Engine-ML architectures. The interface
provides parameterizable data types that enable generic programming and
implements the most common operations in elaboration algorithms (such as
MAC).

Read and write operations on buffer ports are supported by iterators
objects, as shown in code 4.3. They can iterate over data in a buffer
and provide access to individual data. Both scalar and vector iterators
are supported in buffer ports. In this case, vector iterators have been
used because vectorization is exploited to speed up the execution of the
interpolation. A vector iterator takes eight elements from the buffer at a
time so that eight new pixels are interpolated at each iteration of the for
loop. The basic vector registers in hardware are 256-bit wide, so a vector of
8 elements is used.

1 // iterators for input & output buffers
2 auto pInA = aie::begin_vector<8>(in_A);
3 auto pInB = aie::begin_vector<8>(in_B);
4 auto pInC = aie::begin_vector<8>(in_C);
5 auto pOut = aie::begin_vector<8>(out);

Listing 4.3. Bilinear kernel code - iterators

45

Implementation of bilinear interpolation algorithm

Each kernel invocation processes a total number of PXLPERGRP pixels, 8
samples at a time, as shown in code 4.4. chess_prepare_for_pipelining is
a compiler pragma that tells the kernel compiler to do pipelining for the loop.
As can be seen, the AI Engine API supports basic arithmetic operations on
scalars and vectors, such as addition or subtraction on an accumulator. In
this code, the MAC and MSC operations are performed using the function
provided by the AIE API. Additional functions are used to convert vectors
to accumulators (and vice versa) to ensure function type compatibility.

1 for (unsigned i = 0; i < PXLPERGRP/8; i++)
2 chess_prepare_for_pipelining
3 chess_loop_count(PXLPERGRP/8)
4 {
5 // get data for first x interpolation
6 aie::vector<float, 8> xfrac = (*pInA++).cast_to<float>();
7 aie::vector<float, 8> p11 = (*pInB++).cast_to<float>();
8 aie::vector<float, 8> p21 = (*pInC++).cast_to<float>();
9

10 aie::accum<accfloat, 8> p11_acc;
11 p11_acc.from_vector(p11);
12

13 // compute first x interpolation
14 aie::accum<accfloat, 8> tempy1 = aie::mac(p11_acc,xfrac, p21);
15 p11= p11_acc.to_vector();
16 aie::accum<accfloat, 8> pxy1 = aie::msc(tempy1, xfrac, p11);
17

18 // ...
19

20 // write interpolated pixels to output
21 *pOut++ = aie::vector_cast<int32>(pxy.to_vector());
22 }

Listing 4.4. Bilinear kernel code - for loop

An important point to stress is that the AI Engine-ML tile does
not support direct floating-point operations. Instead, the AI Engine-ML
hardware supports floating-point operations through emulation using the
bfloat16 data type (Brain Floating Point 16-bit).[9] Bfloat16 is a
floating-point format widely used in machine learning and AI applications.
It is a truncated version of IEEE 754 single-precision (FP32) format, which
has a 7-bit mantissa instead of 23-bit in FP32. Bfloat16 allows training with
almost no loss in accuracy while being significantly faster than FP32, and is
used in applications that can tolerate lower precision in computation. The AI
Engine API supports conversion between floating-point accumulator registers
and bfloat16 vector registers. If the conversion is not performed and FP32 is

46

4.2 – Bilinear interpolation kernel on AI Engine-ML

maintained (as in this case), each floating-point MAC has two cycles (instead
of one) latency.2

In order to run the example, a simple application code is used. It is shown
in listing 4.5.

1 #include "bilinear_graph.h"
2 #include "config.h"
3

4 bilinear_graph blint;
5

6 int main(void)
7 {
8 blint.init();
9 blint.run(NRUN);

10 blint.end();
11

12 return 0;
13 }

Listing 4.5. Main application code

This application is used to run the AI Engine graph on the host machine
for x86 simulation, using a SystemC based simulator.

• blint.init() is used to initialize the graph;

• blint.run(NRUN) executes the graph for the number of iteration
indicated by the parameter NRUN;

• blint.end() is used to wait until graph iteration is completed.

The complete code of each presented part of the ADF graph is provided
in appendix 9.1.

4.2.4 Bilinear kernel graph compilation
To execute the aie-compiler, the following command is used:

v++ -c –mode aie –target hw –config ./config.cfg blint.cpp

2An analysis made considering the bilinear interpolation algorithm with
float32 and bfloat16 format is provided in the GitHub repository: https:
//github.com/FraancescaFranzese/Vitis-Tutorials/tree/2024.2/AI_Engine_
Development/AIE-ML/Design_Tutorials/11_Bilinear_Interpolation

47

Implementation of bilinear interpolation algorithm

The aie-compiler allocates the necessary locks, memory buffers, DMA
channels, descriptors, and generates routing information for mapping the
graph onto the AI Engine-ML array. For each AI Engine core, the compiler
creates a main program to schedule all the kernels to be executed on the
cores and implements the necessary locking mechanism and data copy among
buffers. The C/C++ program for each core is compiled to produce loadable
ELF files. In addition, the AI Engine compiler generates control APIs for
graph initialization, execution, and termination.

The aie-compilation also produces a summary that can be viewed using the
Vitis analyzer tool in the Vitis IDE. This summary contains a collection of
reports and diagrams showing the compilation results in the AI Engine-ML
array. For example, the graph view gives a diagram of the compiled graph,
showing allocated buffers and connectivity (see figure 4.6).

Figure 4.6. AI Engine-ML graph after compilation

It is also interesting to see the array view (figure 4.7), illustrating how
the design has been mapped on the available physical resources. From this
representation, it is possible to see the tiles that will be used for kernel
execution and also the allocated buffers.

Looking deeply at the array (figure 4.8), it is possible to observe that
tile [18,0] has been allocated for bilinear kernel execution. The buffers, as
expected, are allocated in the local memory of the tile, but the data memories
of neighboring tiles are also used. At the interface between the AIE-ML array
and the PL, four PLIO ports are present.

48

4.2 – Bilinear interpolation kernel on AI Engine-ML

Figure 4.7. AI Engine-ML array after compilaition

Figure 4.8. AI Engine-ML array with bilinear interpolation kernel - zoom

In figure 4.9, it is possible to see that for each buffer instantiated in the
code, a couple of two physical buffer is allocated. In addition, the compiler
inserted a couple of ping-pong buffers to speed up the algorithm execution.

49

Implementation of bilinear interpolation algorithm

The arrows in the array are helpful to see data movement.

Figure 4.9. AI Engine-ML array - data movement

Graph simulation exploits the SystemC-based simulator integrated into
Vitis tool. The control program is the main application already described
in listing 4.5. During the simulation, it is possible to collect trace data to
display in the Vitis Analyzer, which helps inspect the timing execution of
all the graph components. Figure 4.10 shows the trace in this specific case.
The trace view is useful also to evaluate the performance of the system,
measuring the execution time of the kernel, or for debug purposes.

50

4.2 – Bilinear interpolation kernel on AI Engine-ML

Figure 4.10. Bilinear interpolation kernel trace

51

Implementation of bilinear interpolation algorithm

4.3 PL kernels requirements
In the Vitis application acceleration development flow, PL kernels are the
processing elements executing in the programmable logic region of the Xilinx
device. The Vitis development flow supports two different kernel types:

• HLS kernels written in C/C++ and compiled in Vitis;

• RTL IPs designed and packaged in the Vivado Design Suite.

In both cases, kernels are compiled Xilinx object (.xo) files. Therefore, the
only difference between the two is how they are designed. Indeed, regardless
of the source language, all PL kernels have the same properties and must
adhere to the same requirements.

In general, PL kernels can be divided into software-controllable and
non-software-controllable. This means that the kernel is controlled
through software, such as the host application, or is unmanaged by software
and instead data-driven.

Figure 4.11. Vitis PL kernels development flow

Software-controllable kernels expose a programmable register interface to
the processing system, allowing a host software application to interact with
kernels through register reads and writes. These are the most common and
widely applicable types of kernels. It is recommended that the designer

52

4.3 – PL kernels requirements

only develop kernels belonging to this category. Instead, data-driven kernels
are automatically instantiated by the compiler where they are needed but
are not directly accessible by the software application. They do not have
a programmable register interface and must have at least one AXI4-Stream
interface. In this design, only software-controllable kernels have been used.
They are divided into two categories:

• XRT-managed kernels. In this case, the software application
communicates with the XRT-managed kernel using higher-level
commands such as set_arg, run, and wait;

• User-managed kernels. The software application communicates with
the user-managed kernel using atomic register reads and writes through
the AXI4-Lite interface.

Consequently, XRT-managed kernels are recommended for C++
developers, where the user does not need to know the low-level details of
the programmable registers and kernel execution protocols. Alternatively,
user-managed kernels can support many different user-defined execution
protocols as found in existing Vivado RTL IP and so are a better fit for
RTL designers described in Packaging RTL Kernels. The main differences
between the two are summarized in table 4.1.

XRT-managed kernels User-managed kernels

• object class is xrt::kernel

• software application
communicates with high level
commands

• no need to know the low-level
details of the kernel

• recommended for C++
developers

• object class is xrt::ip

• software application
communicates using atomic
register reads and writes
through the AXI4-Lite interface

• low-level details knowledge
required

• better fit for RTL designers

Table 4.1. Software controllable kernels

RTL IP from the Vivado Design Suite can be packaged as kernels

53

Implementation of bilinear interpolation algorithm

(or compiled Xilinx object (.xo) files) that can be linked into an FPGA
executable (.xclbin) as long as they adhere to Vivado IP Packaging guidelines.

An RTL kernel must adhere to specific requirements to enable the Vitis
compiler to connect kernels to the target platform. Requirements include:

• Language: kernels can be developed using either HDL or C/C++;

• Hardware interfaces: a single AXI4-Lite slave interface, any number and
combination of AXI4 memory mapped and AXI4-Stream interfaces, and
clock and reset signals;

Hardware interface requirements are summarized in table 4.2.

Ports or interfaces Requirements
clock at least one clock input is required,

and must be packaged as a bus
interface.

reset optional port. If present, must be
associated to a clock signal.

interrupt optional port. If present, active
high.

s_axi required, and only one is allowed.
m_axi AXI4 Memory mapped interface.

It is optional port. If present, it
must have 64-bits addresses, and
must not use Wrap or Fixed burst
types.

axis AXI4 stream interfaces, optional
but necessary to transfer data
between kernels.

Table 4.2. Software controllable kernels

In addition, if the IP is packaged as an xrt-managed kernel (instead of
user-managed), the designer must provide the software with a specific register
map. Indeed, the control interface is managed through the XRT API xrt::ip
kernel class, which expects a certain register interface.
The kernels integrated within this specific reference design are:

54

4.3 – PL kernels requirements

• mm2s and s2mm interfaces, HLS components handled as XRT-managed
kernels. They are used to provide exchange of data between PL and
AIE-ML array;

• pixel_reorder RTL IP, a user-managed kernel which provides
pre-elaboration of the original image to create, for each pixel
interpolation, the set of data xfrac, yfrac, p11, p12, p21, p22.

4.3.1 HLS interfaces from/to global memory
Two ways can be exploited to provide data to the AI engine array: the PL
streaming interface or GMIO (i.e., external memory-mapped connections
to or from the global memory). The GMIO interface has a low throughput
and is, for this reason, ideal for configuration. An efficient way to provide
data streaming to AIE-ML array is to implement additional interfaces in
programmable logic:

• mm2s: Memory Map to Stream HLS kernel to feed input data from
DDR to AI Engine kernel via the PL DMA;

• s2mm: Stream to Memory Map HLS kernel to feed output result data
from AI Engine kernel to DDR via the PL DMA.

Vitis library provides some example code that can be used to include easily
HLS kernel in user designs. The code of mm2s interface is provided in listing
4.6.

1 /*
2 Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
3 SPDX-License-Identifier: X11
4 */
5

6 #include <ap_int.h>
7 #include <hls_stream.h>
8 #include <ap_axi_sdata.h>
9

10 extern "C" {
11

12 void mm2s(ap_int<32>* mem, hls::stream<ap_axis<32, 0, 0, 0> >& s,
13 int size) {
14

15 #pragma HLS INTERFACE m_axi port=mem offset=slave bundle=gmem
16

17 #pragma HLS interface axis port=s

55

Implementation of bilinear interpolation algorithm

18 #pragma HLS INTERFACE s_axilite port=mem bundle=control
19 #pragma HLS INTERFACE s_axilite port=size bundle=control
20 #pragma HLS interface s_axilite port=return bundle=control
21

22 for(int i = 0; i < size; i++) {
23 #pragma HLS PIPELINE II=1
24 ap_axis<32, 0, 0, 0> x;
25 x.data = mem[i];
26 s.write(x);
27 }
28 }
29 }

Listing 4.6. mm2s HLS code [10]

From the code, it is possible to describe some relevant information:

• The header <hls_stream.h> provides the hls::stream<> class, used
for AXI4-Stream communication.ap_axi_sdata.h define ap_axis<>, a
structure used to send data over an AXI4-Stream;

• In the function declaration, extern "C" ensures C-style linkage so
that the function can be called from PL, although it is a non-C++
environment.

• There are three function arguments. The first is a pointer to 32-bit
integer memory, representing the input data; the AXI4-Stream output,
which will send to the AI Engine stream the data read from memory;
the "size", i.e. number of elements to read from memory and to send on
the stream.

• #pragma HLS directives give the compiler specific instructions for
hardware generation, starting from the C code.

• A for loop is used to read size elements from memory mem[i]. Each
value is stored in an ap_axis<32, 0, 0, 0> structure. Ultimately,
the value contained in this structure is written in the AXI4-Stream
(s.write(x)).

• #pragma HLS PIPELINE II=1 force the compiler to implement a
one-stage pipeline, ensuring one iteration per clock cycle.

A similar code is used to implement s2mm interface, to write data from
AI Engine output stream to the global memory. The code is provided in
appendix 9.2.

56

4.3 – PL kernels requirements

4.3.2 Integration of RTL IP in programmable logic
From the algorithm analysis, it is clear that the bilinear interpolation of a
pixel requires a set of 6 data: xfrac, yfrac, p11, p12, p21, p22. A user-managed
RTL IP is used as a pre-processing block, implementing the first part of
the bilinear interpolation operation. This kernel corresponds to the block
represented in the programmable logic area of the functional block diagram
in figure 4.4.

Assuming that the coordinate grid of the output image and the matrix
of the original image pixels are stored in global memory, the implemented
algorithm is the following:

1. The first row of the output coordinate matrix is read from global memory
through the AXI bus and stored in a FIFO after a read request of the
AXI-master interface. This means that, for each iteration, Y_RES_OUT
(output image vertical resolution) values are read from memory. Each
(xq, yq) value is the starting point of the pre-elaboration. Notice that a
DMA mechanism has been implemented to read and write data from/to
the global memory.

2. First (xq, yq) query coordinate is read from the FIFO. For the sake
of simplicity, floating point coordinates are converted into fixed point
values, as it is easier to separate integer and fractional parts.

3. x_int, y_int are used to calculate the memory address corresponding
to the rows of the original image where p11, p12, p21, and p22 are
located.

4. The selected rows are read from memory and stored in two line buffers in
programmable logic. Two consecutive lines are read because the square
of points of interest lies on two adjacent rows of the image. For this
reason, two line buffers are present in the datapath to store the two
lines for a total of YRES*2 floating point values for each line.

5. The fractional parts x_frac, y_frac are used to calculate the index of
the four neighboring pixels inside the two line buffers.

6. Once the four neighboring pixels have been obtained, they are
temporarily stored inside some output FIFOs. They will then be sent
to the global memory or directly to the AI Engine array PLIO ports.

57

Implementation of bilinear interpolation algorithm

7. When all the (xq, yq) coordinates in the input FIFO have been processed,
getting the four neighboring pixel sets for each of them, this process
repeats until the entire grid has been pre-elaborated.

This kernel has been designed in two versions to fit into two different designs
that will be proposed in the next chapter as possible implementations of the
bilinear interpolation algorithm. In both cases, each set of data is stored
inside 3 FIFOs in PL, and then:

• In the first version, the pre-elaborated data stored in the output FIFOs
are stored in buffers instantiated in global memory using DMA write
operations. These store operations occur at the end of the processing of
each full row of the output image grid - that is, once all six data sets for
the Y_RES_OUT pixels have been selected. The top-level datapath of this
first IP is provided in figure 4.12.

• In the second version, the data in the FIFOs is directly provided to the
AI Engine PLIO ports thanks to three AXI4-Stream interfaces. Each
data transmission towards the AI Engine consists of a 256 data packet,
sent as soon as the FIFO has the required amount and if the AI Engine
is ready to receive. The datapath is provided in figure 4.13, where it is
possible to notice the additional presence of AXI4-Stream interfaces. 3

In both datapaths, it is possible to notice the presence of the Pixel
Reorder block, which is the RTL part performing the pixels pre-processing.

Pre-processing pixel reorder kernel datapath

The datapath of the pixel reorder kernel is shown in figure 4.14. Some
relevant elements can be described.

• FIFO. The input FIFO is used to store the pixel coordinates (xq, yq) of
the output image loaded from memory. The output FIFOs are used
to store selected pixels. The first fifo contains x_frac, y_frac, the
second P_11, P_12 and the third stores P_21, P_22. An important

3AXI4-Stream is a protocol designed for arbitrary unidirectional data exchange. In
AXI4-Stream, TDATA bits are transferred per clock cycle. The transfer starts when the
producer sends the TVALID signal, and the consumer responds by sending the TREADY
signal (once the initial TDATA has been consumed). At this point, the producer will start
sending TDATA and TVALID. The consumer keeps consuming the incoming data until TLAST
signal is asserted.

58

4.3 – PL kernels requirements

Figure 4.12. Design 1 - top level datapath

point to notice is that the data stored in the FIFOs are arranged to
consider the vector calculation within the AI Engine. Indeed, the bilinear
interpolation kernel expects to receive vectors of 8 consecutive data to
perform vector operations. Figure 4.15 shows the data placement in the
output FIFOs.

• BRAM. Two Block RAMs used as line buffers store the two consecutive
rows of the original image, selected from memory according to the (xq, yq)
values. Each block has been dimensioned to contain one row, i.e. 1024
elements of 32 bits each. Input data is 64 bits in order to match the
AXI-bus width. For this reason, each received data contains two pixels.

• Memory pointer generator: this block generates the memory
addresses to retrieve the image rows from DDR, (MemPtrImg), or
generates the address to read the next set of (xq, yq) values from memory

59

Implementation of bilinear interpolation algorithm

Figure 4.13. Design 2 - top level datapath

(MemPtrXqYq).

• Splitter: this block separates integer and fractional part of (xq, yq).

• Fixed to float. This block uses the Xilinx Floating-Point operator,
an IP capable of being configured to provide a range of different
floating-point operations. In this case, the IP has been set to convert
fixed point 16.16 numbers into single precision floating point numbers
on 32 bits.

• X counter: counts the output image’s processed rows. The FSM uses
this value to decide when the entire image has been pre-processed.

• Y counter: counts the processed pixels in a row of the input image.
The FSM uses this value to determine when new data must be read
from memory.

• Burst counter: counts the number of bursts received from DDR. This
is necessary because the maximum number of 64-bit elements allowed
for each burst transfer is 256. This means that more than one burst is
needed to receive an entire line of the image. In this case, AXI Bus is 64
bits wide, so two elements are transferred each cycle. Since each row has

60

4.3 – PL kernels requirements

1024 pixels, two burst transfers are required to receive an entire image
line from memory.

• FSM. A state machine coordinates read/write operations to/from memory
and generates the commands required by the datapath elements.

Pre-processing pixel reorder kernel FSM

The FSM block consists of two different Moore’s finite state machines:

• The first FSM is mainly used to generate the commands required by
the datapath elements of the pixel reorder kernel. Figure 4.16 illustrates
the FSM flow chart for the first IP version. Figure 4.17 provides the
flow chart for the second case. The state machines are very similar;
the only difference is that the first design also requires the management
of writing operations of the obtained data to the buffers in the global
memory. This part is not present in the FSM of the second design since
the data is sent directly to the AI Engine via AXI4-Stream.

• The second FSM is mainly used to interact with the AXI-Master
interface, generating the commands required for DDR reads and
writes. This second machine starts the execution when start_read
or start_write signals are set to one by the first FSM. The flow chart
is shown in figure 4.18.

61

Figure 4.14. Pixel reorder RTL kernel datapath

4.3 – PL kernels requirements

Figure 4.15. Representation of output data order in FIFOs

63

Figure 4.16. Algorithm finite state machine with AXI Stream interface

Figure 4.17. Algorithm finite state machine with output data written in DDR

Implementation of bilinear interpolation algorithm

Figure 4.18. DMA management finite state machine

66

4.4 – Generation of input and golden data

4.4 Generation of input and golden data
Input data to the system and golden reference data are generated using
Matlab scripts. In particular:

• A first Matlab script extracts the pixels of the original image used for
testing from a PNG file and generates the reference data for comparison;

• A second Matlab script generates the coordinate grid of the output
image, i.e., the matrix of coordinates to interpolate, depending on
the desired transformation (scaling, translation, rotation, crop, etc.).
In this case, a scaling by half of the original image is implemented.
The coordinates are generated in fixed point format and converted into
floating point values inside the IP.

• A third Matlab script is also used to verify the correctness of the output
data from the algorithm running on the board. This script is not
provided since it is a simple for loop that compares golden data to the
data obtained during hardware emulation and the algorithm’s run.

Matlab scripts are provided in appendix 9.3.
All the blocks of the RTL IP are organized with parametric values, so the

user can easily modify source codes to set different input and output image
resolutions. Also, using a variable coordinate grid makes changing the type
of image transformation simple: a different coordinate grid corresponds to
a different transformation performed by the system exploiting the bilinear
interpolation algorithm.

As mentioned earlier, in this reference design, the bilinear interpolation
algorithm was used to scale an input image. The input resolution is
1024x1024 pixels, while the output resolution is 512x512. Therefore, a scaling
factor 2 is applied to the x and y-directions.

Figure 4.19 shows one of the images used for the test.

67

Implementation of bilinear interpolation algorithm

Figure 4.19. Scaling of an input image of resolution 1024x1024 by factor 2

68

Chapter 5

System Integration

5.1 Introduction to Versal Integration
The following chapter presents the integration of the components presented
before, including AI Engines and PL kernels. Different solutions have been
experimented with during the development of the VE2302 reference design.
For this reason, this chapter presents three different designs:

• Design 1. The RTL IP and the AIE operate sequentially in the first
system without direct interaction. The IP fully processes the input frame
and writes the output data to DDR before the AIE execution begins.
In this approach, the IP and RTL kernel exchange data using buffers in
global memory. The functional block diagram of this design is provided
in figure 5.1.

• Design 2. In the second design, the IP and AIE work concurrently.
The IP provides data to the AIE in packets via an AXI4-Stream
interface, and the AIE processes data between the reception of each
packet. The functional block diagram of this design is provided in figure
5.2.

• Design 3. The third design uses a different approach based on
AI Engines without programmable logic kernels. The image
pre-processing part, carried out by the RTL IP in the two previous
cases, is shifted to an AI Engine kernel. This case is presented in the
next chapter.

This chapter mainly describes the first two designs, in which the integration
of PL, PS, and AIE-ML components of the Versal SoC takes place. In both

69

System Integration

cases, the AI Engine kernel’s graph and code are the same. Instead, the RTL
IP has been slightly modified to manage elaborated data with the different
interfaces required by the two designs. Indeed, the two solutions require the
implementation of different interfaces between RTL IP and AI Engine kernel:

• In the first case, the IP has been packaged with the addition of an AXI4
Memory-Mapped (AXI-MM) interface to read input pixels and query
coordinates from the global memory and write elaborated data in three
different buffers of the DDR. For this reason, three mm2s HLS interfaces
provide input data to the AI Engine by reading them from DDR.

• In the second case, the IP has been packaged with an AXI4
Memory-Mapped interface to get input from DDR but also three AXI4
stream interfaces to send the elaborated data to the AI Engine PLIOs.
In this case, mm2s interfaces are not required because the stream directly
provides the data exchanges.

In both cases, the AI Engine kernel uses an s2mm interface to store
interpolated pixels from the output buffer and the global memory.

5.2 Design linking
Vitis development flow for Versal devices allows the integration of PL
and AI Engines kernel to create a complex design. There is the possibility to
develop the single components with different tools provided by the Unified
Vitis™ IDE and then link together heterogeneous parts. In figure 5.3, the
integration process in this case is represented:

• The AIE compiler in Vitis compiles the ADF graph related to the bilinear
interpolation kernel. This process generates the graph object and the
library components necessary for execution on hardware;

• The Vitis HLS compiler compiles the HLS kernels; the synthesis result
is a kernel object file.

• The RTL IP is designed and compiled in Vivado and synthesized as a
Vitis kernel object.

The linker uses the output of each compilation stage to generate the hardware
platform (an xsa file). An XSA (Xilinx Support Archive) file is a hardware
design archive containing information about the created hardware platform,
including:

70

5.2 – Design linking

Figure 5.1. Functional block diagram of system 1

• FPGA bitstream;

• Block design (BD) information;

• AXI interconnect details;

• Peripheral configurations;

• Processor system setup.

As it is possible to see in figure 5.3, a configuration file is used during
hardware linking. This system.cfg file provides an organized way of passing

71

System Integration

Figure 5.2. Functional block diagram of system 2

options to the tools creating reusable configuration files. Different commands
are supported regarding information given to the v++ linker about the clock,
package options, and debugging. The configuration files for the two designs
are shown in listings 5.1 and 5.2, respectively.

1 debug=1
2 save-temps=1
3 temp_dir=binary_container_1
4 report_dir=binary_container_1/reports
5 log_dir=binary_container_1/logs
6

72

5.2 – Design linking

Figure 5.3. Integration of PL and AIE kernels

7 [profile]
8 data=all:all:all
9

10 [advanced]
11 misc=solution_name=binary_container_1
12 param=compiler.addOutputTypes=hw_export
13

14 [connectivity]
15 nk=s2mm:1:s2mm_1
16 nk=mm2s:3:mm2s_1.mm2s_2.mm2s_3
17 stream_connect=mm2s_1.s:ai_engine_0.DIN_0_A
18 stream_connect=mm2s_2.s:ai_engine_0.DIN_0_B
19 stream_connect=mm2s_3.s:ai_engine_0.DIN_0_C
20 stream_connect=ai_engine_0.DOUT_0:s2mm_1.s
21 nk=axi_pixel_reorder:1:axi_pixel_reorder_1

Listing 5.1. system.cfg file for design 1

1 debug=true

73

System Integration

2 save-temps=1
3 temp_dir=binary_container
4 report_dir=binary_container/reports
5 log_dir=binary_container/logs
6

7 [profile]
8 data=all:all:all
9

10 [advanced]
11 misc=solution_name=binary_container
12 param=compiler.addOutputTypes=hw_export
13

14 [connectivity]
15 nk=s2mm:1:s2mm_1
16 stream_connect=axi_pixel_reorder_1.out0:ai_engine_0.DIN_0_A
17 stream_connect=axi_pixel_reorder_1.out1:ai_engine_0.DIN_0_B
18 stream_connect=axi_pixel_reorder_1.out2:ai_engine_0.DIN_0_C
19 stream_connect=ai_engine_0.DOUT_0:s2mm_1.s
20 nk=axi_pixel_reorder:1:axi_pixel_reorder_1

Listing 5.2. system.cfg file for design 2

In particular, the option param=compiler.addOutputTypes=hw_export
tells the compiler to generate the XSA file during the linking stage for
hardware export. A relevant part concerns connectivity, providing the linker
with information about the number of instances of the same core and their
connection.

The linking command is the following:
v++ -l –t hw s2mm.xo mm2s.xo libadf.a –config system.cfg –o

design.xsa

One of the linking process’s output files is the hardware platform’s Vivado
project, where the result of this step can be seen. Figure 5.4 shows the
block design of the linked platform. In particular, it is possible to notice
the presence of the AI Engine block, connected to the Control Interface and
Processing System IP (CIPS) and the Vitis Region.

Expanding the Vitis region in the Vivado project of the first system (figure
5.5) makes it possible to see the PL kernels included in the design. As
expected, the s2mm/mm2s interfaces are connected to the pre-processing
RTL IP. It is possible to notice that all these blocks, and also the inputs of
the AI Engine, are connected to the NoC, which provides a bridge to the
memory.

In the Vitis region for the second design (figure 5.6), it is possible to see the
presence of the s2mm interface, which provides communication between the

74

5.3 – Software host application

AIE output and the memory. As expected, the stream connection between
the AIE inputs and the reorder kernel also directly provides data to the
interpolation kernel.

Inspecting the Vitis project is also useful to check the correctness of the
linked design before proceeding with the packaging.

5.3 Software host application
A software application running on the PS is required to control the
algorithm’s execution on hardware. For this aim, Vitis development flow
provides the XRT API, allowing programmers to develop their own
applications in C, C++, and Python. The Xilinx Runtime library (XRT)
is an open-source software stack that facilitates the management and usage of
Versal and other AMD devices. Developers can write software using familiar
programming languages like C/C++ to write host code, and the XRT API
provides an easy way of interacting with FPGA/ACAP devices. To use the
native XRT APIs, the compiler must link the xrt_coreutil library to the
host application.

This library provides different class objects to support all the elements of
the heterogeneous environment presented, summarized in table 5.1.

Concept XRT Class Header File
Device xrt::device #include <xrt/xrt_device.h>

XCLBIN xrt::xclbin #include
<experimental/xrt_xclbin.h>

Buffer xrt::bo #include <xrt/xrt_bo.h>

Kernel xrt::kernel #include <xrt/xrt_kernel.h>

Run xrt::run #include <xrt/xrt_kernel.h>

User-managed
Kernel

xrt::ip #include
<experimental/xrt_ip.h>

Graph xrt::graph #include <experimental/aie.h>
#include
<experimental/graph.h>

Table 5.1. Software controllable kernels

75

System Integration

These common steps characterize the typical host code flow:

• Open Xilinx Device and load the XCLBIN file;

• Create Buffer objects to transfer data to kernel inputs and outputs;

• Use the Buffer class member functions for the data transfer between host
and device (before and after the kernel execution);

• Use Kernel and Run objects to offload and manage the compute-intensive
tasks on FPGA.

An XCLBIN file is a Xilinx Binary Container that packages the compiled
hardware design for execution on AMD/Xilinx platforms. The key
components of an xclbin file are:

• Bitstream, which is the actual configuration data for the programmable
logic;

• Kernel metadata, i.e., information about kernel arguments, memory
mappings, and compute units;

• ADF graph metadata, if AI Engine kernels are included;

• Connectivity information, describing how the hardware kernels are
connected to global memory and other system components;

• Clocking and resource configurations, defining the frequency
settings and the resource usage.

5.3.1 Host application code
The host application code of the second system is described as an example
to show the typical structure and use of XRT API. In listing 5.3, the first
part of the application code is presented. It is possible to notice the use of
class objects xrt::xclbin and xrt::device, performing device opening and
xclbin loading.

1 int main(int argc, char* argv[]) {
2

3 // Open device and load xclbin
4

5 char* xclbinFilename = argv[1];
6 unsigned dev_index = 0;

76

5.3 – Software host application

7 auto my_device = xrt::device(dev_index);
8

9 // ...

Listing 5.3. host code: loading xclbin and device opening (system 2)

The next step is buffer allocation in global memory. Buffers are mainly
used to transfer the data between the host and the device, but they can also
be used to transfer data between RTL IP and AI engines, as in the first
system. The class constructor xrt::bo is used primarily to allocate a buffer
object 4K aligned.

1 // allocating input and output memory
2

3 //input buffer for RTL IP
4 auto in_bo1 = xrt::bo(my_device, DDR1_BUFFSIZE_I_BYTES,
5 xrt::bo::flags::host_only, 0);
6 auto in_bo1_mapped = in_bo1.map<uint64_t*>();
7 memcpy(in_bo1_mapped, img_pxl, DDR1_BUFFSIZE_I_BYTES);
8 in_bo1.sync(XCL_BO_SYNC_BO_TO_DEVICE);
9

10 auto in_bo2 = xrt::bo(my_device, DDR2_BUFFSIZE_I_BYTES,
11 xrt::bo::flags::host_only, 0);
12 auto in_bo2_mapped = in_bo2.map<uint64_t*>();
13 memcpy(in_bo2_mapped, coords, DDR2_BUFFSIZE_I_BYTES);
14 in_bo2.sync(XCL_BO_SYNC_BO_TO_DEVICE);
15

16 //ouput buffer for AIE results
17 auto out_bo = xrt::bo(my_device, DDR_BUFFSIZE_O_BYTES, 0);
18 auto out_bo_mapped = out_bo.map<uint32_t*>();
19 memset(out_bo_mapped, 0x0000, DDR_BUFFSIZE_O_BYTES);

Listing 5.4. host code: buffers allocation (system 2)

In design 1, three additional buffer objects are allocated to store
intermediate data generated by the RTL IP and used as inputs for the AI
engine. The next step consists of the allocation of the RTL IP kernel. The
class object xrt::ip is used since it is a user-managed IP (listing 5.5). In
addition, the addresses of the input buffers are passed to the IP using the
provided register interface.

1 // allocating RTL IP kerneL
2 auto ip1 = xrt::ip(my_device, xclbin_uuid,
3 "axi_pixel_reorder:{axi_pixel_reorder_1}");
4

5 // setting up RTL IP registers
6 uint64_t addr1;
7 uint64_t addr2;

77

System Integration

8 addr1 = in_bo1.address();
9 addr2 = in_bo2.address();

10

11 ip1.write_register(BASE_ADDR1, addr1 >> 32);
12 ip1.write_register(BASE_ADDR1 + 4, addr1);
13 ip1.write_register(BASE_ADDR2, addr2 >> 32);
14 ip1.write_register(BASE_ADDR2 + 4, addr2);
15

16 uint32_t reg1 = ip1.read_register(BASE_ADDR1);
17 uint32_t reg2 = ip1.read_register(BASE_ADDR1+4);
18 uint32_t reg3 = ip1.read_register(BASE_ADDR2);
19 uint32_t reg4 = ip1.read_register(BASE_ADDR2+4);
20

21 ip1.write_register(PRESCALER_REG, PRESCALER_VALUE);
Listing 5.5. RTL IP allocation and register setup (design 2)

The allocation of s2mm and mm2s interfaces instead is provided by the
class object xrt::kernel. These HLS kernels are configured as xrt-managed
kernels; for this reason, high-level calls as xrt::run() and xrt::wait() are
used, as shown in the code 5.6.

1 // start output kernel
2 auto s2mm_k = xrt::kernel(my_device, xclbin_uuid, "s2mm:{s2mm_1}");
3 auto s2mm_r = s2mm_k(out_bo, nullptr, DDR_BUFFSIZE_O_BYTES/sizeof(int64));
4 std::cout << "s2mm run started" << std::endl;

Listing 5.6. RTL IP allocation and register setup (design 2)

Instead, the user must manage the RTL kernel run through atomic register
read/write operations from the host application. The RTL IP has been
designed to start when bit 0 of register 0x10 is set to 1. In the case of design
1, the IP processes the whole image, and the AIE graph executes only after
the pre-processing ends. For this reason, a while loop implements polling on
bit 2 of register 0x10, corresponding to a "done" signal (listing 5.7). Instead,
in design 2, the elaboration of AIE and RTL IP happens concurrently, and
no polling is required.

1 // start RTL kernel
2 uint32_t axi_ctrl = IP_START;
3 ip1.write_register(CTRL_ADDR_REG, axi_ctrl);
4

5 while(axi_ctrl != IP_END){
6

7 axi_ctrl = ip1.read_register(CTRL_ADDR_REG);
8 if(axi_ctrl == IP_START){
9 ip1.write_register(CTRL_ADDR_REG, IP_NONE);

10 }

78

5.4 – Design packaging

11 }

Listing 5.7. RTL IP allocation and register setup (design 1)

The last step is the allocation of the AI Engine graph, using class object
xrt::graph, as shown in code 5.8. The API call my_graph.run(NRUN) is
used to execute the graph for NRUN times, and the function my_graph.end()
waits until the graph execution is completed.

1 // Load AIE graph
2 auto my_graph = xrt::graph(my_device, xclbin_uuid, "blint");
3

4 // Run AIE graph
5 my_graph.reset();
6 my_graph.run(NRUN);
7 my_graph.end();

Listing 5.8. RTL IP allocation and register setup (design 2)

The complete codes of the host application for both design 1 and design 2
is provided in appendix 9.4. In the complete code, it can be seen that, at the
end of the processing, the host app also writes the interpolated pixels to a text
file ("output.txt") for verification with Matlab and performs a runtime check
with golden data to detect errors. In fact, during the application execution,
the console output will report any mismatch with the reference data and the
maximum absolute error.

5.4 Design packaging
The last step in getting a design targeting the board is platform creation
with packaging. Indeed, the platform is a package that contains:

• the HPFM (Hardware platform) i.e., the XSA file describing the
hardware components;

• the SPFM (Software components), including the common image, Linux
kernel, rootfs, device tree, and boot components.

These two components are the input of the AMD Vitis™ IDE tool that will
generate the platform. The whole process is illustrated in figure 5.7. The
Vitis command:

v++ –package -config package.cfg

79

System Integration

generates SD card and other Flash images required for booting the system,
in addition to the .xclbin device binary from the .xsa generated for Versal
devices. In the configuration file package.cfg, it is possible to specify
packaging flags, input files, and different options, which are summarized in
table 5.2.

Option Description
rootfs Root filesystem, contains the Linux

operating system and essential
user-space utilities for the target
platform.

image_format Format of the Image
boot_mode How the design is going to be run

(e.g. QSPI, SD card).
kernel_image Image file created by PetaLinux.
defer_aie_run The AI Engine will not

automatically start when the
system is booted, the host
application control it.

sd_file Tells the packager what file is
to be packaged in the sd_card
directory. This must be specified
multiple times for all the files to be
packaged.

Table 5.2. Packaging options

After the creation of the platform (including hardware and software),
the user can generate the Programmable Device Image (PDI) and a
package for SD card boot. The PDI contains executables, bitstreams, and
configurations of every device element, and it is used during the boot process
for configuration. The packaged SD card directory contains everything to
boot Linux and runs the generated host application on the created Vitis
platform.

80

5.4 – Design packaging

Figure 5.4. Platform block design

81

System Integration

Figure 5.5. Platform block design - Vitis region of system 1

82

5.4 – Design packaging

Figure 5.6. Platform block design - Vitis region of system 2

83

System Integration

Figure 5.7. Packaging the design

84

Chapter 6

Bilinear Interpolation
with AI Engine based
approach

The last part of this project involves developing the bilinear interpolation
algorithm using a complete AI engine-based approach. The idea is
to evaluate the system’s performance when the programmable logic is not
involved, and the pre-processing part is moved to the AI Engine graph.
This part aims to assess the advantages and disadvantages of a more
software-oriented approach versus one that includes a deeper knowledge of
hardware.

Figure 6.1 illustrates the graph in this specific approach from a functional
point of view. In this case, the AI Engine graph consists in two different
kernels:

• Bilinear interpolation kernel, which remains unchanged from what was
described above;

• Pre-processing kernel, which implements the pixel pre-processing part
that was previously the responsibility of the RTL IP in programmable
logic.

In this case, GMIO ports have been used to transfer data from global
memory to the AI Engine array. Three GMIO inputs provide the coordinates
of the interpolation point (xq, yq) and the pixels of the original image. An
output GMIO transfers data from the AI engine array to the global memory.

85

Bilinear Interpolation with AI Engine based approach

Figure 6.1. Bilinear kernel graph with pre-processing: functional representation

PLIO ports are not required since there isn’t interaction with programmable
logic.

6.1 AI Engine array programming

6.1.1 Bilinear kernel graph code
The code of the bilinear kernel graph is shown in listing 6.1. As can be seen
from the code, four GMIO ports were created using the class object provided
by the adaptive dataflow library. Each port attribute is characterized by
the logical name, the size of the burst transfer (256 in this case), and the
bandwidth, set to 1000 MB/s. The next part of the code shows the presence
of a second kernel, which is used to substitute the RTL IP kernel. Then, as in
the previous case, the graph code describes the connection between ports and
kernels and provides information such as the runtime ratio and the source
code for each kernel.

1 #pragma once
2 #include <adf.h>
3 #include "bilinear_kernel.h"
4 #include "reorder_kernel.h"
5 #include "buffers.h"
6

7 using namespace adf;
8

9 class bilinear_graph : public adf::graph {
10 private:
11

12 kernel bli_krnl;
13 kernel reorder_krnl;

86

6.1 – AI Engine array programming

14

15 public:
16

17 adf::input_gmio gmioIn1;
18 adf::input_gmio gmioIn2;
19 adf::input_gmio gmioIn3;
20 adf::output_gmio gmioOut;
21

22 bilinear_graph()
23 {
24

25 gmioOut = adf::output_gmio::create("gmioOut",256,1000);
26 gmioIn1 = adf::input_gmio::create("gmioIn1",256,1000);
27 gmioIn2 = adf::input_gmio::create("gmioIn2",256,1000);
28 gmioIn3 = adf::input_gmio::create("gmioIn3",256,1000);
29

30 reorder_krnl = kernel::create_object<reorder_kernel>();
31 bli_krnl = kernel::create_object<bilinear_kernel>();
32

33 connect(gmioIn1.out[0], reorder_krnl.in[0]);
34 connect(gmioIn2.out[0], reorder_krnl.in[1]);
35 connect(gmioIn3.out[0], reorder_krnl.in[2]);
36

37 connect(reorder_krnl.out[0], bli_krnl.in[0]);
38 connect(reorder_krnl.out[1], bli_krnl.in[1]);
39 connect(reorder_krnl.out[2], bli_krnl.in[2]);
40

41 connect(bli_krnl.out[0], gmioOut.in[0]);
42

43 source(bli_krnl) = "src/bilinear_kernel.cpp";
44 source(reorder_krnl) = "src/reorder_kernel.cpp";
45

46 runtime<ratio>(bli_krnl) = 0.9;
47 runtime<ratio>(reorder_krnl) = 0.9;
48

49 }
50 };

Listing 6.1. Bilinear kernel graph code

6.1.2 Reorder kernel code
The bilinear kernel code remains the same as previously presented for the
other designs. Instead, this section provides a description of the code used
for pre-processing. The first part of the code is shown in listing 6.2.

87

Bilinear Interpolation with AI Engine based approach

1 #include <adf.h>
2 #include "buffers.h"
3 #include "reorder_kernel.h"
4 #include <aie_api/aie.hpp>
5 #include <aie_api/aie_adf.hpp>
6 #include "aie_api/vector.hpp"
7

8 void reorder_kernel::reorder(input_buffer<int32 , adf::extents<BUFF_DIM_1>>
9 & __restrict in1,

10 input_buffer<int32, adf::extents<BUFF_DIM_2>>
11 & __restrict in2,
12 input_buffer<int32, adf::extents<BUFF_DIM_2>>
13 & __restrict in3,
14 output_buffer<int32, adf::extents<BUFF_DIM_INT>>
15 & __restrict out1,
16 output_buffer<int32, adf::extents<BUFF_DIM_INT>>
17 & __restrict out2,
18 output_buffer<int32, adf::extents<BUFF_DIM_INT>>
19 & __restrict out3)
20 {
21 // iterators to access input and output buffer
22 auto inPtrP=aie::begin_random_circular(in1); //random access for pixel lut
23 auto inPtrXq=aie::begin(in2);
24 auto inPtrYq=aie::begin(in3);
25 auto outPtr1=aie::begin_vector<8>(out1);
26 auto outPtr2=aie::begin_vector<8>(out2);
27 auto outPtr3=aie::begin_vector<8>(out3);
28

29 // declaration of test vector
30 aie::vector<float, 8> xfrac_v = aie::zeros<float,8>();
31 aie::vector<float, 8> yfrac_v = aie::zeros<float,8>();
32 aie::vector<float, 8> p11_v = aie::zeros<float,8>();
33 aie::vector<float, 8> p12_v = aie::zeros<float,8>();
34 aie::vector<float, 8> p21_v = aie::zeros<float,8>();
35 aie::vector<float, 8> p22_v = aie::zeros<float,8>();

Listing 6.2. Reorder kernel code - first part

Also in this case, the kernel uses buffered I/O for input and output, as
shown by the presence of input_buffer() and output_buffer() in the
function declaration. At the beginning of the kernel code, the iterators that
are used to access the buffers are created. A thing to notice is that a circular
random iterator is instantiated to access the pixel buffer. This iterator will
not give ordered access to the buffer, as it needs to select the four neighboring
pixels based on the value of the coordinate to be interpolated.

1 int samp_cnt = 0;

88

6.1 – AI Engine array programming

2

3 /*iterate over query coordinates buffer*/
4 for (unsigned i = 0; i < YRES_OUT; i++)
5 chess_prepare_for_pipelining
6 chess_loop_count(YRES_OUT)
7 {
8 //get query and get integer part
9 auto xq = (*inPtrXq++);

10 auto yq = (*inPtrYq++);
11

12 float xq_fp = *reinterpret_cast<float*>(&xq);
13 float yq_fp = *reinterpret_cast<float*>(&yq);
14

15 auto xint = std::floor(xq_fp);
16 auto yint = std::floor(yq_fp);
17

18 auto xfrac = xq_fp - xint;
19 auto yfrac = yq_fp - yint;
20

21 //get index of p11, p12, p21, p22 in input buffer
22 uint32_t p11_idx = yint; //xint*YRES+yint;
23 uint32_t p12_idx = yint+1; //xint*YRES+yint+1;
24 uint32_t p21_idx = YRES+yint; //(xint+1)*YRES+yint;
25 uint32_t p22_idx = YRES+yint+1; //(xint+1)*YRES+yint+1;
26

27 inPtrP += p11_idx;
28 auto p11 = *inPtrP;
29 float p11_fp = *reinterpret_cast<float*>(&p11);
30

31 inPtrP += 1; //p12 index is p11_index + 1
32 auto p12 = *inPtrP;
33 float p12_fp = *reinterpret_cast<float*>(&p12);
34 inPtrP=aie::begin_random_circular(in1);
35

36 inPtrP += p21_idx;
37 auto p21= *inPtrP;
38 float p21_fp = *reinterpret_cast<float*>(&p21);
39

40 inPtrP += 1;
41 auto p22= *inPtrP;
42 float p22_fp = *reinterpret_cast<float*>(&p22);
43 inPtrP=aie::begin_random_circular(in1);
44

45 //insert element in 8-vector
46 xfrac_v.set(xfrac, samp_cnt);
47 yfrac_v.set(yfrac, samp_cnt);

89

Bilinear Interpolation with AI Engine based approach

48 p11_v.set(p11_fp, samp_cnt);
49 p12_v.set(p12_fp, samp_cnt);
50 p21_v.set(p21_fp, samp_cnt);
51 p22_v.set(p22_fp, samp_cnt);
52

53 if(samp_cnt == 7){
54

55 *outPtr1++ = aie::vector_cast<int32>(xfrac_v);
56 *outPtr1++ = aie::vector_cast<int32>(yfrac_v);
57

58 *outPtr2++ = aie::vector_cast<int32>(p11_v);
59 *outPtr2++ = aie::vector_cast<int32>(p12_v);
60

61 *outPtr3++ = aie::vector_cast<int32>(p21_v);
62 *outPtr3++ = aie::vector_cast<int32>(p22_v);
63

64 samp_cnt = 0;
65 }
66 else{
67 samp_cnt++;
68 }
69 }
70 }

Listing 6.3. Reorder kernel code - second part

The second part of the code (listing 6.3) is a for loop producing the
set of data (p_11, p_12, p_21, p_22, x_frac, y_frac) required for the
interpolation of each pixel. For each coordinate (xq, yq) in the buffer, the
fractional and integer part is obtained, and the integer part is used to find
the position of each required pixel inside the pixel buffer. The selected pixels
are grouped into vectors of 8 elements (to allow vector calculation in the
next kernel), and the process continues for all output image coordinates.
Interestingly, the programmer does not have to worry about managing data
transfer from global memory to the AI Engine array. Once the burst size
and bandwidth are set, the GMIO port handles the data traffic depending
on the available space in the AI Engines’ local buffers.

The complete kernel code is provided in the appendix 9.1, listing ??.

6.1.3 Bilinear graph compilation
The adaptive data flow graph obtained in this case after the aie-compilation
is shown in figure 6.2.

The allocation of the graph in the AI Engine array is shown in the array

90

6.2 – Software host application

Figure 6.2. Bilinear kernel graph after compilation

view, figure 6.3 and 6.4.

6.2 Software host application
In this case, the presence of a host application is also necessary to manage
the allocation of the AI Engine graph and the buffer in global memory and
the system’s evolution. The first part of the host application code is shown
in listing 6.4. The operations performed in this phase are the same as those
introduced previously, i.e., the loading of the xclbin file, the allocation and
initialization of buffers in memory, and the allocation of the graph.

1 //
2 // include XRT libraries
3 // ...
4

5 #define NRUN 512
6 #define SCALE_FACTOR 2
7 #define YRES 1024
8

9 using namespace adf;
10 using namespace std;
11

91

Bilinear Interpolation with AI Engine based approach

Figure 6.3. Bilinear kernel graph after compilation - array view

12 int main(int argc, char* argv[]) {
13

14 if (argc != 2) {
15 std::cout << "Usage: " << argv[0] <<" <xclbin>" << std::endl;
16 return 1;
17 }
18

19 // Open device and load xclbin
20 char* xclbinFilename = argv[1];
21 unsigned dev_index = 0;
22 auto my_device = xrt::device(dev_index);
23 if(!my_device){
24 std::cout << "Device open error!" << std::endl;
25 }else{
26 std::cout << "Device open OK!" << std::endl;
27 }
28 auto xclbin_uuid = my_device.load_xclbin(xclbinFilename);
29

30 // allocating input and output memory

92

6.2 – Software host application

Figure 6.4. Bilinear kernel graph after compilation - zoom

31

32 auto din_xq_buffer = xrt::bo (my_device, BUFF_SIZE_XY,
33 xrt::bo::flags::normal, 0);
34 uint32_t* dinXqArray= din_xq_buffer.map<uint32_t*>();
35 memcpy(dinXqArray, xq_array, BUFF_SIZE_XY);
36 std::cout << "INFO: Xq array allocated. "<< std::endl;
37

38 // ...
39 // allocation and initialization of Yq array and Pixel array
40 // ...
41

42 auto dout_buffer = xrt::bo (my_device, BUFF_SIZE_OUT,
43 xrt::bo::flags::normal, 0);
44 uint32_t* doutArray= dout_buffer.map<uint32_t*>();
45 std::cout << "INFO: Output buffer allocated at virtual memory space:
46 " << &doutArray << std::endl;
47

48 // Load AIE graph
49

50 std::cout << "Allocating aie graph..." << std::endl;
51 auto my_graph = xrt::graph(my_device, xclbin_uuid, "blint");
52 std::cout << "Aie graph allocation completed" << std::endl;
53

93

Bilinear Interpolation with AI Engine based approach

54 my_graph.reset();

Listing 6.4. Host application code - first part

The second part is shown in listing 6.5 and starts from allocating external
buffers. The class object xrt::aie::buffer represents GMIO and external
buffers 1 that facilitates data movement from global memory to the AI
Engine and vice versa. Indeed, GMIO and External buffers work together to
manage data flow efficiently by ensuring that large datasets can be processed
effectively without overwhelming local memory resources [11].

The function xrt::bo::write() starts a DMA transfer between the
memory buffer and the GMIO port.A for loop manages the execution of
the AI Engine graph. NRUN is equal to 512 because processing one line of
the output image at a time is handled. For each output image row, GMIOs
are used to transfer to the AI Engine two pixels row (i.e. 1024x2 elements)
and one row of xq, yq. xrt::aie::buffer::async() start an asynchronous
operation between the GMIO buffer and the global memory buffer. After the
graph run, the output data are transferred from the GMIO output buffer to
global memory. In addition, the host application calculates the new buffer
offsets before starting a new iteration.

1 // creation of external buffer
2 auto xq_buffer_ext = xrt::aie::bo (my_device, BUFF_SIZE_XY,
3 xrt::bo::flags::normal, 0);
4 auto yq_buffer_ext = xrt::aie::bo (my_device, BUFF_SIZE_XY,
5 xrt::bo::flags::normal, 0);
6 auto img_buffer_ext = xrt::aie::bo (my_device, BUFF_SIZE_IMG,
7 xrt::bo::flags::normal, 0);
8 auto out_buffer = xrt::aie::bo (my_device, BUFF_SIZE_OUT,
9 xrt::bo::flags::normal, 0);

10

11 xq_buffer_ext.write(dinXqArray);
12 yq_buffer_ext.write(dinYqArray);
13 img_buffer_ext.write(dinImgArray);
14

15 int img_offset = 0;
16 int xq_offset = 0;
17 int yq_offset = 0;
18

19 for(int i= 0; i < NRUN; i ++){
20

1external buffer is a memory space allocated in DDR. Instead, shared buffers are always
instantiated inside an AIE-ML tile or in a memory tile

94

6.2 – Software host application

21 // GMIO run
22 std::cout << "INFO: host app iteration: " << i << std::endl;
23 img_buffer_ext.async("blint.gmioIn1", XCL_BO_SYNC_BO_GMIO_TO_AIE,
24 2048 * sizeof(uint32_t), img_offset * sizeof(uint32_t));
25 xq_buffer_ext.async("blint.gmioIn2", XCL_BO_SYNC_BO_GMIO_TO_AIE,
26 512 * sizeof(uint32_t), xq_offset * sizeof(uint32_t));
27 yq_buffer_ext.async("blint.gmioIn3", XCL_BO_SYNC_BO_GMIO_TO_AIE,
28 512 * sizeof(uint32_t), yq_offset * sizeof(uint32_t));
29

30 // Run AIE graph
31 my_graph.run(1);
32 my_graph.wait(0);
33

34 auto dout_buffer_run = out_buffer.async("blint.gmioOut",
35 XCL_BO_SYNC_BO_AIE_TO_GMIO, 512 * sizeof(uint32_t),
36 xq_offset * sizeof(uint32_t));
37

38 dout_buffer_run.wait();
39 std::cout << "INFO: out buffer run completed!" << std::endl;
40

41 //reading output data from AIE buffer to external buffer object
42 unsigned array_lb = i*512;
43 dout_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
44 out_buffer.read(&doutArray[array_lb], 512 * sizeof(uint32_t),
45 xq_offset * sizeof(uint32_t));
46

47 //computation of memory offset for next iteration
48 xq_offset = xq_offset + 512;
49 yq_offset = yq_offset + 512;
50 img_offset = img_offset + YRES*SCALE_FACTOR;
51

52 }
53 my_graph.end();
54 return 0;
55 }

Listing 6.5. Host application code - second part

At the end of the loop (i.e., when the entire output image is produced), the
graph is deallocated. The complete code has an additional part that reads
the data written in the DDR’s output buffer and compares it with reference
data.

95

96

Chapter 7

Running the design on
hardware

Usually, the first step after packaging is a hardware emulation on the host
machine, before compiling and running the design on target hardware.
Hardware emulation simulates a complete Versal adaptive SoC system
composed of the AI Engines-ML, PS, and PL. The required co-simulation
setup involves RTL, SystemC, and QEMU models:

• Embedded software code running on the PS is emulated using QEMU;

• Code running on the AI Engines is emulated using the SystemC AI
Engine simulator;

• User PL kernels are simulated as RTL code;

• IP blocks in the hardware platform are simulated as RTL or SystemC
based on the available models.

The Vitis hardware emulation is very close to the actual execution on
hardware but not fully cycle-accurate. However, verifying the design behavior
before running on the board is a fundamental step. In addition, debugging
complex problems in this environment is more straightforward than in real
hardware, exploiting different tools provided by Vitis™ IDE. For example,
it is possible to check the system exploiting a co-simulation with Vivado,
showing the waveforms of the signals in programmable logic.

97

Running the design on hardware

7.1 Design 2: system execution

7.1.1 Hardware emulation

In figure 7.1 it is possible to see the hardware emulation waveforms for design
2.

Figure 7.1. Waveforms - design 2

As expected, the IP kernel and the AI Engine graph execute concurrently.
It is possible to see read operations of the IP kernel on m_axi channel, getting
the input pixel and the coordinates from the global memory, and the output
transfer on AXI-stream interfaces to the AI Engine array. By zooming in
on the s2mm interface signals (figure 7.2), it is also possible to see write
operations to the global memory, transferring interpolated pixels from the
bilinear interpolation kernel.

It is also possible to estimate the total time required to elaborate an input
image from hardware emulation. In this example, the input image resolution
is 1024 x 1024 pixels, and the design produces an output image rescaled by
half (512 x 512). The time required for this operation is measured in figure
7.3 and is ≃ 8.22 ms.

The console output is shown in figure 7.4.

98

7.1 – Design 2: system execution

Figure 7.2. Waveforms - design 2

Figure 7.3. Waveforms - design 2

99

Running the design on hardware

Figure 7.4. Waveforms - design 2

7.1.2 Hardware execution

After checking with hardware emulation, the design is packaged for execution
on hardware. The PDI generated during the process is used to format an SD
card plugged into the device and employed during system boot. If the trace
option is enabled, the compiler inserts additional dedicated trace memory to
capture events of interest at runtime. The operative systems translate trace
data into trace files that can be opened in the Vitis analyzer tool to check
the behavior of the design. The timeline trace is of significant use and is
shown in figure 7.5.

The captured timeline confirms the behavior expected from hardware
emulation and allows for maximum accuracy in capturing the execution time.
The terminal output of the hardware run is shown in figure 7.6.

Figure 7.7 shows the trace generated during execution on hardware, taking
into account also the execution times of software and XRT API calls, which
instead is not considered by hardware emulation. The time required by the
hardware execution coincides with that predicted by the simulation, which is

100

7.1 – Design 2: system execution

Figure 7.5. Hardware trace - design 2

approximately 8 ms. However, the total time required is larger if the initial
latency is also considered. Of course, a certain amount of time is required

101

Running the design on hardware

Figure 7.6. Hardware trace - design 2

to load the xclbin file and allocate resources. This latency is not considered
in performance evaluation since these operations are performed just once at
the beginning of the application execution.

Figure 7.7. XRT trace - design 2

102

7.2 – Design 1 system execution

7.2 Design 1 system execution

7.2.1 Hardware emulation
Hardware emulation and hardware run have also been performed for design
1. Waveforms from hardware emulation show the expected behavior also for
this system (figure 7.8). The RTL kernel is executed first, coherently with
the design choice. The AI Engine graph starts only when the pre-processing
is completed, as it is possible to see from the data traffic from/to mm2s
interfaces. The total execution time in this case is ≃ 14.31 ms.

Figure 7.8. Hardware emulation waveforms - design 1

Figure 7.9 shows reading operations of image pixels and query coordinates
from the DDR and consequently, the write operations to the global memory,
exploiting the AXI4 Memory Mapped interface.

At the end of the RTL IP processing, the AI Engine graph starts the
execution. Figure 7.10 shows HLS kernel running: mm2s interfaces read
input data from global memory, and s2mm interface writes interpolated pixels
in DDR.

7.2.2 Hardware run
Hardware run has been performed also for the first design, as shown in figure
7.11.

103

Running the design on hardware

Figure 7.9. Hardware emulation waveforms of RTL IP processing - design 1

Figure 7.10. Hardware emulation waveforms of AI Engine execution - design 1

Also in this case, the measured execution time for the image scaling is
similar to the time measured from the hardware emulation, approximately
18 ms. This time is around 4 milliseconds longer than that measured during
hardware emulation. However, the emulation does not consider the additional

104

7.3 – Design 3: system execution

Figure 7.11. Hardware run - design 1

time required by the XRT API to perform some operations, such as starting
the execution of the mm2s/s2mm interfaces and starting the graph, as shown
from a deeper analysis of the timeline trace.

7.3 Design 3: system execution
As presented above, also for the third design, a hardware emulation was
performed first, followed by hardware execution. Since this design has no
kernel in programmable logic, it is interesting to present the results of the
execution on hardware directly. Figure 7.12 shows a timeline trace full of
events for the XRT API. Indeed, the role of software is predominant in this
design. The host application must not only carry out the routine operations
seen before but also calculate memory addresses, manage the copying of data
from the GMIO buffers to memory, and initiate the execution of the graph
AI Engine for each desired iteration.

The software here handles many previously demanded roles to the
programmable logic, which is better suited to manage data transfer and
memory address processing more efficiently. This fact explains the high
execution time required to process an image, which is approximately 5

105

Running the design on hardware

Figure 7.12. Hardware run - design 3

seconds, evaluated from the first execution of the AI Engine graph to the
instant when the graph execution ends (figure 7.13).

Figure 7.13. AI Engine graph end - design 3

From the hardware trace, it is possible to see the primary operations
executed during the hardware run, such as data transfer between the global
memory buffer to GMIO buffers after xclbin loading and the AI Engine graph
run, as shown in figure 7.14 and 7.15 respectively.

106

7.3 – Design 3: system execution

Figure 7.14. Data transfer after xclbin loading - design 3

Figure 7.15. AI Engine graph run - design 3

107

Running the design on hardware

7.4 Resources utilisation

The utilization report of the design can be checked from the Vitis project
created after hardware linking. The results are summarized in tables 7.1,
7.2, 7.3, 7.4.

Table 7.1. Registers and LUT utilisation

Devices Registers CLB
LUTs

LUT as
Logic

LUT as
Memory

LOOK
AHEAD8

SLICE

VE2802 1,041,048 520,704 520,704 260,352 65,088 65,088
VE2302 300,544 150,272 150,272 75,136 18,784 18,784
% of VE2802 28.87% 28.86% 28.86% 28.86% 28.86% 28.86%
Design 1 (DDR) 12,861 9435 8173 1262 262 2726
% of VE2302 4,28% 6,28% 5,44% 1,68% 1,39% 14,51%
% of VE2802 1,24% 1,81% 1,57% 0,48% 0,40% 4,19%
Design 2 (AXI-Stream) 6,670 5,522 5,111 411 184 1,494
% of VE2302 2.22% 3.67% 3.40% 0.55% 0.98% 7.95%
% of VE2802 0.64% 1.06% 0.98% 0.16% 0.28% 2.30%
Design 3 (AI Engines only) 1,445 1,110 1,107 3 0 365
% of VE2302 0.48% 0.74% 0.74% 0.00% 0.00% 1.94%
% of VE2802 0.14% 0.21% 0.21% 0.00% 0.00% 0.56%

Table 7.2. CLB, BRAM, URAM and DSP utilisation

Devices CLB
Registers

BRAM
Tile

URAM DSP
Slices

VE2802 1,041,048 600 264 11,312
VE2302 300,544 155 155 464
% of VE2802 28.87% 25.83% 58.71% 4.10%
Design 1 (DDR) 12,589 14 10 0
% of VE2302 4,19% 9,03% 6,45% 0,00%
% of VE2802 1,21% 2,33% 3,79% 0,00%
Design 2 (AXI-Stream) 6,670 17 4 0
% of VE2302 2.22% 10.97% 2.58% 0.00%
% of VE2802 0.64% 2.83% 1.52% 0.00%
Design 3 (AI Engines only) 1,445 0 0 0
% of VE2302 0.48% 0.00% 0.00% 0.00%
% of VE2802 0.14% 0.00% 0.00% 0.00%

108

7.5 – Final considerations and design comparison

Table 7.3. Clocking and NOC/AI Engine resources – Part 1

Devices BUFG XPLL MMCM PS NOC
Master

AI
Engine

NOC
Slave

VE2802 752 18 9 10 12
VE2302 256 8 4 10 6
% of VE2802 34.04% 44.44% 44.44% 100.00% 50.00%
Design 1 (DDR) 4 6 1 8 1
% of VE2302 1,56% 75,00% 25,00% 80,00% 16,67%
% of VE2802 0.53% 33.33% 11.11% 80.00% 8.33%
Design 2 (AXI-Stream) 4 6 1 8 1
% of VE2302 1.56% 75.00% 25.00% 80.00% 16.67%
% of VE2802 0.53% 33.33% 11.11% 80.00% 8.33%
Design 3 (AI Engines only) 4.00 6 1 8 1
% of VE2302 1.56% 75.00% 25.00% 80.00% 16.67%
% of VE2802 0.53% 33.33% 11.11% 80.00% 8.33%

Table 7.4. Clocking and NOC/AI Engine resources – Part 1

Type AI ML
NOC
Slave

AI ML
Engines

GTYP PS9 BLI
Registers

VE2802 12 340 8 1 54,752
VE2302 6 34 2 1 20,296
% of VE2802 50.00% 10.00% 25.00% 100.00% 37.07%
Design 1 (DDR) 1 2 0 1 816
% of VE2302 16.67% 5.88% 0.00% 100.00% 1.34%
% of VE2802 8.33% 0.59% 0.00% 100.00% 0.50%
Design 2 (AXI-Stream) 1 2 0 1 0
% of VE2302 16.67% 5.88% 0.00% 100.00% 0.00%
% of VE2802 8.33% 0.59% 0.00% 100.00% 0.00%
Design 3 (AI Engines only) 1 4 0 1 0
% of VE2302 16.67% 11.76% 0.00% 100.00% 0.00%
% of VE2802 8.33% 1.18% 0.00% 100.00% 0.00%

7.5 Final considerations and design
comparison

7.5.1 Performances
After the execution on hardware, some final considerations can be made
about the performances and utilization of the presented systems. The

109

Running the design on hardware

performances of these three designs are summarized in table 7.5.

System Execution time (ms) throughput (FPS)
Design 1 (DDR buffer based) 18 55.56

Design 2 (AXI Stream interface) 8 125
Design 3 (AI Engines only) 5000 0.2

Table 7.5. Performance comparison, evaluated on a scaling of a
1024x1024 image by half

From the performance analysis, it is clear that:

• The second design has the best performance, capable of
elaborating frame at a speed of 125 FPS. Indeed, as could easily be
deduced from the outset, a design in which the different components
can work simultaneously would be faster than one in which the graph
only begins once the pre-processing operations have been completed.
With a concurrent execution, PL elaboration time is absorbed in graph
processing time, giving a higher throughput. In addition, the second
design makes less global memory access since the intermediate data are
not saved on DDR external buffers but are sent directly to the AI engine.
Indeed, access to DDR is time- and energy-consuming. The elaboration
rate also makes this design suitable for integration into a system where
real-time processing is required, considering that common camera
frame rates are between 15-60 FPS.

• The first design has less capability than the system’s AXI4-Stream
version. Lower performances are expected since the exchanges between
the PL and the AI Engines pass through global memory, and the two
phases of the interpolation operation are not simultaneous. Despite
the lower performance, this design could also be used for real-time
processing, provided the camera quality is medium/low, i.e., for 15 to
30 FPS cameras, or can be a good solution for post-processing image
or video elaboration. However, an advantage is that this design is easily
modifiable if different components are added. Since the PL and AI
Engine parts are independent, making changes or adding other elements
within this processing chain is easier.

• The third design, which uses only AI Engines for the bilinear
interpolation implementation, is the worst in terms of performance

110

7.5 – Final considerations and design comparison

and unsuitable for real-time image or video processing. In any case,
this design is an interesting experiment highlighting how an approach
that exploits the heterogeneity of the platform is the winning way
forward. Indeed, programmable logic and hardware accelerators are
essential to developing high-performance designs. At the same time, this
approach could be acceptable if there is the need to free up resources in
PL to make room for other logic.

7.5.2 Resources utilization
The second aspect to consider regards resources utilization. This point
is essential since, as introduced at the beginning, the three designs have
been tested on the VEK280 Board, but the final target is the VE2302
Development Kit. For this reason, the first point is to understand whether
the resources required by each design are not greater than those available on
the xcve2302 SoC, which are fewer in number than those on the xcve2802.
The tables presented in section 7.4 show that all three designs are suitable
for implementation on the target board since they do not exceed the VE2302
available resources. Here, the information provided before is presented in
charts to better compare the three different cases. Figures 7.16 and 7.17
compare the resource utilization in the three cases on VE2302-DK.

Figure 7.16. Registers, LUTs and SLICE utilization on VE2302

111

Running the design on hardware

Figure 7.17. BRAM, URAM, AI Engines tiles utilization on VE2302

Figures 7.18 and 7.19 provide a comparison for VE2802 case.

Figure 7.18. Registers, LUTs and SLICE utilization on VE2802

The third design is the most optimized in terms of PL resources: of course,
this result is not a surprise since the approach relies totally on the AI Engines

112

7.5 – Final considerations and design comparison

Figure 7.19. BRAM, URAM, AI Engines tiles utilization on VE2802

tile. At the same time, this design requires a higher number of AI Engine
tiles since AIE kernels substitute the PL kernels’ role. However, it is worth
focusing on the other two designs, as the integration of resources and the
performance achieved make them more suitable for implementing a reference
design to be presented to final board users.

It is possible to make some considerations on the two heterogeneous
designs:

• The second design is also the most optimized regarding resource
utilization. Charts show a lower impact on registers, LUTs, and all the
memory elements available in the programmable logic domain. Also, this
design doesn’t use mm2s interfaces, which are not part of the synthesis,
and this helps to save space;

• The first design requires a slightly larger number of resources, especially
registers, LUTs, URAM... This is explained considering that, in addition
to the pixel reorder kernel and the s2mm interface, the PL domain also
includes three mm2s interfaces that consume additional resources.

The advantages of lower resource utilization are lower power consumption
and the possibility of saving programmable logic resources to add additional
hardware to complete the reference design. For example, it is possible to
configure a Video Processing Subsystem (VPS) to capture images from
a camera connected to the board.

113

Running the design on hardware

All these considerations are summarized in table 7.6. The third design
is not considered since it is not interesting for the implementation of the
VE2302-DK reference design, as explained above.

Design 1 (intermediate DDR
buffers)

Design 2 (AXI-4 Stream
interface)

Total execution time: 8 ms
(approximately 125 FPS)

Total execution time: 18 ms (about
55 FPS)

Higher resources utilisation in PL Lower resources utilisation in PL
Higher number of global memory
accesses

Lower number of global memory
accesses

All the system components are
independent

System components are not
independent of each other

Table 7.6. Design 1 and design 2 comparison

From this analysis, the choice for VE2302-DK reference design is
represented by Design 2, because it is better for performance and utilization.

114

Chapter 8

Conclusions and future
developments

The aim of this thesis, namely, the Development of demo designs for
the VE2302 development kit, has been satisfied. A complete system
based on programmable logic, processing systems, and AI Engines-ML has
been realized by analyzing different designs and their features.

This design is a starting point for all users interested in developing
and discovering the potential of the VE2302-DK board, making it easier
to understand the integrated development process on the Versal SoC. As
analyzed at the beginning, the SoCs of the Versal family are particularly
powerful but simultaneously complex. However, a reference design can
help users become familiar with the hardware when developing custom
applications. Furthermore, the work carried out lends itself well to presenting
the potential of the hardware under analysis.

In addition, it can be an interesting starting point for those who want to
develop an image processing system. This design provides an excellent basis
for placing various elements to process incoming video streams. The bilinear
interpolation algorithm offers a flexible ground for implementing various
transformations, not only scaling. In fact, changing the output coordinate
grid is sufficient to obtain different transformations, even more complex
ones (rotations, translations, cutouts, etc.). Moreover, this algorithm is well
suited to artificial intelligence processing. A couple of examples of potential
applications of this case are:

• Image pre-processing to resize for AI models: it is common for
various artificial intelligence models processing images to have precise

115

Conclusions and future developments

specifications on the size of the input frame, which must then first be
resized and modified.

• Region of interest selection for dual inference pipelines. ROI is used
to choose a specific portion to analyze within an image. In machine
learning, during image pre-processing, it is common to crop one or
more ROIs to reduce the data to be processed. Or, for object detection
techniques, multiple candidate ROIs are generated to be classified. With
this design, ROI selection can be easily implemented by giving the
coordinate grid corresponding to the portion of the region of interest
and using this project as an accelerator for the cropping stage.

These are just two examples, but they demonstrate the flexibility and
multitude of applications that this design can have.

In this perspective, the following are some ideas for possible future
developments:

• Adding a DPU or NPU for AI model inference. One possibility is to
add AMD Vitis™ AI, an Integrated Development Environment that can
be leveraged to accelerate AI inference on AMD adaptable platforms.
It is designed with high efficiency and ease of use, unleashing the full
potential of AI acceleration on AMD adaptable SoCs [12]. This would
allow the accelerator to be combined with AI image processing models,
as described above.

• Extend the existing design by adding all the elements for a video
pipeline. The idea is to receive frames from an external source, use
the bilinear interpolation algorithm for processing, and add a display
element showing the elaborated video frames.

116

Chapter 9

Appendix

9.1 Appendix A

9.1.1 bilinear_graph.h

1 //
2 // Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 // Original code by: Richard Buz
6

7 // Modified version for VEK280 Evaluation board by: Francesca Franzese
8

9 #pragma once
10

11 #include <adf.h>
12 #include "bilinear_kernel.h"
13 #include "buffers.h"
14

15 using namespace adf;
16

17 class bilinear_graph : public adf::graph {
18 private:
19 kernel bli_krnl[NCORE];
20

21 public:
22 std::array<input_plio, NCORE> iplio_A, iplio_B, iplio_C;
23 std::array<output_plio, NCORE> oplio;
24

25 bilinear_graph()
26 {

117

Appendix

27 for (int i = 0; i < NCORE; i++) {
28 std::string iplio_A_name = "DIN_" + std::to_string(i) + "_A";
29 std::string iplio_B_name = "DIN_" + std::to_string(i) + "_B";
30 std::string iplio_C_name = "DIN_" + std::to_string(i) + "_C";
31 std::string oplio_name = "DOUT_" + std::to_string(i);
32 std::string iplio_A_file = "data/input_" + std::to_string(i+1)
33 + "_A.txt";
34 std::string iplio_B_file = "data/input_" + std::to_string(i+1)
35 + "_B.txt";
36 std::string iplio_C_file = "data/input_" + std::to_string(i+1)
37 + "_C.txt";
38 std::string oplio_file = "data/output_" + std::to_string(i+1)
39 + "_aie.txt";
40

41 iplio_A[i] = input_plio::create(iplio_A_name, plio_64_bits,
42 iplio_A_file, 156.25);
43 iplio_B[i] = input_plio::create(iplio_B_name, plio_64_bits,
44 iplio_B_file, 156.25);
45 iplio_C[i] = input_plio::create(iplio_C_name, plio_64_bits,
46 iplio_C_file, 156.25);
47 oplio[i] = output_plio::create(oplio_name, plio_64_bits,
48 oplio_file, 156.25);
49

50 bli_krnl[i] = kernel::create_object<bilinear_kernel>();
51

52 connect(iplio_A[i].out[0], bli_krnl[i].in[0]);
53 connect(iplio_B[i].out[0], bli_krnl[i].in[1]);
54 connect(iplio_C[i].out[0], bli_krnl[i].in[2]);
55 connect(bli_krnl[i].out[0], oplio[i].in[0]);
56

57 source(bli_krnl[i]) = "src/bilinear_kernel.cpp";
58

59 runtime<ratio>(bli_krnl[i]) = 0.9;
60 }
61 }
62 };

Listing 9.1. bilinear kernel graph code

118

9.1 – Appendix A

9.1.2 bilinear_kernel.h

1 //
2 // Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 // Original code by: Richard Buz
6

7 // Modified version for VEK280 Evaluation board by: Francesca Franzese
8

9 #pragma once
10

11 #include <aie_api/aie.hpp>
12 #include "buffers.h"
13

14 using namespace adf;
15

16 class bilinear_kernel
17 {
18 private:
19

20 public:
21 bilinear_kernel() {}
22 void interp(input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_A,
23 input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_B,
24 input_buffer<int32, extents<BUFFER_SIZE_IN>>& __restrict in_C,
25 output_buffer<int32, extents<BUFFER_SIZE_OUT>>& __restrict out);
26 static void registerKernelClass()
27 {
28 REGISTER_FUNCTION(bilinear_kernel::interp);
29 }
30 };

Listing 9.2. bilinear kernel header

119

Appendix

9.1.3 bilinear_kernel.cpp

1 //
2 // Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 // Original code by: Richard Buz
6

7 // Modified version for VEK280 Evaluation board by: Francesca Franzese
8

9 #include "bilinear_kernel.h"
10 #include "aie_api/accum.hpp"
11 #include "aie_api/vector.hpp"
12 #include <aie_api/aie.hpp>
13 #include <aie_api/aie_adf.hpp>
14

15 void bilinear_kernel::interp(input_buffer<int32, extents<BUFFER_SIZE_IN>>&
16 __restrict in_A,
17 input_buffer<int32, extents<BUFFER_SIZE_IN>>&
18 __restrict in_B,
19 input_buffer<int32, extents<BUFFER_SIZE_IN>>&
20 __restrict in_C,
21 output_buffer<int32, extents<BUFFER_SIZE_OUT>>&
22 __restrict out)
23 {
24 // iterators for input & output buffers
25 auto pInA = aie::begin_vector<8>(in_A);
26 auto pInB = aie::begin_vector<8>(in_B);
27 auto pInC = aie::begin_vector<8>(in_C);
28 auto pOut = aie::begin_vector<8>(out);
29

30 for (unsigned i = 0; i < PXLPERGRP/8; i++)
31 chess_prepare_for_pipelining
32 chess_loop_count(PXLPERGRP/8)
33 {
34 // get data for first x interpolation
35 aie::vector<float, 8> xfrac = (*pInA++).cast_to<float>();
36 aie::vector<float, 8> p11 = (*pInB++).cast_to<float>();
37 aie::vector<float, 8> p21 = (*pInC++).cast_to<float>();
38

39 aie::accum<accfloat, 8> p11_acc;
40 p11_acc.from_vector(p11);
41

42 // compute first x interpolation
43 aie::accum<accfloat, 8> tempy1 = aie::mac(p11_acc,xfrac,p21);
44 p11= p11_acc.to_vector();

120

9.1 – Appendix A

45 aie::accum<accfloat, 8> pxy1 = aie::msc(tempy1, xfrac, p11);
46

47 // get data for second x interpolation
48 aie::vector<float, 8> p12 = (*pInB++).cast_to<float>();
49 aie::vector<float, 8> p22 = (*pInC++).cast_to<float>();
50

51 aie::accum<accfloat, 8> p12_acc;
52 p12_acc.from_vector(p12);
53

54 // compute second x interpolation
55 aie::accum<accfloat, 8> tempy2 = aie::mac(p12_acc,xfrac,p22);
56 p12 = p12_acc.to_vector();
57 aie::accum<accfloat, 8> pxy2 = msc(tempy2,xfrac,p12);
58

59 // get data for y interpolation
60 aie::vector<float, 8> yfrac = (*pInA++).cast_to<float>();
61

62 // compute y interpolation
63 aie::accum<accfloat, 8> tempxy = aie::mac(pxy1,yfrac,
64 pxy2.to_vector());
65 aie::accum<accfloat, 8> pxy = aie::msc(tempxy, yfrac,
66 pxy1.to_vector());
67 // write interpolated pixels to output
68 *pOut++ = aie::vector_cast<int32>(pxy.to_vector());
69

70 }
71 }

Listing 9.3. bilinear kernel complete code

121

Appendix

9.1.4 config.h

1 //
2 // Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 // Original code by: Richard Buz
6

7 // Modified version for VEK280 Evaluation board by: Francesca Franzese
8

9 #pragma once
10

11 #define NCORE 1
12 #define NRUN 1024
13 #define PXLPERGRP 256

Listing 9.4. configuration file

122

9.1 – Appendix A

9.1.5 buffers.h

1 //
2 // Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 // Original code by: Richard Buz
6

7 // Modified version for VEK280 Evaluation board by: Francesca Franzese
8

9 #pragma once
10

11 #include "config.h"
12

13 #define BUFFER_SIZE_IN (2 * PXLPERGRP)
14 #define BUFFER_SIZE_OUT (PXLPERGRP)

Listing 9.5. buffer dimensions file

123

Appendix

9.1.6 reorder_kernel.cpp

1

2 // Author: Francesca Franzese
3 // Company: Tria Technologies
4

5 #include <adf.h>
6 #include "buffers.h"
7 #include "reorder_kernel.h"
8

9 #include <aie_api/aie.hpp>
10 #include <aie_api/aie_adf.hpp>
11 #include "aie_api/vector.hpp"
12

13

14 void reorder_kernel::reorder(input_buffer<int32 , adf::extents<BUFF_DIM_1>> & __restrict in1, //PIXEL INPUT
15 input_buffer<int32, adf::extents<BUFF_DIM_2>> & __restrict in2, //QUERY X
16 input_buffer<int32, adf::extents<BUFF_DIM_2>> & __restrict in3, //QUERY Y
17 output_buffer<int32, adf::extents<BUFF_DIM_INT>> & __restrict out1,
18 output_buffer<int32, adf::extents<BUFF_DIM_INT>> & __restrict out2,
19 output_buffer<int32, adf::extents<BUFF_DIM_INT>> & __restrict out3)
20 {
21 // iterators to access input and output buffer
22 auto inPtrP=aie::begin_random_circular(in1); //random access for pixel lut
23 auto inPtrXq=aie::begin(in2);
24 auto inPtrYq=aie::begin(in3);
25

26 auto outPtr1=aie::begin_vector<8>(out1);
27 auto outPtr2=aie::begin_vector<8>(out2);
28 auto outPtr3=aie::begin_vector<8>(out3);
29

30 // inspired by matlab code:
31 // declaration of test vector
32 aie::vector<float, 8> xfrac_v = aie::zeros<float,8>();
33 aie::vector<float, 8> yfrac_v = aie::zeros<float,8>();
34 aie::vector<float, 8> p11_v = aie::zeros<float,8>();
35 aie::vector<float, 8> p12_v = aie::zeros<float,8>();
36 aie::vector<float, 8> p21_v = aie::zeros<float,8>();
37 aie::vector<float, 8> p22_v = aie::zeros<float,8>();
38

39 int samp_cnt = 0;
40

41 /*#if defined(__AIESIM__) || defined(__X86SIM__)
42 std::cout<< std::endl;
43 std::cout<<"REORDER KERNEL EXECUTION " << std::endl;
44 #endif */

124

9.1 – Appendix A

45

46 //iterate over query coordinates buffer (for each query, we need to determine xfrac, yfrac, p11, p12, p21, p22)
47 for (unsigned i = 0; i < YRES_OUT; i++)
48 chess_prepare_for_pipelining
49 chess_loop_count(YRES_OUT)
50 {
51

52 //get query and get integer part
53 auto xq = (*inPtrXq++); //prendo query pixel e mando avanti iteratore (+ cast a float)
54 auto yq = (*inPtrYq++);
55

56 float xq_fp = *reinterpret_cast<float*>(&xq);
57 float yq_fp = *reinterpret_cast<float*>(&yq);
58

59 auto xint = std::floor(xq_fp);
60 auto yint = std::floor(yq_fp);
61

62 auto xfrac = xq_fp - xint;
63 auto yfrac = yq_fp - yint;
64

65 /*#if defined(__AIESIM__) || defined(__X86SIM__)
66 std::cout << "xq: " << xq << std::endl;
67 std::cout << "yq: " << yq << std::endl;
68 std::cout << "xq_fp: " << xq_fp << std::endl;
69 std::cout << "yq_fp: " << yq_fp << std::endl;
70 std::cout << "xfrac: " << xfrac << std::endl;
71 std::cout << "yfrac: " << yfrac << std::endl;
72 std::cout << "xint " << xint << std::endl;
73 std::cout << "yint: " << yint << std::endl;
74 #endif*/
75

76

77 //get index of p11, p12, p21, p22 in input buffer
78 uint32_t p11_idx = yint; //xint*YRES+yint;
79 uint32_t p12_idx = yint+1; //xint*YRES+yint+1;
80 uint32_t p21_idx = YRES+yint;//(xint+1)*YRES+yint;
81 uint32_t p22_idx = YRES+yint+1;//(xint+1)*YRES+yint+1;
82

83 inPtrP += p11_idx;
84 auto p11 = *inPtrP;
85 float p11_fp = *reinterpret_cast<float*>(&p11);
86

87 inPtrP += 1; //p12 index is p11_index + 1
88 auto p12 = *inPtrP;
89 float p12_fp = *reinterpret_cast<float*>(&p12);
90 inPtrP=aie::begin_random_circular(in1); //position the pointer again at the starting point of the buffer for next iteration

125

Appendix

91

92 inPtrP += p21_idx;
93 auto p21= *inPtrP;
94 float p21_fp = *reinterpret_cast<float*>(&p21);
95

96 inPtrP += 1;
97 auto p22= *inPtrP;
98 float p22_fp = *reinterpret_cast<float*>(&p22);
99 inPtrP=aie::begin_random_circular(in1); //position the pointer again at the starting point of the buffer for next iteration

100

101

102 //insert element in 8-vector
103 xfrac_v.set(xfrac, samp_cnt);
104 yfrac_v.set(yfrac, samp_cnt);
105 p11_v.set(p11_fp, samp_cnt);
106 p12_v.set(p12_fp, samp_cnt);
107 p21_v.set(p21_fp, samp_cnt);
108 p22_v.set(p22_fp, samp_cnt);
109

110

111 if(samp_cnt == 7){
112

113 *outPtr1++ = aie::vector_cast<int32>(xfrac_v); //xfrac, yfrac vanno nello stesso buffer a gruppi di 8
114 *outPtr1++ = aie::vector_cast<int32>(yfrac_v);
115

116 *outPtr2++ = aie::vector_cast<int32>(p11_v);
117 *outPtr2++ = aie::vector_cast<int32>(p12_v);
118

119 *outPtr3++ = aie::vector_cast<int32>(p21_v);
120 *outPtr3++ = aie::vector_cast<int32>(p22_v);
121

122 samp_cnt = 0;
123

124 /*#if defined(__AIESIM__) || defined(__X86SIM__)
125 std::cout << "REORDER KERNEL, VECTORS: " << std::endl;
126 std::cout << "xfrac: " << std::endl;
127 for (int i = 0; i < 8; i++) {
128

129 printf("%d ", static_cast<int32_t>(xfrac_v[i]));
130

131 }
132 std::cout << std::endl;
133

134 std::cout << "yfrac: " << std::endl;
135 for (int i = 0; i < 8; i++) {
136

126

9.1 – Appendix A

137 printf("%d ", static_cast<int32_t>(yfrac_v[i]));
138

139 }
140 std::cout << std::endl;
141

142 std::cout << "p11: " << std::endl;
143 for (int i = 0; i < 8; i++) {
144

145 printf("%d ", static_cast<int32_t>(p11_v[i]));
146

147 }
148 std::cout << std::endl;
149

150 std::cout << "p12: " << std::endl;
151 for (int i = 0; i < 8; i++) {
152

153 printf("%d ", static_cast<int32_t>(p12_v[i]));
154

155 }
156 std::cout << std::endl;
157

158 std::cout << "p21: " << std::endl;
159 for (int i = 0; i < 8; i++) {
160

161 printf("%d ", static_cast<int32_t>(p21_v[i]));
162

163 }
164 std::cout << std::endl;
165

166 std::cout << "p22: " << std::endl;
167 for (int i = 0; i < 8; i++) {
168

169 printf("%d ", static_cast<int32_t>(p22_v[i]));
170

171 }
172 std::cout << std::endl;
173

174 #endif*/
175

176 }
177 else{
178

179 samp_cnt++;
180 }
181

182

127

Appendix

183 }
184

185 }

Listing 9.6. reorder kernel (design 3)

128

9.2 – Appendix B

9.2 Appendix B

9.2.1 s2mm.cpp

1 /*
2 Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
3 SPDX-License-Identifier: X11
4 */
5

6 #include <ap_int.h>
7 #include <hls_stream.h>
8 #include <ap_axi_sdata.h>
9

10

11 extern "C" {
12

13 void s2mm(ap_int<32>* mem, hls::stream<ap_axis<32, 0, 0, 0> >& s,
14 int size) {
15

16 #pragma HLS INTERFACE m_axi port=mem offset=slave bundle=gmem
17

18 #pragma HLS interface axis port=s
19

20 #pragma HLS INTERFACE s_axilite port=mem bundle=control
21 #pragma HLS INTERFACE s_axilite port=size bundle=control
22 #pragma HLS interface s_axilite port=return bundle=control
23

24 for(int i = 0; i < size; i++) {
25 #pragma HLS PIPELINE II=1
26 ap_axis<32, 0, 0, 0> x = s.read();
27 mem[i] = x.data;
28 }
29 }
30 }

Listing 9.7. s2mm HLS code [10]

129

Appendix

9.3 Appendix C

9.3.1 Input and golden file matlab script

1 % Author: Francesca Franzese
2 % Bilinear interpolation for image resizing
3 %with interpolation coordinate grid
4

5 %% get pixels grid of original image
6 fname = ’../ images/epyc.jpg’;
7 I = imread(fname);
8

9 %zero padding
10 I_padd = zeros (1024 ,1024);
11 I_padd (1: size(I,1), 1:size(I,2)) = I;
12 I = I_padd;
13

14 [resy , resx] = size(I);
15 xshft = (resx -1)/2;
16 yshft = (resy -1)/2;
17

18 % get image LUT indexes min and max values
19 [ysz , xsz] = size(I);
20 lut_xmin = 0;
21 lut_xmax = xsz - 1;
22 lut_ymin = 0;
23 lut_ymax = ysz - 1;
24

25 % Convert LUT to single precision float format and
26 %initialize output image to all zeros.
27

28 ImLUT = single(I(:));
29 resized = single(zeros(size(Yq ,1) * size(Xq ,2), 1));
30 simLUT = zeros (512*512 , 1);
31 numpxl = 256;
32 max_pxl_per_proc = numpxl * ceil(size(Yq ,1) * size(Xq ,2)
33 / numpxl);
34

35 input_tv_A = repmat(typecast(realmax(’single ’), ’int32 ’),
36 2* max_pxl_per_proc , 1);
37 input_tv_B = repmat(typecast(realmax(’single ’), ’int32 ’),
38 2* max_pxl_per_proc , 1);

130

9.3 – Appendix C

39 input_tv_C = repmat(typecast(realmax(’single ’), ’int32 ’),
40 2* max_pxl_per_proc , 1);
41 output_tv = repmat(typecast(realmax(’single ’), ’int32 ’),
42 max_pxl_per_proc , 1);
43

44 %% get reference data for PL simulation
45 itv_idx = 1;
46 otv_idx = 1;
47 samp_cnt = 0;
48 tvx = single(zeros (8,1));
49 tvy = single(zeros (8,1));
50 tvp11 = single(zeros (8,1));
51 tvp12 = single(zeros (8,1));
52 tvp21 = single(zeros (8,1));
53 tvp22 = single(zeros (8,1));
54 tvo = single(zeros (8,1));
55 in_bnd_cnt = 0;
56

57 output_idx =1;
58 for ix = 1:size(Xq_vec)
59 % get query coordinates
60 xval = Xq_vec(ix);
61 yval = Yq_vec(ix);
62

63 % Points requiring extrapolation are set to zero.
64 is_interp = xval >= lut_xmin && xval < lut_xmax
65 && yval >= lut_ymin && yval < lut_ymax;
66

67 if is_interp
68

69 % get reference point data from camera image
70 x1 = int32(floor(xval));
71 y1 = int32(floor(yval));
72

73 x1_v(output_idx) = x1;
74 y1_v(output_idx) = y1;
75

76 P11 = ImLUT(x1*(lut_ymax +1)+y1+1);
77 P12 = ImLUT(x1*(lut_ymax +1)+y1+2);
78 P21 = ImLUT ((x1+1)*(lut_ymax +1)+y1+1);
79 P22 = ImLUT ((x1+1)*(lut_ymax +1)+y1+2);
80

131

Appendix

81 % fractional part for interpolation
82 xfrac = single(xval - floor(xval));
83 yfrac = single(yval - floor(yval));
84

85 % perform bilinear interpolation
86 blint_in = [P11 P12 P21 P22 xfrac yfrac];
87 pxl_intrp = blint(blint_in ,4);
88

89 else
90 P11 = single (0);
91 P12 = single (0);
92 P21 = single (0);
93 P22 = single (0);
94 xfrac = single (0);
95 yfrac = single (0);
96

97 blint_in = [P11 P12 P21 P22 xfrac yfrac];
98 pxl_intrp = blint(blint_in ,4);
99

100 end
101

102 tvx(mod(samp_cnt ,8) + 1) = xfrac;
103 tvy(mod(samp_cnt ,8) + 1) = yfrac;
104 tvp11(mod(samp_cnt ,8) + 1) = P11;
105 tvp12(mod(samp_cnt ,8) + 1) = P12;
106 tvp21(mod(samp_cnt ,8) + 1) = P21;
107 tvp22(mod(samp_cnt ,8) + 1) = P22;
108

109 if mod(samp_cnt ,8) == 7
110 input_tv_A(itv_idx:itv_idx +15) =
111 typecast ([tvx; tvy], ’int32 ’);
112 input_tv_B(itv_idx:itv_idx +15) =
113 typecast ([tvp11; tvp12], ’int32’);
114 input_tv_C(itv_idx:itv_idx +15) =
115 typecast ([tvp21; tvp22], ’int32’);
116 itv_idx = itv_idx + 16;
117 output_tv ((otv_idx:otv_idx +7)) =
118 typecast(tvo , ’int32 ’);
119 otv_idx = otv_idx + 8;
120 end
121

122 % update counters

132

9.3 – Appendix C

123 samp_cnt = samp_cnt + 1;
124

125 if samp_cnt == max_pxl_per_proc
126 samp_cnt = 0;
127 itv_idx = 1;
128 otv_idx = 1;
129 end
130

131 resized(output_idx) = pxl_intrp;
132 output_idx = output_idx +1;
133 end
134

135 %% creation of files for simulation and check
136 coordinates =[Xq_vec Yq_vec];
137

138 %creation of Xq array
139 fname = sprintf(’./ xq_array.h’);
140 fid = fopen(fname ,’w’);
141 fprintf(fid ,’uint32_t␣xq_array [512*512]␣={’);
142 for i = 1:size(Xq_vec ,1)
143 if fid > 0
144 value=num2hex(single(Xq_vec(i)));
145 if i == size(Xq_vec ,1)
146 fprintf(fid ,’0x%s};’,value);
147 else
148 fprintf(fid ,’0x%s,\n’,value);
149 end
150 end
151 end
152 fclose(fid);
153

154 %% creation of Yq array
155 fname = sprintf(’./ yq_array.h’);
156 fid = fopen(fname ,’w’);
157 fprintf(fid ,’uint32_t␣yq_array [512*512]␣={␣’);
158 for i = 1:size(Yq_vec ,1)
159 if fid > 0
160 value=num2hex(single(Yq_vec(i)));
161 if i == size(Yq_vec ,1)
162 fprintf(fid ,’0x%s};’,value);
163 else
164 fprintf(fid ,’0x%s,\n’,value);

133

Appendix

165 end
166 end
167 end
168 fclose(fid);
169

170 % pixel_array for aie only
171 fname = sprintf(’./ pixel_array.h’);
172 fid = fopen(fname ,’w’);
173 fprintf(fid ,’uint32_t␣pxl_array [1024*1024]␣={’);
174 for i = 1:size(ImLUT ,1)
175 if fid > 0
176 value = num2hex(ImLUT(i,1));
177 if i == size(ImLUT ,1)
178 fprintf(fid ,’0x%s};’,value);
179 else
180 fprintf(fid ,’0x%s,\n’,value);
181 end
182 end
183 end
184 fclose(fid);
185

186 ImgOut = reshape(resized , size(Yq ,1), size(Xq ,2));
187

188 % golden reference
189 fname = sprintf(’./ golden.h’);
190 fid = fopen(fname ,’w’);
191 if fid > 0
192 fprintf(fid ,’%d,␣%d,\n’,int32(ImgOut));
193 end
194 fclose(fid);
195

196 % padding output image to see difference with
197 % original image
198 resized_padd = zeros (1024 ,1024);
199 resized_padd (1: size(ImgOut ,1), 1:size(ImgOut ,2)) = ImgOut;
200 ImgOut = resized_padd;
201

202 %conversione in numeri fixed point 32 bit 16.16
203 fp_coords = fi(coordinates , true , 32, 16);
204 fp_pxl = fi(ImLUT , true , 32, 16);
205

206 assignin(’base’, "fp_pxl_LUT", fp_pxl);

134

9.3 – Appendix C

207 fp_pxl = reshape(fp_pxl , 2, []) ’;
208

209 % pixel input LUT
210 fname = sprintf(’./ input_pixel.h’);
211 fid = fopen(fname ,’w’);
212

213 for i = 1:size(fp_pxl ,1)
214 if fid > 0
215 value1 = bin(fp_pxl(i,1));
216 value2 = bin(fp_pxl(i,2));
217 fprintf(fid ,’0b%s%s,\n’,value1 , value2);
218 end
219 end
220 fclose(fid);
221

222 %creation of input files (fixed point Xq Yq) header
223 fname = sprintf(’./ input_xq_yq.h’);
224 fid = fopen(fname ,’w’);
225 for i = 1:size(fp_coords ,1)
226 if fid > 0
227 value1 = bin(fp_coords(i,1));
228 value2 = bin(fp_coords(i,2));
229 fprintf(fid ,’0b%s%s,\n’,value1 , value2);
230 end
231 end
232 fclose(fid);
233

234 % golden reference
235 golden = reshape(resized , 2, []) ’;
236 fname = sprintf(’./ golden.h’);
237 fid = fopen(fname ,’w’);
238 for i = 1:size(golden ,1)
239 if fid > 0
240 value1 = typecast(golden(i,1), ’int32 ’);
241 value2 = typecast(golden(i,2), ’int32 ’);
242 fprintf(fid ,’%d,␣%d,\n’,value1 , value2);
243 end
244 end
245 fclose(fid);
246

247 %% display result
248 subplot (1,2,1);

135

Appendix

249 imshow(double(I)/255)
250 title(’Camera␣Image’)
251 subplot (1,2,2);
252 imshow(ImgOut /255)
253 title(’Bilinear␣Interpolation␣(Single␣Precision)’);

Listing 9.8. buffer dimensions file

136

9.3 – Appendix C

9.3.2 Output coordinate grid generation matlab script

1 % Author: Francesca Franzese
2 % Bilinear interpolation for image resizing
3 % with interpolation coordinate grid
4

5 %% get output grid
6 sclx = 2; % scale
7 scly = 2;
8 resx = 1024;
9 resy = 1024;

10 xshft = (resx -1)/2;
11 yshft = (resy -1)/2;
12

13 output_dim = [floor(resx/sclx), floor(resy/scly)];
14

15 [Xo , Yo] = meshgrid ((0: output_dim (1) -1)’ -
16 (output_dim (1) -1)/2, (0: output_dim (2) -1)’
17 - (output_dim (2) -1)/2);
18 Xq = zeros(output_dim (2),output_dim (1));
19 Yq = zeros(output_dim (2),output_dim (1));
20 coords = [Xo(:) Yo(:)]’;
21 Xq(:,:,1) = Xo + xshft;
22 Yq(:,:,1) = Yo + yshft;
23

24 vec_xfrm = coords ;
25

26 % scale
27 Mscl = [sclx 0; 0 scly];
28 vec_xfrm = Mscl * vec_xfrm;
29

30 % add to output array
31 Xtf = reshape(vec_xfrm (1,:) ’,output_dim (2),output_dim (1));
32 Ytf = reshape(vec_xfrm (2,:) ’,output_dim (2),output_dim (1));
33 Xq(:,:) = Xtf + xshft;
34 Yq(:,:) = Ytf + yshft;
35

36 Xq_vec = Xq(:);
37 Yq_vec = Yq(:);

Listing 9.9. buffer dimensions file

137

Appendix

9.4 Appendix D

9.4.1 Host application for design 1

1 //
2 // Author: Francesca Franzese
3 //
4

5 #include "../aie/src/config.h"
6

7 #include <stdlib.h>
8 #include <fstream>
9 #include <iostream>

10 #include <adf.h>
11 #include <input_pixel.h>
12 #include <input_xq_yq.h>
13 #include <golden.h>
14

15 #include <unistd.h>
16

17 #include <experimental/xrt_xclbin.h>
18 #include <experimental/xrt_kernel.h>
19 #include <experimental/xrt_device.h>
20 #include <experimental/xrt_bo.h>
21 #include <experimental/xrt_ip.h>
22 #include <experimental/xrt_graph.h>
23 #include <experimental/xrt_aie.h>
24 #include <experimental/xrt_graph.h>
25 #include <experimental/xrt_ip.h>
26

27 // RTL IP registers
28 #define CTRL_ADDR_REG 0x10
29 #define BASE_ADDR1 0x14
30 #define BASE_ADDR2 0x1C
31 #define BASE_ADDR3 0x24
32 #define BASE_ADDR4 0x2C
33 #define BASE_ADDR5 0x34
34

35 #define IP_START 0x01
36 #define IP_NONE 0x00 /
37 #define IP_END 0x04 // at the end: start=0, done = 0, idle = 1
38

39 #define APP_VERSION 24
40

41 // --
42 // DDR Parameters

138

9.4 – Appendix D

43 // --
44

45 static constexpr unsigned IMG_INPUT_RESOLUTION = 1024 * 1024;
46 static constexpr unsigned IMG_OUTPUT_RESOLUTION = 512 * 512;
47

48 static constexpr unsigned DDR1_BUFFSIZE_I_BYTES = IMG_INPUT_RESOLUTION
49 * sizeof(int32);
50 static constexpr unsigned DDR2_BUFFSIZE_I_BYTES = IMG_OUTPUT_RESOLUTION
51 * sizeof(int64);
52 static constexpr unsigned PLIO_1_BUFFSIZE_I_BYTES = IMG_OUTPUT_RESOLUTION
53 * sizeof(int64);
54 static constexpr unsigned PLIO_2_BUFFSIZE_I_BYTES = IMG_OUTPUT_RESOLUTION
55 * sizeof(int64);
56 static constexpr unsigned PLIO_3_BUFFSIZE_I_BYTES = IMG_OUTPUT_RESOLUTION
57 * sizeof(int64);
58 static constexpr unsigned DDR_BUFFSIZE_O_BYTES = IMG_OUTPUT_RESOLUTION
59 * sizeof(int32);
60

61 using namespace adf;
62 using namespace std;
63

64 int main(int argc, char* argv[]) {
65

66 std::cout << "INFO: App version " << APP_VERSION << std::endl;
67

68 if (argc != 2) {
69 std::cout << "Usage: " << argv[0] <<" <xclbin>" << std::endl;
70 return 1;
71 }
72

73 //
74 // Open device and load xclbin
75 //
76

77 char* xclbinFilename = argv[1];
78 unsigned dev_index = 0;
79 auto my_device = xrt::device(dev_index);
80 if(!my_device){
81 std::cout << "Device open error!" << std::endl;
82 }else{
83 std::cout << "Device open OK!" << std::endl;
84 }
85

86 auto xclbin_uuid = my_device.load_xclbin(xclbinFilename);
87

88 //

139

Appendix

89 // allocating RTL IP kernel
90 //
91

92 auto ip1 = xrt::ip(my_device, xclbin_uuid,
93 "axi_pixel_reorder:{axi_pixel_reorder_1}");
94 std::cout << "INFO: RTL IP kernel has been allocated! " << std::endl;
95

96 //
97 // allocating input and output memory
98 //
99

100 // Pixel buffer
101 auto in_bo1 = xrt::bo(my_device, DDR1_BUFFSIZE_I_BYTES, 0);
102 auto in_bo1_mapped = in_bo1.map<uint64_t*>();
103 memcpy(in_bo1_mapped, img_pxl, DDR1_BUFFSIZE_I_BYTES);
104 in_bo1.sync(XCL_BO_SYNC_BO_TO_DEVICE);
105 std::cout << "INFO: Input memory virtual address 1 : "
106 << in_bo1_mapped << std::endl;
107

108 // Xq-Yq buffer
109 auto in_bo2 = xrt::bo(my_device, DDR1_BUFFSIZE_I_BYTES, 0);
110 auto in_bo2_mapped = in_bo2.map<uint64_t*>();
111 memcpy(in_bo2_mapped, coords, DDR1_BUFFSIZE_I_BYTES);
112 in_bo2.sync(XCL_BO_SYNC_BO_TO_DEVICE);
113 std::cout << "INFO: Input memory virtual address 2: "
114 << in_bo2_mapped << std::endl;
115

116 // PLIO 0 buffer
117 auto in_bo3 = xrt::bo(my_device, PLIO_1_BUFFSIZE_I_BYTES, 0);
118 auto in_bo3_mapped = in_bo3.map<uint32_t*>();
119 memset(in_bo3_mapped, 0x0000, PLIO_1_BUFFSIZE_I_BYTES);
120 in_bo3.sync(XCL_BO_SYNC_BO_TO_DEVICE);
121 std::cout << "INFO: Input memory virtual address 3 : "
122 << in_bo3_mapped << std::endl;
123

124 // PLIO 1 buffer
125 auto in_bo4 = xrt::bo(my_device, PLIO_2_BUFFSIZE_I_BYTES, 0);
126 auto in_bo4_mapped = in_bo4.map<uint32_t*>();
127 memset(in_bo4_mapped, 0x0000, PLIO_2_BUFFSIZE_I_BYTES);
128 in_bo4.sync(XCL_BO_SYNC_BO_TO_DEVICE);
129 std::cout << "INFO: Input memory virtual address 4: "
130 << in_bo4_mapped << std::endl;
131

132 // PLIO 2 buffer
133 auto in_bo5 = xrt::bo(my_device, PLIO_3_BUFFSIZE_I_BYTES, 0);
134 auto in_bo5_mapped = in_bo5.map<uint32_t*>();

140

9.4 – Appendix D

135 memset(in_bo5_mapped, 0x0000, PLIO_3_BUFFSIZE_I_BYTES);
136 in_bo5.sync(XCL_BO_SYNC_BO_TO_DEVICE);
137 std::cout << "INFO: Input memory virtual address 2: "
138 << in_bo5_mapped << std::endl;
139

140 // Output buffer
141 auto out_bo = xrt::bo(my_device, DDR_BUFFSIZE_O_BYTES, 0);
142 auto out_bo_mapped = out_bo.map<uint32_t*>();
143 memset(out_bo_mapped, 0x0000, DDR_BUFFSIZE_O_BYTES);
144 std::cout << "INFO: Output memory virtual address buffer: "
145 << out_bo_mapped << std::endl;
146

147 std::cout << "INFO: Memory allocated for input and output buffer" << std::endl;
148

149 //
150 // setting up RTL IP registers
151 //
152

153 uint64_t addr1 = in_bo1.address();
154 uint64_t addr2 = in_bo2.address();
155 uint64_t addr3 = in_bo3.address(); //PLIO 0 --> xfrac yfrac
156 uint64_t addr4 = in_bo4.address(); //PLIO 1 --> P11 P12
157 uint64_t addr5 = in_bo5.address(); //PLIO 2 --> P21 P22
158

159 std::cout << "INFO: Setting IP data: " << std::endl;
160 std::cout << "BASE_ADDR_1 : " << addr1 << std::endl;
161 std::cout << "BASE_ADDR_2 : " << addr2 << std::endl;
162 std::cout << "BASE_ADDR_3 : " << addr3 << std::endl;
163 std::cout << "BASE_ADDR_4 : " << addr4 << std::endl;
164 std::cout << "BASE_ADDR_5 : " << addr5 << std::endl;
165

166 std::cout << "INFO: setting register: " << BASE_ADDR1 << std::endl;
167 ip1.write_register(BASE_ADDR1, addr1 >> 32);
168 ip1.write_register(BASE_ADDR1 + 4, addr1);
169 std::cout << "INFO: setting register: " << BASE_ADDR2 << std::endl;
170 ip1.write_register(BASE_ADDR2, addr2 >> 32);
171 ip1.write_register(BASE_ADDR2 + 4, addr2);
172

173 std::cout << "INFO: setting register: " << BASE_ADDR3 << std::endl;
174 ip1.write_register(BASE_ADDR3, addr3 >> 32);
175 ip1.write_register(BASE_ADDR3 + 4, addr3);
176 std::cout << "INFO: setting register: " << BASE_ADDR4 << std::endl;
177 ip1.write_register(BASE_ADDR4, addr4 >> 32);
178 ip1.write_register(BASE_ADDR4 + 4, addr4);
179 std::cout << "INFO: setting register: " << BASE_ADDR5 << std::endl;
180 ip1.write_register(BASE_ADDR5, addr5 >> 32);

141

Appendix

181 ip1.write_register(BASE_ADDR5 + 4, addr5);
182

183 std::cout << "INFO: base address setup complete! " << std::endl;
184

185 //
186 // allocating input-output HLS kernels
187 //
188

189 auto mm2s_k1 = xrt::kernel(my_device, xclbin_uuid, "mm2s:{mm2s_1}");
190 auto mm2s_k2 = xrt::kernel(my_device, xclbin_uuid, "mm2s:{mm2s_2}");
191 auto mm2s_k3 = xrt::kernel(my_device, xclbin_uuid, "mm2s:{mm2s_3}");
192 auto s2mm_k = xrt::kernel(my_device, xclbin_uuid, "s2mm:{s2mm_1}");
193 std::cout << "INFO: HLS Kernel allocation completed" << std::endl;
194

195 //
196 // Load AIE graph
197 //
198

199 std::cout << "INFO: Allocating aie graph..." << std::endl;
200 auto my_graph = xrt::graph(my_device, xclbin_uuid, "blint");
201 std::cout << "INFO: Aie graph allocation completed" << std::endl;
202

203 //
204 // start RTL kernel
205 //
206

207 uint32_t axi_ctrl = IP_START;
208 ip1.write_register(CTRL_ADDR_REG, axi_ctrl);
209 std::cout << "INFO: RTL Kernel run start" << std::endl;
210

211 while(axi_ctrl != IP_END){
212 // gives start command to the IP using s_axi_control
213 axi_ctrl = ip1.read_register(CTRL_ADDR_REG);
214 if(axi_ctrl == IP_START){
215 ip1.write_register(CTRL_ADDR_REG, IP_NONE);
216 }
217 }
218

219 std::cout << "INFO: RTL processing ended!" << std::endl;
220

221 //
222 // forcing cache/memory coherence
223 //
224

225 in_bo3.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
226 in_bo4.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

142

9.4 – Appendix D

227 in_bo5.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
228

229 //
230 // start input-output kernel
231 //
232

233 auto mm2s_r1 =
234 mm2s_k1(in_bo5, nullptr, PLIO_1_BUFFSIZE_I_BYTES/sizeof(int64));
235 std::cout << "INFO: mm2s1 run started" << std::endl;
236

237 auto mm2s_r2 =
238 mm2s_k2(in_bo3, nullptr, PLIO_2_BUFFSIZE_I_BYTES/sizeof(int64));
239 std::cout << "INFO: mm2s2 run started" << std::endl;
240

241 auto mm2s_r3 =
242 mm2s_k3(in_bo4, nullptr, PLIO_3_BUFFSIZE_I_BYTES/sizeof(int64));
243 std::cout << "INFO: mm2s3 run started" << std::endl;
244

245 auto s2mm_r =
246 s2mm_k(out_bo, nullptr, DDR_BUFFSIZE_O_BYTES/sizeof(int64));
247 std::cout << "INFO: s2mm run started" << std::endl;
248

249

250 //
251 // Start AIE graph
252 //
253

254 std::cout << "INFO: AIE graph run started" << std::endl;
255 std::cout << "INFO: Running graph for " << NRUN << " iterations\n";
256 my_graph.run(NRUN);
257 std::cout << "INFO: Waiting for completion..." << std::endl;
258 my_graph.end();
259 std::cout << "INFO: AIE graph run completed!" << std::endl;
260

261

262 //
263 // Wait for kernels completion
264 //
265

266 std::cout << std::endl << "INFO: Waiting for kernels to end...\n";
267 s2mm_r.wait();
268 out_bo.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
269 std::cout << std::endl << "INFO: Kernel execution completed!\n";
270

271 //
272 // Data validation

143

Appendix

273 //
274

275 std::cout << std::endl
276 << "INFO: Verification of output data with respect to golden reference:"
277 << std::endl;
278

279 float max_diff;
280 float diff;
281 float mismatch_count;
282 float slack = 1;
283

284 for (unsigned ss=0; ss < DDR_BUFFSIZE_O_BYTES/sizeof(int32); ss++) {
285

286 float data_golden;
287 float data_aie;
288 data_aie = (float)out_bo_mapped[ss];
289 data_golden = (float)output_ref[ss];
290 diff = abs(data_golden-data_aie);
291

292 if(diff > slack){
293

294 mismatch_count++;
295 }
296 if(diff > max_diff){
297

298 max_diff = diff;
299 }
300 ss++;
301 }
302

303

304 if(max_diff != 0){
305

306 std::cout << std::endl << "MISMATCH!" << std::endl;
307 std::cout << std::endl << "Maximum error is " << max_diff;
308 std::cout << std::endl << mismatch_count << "/"
309 << IMG_OUTPUT_RESOLUTION << " different samples" << std::endl;
310

311 }else{
312

313 std::cout << std::endl << "MATCH!" << std::endl;
314

315 }
316

317 // output file is printed
318

144

9.4 – Appendix D

319 std::ofstream outputFile("output.txt");
320 for (unsigned ss=0; ss < DDR_BUFFSIZE_O_BYTES/sizeof(int32); ss++) {
321

322 uint32_t data;
323 uint32_t data1;
324

325 data = out_bo_mapped[ss];
326 data1 = out_bo_mapped[ss+1];
327 outputFile << data << " " << data1 << endl;
328 ss++;
329 }
330 outputFile.close();
331

332 return 0;
333 }

Listing 9.10. Design 1 host code

145

Appendix

9.4.2 Host application for design 2

1 //
2 // Author: Francesca Franzese
3 //
4

5 #include "../aie/src/config.h"
6 #include "../aie/src/buffers.h"
7

8 #include <stdlib.h>
9 #include <fstream>

10 #include <iostream>
11 #include <adf.h>
12 #include <input_pixel.h>
13 #include <input_xq_yq.h>
14 #include <golden.h>
15

16 #include <experimental/xrt_xclbin.h>
17 #include <experimental/xrt_kernel.h>
18 #include <experimental/xrt_device.h>
19 #include <experimental/xrt_bo.h>
20 #include <experimental/xrt_ip.h>
21 #include <experimental/xrt_graph.h>
22 #include <experimental/xrt_aie.h>
23 #include <experimental/xrt_graph.h>
24 #include <experimental/xrt_ip.h>
25

26 // RTL IP registers
27 #define CTRL_ADDR_REG 0x10
28 #define BASE_ADDR1 0x14
29 #define BASE_ADDR2 0x1C
30 #define IP_START 0x01
31 #define IP_DONE 0x02
32 #define IP_IDLE 0x04
33 #define IP_CLEAR 0x00
34 #define PRESCALER_REG 0x2C
35 #define IP_IDLE 0x04
36 #define PRESCALER_VALUE 0x9C4 //1 packet of 256 data each 8 us
37

38 #define APP_VERSION 22
39

40 // --
41 // DDR Parameters
42 // --
43

44 static constexpr unsigned IMG_INPUT_RESOLUTION = 1024 * 1024;

146

9.4 – Appendix D

45 static constexpr unsigned IMG_OUTPUT_RESOLUTION = 512 * 512;
46

47 static constexpr unsigned DDR1_BUFFSIZE_I_BYTES =
48 IMG_INPUT_RESOLUTION * sizeof(int32); // pixel of original image
49 static constexpr unsigned DDR2_BUFFSIZE_I_BYTES =
50 IMG_OUTPUT_RESOLUTION * sizeof(int64); //query coordinates
51 static constexpr unsigned DDR_BUFFSIZE_O_BYTES =
52 IMG_OUTPUT_RESOLUTION * sizeof(int32); //output image buffer
53

54

55 // input buffer size is BUFFER_SIZE_IN declared in buffers.h
56 // output buffer size is BUFFER_SIZE_OUT declared in buffers.h
57

58 #define INPUT_SIZE BUFFER_SIZE_IN * sizeof(int32)
59 #define OUTPUT_SIZE BUFFER_SIZE_OUT * sizeof(int32)
60

61 using namespace adf;
62 using namespace std;
63

64 int main(int argc, char* argv[]) {
65

66

67 std::cout << "INFO: App version " << APP_VERSION << std::endl;
68 //TARGET_DEVICE macro needs to be passed from gcc command line
69 if (argc != 2) {
70 std::cout << "Usage: " << argv[0] <<" <xclbin>" << std::endl;
71 return 1;
72 }
73

74 //
75 // Open device and load xclbin
76 //
77

78 char* xclbinFilename = argv[1];
79 unsigned dev_index = 0;
80 auto my_device = xrt::device(dev_index);
81 if(!my_device){
82 std::cout << "Device open error!" << std::endl;
83 }else{
84 std::cout << "Device open OK!" << std::endl;
85 }
86

87 auto xclbin_uuid = my_device.load_xclbin(xclbinFilename);
88

89 //
90 // allocating RTL IP kernel

147

Appendix

91 //
92

93 auto ip1 = xrt::ip(my_device, xclbin_uuid,
94 "axi_pixel_reorder:{axi_pixel_reorder_1}");
95 std::cout << "INFO: RTL IP kernel has been allocated! " << std::endl;
96

97 //
98 // allocating input and output memory
99 //

100

101 //input buffer for RTL IP
102 auto in_bo1 = xrt::bo(my_device, DDR1_BUFFSIZE_I_BYTES,
103 xrt::bo::flags::host_only, 0);
104 auto in_bo1_mapped = in_bo1.map<uint64_t*>();
105 memcpy(in_bo1_mapped, img_pxl, DDR1_BUFFSIZE_I_BYTES);
106 in_bo1.sync(XCL_BO_SYNC_BO_TO_DEVICE);
107 std::cout << "INFO: Input memory virtual address 1 : "
108 << in_bo1_mapped << std::endl;
109

110 auto in_bo2 = xrt::bo(my_device, DDR2_BUFFSIZE_I_BYTES,
111 xrt::bo::flags::host_only, 0);
112 auto in_bo2_mapped = in_bo2.map<uint64_t*>();
113 memcpy(in_bo2_mapped, coords, DDR2_BUFFSIZE_I_BYTES);
114 in_bo2.sync(XCL_BO_SYNC_BO_TO_DEVICE);
115 std::cout << "INFO: Input memory virtual address 2: "
116 << in_bo2_mapped << std::endl;
117

118 //ouput buffer for AIE results
119 auto out_bo = xrt::bo(my_device, DDR_BUFFSIZE_O_BYTES, 0);
120 auto out_bo_mapped = out_bo.map<uint32_t*>();
121 memset(out_bo_mapped, 0x0000, DDR_BUFFSIZE_O_BYTES);
122 std::cout << "INFO: Output memory virtual address buffer: "
123 << out_bo_mapped << std::endl;
124

125 //
126 // setting up RTL IP registers
127 //
128

129 uint64_t addr1;
130 uint64_t addr2;
131 addr1 = in_bo1.address();
132 addr2 = in_bo2.address();
133

134 std::cout << "INFO: Setting IP data: " << std::endl;
135 std::cout << "BASE_ADDR_1 : " << addr1 << std::endl;
136 std::cout << "BASE_ADDR_2 : " << addr2 << std::endl;

148

9.4 – Appendix D

137

138 std::cout << "INFO: setting register: " << BASE_ADDR1 << std::endl;
139 ip1.write_register(BASE_ADDR1, addr1 >> 32);
140 ip1.write_register(BASE_ADDR1 + 4, addr1);
141 std::cout << "INFO: setting register: " << BASE_ADDR2 << std::endl;
142 ip1.write_register(BASE_ADDR2, addr2 >> 32);
143 ip1.write_register(BASE_ADDR2 + 4, addr2);
144

145 std::cout << "INFO: base address setup complete! " << std::endl;
146

147 ip1.write_register(PRESCALER_REG, PRESCALER_VALUE);
148 std::cout << "INFO: RTL Prescaler setup completed" << std::endl;
149

150 //
151 // start output kernel
152 //
153

154 auto s2mm_k = xrt::kernel(my_device, xclbin_uuid, "s2mm:{s2mm_1}");
155 auto s2mm_r =
156 s2mm_k(out_bo, nullptr, DDR_BUFFSIZE_O_BYTES/sizeof(int64));
157 std::cout << "s2mm run started" << std::endl;
158

159 std::cout << "INFO: HLS Kernel run start" << std::endl;
160

161 //
162 // start RTL kernel
163 //
164

165 // gives start command to the IP
166 uint32_t axi_ctrl = IP_START;
167 ip1.write_register(CTRL_ADDR_REG, axi_ctrl);
168 std::cout << "INFO: RTL Kernel run start" << std::endl;
169 ip1.write_register(CTRL_ADDR_REG, IP_CLEAR);
170

171 //
172 // Load AIE graph
173 //
174

175 std::cout << "Allocating aie graph..." << std::endl;
176 auto my_graph = xrt::graph(my_device, xclbin_uuid, "blint");
177 std::cout << "Aie graph allocation completed" << std::endl;
178

179 //
180 // Run AIE graph
181 //
182

149

Appendix

183 my_graph.reset();
184 std::cout << "Running graph for " << NRUN << " iterations\n";
185 my_graph.run(NRUN);
186 std::cout << "Waiting for completion..." << std::endl;
187

188 my_graph.end();
189 std::cout << "Completed!" << std::endl;
190

191

192 //
193 // Wait for kernels completion
194 //
195

196 std::cout << std::endl << "Waiting for kernels to end..." << std::endl;
197

198 s2mm_r.wait();
199 out_bo.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
200 std::cout << std::endl << "INFO: Kernel execution completed!\n";
201

202 //
203 // Data validation
204 //
205

206 std::cout << "Verification of output data wrt golden reference:\n";
207

208 float max_diff;
209 float diff;
210 float mismatch_count;
211 float slack = 1;
212

213 for (unsigned ss=0; ss < OUTPUT_SIZE/sizeof(int32); ss++) {
214

215 float data_golden;
216 float data_aie;
217

218 data_aie = (float)out_bo_mapped[ss];
219 data_golden = (float)output_ref[ss];
220

221 diff = abs(data_golden-data_aie);
222 if(diff > slack){
223

224 mismatch_count++;
225 }
226

227 if(diff > max_diff){
228

150

9.4 – Appendix D

229 max_diff = diff;
230 }
231

232 ss++;
233 }
234

235

236 if(max_diff != 0){
237

238 std::cout << std::endl << "MISMATCH!" << std::endl;
239 std::cout << std::endl << "Maximum error is " << max_diff << std::endl;
240 std::cout << std::endl << mismatch_count << "/"
241 << IMG_OUTPUT_RESOLUTION << " different samples" << std::endl;
242

243 }else{
244

245 std::cout << std::endl << "MATCH!" << std::endl;
246

247 }
248

249

250 // output file is printed
251 std::ofstream outputFile("output.txt");
252 for (unsigned ss=0; ss < DDR_BUFFSIZE_O_BYTES/sizeof(int32); ss++) {
253

254 uint32_t data;
255 uint32_t data1;
256

257 data = out_bo_mapped[ss];
258 data1 = out_bo_mapped[ss+1];
259 outputFile << data << " " << data1 << endl;
260 ss++;
261 }
262 outputFile.close();
263

264 return 0;
265

266 }

Listing 9.11. Design 2 host code

151

Appendix

9.4.3 Host application for design 3

1 //
2 // Author: Francesca Franzese
3 //
4

5 #include "../aie/src/config.h"
6 #include "../aie/src/buffers.h"
7

8 #include <cstdint>
9 #include <bitset>

10 #include <stdlib.h>
11 #include <fstream>
12 #include <iostream>
13 #include <adf.h>
14 #include "deprecated/xrt.h"
15 #include "pixel_array.h"
16 #include "xq_array.h"
17 #include "yq_array.h"
18 #include "golden.h"
19

20 #include <experimental/xrt_xclbin.h>
21 #include <experimental/xrt_kernel.h>
22 #include <experimental/xrt_device.h>
23 #include <experimental/xrt_bo.h>
24 #include <experimental/xrt_ip.h>
25 #include <experimental/xrt_graph.h>
26 #include <experimental/xrt_aie.h>
27

28 #define APP_VERSION 10
29 #define NRUN 512
30 #define SCALE_FACTOR 2
31 #define YRES 1024
32

33 // --
34 // DDR Parameters
35 // --
36

37 static constexpr unsigned IMG_INPUT_RESOLUTION = 1024 * 1024;
38 static constexpr unsigned IMG_OUTPUT_RESOLUTION = 512 * 512;
39

40 static constexpr unsigned BUFF_SIZE_IMG = IMG_INPUT_RESOLUTION
41 * sizeof(int32); // pixel of original image
42 static constexpr unsigned BUFF_SIZE_XY = IMG_OUTPUT_RESOLUTION
43 * sizeof(int32); //query coordinates (XqYq data on 64 bit)
44 static constexpr unsigned BUFF_SIZE_OUT = IMG_OUTPUT_RESOLUTION

152

9.4 – Appendix D

45 * sizeof(int32); //output image buffer
46

47 #define INPUT_SIZE BUFFER_SIZE_IN * sizeof(int32)
48 #define OUTPUT_SIZE BUFFER_SIZE_OUT * sizeof(int32)
49

50 using namespace adf;
51 using namespace std;
52

53 int main(int argc, char* argv[]) {
54

55 std::cout << "INFO: App version " << APP_VERSION << std::endl;
56 //TARGET_DEVICE macro needs to be passed from gcc command line
57 if (argc != 2) {
58 std::cout << "Usage: " << argv[0] <<" <xclbin>" << std::endl;
59 return 1;
60 }
61

62 //
63 // Open device and load xclbin
64 //
65

66 char* xclbinFilename = argv[1];
67 unsigned dev_index = 0;
68 auto my_device = xrt::device(dev_index);
69 if(!my_device){
70 std::cout << "Device open error!" << std::endl;
71 }else{
72 std::cout << "Device open OK!" << std::endl;
73 }
74

75 auto xclbin_uuid = my_device.load_xclbin(xclbinFilename);
76

77 //
78 // allocating input and output memory
79 //
80

81 auto din_xq_buffer =
82 xrt::bo (my_device, BUFF_SIZE_XY,xrt::bo::flags::normal, 0);
83 uint32_t* dinXqArray= din_xq_buffer.map<uint32_t*>();
84 memcpy(dinXqArray, xq_array, BUFF_SIZE_XY);
85 std::cout << "INFO: Xq array allocated. "<< std::endl;
86

87 auto din_yq_buffer =
88 xrt::bo (my_device, BUFF_SIZE_XY,xrt::bo::flags::normal, 0);
89 uint32_t* dinYqArray= din_yq_buffer.map<uint32_t*>();
90 memcpy(dinYqArray, yq_array, BUFF_SIZE_XY);

153

Appendix

91 std::cout << "INFO: Yq array allocated. "<< std::endl;
92

93 auto din_img_buffer =
94 xrt::bo (my_device, BUFF_SIZE_IMG,xrt::bo::flags::normal, 0);
95 uint32_t* dinImgArray= din_img_buffer.map<uint32_t*>();
96 memcpy(dinImgArray, pxl_array, BUFF_SIZE_IMG);
97 std::cout << "INFO: Image array allocated." << std::endl;
98

99 auto dout_buffer =
100 xrt::bo (my_device, BUFF_SIZE_OUT,xrt::bo::flags::normal, 0);
101 uint32_t* doutArray= dout_buffer.map<uint32_t*>();
102 std::cout << "INFO: Output buffer allocated." << std::endl;
103

104 //
105 // Load AIE graph
106 //
107

108 std::cout << "Allocating aie graph..." << std::endl;
109 auto my_graph = xrt::graph(my_device, xclbin_uuid, "blint");
110 std::cout << "Aie graph allocation completed" << std::endl;
111

112 my_graph.reset();
113

114 /////////////////////////////////////
115 // creation of external buffer
116 /////////////////////////////////////
117

118 auto xq_buffer_ext =
119 xrt::aie::bo (my_device, BUFF_SIZE_XY,xrt::bo::flags::normal, 0);
120 auto yq_buffer_ext =
121 xrt::aie::bo (my_device, BUFF_SIZE_XY,xrt::bo::flags::normal, 0);
122 auto img_buffer_ext =
123 xrt::aie::bo (my_device, BUFF_SIZE_IMG,xrt::bo::flags::normal, 0);
124

125 auto out_buffer =
126 xrt::aie::bo (my_device, BUFF_SIZE_OUT,xrt::bo::flags::normal, 0);
127

128 xq_buffer_ext.write(dinXqArray);
129 yq_buffer_ext.write(dinYqArray);
130 img_buffer_ext.write(dinImgArray);
131

132 int img_offset = 0;
133 int xq_offset = 0;
134 int yq_offset = 0;
135

136 for(int i= 0; i < NRUN; i ++){

154

9.4 – Appendix D

137

138 /////////////////////////////////////
139 // GMIO run
140 /////////////////////////////////////
141

142 img_buffer_ext.async("blint.gmioIn1", XCL_BO_SYNC_BO_GMIO_TO_AIE,
143 2048 * sizeof(uint32_t), img_offset * sizeof(uint32_t));
144 xq_buffer_ext.async("blint.gmioIn2", XCL_BO_SYNC_BO_GMIO_TO_AIE,
145 512 * sizeof(uint32_t), xq_offset * sizeof(uint32_t));
146 yq_buffer_ext.async("blint.gmioIn3", XCL_BO_SYNC_BO_GMIO_TO_AIE,
147 512 * sizeof(uint32_t), yq_offset * sizeof(uint32_t));
148

149 //
150 // Run AIE graph
151 //
152

153 std::cout << "Running graph for " << NRUN << " iterations\n";
154 my_graph.run(1);
155 std::cout << "Waiting for completion..." << std::endl;
156 my_graph.wait(0);
157

158 auto dout_buffer_run = out_buffer.async("blint.gmioOut",
159 XCL_BO_SYNC_BO_AIE_TO_GMIO, 512 * sizeof(uint32_t),
160 xq_offset * sizeof(uint32_t));
161

162 dout_buffer_run.wait();
163 std::cout << "INFO: out buffer run completed!" << std::endl;
164

165 unsigned array_lb = i*512;
166 dout_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
167 out_buffer.read(&doutArray[array_lb], 512 * sizeof(uint32_t),
168 xq_offset * sizeof(uint32_t));
169

170 xq_offset = xq_offset + 512;
171 yq_offset = yq_offset + 512;
172 img_offset = img_offset + YRES*SCALE_FACTOR;
173 }
174

175 my_graph.end();
176

177 //
178 // Data validation
179 //
180

181 std::cout << "Verification of output data wrt to golden reference:\n";
182

155

Appendix

183 float max_diff;
184 float diff;
185 float mismatch_count = 0;
186 float slack = 1;
187

188 for (unsigned ss=0; ss < BUFF_SIZE_OUT/sizeof(int32); ss++) {
189

190 float data_golden;
191 float data_aie;
192

193 data_aie = (float)doutArray[ss];
194 data_golden = (float)output_ref[ss];
195

196 diff = abs(data_golden-data_aie);
197 if(diff > slack){
198

199 mismatch_count++;
200 }
201

202 if(diff > max_diff){
203

204 max_diff = diff;
205 }
206

207 ss++;
208 }
209

210 if(mismatch_count != 0){
211

212 std::cout << std::endl << "MISMATCH!" << std::endl;
213 std::cout << std::endl << "Max error is " << max_diff << std::endl;
214 std::cout << std::endl << mismatch_count << "/"
215 << IMG_OUTPUT_RESOLUTION << " different samples" << std::endl;
216

217 }else{
218

219 std::cout << std::endl << "MATCH!" << std::endl;
220

221 }
222

223

224 // output file is printed
225 std::cout << std::endl << "INFO: Printing output file..." << std::endl;
226

227 std::ofstream outputFile("output.txt");
228 for (unsigned ss=0; ss < BUFF_SIZE_OUT/sizeof(int32); ss++) {

156

9.4 – Appendix D

229

230 uint32_t data;
231 data = doutArray[ss];
232

233 outputFile << data << endl;
234 }
235 outputFile.close();
236

237 std::cout << std::endl << "INFO: Output file printed!" << std::endl;
238 return 0;
239

240 }

Listing 9.12. Design 3 host code

157

158

Acknowledgements

My sincere thanks go to my colleagues of the Ivrea Tria team for assisting
me in the development of this thesis and for guiding me through this first
work experience. This past year has been incredibly stimulating, and you
have made me feel part of the team from day one.

I would especially like to thank the co-supervisor of this thesis, M.
Cignetti, for giving me this opportunity. I also thank Prof. M.R. Casu for
supporting me as supervisor.

All my gratitude goes to my parents, Fernando and Maria, and my sister,
Antonella, to whom I dedicate this thesis and my deepest affection. Without
you, I would not be the person I am today.

159

160

Bibliography

[1] VE2302 SOM, based on the Versal AI Edge VE2302 © Copyright 2024
Avnet, Inc. All rights reserved. https://www.avnet.com/wps/portal/
us/products/avnet-boards/avnet-board-families/ultra96-v2

[2] AMD Versal™ AI Edge Series ©, 2024 Advanced Micro Devices,
Inc.https://www.amd.com/en/products/adaptive-socs-and-fpgas/
versal/ai-edge-series.html

[3] AMD Versal™ AI Edge Series ©, 2024 Advanced Micro Devices, Inc. All
rights reserved.

[4] AMD Versal™ AI Edge Series ©, 2024 Advanced Micro Devices,
Inc.https://docs.amd.com/r/en-US/ug1611-vhk158-eval-bd/
GTYP-Transceivers

[5] AMD Versal™ AI Edge Series VEK280 Evaluation Kit ©, 2024
Advanced Micro Devices, Inc.https://www.xilinx.com/products/
boards-and-kits/vek280.html#information

[6] Bilinear Interpolation, Swienegel - Own work, CC BY-SA 4.0,https://
commons.wikimedia.org/w/index.php?curid=124957943

[7] AMD - AIE Engine Development: Bilinear Interpolation, 2024 Advanced
Micro Devices, Inc.,https://github.com/Xilinx/Vitis-Tutorials/
tree/2024.2/AI_Engine_Development/AIE/Design_Tutorials/
11-Bilinear_Interpolation

[8] P. He et al., "Super-Resolution of Digital Elevation Model with
Local Implicit Function Representation", 2022 International
Conference on Machine Learning and Intelligent Systems
Engineering (MLISE), Guangzhou, China, 2022, pp. 111-116, doi:
10.1109/MLISE57402.2022.00030.

[9] AI Engine-ML Kernel and Graph Programming Guide (UG1603) ©,
2024 Advanced Micro Devices, Inc.https://docs.amd.com/r/en-US/
ug1603-ai-engine-ml-kernel-graph

[10] AI Engine Versal Integration, copyright © 2020–2024

161

Bibliography

Advanced Micro Devices, Inc.https://github.com/Xilinx/
Vitis-Tutorials/tree/2024.2/AI_Engine_Development/AIE/
Feature_Tutorials/05-AI-engine-versal-integration#
ai-engine-versal-integration

[11] XRT Native APIs, © Copyright 2017-2023, Advanced Micro Devices,
Inc. https://xilinx.github.io/XRT/master/html/xrt_native_
apis.html#

[12] Vitis AI, © Copyright 2017-2023, Advanced Micro Devices, Inc. https:
//github.com/Xilinx/Vitis-AI

[13] AMD Vitis™ In-Depth Tutorials, © Copyright 2017-2023, Advanced
Micro Devices, Inc. https://github.com/Xilinx/Vitis-Tutorials

[14] AI Engine API User Guide, UG1529 © 2024 Advanced Micro Devices,
Inc. https://www.xilinx.com/htmldocs/xilinx2024_2/aiengine_
api/aie_api/doc/index.html

162

	List of Tables
	List of Figures
	Introduction
	Context
	Motivations
	SoC programming tools

	The VE2302 Development Kit
	VE2302 SoM
	AMD Xilinx Versal AI Edge XCVE2302
	Platform Management Controller
	Programmable logic I/O banks
	Micro Header JX connectors

	AI Edge IO Carrier Card
	Main features and block diagram

	The VEK280 Evaluation Kit
	Board features
	AMD Versal™-AI Edge SoC XCVE2802
	AI Engines-ML

	Implementation of bilinear interpolation algorithm
	The bilinear interpolation algorithm
	Bilinear interpolation kernel on AI Engine-ML
	Introduction to AI Engine-ML programming
	Bilinear kernel graph code
	Bilinear Kernel algorithm code
	Bilinear kernel graph compilation

	PL kernels requirements
	HLS interfaces from/to global memory
	Integration of RTL IP in programmable logic

	Generation of input and golden data

	System Integration
	Introduction to Versal Integration
	Design linking
	Software host application
	Host application code

	Design packaging

	Bilinear Interpolation with AI Engine based approach
	AI Engine array programming
	Bilinear kernel graph code
	Reorder kernel code
	Bilinear graph compilation

	Software host application

	Running the design on hardware
	Design 2: system execution
	Hardware emulation
	Hardware execution

	Design 1 system execution
	Hardware emulation
	Hardware run

	Design 3: system execution
	Resources utilisation
	Final considerations and design comparison
	Performances
	Resources utilization

	Conclusions and future developments
	Appendix
	Appendix A
	bilinear_graph.h
	bilinear_kernel.h
	bilinear_kernel.cpp
	config.h
	buffers.h
	reorder_kernel.cpp

	Appendix B
	s2mm.cpp

	Appendix C
	Input and golden file matlab script
	Output coordinate grid generation matlab script

	Appendix D
	Host application for design 1
	Host application for design 2
	Host application for design 3

	Bibliography

