
POLITECNICO DI TORINO

Master’s Degree in Electronic Systems

Master’s Degree Thesis

Hardware and firmware tuning for point
cloud object detection in embedded

systems

Supervisors

Prof. Luciano LAVAGNO

Prof. Fernando LOPES

Candidate

Francesco DUPRÉ

July 2024





Summary

Object detection in point clouds is a central aspect of many robotics applications
such as autonomous driving. Real-time technologies require very high speed devices
and demand low complexity algorithms, at the expense of accuracy.
In this study we consider the trade-off between inference time and accuracy of an
object detection model. In particular, our purpose is to answer the following ques-
tion: how much can we reduce the computation time of said algorithm maintaining
a sufficient accuracy and keep satisfactory performance?
To solve this problem we exploit the PointPillars algorithm, an encoder that utilizes
PointNets to learn a representation of point clouds organized in vertical columns
(pillars), which outperforms many other methods with respect to both speed and
accuracy by a large margin.
Tuning is applied to some parameters of this model, such as the number of filters
of the feature encoder and the number of layers of the backbone, without changing
its global structure. Through training and testing performed with the KITTI
benchmark, we obtain the trends of the accuracy versus time relations along the
applied modifications.
Studying these tendency functions, we extrapolate the best solution which lowers
the inference time without significantly reducing the performance. This solution
consists in the reduction in the amount of layers in the backbone, and in the number
of up-sample filters at its output.
On this basis, after building the environment to work on Nvidia Jetson Nano, an
embedded system that contains a GPU for high-performance computing tasks,
future work could concentrate on applying the improved model to this machine,
with the aim of analysing its power efficiency and performance.

ii





Acknowledgements

I would like to express my deepest appreciation to professor Fernando Lopes from
ISEC (Instituto Superior de Ingeniería de Coímbra) who perfectly supervised
the project with balance and excellent management skills. I also could not have
undertaken this journey without the generous support of professor Luis Cruz from
UC (Universidade de Coimbra) Pólo II, and the telecommunications laboratory
team, Nuno Martins and Pedro Daniel Rocha, who provided knowledge and expertise
to help me solve the hardest problems with clever solutions. Additionally I am
deeply indebted to the Politecnico di Torino teaching staff, who has accompanied
me for five years in this educational growth. In particular, this endeavor would
not have been possible without professor Luciano Lavagno, who kindly accepted to
tutor this project.
I am also grateful to my classmates and cohort members, and to my dearest and
oldest friends, who always supported me in this path, sharing with me late-night
feedback sessions and all the happy and the sad moments, and always giving me
moral support. Special thanks should go to Irene, who believed in me and motivated
me even when I could not believe in myself.
Lastly, I would be remiss in not mentioning my family, especially my parents who
financed my studies making all of this possible, and my brother and sister. Their
belief in me has kept my spirits and motivation high during this process.

Driving to the forefront of progress,

where technology transforms vision into reality.

iv





Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Field review: object detection in point clouds, software and hard-
ware tools, embedded systems 1

1.1 Object detection in point clouds . . . . . . . . . . . . . . . . . . . . 2
1.2 Software and Hardware tools . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Embedded systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Identify a combination of a suitable object detection algorithm
and an embedded platform 5

2.1 Object Detection Algorithms for Point Clouds . . . . . . . . . . . . 5
2.2 Embedded Platforms for Object Detection with Point Clouds . . . . 6
2.3 PointPillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Pillar feature net . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Scatter layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Backbone network . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Detection head . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Performance evaluation of the selected algorithm in a desktop PC
without resource limitations 11

3.1 Experimentation setup . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Model configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Loss behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 More examples . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



4 Main task: porting of the detection algorithm to the embedded
system, making use of firmware simplifications 22

4.1 Training behavior with fixed number of filters . . . . . . . . . . . . 22
4.1.1 Accuracy with filters fixed to their original number . . . . . 23
4.1.2 Accuracy with filters fixed to half of their original number . 24
4.1.3 Accuracy with up-sample filters fixed to half of their original

number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Accuracy with input filters fixed to half of their original number 27
4.1.5 Number of parameters and inference time compared for the

different configurations . . . . . . . . . . . . . . . . . . . . . 29
4.2 Training behavior with fixed number of layers . . . . . . . . . . . . 30

4.2.1 Accuracy with backbone layers fixed to [3,5,5] . . . . . . . . 30
4.2.2 Accuracy with backbone layers fixed to [2,4,4] . . . . . . . . 32
4.2.3 Number of parameters and inference time compared for the

different configurations . . . . . . . . . . . . . . . . . . . . . 33

5 Prototype: performance evaluation 35

5.1 Reducing the number of layers in the backbone to [3,4,4] . . . . . . 35
5.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Reducing the number of layers in the backbone to [2,4,4] and halving
the number of filters . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Halving the number of input filters . . . . . . . . . . . . . . . . . . 39
5.3.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Reducing the number of layers in the backbone to [3,4,4] and halving
the number of input filters . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Halving the number of up-sample filters . . . . . . . . . . . . . . . . 43
5.5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Reducing the number of layers in the backbone to [2,4,4] and halving
the number of up-sample filters . . . . . . . . . . . . . . . . . . . . 45

vii



5.6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.3 Results visualization . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Configure the embedded system workspace to work with point
cloud files and deep learning 53

6.1 Environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 56

A Configuration file 57

B Python training and evaluating file 61

Bibliography 68

viii



List of Tables

3.1 Accuracy table of first training BEV [%] . . . . . . . . . . . . . . . 17

5.1 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 36
5.2 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 38
5.3 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 40
5.4 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 42
5.5 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 44
5.6 Accuracy table of the 80th checkpoint [%] . . . . . . . . . . . . . . . 46

ix



List of Figures

1.1 CUDA-PointPillars BEV image with bounding boxes . . . . . . . . 2

2.1 PointPillars network . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Nvidia Jetson Nano . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 PointPillars network overview . . . . . . . . . . . . . . . . . . . . . 8

3.1 Car accuracy [%] for easy data difficulty along the epochs . . . . . . 13
3.2 Car accuracy [%] for moderate data difficulty along the epochs . . . 14
3.3 Car accuracy [%] for hard data difficulty along the epochs . . . . . 14
3.4 Cyclist accuracy [%] for easy data difficulty along the epochs . . . . 14
3.5 Cyclist accuracy [%] for moderate data difficulty along the epochs . 15
3.6 Cyclist accuracy [%] for hard data difficulty along the epochs . . . . 15
3.7 Pedestrian accuracy [%] for easy data difficulty along the epochs . . 15
3.8 Pedestrian accuracy [%] for moderate data difficulty along the epochs 16
3.9 Pedestrian accuracy [%] for hard data difficulty along the epochs . . 16
3.10 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 17
3.11 Pre-trained BEV with bounding box of image 8 of the dataset . . . 18
3.12 80th checkpoint BEV with bounding box of image 8 of the dataset . 18
3.13 Pre-trained BEV with bounding box of image 3000 of the dataset . 19
3.14 80th checkpoint BEV with bounding box of image 3000 of the dataset 20
3.15 Pre-trained BEV with bounding box of image 5000 of the dataset . 20
3.16 80th checkpoint BEV with bounding box of image 5000 of the dataset 21

4.1 Accuracy [%] for cars versus the number of layers with filters fixed
to their original number . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Accuracy [%] for cyclists versus the number of layers with filters
fixed to their original number . . . . . . . . . . . . . . . . . . . . . 24

4.3 Accuracy [%] for pedestrians versus the number of layers with filters
fixed to their original number . . . . . . . . . . . . . . . . . . . . . 24

4.4 Accuracy [%] for cars versus the number of layers with half of the
total number of filters . . . . . . . . . . . . . . . . . . . . . . . . . 25

x



4.5 Accuracy [%] for cyclists versus the number of layers with half of
the total number of filters . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Accuracy [%] for pedestrians versus the number of layers with half
of the total number of filters . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Accuracy [%] for cars versus the number of layers with half of the
number of up-sample filters . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Accuracy [%] for cyclists versus the number of layers with half of
the total number of up-sample filters . . . . . . . . . . . . . . . . . 27

4.9 Accuracy [%] for pedestrians versus the number of layers with half
of the total number of up-sample filters . . . . . . . . . . . . . . . . 27

4.10 Accuracy [%] for cars versus the number of layers with half of the
number of input filters . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.11 Accuracy [%] for cyclists versus the number of layers with half of
the total number of input filters . . . . . . . . . . . . . . . . . . . . 28

4.12 Accuracy [%] for pedestrians versus the number of layers with half
of the total number of input filters . . . . . . . . . . . . . . . . . . 29

4.13 Number of parameters versus number of layers . . . . . . . . . . . . 30
4.14 Accuracy [%] for cars versus the number of total filters with [3,5,5]

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.15 Accuracy [%] for cyclists versus the number of total filters with

[3,5,5] layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.16 Accuracy [%] for pedestrians versus the number of total filters with

[3,5,5] layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.17 Accuracy [%] for cars versus the number of total filters with [2,4,4]

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.18 Accuracy [%] for cyclists versus the number of total filters with

[2,4,4] layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.19 Accuracy [%] for pedestrians versus the number of total filters with

[2,4,4] layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.20 Inference time versus number of layers . . . . . . . . . . . . . . . . 34

5.1 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 36
5.2 80th checkpoint BEV with bounding box of image 8 of the dataset . 37
5.3 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 38
5.4 80th checkpoint BEV with bounding box of image 8 of the dataset . 39
5.5 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 40
5.6 80th checkpoint BEV with bounding box of image 8 of the dataset . 41
5.7 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 42
5.8 80th checkpoint BEV with bounding box of image 8 of the dataset . 43
5.9 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 44
5.10 80th checkpoint BEV with bounding box of image 8 of the dataset . 45

xi



5.11 Loss behavior along the training . . . . . . . . . . . . . . . . . . . . 46
5.12 80th checkpoint BEV with bounding box of image 8 of the dataset . 47
5.13 Accuracy-delay graph for cars evaluated on easy difficulty dataset . 48
5.14 Accuracy-delay graph for cars evaluated on moderate difficulty dataset 48
5.15 Accuracy-delay graph for cars evaluated on hard difficulty dataset . 49
5.16 Accuracy-delay graph for cyclists evaluated on easy difficulty dataset 49
5.17 Accuracy-delay graph for cyclists evaluated on moderate difficulty

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.18 Accuracy-delay graph for cyclists evaluated on hard difficulty dataset 50
5.19 Accuracy-delay graph for pedestrians evaluated on easy difficulty

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.20 Accuracy-delay graph for pedestrians evaluated on moderate diffi-

culty dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.21 Accuracy-delay graph for pedestrians evaluated on hard difficulty

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Visualization of a decoded prediction . . . . . . . . . . . . . . . . . 55

xii





Acronyms

IEEE

Institute of Electrical and Electronics Engineers

AP

Average Precision

BEV

Bird Eye View

CNN

Convolutional Neural Network

GPU

Graphic Processing Unit

SSD

Single Shot Detector

VFE

Virtual Feature Encoder

LiDAR

Light Detection And Ranging

xiv





Chapter 1

Field review: object
detection in point clouds,
software and hardware tools,
embedded systems

Over the past few years object detection has seen remarkable development driven
by a rise in demand for solid perception systems in various applications, recently
including autonomous driving.
Object detection techniques in point clouds stands as a pivotal area within computer
vision, as they offer a unique perspective to better understand spatial relationships
and contextual information in the environment. Point cloud data captures the
geometric structure of scenes with extremely fine detail, making it well-suited for
tasks such as obstacle detection, object recognition, and scene understanding. By
analyzing the distribution of points and their attributes, object detection algorithms
can accurately identify and localize objects within complex 3D scenes [22] .
Diverse software and hardware tools have been developed during all these years for
allowing easy development of efficient object detection systems. Advanced software
frameworks such as TensorFlow [9], PyTorch [10], and Open3D [11]provide rich
ecosystems for prototyping, training, and deploying deep learning models tailored
to point cloud data.
Furthermore, the integration of object detection algorithms into embedded systems
unlocks new possibilities for edge computing applications. Embedded systems
are specialized computing systems designed to perform specific tasks or functions
within larger devices. Typically, they are tailored to one application and optimized
towards performance, reliability, and low power consumption. Embedded platforms,

1



Field review: object detection in point clouds, software and hardware tools, embedded systems

characterized by their limited computational resources and power constraints,
require tailored solutions in order to enable real-time processing of point cloud data.
Leveraging specialized hardware accelerators such as GPUs, alongside optimized
software implementations, it is possible to achieve high-performance object detection
on resource-constrained devices.

1.1 Object detection in point clouds

In Figure 1.1 it is shown from a BEV (Bird’s Eye View) perspective the result of a
real-time detection in point clouds. The targets (cars, pedestrians and cyclists) are
surrounded by the bounding boxes and some additional information is added, like
their speed.

Figure 1.1: CUDA-PointPillars BEV image with bounding boxes

Object detection in point clouds is achieved by identifying and classifying objects
in 3D space, based on the data points captured by sensor devices such as LiDAR [31].
Unlike traditional 2D image-based detection, point cloud data provides a rich view
of the three-dimensional space around the environment, allowing for more accurate
and reliable object detection. This proves to be particularly useful in applications
such as autonomous driving, where understanding the spatial arrangement of
objects is critical for navigation and safety.
Several key algorithms and approaches have been developed for object detection
in point clouds. One popular method is VoxelNet [8], which segmentates the

2



Field review: object detection in point clouds, software and hardware tools, embedded systems

point cloud into a voxel grid and then processes each voxel for features extraction.
This approach leverages 3D convolutional neural networks (3D CNNs) to learn
representations from the voxelized point cloud, thus allowing accurate object
detection. Another widely used algorithm is PointPillars [1][2][3][4][5][6][27], which
converts point cloud data into a pseudo-image and applies 2D CNNs for detection.
This method simplifies the computational complexity and therefore real-time
applications.

1.2 Software and Hardware tools

Designing and deploying object detection systems for point clouds requires robust
software and hardware tools. Software frameworks such as TensorFlow [9] and
PyTorch [10] provide powerful tools for building, training, and evaluating deep
learning models. These frameworks offer pre-built modules and libraries that
simplify the implementation of complex neural network architectures. Additionally,
Open3D [11], an open-source library designed for 3D data processing, provides tools
for point cloud manipulation, visualization, and integration with deep learning
frameworks.
On the hardware side, platform selection is crucial to achieve the required perfor-
mance. High-performance GPUs from NVIDIA, such as the Jetson Nano [17][18],
offer parallel processing capabilities that significantly accelerate the training and
inference of deep learning models. These chips are optimized to run complex
neural networks and can handle the large computational demands of point cloud
processing. Moreover, advancements in specialized hardware accelerators, such as
Tensor Processing Units (TPUs) and Field Programmable Gate Arrays (FPGAs)
[12], provide additional options for optimizing performance and power efficiency.

1.3 Embedded systems

Embedded systems play a vital role in bringing object detection capabilities to
edge devices. These systems are designed to perform specific tasks with high
efficiency and reliability. In the context of autonomous driving, embedded systems
enable real-time processing of sensor data, allowing vehicles to make quick and
informed decisions. Unlike general-purpose computing systems, embedded systems
are optimized for low power consumption and small form factors, making them
ideal for deployment in resource-constrained environments.
To achieve high-performance object detection on embedded systems, several strate-
gies can be employed. One approach is to use hardware accelerators such as GPUs
to offload computationally intensive tasks from the main processor [13]. By paral-
lelizing the processing of point cloud data, GPUs can significantly reduce the time

3



Field review: object detection in point clouds, software and hardware tools, embedded systems

required for object detection. Additionally, optimizing software implementations for
the specific architecture of the embedded system can further enhance performance.
Techniques such as quantization [14], which reduces the precision of the model
weights, and pruning, which removes unnecessary connections in the neural network,
can be used to reduce the computational load without sacrificing accuracy.

4



Chapter 2

Identify a combination of a
suitable object detection
algorithm and an embedded
platform

2.1 Object Detection Algorithms for Point Clouds

The following are some of the most performing algorithms for point clouds:

1. PointPillars [1][2][3][4][5][6][27]: this first method consists in a pillar-based
representation, in which the point clouds are divided into pillars and each
pillar’s feature is encoded using a sparse 2D grid. It employs a two-stage archi-
tecture with a sparse convolutional backbone followed by region proposal and
classification stages, achieving high efficiency and reducing the computational
cost. Moreover, it is specifically designed for object detection in 3D point
cloud data captured by LiDAR [31] sensors.
In Figure 2.1 is showed the complete PointPillars network, starting from the
point cloud data and ending with the final predictions. All the chain steps are
present with a particular focus on the feature encoder and the backbone.

2. Frustum PointNet [15]: this algorithm selects frustum regions from the point
cloud corresponding to 2D bounding boxes detected in an image. It utilizes
the PointNet architecture for feature extraction from the frustum point clouds.
Its main objective is to integrate 2D image data with 3D point cloud data
to improve object detection accuracy. In summary, it trains the model in an
end-to-end manner to jointly optimize 2D detection and 3D localization tasks.

5



Identify a combination of a suitable object detection algorithm and an embedded platform

Figure 2.1: PointPillars network

3. 3D YOLO (You Only Look Once) [16]: this last solution performs object
detection directly on the entire 3D point cloud in a single pass. It relays on
a voxel-based representation, which consists in the division of point clouds
into voxels followed by the prediction of object bounding boxes, confidence
scores, and class labels for each voxel. It is a simple and efficient approach to
object detection in point clouds, suitable for real-time applications, due to the
trade-off between inference speed and detection accuracy, balanced adjusting
model complexity and voxel resolution.

2.2 Embedded Platforms for Object Detection
with Point Clouds

Here follow some of the most suitable platforms for object detection in point clouds:

1. Nvidia Jetson Nano [17][18]: this machine features a CUDA-enabled GPU
for high-performance computing tasks, including deep learning inference. It
is designed for energy-efficient operation, making it suitable for embedded
applications with power constraints, an it offers a small and lightweight design
ideal for deployment in edge computing devices. Furthermore, its compatibility
with popular deep learning frameworks such as TensorFlow [9] and PyTorch
[10], enables easy deployment of object detection models.
Figure 2.2 shows the aspect of a Nvidia Jetson Nano [17][18] device.

6



Identify a combination of a suitable object detection algorithm and an embedded platform

Figure 2.2: Nvidia Jetson Nano

2. Intel Neural Compute Stick (NCS) [19]: it is a system that plugs directly into
a USB port and provides hardware acceleration for deep learning inference.
Since it provides a unified interface for deploying and running deep learning
models on the NCS, it simplifies integration with embedded systems. Its main
advantage is the low latency, in fact it offers fast inference speeds with minimal
delay, suitable for real-time object detection applications.

3. Raspberry Pi with Coral Edge TPU [20][21]: finally, this method integrates
Google’s Coral Edge TPU accelerator for high-performance deep learning
inference, and it works seamlessly with Raspberry Pi single-board computers,
offering a cost-effective solution for embedded object detection. Its compact
size and low power consumption make it suitable for deployment in small and
power-constrained devices, such as IoT sensors and edge devices.

These examples highlight some of the key object detection algorithms and
embedded platforms used in the field of point cloud object detection, each with its
own unique characteristics and suitability for different applications and deployment
scenarios.
In our case, the most suitable combination would be the use of a Nvidia Jetson
Nano [17][18] hardware along with the PointPillars [1][2][3][4][5][6][27] algorithm.

7



Identify a combination of a suitable object detection algorithm and an embedded platform

2.3 PointPillars

PointPillars [1][2][3][4][5][6][27] is a method for 3D detection:

• 3D object detection - recognition and determination of 3D information

• 2D convolutional layer - filter or kernel in a conv2D layer that slides over the
2D input data performing an element multiplication

The PointPillars network has a learnable encoder that uses PointNet to learn a
representation of point clouds organized in pillars (vertical columns):

• PointNet - unified architecture that learns both global and local point features
providing simple, efficient and effective approach for a number of 3D recognition
tasks

• Point clouds - a huge collection of tiny individual points plotted in 3D space
made up of a multitude of points captured using a 3D laser sensor

The network then runs a 2D convolutional neural network to produce network
predictions, decode the predictions and generate 3D bounding boxes for different
object classes such as car, pedestrian and cyclist.
In Figure 2.3 is shown an overview of the PointPillars algorithm, step-by-step,
divided by color in the main layers. In light blue we have the input features and
indices, in blue the feature encoder, in yellow the scatter layer, in purple the
backbone and in red the dense head.

Figure 2.3: PointPillars network overview

8



Identify a combination of a suitable object detection algorithm and an embedded platform

2.3.1 Pillar feature net

The feature net is constituted by the Virtual Feature Encoder (VFE) that works
following a series of steps:

1. Point clouds are generated by means of a Light Detection And Ranging
(LiDAR) sensor [31], and they constitute datasets that represent objects or
space using a three coordinates system (x, y, z).

2. The dataset is then divided into grids in the (x, y) plane, obtaining a set of
pillars. We denote by l a 4-dimensional point in a point cloud with coordinates
(x, y, z) and reflectance r.

3. Each point is then converted into a 9-dimensional vector, containing:

• xc, yc, zc: distance to the arithmetic mean of all points in the pillar.

• xp, yp: offset from the pillar center in the (x, y) coordinates.

The new point will be D = [x, y, z, r, xc, yc, zc, xp, yp].

4. The set of pillars will be mostly empty due to sparsity of the point cloud, and
the non-empty pillars will in general have few points in them. For this reason,
to exploit sparsity, a limit on P and N is imposed, where:

• P is the number of non-empty pillars.

• N is the number of points per pillar.

A dense tensor of size (D, P , N) is obtained.
If a sample of a pillar holds too much information to fit in this tensor, the data
is sampled. On the other hand if the sample has too little data to populate
the tensor, zero padding is applied.

5. By means of a simplified version of PointNet, a linear layer (1x1 convolution
across the tensor) is applied to each point, followed by BatchNorm and ReLU
to obtain high-level freatures of dimension (C, P , N). This is followed by a
max pool operation that converts it to a (C, P ) dimensional tensor.

2.3.2 Scatter layer

Once encoded, the features are scattered back to the original pillar locations to
create a pseudo-image of size (C, H, W ) where H and W indicate the height and
width of the canvas.

9



Identify a combination of a suitable object detection algorithm and an embedded platform

2.3.3 Backbone network

The backbone is constituted by sequential 2D convolutional layers (2D CNN) to
learn features from the transformed input. The input is the feature map generated
by the feature encoder and the scatter layer. The backbone network is divided in
three fully convolutional blocks:

• The first layer of each block down-samples the feature maps by half by means
of convolution of stride 2, followed by a sequence of convolutions of stride 1.

• After each convolution layer, BatchNorm and ReLU operations are applied.

• The output of every block is up-sampled to a fixed size via deconvolution.

• The final output features are concatenated to obtain the high-resolution feature
map.

2.3.4 Detection head

A Single Shot Detector (SSD) setup is used to perform 3D object detection:

• SSD network’s objective is to generate bounding boxes on the features coming
from the backbone layer.

• The task of object localisation is done in a single forward pass of the network
using a multi-box for bounding box regression technique.

• The detector also classifies the detected objects by means of the class anchors
generator.

• Non-maximum suppression is used to filter out noisy predictions.

10



Chapter 3

Performance evaluation of
the selected algorithm in a
desktop PC without
resource limitations

3.1 Experimentation setup

To establish a base reference on our performance benchmark, we tested the original
PointPillars method in a non-limiting processing capabilities environment, using a
machine with the following characteristics:

Operating System: Kubuntu 22.04
KDE Plasma Version: 5.24.7
KDE Frameworks Version: 5.92.0
Qt Version: 5.15.3
Kernel Version: 6.5.0-28-generic (64-bit)
Processors: 24 × AMD Ryzen 9 5900X 12-Core Processor
Memory: 62,7 GiB of RAM
Graphics: NVIDIA RTX 3090 24GB [26]
nvcc: NVIDIA (R) Cuda compiler driver
Driver Version: 550.90.07
CUDA Version: 12.4

For what concerns the dataset, we use the KITTI object detection benchmark
[23][29] dataset, which contains samples that have both LiDAR [31] point clouds

11



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

and images.
The KITTI benchmark [23][29] is divided in two macro categories, training set and
testing set. The training set is used to train models, while the testing set is used to
test them after the training. This last portion of data also contains the validation
set, which is used for validations along the training.
Moreover, the objects in the KITTI dataset [23][29] are also categorized as easy,
moderate and hard data difficulties. This separation is made on the number of
targets in the data, their position with respect to the source and their tendency to
be spotted.

3.2 Model configuration file

To better understand the PointPillars method, in Listing 3.1 we focus on the model
part in the configuration file. This portion of the file describes every step of the
Pointpillars network. We can see the number of filters in the VFE which is then
used as number of BEV features in the scatter layer, and then as input filters of
the backbone. In the latter, it is particularly relevant the number of layers, since it
will characterize all the backbone structure.

Listing 3.1: PointPillar.yaml

1 . . .
2 MODEL:
3 NAME: P o i n t P i l l a r
4

5 VFE:
6 NAME: PillarVFE
7 WITH_DISTANCE: Fal se
8 USE_ABSLOTE_XYZ: True
9 USE_NORM: True

10 NUM_FILTERS: [ 6 4 ]
11

12 MAP_TO_BEV:
13 NAME: P o i n t P i l l a r S c a t t e r
14 NUM_BEV_FEATURES: 64
15

16 BACKBONE_2D:
17 NAME: BaseBEVBackbone
18 LAYER_NUMS: [ 3 , 5 , 5 ]
19 LAYER_STRIDES: [ 2 , 2 , 2 ]
20 NUM_FILTERS: [ 6 4 , 128 , 256 ]
21 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
22 NUM_UPSAMPLE_FILTERS: [ 128 , 128 , 128 ]
23

24 DENSE_HEAD:

12



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

25 NAME: AnchorHeadSingle
26 CLASS_AGNOSTIC: Fa l se
27 . . .

The full configuration file can be found in Appendix A.

3.3 Results

After building the environment on the "limitless" resources machine, following the
OpenPCDet tutorial [24], we are able to train and test the model performance.
The training file "train.py" can be found in Appendix B.
We will consider only the BEV results, since it is the encoding technique used in
the model that we are exploiting.
Figure 3.1, Figure 3.2 and Figure 3.3 show the accuracy behavior along the training
validations for cars respectively for easy, moderate and hard data difficulties.
Figure 3.4, Figure 3.5 and Figure 3.6 show the accuracy behavior along the training
validations for cyclists respectively for easy, moderate and hard data difficulties.
Figure 3.7, Figure 3.8 and Figure 3.9 show the accuracy behavior along the training
validations for cars respectively for easy, moderate and hard data difficulties. These
graphs obtained by means of the Tensorboard [9][25] visualization tool, show the
accuracy (y-axis) in percentage, changing along the number of epochs (x-axis),
starting from epoch 50 of 80.

40

45

50

55

60

65

70

75

80

85

90

95

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.1: Car accuracy [%] for easy data difficulty along the epochs

13



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.2: Car accuracy [%] for moderate data difficulty along the epochs

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.3: Car accuracy [%] for hard data difficulty along the epochs

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.4: Cyclist accuracy [%] for easy data difficulty along the epochs

14



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.5: Cyclist accuracy [%] for moderate data difficulty along the epochs

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.6: Cyclist accuracy [%] for hard data difficulty along the epochs

40

45

50

55

60

65

70

75

80

85

90

95

100

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.7: Pedestrian accuracy [%] for easy data difficulty along the epochs

15



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

40

45

50

55

60

65

70

75

80

85

90

95

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.8: Pedestrian accuracy [%] for moderate data difficulty along the epochs

40

45

50

55

60

65

70

75

80

85

90

95

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Figure 3.9: Pedestrian accuracy [%] for hard data difficulty along the epochs

These results show clearly how for every subject (car, cyclist, pedestrian) the
accuracy decreases from easy difficulty data, to moderate difficulty data, to finally
reach its minimum with hard difficulty data. One more consideration: since
pedestrians are the hardest to spot, the model accuracy for them is lower, while it
is a little better for cyclists and it is the best for cars.

16



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

3.3.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 3.1.

easy hard moderate
car 92.63 86.81 87.95

cyclist 86.53 64.22 68.37
pedestrian 59.83 49.39 54.10

Table 3.1: Accuracy table of first training BEV [%]

3.3.2 Loss behavior

Focusing then on the loss, we obtain the results shown in Figure 3.4.
As we can see, it decreases significantly along the training, with a minimum value
around 0.4.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

04:50 PM 05:00 PM 05:10 PM 05:20 PM 05:30 PM 05:40 PM 05:50 PM 06:00 PM 06:10 PM 06:20 PM 06:30 PM 06:40 PM 06:50 PM 07:00 PM 07:10 PM 07:20 PM 07:30 PM 07:40 PM 07:50 PM 08:00 PM 08:10 PM 08:20 PM 08:3

March 15, 2024

Figure 3.10: Loss behavior along the training

3.3.3 Results visualization

It is then possible to visualize, by means of the Open3d module [11], the BEV
images with the insertion of bounding boxes. For example, in Figure 3.11 and
Figure 3.12 we have the BEV image number 8 from the velodyne section of the
KITTI dataset [23][29] evaluated firstly with the pre-trained PointPillars model,
and secondly evaluated on the 80th checkpoint of our training.

17



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

Figure 3.11: Pre-trained BEV with bounding box of image 8 of the dataset

Figure 3.12: 80th checkpoint BEV with bounding box of image 8 of the dataset

18



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

Figure 3.11 and Figure 3.12 have some visible differences: some of the bounding
boxes are present only in the the newly trained version and vice-versa. Nevertheless,
the number of errors increases with the distance from the source, and it is easy to
see how results are less accurate for pedestrians (blue bounding boxes) and cyclists
(yellow bounding boxes) with respect to cars (green bounding boxes).

3.3.4 More examples

To better visualize the comparison of the new training with the pre-trained model,
here are some more results obtained with Open3D, applied on other images of the
dataset:

• Image number 3000 of the velodyne KITTI [23][29] dataset is compared in
Figure 3.13 (pre-trained) and Figure 3.14 (newly trained).

• Image number 5000 of the velodyne KITTI [23][29] dataset is compared in
Figure 3.15 (pre-trained) and Figure 3.16 (newly trained).

Figure 3.13: Pre-trained BEV with bounding box of image 3000 of the dataset

19



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

Figure 3.14: 80th checkpoint BEV with bounding box of image 3000 of the dataset

Figure 3.15: Pre-trained BEV with bounding box of image 5000 of the dataset

20



Performance evaluation of the selected algorithm in a desktop PC without resource limitations

Figure 3.16: 80th checkpoint BEV with bounding box of image 5000 of the dataset

For what concerns Figure 3.13 and Figure 3.14, the two images are almost
identical, with some exceptions. The pre-trained model in fact has a lower number
of bounding boxes, which means that it results in some false negatives.
Moving to Figure 3.15 the problem is the opposite, in fact the pre-trained model
here adds some false positives, resulting in more bounding boxes than Figure 3.16.
Overall, the number of differences between the two trainings is low, and most
importantly, the wrong results are far from the source.

21



Chapter 4

Main task: porting of the
detection algorithm to the
embedded system, making
use of firmware
simplifications

In this chapter we will try to simplify the model to gain computational speed trying
to maintain a good trade-off with the accuracy. We will work on the pillar feature
net, scatter layer and backbone, without modifying the Conv2D-BatchNorm-ReLU
structure used in the encoding-decoding stages of the model.
To obtain the best result, a large number of trainings has to be performed, with
different configurations each time. The parameters to modify are the number of
layers in the backbone and the number of filters in the different stages of the
backbone (refer to Appendix A).
Inference time, number of parameters and accuracy will be taken into account and
the best results will be compared with Section 3.3.

4.1 Training behavior with fixed number of filters

The aim of this section is to fix one parameter, the number of filters, and see how
the resulting variables change modifying the number of layers.
For this purpose, we firstly fix the filters to the number in the original model,
referring to lines 58, 62, 68 and 70 of the configuration file in Appendix A, secondly

22



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

we half that number, then we half only the number of input filters and finally we
half only the up-sample filters. In every scenario, the number of layers analyzed
changes between [2,4,4], [3,5,5] and [4,6,6].

4.1.1 Accuracy with filters fixed to their original number

In Figure 4.1, Figure 4.2 and Figure 4.3 the behavior of the 80th checkpoints
accuracy is shown for the different difficulties of the dataset. We can observe that
they are almost constant, with a non-significant decrease along the number of layers
for cars and cyclists, and a slight growth for pedestrians.

Figure 4.1: Accuracy [%] for cars versus the number of layers with filters fixed to
their original number

23



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.2: Accuracy [%] for cyclists versus the number of layers with filters fixed
to their original number

Figure 4.3: Accuracy [%] for pedestrians versus the number of layers with filters
fixed to their original number

4.1.2 Accuracy with filters fixed to half of their original
number

When we half the number of filters we obtain the 80th checkpoints accuracy of
Figure 4.4, Figure 4.5 and Figure 4.6. This time the change in values is more
evident, especially for pedestrians. The best case scenario in this case would be
then with a number of layers between [2,4,4] and [3,5,5]. Nevertheless, in general
the values are lower than those in Section 4.1.1.

24



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.4: Accuracy [%] for cars versus the number of layers with half of the
total number of filters

Figure 4.5: Accuracy [%] for cyclists versus the number of layers with half of the
total number of filters

25



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.6: Accuracy [%] for pedestrians versus the number of layers with half of
the total number of filters

4.1.3 Accuracy with up-sample filters fixed to half of their
original number

Now we half only the up-sample filters. Figure 4.7, Figure 4.8 and Figure 4.9 show
that the 80th checkpoints accuracy generally decreases with this configuration (with
an exception for cyclists that have a small growth). It is clear that the favorable
number of layers is closer to [2,4,4].

Figure 4.7: Accuracy [%] for cars versus the number of layers with half of the
number of up-sample filters

26



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.8: Accuracy [%] for cyclists versus the number of layers with half of the
total number of up-sample filters

Figure 4.9: Accuracy [%] for pedestrians versus the number of layers with half of
the total number of up-sample filters

4.1.4 Accuracy with input filters fixed to half of their orig-
inal number

This time we half only the input filters. Results are shown in Figure 4.10, Figure
4.11 and Figure 4.12. Except for cyclists, the function visibly increases, especially
for pedestrians, which have a very low accuracy for low number of layers. For this
reason, with this amount of filters the best number of layers would be between
[3,5,5] and [4,6,6].

27



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.10: Accuracy [%] for cars versus the number of layers with half of the
number of input filters

Figure 4.11: Accuracy [%] for cyclists versus the number of layers with half of
the total number of input filters

28



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.12: Accuracy [%] for pedestrians versus the number of layers with half
of the total number of input filters

4.1.5 Number of parameters and inference time compared
for the different configurations

We now consider the number of parameters and the inference time for the different
setups.

• In terms of the number of parameters, it only depends on the number of layers,
so for every filter configuration it will be the same, as described in Figure 4.13.
We can observe that it grows linearly, starting from 109 millions for [2,4,4]
layers, 127 millions for [3,5,5] and 145 millions for [3,6,6], therefore, to have
better performances we need fewer layers. For this reason, we can exclude
from consideration every configuration related to [4,6,6] layers.

• For what concerns the inference time, it will change according to the number
of parameters, because they increase the complexity of computation. As a
consequence we want to reduce as much as possible the number of layers

29



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.13: Number of parameters versus number of layers

4.2 Training behavior with fixed number of layers

Now we fix the number of layers in the backbone and analyse how the resulting
variables change with the number of filters. In light of this, we will initially fix the
number of layers to [3,5,5], referring to line 66 of the configuration file in Appendix
A, and afterward we will lower it to [2,4,4]. We will not consider [4,6,6] layers since
we ruled them out in Section 4.1.5. The variable is the number of filters that is
going to change from half of the original value to double of that value.

4.2.1 Accuracy with backbone layers fixed to [3,5,5]

In figure 4.14, Figure 4.15 and Figure 4.16 we can see the graphs for a number of
layer fixed to [3,5,5]. We can observe that the resulting slopes are more steep then
the ones in Section 4.1, especially for cyclists and pedestrians. In general, doubling
the number of filters we obtain better accuracy, with the exception of cars on easy
and moderate difficulty dataset.

30



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.14: Accuracy [%] for cars versus the number of total filters with [3,5,5]
layers

Figure 4.15: Accuracy [%] for cyclists versus the number of total filters with
[3,5,5] layers

31



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.16: Accuracy [%] for pedestrians versus the number of total filters with
[3,5,5] layers

4.2.2 Accuracy with backbone layers fixed to [2,4,4]

Now we reduce the number of layers, fixing them to [2,4,4]. The graphs obtained in
Figure 4.17, Figure 4.18 and Figure 4.19 are almost constant and in general better
than those in Section 4.2.1.

Figure 4.17: Accuracy [%] for cars versus the number of total filters with [2,4,4]
layers

32



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

Figure 4.18: Accuracy [%] for cyclists versus the number of total filters with
[2,4,4] layers

Figure 4.19: Accuracy [%] for pedestrians versus the number of total filters with
[2,4,4] layers

4.2.3 Number of parameters and inference time compared
for the different configurations

Finally, we want to look at the number of parameters and the training time.

• As we said in Section 4.1.5, the number of parameters does not depend on the
amount of filters; therefore it will always be 127 million for [3,5,5] layers and
109 million for [2,4,4].

33



Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications

• For what concerns the duration of computation, we observe in Figure 4.20 that
it grows almost exponentially with the number of filters, for both amounts
of layers. For this reason we do not want to double this value, on the other
hand we do not need to reduce it significantly since lowering will not result in
a much faster computation, but it could affect negatively the performances.

Figure 4.20: Inference time versus number of layers

34



Chapter 5

Prototype: performance
evaluation

For each graph in Chapter 4 we extrapolate the configuration with the best results,
not including every training with [4,6,6] layers and doubled filters, because of the
considerations in Section 4.1.5 and Section 4.2.3.
The results obtained in Chapter 4 will allow us to limit our options to the best six
configurations. To finally find the only optimal solution, we want to evaluate their
losses and visualize by means of Open3D [11] their resulting image with bounding
boxes, to compare it with the one in Section 3.3.3.

5.1 Reducing the number of layers in the back-
bone to [3,4,4]

In Listing 5.1 is provided the modified part of the configuration file (see Appendix
A).

Listing 5.1: modified configuration file

1 BACKBONE_2D:
2 NAME: BaseBEVBackbone
3 LAYER_NUMS: [ 3 , 4 , 4 ]
4 LAYER_STRIDES: [ 2 , 2 , 2 ]
5 NUM_FILTERS: [ 6 4 , 128 , 256 ]
6 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
7 NUM_UPSAMPLE_FILTERS: [ 128 , 128 , 128 ]

35



Prototype: performance evaluation

5.1.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.1.

easy hard moderate
car 92.24 85.95 87.35

cyclist 86.39 63.80 68.17
pedestrian 59.33 49.87 52.93

Table 5.1: Accuracy table of the 80th checkpoint [%]

5.1.2 Losses

The obtained losses remain very close to Figure 3.4, as observed in Figure 5.1.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

05:47 PM05:50 PM 06:00 PM 06:10 PM 06:20 PM 06:30 PM 06:40 PM 06:50 PM 07:00 PM 07:10 PM 07:20 PM 07:30 PM 07:40 PM 07:50 PM 08:00 PM 08:10 PM 08:20 PM 08:30 PM 08:40 PM 08:50 PM 09:00 PM 09:10 PM 09:20 PM 09:30 PM 09:40 PM 09:50 PM

June 5, 2024

Figure 5.1: Loss behavior along the training

5.1.3 Results visualization

To better visualize these results, in Figure 5.2 we have the same image as
Figure 3.12, but with the bounding boxes obtained with this last configuration.

36



Prototype: performance evaluation

Figure 5.2: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.2 Reducing the number of layers in the back-
bone to [2,4,4] and halving the number of
filters

In Listing 5.2 is provided the modified part of the configuration file (see Appendix
A).

Listing 5.2: modified configuration file

1 VFE:
2 NAME: PillarVFE
3 WITH_DISTANCE: Fal se
4 USE_ABSLOTE_XYZ: True
5 USE_NORM: True
6 NUM_FILTERS: [ 3 2 ]
7

8 MAP_TO_BEV:
9 NAME: P o i n t P i l l a r S c a t t e r

10 NUM_BEV_FEATURES: 32
11

12 BACKBONE_2D:
13 NAME: BaseBEVBackbone
14 LAYER_NUMS: [ 2 , 4 , 4 ]
15 LAYER_STRIDES: [ 2 , 2 , 2 ]

37



Prototype: performance evaluation

16 NUM_FILTERS: [ 3 2 , 64 , 128 ]
17 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
18 NUM_UPSAMPLE_FILTERS: [ 6 4 , 64 , 64 ]

5.2.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.2.

easy hard moderate
car 93.06 85.12 87.74

cyclist 81.47 60.04 64.13
pedestrian 58.44 47.53 51.76

Table 5.2: Accuracy table of the 80th checkpoint [%]

5.2.2 Losses

The obtained losses have significantly increased, as observed in Figure 5.3, excluding
this configuration from candidates.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

04:08 PM04:10 PM 04:20 PM 04:30 PM 04:40 PM 04:50 PM 05:00 PM 05:10 PM 05:20 PM 05:30 PM 05:40 PM 05:50 PM 06:00 PM 06:10 PM 06:20 PM 06:30 PM 06:40 PM 06:50 PM

June 23, 2024

Figure 5.3: Loss behavior along the training

5.2.3 Results visualization

To better visualize these results, in Figure 5.4 we have the same image as Figure
3.12, but with the bounding boxes obtained with this last configuration.

38



Prototype: performance evaluation

Figure 5.4: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.3 Halving the number of input filters

In Listing 5.3 is provided the modified part of the configuration file with (see
Appendix A).

Listing 5.3: modified configuration file

1 VFE:
2 NAME: PillarVFE
3 WITH_DISTANCE: Fal se
4 USE_ABSLOTE_XYZ: True
5 USE_NORM: True
6 NUM_FILTERS: [ 3 2 ]
7

8 MAP_TO_BEV:
9 NAME: P o i n t P i l l a r S c a t t e r

10 NUM_BEV_FEATURES: 32
11

12 BACKBONE_2D:
13 NAME: BaseBEVBackbone
14 LAYER_NUMS: [ 3 , 5 , 5 ]
15 LAYER_STRIDES: [ 2 , 2 , 2 ]
16 NUM_FILTERS: [ 3 2 , 128 , 256 ]
17 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
18 NUM_UPSAMPLE_FILTERS: [ 128 , 128 , 128 ]

39



Prototype: performance evaluation

5.3.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.3.

easy hard moderate
car 93.35 86.36 87.89

cyclist 85.48 62.69 66.78
pedestrian 56.53 47.37 51.32

Table 5.3: Accuracy table of the 80th checkpoint [%]

5.3.2 Losses

The obtained losses are lower then Figure 5.3, as observed in Figure 5.5, but they
are still too high, excluding also this configuration from candidates.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

04:26 PM04:30 PM 04:40 PM 04:50 PM 05:00 PM 05:10 PM 05:20 PM 05:30 PM 05:40 PM 05:50 PM 06:00 PM 06:10 PM 06:20 PM 06:30 PM 06:40 PM 06:50 PM 07:00 PM 07:10 PM 07:20 PM 07:30 PM 07:4

June 27, 2024

Figure 5.5: Loss behavior along the training

5.3.3 Results visualization

To better visualize these results, in Figure 5.6 we have the same image as Figure
3.12, but with the bounding boxes obtained with this last configuration.

40



Prototype: performance evaluation

Figure 5.6: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.4 Reducing the number of layers in the back-
bone to [3,4,4] and halving the number of
input filters

In Listing 5.4 is provided the modified part of the configuration file with (see
Appendix A).

Listing 5.4: modified configuration file

1 VFE:
2 NAME: PillarVFE
3 WITH_DISTANCE: Fal se
4 USE_ABSLOTE_XYZ: True
5 USE_NORM: True
6 NUM_FILTERS: [ 3 2 ]
7

8 MAP_TO_BEV:
9 NAME: P o i n t P i l l a r S c a t t e r

10 NUM_BEV_FEATURES: 32
11

12 BACKBONE_2D:
13 NAME: BaseBEVBackbone
14 LAYER_NUMS: [ 3 , 4 , 4 ]
15 LAYER_STRIDES: [ 2 , 2 , 2 ]

41



Prototype: performance evaluation

16 NUM_FILTERS: [ 3 2 , 128 , 256 ]
17 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
18 NUM_UPSAMPLE_FILTERS: [ 128 , 128 , 128 ]

5.4.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.4.

easy hard moderate
car 93.61 86.87 88.30

cyclist 87.86 62.82 97.14
pedestrian 60.33 49.67 54.07

Table 5.4: Accuracy table of the 80th checkpoint [%]

5.4.2 Losses

The obtained losses, as observed in Figure 5.7, are still too high, excluding also
this configuration from candidates.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

07:32 PM 07:40 PM 07:50 PM 08:00 PM 08:10 PM 08:20 PM 08:30 PM 08:40 PM 08:50 PM 09:00 PM 09:10 PM 09:20 PM 09:30 PM 09:40 PM 09:50 PM 10:00 PM 10:10 PM 10:20 PM 10:30 PM 10:40 PM

June 6, 2024

Figure 5.7: Loss behavior along the training

5.4.3 Results visualization

To better visualize these results, in Figure 5.8 we have the same image as Figure
3.12, but with the bounding boxes obtained with this last configuration.

42



Prototype: performance evaluation

Figure 5.8: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.5 Halving the number of up-sample filters

In Listing 5.5 is provided the modified part of the configuration file with (see
Appendix A).

Listing 5.5: modified configuration file

1 BACKBONE_2D:
2 NAME: BaseBEVBackbone
3 LAYER_NUMS: [ 3 , 5 , 5 ]
4 LAYER_STRIDES: [ 2 , 2 , 2 ]
5 NUM_FILTERS: [ 6 4 , 128 , 256 ]
6 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
7 NUM_UPSAMPLE_FILTERS: [ 6 4 , 64 , 64 ]

43



Prototype: performance evaluation

5.5.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.5.

easy hard moderate
car 91.88 86.60 87.82

cyclist 89.16 66.09 70.73
pedestrian 60.67 50.30 54.77

Table 5.5: Accuracy table of the 80th checkpoint [%]

5.5.2 Losses

The obtained losses are close to Figure 3.4, as observed in Figure 5.9.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

02:35 PM02:40 PM 02:50 PM 03:00 PM 03:10 PM 03:20 PM 03:30 PM 03:40 PM 03:50 PM 04:00 PM 04:10 PM 04:20 PM 04:30 PM 04:40 PM 04:50 PM 05:00 PM 05:10 PM 05:20 PM 05:30 PM 05:40 PM 05:50 PM 06:00 PM 06:10

June 7, 2024

Figure 5.9: Loss behavior along the training

5.5.3 Results visualization

To better visualize these results, in Figure 5.10 we have the same image as Figure
3.12, but with the bounding boxes obtained with this last configuration.

44



Prototype: performance evaluation

Figure 5.10: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.6 Reducing the number of layers in the back-
bone to [2,4,4] and halving the number of
up-sample filters

In Listing 5.5 is provided the modified part of the configuration file with (see
Appendix A).

Listing 5.6: modified configuration file

1 BACKBONE_2D:
2 NAME: BaseBEVBackbone
3 LAYER_NUMS: [ 2 , 4 , 4 ]
4 LAYER_STRIDES: [ 2 , 2 , 2 ]
5 NUM_FILTERS: [ 6 4 , 128 , 256 ]
6 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
7 NUM_UPSAMPLE_FILTERS: [ 6 4 , 64 , 64 ]

45



Prototype: performance evaluation

5.6.1 Accuracy

The final values of the 80th checkpoint of the training are listed in Table 5.6.

easy hard moderate
car 93.67 86.92 88.08

cyclist 86.87 62.88 67.35
pedestrian 60.60 50.46 54.89

Table 5.6: Accuracy table of the 80th checkpoint [%]

5.6.2 Losses

The obtained losses are very close to Figure 3.4, as observed in Figure 5.11.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

03:46 PM03:50 PM 04:00 PM 04:10 PM 04:20 PM 04:30 PM 04:40 PM 04:50 PM 05:00 PM 05:10 PM 05:20 PM 05:30 PM 05:40 PM 05:50 PM 06:00 PM 06:10 PM 06:20 PM 06:30 PM 06:40 PM 06:50 PM 07:00 PM 07:10 PM

June 22, 2024

Figure 5.11: Loss behavior along the training

5.6.3 Results visualization

To better visualize these results, in Figure 5.12 we have the same image as Figure
3.12, but with the bounding boxes obtained with this last configuration.

46



Prototype: performance evaluation

Figure 5.12: 80th checkpoint BEV with bounding box of image 8 of the dataset

5.7 Optimal solution

To understand the results, we compare the data of the original model and of Section
5.1, Section 5.2, Section 5.3, Section 5.4, Section 5.5 and Section 5.6 in an accuracy
versus inference time graph to have a clear idea of which one is the best solution.
On the x-axis we have the testing time while on the y-axis we have the validation
accuracy of the trained model.
We want the highest accuracy possible with the lowest amount of time, so the
closest we are to the top left corner of the accuracy-delay graphs, the better.
Looking at Figure 5.13, Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17, Figure
5.18, Figure 5.19, Figure 5.20 and Figure 5.21, it is easy to see that the best
configuration is the one described in Section 5.6, which allows us to have the best
performances to work in real-time conditions without increasing losses, in fact
Figure 5.11 has not increased significantly with respect to Figure 3.10. Furthermore,
as shown in Section 4.1.5, reducing the number of CNNs, also the number of
parameters is low and Figure 5.12 has very high compatibility with Figure 3.12
(with the exception of very few cyclists and pedestrians wrongly spotted, but far
from the source).
For these reasons, reducing the number of layers in the backbone to [2,4,4] and
halving the number of up-sample filters is the best solution for our problem.

47



Prototype: performance evaluation

Figure 5.13: Accuracy-delay graph for cars evaluated on easy difficulty dataset

Figure 5.14: Accuracy-delay graph for cars evaluated on moderate difficulty
dataset

48



Prototype: performance evaluation

Figure 5.15: Accuracy-delay graph for cars evaluated on hard difficulty dataset

Figure 5.16: Accuracy-delay graph for cyclists evaluated on easy difficulty dataset

49



Prototype: performance evaluation

Figure 5.17: Accuracy-delay graph for cyclists evaluated on moderate difficulty
dataset

Figure 5.18: Accuracy-delay graph for cyclists evaluated on hard difficulty dataset

50



Prototype: performance evaluation

Figure 5.19: Accuracy-delay graph for pedestrians evaluated on easy difficulty
dataset

Figure 5.20: Accuracy-delay graph for pedestrians evaluated on moderate difficulty
dataset

51



Prototype: performance evaluation

Figure 5.21: Accuracy-delay graph for pedestrians evaluated on hard difficulty
dataset

52



Chapter 6

Configure the embedded
system workspace to work
with point cloud files and
deep learning

We decided in Section 2.2 to work with a Nvidia Jetson Nano[17][18], which will
have the following features:

Operating System: Kubuntu 18.04
KDE Plasma Version: 5.12 LTS
Memory: 3.9 GiB of RAM
Processors: ARMv8 Processor rev 1 (v8l) x 4
Graphics Processor: NVIDIA Tegra X1 (nvgpu)/integrated OS type 64-bit
Disk: 14.7 GB
nvcc: NVIDIA (R) Cuda compiler driver
CUDA version: 10.2

6.1 Environment setup

To build the environment, we follow the steps described in the CUDA-PointPillars
tutoria [28]. In particular, we execute the commands shown in Listing 6.1.

53



Configure the embedded system workspace to work with point cloud files and deep learning

Listing 6.1: Environment Setup

1 cd CUDA−P o i n t P i l l a r s && . t o o l / environment . sh
2 mkdir bu i ld && cd bu i ld
3 cmake . . && make −j \$ ( nproc )
4 cd . . / && sh t o o l / bu i ld \ _trt \_engine . sh
5 cd bu i ld && . / p o i n t p i l l a r . . / data / . . / data / −−t imer

When the last command is executed without errors, the environment is built and
some outputs are produced as an example of encoded results of object detection in
point clouds.
These outputs are text files, which contain numbers representing the coordinates
of the predictions. An example is shown in Listing 6.2.
Each of these lines represent an encoded bounding box, in particular:

• Three bounding box center coordinates (x, y, z) in floating point

• Three shift amounts from the box center (dx, dy, dz) in floating point

• The heading (box direction)

• The class (either car, cyclist or pedestrian) represented by an integer number
(respectively 0, 1 or 2).

• The score (certainty of the prediction) in a floating point value between 0 an 1

Listing 6.2: Predictions

1 34.8439 −3.1248 −1.42732 4.00212 1.57296 1.46907 6.32502 0 0.849222
2 15.8563 3.68577 −1.03334 1.70029 0.537016 1.74738 3.06188 2 0.358915
3 23 .747 3.41975 −0.87707 0.866645 0.622608 2.03322 4.38542 1 0.289773
4 6.48975 3.94685 −0.868623 1.81853 0.576962 1.67918 6.25642 2 0 .2587
5 7.84963 −2.72028 −0.802734 0.849104 0.665763 1.82079 6.11424 1

0.190122
6 32.0105 −4.36819 −1.10008 0.748601 0.701814 1.97403 1.87401 1

0.164248
7 44 .941 1.49198 −1.76096 3.83123 1 .6851 1.53399 2.83324 0 0.163445
8 7.77657 −3.42381 −0.875381 0.832478 0.599927 1.69983 2.81982 1

0.154695
9 10.5924 3.96306 −0.828076 0.860478 0.559364 1.86522 4.38151 1

0.152158
10 14.4884 3.95217 −0.990264 0.649761 0.660461 1.83227 1.32964 1

0.146575
11 38.2134 −4.42721 −1.10261 0.730813 0.564112 1.94177 5.43962 1

0.131954
12 60.3677 −5.19389 −0.995332 0.840058 0.559364 1.77506 4.72441 1

0.119203
13 34.4795 3.96642 −1.1533 0.480744 0.684887 1.97403 6.36588 1 0.104112

54



Configure the embedded system workspace to work with point cloud files and deep learning

This type of encoding could be visualized with some tools, like 3D-Detection-
Tracking-Viewe [30], to obtain an image like Figure 6.1.

Figure 6.1: Visualization of a decoded prediction

Once the environment is ready, it will be possible to port the algorithm to the
Nvidia Jetson Nano [17][18] to work in real-time conditions.

55



Chapter 7

Conclusion

Object detection in point clouds is increasingly crucial for many applications such
autonomous driving. The need of faster and more accurate devices is nowadays of
the highest importance for real-time applications.
This study conducted a systematic performance maximization of the PointPillars
algorithm, a novel deep network and encoder that can be trained end-to-end on
LiDAR point clouds, focusing on reducing the inference time without significantly
increasing losses and maintaining accuracy to a proper level. This optimization
process was limited to the tuning of number of filters and number of layers in the
backbone structure of the model, and every configuration was trained and tested
on the KITTI benchmark.
The results are promising, showing that reducing the number of layers in the
backbone to [2,4,4] and halving the number of up-sample filters we lower by four
seconds the inference time, without significantly lowering the accuracy, and with
a negligible increase in loss. This configuration guarantees Pareto optimality (for
Figure 5.13, Figure 5.15, Figure 5.19, Figure 5.20 and Figure 5.21, Pareto dominance
is obtained).
This study being the first step, future experiments could put into practice the
implementation of this resulting compact design on the Nvidia Jetson Nano device,
which is a embedded platform suitable for deep learning inference, analysing its
power efficiency and performance.

56



Appendix A

Configuration file

Listing A.1: PointPillar.yaml

1 CLASS_NAMES: [ ’ Car ’ , ’ Pedes t r ian ’ , ’ C y c l i s t ’ ]
2

3 DATA_CONFIG:
4 _BASE_CONFIG_: c f g s / data se t_con f i g s / k i t t i _ d a t a s e t . yaml
5 POINT_CLOUD_RANGE: [ 0 , −39.68 , −3, 69 .12 , 39 . 68 , 1 ]
6 DATA_PROCESSOR:
7 − NAME: mask_points_and_boxes_outside_range
8 REMOVE_OUTSIDE_BOXES: True
9

10 − NAME: s h u f f l e _ p o i n t s
11 SHUFFLE_ENABLED: {
12 ’ t r a i n ’ : True ,
13 ’ t e s t ’ : Fa l se
14 }
15

16 − NAME: transform_points_to_voxels
17 VOXEL_SIZE: [ 0 . 1 6 , 0 . 16 , 4 ]
18 MAX_POINTS_PER_VOXEL: 32
19 MAX_NUMBER_OF_VOXELS: {
20 ’ t r a i n ’ : 16000 ,
21 ’ t e s t ’ : 40000
22 }
23 DATA_AUGMENTOR:
24 DISABLE_AUG_LIST: [ ’ p l a c eho ld e r ’ ]
25 AUG_CONFIG_LIST:
26 − NAME: gt_sampling
27 USE_ROAD_PLANE: True
28 DB_INFO_PATH:
29 − k i t t i_db in f o s _t ra in . pkl
30 PREPARE: {

57



Configuration file

31 f i l ter_by_min_points : [ ’ Car : 5 ’ , ’ Pedes t r ian : 5 ’ , ’
C y c l i s t : 5 ’ ] ,

32 f i l t e r _ b y _ d i f f i c u l t y : [ −1] ,
33 }
34

35 SAMPLE_GROUPS: [ ’ Car : 15 ’ , ’ Pedes t r ian :15 ’ , ’ C y c l i s t : 15 ’ ]
36 NUM_POINT_FEATURES: 4
37 DATABASE_WITH_FAKELIDAR: Fal se
38 REMOVE_EXTRA_WIDTH: [ 0 . 0 , 0 . 0 , 0 . 0 ]
39 LIMIT_WHOLE_SCENE: Fa l se
40

41 − NAME: random_world_flip
42 ALONG_AXIS_LIST: [ ’ x ’ ]
43

44 − NAME: random_world_rotation
45 WORLD_ROT_ANGLE: [ −0.78539816 , 0 .78539816 ]
46

47 − NAME: random_world_scaling
48 WORLD_SCALE_RANGE: [ 0 . 9 5 , 1 . 0 5 ]
49

50 MODEL:
51 NAME: P o i n t P i l l a r
52

53 VFE:
54 NAME: PillarVFE
55 WITH_DISTANCE: Fal se
56 USE_ABSLOTE_XYZ: True
57 USE_NORM: True
58 NUM_FILTERS: [ 6 4 ]
59

60 MAP_TO_BEV:
61 NAME: P o i n t P i l l a r S c a t t e r
62 NUM_BEV_FEATURES: 64
63

64 BACKBONE_2D:
65 NAME: BaseBEVBackbone
66 LAYER_NUMS: [ 3 , 5 , 5 ]
67 LAYER_STRIDES: [ 2 , 2 , 2 ]
68 NUM_FILTERS: [ 6 4 , 128 , 256 ]
69 UPSAMPLE_STRIDES: [ 1 , 2 , 4 ]
70 NUM_UPSAMPLE_FILTERS: [ 128 , 128 , 128 ]
71

72 DENSE_HEAD:
73 NAME: AnchorHeadSingle
74 CLASS_AGNOSTIC: Fa l se
75

76 USE_DIRECTION_CLASSIFIER: True
77 DIR_OFFSET: 0.78539
78 DIR_LIMIT_OFFSET: 0 .0

58



Configuration file

79 NUM_DIR_BINS: 2
80

81 ANCHOR_GENERATOR_CONFIG: [
82 {
83 ’ class_name ’ : ’ Car ’ ,
84 ’ anchor_s izes ’ : [ [ 3 . 9 , 1 . 6 , 1 . 5 6 ] ] ,
85 ’ anchor_rotat ions ’ : [ 0 , 1 . 5 7 ] ,
86 ’ anchor_bottom_heights ’ : [ −1 .78 ] ,
87 ’ a l i gn_cente r ’ : False ,
88 ’ feature_map_stride ’ : 2 ,
89 ’ matched_threshold ’ : 0 . 6 ,
90 ’ unmatched_threshold ’ : 0 .45
91 } ,
92 {
93 ’ class_name ’ : ’ Pedes t r ian ’ ,
94 ’ anchor_s izes ’ : [ [ 0 . 8 , 0 . 6 , 1 . 7 3 ] ] ,
95 ’ anchor_rotat ions ’ : [ 0 , 1 . 5 7 ] ,
96 ’ anchor_bottom_heights ’ : [ −0 .6 ] ,
97 ’ a l i gn_cente r ’ : False ,
98 ’ feature_map_stride ’ : 2 ,
99 ’ matched_threshold ’ : 0 . 5 ,

100 ’ unmatched_threshold ’ : 0 .35
101 } ,
102 {
103 ’ class_name ’ : ’ C y c l i s t ’ ,
104 ’ anchor_s izes ’ : [ [ 1 . 7 6 , 0 . 6 , 1 . 7 3 ] ] ,
105 ’ anchor_rotat ions ’ : [ 0 , 1 . 5 7 ] ,
106 ’ anchor_bottom_heights ’ : [ −0 .6 ] ,
107 ’ a l i gn_cente r ’ : False ,
108 ’ feature_map_stride ’ : 2 ,
109 ’ matched_threshold ’ : 0 . 5 ,
110 ’ unmatched_threshold ’ : 0 .35
111 }
112 ]
113

114 TARGET_ASSIGNER_CONFIG:
115 NAME: AxisAl ignedTargetAss igner
116 POS_FRACTION: −1.0
117 SAMPLE_SIZE: 512
118 NORM_BY_NUM_EXAMPLES: Fa l se
119 MATCH_HEIGHT: Fal se
120 BOX_CODER: ResidualCoder
121

122 LOSS_CONFIG:
123 LOSS_WEIGHTS: {
124 ’ c l s_weight ’ : 1 . 0 ,
125 ’ loc_weight ’ : 2 . 0 ,
126 ’ dir_weight ’ : 0 . 2 ,
127 ’ code_weights ’ : [ 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ]

59



Configuration file

128 }
129

130 POST_PROCESSING:
131 RECALL_THRESH_LIST: [ 0 . 3 , 0 . 5 , 0 . 7 ]
132 SCORE_THRESH: 0 .1
133 OUTPUT_RAW_SCORE: Fal se
134

135 EVAL_METRIC: k i t t i
136

137 NMS_CONFIG:
138 MULTI_CLASSES_NMS: Fa l se
139 NMS_TYPE: nms_gpu
140 NMS_THRESH: 0 .01
141 NMS_PRE_MAXSIZE: 4096
142 NMS_POST_MAXSIZE: 500
143

144 OPTIMIZATION:
145 BATCH_SIZE_PER_GPU: 4
146 NUM_EPOCHS: 80
147

148 OPTIMIZER: adam_onecycle
149 LR: 0 .003
150 WEIGHT_DECAY: 0 .01
151 MOMENTUM: 0 .9
152

153 MOMS: [ 0 . 9 5 , 0 . 8 5 ]
154 PCT_START: 0 .4
155 DIV_FACTOR: 10
156 DECAY_STEP_LIST: [ 3 5 , 45 ]
157 LR_DECAY: 0 .1
158 LR_CLIP: 0.0000001
159

160 LR_WARMUP: Fal se
161 WARMUP_EPOCH: 1
162

163 GRAD_NORM_CLIP: 10

60



Appendix B

Python training and
evaluating file

Listing B.1: train.py

1 import _init_path
2 import argparse
3 import datet ime
4 import g lob
5 import os
6 from path l i b import Path
7 from t e s t import repeat_eval_ckpt
8

9 import torch
10 import torch . nn as nn
11 from tensorboardX import SummaryWriter
12

13 from pcdet . c o n f i g import cfg , c fg_from_list , cfg_from_yaml_file ,
l og_con f i g_to_f i l e

14 from pcdet . da ta s e t s import bui ld_data loader
15 from pcdet . models import build_network , model_fn_decorator
16 from pcdet . u t i l s import common_utils
17 from t r a i n _ u t i l s . op t im iza t i on import bui ld_opt imizer , bu i ld_schedu le r
18 from t r a i n _ u t i l s . t r a i n _ u t i l s import train_model
19

20

21 de f parse_conf ig ( ) :
22 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=’ arg par s e r ’ )
23 par s e r . add_argument ( ’−−c f g _ f i l e ’ , type=str , d e f a u l t=None , he lp=’

s p e c i f y the c o n f i g f o r t r a i n i n g ’ )
24

25 par s e r . add_argument ( ’−−batch_size ’ , type=int , d e f a u l t=None ,
r equ i r ed=False , he lp=’ batch s i z e f o r t r a i n i n g ’ )

61



Python training and evaluating file

26 par s e r . add_argument ( ’−−epochs ’ , type=int , d e f a u l t=None , r equ i r ed=
False , he lp=’ number o f epochs to t r a i n f o r ’ )

27 par s e r . add_argument ( ’−−workers ’ , type=int , d e f a u l t =4, he lp=’
number o f workers f o r data loader ’ )

28 par s e r . add_argument ( ’−−extra_tag ’ , type=str , d e f a u l t=’ d e f a u l t ’ ,
he lp=’ extra tag f o r t h i s experiment ’ )

29 par s e r . add_argument ( ’−−ckpt ’ , type=str , d e f a u l t=None , he lp=’
checkpo int to s t a r t from ’ )

30 par s e r . add_argument ( ’−−pretrained_model ’ , type=str , d e f a u l t=None ,
he lp=’ pretrained_model ’ )

31 par s e r . add_argument ( ’−−l auncher ’ , c h o i c e s =[ ’ none ’ , ’ pytorch ’ , ’
slurm ’ ] , d e f a u l t=’ none ’ )

32 par s e r . add_argument ( ’−−tcp_port ’ , type=int , d e f a u l t =18888 , he lp=’
tcp port f o r d i s t rbut ed t r a i n i n g ’ )

33 par s e r . add_argument ( ’−−sync_bn ’ , a c t i on=’ s tore_true ’ , d e f a u l t=
False , he lp=’ whether to use sync bn ’ )

34 par s e r . add_argument ( ’−−fix_random_seed ’ , a c t i on=’ s tore_true ’ ,
d e f a u l t=False , he lp=’ ’ )

35 par s e r . add_argument ( ’−−ckpt_save_interval ’ , type=int , d e f a u l t =1,
he lp=’ number o f t r a i n i n g epochs ’ )

36 par s e r . add_argument ( ’−−loca l_rank ’ , type=int , d e f a u l t=None , he lp=
’ l o c a l rank f o r d i s t r i b u t e d t r a i n i n g ’ )

37 par s e r . add_argument ( ’−−max_ckpt_save_num ’ , type=int , d e f a u l t =30,
he lp=’max number o f saved checkpo int ’ )

38 par s e r . add_argument ( ’−−merge_all_iters_to_one_epoch ’ , a c t i on=’
s tore_true ’ , d e f a u l t=False , he lp=’ ’ )

39 par s e r . add_argument ( ’−−s e t ’ , des t=’ s e t_c fg s ’ , d e f a u l t=None , nargs
=argparse .REMAINDER,

40 help=’ s e t ext ra c o n f i g keys i f needed ’ )
41

42 par s e r . add_argument ( ’−−max_waiting_mins ’ , type=int , d e f a u l t =0,
he lp=’max wai t ing minutes ’ )

43 par s e r . add_argument ( ’−−start_epoch ’ , type=int , d e f a u l t =0, he lp=’ ’
)

44 par s e r . add_argument ( ’−−num_epochs_to_eval ’ , type=int , d e f a u l t =0,
he lp=’ number o f checkpo int s to be eva luated ’ )

45 par s e r . add_argument ( ’−−save_to_f i l e ’ , a c t i on=’ s tore_true ’ ,
d e f a u l t=False , he lp=’ ’ )

46

47 par s e r . add_argument ( ’−−use_tqdm_to_record ’ , a c t i on=’ store_true ’ ,
d e f a u l t=False , he lp=’ i f True , the in t e rmed ia t e l o s s e s w i l l not be
logged to f i l e , only tqdm w i l l be used ’ )

48 par s e r . add_argument ( ’−−l o g g e r _ i t e r _ i n t e r v a l ’ , type=int , d e f a u l t
=50, he lp=’ ’ )

49 par s e r . add_argument ( ’−−ckpt_save_time_interval ’ , type=int ,
d e f a u l t =300 , he lp=’ in terms o f seconds ’ )

50 par s e r . add_argument ( ’−−wo_gpu_stat ’ , a c t i on=’ s tore_true ’ , he lp=’ ’
)

62



Python training and evaluating file

51 par s e r . add_argument ( ’−−use_amp ’ , a c t i on=’ s tore_true ’ , he lp=’ use
mix p r e c i s i o n t r a i n i n g ’ )

52

53

54 args = par s e r . parse_args ( )
55

56 cfg_from_yaml_file ( args . c f g _ f i l e , c f g )
57 c f g .TAG = Path ( args . c f g _ f i l e ) . stem
58 c f g .EXP_GROUP_PATH = ’ / ’ . j o i n ( args . c f g _ f i l e . s p l i t ( ’ / ’ ) [ 1 : −1 ] ) #

remove ’ c f g s ’ and ’ xxxx . yaml ’
59

60 args . use_amp = args . use_amp or c f g .OPTIMIZATION. get ( ’USE_AMP’ ,
Fa l se )

61

62 i f a rgs . s e t_c fg s i s not None :
63 c fg_from_l i s t ( args . set_cfgs , c f g )
64

65 re turn args , c f g
66

67

68 de f main ( ) :
69 args , c f g = parse_conf ig ( )
70 i f a rgs . launcher == ’ none ’ :
71 d i s t_t ra in = False
72 total_gpus = 1
73 e l s e :
74 i f a rgs . loca l_rank i s None :
75 args . loca l_rank = i n t ( os . env i ron . get ( ’LOCAL_RANK’ , ’ 0 ’ ) )
76

77 total_gpus , c f g .LOCAL_RANK = g e t a t t r ( common_utils , ’
in i t_d i s t_%s ’ % args . launcher ) (

78 args . tcp_port , a rgs . local_rank , backend=’ ncc l ’
79 )
80 d i s t_t ra in = True
81

82 i f a rgs . batch_size i s None :
83 args . batch_size = c f g .OPTIMIZATION.BATCH_SIZE_PER_GPU
84 e l s e :
85 a s s e r t args . batch_size % total_gpus == 0 , ’ Batch s i z e should

match the number o f gpus ’
86 args . batch_size = args . batch_size // total_gpus
87

88 args . epochs = c f g .OPTIMIZATION.NUM_EPOCHS i f args . epochs i s None
e l s e args . epochs

89

90 i f a rgs . fix_random_seed :
91 common_utils . set_random_seed (666 + c fg .LOCAL_RANK)
92

63



Python training and evaluating file

93 output_dir = c f g .ROOT_DIR / ’ output ’ / c f g .EXP_GROUP_PATH / c fg .
TAG / args . extra_tag

94 ckpt_dir = output_dir / ’ ckpt ’
95 output_dir . mkdir ( parents=True , exist_ok=True )
96 ckpt_dir . mkdir ( parents=True , exist_ok=True )
97

98 l o g _ f i l e = output_dir / ( ’ train_%s . l og ’ % datet ime . datet ime . now ( )
. s t r f t i m e ( ’%Y%m%d−%H%M%S ’ ) )

99 l o g g e r = common_utils . c r ea te_logge r ( l o g _ f i l e , rank=c fg .LOCAL_RANK
)

100

101 # log to f i l e
102 l o g g e r . i n f o ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Star t l ogg ing

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
103 gpu_l i s t = os . env i ron [ ’CUDA_VISIBLE_DEVICES ’ ] i f ’

CUDA_VISIBLE_DEVICES ’ in os . env i ron . keys ( ) e l s e ’ALL ’
104 l o g g e r . i n f o ( ’CUDA_VISIBLE_DEVICES=%s ’ % gpu_l i s t )
105

106 i f d i s t_t ra in :
107 l o g g e r . i n f o ( ’ Train ing in d i s t r i b u t e d mode : tota l_batch_s ize :

%d ’ % ( total_gpus ∗ args . batch_size ) )
108 e l s e :
109 l o g g e r . i n f o ( ’ Train ing with a s i n g l e p roce s s ’ )
110

111 f o r key , va l in vars ( args ) . i tems ( ) :
112 l o g g e r . i n f o ( ’ { :16} {} ’ . format ( key , va l ) )
113 l og_con f i g_to_f i l e ( c fg , l o g g e r=l o g ge r )
114 i f c f g .LOCAL_RANK == 0 :
115 os . system ( ’ cp %s %s ’ % ( args . c f g _ f i l e , output_dir ) )
116

117 tb_log = SummaryWriter ( log_dir=s t r ( output_dir / ’ tensorboard ’ ) )
i f c f g .LOCAL_RANK == 0 e l s e None

118

119 l o g g e r . i n f o ( "−−−−−−−−−−− Create data loader & network & opt imize r
−−−−−−−−−−−" )

120 t ra in_set , t ra in_loader , tra in_sampler = bui ld_data loader (
121 dataset_cfg=c f g .DATA_CONFIG,
122 class_names=c fg .CLASS_NAMES,
123 batch_size=args . batch_size ,
124 d i s t=di s t_tra in , workers=args . workers ,
125 l o g g e r=logger ,
126 t r a i n i n g=True ,
127 merge_all_iters_to_one_epoch=args .

merge_all_iters_to_one_epoch ,
128 tota l_epochs=args . epochs ,
129 seed=666 i f a rgs . fix_random_seed e l s e None
130 )
131

64



Python training and evaluating file

132 model = build_network ( model_cfg=c f g .MODEL, num_class=len ( c f g .
CLASS_NAMES) , datase t=tra in_se t )

133 i f a rgs . sync_bn :
134 model = torch . nn . SyncBatchNorm . convert_sync_batchnorm ( model )
135 model . cuda ( )
136

137 opt imize r = bui ld_opt imizer ( model , c f g .OPTIMIZATION)
138

139 # load checkpo int i f i t i s p o s s i b l e
140 start_epoch = i t = 0
141 last_epoch = −1
142 i f a rgs . pretrained_model i s not None :
143 model . load_params_from_file ( f i l ename=args . pretrained_model ,

to_cpu=di s t_tra in , l o g g e r=l o g ge r )
144

145 i f a rgs . ckpt i s not None :
146 i t , start_epoch = model . load_params_with_optimizer ( args . ckpt ,

to_cpu=di s t_tra in , opt imize r=opt imizer , l o g g e r=l o gg e r )
147 last_epoch = start_epoch + 1
148 e l s e :
149 ckp t_ l i s t = glob . g lob ( s t r ( ckpt_dir / ’ ∗ . pth ’ ) )
150

151 i f l en ( ckp t_ l i s t ) > 0 :
152 ckp t_ l i s t . s o r t ( key=os . path . getmtime )
153 whi le l en ( ckp t_ l i s t ) > 0 :
154 t ry :
155 i t , start_epoch = model .

load_params_with_optimizer (
156 ckp t_ l i s t [ −1] , to_cpu=di s t_tra in , opt imize r=

opt imizer , l o g g e r=l og g e r
157 )
158 last_epoch = start_epoch + 1
159 break
160 except :
161 ckp t_ l i s t = ckpt_ l i s t [ : −1 ]
162

163 model . t r a i n ( ) # be f o r e wrap to D i s t r i bu t edDataPara l l e l to
support f i x e d some parameters

164 i f d i s t_t ra in :
165 model = nn . p a r a l l e l . D i s t r i bu t edDataPara l l e l ( model , dev ice_ids

=[ c f g .LOCAL_RANK % torch . cuda . device_count ( ) ] )
166 l o g g e r . i n f o ( f ’−−−−−−−−−−− Model { c f g .MODEL.NAME} created , param

count : {sum ( [m. numel ( ) f o r m in model . parameters ( ) ] ) } −−−−−−−−−−− ’
)

167 l o g g e r . i n f o ( model )
168

169 l r_schedu le r , lr_warmup_scheduler = bui ld_schedu le r (
170 opt imizer , tota l_iters_each_epoch=len ( t ra in_loader ) ,

tota l_epochs=args . epochs ,

65



Python training and evaluating file

171 last_epoch=last_epoch , optim_cfg=c fg .OPTIMIZATION
172 )
173

174 # −−−−−−−−−−−−−−−−−−−−−−−s t a r t t r a in ing
−−−−−−−−−−−−−−−−−−−−−−−−−−−

175 l o g g e r . i n f o ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Star t t r a i n i n g %s/%s(%s )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’

176 % ( c fg .EXP_GROUP_PATH, c f g .TAG, args . extra_tag ) )
177

178 train_model (
179 model ,
180 opt imizer ,
181 t ra in_loader ,
182 model_func=model_fn_decorator ( ) ,
183 l r_schedu l e r=lr_schedu le r ,
184 optim_cfg=c fg .OPTIMIZATION,
185 start_epoch=start_epoch ,
186 tota l_epochs=args . epochs ,
187 s t a r t _ i t e r=i t ,
188 rank=c fg .LOCAL_RANK,
189 tb_log=tb_log ,
190 ckpt_save_dir=ckpt_dir ,
191 tra in_sampler=train_sampler ,
192 lr_warmup_scheduler=lr_warmup_scheduler ,
193 ckpt_save_interval=args . ckpt_save_interval ,
194 max_ckpt_save_num=args . max_ckpt_save_num ,
195 merge_all_iters_to_one_epoch=args .

merge_all_iters_to_one_epoch ,
196 l o g g e r=logger ,
197 l o g g e r _ i t e r _ i n t e r v a l=args . l o gge r_ i t e r_ in t e rva l ,
198 ckpt_save_time_interval=args . ckpt_save_time_interval ,
199 use_logger_to_record=not args . use_tqdm_to_record ,
200 show_gpu_stat=not args . wo_gpu_stat ,
201 use_amp=args . use_amp ,
202 c f g=c fg
203 )
204

205 i f ha sa t t r ( t ra in_set , ’ use_shared_memory ’ ) and t ra in_se t .
use_shared_memory :

206 t ra in_se t . clean_shared_memory ( )
207

208 l o g g e r . i n f o ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗End t r a i n i n g %s/%s(%s )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n\n\n ’

209 % ( c fg .EXP_GROUP_PATH, c f g .TAG, args . extra_tag ) )
210

211 l o g g e r . i n f o ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Star t eva lua t i on %s/%s(%s )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ %

212 ( c f g .EXP_GROUP_PATH, c f g .TAG, args . extra_tag ) )
213 tes t_set , tes t_loader , sampler = bui ld_data loader (

66



Python training and evaluating file

214 dataset_cfg=c f g .DATA_CONFIG,
215 class_names=c fg .CLASS_NAMES,
216 batch_size=args . batch_size ,
217 d i s t=di s t_tra in , workers=args . workers , l o g g e r=logger ,

t r a i n i n g=False
218 )
219 eval_output_dir = output_dir / ’ eva l ’ / ’ eval_with_train ’
220 eval_output_dir . mkdir ( parents=True , exist_ok=True )
221 args . start_epoch = max( args . epochs − args . num_epochs_to_eval , 0)

# Only eva luate the l a s t args . num_epochs_to_eval epochs
222

223 repeat_eval_ckpt (
224 model . module i f d i s t_t ra in e l s e model ,
225 tes t_loader , args , eval_output_dir , l ogger , ckpt_dir ,
226 d i s t _ t e s t=d i s t_t ra in
227 )
228 l o g g e r . i n f o ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗End eva lua t i on %s/%s(%s )

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ %
229 ( c f g .EXP_GROUP_PATH, c f g .TAG, args . extra_tag ) )
230

231

232 i f __name__ == ’__main__ ’ :
233 main ( )

67



Bibliography

[1] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom. PointPil-
lars Fast Encoders for Object Detection from Point Clouds.
[2] A. Paigwar, D. Sierra-Gonzalez, O. Erkent and C. Laugier. Frustum-PointPi-
llars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and
LiDAR.
[3] L. Zhang, H. Meng, Y. Yan and X. Xu. Transformer-Based Global PointPil-
lars 3D Object Detection Method.
[4] J. Tu, P. Wang and F. Liu. PP-RCNN: Point-Pillars Feature Set Abstracti-
on for 3D Real-time Object Detection.
[5] K. Vedder, and E. Eaton. Sparse PointPillars: Maintaining and Exploiting
Input Sparsity to Improve Runtime on Embedded Systems.
[6] L- Fan and L. Li. Detecting Objects in Point Clouds with NVIDIA CUDA-
Pointpillars
[7] K. Luo, H. Wu, K. Yi, K. Yang, W. Hao and R. Hu. Towards consistent
Object Detection via LiDAR-Camera Synergy.
[8] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection.
[9] Tensorflow: an end-to-end platform for machine learning. More information
at the link https://www.tensorflow.org/

[10] PyTorch: Tensors and Dynamic neural networks in Python with strong
GPU acceleration. More information at the link https://pytorch.org/

[11] Open3D: A Modern Library for 3D Data Processing. More information at
the link https://www.open3d.org/

[12] J. Vandendriessche, N. Wouters, B. da Silva, M. Lamrini, M. Y. Chkouri
and A. Touhafi. Environmental Sound Recognition on Embedded Systems: From
FPGAs to TPUs.
[13] F. Fusco, M. Vlachos, X. Dimitropoulos and L. Deri. Indexing million of
packets per second using GPUs.
[14] R. Bal, A. Bakshi and S. Gupta. Performance Evaluation of Optimization
Techniques with Vector Quantization Used for Image Compression.
[15] P. Cao, H. Chen, Y. Zhang and G. Wang. Multi-View Frustum Pointnet
for Object Detection in Autonomous Driving.
[16] M. Simony, S. Milzy, K. Amendey and H.M. Gross. Complex-YOLO: An



Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds
[17] S. Valladares, M. Toscano, R. Tufiño, P. Morillo and D. Vallejo-Huanga.
Performance Evaluation of the Nvidia Jetson Nano Through a Real-Time Ma-
chine Learning Application.
[18] Nvidia Jetson Nano Developer Kit. More information at the link https:

//developer.nvidia.com/embedded/jetson-nano-developer-kit.

[19]G. Dinelli, G. Meoni, E. Rapuano, G. Benelli and L. Fanucci. An FPGA-
Based Hardware Accelerator for CNNs Using On-Chip Memories Only: Design
and Benchmarking with Intel Movidius Neural Compute Stick.
[20] E. Dubois. Shared learning among distributed edge devices using coral edge
tpu machine learning engines.
[21] J. C. Shovic. Raspberry Pi IoT Projects.
[22] S. A. Bello, S. Yu, C. Wang, J. M. Adam and J. Li. Review: Deep Learning
on 3D Point Clouds
[23] Y. Liao, J. Xie and A. Geiger. KITTI-360: A Novel Dataset and Bench-
marks for Urban Scene Understanding in 2D and 3D
[24] OpenPCDet Toolbox for LiDAR-based 3D Object Detection. More informa-
tion at the link https://github.com/open-mmlab/OpenPCDet

[25] TensorBoard: TensorFlow’s visualization toolkit. More information at the
link https://www.tensorflow.org/tensorboard

[26] Nvidia GeForce RTX 3090. More information at the link https://www.

nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[27] Matlab. Get Started with PointPillars. More information at the link www.

mathworks.com/help/lidar/ug/get-started-pointpillars.html

[28] A project demonstrating how to use CUDA-PointPillars to deal with cloud
points data from lidar. More information at the link https://github.com/

NVIDIA-AI-IOT/CUDA-PointPillars?tab=readme-ov-file

[29] The KITTI Vision Benchmark Suite. More information at the link https:

//www.cvlibs.net/datasets/kitti/

[30] 3D detection and tracking viewer (visualization) for KITTI and waymo
dataset. More information at the link
https://github.com/hailanyi/3D-Detection-Tracking-Viewer

[31] B. Behroozpour, P. A. M. Sandborn, M. C. Wu and B. E. Boser. Lidar
System Architectures and Circuits


	List of Tables
	List of Figures
	Acronyms
	Field review: object detection in point clouds, software and hardware tools, embedded systems
	Object detection in point clouds
	Software and Hardware tools
	Embedded systems

	Identify a combination of a suitable object detection algorithm and an embedded platform
	Object Detection Algorithms for Point Clouds
	Embedded Platforms for Object Detection with Point Clouds
	PointPillars
	Pillar feature net
	Scatter layer
	Backbone network
	Detection head

	Performance evaluation of the selected algorithm in a desktop PC without resource limitations
	Experimentation setup
	Model configuration file
	Results
	Accuracy
	Loss behavior
	Results visualization
	More examples

	Main task: porting of the detection algorithm to the embedded system, making use of firmware simplifications
	Training behavior with fixed number of filters
	Accuracy with filters fixed to their original number
	Accuracy with filters fixed to half of their original number
	Accuracy with up-sample filters fixed to half of their original number
	Accuracy with input filters fixed to half of their original number
	Number of parameters and inference time compared for the different configurations

	Training behavior with fixed number of layers
	Accuracy with backbone layers fixed to [3,5,5]
	Accuracy with backbone layers fixed to [2,4,4]
	Number of parameters and inference time compared for the different configurations

	Prototype: performance evaluation
	Reducing the number of layers in the backbone to [3,4,4]
	Accuracy
	Losses
	Results visualization

	Reducing the number of layers in the backbone to [2,4,4] and halving the number of filters
	Accuracy
	Losses
	Results visualization

	Halving the number of input filters
	Accuracy
	Losses
	Results visualization

	Reducing the number of layers in the backbone to [3,4,4] and halving the number of input filters
	Accuracy
	Losses
	Results visualization

	Halving the number of up-sample filters
	Accuracy
	Losses
	Results visualization

	Reducing the number of layers in the backbone to [2,4,4] and halving the number of up-sample filters
	Accuracy
	Losses
	Results visualization

	Optimal solution
	Configure the embedded system workspace to work with point cloud files and deep learning
	Environment setup

	Conclusion
	Configuration file
	Python training and evaluating file
	Bibliography





