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Abstract

Convolutional Neural Networks (CNNs) have significantly advanced image recog-

nition and computer vision. Their growing size and complexity are driven by the need

for higher accuracy and the ability to tackle more complex tasks. Larger networks can

learn richer and abstract features at various levels, enabling them to recognize not only

basic patterns (e.g., edges and textures), but also more complex structures like objects

and faces, even in challenging conditions like varying lighting or cluttered environments.

The CNNs are scalable, but bigger networks imply more memory and compute capac-

ity. This often becomes a problem, mainly on FPGAs, which have stringent resource

restrictions, and this work tries to tackle these constraints for effective implementation.

This thesis addresses the challenge of deploying large Convolutional Neural Networks,

such as MobileNet or ResNet-50, on FPGAs, and to overcome the limited on-chip memory

capacity, the network weights (which constitute the majority of the memory footprint)

are first compressed offline using entropy-based techniques and stored in external DDR.

The compressed weights are then transferred to the FPGA’s on-chip BRAM and decom-

pressed in hardware using a dedicated decompressor (implemented in Vitis HLS) before

being fed directly to the convolutional layers for computation. This approach allows

larger neural networks to fit within FPGAs that would otherwise support only smaller

models. By reducing the memory footprint of the weights and the required bandwidth

between the FPGA and external memory, the method significantly improves system scal-

ability. However, the decompression process introduces challenges, particularly in terms

of throughput, which can become a bottleneck for real-time applications.

Various compression techniques were explored from the literature, including pruning,

weight clustering, low-rank factorization, arithmetic coding and Huffman coding, an-

alyzing their pros and cons. Ultimately, encoding-based methods were chosen as they
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provide decent compression ratios while being lossless, ensuring no accuracy loss after

decompression. Specifically, Gzip compression was used, which employs the Deflate

algorithm combining LZ77 and dynamic Huffman coding to balance efficiency and fea-

sibility.

Initially, the approach was tested on smaller networks such as ResNet-8, where both

compression and decompression were evaluated. This was done for a single layer, but it can

be extended to all layers with appropriate parallelization. For larger networks, only the

compression of already quantized weights (fixed-point 8-bit) was tested, compressing the

weights layer by layer (considering only convolutional layers) and computing a weighted

average of the compression factors to determine the overall compression ratio across the

entire network. This resulted in an average total compression of approximately 30-35%.

Future work could focus on improving throughput to further optimize the deployment

of large-scale CNNs on FPGAs.
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Chapter 1

Introduction

1.1 Background on CNNs

Convolutional Neural Networks (CNNs) are a class of machine learning (ML) models

that use specialized convolutional layers to extract features from data. Originally designed

to process structured grid-like data such as 1D vectors, 2D matrices, and multidimensional

tensors, CNNs have also been adapted for graph-based data processing. They are widely

used in various applications, including image recognition, natural language processing,

and audio signal analysis.

The fundamental operation in a CNN is convolution, a mathematical transformation

that applies a weighted sum of input elements using a convolutional kernel (or filter). The

objective of a CNN is to learn the optimal filters that maximize the extracted information

from input data, which can then be used for predictive tasks. These filters are typically

smaller than the input object and are applied over a sliding window across the entire

input domain.

A typical CNN architecture consists of a forward propagation of the input data

through a sequence of convolutional, activation, and pooling operations [1, 8].
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CHAPTER 1. INTRODUCTION

1.1.1 CNN Architecture and Core Components

A convolutional layer applies a set of convolutional operators (filters) to the input

tensor, producing a feature map. This operation can be viewed as a pattern-matching

technique, where filters capture specific patterns in the data. In graph-based CNNs, con-

volutional operations aggregate information from a node and its neighbors using weighted

sums.

In image processing, CNNs represent images as a stack of color channels (e.g., RGB),

forming a 3D tensor. The network learns filters that detect fundamental features such as

edges, textures, and higher-order patterns.

After convolution, a non-linear activation function is typically applied. These func-

tions introduce non-linearity into the model, enabling it to learn complex relationships

within the data. Common activation functions include the Rectified Linear Unit (ReLU).

Pooling layers reduce the dimensionality of feature maps, making the network more

robust to minor input translations and distortions while also reducing computational cost.

A commonly used pooling operation is max-pooling, which selects the maximum value in

each pooling region.

A CNN typically consists of multiple convolutional blocks, with initial layers extracting

simple features (such as edges) and deeper layers capturing complex patterns. The output

of the final convolutional block is flattened and passed through fully connected (dense)

layers, which serve as classifiers or predictors.

The learnable parameters of a CNN are primarily the weights, which determine how

input features are mapped to outputs. CNNs use the backpropagation algorithm to

adjust these weights by minimizing a loss function that quantifies the error between pre-

dictions and true labels. This optimization process is typically performed using gradient-

based methods such as Stochastic Gradient Descent (SGD) and its variants (Adam, RM-

Sprop) [1, 8].

Figure 1.1 illustrates the functioning and all the stages in CNNs:
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CHAPTER 1. INTRODUCTION

Figure 1.1: Convolutional Neural Network [1]

1.1.2 Weights in Convolutional Layers

In convolutional layers:

• Each filter contains a small set of learnable weights that are convolved over the

entire input.

• Filters are designed to detect specific patterns, such as edges or textures.

• Weight sharing ensures that the same set of weights is used across all spatial

locations, reducing the number of learnable parameters and making the network

more translation-invariant.

In fully connected layers:

• Each neuron has a weight for every neuron in the previous layer.

• These weights determine the strength of connections between neurons.

• The number of weights grows significantly with the number of neurons, increasing

the computational complexity of the model.
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CHAPTER 1. INTRODUCTION

The choice of weight initialization affects training speed and stability: random initial-

ization assigns small random values to weights, Xavier/Glorot initialization considers the

number of input and output neurons to maintain variance stability, while He initialization

is optimized for ReLU activation functions.

Large models with excessive weights risk overfitting, where they memorize training

data instead of generalizing to new data.

L1 and L2 regularization add penalties to the loss function based on weight magnitude,

discouraging excessive weight values.

Dropout randomly disables neurons during training to force the model to learn robust

features [1, 8].

1.2 CNN Architectures

Since the compression results and tests were conducted on architectures like MobileNet

and ResNet, it is useful to provide an overview of these models and understand their

underlying mechanisms.

1.2.1 The ResNet Architecture

Residual Network (ResNet) employs residual connections to achieve greater depth—often

exceeding 34 layers. ResNet was a groundbreaking entry in the ImageNet Challenge, be-

ing the first deep neural network to surpass human-level accuracy with a top-5 error rate

of less than 5%.

A significant challenge in training deep networks, such as ResNet, is the vanishing

gradient problem. As the error is backpropagated through the layers, the gradients can

shrink, hindering the ability to update the weights in earlier layers effectively. To address

this issue, ResNet introduces a unique shortcut module that incorporates identity con-

nections, allowing the output from the earlier layers to bypass one or more weight layers

(i.e., CONV layers) as shown in the figure 1.2:
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CHAPTER 1. INTRODUCTION

Figure 1.2: Shortcut module from ResNet. Note that ReLU following last CONV layer in

shortcut is after the addition [1]

This ”skip connection” enables the network to learn residual mappings rather than the

original unreferenced function, represented mathematically as:

F (x) = H(x) + x (1.1)

In this formulation, H(x) represents the residual mapping that the network aims to learn,

while x is the input to the weight layers. Initially, when training begins, the residual

function F (x) can be set to zero, resulting in the identity connection being utilized.

Gradually, as training progresses, the forward connection through the weight layer be-

comes more prominent, allowing the model to learn richer representations. This approach

is somewhat analogous to the mechanisms found in Long Short-Term Memory (LSTM)

networks used for sequential data, where information can persist through time steps.

Additionally, ResNet employs a “bottleneck” architecture to reduce the number of

weight parameters effectively. Instead of using a straightforward stack of convolutional
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CHAPTER 1. INTRODUCTION

layers, the architecture uses 1x1 filters to compress the dimensionality of the feature

maps before applying a 3x3 convolution, followed again by 1x1 filters to restore the di-

mensionality. This leads to a more efficient model that significantly reduces computational

complexity while maintaining performance [1].

1.2.2 MobileNet V1

MobileNet V1 represents a class of efficient convolutional neural networks designed specifi-

cally for mobile and embedded vision applications. The main goal was to create lightweight

models with low latency while maintaining reasonable accuracy. The key innovation of

MobileNet V1 is the introduction of depthwise separable convolutions. These con-

volutions factorize a standard convolution into two lighter operations:

• A depthwise convolution, which applies a single spatial filter to each input chan-

nel.

• A pointwise convolution (a 1x1 convolution), which linearly combines the outputs

of the depthwise convolution to create new features.

This decomposition significantly reduces computational cost and the number of param-

eters compared to standard convolutions. MobileNet V1 introduces two global hyper-

parameters to adjust the model size and speed based on the specific constraints of the

application:

• Width Multiplier (α): This multiplier uniformly scales the number of channels

in each layer of the network. A value of α < 1 creates ”thinner” models, with an

approximate reduction in computational cost and parameters of α2. Typical values

are 1, 0.75, 0.5, and 0.25.

• Resolution Multiplier (ρ): This multiplier reduces the spatial resolution of the

input and all internal network representations. In practice, it is set by choosing a

lower input resolution (e.g., 224, 192, 160, 128). The computational cost reduction

is proportional to ρ2.
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CHAPTER 1. INTRODUCTION

The architecture of MobileNet V1 primarily consists of a sequence of depthwise separable

convolutional layers, preceded by a standard convolution in the first layer. Each convo-

lutional layer (both depthwise and pointwise) is followed by Batch Normalization (BN)

and a ReLU non-linearity. Spatial downsampling is performed via stride convolutions in

the depthwise layers and the first layer. The network ends with an average pooling layer

and a fully connected layer for classification.

Experiments demonstrate that MobileNet V1 achieves a good balance between ac-

curacy, model size, and computational speed on ImageNet and in various applications

such as object detection, fine-grained classification, and face attribute analysis. The use

of depthwise separable convolutions significantly reduces the number of operations and

parameters with minimal accuracy loss [9].

1.2.3 MobileNet V2

MobileNet V2 was later introduced to further improve the performance of MobileNet

V1 while maintaining computational efficiency. The main innovations in MobileNet V2

include:

Unlike traditional residual blocks, which have thinner bottleneck layers in the inter-

mediate stages, the inverted residual blocks in MobileNet V2 first expand the number

of channels using a 1x1 convolution, apply a depthwise convolution, and then project

back to a lower number of channels using another linear (without ReLU) 1x1 convolution.

This design allows the network to work with richer representations and better leverage

non-linearity.

Using a linear activation in the last 1x1 layer of the inverted residual block is crucial.

It has been observed that applying non-linearity after a significant channel reduction can

result in excessive information loss. The linear bottleneck aims to preserve information.

Thanks to these modifications, MobileNet V2 generally achieves higher accuracy than

MobileNet V1 with a similar or lower number of parameters and computational operations

[9].
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Chapter 2

The Growth of CNNs

CNNs have become increasingly larger (deeper, with more layers and parameters) for

several reasons, leading to significant advantages:

Greater Availability of Data: The exponential growth of data in various fields

allows for the training of more complex and extensive CNN models. Larger networks can

better leverage large amounts of data to learn intricate patterns.

Increased Computational Power: GPUs and specialized hardware accelerators

enable the training and execution of very deep CNN architectures that would have been

impractical in the past. This increased computational power is essential for handling the

complexity of larger networks.

Algorithmic Innovations: Developments like residual connections (ResNet) and

Inception modules (GoogLeNet) have overcome difficulties in training very deep networks,

such as the vanishing gradient problem. These innovations allow for the construction of

larger and more effective networks. Increasing the depth of the network tends to provide

higher accuracy. Larger networks, with more layers, can learn more hierarchical and

complex representations of data.

Greater Capacity to Learn Complex Functions: Larger neural networks, with a

greater number of parameters, have a higher capacity to approximate complex nonlinear

functions that map inputs to outputs. This is especially crucial for challenging tasks that

require a nuanced understanding of the data.

Learning More Abstract and Invariant Features: Deeper layers in a CNN can

learn higher-level and more abstract features, which are often more invariant to variations
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in the input (such as changes in position, scale, lighting in images). This ability to abstract

improves the robustness of the model.

Better Performance on Complex Tasks: Tasks that require a deep semantic un-

derstanding of data (e.g., object recognition in complex contexts, visual natural language

understanding) often benefit greatly from the representational capacity of larger networks.

The increased depth allows the model to break down complex problems into a hierarchy

of simpler subproblems.

Potential for More Effective Transfer Learning: Very large pre-trained networks

on massive datasets (such as ImageNet) learn a wide range of general features. These

networks can then be effectively used for transfer learning on more specific tasks with

smaller datasets. The richness of features learned in larger networks can lead to better

starting points for training on new tasks.

In summary, larger CNNs, made possible by data, computational power, and algo-

rithmic innovations, offer the advantages of greater accuracy, increased learning capacity,

learning more abstract features, better performance on complex tasks, and facilitate more

effective transfer learning [1, 8].

2.1 Challenges and Drawbacks

Larger Convolutional Neural Networks, while offering benefits in terms of accuracy and

feature representation, also come with several significant drawbacks:

High Memory Consumption:

Larger networks have a greater number of weights. This high number of parameters

requires a large amount of memory to store, both during training and inference.

Also, fully-connected (FC) layers require a significant amount of storage. Larger networks

often have more or larger FC layers, further increasing memory consumption.

Training has greater storage requirements than inference, as intermediate outputs of the

network must be stored for backpropagation. Larger networks generate more intermediate

outputs, exacerbating the issue.

The large amount of memory required can make it difficult to implement large-scale models

on devices with limited resources, such as embedded or mobile devices. Additionally, it

9
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demands more GPU or RAM memory for training, potentially increasing hardware costs.

Higher Computational Cost:

DNNs have high computational complexity. Training CNNs, in particular, requires per-

forming a large number of convolution operations.

Larger networks have more layers and more filters per layer, resulting in a significantly

larger number of multiply-accumulate operations (MACs).

The process of learning operators (filters) in CNNs can be computationally expensive,

requiring sophisticated optimization algorithms. Larger networks have more parameters

to optimize, increasing the computational cost of training.

The high computational cost leads to longer training times, which can take hours or even

days, even when using powerful hardware. It also requires greater computational power,

resulting in higher energy costs and potential cooling issues in data centers. Inference

with very large networks can also require substantial computational capacity to achieve

real-time results.

Overfitting Risk:

One of the biggest drawbacks of DNNs is their need for large datasets to prevent over-

fitting during training. Larger networks, having a greater number of parameters, have

a higher capacity to ”memorize” training data, including noise and specificities of the

training dataset that do not generalize well to new data.

Overfitting occurs when a model learns the training data too well, achieving high perfor-

mance on it but performing poorly on unseen data. Larger networks, with their increased

capacity, are more susceptible to overfitting, especially when the amount of training data

is not sufficiently large compared to the number of parameters in the model.

To mitigate overfitting in large networks, regularization techniques such as dropout,

weight decay, and batch normalization are often required. However, these techniques

can add further complexity to the training process and may not always fully resolve the

issue, especially when the dataset is small relative to the model’s capacity.

In summary, while larger CNNs can offer increased accuracy and the ability to learn com-

plex features, they suffer from high memory consumption, higher computational costs

during both training and inference, and a greater risk of overfitting, especially when the

training data is limited. These disadvantages pose challenges for deploying very large mod-
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els in resource-constrained environments and necessitate careful consideration of model

size and complexity relative to the available data and computational resources [1, 8].

2.2 Thesis Goal

The objective of this thesis is to reduce memory consumption by compressing the

weights of CNNs, thereby enabling larger networks to fit within the same chip. By

applying advanced weight compression techniques, the goal is to maintain or even improve

the model’s accuracy while significantly reducing its memory footprint. This allows for

the deployment of more complex and deeper models on resource-constrained devices, such

as embedded systems or mobile platforms, without compromising performance.

11



Chapter 3

Weight Compression techniques

Research has been conducted on weight compression techniques available in the litera-

ture, and below is a description of the most important and interesting methods that are

applicable to our case.

3.1 Pruning

Neural network pruning is a technique employed to reduce the storage and computational

requirements of deep neural networks without significantly affecting their accuracy. This

is crucial for deploying these computationally and memory-intensive models on embedded

systems with limited resources. The underlying issue is that deep neural networks often

have a large number of redundant parameters, leading to inefficiencies [3, 10, 11].

3.1.1 Fundamental Pruning Process

The fundamental pruning process typically involves a three-step method:

1. Train Connectivity: The network is initially trained using standard methods to

learn which connections (weights) are important for its task. The focus here is on

identifying significant connections rather than achieving final weight values.

2. Prune Connections: After training, connections with weights below a certain

threshold are removed from the network. This transforms a dense, fully connected
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network into a sparse network, effectively learning the network topology. The thresh-

old can be determined based on various criteria, such as a quality parameter multi-

plied by the standard deviation of the weights in a layer.

3. Train Weights: The resulting sparse network is then retrained to fine-tune the

weights of the remaining connections. This step is critical because using the pruned

network without retraining leads to a significant drop in accuracy. Retraining allows

the remaining connections to compensate for the removed ones.

This pruning and retraining cycle can be repeated iteratively to achieve even greater

reductions in network complexity. Iterative pruning can lead to higher compression rates

compared to a single aggressive pruning step [3, 10,11].

3.1.2 Factors Influencing Pruning Effectiveness

The effectiveness of pruning is influenced by several factors:

• Regularization: Using L2 regularization during the initial training generally yields

the best pruning results, leading to better accuracy after retraining compared to

L1 regularization. L1 regularization tends to push more parameters towards zero

initially, which is beneficial before retraining but not as optimal afterward.

• Dropout: Since pruning reduces the model’s capacity, the dropout rate may need

to be adjusted during retraining, often being reduced proportionally to the decrease

in connections.

• Layer Sensitivity: Different layers in a neural network exhibit varying sensitivity

to pruning. Convolutional layers are typically more sensitive than fully connected

layers, with the first convolutional layer often being the most sensitive. This layer-

specific sensitivity can guide the pruning thresholds applied to each layer.

3.1.3 Benefits of Pruning

Pruning offers significant benefits:

13
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• Reduced Number of Parameters: Studies on ImageNet have shown remarkable

reductions in parameters for various networks like AlexNet or ResNet-50.

• Lower Computational Cost: Pruning reduces the number of floating-point op-

erations (FLOPs) required for inference, leading to faster computation.

• Improved Energy Efficiency: Memory access, especially to off-chip DRAM, is a

major energy consumer. By reducing model size, pruning can enable storing weights

on-chip (SRAM), which is significantly more energy-efficient.

• Facilitated Deployment on Mobile Devices: Smaller model sizes and reduced

computational demands make it more feasible to deploy complex neural networks

on resource-constrained mobile devices.

3.1.4 Advanced Pruning Strategies

Beyond magnitude-based pruning, other pruning strategies exist [3, 10,11]:

• Structured Pruning: Instead of individual connections, structured pruning re-

moves entire filters, channels, or neurons. This results in more regular weight ma-

trices, which can be advantageous for hardware implementations. Techniques like

Alternating Direction Method of Multipliers (ADMM) are used to achieve struc-

tured sparsity.

• Importance-Based Pruning: Methods like Optimal Brain Damage (OBD) and

Optimal Brain Surgeon (OBS) use the Hessian of the loss function to identify and

remove the least important connections. While potentially more accurate, they can

be computationally expensive.

• Neuron Agglomerative Clustering (NAC): This method groups and merges

similar neurons within the same layer based on the similarity of their weights and

biases, reducing redundancy without introducing sparsity. Agglomerative clustering

algorithms are used to determine neuron similarity.

Figure 3.1 shows how structured and unstructured pruning work:
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Figure 3.1: Illustration of unstructured pruning and structured pruning. (a)Unstructured prun-

ing, where synapses-unimportant connections, can be pruned in order to sparse the network.

Neurons can also be pruned to achieve the same purpose. (b) A typical structured that prunes

the filters. Channels of the generated feature maps are reduced accordingly [2]

3.1.5 Post-Pruning Optimization and Compression

After pruning, post-processing techniques can further enhance compression and accuracy.

Network Purification and Unused Path Removal (P-RM), for example, optimize struc-

turedly pruned models after ADMM by removing redundant weights and unused paths.

Pruning is often used in conjunction with other compression techniques like weight

quantization and Huffman coding to achieve even higher compression rates: this combined

approach can significantly reduce the storage requirements of neural networks.

3.2 Weight Clustering

Weight clustering is a deep neural network compression technique that aims to reduce pa-

rameter (weight) redundancy by grouping similar weights into clusters and representing

them with a smaller number of distinct values, typically the cluster centroids.

3.2.1 Key Concepts of Weight Clustering

Use of K-Means Clustering: A common approach to weight clustering involves the

k-means clustering algorithm. This algorithm groups weights into k clusters, where k is a
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predefined number of clusters, ensuring that weights within each cluster are more similar

to each other than to those in other clusters.

Centroids as Shared Weights: Once clustering is performed, the weights within

each cluster are replaced by the centroid (mean) of the cluster. Instead of storing many

individual weight values, only the centroids are stored, and each connection stores an

index pointing to the shared weight table (the centroids).

Feed-Forward and Back-Propagation Phases: During the feed-forward phase,

the effective weight of a connection is obtained by referencing its index in the shared

weight table. During back-propagation, the gradient for each shared weight is computed

and used to update the shared weight.

Centroid Initialization: The way centroids are initialized can influence the per-

formance of the compressed model. Various initialization methods are mentioned in the

sources, including linear initialization, which seems to perform better after clustering and

fine-tuning.

Fine-Tuning: After the clustering phase, fine-tuning the network with clustered

weights is often necessary to recover any accuracy loss due to compression.

Neuron Agglomerative Clustering (NAC):

It is important to note that another compression technique, Neuron Agglomerative Clus-

tering (NAC), groups similar neurons within the same layer based on the similarity of

their weights and biases, merging them into a cluster centroid. While this is not strictly

”weight clustering” in the sense of grouping individual weight values, NAC is a related

technique that exploits redundancy at a higher level (neurons) to compress the network.

The image 3.2 illustrates the process of weight clustering:
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Figure 3.2: Weight clustering by scalar quantization (top) and centroids fine-tuning (bottom) [3]

In summary, weight clustering is an effective technique for reducing the size of neural

network models by grouping similar weights and representing them with a smaller set

of shared values (the cluster centroids). This leads to lower memory requirements and

potentially improved computational efficiency [3, 12,13].

3.3 Low-Rank Factorization

Low-rank factorization is a technique used to compress neural networks by reducing the

redundancy in their weight tensors or matrices. This is achieved by decomposing the

original high-rank weight parameters into a product of two or more smaller, lower-rank

matrices or tensors. The rank of this factorization is a crucial factor, as a lower rank

leads to a higher compression ratio but potentially a greater loss in model performance.

Here are some key aspects and methods of low-rank factorization:

• Singular Value Decomposition (SVD) and Truncated SVD (TSVD): SVD

is a powerful matrix decomposition method that expresses a matrix as a product

of three matrices: a left singular matrix (U), a diagonal singular value matrix (Σ),

and a right singular matrix transpose (V T ). TSVD is an approximation obtained by

keeping only the largest k singular values and their corresponding singular vectors,

resulting in a lower-rank representation. TSVD can decompose a weight matrix

17



CHAPTER 3. WEIGHT COMPRESSION TECHNIQUES

W into USV T . It is considered one of the best methods for restoring the original

matrix.

• CUR Decomposition: This method selects a few important rows (R) and columns

(C) from the original matrix (W ) and approximates it using a low-dimensional

matrix (U) derived from their intersection, such that W ≈ CUR. While potentially

sub-optimal in approximation compared to TSVD, CUR decomposition has the

advantage of preserving the original properties and interpretability of the selected

rows and columns.

• Tucker Decomposition (including Tucker-2): This is a higher-order tensor

decomposition technique used to factorize weight tensors (especially convolutional

kernels) into smaller core tensors and factor matrices. Tucker-2 is a specific format

used in low-rank training for convolutional layers. For a convolutional layer W ∈

RCin×Cout×K×K , it can be represented in a Tucker-2 format.

Figure 3.3 shows how matrix and tensor decomposition work:

Figure 3.3: Matrix decomposition vs. tensor decomposition: (a) low-rank matrix decomposition

(truncated SVD); (b) low-rank tensor decomposition (Tucker decomposition) [4]
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Low-rank factorization can be applied to both the four-dimensional weight tensors of con-

volutional layers and the two-dimensional weight matrices of fully connected layers. For

fully connected layers with non-high order, TSVD is often used for compression [14,15].

Low-Rank Compression vs. Low-Rank Training:

• Low-Rank Compression (post-training) involves first training a full-rank model and

then applying low-rank factorization to its weight parameters to obtain a compressed

model, often followed by fine-tuning.

• Low-Rank Training aims to train compact, low-rank models directly from scratch

by maintaining a low-rank structure throughout the training process. Methods

like Efficient Low-Rank Training (ELRT) utilize low-tensor-rank formats and can

incorporate techniques like orthogonality regularization to improve the performance

of these directly trained compact models.

In summary, low-rank factorization encompasses various matrix and tensor decomposition

techniques aimed at compressing neural networks by approximating their weight parame-

ters with lower-rank representations. This can be done after training a full-rank model or

by directly training a low-rank model from the outset, offering effective ways to achieve

model compactness and efficiency.

3.4 Entropy-Based Coding

Entropy-based coding is a widely adopted data compression technique that utilizes variable-

length encoding based on the probability of occurrence of a given symbol in a data

stream. Depending on the symbol’s probability, it assigns different code lengths for en-

coding the data stream. Two of the most commonly used entropy-based coding schemes

are Huffman coding and arithmetic coding.

Huffman coding generates a binary Huffman tree, which represents the encoding for

each symbol based on the probability of occurrence. To encode a symbol using Huffman

coding, a tree traversal is performed starting from the root node until the desired symbol
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is located in the tree. In contrast, arithmetic coding encodes the data by mapping a

stream of symbols into the real number space [0, 1) [16].

3.5 Arithmetic Coding for Weight Compression

Arithmetic coding is an entropy-based data compression technique that maps a sequence

of symbols (or data) into the real number space between 0 and 1. Unlike Huffman coding,

which uses variable-length binary codewords for individual symbols, arithmetic coding

represents an entire sequence of symbols as a single number [16].

3.5.1 Principle of Arithmetic Coding

Arithmetic coding [5] compresses a data sequence by subdividing the interval [0, 1) into

smaller sub-ranges based on the probability of each symbol’s occurrence. For a given se-

quence of symbols, the algorithm continuously narrows the range in [0, 1) that corresponds

to the sequence by multiplying the current range by the probability of the next symbol.

Each symbol’s sub-range is determined by its cumulative probability distribution.

Figure 3.4 illustrates the encoding process. At the start, the entire range [0, 1) is

assigned to the first symbol based on its probability. As more symbols are processed,

the range is subdivided further, converging towards a specific point that represents the

entire sequence. The final number chosen within the sub-range is converted to a binary

representation, which is the compressed output.
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Figure 3.4: An example of the arithmetic coding process, where the set of data [1.064, 0.395,

1.061, 0.704] is encoded [5]

As shown in 3.5, in the final output probability interval, the left and right boundaries are

converted to binary, and the final compression result is extracted from this interval, a

process referred to as Bit encoding. The decoder is responsible for reconstructing the

original data from the compressed result. To achieve this, it requires both the first charac-

ter of the original data and the compression result as input. Using an iterative approach,

the decoder restores the original data. The probability distribution plays a critical role in

this process, as it determines the entropy, enhances the efficiency of the extracted interval,

and significantly impacts compression performance. Adaptive arithmetic coding further

improves this by generating a coding interval that is closer to the ideal.

Figure 3.5: Bit coding [5]
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3.5.2 Weight Compression with Arithmetic Coding

In the context of CNN inference on edge devices, Arithmetic coding is applied to further

compress the quantized weight data.

The process starts with calculating the probability distribution of each weight value.

This probability is used to guide the subdivision of the interval [0, 1), ensuring that

more probable weight values are encoded with shorter bit sequences. The result is a

compressed bitstream that represents the entire weight dataset.

3.5.3 Decoding with Arithmetic Coding

To perform inference on the edge device, the compressed weights need to be decoded.

The decoding process mirrors the encoding process, but in reverse. The decoder reads the

compressed bitstream and progressively refines the range until the original sequence of

weights is reconstructed. A hardware-based decoder, is implemented to ensure efficient,

low-latency weight decoding during CNN inference, with minimal overhead in terms of

power and time.

3.6 Huffman Coding for Weight Compression

The process of Huffman coding involves two main steps: building a Huffman tree and

encoding the data. The algorithm begins by calculating the frequency of each symbol

in the data. Symbols are then placed in a priority queue based on their frequency. The

two symbols with the lowest frequencies are repeatedly extracted from the queue and

merged into a new node, which becomes their parent in the Huffman tree. This process

continues until a single tree is formed, where each leaf node represents a symbol from the

original data.

The path from the root of the tree to each leaf determines the code for the corre-

sponding symbol, with left branches typically representing a binary ’0’ and right branches

representing a ’1’. Once the tree is built, the data can be encoded by replacing each

symbol with its corresponding variable-length binary code [17,18].

Figure 3.6 illustrates the process of building a Huffman tree for a simple set of symbols.
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Figure 3.6: Example of Huffman tree and Encoding process [6]

Huffman coding is particularly effective when the weight distribution is non-uniform,

meaning it has high variance. When some symbols (weights) appear much more frequently

than others, Huffman coding can efficiently assign shorter codes to high-frequency weights

and longer codes to less common ones, leading to better compression rates.

Huffman coding is a lossless compression technique, meaning that the original data

can be perfectly reconstructed during decompression. Decompression is performed by

traversing the Huffman tree from the root to a leaf node based on the sequence of binary

bits in the encoded data. Since the encoding process ensures that no code is a prefix of

another (prefix-free property), the decoding process is unambiguous and efficient. This

property makes Huffman coding particularly effective in applications where exact recon-

struction of the original data is required.

3.6.1 Limitations

While Huffman coding is efficient for many use cases, it has some limitations:

• Fixed Length Issues: Huffman coding is limited by the fact that it must encode

each symbol with an integer number of bits, leading to inefficiencies for symbols

with non-integer optimal bit lengths.
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• Suboptimal Compression Ratios: As Huffman coding assigns each symbol a

distinct code, the compression ratio may be suboptimal when the probability dis-

tribution of the symbols is highly skewed.
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Selected Method and Algorithm

This table compares the techniques based on compression ratio and accuracy loss

founded in literature. Among all these techniques, Huffman coding was chosen because

it is lossless, meaning there is no loss of information. Additionally, it avoids complications

found in other methods, such as the irregular memory access of pruning, the precision loss

of weight clustering, and the approximation errors of low-rank factorization. Moreover,

Huffman coding provides good compression ratios for weights already quantized to 8-bit,

which will be the ones targeted for our case.

Compression ratioAccuracy loss Network

Pruning ∼ 2x–3x (FP32) < 1% ResNet-50

Weight Clustering (128 clusters) ∼ 5x (FP32) ∼ 1% ResNet-18, ResNet-50

Low-Rank Factorization ∼ 4x (FP32) ∼ 1% ResNet-32

Huffman Coding ∼ 1.2x− 2x (INT8) 0% (no loss) AlexNet, ResNet

Table 4.1: Comparison of Weight Compression techniques

Huffman coding is implemented using the Gzip format. Gzip has been compared with

other formats such as Zstd, Snappy, LZ4, and others. However, it provided the best

trade-off between compression ratio and speed, measured in terms of throughput.
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4.1 How GZIP Compression/Decompression works

The Deflate algorithm [19] is a lossless data compression technique that combines two

main methods: LZ77 for replacing repeated patterns and Huffman coding for reducing

redundancy through entropy encoding. This combination allows Deflate to achieve a good

balance between efficiency and speed in both compression and decompression. It is widely

used in formats such as Gzip, PNG, and ZIP and is also employed in network protocols

like HTTP for compressing transmitted data.

The Deflate compression process is based on independent data blocks, each of which

can be processed separately. The first step in compression is tokenization using LZ77,

which transforms the data into a sequence of symbols consisting of literals and distance-

length pairs. When a repetition is detected, it is replaced with a reference to the previous

position and the length of the duplicated segment, thus reducing redundancy without

the need to build explicit dictionaries.

After this step, the resulting sequence is further compressed using Huffman coding.

This method assigns variable-length binary codes to symbols based on their frequency of

occurrence, ensuring that more common symbols have shorter codes while less common

symbols have longer ones. Depending on the type of compression chosen, either a static

Huffman table, which remains the same for all blocks, or a dynamic Huffman table, which

is built specifically for each block to achieve more efficient compression, can be used.

A file compressed with Deflate consists of a series of blocks, each of which can be un-

compressed, compressed with static Huffman coding, or compressed with dynamic Huff-

man coding. Uncompressed blocks are written without any processing and include a

header specifying the data length and a checksum for integrity verification. Blocks with

static Huffman coding use a predefined table, simplifying decompression but poten-

tially being less efficient if the frequency distribution of symbols is irregular. Blocks

with dynamic Huffman coding, on the other hand, include their own Huffman table,

ensuring more efficient compression but slightly increasing the output size.

Dynamic Huffman Coding is particularly advantageous in our case because the weights

are sent as a data stream, and the algorithm adapts in real-time to changes in symbol

frequencies, unlike classical Huffman Coding, which uses a fixed tree, therefore has been
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chosen over the static one.

Decompression, known as Inflate, follows the reverse process. Initially, the block type

is read to determine whether it is uncompressed, compressed with static Huffman coding,

or compressed with dynamic Huffman coding. If compressed, the symbol sequence is

reconstructed by decoding the Huffman encoding. Once the original symbols are obtained,

the distance-length references generated by LZ77 are resolved to reconstruct the original

data [20]. Here there is an image [7] which shows practically what happens with the

DEFLATE/INFLATE algorithm:

Figure 4.1: Deflate Encoding and Decoding for a symbol sequence with 40 symbols [7]

Deflate is an extremely efficient algorithm because it exploits data redundancy and applies

optimized encoding without requiring explicit dictionaries. This makes it suitable for a

wide range of applications, from file compression to data transmission in network proto-

cols. Thanks to its combination of LZ77 and Huffman coding, Deflate provides effective

compression while maintaining fast decompression, making it ideal for high-performance

contexts such as web applications and data storage.
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Compression of Large Networks

Compression factor for each convolutional layer has been computed and then calculated

theweighted average based on the layer sizes. The results show that ResNet-50 achieved

a 37.5% memory reduction, the highest value among the tested networks, but it was also

effective on the other architectures.

The compression is higher on ResNets because they have a higher number of parameters

and weight redundancy compared to MobileNets, which, thanks to depthwise separable

convolutions and inverted residual blocks, have a smaller number of parameters.

Network Compression

ResNet-20 25.4%

MobileNet v2 24.2%

MobileNet v1 23.7%

ResNet-50 37.5%

ResNet-18 36.3%

Table 5.1: Compression factors for each Network
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5.1 Compression of the Largest Layer on ResNet-50

The largest layer from a ResNet-50 was extracted, then was compressed and the memory

savings has been evaluated in terms of BRAM usage and percentage reduction. The

results showed a memory savings of 34.8%, which translates to 178 BRAMs saved,

which is a significant improvement for FPGA-based implementations.

No Compression With Compression

Layer size 2.25MB 1.4MB (compression factor = 1.61)

Total BRAM used 512 334 (including 16 BRAM for the decompressor)

Memory saved - 800.16 KB (34.8%)

Table 5.2: Compression of the Largest Layer in ResNet-50
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Implementation

In this work, both for the Large Network compression described before and for the Imple-

mentation, the Vitis-HLS (High-Level Synthesis) tool has been used, which is part

of the Xilinx Vitis unified software platform. Vitis HLS allows developers to describe

algorithms at a high level using programming languages such as C, C++, or OpenCL,

and automatically synthesizes them into RTL (Register Transfer Level) code suitable for

FPGA deployment.

This approach is particularly useful in FPGA-based CNN deployments, as it allows for

rapid exploration of different hardware architectures, optimizations, and accelerators. Ad-

ditionally, HLS provides abstractions for complex FPGA optimizations such as pipelining,

data partitioning, and interface management, which are crucial for efficiently deploying

deep learning models.

The following are the Device and Network Specifications for the Implementation:

• Device: Xilinx Zynq UltraScale+ FPGA

• Model: XCk26-SFVC784-2LV-C

• BRAM size: 36 kbit (4608 bytes)

• URAM size: 288 kbit (36864 bytes)

• Neural Network: ResNet-8

• Number of weights: 78052 bytes
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6.1 Weights Compression

I took the binary file containing the weights of the entire network and isolated the weights

of the first layer I was considering. I then saved the binary file containing the weights of

the first layer, which are 432 bytes. This file was then given as input to the compressor

(remember, the compression process is offline, while only the decompressor will be used

in hardware). The compressor applies Huffman coding to these weights, resulting in a

compressed binary file as output.

Huffman coding as we said is a lossless encoding technique, meaning that once the

data is compressed, it can be decompressed back to its original form without any loss of

information.

The resulting compression factor is 1.11, which is obviously very low. However, this is

expected because I am compressing a very small layer of a small network. Once this

process is implemented for one layer, it can naturally be extended to all layers, keeping

in mind the need to properly parallelize the operations for efficiency.

The code listing is provided in Appendix A.0.1.

6.2 Loading of Compressed Weights

In the testbench, I declared a pointer for the compressed weights, which will be used to

store the weights dynamically. Then, this pointer was passed to the networkSim function.

I allocated dynamic memory for both the compressed weights layer and the other layers

that are not compressed. To handle the loading of weights, I divided the process into two

steps. First, I opened the binary file containing the compressed weights, read its contents,

and loaded the data into the memory location that the pointer was referencing, which I

had previously declared and passed to the function. Next, I opened the file containing the

original weights of the network, skipping the weights of the first layer, read the remaining

weights, and then closed the file. Finally, I passed the pointer to the compressed weights to

the Resnet8 function, which serves as the top-level function for the network simulation.

The code listing is provided in Appendix A.0.2.
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6.3 Loading of compressed Weights from Master AXI

to BRAM

As shown in the code snippet, I passed the compressed weights as a parameter to the

top-level function, which is ResNet. Then, I added the pragma directive for the AXI

master interface. This pragma is necessary to establish the communication between

the FPGA logic and the external memory (DDR) through the AXI interface, enabling

efficient data transfer to and from the FPGA.

Next, I included the pragma directive #pragma HLS interface mode=ap ctrl chain

port=return. This pragma is used to specify that the function should use a control chain

for its return interface, optimizing the data flow and control signals during execution.

It ensures that the function interacts properly with the rest of the hardware design,

minimizing the overhead of control signal generation.

When the weights are needed to perform the convolution operations, they must be

decompressed. So, I pass them to the memory management function, which handles the

process. Specifically, the weights will first be loaded from the master AXI interface into

the internal BRAMs. After that, a stream will be initiated to the decompressor.

During the decompression phase, the weights will be unpacked and, once decompressed,

another stream will carry the decompressed weights directly to the convolution unit. This

is the planned workflow.

The code listing is provided in Appendix A.0.3.

In the memory management function, several important sub-functions are declared, in-

cluding produce stream, which generates the streams for each layer. These streams are

essential for feeding data into the convolution operations. For the layer I am modifying,

two specific functions have been created: master to comprstream and produce stream .

The first function, master to comprstream, takes the pointer to the compressed weights

as input and outputs the compressed weights stream, which is then passed to the de-

compressor. The second function, produce stream , takes the compressed weights stream

as input and produces the decompressed weights stream, which directly feeds into the

convolution.
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The reason I chose to create two separate functions instead of one that performs every-

thing is to maintain the dataflow design principle. This design ensures that while reading

data from memory, the convolution process can simultaneously use the data in parallel.

By splitting the operations into two distinct functions, the system can achieve a contin-

uous flow of data between reading, decompressing, and convolution, without blocking or

stalling, thus enhancing the overall performance and efficiency of the system.

The #pragma HLS dataflow is already at the top, and this directive is used to enable

parallel execution of functions in a design. It allows different stages of the process (e.g.,

memory reads, computations, and writes) to run concurrently, improving throughput and

reducing latency.

The code listing is provided in Appendix A.0.4.

In the master to comprstream function, I declared an array to load the compressed weights

from DDR to BRAM. The process begins by reading the compressed weights from the

master AXI and writing them into the BRAM. Once the weights are loaded into BRAM, I

then write the compressed weights from BRAM into a stream, which will be the input for

the decompressor. Additionally, I read the BRAM 512 times (in this case, corresponding

to c o index), so the stream will contain the compressed weights stored in BRAM, repeated

512 times. As a result, the stream will have a total of 512 * 386 = 197,632 elements.

After all the weights have been processed and streamed, the inStream <<0 line signi-

fies the end of the stream, while inEos <<1 indicates that the end-of-stream signal is set

to 1, marking the conclusion of the data transmission.

The code listing is provided in Appendix A.0.5.

6.4 Decompression and Streaming for Convolution

In this function, the input is the compressed weights stream, which is passed to the decom-

pressor. The decompressor uses Huffman coding to decompress the weights, producing

an output stream that contains both the data and validity bits. To separate the data

from the validity bits, I process the output stream accordingly, resulting in a stream that

contains only the decompressed data.
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Since the decompressor outputs the data sequentially, I had to reorganize the mem-

ory structure. Specifically, I iterated over the BRAM memory multiple times (the outer-

most loop). Then, I iterated over the number of channels, followed by the window size and

parallelism, ensuring that the data was processed in a manner suitable for convolution

operations. Ultimately, this results in a stream that feeds directly into the convolution

operations.

The code listing is provided in Appendix A.0.6.
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Results on ResNet-8

I performed CSIM, synthesis, cosimulation, and place and route in Vitis HLS to get a real

estimate of the allocated resources, the estimated frequency, and the cycle latency. The

table shows the results comparing the initial network without and the final network with

the layer in DDR and the integrated decompressor. The decompressor uses 2.76% more

memory as we can see.

Since I applied compression only to a single small layer of ResNet-8, the effect on total

memory usage was not significant. In this implementation, our main focus was ensuring

that everything worked correctly and that the decompressor was properly integrated

into the network. As for compression, it was tested and its effects were more visible on

larger networks with more layers and parameters. Regarding the latency, we observed an

increase of two orders of magnitude. This means that, while compression reduces memory

usage, it introduces a considerable computational overhead, which impacts inference

speed.

BRAMURAMDSP FF LUTLatency (cc)

ResNet-8 (w/o decompressor) 186 63 773 6319470174 85578

ResNet-8 (w/ decompressor) 197 64 773 7556985300 1716336

Table 7.1: Results on ResNet-8
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Conclusion

In this work, we focused on memory savings, achieving compression factors of approx-

imately 30-35% across all convolutional layers for larger networks. Furthermore, we

integrated both a compressor and decompressor into an existing network.

Future work and improvements include integrating the decompressor into larger net-

works to evaluate whether the compression gain remains consistent or if there is any loss.

Another key aspect to address is optimizing throughput, which is currently two or-

ders of magnitude higher compared to the original network. Also, Huffman coding could

be combined with other compression techniques to achieve better results and improve

efficiency.
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Source Codes

A.0.1 Code for Weights Compression

1 #include <ap_int.h>

2 #include <assert.h>

3 #include <stdint.h>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <fstream >

7 #include <iostream >

8 #include <string >

9 #include "cmdlineparser.h"

10 #include "kernel_stream_utils.hpp"

11 #include "ap_axi_sdata.h"

12 #include "hls_stream.h"

13 #include "zlib_compress.hpp"

14

15 #define MULTIPLE_BYTES 8

16 #define GMEM_DWIDTH 64

17 #define STRATEGY 0

18 #define NUM_BLOCKS 8

19 #define BLOCK_SIZE_IN_KB 32

20 #define TUSER_DWIDTH 32
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21 typedef ap_axiu <GMEM_DWIDTH , 0, 0, 0> in_dT;

22 typedef ap_axiu <GMEM_DWIDTH , TUSER_DWIDTH , 0, 0> out_dT;

23 typedef ap_axiu <32, 0, 0, 0> size_dT;

24

25 const uint32_t c_size = (GMEM_DWIDTH / 8);

26

27 void gzipcMulticoreStreaming(hls::stream <in_dT >& inStream , hls::

stream <out_dT >& outStream) {

28 #pragma HLS INTERFACE AXIS port = inStream

29 #pragma HLS INTERFACE AXIS port = outStream

30 #pragma HLS INTERFACE ap_ctrl_none port = return

31

32 #pragma HLS DATAFLOW

33 xf:: compression :: gzipMulticoreCompressAxiStream <STRATEGY ,

BLOCK_SIZE_IN_KB , NUM_BLOCKS , TUSER_DWIDTH >(inStream ,

outStream);

34 }

35

36 int main() {

37 std:: string inputFileName = "layer_432_quantized.bin";

38 std:: string outputFileName = "gzipc_resnet386.bin";

39

40 std:: fstream inFile;

41 inFile.open(inputFileName.c_str(), std:: fstream :: binary | std

:: fstream ::in);

42 if (! inFile.is_open ()) {

43 std::cout << "Cannot_open_the_input_file !!" <<

inputFileName << std::endl;

44 exit (0);

45 }

46 std:: ofstream outFile;

47 outFile.open(outputFileName.c_str(), std:: fstream :: binary |

std:: fstream ::out);
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48

49 hls::stream <in_dT > inStream("inStream");

50 hls::stream <out_dT > outStream("outStream");

51 hls::stream <size_dT > outSizeStream("outSizeStream");

52

53

54 inFile.seekg(0, std::ios::end);

55 const uint32_t inFileSize = (uint32_t)inFile.tellg ();

56 inFile.seekg(0, std::ios::beg);

57

58 auto numItr = 1;

59 uint32_t compressedSize = 0;

60

61 in_dT inData;

62 for (int z = 0; z < numItr; z++) {

63 inFile.seekg(0, std::ios::beg);

64 // Input File back to back

65 for (uint32_t i = 0; i < inFileSize; i += c_size) {

66 ap_uint <GMEM_DWIDTH > v;

67 bool last = false;

68 uint32_t rSize = c_size;

69 if (i + c_size >= inFileSize) {

70 rSize = inFileSize - i;

71 last = true;

72 }

73 inFile.read((char*)&v, rSize);

74 inData.data = v;

75 inData.keep = -1;

76 inData.last = false;

77 if (last) {

78 uint32_t num = 0;

79 inData.last = true;

80 for (int b = 0; b < rSize; b++) {
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81 num |= 1UL << b;

82 }

83 inData.keep = num;

84 }

85 inStream << inData;

86 }

87

88 // Compression Call

89 gzipcMulticoreStreaming(inStream , outStream);

90

91 uint32_t byteCounter = 0;

92 // Write file

93 out_dT val;

94 do {

95 val = outStream.read();

96 ap_uint <GMEM_DWIDTH > o = val.data;

97 auto w_size = c_size;

98 if (val.keep != -1) w_size = __builtin_popcount(val.

keep);

99 byteCounter += w_size;

100 outFile.write((char*)&o, w_size);

101 } while (!val.last);

102

103 compressedSize = byteCounter;

104 }

105

106 inFile.close();

107 outFile.close();

108

109 // Compression factor computation

110 double compressionFactor = static_cast <double >( inFileSize) /

static_cast <double >( compressedSize);
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111 std::cout << "Original␣size:␣" << inFileSize << "byte" << std

::endl;

112 std::cout << "Compressed_size:" << compressedSize << "byte"

<< std::endl;

113 std::cout << "Compression_factor:" << compressionFactor <<

std::endl;

114

115 return 0;

116 }

Listing A.1: Weights Compression

A.0.2 Loading of Compressed Weights

1 std:: chrono ::duration <double > networkSim(

2 int argc ,

3 char** argv ,

4 std:: string prj_root ,

5 const unsigned int n_inp ,

6 const unsigned int n_out ,

7 const t_in_mem* inp_1 ,

8 t_out_mem* o_outp1 ,

9 uint8_t* weights_ddr

10

11 ) {

12 t_weights_st *c_weights;

13 const int c_first_weights_dim = 386;

14 const int c_weights_dim = 78006;

15 const int c_second_weights_dim = 77620;

16

17 posix_memalign ((void **)&weights_ddr ,4096, 386* sizeof(t_weights_st

));

18 posix_memalign ((void **)&c_weights , 4096 ,77620 * sizeof(

t_weights_st));
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19

20 std:: ifstream file_weights("npy/gzipc_resnet386.bin", std::ios::

binary);

21

22 file_weights.read(reinterpret_cast <char*>( weights_ddr), 386 *

sizeof(t_weights_st));

23

24 file_weights.close();

25

26 std:: ifstream file_weightss(prj_root + "npy/resnet8_weights.bin",

std::ios:: binary);

27

28 file_weightss.seekg (432 * sizeof(t_weights_st), std::ios::beg);

29 file_weightss.read(reinterpret_cast <char*>(c_weights), 77620 *

sizeof(t_weights_st));

30 file_weightss.close ();

31

32 ...

33

34

35 auto start = std:: chrono :: high_resolution_clock ::now();

36

37 resnet8(

38 c_inp_1_stream ,

39 c_weights_stream ,

40 c_outp1_stream ,

41

42 weights_ddr

43 );

44

45 auto end = std:: chrono :: high_resolution_clock ::now();

46

47 ...
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48

49 free(c_weights);

50 free(buffer);

51

52 return (end - start);

53

54 }

Listing A.2: Compressed Weights Loading and Initialization

A.0.3 Top-level function ResNet-8

1 void resnet8(

2 hls::stream <t_inp_1 > &i_inp_1 ,

3 hls::stream <t_weights_stream > &i_data_weights ,

4 hls::stream <t_o_outp1 > &o_outp1 ,

5 uint8_t* weights_ddr

6

7 ) {

8

9 #pragma HLS interface m_axi port=weights_ddr depth =386

10 #pragma HLS interface mode=ap_ctrl_chain port=return

11

12 hls::stream <t_net_const_13 > s_net_const_13 [9];

13 hls::stream <t_net_const_14 > s_net_const_14 [1];

14 hls::stream <t_net_const_15 > s_net_const_15 [9];

15

16 ...

17

18 #pragma HLS interface port=i_data_weights mode=axis

19 #pragma HLS stream variable=s_net_const_13 depth =2 type=fifo

20 #pragma HLS stream variable=s_net_const_14 depth =2 type=fifo

21 #pragma HLS stream variable=s_net_const_15 depth =2 type=fifo

22
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23 ...

24

25 #pragma HLS interface port=o_outp1 mode=axis

26

27 memory_management (

28 i_data_weights ,

29 s_net_const_13 ,

30 s_net_const_14 ,

31 s_net_const_15 ,

32 s_net_const_16 ,

33 s_net_const_17 ,

34 s_net_const_18 ,

35 s_net_const_19 ,

36 s_net_const_20 ,

37 s_net_const_21 ,

38 s_net_const_22 ,

39 s_net_const_23 ,

40 s_net_const_24 ,

41 s_net_const_25 ,

42 s_net_const_26 ,

43 s_net_const_27 ,

44 s_net_const_28 ,

45 s_net_const_29 ,

46 s_net_const_30 ,

47 s_net_const_31 ,

48 s_net_const_32 ,

49

50 weights_ddr

51 );

52

53 nn2fpga :: produce_stream <

54 ...

55 > (
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56 i_inp_1 ,

57 s_net_produce_0

58 );

59

60 nn2fpga :: shift_op <

61 ...

62 > (

63 s_net_produce_0 [0],

64 s_net_produce_0_pre_pad [0],

65 s_net_produce_0_data [0]

66 );

67

68 ...

69

70 nn2fpga :: conv_comp <

71 ...

72 > (

73 s_net_produce_0_compute ,

74 s_net_const_13 ,

75 s_net_const_14 ,

76 s_net_conv_1 ,

77 );

78

79 ...

Listing A.3: Top-Level Function: ResNet8

A.0.4 Memory management

1 void memory_management(

2 hls::stream <t_weights_stream > &i_data_weights ,

3 hls::stream <t_net_const_13 > s_net_const_13 [9],

4 hls::stream <t_net_const_14 > s_net_const_14 [1],

5
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6 ...

7

8 uint8_t* weights_ddr

9 ) {

10

11 ...

12

13 typedef ap_uint <IN_BITWIDTH > in_t;

14 hls::stream <in_t > inStream("inStream");

15 hls::stream <bool > inEos("inEos");

16

17 master_to_comprstream <in_t ,

18 c_node_const_10_ow ,

19 c_node_const_10_oh ,

20 c_net_const_13_reuse >

21 (

22 weights_ddr

23 s_net_const_13_init_flag ,

24 inEos ,

25 inStream

26 );

27

28 produce_stream_ <

29 t_net_const_13 ,

30 c_node_const_10_ich ,

31 c_node_const_10_och ,

32 c_node_const_10_ow ,

33 c_node_const_10_oh ,

34 c_net_const_13_iw ,

35 c_net_const_13_ih ,

36 c_net_const_13_ops ,

37 c_net_const_13_reuse ,

38 in_t

46



APPENDIX A. SOURCE CODES

39 > (

40 inStream ,

41 inEos ,

42 s_net_const_13_init_flag ,

43 s_net_const_13

44 );

45

46 nn2fpga :: produce_stream <

47 t_net_const_14_st ,

48 t_net_const_14_init ,

49 t_net_const_14 ,

50 c_node_const_11_ich ,

51 c_node_const_11_och ,

52 c_node_const_11_ow ,

53 c_node_const_11_oh ,

54 c_net_const_14_iw ,

55 c_net_const_14_ih ,

56 c_net_const_14_ops ,

57 c_net_const_14_reuse

58 > (

59 c_net_const_14 ,

60 s_net_const_14_init ,

61 s_net_const_14_init_flag ,

62 s_net_const_14

63 );

64

65

66 ...

Listing A.4: Memory management

A.0.5 Weights from DDR to BRAM
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1 template <typename in_t , int OW, int OH, int c_reuse >

2 void master_to_comprstream(uint8_t* weights_ddr ,

3 bool& s_init ,

4 hls::stream <bool >& inEos ,

5 hls::stream <in_t >& inStream) {

6

7 constexpr unsigned c_o_index = OH * OW / c_reuse;

8 const uint32_t sizeof_in = (IN_BITWIDTH / 8);

9 uint8_t weightscompr [386];

10

11 for (int i = 0; i < 386; ++i) {

12

13 weightscompr[i] = buffer[i];

14 }

15

16 for (auto s_o_index = 0; s_o_index < c_o_index; s_o_index ++) {

17 for (uint32_t i = 0; i < 386; i += sizeof_in) {

18

19 in_t x = 0;

20 for (uint32_t j = 0; j < sizeof_in; j++) {

21

22 x.range ((j + 1) * 8 - 1, j * 8) = weightscompr[i + j];

23 }

24 inStream << x;

25 inEos << 0;

26 }

27 }

28 inStream << 0;

29 inEos << 1;

30 }

Listing A.5: Loading Compressed Weights from BRAM to Stream
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A.0.6 Decompression and Streaming for Convolution

1 #include "inflate.hpp"

2

3 #define MULTIPLE_BYTES 8

4 #define LOW_OFFSET 1

5 #define MAX_OFFSET (32 * 1024)

6 #define HISTORY_SIZE MAX_OFFSET

7 #define LL_MODEL false

8

9 #define HUFFMAN_TYPE xf:: compression :: DYNAMIC

10

11 #define OUT_BITWIDTH (MULTIPLE_BYTES * 8)

12

13

14 template < typename dout_t , int ICH , int OCH , int OW, int OH,

15 int c_fw , int c_fh , int c_ops , int c_reuse ,typename

in_t >

16 void produce_stream_(hls::stream <in_t >& inStream ,

17 hls::stream <bool >& inEos ,

18 bool& s_init ,

19 hls::stream <dout_t > o_data[c_fh * c_fw]) {

20 constexpr unsigned FSZ = c_fh * c_fw;

21 constexpr unsigned c_ch = ICH * OCH / c_ops;

22 constexpr unsigned c_o_index = OH * OW / c_reuse;

23

24 const uint32_t strbSize = (OUT_BITWIDTH / 8);

25

26 typedef ap_uint <OUT_BITWIDTH > out_t;

27

28 hls::stream <ap_uint <OUT_BITWIDTH + strbSize >> outStream("

decompressOut");

29
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30 hls::stream <uint8_t > decompressedStream("decompressedStream");

31

32 const int c_decoderType = (int)HUFFMAN_TYPE;

33

34 xf:: compression :: details :: inflateMultiByteCore <c_decoderType ,

MULTIPLE_BYTES , xf:: compression :: FileFormat ::BOTH , LL_MODEL ,

HISTORY_SIZE >(inStream , inEos , outStream);

35

36 for (ap_uint <OUT_BITWIDTH + strbSize > val = outStream.read(); val

!= 0; val = outStream.read()) {

37 out_t o = val.range(strbSize + OUT_BITWIDTH - 1, strbSize

);

38 ap_uint <strbSize > strb = val.range(strbSize - 1, 0);

39

40 for (size_t i = 0; i < strbSize; ++i) {

41 if (strb[i]) {

42

43 decompressedStream << o.range ((i + 1) * 8 - 1, i * 8);

44

45 }

46 }

47 }

48

49 dout_t s_output;

50 for (auto s_o_index = 0; s_o_index < c_o_index; s_o_index ++) {

51 for (auto s_ch = 0; s_ch < c_ch; s_ch ++) {

52 #pragma HLS pipeline

53 for (auto s_index = 0; s_index < FSZ; s_index ++) {

54 for (auto s_ops = 0; s_ops < c_ops; s_ops ++) {

55

56 ap_fixed <8, 4, AP_RND , AP_SAT > data;

57

58 ap_uint <8> byte = decompressedStream.read();
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59 data.range(7, 0) = byte;

60 s_output[s_ops ]=data;

61 }

62

63 o_data[s_index ]. write(s_output);

64 }} }

65 }

Listing A.6: Decompression and Stream Preparation for Convolution
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