
POLYTECHNIC OF TURIN

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Extension and improvement of Data
Quality and Observability framework

through DBT

Supervisor

Prof. Paolo GARZA

Candidate

Giorgio CACOPARDI

April 2025





Abstract

The growing complexity and volume of data in modern business intelligence ar-
chitectures requires increasing attention to data quality and traceability. In this
context, improved data monitoring and validation processes are essential to ensure
the reliability and correctness of analyses.
This thesis explores the extension of Alertable, an existing platform focused on
data quality and observability, by integrating it with DBT (Data Build Tool), one
of the most popular tools for data management and transformation within data
engineering pipelines.

The main objective of this work is to develop new functionalities that improve
Alertable’s ability to monitor and validate data through the integration of advanced
data quality tests, allowing anomalies and discrepancies in data flows to be auto-
matically detected. The proposed extension involves the creation of a framework
to perform quality tests directly in DBT or eventually convert DBT tests into the
format used by Alertable, leveraging Alertable’s data validation capabilities.
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Chapter 1

Introduction

In recent years, the importance of data management in business applications has
grown exponentially, transforming the way organizations leverage information to
improve processes and decisions. Data quality and reliability have become strategic
priorities, with the emergence of tools and frameworks to ensure that data are not
only correct, but also constantly monitored.

The ever-increasing need to rely on data-driven methodologies that enable more
reliable business choices or the use of generative AI tools require increasingly
complex IT infrastructures capable of being able to handle the sheer volume of
them.

1.1 Motivation
In this context, this thesis work focuses on the integration of DBT (Data Build
Tool) within Alertable, a platform that addresses data quality, observability and
profiling. Alertable aims to provide an ecosystem that monitors data flows, identifies
anomalies, and notifies stakeholders in real time. DBT, on the other hand, is a
framework for managing, transforming, and orchestrating data with a modular
structure, improving the traceability and maintainability of data pipelines. The
join of this 2 tools can be a unifying point to allow figures who are less technical
but more focused on business knowledge and the usefulness in that context of data
to be able to set up data control flows in a more understandable way.

1.2 Purpose and goal
The goal is to integrate the DBT tool within the Alertable flow, allowing the
execution of data quality jobs that can perform checks on one or more different
datasources, the use of external DBT libraries for data quality tests to extend the
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Introduction

type of tests possible and the conversion of DBT tests to the format currently used
by Alertable to ensure interchangeable use of the two modes.

1.3 Methodology
The adopted methodology is made up of different facts:

1. At first, the DBT tool was studied, in order to acknowledge its configuration
and use

2. Secondly, an attempt was made to understand which components were the
most useful in order to integrate it into Alertable

3. Goals have been set about the functionality to be achieved:

• Creating a DBT project that can handle multiple different datasources,
ranging from connections with Athena, My Sql or Postgres

• Ability to automatically import from a YAML file of checks directly to
Alertable

• Execution of jobs that can simultaneously run multiple DBT checks on
multiple different datasources, resulting in retrieval of the outcome and
failed rows for every single check

• Conversion of DBT check to the default Alertable Check

1.4 Outline
• Chapter 2 introduces the concept of Data Quality, Observability and Profiling,

the components typically required to achieve them, and the state of the art
technology landscape in this regard

• Chapter 3 provides an explanation and overview of the Alertable application,
showing its functionality and how to use it

• Chapter 4 describes DBT, all of its components, the typical structure of a
DBT project, and its functionality

• Chapter 5 covers the work done about the integration of DBT into Alertable,
showing the technologies used, the various goals and functionality achieved,
and a demonstration of their use

• Chapter 6 covers a comparison about efficiency and scalability between the
job execution with the AWS EMR cluster adopted by Alertable and the DBT
Job execution
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Chapter 2

State of the Art

2.1 Introduction to Data Quality, Observability
and Profiling

Data Quality

"Data quality measures how well a dataset meets criteria for accuracy, completeness,
validity, consistency, uniqueness, timeliness and fitness for purpose, and it is critical
to all data governance initiatives within an organization." [1].

Figure 2.1: Data quality definition

• Accuracy: it refers to how well the data correctly represents real-world values
and its trustworthy.

• Completeness: it evaluates whether all required data is present and available.

• Consistency: it examines whether data is consistent across different sources
or systems.
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• Timeliness: it measures whether the data is up-to-date and available, when
needed.

• Validity: it refers to whether the data conforms to the defined business rules,
formats or constraints.

• Uniqueness: it ensures that the data does not have unnecessary duplicates.

Data quality can be affected at any stage of the data pipeline - before ingestion,
in production or even during analysis. Maintaining high data quality is not
just critical for everyday business operations: it becomes even more essential as
companies adopt Artificial Intelligence (AI) and automation technologies. Over
the past few years, ever more companies have tried to adopt the DevOps principle
(shortening the systems development life cycle by applying practices like Continuous
integration/Continuous deployment and micro services architecture) to data in the
form of "DataOps", by automatize all the steps involved in building data pipelines,
managing data workflows, and ensuring the reliability, quality, and security of data
processes.

Data Observability

Data Observability refers to the ability to monitor, track and understand the health,
quality and performance of data systems throughout their life cycle. It involves
capturing metrics, logs, and events to provide real-time insights into the behavior
of data processes. The five pillars of data observability are [2]:

• Freshness: it seeks to understand how up to date the data in the tables are,
as well as the cadence at which they are updated

• Quality: it refers to aspects about data itself like percent NULLS, percent
Uniques or if the data is within an accepted range.

• Volume: it refers to the completeness of the data in the tables and offers
insights on the health of your data sources

• Schema: it refers to the monitoring about changes in the organization of the
data

• Lineage: it provides the answer on which part of the data pipeline were
affected, as well as which teams are generating the data and who is accessing
to it

4
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Data Profiling

Data profiling is the process of analyzing, reviewing and summarizing datasets in
order to better understand their structure, content, quality and interrelationships.
It involves examining data for patterns, inconsistencies, errors and anomalies to
ensure it meets the requirements for its intended use. For this reason, it is often a
preliminary step in data quality management, data governance or data preparation
workflows.

2.1.1 Evolution of Data Quality Challenges
In recent years, there has been a growing and significant focus on the importance of
data and digitalization in the fields of business management and decision-making.
This trend has led to massive investments in this sector, exponentially increasing
the volume of available data and complicating its management. This shift has
manifested in various aspects, such as:

• Migration to cloud platforms: nowadays always more company base
their approach on the cloud due to its easier management, scalability and
cost optimization, leasing in the increasing adoption of solutions like Amazon
Redshift, Snowflake or Google BigQuery

• Proliferation of data sources: companies use from dozens to hundreds of
internal and external data sources to produce analytics and ML models.

• Rising complexity of data pipelines: data pipelines have become increas-
ingly complex with multiple stages of processing and nontrivial dependencies
between various data assets. Without visibility into these dependencies, how-
ever, any change made to one data set can have unintended consequences
impacting the correctness of dependent data assets

• The emergency of increasingly specialized and decentralized data
teams: companies increasingly rely on data to drive smart decision making,
they are hiring more and more data analysts, data scientists, and data engineers
to build and maintain the data pipelines, analytics, and ML models that power
their services and products, as well as their business operations

• A paradigm shift in database management Much in the same way
that software engineering teams transitioned from monolithic applications to
microservice architectures, the data mesh is, in many ways, the data platform
version of microservices
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Figure 2.2: Data mesh

2.2 Data Quality in the Modern Data Stack

2.2.1 Core Components
The modern data stack introduces several key components crucial for maintaining
data quality.

Data Source Layer

The data source layer is the foundational starting point of any modern data stack,
encompassing all systems and mechanisms responsible for generating and storing
raw data that will later be processed, analyzed, and utilized for decision-making.
This layer serves as the initial interface between the organization’s data ecosystem
and the external or internal sources from which the data originates.

Data sources can take multiple forms, depending on the type of information
being gathered and its intended use. Operational databases are one of the most
common types, consisting of transactional systems like relational databases (e.g.,
PostgreSQL, MySQL, Oracle DB) that store structured, real-time data essential
for running daily business operations. These databases are optimized for quick
and efficient retrieval and updating of information, forming the backbone of many
operational workflows and usually possess a good level od data quality due to their
structured nature.

Another significant category within the data source layer is Software-as-a-Service
(SaaS) applications, which are cloud-based solutions used for specific business pur-
poses, such as customer relationship management (CRM) tools (e.g., Salesforce),
enterprise resource planning (ERP) platforms, and marketing automation tools.
SaaS platforms often produce highly granular, event-driven data, capturing every-
thing from user interactions to campaign performance metrics.

6



State of the Art

In addition, event streams play a critical role in capturing time-sensitive, high-
speed data from systems and devices. These streams, often handled through
message brokers or event-processing systems like Apache Kafka or AWS Kinesis,
are designed to process and transmit data generated in real-time by applications,
IoT devices, or web services. They are particularly important in scenarios where
immediate insights are required, such as monitoring user activity on a website,
tracking the status of IoT devices, or detecting fraud in financial transactions. This
data expecially requires greater attention due to its nature and structure which is
unpredictable, with possible missing or duplicate values.

The diversity of data sources in this layer reflects the growing complexity of
modern data ecosystems. These sources may vary significantly in structure, ranging
from highly organized, structured formats in relational databases to semi-structured
or unstructured formats in JSON logs, XML files, or raw text. Moreover, integrating
these disparate data sources into a unified data pipeline often requires the use of
specialized tools and techniques to standardize, clean, and transform the incoming
data for further processing.

Data Ingestion Layer

The Data Ingestion Layer is a crucial intermediary step in the modern data stack,
responsible for transporting data from diverse source systems into centralized
storage solutions, such as data warehouses, data lakes, or hybrid storage systems.
This process ensures that raw data is made available for subsequent transformations,
analysis, and consumption. The data ingestion layer handles the complexities of
extracting data from heterogeneous systems, standardizing it, and loading it into
storage in an efficient and scalable manner. There are typically two primary
approaches to data ingestion, each suited for different types of use cases: batch
ingestion and real-time (or stream) ingestion:

• Batch ingestion: Batch ingestion involves collecting data over a specific
period and then transferring it in bulk to the target system. This method
is ideal for scenarios where data updates are not time-sensitive or where
processing efficiency is prioritized over immediacy.

• Real time ingestion: Real-time ingestion, on the other hand, captures and
transfers data continuously as it is generated. This approach is essential for
applications requiring up-to-the-second updates, such as fraud detection, live
dashboarding, or monitoring IoT device activity. It usually requires more
sophisticated infrastructure to handle the continuous flow of data.
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Data Storage Layer

The Data Storage Layer is a critical component of the modern data stack, serving
as the central repository where data is securely stored, organized, and prepared
for subsequent transformation, analysis, and retrieval. Modern storage systems
are designed with three fundamental goals: scalability, to accommodate growing
volumes of data; queriability, to ensure efficient access to data for diverse use
cases; and cost efficiency, to optimize resource utilization while minimizing storage
expenses. Two of the most commonly used types of storage systems in this context
are data warehouses and data lakes, each serving distinct purposes and requirements.

• Data warehouse: It is a structured storage system designed to integrate,
organize, and analyze large volumes of data from multiple sources. Its primary
goal is to support business intelligence, reporting, and data analytics functions
by providing a single, reliable source of truth for an organization. They are
optimized for structured data, such as relational database tables, and excel in
handling queries that involve aggregations, filtering, and summarization.

• Data lake: It is a more flexible storage solution that can accommodate data
in its raw, unstructured, semi-structured, or structured form. Data lakes are
particularly well-suited for big data use cases, such as machine learning and
advanced analytics, where diverse data types and formats must coexist. Unlike
data warehouses, which enforce a schema-on-write approach (where data is
structured during ingestion), data lakes adopt a schema-on-read approach,
allowing for greater adaptability

Transformation Layer

In this layer are applied all the business oriented transformations with the goal of
making the data a solid source of transformations with different applications, from
business intelligence to machine learning model input. Usually, in this step are
used tools which can manage a massive amount of data, like Spark, which exploits
distributed computing in a cluster to divide the jobs and reduce the latency. There
are different tools and ways to apply the transformations like:

• Distributed Computing Systems: like Apache Spark or Databricks, where
the tasks are split across a cluster to process massive datasets in parallel

• Cloud based ETL platforms: usually tools like DBT, for modular SQL
based transformations, or AWS Glue for cloud native ones.

• Relational and Analytical Databases: they usually leveraging database
specific transformations capabilities in data warehouses like Snowflake or
Redshift
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Quality Control Layer

The role of the data quality layer is to apply different kind of tests to the data to
ensure their reliability, robustness and solidity. Data quality issues, if left unchecked,
can lead to inaccurate insights, flawed decisions, and operational inefficiencies.
Therefore, the quality control layer employs a series of tests, validations, and
monitoring mechanisms to proactively identify, address, and prevent data-related
issues.

2.3 State of the Art Solutions for Data Quality
This section introduces 2 of the most frequently used tools in the field of data
quality.

2.3.1 Great Expectations
Great Expectations is an open-source framework designed to validate, document,
and profile data with a focus on ensuring quality and reliability across data
workflows. It provides a systematic approach to defining, testing, and enforcing
data expectations and it has several major features including data validation,
profiling, and documenting of a project.[3]

Figure 2.3: Great Expectations overview

Expectations

The expectations represents all the possible types of data quality check that can
be performed on a data source. There are a lot of different assertions that can be
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made like:

Listing 2.1: Example of GE Assertions
1

2 df . expect_column_values_to_be_unique ( column=" id " )
3 df . expect_column_values_to_match_regex (
4 column=" emai l " , regex=r " [^@]+@[^@]+\ . [^@]+ "
5 )
6 df . expect_column_values_to_be_between (
7 column=" p r i c e " , min_value=0, max_value=1000
8 )
9 df . expect_column_values_to_not_be_null ( column="name" )

10 df . expect_column_values_to_be_in_set (
11 column=" s t a tu s " , value_set =[ " a c t i v e " , " i n a c t i v e " , " pending " ]
12 )
13 df . expect_column_value_lengths_to_be_between (
14 column=" username " , min_value=3, max_value=50
15 )
16 df . expect_table_row_count_to_be_between ( min_value=100 , max_value

=1000)

10
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After their definition they can be tested and then it can be obtained the
Validation results of them, which constitutes a summary of which and how much
data passed the validation[4]:

Listing 2.2: Example of GE Validation
1

2 {
3 " s u c c e s s " : f a l s e ,
4 " expec ta t i on_con f i g " : {
5 " expectat ion_type " : " expect_column_max_to_be_between " ,
6 " kwargs " : {
7 " batch_id " : " 2018−06_taxi " ,
8 " column " : " passenger_count " ,
9 " min_value " : 4 . 0 ,

10 " max_value " : 5 . 0
11 } ,
12 " meta " : {} ,
13 " id " : " 38368501−4599−433a−8c6a −28f5088a4d4a "
14 } ,
15 " r e s u l t " : {
16 " observed_value " : 6
17 } ,
18 " meta " : {} ,
19 " except ion_in fo " : {
20 " ra i s ed_except ion " : f a l s e ,
21 " except ion_traceback " : nu l l ,
22 " exception_message " : n u l l
23 }
24 }
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Expectation Suite

Great Expectations allows the creation of a group of Expectations describing the
same set of data by combining all the Expectations defined and evaluate them as a
group rather than individually

Listing 2.3: Example of Expectation Suite
1

2 # Create an Expectat ion Su i t e
3 suite_name = " my_expectation_suite "
4 s u i t e = gx . Expectat ionSu i te (name=suite_name )
5

6 # Add the Expectat ion Su i t e to the Data Context
7 s u i t e = context . s u i t e s . add ( s u i t e )
8

9 # Create an Expectat ion to put in to an Expectat ion Su i t e
10 expec ta t i on = gx . expec ta t i on s . ExpectColumnValuesToNotBeNull ( column="

passenger_count " )
11

12 # Add the p r ev i ou s l y c rea ted Expectat ion to the Expectat ion Su i t e
13 s u i t e . add_expectation ( expec ta t i on )
14

15 # Add another Expectat ion to the Expectat ion Su i t e .
16 s u i t e . add_expectation (
17 gx . expec ta t i on s . ExpectColumnValuesToNotBeNull ( column="

pickup_datetime " )
18 )

Data docs

It is a feature that consists in the automation of conversion of Expectations,
Validation Results, and other metadata into human-readable documentation.2.4

Various data sources

Great Expectations supports the following SQL dialects:

• PostgreSQL

• SQLite

• Snowflake

• Databricks SQL

• BigQuery SQL

12
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Figure 2.4: Great Expectations Data Docs[5]
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Batch retrieval

Expectations can be individually validated by using a Batch of data, allowing to
test the newly created ones or to further understand the data[6]

Listing 2.4: Example of Batch Definition
1

2 # Retr i eve the Batch D e f i n i t i o n :
3 data_source_name = " my_data_source "
4 data_asset_name = " my_data_asset "
5 batch_definit ion_name = " my_batch_definition "
6 batch_de f in i t i on = (
7 context . data_sources . get ( data_source_name )
8 . get_asset ( data_asset_name )
9 . ge t_batch_def in i t ion ( batch_definit ion_name )

10 )
11

12 # Retr i eve the f i r s t v a l i d Batch o f data :
13 batch = batch_de f in i t i on . get_batch ( )
14

15 # Or use a Batch Parameter d i c t i o n a r y to s p e c i f y a Batch to r e t r i e v e
16 # These are sample Batch Parameter d i c t i o n a r i e s :
17

18 # I f you ’ re us ing F i l e Data Assets , pass va lue s as s t r i n g s
19 yearly_batch_parameters = { " year " : " 2019 " }
20 monthly_batch_parameters = { " year " : " 2019 " , " month " : " 01 " }
21 daily_batch_parameters = { " year " : " 2019 " , " month " : " 01 " , " day " : " 01 " }
22

23 # Otherwise , pass va lue s as i n t e g e r s
24 integer_dai ly_batch_parameters = { " year " : 2019 , " month " : 1 , " day " : 1}
25

26

27 # This code r e t r i e v e s the Batch from a monthly Batch D e f i n i t i o n :
28

29 batch = batch_de f in i t i on . get_batch ( batch_parameters={" year " : " 2019 " ,
" month " : " 01 " })

14



State of the Art

2.3.2 Soda Core
Soda Core is an open-source data quality and observability tool designed to detect
and address data issues throughout the data life cycle. It allows to define checks
and validations to monitor data quality.

Check and validation

Soda Core has the characteristic of define in a YAML-based domain specific language
or programmatic invocation dome data assertions and to return a summary of the
results. Here an example of a possible configuration[7]:

Listing 2.5: Example of Soda Core Checks
1

2 # Checks f o r ba s i c v a l i d a t i o n s
3 checks f o r dim_customer :
4 − row_count between 10 and 1000
5 − missing_count ( birth_date ) = 0
6 − i nva l id_percent ( phone ) < 1 %:
7 v a l i d format : phone number
8 − inva l id_count ( number_cars_owned ) = 0 :
9 v a l i d min : 1

10 v a l i d max : 6
11 − dupl icate_count ( phone ) = 0
12

13 checks f o r dim_product :
14 − avg ( sa f e ty_stock_leve l ) > 50
15 # Checks f o r schema changes
16 − schema :
17 name : Find forbidden , miss ing , or wrong type
18 warn :
19 when requ i r ed column miss ing : [ dea l e r_pr ice , l i s t _ p r i c e ]
20 when forb idden column present : [ c red i t_card ]
21 when wrong column type :
22 standard_cost : money
23 f a i l :
24 when forb idden column present : [ p i i ∗ ]
25 when wrong column index :
26 model_name : 22
27

28 # Check f o r f r e s h n e s s
29 − f r e s h n e s s ( start_date ) < 1d
30

31 # Check f o r r e f e r e n t i a l i n t e g r i t y
32 checks f o r dim_department_group :
33 − va lue s in ( department_group_name ) must e x i s t in dim_employee (

department_name )
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Soda also has the possibility, by using the paid version Soda Cloud, to define checks
by using a no code GUI, where it can be also set a schedule and defined some
specific condition on the check results to trigger an alert

Figure 2.5: Soda Core GUI for check creation

Automated monitoring checks

The paid version of Soda, Soda Cloud, allows to add automated monitoring checks
to a data source to monitor changes in it and tracking its evolution. Directly in
the Soda Cloud console it can specified a monitoring check configuration like:

Listing 2.6: Example of Soda Cloud Monitoring Checks
1

2 automated monitor ing :
3 data s e t s :
4 − i n c l ude prod%
5 − exc lude t e s t%
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in the above example, it is defined an automated monitoring check which executes
controls on all the datasets of which names begin with prod and excluding all the
dataset with the name beginning with test
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Chapter 3

Alertable

3.1 Introduction

Alertable is a Data Quality Accelerator framework, developed with the purpose of
simplifying and centralizing the management of data quality check and alerts with
an user friendly GUI. It has capabilities to monitor the freshness, the format, the
distribution, the categories, the presence of outliers, and to notify if some alerts are
triggered by the final user. The entire computation is developed with Apache Spark
with AWS EMR for the cluster management, granting velocity and scalability and
allowing us to separate the entire pipeline in a cloud AWS environment, accessible
via API or other business tools.

3.2 Technologies

In this section are presented the principal technologies adopted by Alertable

3.2.1 Vaadin

Vaadin is an open-source web application development platform designed for creat-
ing rich, modern and responsive user interfaces. It offers a Java-based framework
that enables developers to build single-page applications without needing deep
knowledge of JavaScript, HTML, or CSS.
Vaadin Flow, its core framework, allows for server-side application logic. It also
includes a comprehensive set of pre-built UI components, data binding tools, and
seamless integration with Java backend technologies.[8]
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3.2.2 Spring Boot
Spring Boot is a Java-based framework designed to simplify the development of
standalone, production-ready applications. It builds on the Spring Framework by
offering a preconfigured environment that reduces boilerplate code and accelerates
development. Key features include auto-configuration, an embedded web server,
and a convention-over-configuration approach.
Spring Boot supports a wide range of modules for database integration, security,
messaging, and cloud deployment, making it ideal for microservices and modern
distributed systems. Its main advantages are rapid setup, seamless integration with
the Spring ecosystem, and flexibility for scaling applications.[9]

3.2.3 AWS EMR
AWS EMR (Elastic MapReduce) is a cloud-native big data platform provided by
Amazon Web Services (AWS) that simplifies the processing and analysis of large
datasets. It is built on top of popular open-source frameworks such as Apache
Hadoop, Apache Spark, and Presto, making it highly scalable and suitable for
diverse big data use cases, including data transformation, machine learning, log
analysis, and real-time stream processing. The tool integrates completely within
the AWS ecosystem and provide high efficiency, scalability and high availability
with solid fault tolerance capability. [10]

3.3 Architecture
The architecture is composed by 5 components:

• Pod Openshift: it contains the docker image of the Java components for
back end and front end

• RDS Aurora: it contains the metadata necessary for the working of Alertable
and the results of the rules adopted

• Secret Openshift: where the references of Aurora Database are defined

• Bucket S3: it contains the details of the results and the logs produced by
Alertable

• Cluster EMR: necessary for the computation of the Data quality rules
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Figure 3.1: Alertable Architecture

3.4 Complete flow of Data Quality

1. Datasource Import: During this phase, it is possible to specify the connec-
tion parameters and import from the datasource some tables in order to make
check on them.

2. Check creation: In this moment, it is defined the column level control on a
specific table and it can be specified the test type.

3. Alert creation: Here it is defined an alert connected to a specific check and
some conditions in order to define the constraints under which the check can
be considered passed or not.

4. Job Creation: We can find here a list of different alerts to be executed and
how the execution will be performed.

5. Job Run: After this phase, the job can be launched, and after its ending it is
possible to see the results by visualizing some statistics referring to the alerts
(if they were triggered) and some others referring to the checks (how many
rows are failed, some relationships between the failed and the successful rows).
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Figure 3.2: Data Quality Flow

3.5 Components
In this section are introduced the components featured in Alertable and shown
their purpose, how they are defined and how they are integrated in the overall flow
of the application.

3.5.1 Datasource
The first component is the Datasource, typically represented by a table, a view or
a query on AWS Athena.
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Figure 3.3: Datasource list

Import of a datasource

In the import of a datasource, there are multiple steps.
During the first one it is selected the kind of data source:

• AWS Athena: for which it has to be specified the AWS region, the name of
the schema, the credentials provider, the profile name and the data catalog

• AWS Athena Query: which represents a view defined by a query on a
Athena Database

• Postgres SQL: for which the connection is handled by JDBC

• MySQL: for which the connection is handled by JDBC

Figure 3.4: Datasource Import Step 1

In the second step, after performing a scan of the database in order to retrieve all
the tables in the datasource specified, it is shown a list of all the tables available
and the possibility to select a list of them in order to import them in the app.
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Figure 3.5: Datasource Import Step 2

3.5.2 Checks
The Check represents the Data Quality Rule, which is composed by a filter and/or
an aggregation. It can be defined for a specific property or column of a datasource,
it possesses a skip condition in a SQL format for the rows that had to be skipped
and the check can also be characterized by an external datasource for performing a
join between tables.

Figure 3.6: Check creation

Filter

The filter defines a rule to be respected by a property, and it produces an output
composed of two parts:

• A boolean flag for a single row to indicate if the rows has passed the control
or not.

• A summary of the result, in which are defined the number of success or failure
and some metrics.
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Aggregation

The aggregation represents a calculation on an aggregated portion of the data, that
can also be filtered if a filter is defined.

Check Template

The check template is a json object that represents the check parameters and their
type.

Listing 3.1: Example of template for the check VALUES BETWEEN BOUND-
ARIES

1 {
2 " type " : " ob j e c t " ,
3 " r equ i r ed " : [ " lower_bound " , " upper_bound " ] ,
4 " p r o p e r t i e s " : {
5 " lower_bound " : { " type " : [ " number " ] } ,
6 " upper_bound " : { " type " : [ " number " ] }
7 } ,
8 " a d d i t i o n a l P r o p e r t i e s " : f a l s e
9 }

3.5.3 Alerts

The alert has the objective to define a condition that triggers a notification and its
kind.

Figure 3.7: Alert Creation
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Alert Condition

Every alert has a check associated and it is characterized by a condition based on
the output of the check where it can be specified:

• The field of the check output, like the count of success or failure.

• A retrieve function to extract the field (like a simple get or extract the
maximum or minimum field).

• A tolerance threshold type to define how many records have to fail the condition
in order to trigger the alert. It can be just a single number or another condition.

An example of condition can be the following, where it is defined an alert triggered
if a column has duplicate values:

Listing 3.2: The condition retrieve the count of the unique values and check if it
is minor or equal to the number of total rows.

1 AT_GET(
2 check_ids="ck_unique_warehouseAndRetailSales_itemCode " ,
3 f i e l d=count_unique
4 ) <
5 AT_GET(
6 check_ids="ck_unique_warehouseAndRetailSales_itemCode " ,
7 f i e l d=count
8 )

3.5.4 Jobs
A job is an aggregation of different alerts, even belonging to different datasources,
and it is used to define a procedure to aggregate different checks in order to manage
the data quality rules.
It is possible to define some job parameters in order to dynamically personalize the
job, the batch dimensions of the check performed contemporaneously, and a time
schedule in order to define when and how frequently execute the job.
Furthermore, a job is also characterized by an executor which can be:

• EMR Spark: EMR (Elastic Map Reduce) is a managed service by AWS
designed to simplify big data processing using distributed frameworks, like
Apache Hadoop or Spark.

• Local Spark: It simply represents a Spark execution in local mode, so the
process runs on a single machine instead of a cluster. It is typically used for
local development and testing.
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Figure 3.8: Job List

Job Result

Once the job is finished, it is possible to consult the results, see how many alerts
have failed and also to update a DQ score - which is a number representing the
overall quality of a datasource, based on the result of all the alerts applied to it.

Figure 3.9: Job Result Summary

3.5.5 Executor
An executor specifies the execution type of a job.
It can be of various providers (like Google DataPrococ, Databricks or AWS EMR),
and it allows to define some parameters depending on the type chosen, like the
yarn queue, the cluster id or the credentials parameters in case of AWS.

Figure 3.10: Executioner List
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Figure 3.11: Executioner Creation

27



Chapter 4

DBT

4.1 Introduction to DBT
DBT (Data Build Tool) is a command-line tool that allows analytics engineers to
transform data in data warehouses using SQL and Python. It introduces software
engineering best practices to data transformation workflows.
It operates as a transformation layer in the data stack, sitting between the data
warehouse and BI tools and it allows to write SQL models that transform raw
data into analytics-ready datasets. Innovation is treating these transformations as
modular, testable, and documentable code units, manageable from a single project.

DBT adopts Jinja as an SQL engine which increases the expressivity and the
capabilities of SQL vanilla, allowing one to define reusable model and to write by
using a more standard programmatic approach to the queries.
Another important aspect is the possibility of working on data models by version-
ing them, defining tests, and documenting them automatically; by doing so, it
facilitates the deployment process into production by providing monitoring and
visibility capabilities. DBT offers two different options in order to use it:

• Dbt Core: An open source tool that allows a manual set up for DBT project
with a local management. This requires more work in order to organize and
maintain a full DBT project but it offers full control on the structure and the
deployment of DBT application.

• DBT Cloud: It is a non-free application that significantly extends the
capabilities of DBT core by adopting an all-in-one-broswer-based UI, which
provides a cloud CLI with auto suggestions and personalized commands to
develop, test, run and version control DBT projects, a personalized IDE in
order to define, build and test SQL models, enhanced with DBT Copilot -
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which is an AI engine that generates code, documentation and checks the
semantic of the models. In addition to that, DBT Cloud offers the possibility
of schedule and run jobs, CI/CD pipelines, monitoring and alerting capabilities
and also defining and managing multiple environments.

Figure 4.1: Dbt Role in ETL Architecture

4.2 The Role of DBT in Analytics Engineering
The analytical engineering is a new role [11] that has emerged in the recent years
with the purpose of exploring the data already ingested in a platform to answer the
questions of stakeholders, prepare and transform the data, applying a technique
for cleaning and manipulating the data that can serve organizational objectives
and also document all the objects created that can be found in a data warehouse
to ensure clarity and usability.
It is a role emerged in order to help data engineering professionals in responding
and transforming data for stakeholders, performing as bridge between tech and
business roles. DBT is perfectly suited for that role, it only requires the knowledge
of SQL to define and to write queries by offering a unified environment to work.

4.3 Use Cases and Practical Applications
DBT is a versatile tool suited for different scenarios, from data engineering to data
analyst problems. It can help both in organizing, defining and tracking models and
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Figure 4.2: Analytical Engineering Overview [12]

in applying data quality check.
It also has capabilities in ensuring correct data pipelines and, eventually, showing
the errors in it. Some common use cases are [13]:

4.3.1 Data Quality and Testing

DBT allows to clean data with simple SQL statements, allowing to build complex
models to filter, transform and automate data tasks.
In order to avoid errors due to source changes, DBT allows to create sources so
that it is possible to use them through a reference and whenever it is necessary
to change the data source parameters, it has to change only the source definition
while the code changes in the downstream processes can remain the same.

4.3.2 Documentation

DBT offers a special command called docs which allows to generate a project’s
documentation website with all the models, the data quality tests and the project
model dependencies.
It is possible to specify a subgroup of models to produce the documentation needed
and also to host automatically a sample website, allowing the specification of a
port.
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4.3.3 Data lineage

In DBT the data lineage is handled with a Directed Acyclic Graph for tracking all
the dependencies and links between models, transformations and tests.
It is helpful also in the definition and the maintenance of data pipelines with the
help of singular and generic tests, that are Yaml or SQL files in the test directory
of a DBT project.

4.4 DBT Commands

This section will show the principal commands adopted in a DBT project along
with their functionality. [14]

4.4.1 DBT init

The init commands is required in order to initialize and create a dbt-core project.
It requires the following parameters:

• The project name

• The database adapter

• Connection parameters depending on the adapter chosen

After the information request, a new folder will be created with the project name
and all the principal components of a typical DBT project.
In addition to that it is created a connection profile on the local machine, usually
in the location /.dbt/profiles.yml. It is possible to specify before launching the
command a flag (–profile profileName) to indicate an existing profiles.yml file
instead of creating a new one.
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4.4.2 DBT test
The test commands run data tests defined on models, sources or unit tests but
expects that these resources have already been created. It is possible to simply
launch the command without a flag to execute all the present tests in the projects,
belonging to the predefined target, or it is also possible to specify some flags, in
order to restrict the tests launched by using various commands:

Listing 4.1: Example of dbt test commands
1 # run data and un i t t e s t s
2 dbt t e s t
3

4 # run only data t e s t s
5 dbt t e s t −−s e l e c t test_type : data
6

7 # run only un i t t e s t s
8 dbt t e s t −−s e l e c t test_type : un i t
9

10 #run t e s t s f o r a l l models with the tag s p e c i f i e d
11 dbt t e s t −−s e l e c t tag : tag_1
12

13 # run t e s t s f o r one_speci f ic_model
14 dbt t e s t −−s e l e c t " one_speci f ic_model "
15

16 # run t e s t s f o r a l l models in package
17 dbt t e s t −−s e l e c t " some_package . ∗ "
18

19 # run only data t e s t s de f i ned s i n g u l a r l y
20 dbt t e s t −−s e l e c t " test_type : s i n g u l a r "
21

22 # run only data t e s t s de f i ned g e n e r i c a l l y
23 dbt t e s t −−s e l e c t " test_type : g e n e r i c "
24

25 # run data t e s t s l i m i t e d to one_speci f ic_model
26 dbt t e s t −−s e l e c t " one_speci f ic_model , test_type : data "
27

28 # run uni t t e s t s l i m i t e d to one_speci f ic_model
29 dbt t e s t −−s e l e c t " one_speci f ic_model , test_type : un i t "

In addition to this flag it is possible to use the following one:

Listing 4.2: Example of dbt test specific flags
1

2 # run data t e s t sp e c i f yng the t a r g e t
3 dbt t e s t −−t a r g e t sample_data
4

5 # run data t e s t sp e c i f yng the number o f threads
6 dbt t e s t −−threads 4
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The possible results of a test can be PASS, FAIL or ERROR, as shown in the below
image that also shows the typical output of the command. 4.3

Figure 4.3: Dbt Test Output

4.4.3 DBT run
The DBT run commands is used to execute and create all the SQL models featured
in the models directory by following the dependency order. It accepts some flags
like –select to restrict the execution.

4.4.4 DBT build
The DBT build commands run models and apply the tests following the order of
the dependencies in DAG order and it represents a commands to aggregate both
test and run commands, fo this reason it is used to check the overall coherence and
correctness of a DBT project.
Following the DAG order means that if a model B depends on a model A, but
some tests about model A fail, model B will be skipped.
As usual, it is possible to specify some flags, like –select, in order to restrict the
build to certain data resources.
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4.4.5 DBT deps
The DBT deps pulls the most recent version of the dependencies listed in the
packages.yml file from GIT. It is used in order to import or update the dependencies
library used in a project.

4.5 Anatomy of a DBT Core Project
In this section, it will be analysed the structure of a DBT core project, explaining
the role of each folder and files and how they are used, especially in the context of
the work in chapter 5.

4.5.1 Directory Structure
When launching the command DBT init, the typical structure of folders created is
like the one below:

dbt_project.yml

This file contains all the general configuration of a DBT project, like the project
name, the paths of DBT models and tests. In addition to that, it contains the
table name where it is possible to memorize in the database the results of the failed
tests; this aspect will be used in chapter 5 in order to retrieve the test.

profiles.yml

This file contains the connection parameters to the datasources of the project. In
each datasource component are specified different parameters depending on the
connection type (Athena, MySql, ...) and also a predefined target datasource that
is adopted during a DBT command, if there are no other specifications.
In the changes presented in Chapther 5, this file is used to save or update the
datasource added in Alertable.

Models

In this folder are defined all the models adopted in a DBT project as SQL files
where. There are 2 principal ways to define a model:

• SQL Query: the model is defined as a query where in the "from" clause
is specified a source model or an intermediate one, defined somewhere else.
Typically this definition is adopted to define the transformation layer and
stages of the pipeline, where the data manipulation are applied directly in the
query.
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Figure 4.4: Dbt Folder Structure

• YAML File: the model is defined with its schema. With this format, the
model can represent the initial stage, like the sources models or the final stage.
Alongside the schema, in the YAML file are also defined its test, that can be
at a columnar or tabular level. 4.7

Chapter 5 will show that, inside the folder, it is memorized the file sources.yml to
track all the tables and the tests present in Alertable.

Tests

In the folder, tests are defined as test functions in addition to the built in DBT. In
there, a test is defined as a SQL query and there are two kind of tests:
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Figure 4.5: Dbt Project File

Figure 4.6: Dbt Profiles File
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Figure 4.7: Dbt Source Model File

• Custom test: it is simply defined as a query where the “FROM" clause
points to a fixed source and adopts fixed values in the where clause. 4.8

Figure 4.8: Dbt Custom Test

• Generic test: is a SQL query function that can parametrically receive one
or several sources on which it is possible to apply the test and also other
parameters for test condition. 4.9

Figure 4.9: Dbt Generic Tests

In Chapther 5 it will be shown that inside the folder there are also the generic test
file, statically added as possible test, and the custom test dynamically added by a
user in order to make its custom test.
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packages.yml

In this file there are the packages added to the DBT project, in order to extend
its functionalities. The packages, after they have been added, can be downloaded
with the command DBT deps. 4.10

Figure 4.10: Dbt Packages

target

Inside this folder are added the executable SQL files that are generated by DBT
during the commands DBT test, DBT run and DBT build and that will be used
for the execution in the database

4.6 Comparison with Great Expectations and
Soda Core

In this section DBT will be compared to Great Expectations and Soda Core through
several aspects, from main goals to architecture and integration ease.

4.6.1 Comparison Criteria
To provide a thorough and meaningful comparison of DBT, Great Expectations,
and Soda Core, it is essential to evaluate their core functionalities based on specific
criteria. These include their purpose and focus, how seamlessly they integrate
into modern data stacks, their scalability when handling large datasets and their
flexibility in addressing complex use cases or adapting to specific requirements.

While DBT specializes in SQL-centric transformations and modeling, Great
Expectations excels in validating and profiling data with precision, and Soda Core
primarily aims to monitor data quality in real time, albeit with fewer generalized
capabilities.

Integration is a critical factor in modern workflows, where tools must work seam-
lessly with cloud-native platforms and pipelines. Effective integration minimizes
operational overhead and grants a smooth execution across different stages of data
management.
Furthermore, scalability is a paramount for tools operating on large datasets, as
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inefficient processing or limited parallelization can create bottlenecks. Lastly, flexi-
bility encompasses a tool’s ability to support advanced features, custom logic and
extensibility, making it suitable for diverse scenarios.

Purpose and Focus

Each tool is suited to address a specific aspect of data management. DBT focuses
on transforming and modeling data efficiently by leveraging SQL workflows, making
it ideal for standardizing and structuring data before analysis.
Great Expectations, on the other hand, emphasizes detailed data validation and
profiling, it is often used for complex data quality checks that require Python’s
flexibility and power.
Soda Core fills a niche by offering lightweight, real-time monitoring for detect-
ing anomalies and inconsistencies, with a primary focus on simplicity and rapid
deployment.

Ease of Use

The usability of these tools depends significantly on the expertise of the user. DBT
and Soda Core stand out for their intuitive interfaces. DBT is designed for data
analysts and engineers comfortable with SQL, allowing them to build modular and
maintainable models.
Similarly, Soda Core uses a YAML-based configuration system that simplifies the
setup for real-time monitoring, requiring minimal programming knowledge.

Conversely, Great Expectations, while more powerful for complex validation
scenarios, demands a deeper understanding of Python. This makes it better suited
for data engineers or teams with significant programming expertise.
Consequently, DBT and Soda Core are generally more accessible to SQL users,
while Great Expectations caters to those needing advanced validation logic and
greater control over their workflows.

Integration and Ecosystem

The ability to easily integrate into existing data ecosystems is a defining character-
istic of modern tools. DBT integrates natively with major cloud data warehouses
such as Snowflake, BigQuery and Redshift, requiring the inclusion of a simple
adapter to connect to these platforms.
This integration streamlines workflows and ensures compatibility with cloud-native
architectures.
Great Expectations provides broader support by working with multiple backends,
including Pandas for small datasets, Spark for distributed processing, and SQL
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databases for relational data. This versatility allows it to operate across various
environments, from local development to large-scale distributed systems.

Soda Core, while less versatile in its integrations, is better for its simplicity
and focus. It is designed to fit seamlessly into CI/CD pipelines, enabling anomaly
detection during automated deployments with minimal configuration effort.

Scalability and Efficiency

Scalability is a crucial consideration when selecting tools for large datasets. DBT,
relying on the computational power of the underlying data warehouse, scales
exceptionally as well as it delegates heavy lifting to platforms like Snowflake or
BigQuery.
This design ensures high performance even when processing terabytes of data, as the
transformation logic leverages the warehouse’s inherent parallelization capabilities.

Great Expectations, while powerful, depends heavily on the backend being used.
For example, when paired with Spark, it can handle distributed datasets efficiently,
but its performance may be limited when using Pandas for large data volumes. Its
scalability is therefore closely tied to the underlying infrastructure.

Soda Core, focused on lightweight monitoring, is optimized for smaller datasets
or real-time streams. While efficient for its intended use cases, it may not be
the best choice for scenarios involving massive batch processing or complex data
transformations.

4.6.2 Final Considerations
In order to be considered the integration in Alertable, the main aspects contributing
are the scalability and the simplicity of integration. It has to be considered that
Alertable already handles the job schedule and the data profiling , it is more focused
on the data quality of the database and data warehouse, making Soda Core less
useful.
Despite Great Expectations provides a broader suite of tests, DBT can incorporate
them with the dbt_expectations and, also, it posses a simple and intuitive way to
connect the most major data warehouse with the connectors.
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DBT Integration in
Alertable

5.1 Technologies
In this section there will be listed all the principal technologies involved and adopted
for the DBT integration in Alertable, from the cloud provider which is AWS, to
the web app technologies, like Spring and Vaadin.

5.1.1 Aws EC2
Amazon EC2 (Elastic Compute Cloud) is a scalable, pay-as-you-go cloud computing
service provided by AWS that offers virtual servers, known as instances.
It allows users to select from a wide range of instance types optimized for compute,
memory, or storage needs, with flexibility in operating systems and configurations.
The EC2 instances allows to scale up or down based on demand and can distribute
incoming traffic across multiple instances to handle variable workloads.
The instance used for the Alertable application in this work is of type t2.medium
with Linux as operating system. [15]

5.1.2 Aws ECR
Amazon Elastic Container Registry (ECR) is a fully managed container image
registry by AWS - designed for storing, managing, and deploying Docker container
images securely at scale.
It simplifies the deployment of containerized applications. It supports private and
public repositories, with image versioning, automated lifecycle policies for image
cleanup, and vulnerability scanning for enhanced security. During the work the
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service was used in order to deploy the EC2 instance with the specified docker
image.[16]

5.1.3 Aws Athena
Amazon Athena is an interactive serverless query service from AWS that allows
users to analyze data directly in Amazon S3 using standard SQL.
It eliminates the need for infrastructure management and scales automatically to
handle complex queries.

Athena supports structured, semi-structured and unstructured data in various
formats, including CSV, JSON or Parquet.
With its ability to work with large datasets, Athena is an ideal choice for analysis,
business intelligence tasks, and exploratory data processing, ensuring fast and
efficient performances. [17] This datasource is the principal database on which
Alertable works and it was used to provide the tables and the database environment
on which it is possible to run the queries.

5.1.4 Aws RDS
Amazon RDS (Relational Database Service) is a managed database service from
AWS that simplifies the process of setting up, operating and scaling relational
databases in the cloud.
With it, users can offload administrative tasks such as hardware provisioning,
software patching, backup management, and database scaling, this allows them
to focus on application development. Additionally, RDS supports performance
optimization with features like read replicas and customizable instance types,
making it suitable for a wide range of applications, from small-scale web apps to
large enterprise systems. [18]

5.1.5 Aws S3
Amazon S3 (Simple Storage Service) is a highly scalable, secure and durable object
storage service provided by AWS. It allows you to store and retrieve any amount
of data from anywhere on the Web.
S3 is designed for a variety of use cases, including data backup, content storage
and distribution, big data analytics and disaster recovery. [19]

5.1.6 Docker
Docker is an open-source platform for developing, shipping and running applications
in lightweight, isolated containers. It enables developers to package applications

42



DBT Integration in Alertable

with all dependencies, ensuring consistent behavior across environments. It operates
on the basis of images, which are templates for creating containers. These containers
are portable, scalable, and efficient, using fewer resources than virtual machines.[20]
Docker was used in order to update the Alertable image to include all the necessary
dependencies and instructions to integrate DBT.

5.2 Import of datasource
The first step for DBT integration is to handle the import of the database in the
application giving the user the possibility to decide whether to add the datasource
or not.
In order to do so, it was added a checkbox option to select the preference. In some
cases, like Athena datasource, it was necessary to dynamically add some options
required by DBT for the connections. An option was also added to directly import
some tests written in a YAML file.
Overall, this results in three different flows during the import phase:

1. Flow without DBT, with the checkbox for including dbt selected to false,
as shown in 5.1

a) Specifications of connection parameters, as shown in 3.4

Figure 5.1: Import Datasource Step 1 With DBT

b) Selection of tables for import, as shown in 3.5

2. Flow with DBT with the checkbox enabled. In this case,

a) specifications of connection parameters but with optional fields in the
form depending on the necessity of the DBT connector for the specific
type of the database, as shown in 5.2

b) dropdown list with 2 choice 5.3
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Figure 5.2: Import Datasource Step 1 With Dbt Flagged

Figure 5.3: Import Datasource Step 2 Dropdown Menu

a) Selection of tables as shown in 3.5
b) Import of check and tables from a yaml file, similar to 4.7, as shown

in 5.4

Figure 5.4: Import Datasource Step 2 With Import from file upload
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5.3 Check creation
In the check creation component,3.5.2 it has to be changed the way a check is
configured, adapting it to be integrable with DBT.
The possible tests are the following:

• Built-in Tests

– not null
– unique
– accepted values: this test checks if a value belongs to one of the elements

of an array passed as a parameter.

• Package Tests: The following tests are imported from the libraries dbt-utils
and dbt-expectations.

– dbt-utils.at_least_one: this test checks if at least one value in a
specific column, considering all the rows, is not null.

– dbt-utils.accepted_range: this test checks if a numerical value stays
within an interval defined by 3 parameters (max_value, min_value, and
inclusive, to define if the interval is open or closed).

– dbt_expectations.expect_column_value_lengths_to_equal: this
test checks if a string has the specified length.

• Generic Tests (4.9):

– negative value
– boolean value

• Custom Test (4.8)

– custom Where: this test is defined by the user and is a query with a
customizable where clause.

A dynamic field form is shown in case the check type is DBT in order to match
the different parameters required by each test (if present). Two example are shown
for accepted_range and custom_where tests respectively in 5.6 and 5.7

5.4 DBT Job Executor Architecture
The architecture of a DBT Job is structured in three main steps:
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Figure 5.5: DBT Check Form Selection

Figure 5.6: DBT Accepted Range Form

1. The writing of all the checks belonging to the job in the sources file of the
DBT project
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Figure 5.7: DBT Custom Where Form

2. The decomposition in multiple processes, each executing a DBT test command
for a specific datasource

3. The retrieve of all the processes outputs with all the results for every checks

5.4.1 Writing in sources file in DBT Project of Check asso-
ciated

The first step is to collect all the alerts (and checks) belonging to the Job with
their eventual parameters and to write them in the YAML source file inside the
model folder of the DBT project, also tagging every data source for the next step.
In order to do so, it was adopted snakeyaml as parsing library to write every check,
considering its datasource, tables, columns and parameters in the correct location
in the file.

5.4.2 Handling of multiple datasource for a single job
Since a single DBT test command can execute the tests defined over one single
datasource, in the case of a job, with multiple tests belonging to different data-
sources, it is necessary to launch different DBT test command for every datasource.
In order to do so, in the previous step, every datasource has to be marked with a
tag in the YAML file.
The final command adopted is :

Listing 5.1: DBT Job command
1 #!/ bin /bash
2
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3 dbt t e s t −−s e l e c t tag : target_name −−s tore − f a i l u r e s −−threads
num_threads −−t a r g e t target_name

Every flag has the following explanation:

• –select tag:tag_name : to select a subset of checks inside the same file
belonging to a datasource with that tag

• –store-failures : this flag indicates that DBT has to create one or more
tables depending on the amount of failed tests in order to memorize the results
and the rows of the failed tests. This will be useful to retrieve some statistics
about the failure and the number of rows affected

• –target target_name : to make DBT adopt a specific datasource with their
connection parameters specified in the profiles.yml file

• –threads num_threads : this flag indicates how many threads will be
created in order to execute all the queries necessary to apply the test

5.4.3 Output parsing
After every job has finished its execution, a union of every DBT output process is
performed to obtain the results.
The principal part to retrieve from the output is the test results; every test can
have three different outcomes:

• PASS

• FAIL: in this case, the output shows also the location of the table created to
store the rows that did not pass the test.

• ERROR: This outcome means that DBT cannot perform the query to check
it, the reason is shown in the output as well.

5.5 Check conversion
In order to deeply strengthen the integration of DBT in Alertable, it has been
implemented a conversion system between checks and alerts.
The conversion has been adjusted with a change in the DBT format in order to
make it work as the one used in Alertable for the Apache Spark execution. The
conversion has the role to transform the check and creates the corresponding alert
template from the DBT format into the standard template used by Alertable since
DBT jobs does not require the definition of an alert. The core part of a check
template, with the exclusion of id, creation and update data informations, are:
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• The name

• The outputs: a list of fields name to represent the outputs of the data quality
check - like success, fail, skip or null count.

• The template: it is a json object composed by the parameters and their type.

So, the conversion process changes the DBT check type, its parameters and also
creates the alert condition associated in order to be equal to the Alertable type.
An example of conversion is shown below, where the dbt-utils.accepted_range
is converted to the Alertable corresponding values_between_boundaries:

Figure 5.8: Check conversion

5.6 Deploying through Docker
Since Alertable is deployed in an EC2 instance with a docker image memorized in
the AWS ECR image repository, it is necessary to extend the actual Docker image
in order to prepare and initialize the DBT environment for the execution. The
principal instructions added to the docker image are the following:

• Copy of profiles.yml file: from the source environment, the DBT profiles.yml
file has to be copied in the right location of the deploy environment in order
to be recognized and adopted by DBT and for different user execution

• DBT Project inizialization: the DBT init command is executed , the
generic tests are copied in the right folder and the file packages.yml is created
with the libraries adopted

• Packages install: the DBT deps command is executed in order to install
the project dependencies
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Figure 5.9: DBT Dockerfile
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Chapter 6

Experiments

In this chapter, there will be a comparison in terms of efficiency, scalability and
integration capabilities of two differents ways to conduct the job execution with
the use of Apache Spark and AWS EMR in one situation and the use of DBT in
the other 5

6.1 Considerations
Before proceeding into the analysis and tests of the job execution time for both
the modalities, it has to be considered each tool strength and weakness.
Apache Spark is well known for its great capabilities in managing a big volume of
data and for its horizontal capabilities thanks to the cluster execution.
Furthermore, due to the ECS service offered by AWS that represents a fully managed
orchestration service which exploits the cloud capabilities in terms of scalability,
efficiency and easy of use, the execution with Spark grants great efficiency for heavy
load and, particularly, big data warehouses.
On the other hand, DBT does not have an horizontal scalability and its executions
depend solely on the datasource on which it is attached. Despite that, DBT
provides a parallel execution mode with the specifications on the number of threads
and also in case of multiple datasources in one single job, it naturally divides the
data loads between the different datasources.
In addition to that, in case of small to medium load Spark with EMR can possibly
be an overkill solution, since DBT only requires the definition of some queries or
YAML file.
Another consideration is that it would be much easier to add different kind of tests
in DBT, given that in most cases it does provides a library that has it instead in
Spark it would be sometimes necessary to programming it.
Specifically for Apache Spark execution time, it should be taken into account that
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there may be a bootstrapping phase for creating the clusters, which adds overhead.

6.2 Datasources
In this section there will be an introduction of the datasources used for the
comparison:

• Athena DB: this datasource is composed by four different tables, listed below
with the following characteristics:

– report_km_auto: with 7 columns and a total of 209287 rows
– devices: with 79 columns and a total of 75768 rows
– warehouse_and_retail_sales: with 9 columns and a total of 307645

rows
– survey: with 10 columns and a total of 32445 rows
– unisalute_history: with 10 columns and a total of 418216 rows
– covid_data: with 10 columns and a total of 100663 rows

• MySQL: this datasource uses three different tables listed below with the
following characteristics:

– emission_factors: with 9 columns and a total of 1016 rows
– mega_results: with 4 columns and a total of 2362 rows
– vehicles: with 17 columns and a total of 220225 rows
– border_crossing: with 9 columns and a total of 397910 rows
– real_estate_sales: with 13 columns and a total of 520000 rows
– feed_grains: with 19 columns and a total of 522002 rows

6.3 Configurations
In this section are presented the machine characteristics and configurations adopted
for the experiments:

6.3.1 MySQL instance
The MySql instance is created with AWS RDS in a machine with the following
characteristics:

• Instance class: db.t4g.micro
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• vCPU: 2

• RAM: 1 GB

• Storage type: General Purpose SSD (gp2) with 20 GB

6.3.2 Cluster EMR
The EMR cluster was configured with the following characteristics:

• Master and core nodes Instance class: m4.xlarge

• vCPU: 4 vCore

• RAM: 16 GB

• Storage type: EBS only storage with 32 GiB

In the following experiments, there will be tests of different configurations of the
cluster depending on the number of core nodes (1, 2 and 4)

6.4 Execution Time Comparison
The comparison between the two modes will be done for different scenarios con-
sidering the datasources involved, how much rows are considered, specifically for
DBT, how many threads are adopted for the execution and for Spark how many
core nodes composed the EMR cluster

• Case 1: 25 checks belonging to Athena datasources report_km_auto and
devices and a total of 285055 rows

• Case 2: 38 checks belonging to Athena datasources report_km_auto,
devices and warehouse_and_retail_sales with a total of 592700 rows

• Case 3: 69 checks belonging to Athena datasources report_km_auto,
devices, warehouse_and_retail_sales, survey, unisalute_history and
covid_data with a total of 1144024 rows

• Case 4: 38 checks belonging to MySQL datasources emission_factors,
mega_results and vehicles with a total of 223603 rows

• Case 5: 53 checks belonging to MySQL datasources emission_factors,
mega_results, vehicles and border_crossing with a total of 621513 rows
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• Case 6: 69 checks belonging to MySQL datasources emission_factors,
mega_results, vehicles, border_crossing, real_estate_sales and feed_grains
with a total of 1663515 rows

• Case 7: 63 checks with the datasources of Case 1 and Case 4 with a total
of 508658 rows:

• Case 8: 90 checks with the datasources of Case 2 and Case 5 with a total
of 1214213 rows

• Case 9: 138 checks with the datasources of Case 3 and Case 6 with a total
of 2807539 rows

Case Checks Rows DBT (s) Spark - 1 core node (s) Spark - 2 core node (s) Spark - 4 core node (s)
1 25 285,055 207 313 280 269
2 37 592,700 222 424 401 370
3 69 1,144,024 243 723 641 607
4 38 223,603 12 383 353 329
5 53 621,513 17 384 356 328
6 69 1,663,515 46 400 357 338
7 63 508,658 208 641 576 545
8 90 1,214,213 218 791 682 658
9 138 2,807,539 249 1118 984 917

Table 6.1: Execution Time Comparison for Different Cases

Figure 6.1: DBT vs Spark Execution Time
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6.5 Final Considerations
As shown in the above comparison, DBT jobs outperform Spark in terms of pure
execution speed, particularly when the datasource is MySQL.
Since Athena queries operate directly on files stored in Amazon S3, query execution
in this case relies on reading raw CSV files, which is inherently slower than querying
structured and indexed databases.
Athena performs significantly better when working with columnar storage formats
like Parquet, as they allow a more efficient data retrieval and compression.

Additionally, despite the Spark execution was performed with a different number of
core nodes, the gap is still significantly large; in order to have comparable execution
time, the cluster in this case have to be composed by at least 8 core nodes in some
cases if not 16 or more expecially for the last cases.
It has also to be considered that the DBT performances are tightly coupled to
the underlying database infrastructure, since DBT essentially translates the check
controls into SQL queries, leveraging the processing power of the database engine.
This means that if the database server is under heavy load or has limited resources,
the execution time can be negatively impacted. On the other hand, Spark scales
horizontally, distributing computations across multiple nodes, enabling it to handle
large scale transformations and check more efficiently than a single node database
systems, decoupling more effectively the database usage from the job requirements.
From a cost perspective, DBT has the advantage of not requiring additional infras-
tructure like the EMR cluster saw in the Spark case.
Ultimately, DBT has the advantage of being easier to extend and to modify since
it can counts on more library specifically designed for data quality, requiring the
modifications of just YAML files and the writing of SQL queries.
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Conclusions

The growing importance of data quality in modern organizations has underscored
the need for tools that can ensure the accuracy, reliability and observability of
data.
This thesis focused on addressing these challenges by integrating DBT, a robust
framework for data transformation and testing, into the existing Alertable platform,
thereby extending its capabilities in data quality management.

This enhancement has turned Alertable into a more versatile and powerful tool
for monitoring and ensuring data integrity. Specifically, the system’s ability to
execute DBT checks on diverse datasources, such as AWS Athena and MySQL, has
significantly broadened its applicability in enterprise data ecosystems.
Generally speaking, with really heavy size of data Spark has the advantage of hori-
zontally scaling naturally the process, however for small-medium to light heavy load
of data, DBT has proven its adaptability and fastness with respect to Apache Spark.

The experimental evaluation of the DBT job, despite the execution with Spark
provides more advanced types of checks, like the applying of a pre filter on a table
before performing the checks, the setting of complex threshold, conditions in order
to trigger an alert and a more granular control on the job parameters, has shown
its potential.
With future enhancement in order to fully align the functionality of the actual
Alertable engine and the execution with DBT and with optimization in terms of
overhead reduction, the job execution with DBT can constitute a valid alternative,
capable of diminuishing the cost, since it only requires an existing datasource to per-
form the checks and does not add additionally computational resource, like a cluster.

Also, it can be added a new kind of tests to enrich the actual possible checks,
due to the presence of libraries like dbt-expectations or dbt-utils.
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By focusing on data quality as the cornerstone of reliable decision-making, this
thesis provides a robust framework for extending Alertable’s capabilities.
The integration of DBT does not only strengthens its position as a tool for data
validation but also demonstrates the potential for combining modern data engi-
neering practices with observability platforms to meet the increasing complexity of
data ecosystems.
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Acronyms

AI
artificial intelligence

AWS
Amazon Web Services

DBT
Data Build Tool

RDS
Relational Database Service

DQ
Data Quality

EMR
Elastic Map Reduce
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