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This thesis focuses on the challenge of detecting anomalies in univariate time-
series data and equally emphasizes identifying anomalies alongside describing their
severity, duration, and nature. The task is increasingly relevant in areas like finance,
industrial maintenance, healthcare, and cybersecurity, where time-series signals
guide critical decisions. Compared to static datasets, time-series data arrives se-
quentially, with each new observation influenced by preceding points, making small
deviations potentially indicative of serious issues such as failures or fraud. This
project, therefore, examines and contrasts two distinct methods grounded in differ-
ent theoretical frameworks— Hierarchical Temporal Memory (HTM) which
is inspired by cortical learning algorithms and excels at online sequence prediction,
against Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series
(SLADIT), which imposes sparsity constraints on a deep autoencoder architecture
to reconstruct normal patterns and flag deviations.

Time-series data introduces unique challenges because observations arrive in
sequence and depend on prior values, requiring specialized methods that handle
temporal correlations, as well as seasonality, trends, and abrupt changes. Traditional
statistical techniques such as ARIMA-based forecasting or moving averages can
struggle with sudden shifts or complex temporal patterns. Deep learning methods
can capture non-linear relationships but often need extensive labeled data and high
computational resources—prohibitive when anomalies are rare, labels are scarce, or
rapid detection is critical. Consequently, this thesis explores HTM and SLADIT,
which both offer distinct ways to learn from time-series data. A major challenge,
however, is model tuning—HTM, for instance, has around 21 hyperparameters,
and slight adjustments can significantly affect anomaly detection performance.
HTM draws on cortical structures for continuous, unsupervised learning, while
SLADIT leverages recurrent networks and sparsity constraints to build compact
latent representations for reconstruction-based anomaly detection.
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Hierarchical Temporal Memory (HTM) emulates how the neocortex processes
sensory information, featuring two main components. The first, the Spatial Pooler
(SP), transforms raw input into Sparse Distributed Representations (SDRs) by
activating only those “mini-columns” that receive sufficient matching input bits,
thereby keeping a small fraction of columns active at any given time. The second,
the Temporal Memory (TM), learns sequential transitions in data by forming
dendritic segments that predict the next active set of neurons (or mini-columns).
If the observed input differs from that prediction, the anomaly score increases.
HTM naturally adapts to non-stationary environments because it continuously
updates its learned representations in real time, making it particularly promising for
streaming or industrial monitoring tasks where data patterns may shift. However,
in univariate setups—where there is only a single variable evolving over time—the
spatial correlations that HTM typically exploits can be less pronounced, sometimes
diminishing its advantage. However, in univariate contexts, HI'M’s reliance on
spatial correlations can offer limited benefits, and it does not inherently learn
seasonal or periodic structures. Experiments on UCR datasets showed that HTM
struggles when data lacks time-based encoding, prompting the use of Fast Fourier
Transform (FFT) to introduce time-based features. By concatenating synthetic
sine and cosine dimensions, cyclical behaviors were captured even in datasets
not explicitly time-stamped, preserving temporal structure and enhancing HTM’s
ability to detect subtle or non-temporal anomalies.

Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series (SLADIT)
adds a sparsity constraint to the classic autoencoder design while leveraging Long
Short-Term Memory (LSTM) layers to capture temporal dependencies. Its pipeline
begins with an encoder composed of multiple stacked LSTM layers that compress
a sequence of observations into a lower-dimensional latent vector. The latent
space then imposes a sparsity constraint, often enforced through Kullback-Leibler
divergence, which ensures that only a subset of latent neurons remain active and
pushes the model to learn the most salient features of normal behavior. Finally, a
decoder reconstructs the original time-series from this latent representation, and the
reconstruction error signals how much an input deviates from the learned normal
patterns, indicating an anomaly if the error exceeds a certain threshold. This
approach generally excels at capturing subtle point anomalies in univariate time-
series, aided by sparsity that reduces noise and overfitting. However, SLADIT often
requires periodic retraining when patterns shift significantly, making continuous
deployment more challenging in real-time applications.

This thesis employs the UCR Time-Series Anomaly Archive—widely used for
benchmarking univariate anomaly detection—and the NYC Taxi dataset from the
Numenta Anomaly Benchmark (NAB) for near real-time testing. Each dataset
is split into training (mostly normal data) and testing (with known anomalies).
Both HTM and SLADiT undergo hyperparameter tuning to maximize performance.
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For HTM, parameters include column count, cells per column, and permanence
thresholds; for SLADIT, layer depth, hidden dimensions, and sparsity factors are
refined. Evaluation relies on precision, recall, the Fl-score (which balances false
positives and negatives), and the Area Under the ROC Curve (AUC), measuring
the trade-off between correctly identifying anomalies and avoiding false alarms.

When balancing accuracy and real-time adaptability, HT'M’s online learning
provides an edge for streaming applications, as it dispenses with a separate retraining
phase. However, fine-tuning HTM is highly sensitive, and in purely univariate
contexts its performance can sometimes lag behind SLADiT. Meanwhile, SLADiIT
offers robust reconstruction-based detection of point anomalies, often achieving high
recall and lower false-positive rates—but its lack of built-in continuous adaptation
can hamper real-time responsiveness. Both methods benefit from added data
dimensionality: HTM draws on its Spatial Pooler more effectively with multiple
correlated signals, while SLADIT can leverage deeper representations in both
univariate and multivariate cases. In practical terms, SLADiT’s minibatch gradient-
based training often runs efficiently on GPUs but requires retraining. HTM can
operate continuously on CPUs but grows computationally heavier if configured
with many columns and cells. Through systematic experiments on representative
univariate time-series datasets, this thesis demonstrates that both HTM and
SLADIT can excel at detecting anomalies, but their suitability depends on the
application context. HTM'’s biologically inspired, continuous learning suits scenarios
where data patterns evolve unpredictably, provided its numerous hyperparameters
are properly tuned. SLADiT’s reconstruction-based framework, enhanced by latent
sparsity, yields strong detection performance in more stable conditions. The
choice between these approaches depends on factors like tolerance for false alarms,
adaptability to shifting processes, computational resources, and the nature of
anomalies.

Future research could investigate hybrid or ensemble strategies that leverage
the complementary strengths of HI'M and SLADIT in real-time contexts, fur-
ther enhancing the reliability and efficiency of anomaly detection in high-stakes
environments. Transitioning from a multivariate, time-aware HT'M model to a
univariate implementation introduced significant challenges, as the model’s effec-
tiveness became heavily dependent on dataset characteristics. Low-noise datasets
with clear periodic structures allowed for reasonable detection performance, whereas
abrupt anomalies and non-stationary trends proved more problematic. The removal
of contextual cues, particularly those derived from timestamps or external fea-
tures, significantly reduced HTM’s ability to infer meaningful predictions. Future
improvements should focus on reintroducing time-based encodings, refining hyperpa-
rameters, and exploring hybrid methods that integrate HTM’s continuous learning
with more structured encoding strategies, thereby enhancing generalizability and
adaptability for real-world univariate time-series anomaly detection.
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