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Abstract

The growing number of space objects threatens mission sustainability, making
precise real-time tracking essential for Active Debris Removal (ADR) and In-Orbit
Servicing (IOS) missions. For an uncooperative target, a Vision Based Navigation
(VBN) relative pose (attitude and position) estimation system coupled with a state
estimator are likely required. Missions can further be supported by commissioning
unresolved observations of the target to produce light curves, which can then be used
to extract rotation rates and axes of rotation. This work performs the novel task of
exploiting the light curves as kinematic priors to enhance the performance of the
state estimator.

An Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF) are
implemented. Light curve motion prior extraction and VBN pose estimation are
simulated based on state-of-the-art results. Three independent studies are performed
exploiting the motion priors: (1) Optimizing the Kalman filter tuning for specific
kinematic scenarios; (2) Injecting the priors as an initial condition to improve
convergence and steady state errors; and (3) Enhancing an outlier rejection function
with supplementary proxy measurements from the priors. Performance is evaluated
on a custom synthetic light curve dataset based on the Atlas Centaur rocket body,
and a private commercial dataset based on the Vega Secondary Payload Adapter
from commercial collaborator, ClearSpace.

By exploiting kinematic priors, convergence time and steady state error reduc-
tions of 3× or more are exhibited for certain state components, dependent on the
kinematic scenario and filter tuning. In general, several trade-offs are observed with
kinematic priors providing the opportunity for the lowest steady state errors. This
method has the potential to improve the pose estimation accuracy for proximity
operations of uncooperative tumbling objects, supporting ADR and IOS missions,
especially considering the mild assumptions required.
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Chapter 1

Introduction

Space exploration has always captured the interest of people worldwide. Collective
imagination has been widely influenced by movies, literature, paintings, music,
which have always portrayed space as covered by a fascinating veil of mystery. At
least once, every human being has dreamed of exploring other planets, finding new
forms of life or being able to travel across the galaxy. As many fields, space is indeed
marked by fascinating yet scientifically challenging aspects. Since scientific research
tends to question reality on increasingly broader orders of magnitude, whatever goes
towards extremely small or extremely large scales becomes the frontier of human
knowledge.

From the very first steps taken towards reaching space, this domain has always
been very appealing for the biggest governments of the world, not only for the high
investment pay-off chance, but unfortunately also for applications in the military
domain. The first rocket to reach space (more than 100 Km from Earth’s surface)
was in fact developed as a weapon by Nazi Germany built during World War II. And
it is significant that the first satellite to be sent into Earth orbit was launched by the
Union of Soviet Socialist Republics (USSR) in 1957 in the context of the Space
Race against the USA during the Cold War.

Despite being initially born as side effects of military applications, discoveries
in the space domain have led to technologies that are now integrated in our daily
lives. Telecommunications, the Internet, GPS navigation, and weather forecasting
are only a few examples of such technologies that we now take for granted. As time
passed, space research has evolved to mainly focus on purely civil and scientific
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scopes. From distant observation of celestial bodies, with Space Telescopes like
Hubble and the James Webb, to understand the origin of the universe, to planetary
science mission and Earth observation satellites, contributing to weather forecasting
and climate monitoring.

Extending far beyond, though not entirely, from its initial military origins, the
space research domain has enabled peaceful international collaborations that have
produced innovations benefiting all of humanity.

1.1 The Space Debris problem

Since the beginning of the space age, thousands of spacecrafts, rockets and instru-
ments have been sent into Earth orbit. In the early days of spaceflight these systems
were exactly planned to fulfill their task, with very little or no thought about what
would happen when they reached the end of their lifetime (End Of Life, EOF). Over
time, those have accumulated, and, as often happens when technological advance-
ments are strongly pursued, the number of nonfunctional old units (Resident Space
Objects) now populating Earth’s orbits poses a significant threat to future space
missions and to Earth’s surface as well. Such objects can in fact collide generating
spread out fragments that accelerate and become thus more dangerous than the
original bodies individually. For reference, a collision with a 1 cm particle travelling
10 km/s (of which there are about a million in orbit) releases the same energy as a
small car crashing at 40 km/h. Consequently, the generated fragments can collide
themselves, rising a cascaded exponential effect.

Space debris is defined by European Space Agency (ESA) as all non-functional,
man-made objects, including fragments and elements thereof, in Earth orbit or re-
entering Earth’s atmosphere. As of the July 2024 Annual Space Environment Report,
ESA is tracking more than 20 thousand objects in Low Earth Orbit (LEO), orbits
closer to Earth’s surface, estimating millions more untracked ones [17], Fig. 1.1.

The international community is well aware of the Space Debris problem. Since
the very first Inter-Agency Space Debris Mitigation Guidelines defined in 2002,
efforts have focused into defining regulations to prevent the situation from worsen-
ing. One significant example is represented by ESA’s Zero Debris Charter [3], a
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Fig. 1.1 Evolution of number of objects in all orbits. UI is Unidentified, RX are Rocket parts
and PX are payloads. For the full legend and additional plots, refer to ESA 2024 Space
Environment Report in [17]

global collaborative initiative facilitated by ESA that aims at providing guidelines to
significantly reduce the creation of new space debris by year 2030.

1.2 Current solutions background

Examples of debris prevention and mitigation solutions include Life Extension mis-
sions, through In-Orbit Servicing (IOS) aimed at repairing, refueling or upgrading
satellites, Controlled Reentry operations or Active Debris Removal (ADR) missions,
to actively capture and remove Resident Space Objects (RSOs). However, significant
engineering challenges remain. Currently, various programs are underway to support
and develop the technologies necessary for Active Debris Removal. In 2018, the
RemoveDEBRIS mission [8] successfully demonstrated capture of an uncooperative
CubeSat, a miniaturized satellite with 10 cm edges used for technological demon-
strations or educational purposes. In the second half of 2026, the ClearSpace-1
mission will mark the first large scale ADR operation, capturing the VESPA (VEga
Secondary Payload Adapter), the upper part of a VEGA Rocket, left in LEO after a
launch in 2013.

For a non-functioning target satellite or piece of debris, a Servicer satellite sent in
a proximity mission towards it will not have access to cooperative relative navigation
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techniques such as relative GNSS (Global Navigation Satellite System), Target
telemetry or Target beacons emitting signals. For relative attitude determination in
such uncooperative circumstances, an optical sensing technique coupled with a state
estimator is required.

State estimation, or state observation, refers to the process of providing an
estimate of the internal states of a system, as the name suggest.

With the appropriate level of abstraction, any real physical system can be seen as
an object that receives an input and generates an output based on its current condition.
Think of a light switch: it receives an input, the flip of the button, and depending on
its current status, a light bulb will be either turned on or off. The same happens, for
example, with a car: for the same pedal push, the resulting change on the speed will
depend on the speed the car had before. Or the thermal control of a room: producing
the same amount of heat will rise a different change in the temperature depending
on the current temperature of the room. Countless examples exist. Intuitively, the
state of a system depends thus on his history, on the past inputs it received or on its
initial condition before its spontaneous evolution. The history of a car is the engine
torque that was applied and made it reach its speed, and the state of a thermal control
system is the room temperature value when it gets turned on.

State estimation theory says that one can reconstruct the history of a system, i.e,
recover the value of its state, by combining a time series of output values the system
produced, measured by sensors, possibly knowing the inputs that were applied.
Consequently, a state estimator is a device that knows the mathematical model of
a system, and enables this processing. Such kind of computations can be either
developed offline, working with a set of data gathered at a given time in the past, or
in real-time, processing new measurements coming from available sensor as they are
produced. In the context of space debris removal missions the latter is the case.

In real world dynamic systems, uncertainties, namely noise, can arise from
measurements, from inaccurate mathematical modeling or from unpredictable en-
vironmental conditions. The ability to recover the true state of a system even in
presence of noise or incomplete data is thus essential. This is specifically referred to
as filtering. For this reason, as one can easily imagine, real-time state estimation and
filtering and fundamentally overlapping concepts.

As mentioned, proximity operations with uncooperative targets, such as the ones
occurring during Active Debris Removal or In-Orbit Servicing mission, require the
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usage of Vision-Based Navigation (VBN) measurement models. The most basic
technique involves providing the Servicer spacecraft with an optical camera that
takes images of the approached Target at regular time intervals and feeds them to
a Neural Network. This Neural Network is a device that has been programmed (or
trained) to recognize the distance and the rotation of the body present in a picture,
solving the problem called Pose Estimation. Such Pose Estimation Neural Network
is the device that provides the measurements to be fed to the real-time state estimator.
If the rotation, or pose, and the relative distance of the target object are the measured
output values, the internal state of the target are its rotational speed, i.e. angular
velocity, and its relative translational acceleration. Moreover, since the target is not
under control, it doesn’t receive any input.

Additionally, in advance of a servicing mission, observations of the client satellite
can be made using ground-based and in-orbit Space Situational Awareness (SSA)
services. In this context, a powerful element is represented by light curves, which
are series of brightness intensity values of objects observed in space. The changes of
an object’s brightness over a given time window are directly related to the rotational
motion it exhibits. In particular, if the Target’s shape and reflective properties are
known, information about its dynamics can be inferred, extracting what will be
referred to as the kinematic (or motion) prior.

1.3 Objectives and structure of this work

In the context of a general Active Debris Removal or In-Orbit Servicing mission,
this work explores the possibility of improving the performance of a real-time state
estimation model, fed with measurements from a pose estimation neural network
working on proximity images, by leveraging kinematic prior information coming
from light-curves analysis.

This thesis is organized as follows. Chapter 2 reviews the theoretical background
needed to understand this work. The mathematical description of the dynamics of
a spacecraft and the theory of Kalman Filtering, a widely-known state estimation
model, is presented. Chapter 3 introduces the concept of light-curves and the tools
for their analysis. Chapter 4 outlines the complete state estimation model built, as
depicted in the block diagram in Fig. 1.2. It describes how the different building
blocks of this work are combined, presenting the model to propagate the Servicer-
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Fig. 1.2 Block diagram of the framework

Target proximity scenario and simulate the measurements as if they were from a
pose estimation neural network. Chapter 5 introduces three different kinematic prior
injection studies that have been explored and discusses the results obtained. Chapter
6 concludes the discussion and presents directions for future work.

A scientific paper based on this work was published as part of the ESA 9th
European Conference on Space Debris proceedings.



Chapter 2

Theoretical background

This chapter presents the theoretical and mathematical background needed for the
understanding of this work. The aim is to provide the reader with precise and detailed
descriptions, without diving into all the derivations, possibly merging concepts from
different sources to present a unified and clearer explanation.

First, a spacecraft’s attitude and orbital dynamics equations and relative deriva-
tions are presented, from the most general representation to the formulation of
the relative motion problem, that models the environment in which this work ap-
plies. Next, the Kalman filtering theory is presented, focusing on its extensions for
nonlinear systems. A technique for detecting outlier measurements is also presented.

2.1 Spacecraft dynamics

Solving any scientific problem requires first the definition of a mathematical de-
scription that models the real physical behavior of the system under inspection. The
same physical system can be represented by different mathematical models, each
with specific advantages, limitations and working under different assumptions. For
instance, a spacecraft is often described as a rigid body moving with respect to a
given inertial frame. A rigid body motion is the combination of a translation of its
Center of Mass (CoM) with a rotation about an axis passing through the CoM. In
this context, a spacecraft position evolves according to orbital dynamics, while its
orientation is governed by attitude dynamics.
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This chapter provides first the derivation of the two mentioned dynamic models
for a single spacecraft, along with associated definitions. The modeling of the relative
motion between two spacecrafts is presented afterwards.

2.1.1 Attitude dynamics

The study of the attitude dynamics of a spacecraft refers to the analysis of the
rotational motion of a rigid body about an axis passing through its CoM. In particular,
the torques applied to a rigid body have the effect of changing its angular speed
(dynamic equations), which in turn determines the evolution of the body’s orientation
(kinematic equations).

Consider a rigid body rotating with respect to an inertial observer reference frame.
An inertial reference frame is a fixed frame of reference, not accelerating, with a
given origin and axes X,Y,Z, whose directions are denoted by unit vectors i1, i2, i3.
A non-inertial rotating reference frame is fixed to the rotating body, with origin in its
CoM, and axes x,y,z, with directions b1,b2,b3. The angular velocity of the body
with respect to the inertial frame, represented in its body frame, is thus defined as
ω = ω1b1 +ω2b2 +ω3b3. A bold symbol denotes a vector or a matrix.

From classical physics, the angular momentum of a particle i of the body is
defined as Hi = ri ×miṘi, where ri is the position of the particle in the body frame,
Ri is the position of the particle in the inertial frame, Ṙi is its time derivative and

q×p =

q2 p3 −q3 p2

q3 p1 −q1 p3

q1 p2 −q2 p1

 (2.1)

is the cross product between two generic q and p vectors. By expressing the angular
momentum with respect to the CoM, assuming the body rigid, the resulting total
angular momentum is independent of the translational motion, and is defined as

H = ∑
i

ri × (ω × ri) =

=
∫

B
r× (ω × r)dm, mi → ∞

(2.2)
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The term ω × r accounts for the fact that the body frame is rotating with respect to
the inertial frame and comes from the notion of vector derivative. The derivative of
ri is in fact expressed as ṙi = ẋb1 + ẏb2 + żb3 + xḃ1 + yḃ2 + zḃ3. Considering the
rotation δbi = δθ ×bi, where δθ = ωδ t and δ t → ∞, it yields

ḃi = ω ×bi (2.3)

which results in
ṙi = ṙB +ω × r (2.4)

Developing Eq. (2.2) and compacting the result in matrix notation, one can obtain

H =

J11 J12 J13

J21 J22 J23

J31 J32 J33


ω1

ω2

ω3

= Jω (2.5)

where
J11 =

∫
B

(
y2 + z2)dm

J22 =
∫

B

(
x2 + z2)dm

J33 =
∫

B

(
x2 + y2)dm

(2.6)

are called moments of inertia, and

J12 = J21 =−
∫

B
xydm

J13 = J31 =−
∫

B
xzdm

J23 = J32 =−
∫

B
yzdm

(2.7)

are called products of inertia.

Matrix J is in fact called inertia matrix of the object. It embeds knowledge on
the mass distribution of the object, and qualitatively tells how hard is to rotate an
object around a given axis. The further the mass is distributed with respect to the
considered axis, the higher the inertia value. The inertia matrix is always symmetric,
but in general not diagonal. A reference frame for which J is diagonal can always
be found by means of a rotation, but that is not guaranteed to be the most useful in
practical applications. For objects with uneven and irregular mass distributions, the
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principal axes of inertia (axes for which J is diagonal) are very likely not aligned
with the more intuitive and simpler body reference frame. In particular, in most
practical cases dealing with orbital debris, this happens to be the case. However, if
little knowledge on the mass distribution is available, assuming a diagonal inertia
matrix might still work in most applications.

Suppose now that a moment M = M1b1 +M2b2 +M3b3 is acting on the body.
The II law of dynamics for rotational motion says

Ḣ = M (2.8)

Since Ḣ = ḢB +ω ×H, with H = Jω and Ḣ = Jω̇ , then

Jω +ω × Jω = M (2.9)

is called Euler moment equation. It is a nonlinear equation and in general it has no
analytical solution.

Assuming to consider a body reference frame for which J = diag(J1,J2,J3) is
diagonal, the Eq. (2.9) can be rewritten as

J1ω̇1 +ω2ω3(J3 − J2) = M1

J2ω̇2 +ω1ω3(J1 − J3) = M2

J3ω̇3 +ω1ω2(J2 − J1) = M3

(2.10)

which in matrix form becomesω̇1

ω̇2

ω̇3

=


0 (J2−J3)

J1
ω3 0

(J3−J1)
J2

ω3 0 0
(J1−J2)

J3
ω2 0 0


ω1

ω2

ω3

+

M1/J1

M2/J2

M3/J3

 (2.11)

Fixing M = 0 one can inspect the free response (free motion) of the body. In this
case, in specific scenarios with additional assumptions (symmetric body, constant
angular speed components), analytical solutions can be found, and are very useful to
inspect the stability properties of the differential equations. For detailed derivations
and perturbation analyses, the reader might refer to the book in [21].

Without diving into the analytical description, results that link the shape of
the inertia matrix to the expected dynamics of ω are derived. In particular, for a
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generic asymmetric body, when in free motion, including an energy dissipation term
accounting for a semi-rigid body assumption (flexible elements, possible fluid slosh),
the following holds:

• ω is a bounded harmonic signal (composition of sinusoidal waves that keeps
oscillating without damping to zero)

• The motion about the major principal axis is asymptotically stable

• The motion about the minor and intermediate principal axes is unstable

The description of the evolution of the orientation of the body, namely attitude if
talking about a spacecraft, can be now introduced.

The orientation of a body in a three-dimensional space depends on 3 degrees
of freedom, which can be generally represented as the composition 3 consequent
rotations with respect to the three axes of a reference frame. In particular, the
elementary rotation matrices can be defined as:

T1(φ)
.
=

1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 (2.12)

T2(θ)
.
=

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (2.13)

T3(ψ)
.
=

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (2.14)

describing a rotation about, respectively, the X,Y,Z axes of angles φ ,θ ,ψ , called
Euler angles. Any rotation can be expressed by means of a product between the
elementary rotation matrices, with a specific order. Each matrix multiplication rotates
the axes of the body, a following rotation is defined with respect to the rotated object,
which thus makes the rotation matrix product non-commutative.

Take as example the Tait-Bryan 123 rotation, where 123 is the rotation order and
Tait-Bryan is a name to group the rotation compositions that do not repeat indices
(123, 321 with respect to 313, 323), of any angles φ and ψ , with θ = π/2. The
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Fig. 2.1 Gimbal lock

composite rotation matrix is

T123

(
φ ,

π

2
,ψ

)
= T1(φ) ·T2(π/2) ·T3(ψ)

=

 0 0 1
cosφ sinψ + cosψ sinφ cosφ cosψ − sinψ sinφ 0
sinψ sinφ − cosφ cosψ cosφ sinψ + cosψ sinφ 0


=

 0 0 1
sin(φ +ψ) cos(φ +ψ) 0

−cos(φ +ψ) sin(φ +ψ) 0


(2.15)

What results is that only the sum of φ and ψ angles can be determined from the
obtained rotation matrix: this phenomenon is called gimbal lock. Its consequence is
a loss of a degree of freedom, which is also named singularity. It originates when
one applies a rotation that makes one of the three axes align with one of the others,
restraining the rotation space to be two-dimensional, as seen in Fig. 2.1.

Different standards for rotation representations exist (Roll Pitch Yaw (RPY)
angles, for example). Among all, particularly interesting and useful are the ones that
do not suffer from singularities. The best example in this sense is the quaternion,
one of the most used representations.
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A quaternion is generally represented in the form

q= q0 +q

= q0 +q1i+q2j+q3k

=

(
cos

β

2
,u1 sin

β

2
,u2 sin

β

2
,u3 sin

β

2

)
= (q0,q1,q2,q3)

= (q0,q) =

[
q0

q

]
(2.16)

where q0 is called real part, q is the vector (or imaginary) part, and 1, i, j,k is the
4D linear vector space basis, which follows the rule i2 = j2 = k2 = ijk = −1. A
quaternion with null real part is said pure, and a quaternion with null vector part and
unitary real part is called identity. In the quaternions space the following expressions
hold:

• Quaternion norm

|q|= ∥q∥= ∥q∥2 =

√√√√ 3

∑
i=0

q2
i (2.17)

• Quaternion complex conjugate

q∗ = (q0,−q) = cos
β

2
−usin

β

2
(2.18)

• Quaternion product

q⊗p=

[
q0 p0 −q ·p

q0p+ p0q+q×p

]
(2.19)

where
q ·p = q1 p1 +q2 p2 +q3 p3 (2.20)

is the dot product, and q×p is the cross product.
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Considering a rotation of a vector r about an axis u = (u1,u2,u3) of an angle β , the
corresponding quaternion can be computed as

q=

(
cos

β

2
,u1 sin

β

2
,u2 sin

β

2
,u3 sin

β

2

)
(2.21)

and the equivalent rotated vector becomes

(0,r′) = q⊗ (0,r)⊗q∗ (2.22)

The inverse of the rotation is represented by

q−1 = q∗ (2.23)

A quaternion representing a true rotation must have a unitary norm. A four dimen-
sional quaternion needs in fact to be traced back to the three-dimensional space,
interpreting it as 3 degrees of freedom plus a unitary norm constraint. The reader
might find an interesting tool for better quaternion visualization at [2].

Once an appropriate representation is chosen, the complete description of the
attitude dynamics is concluded by introducing the kinematic equations, that describe
the evolution of the orientation of a body that is rotating at a given angular speed.
The quaternion kinematics equation, in particular, can be written in the following
different equivalent forms:

q̇=
1
2
q⊗ (0,ω)

=
1
2

Ω(ω)q

=
1
2

Q(q)ω

(2.24)

where

Ω(ω)
.
=


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (2.25)
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and

Q(q)
.
=


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 (2.26)

The complete set of dynamic-kinematic equations is thus obtained. The provided
mathematical description allows to represent the trajectory of the attitude of a rigid
body, such as a spacecraft, knowing the torque applied to it, if any, its inertia matrix
and the initial conditions for the angular velocity vector and the attitude quaternion.

The complete equations can thus be converted in state-space representation, to
enable more straightforward usage for numerical integration. The state equations
yield

ẋ = A(x)x+Bu (2.27)

where
x =

[
q0 q1 q2 q3 ω1 ω2 ω3

]T

u =
[
M1 M2 M3

]T (2.28)

And A(x) and B matrices components are derived from Eq. (2.11) and Eq. (2.24).

2.1.2 Orbital dynamics

Derived from the most general celestial mechanics equations, which describe the
motion of any celestial body under the influence of gravity, the orbital dynamics
specifically focuses on the trajectories of spacecrafts.

The first result, for a body in an unperturbed orbit around a planet, was obtained
by Johannes Kepler in 1605. His empirical laws of planetary motion state the
following:

1. The orbit of a planet is an ellipse with the sun located at one focus

2. The radius vector joining the sun and a planet sweeps out equal areas in equal
intervals of time

3. The square of orbital period of a planet is proportional to the cube of semimajor
axis
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Fig. 2.2 Two-body problem framework

After some time, in 1687 Isaac Newton published his famous book Philosophiae
Naturalis Principia Mathematica. It built on other recent discoveries of his time, and
it is recognized as one of the most important scientific works in history. In the book
he describes the fundamental laws of astrodynamics, the laws of motion and the law
of universal gravitation.

The latter states that any two particles attract each other with a force

F = G
m1m2

r2 = G
m1m2

r3 r (2.29)

where m1, m2 are the particles masses, r = |r| is the vector connecting the two
particles and G = 6.67e−11 Nm2

Kg2 is the Universal gravitational constant. Kepler’s
empirical laws of planetary motion may be derived from Newton’s physical laws,
under the assumption that the orbiting body is subject only to the gravitational force
of the central attractor.

To the purpose of obtaining a representation of the motion of a body in an orbit,
a two-body framework is defined using these laws. In classical mechanics, the
two-body problem for a gravitational case is therefore to describe and predict the
motion of two bodies reciprocally orbiting in space.

Consider two point masses m0 and m1, located at points P0 and P1 in an inertial
frame with origin O, as shown in Fig. 2.2. In this setting, r0 and r1 are the position
vectors of the masses, r is their relative position, v0 and v1 are the velocities and F0

and F1 are external non-gravitational external forces.



2.1 Spacecraft dynamics 17

Using Newton’s II law and the universal gravitation law, the following holds:

v̇0 = G
m1

r3 r+
1

m0
F0

v̇1 =−G
m0

r3 r+
1

m1
F0

(2.30)

The expression of the relative velocity v = v1 −v0 therefore becomes

v̇ =−G(m0 +m1)

r3 r+
1

m1

(
F1 −

m1

m0
F0

)
(2.31)

At the same time, using the transformations

rc =
m0

m0 +m1
r0 +

m1

m0 +m1
r1

vc =
m0

m0 +m1
v0 +

m1

m0 +m1
v1

(2.32)

the expression of the motion of the CoM of the system composed by the two bodies
is found:

v̇c =
1

m1

F1 +F0

1+m0/m1
(2.33)

The key assumption for the derivation of the orbital dynamics equation follows.

Assuming m0 ≫ m1, meaning that one of the two objects in the relative setting
exhibits negligible gravitational attraction on the other, the relative motion equation
becomes

v̇+µ
r
r3 =

1
m1

F1 (2.34)

where µ = Gm0 is called standard gravitational parameter of a celestial body, equal
to µEarth = 3.986 ·1014m3/s−2 for the Earth. The expression is called the restricted
two-body problem. If additionally no acting force on the smaller body is assumed,
i.e. F1 = 0, the equation yielding

v̇+µ
r
r3 = 0 (2.35)

is called the free restricted two-body equation.

Under the same assumption, the solution of Eq. (2.33) gives v̇c = 0, showing
that the CoM of a restricted two-body problem can be chosen as the origin of any
given inertial frame.
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For Eq. (2.35) the following holds:

1. Total mechanical energy conservation

ε̇ =
d
dt

(
v2

2
− µ

r

)
= 0, ε = const (2.36)

where ε is the total mechanical energy per unit of mass. This allows to retrieve,
for a given constant total energy ε , the corresponding orbital velocity of the
object, computed as v =

√
2µ/r+2ε .

2. Angular momentum conservation

ḣ =
d
dt

(r×v) = 0, h = const (2.37)

where h is the specific angular momentum vector per unit of mass. It is, by
definition, perpendicular to the plane of r and v. With h constant, r and v will
always remain in the same plane, called orbital plane, which contains the two
masses.

Taking the cross product of Eq. (2.35) with h, through simple operations, one can
obtain

v×h− µ

r
r = const .

= µe (2.38)

where e is called eccentricity vector and e = |r| is the scalar eccentricity, and

r =
p

1+ ecosθ
(2.39)

where p = h2/µ is called semilatus rectum and θ is the angle between r and e, called
true anomaly. A detailed discussion on Eq. (2.39) and its parameters will follow.

Taking a step back to the scope of this section, employing the differential equation
in Eq. (2.35) one can fully derive the state equations of a spacecraft in orbit:

ṙ = v

v̇ =−µ
r
r3

ẋ = [ṙ, v̇]

(2.40)
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In fact, integrating Eq. (2.35) with any given initial conditions the position trajectory
generated will follow Eq. (2.39), using the change of representation from x,y,z
cartesian coordinates to r,θ polar coordinates.

Higher dimensionality problems of this kind, namely n-body problems, have
been widely studied in scientific history. Such problems however, differently than
the two-body problem, do not have in general an analytical solution. Other than
specific constrained settings, n-body problems with n ≥ 3 are referred to as chaotic
systems, with high sensitivity to initial conditions and whose differential equations
can only be numerically integrated, as no closed form solution exists.

A fundamental reminder is that all the description works under the assumption
that the bodies in orbit are only subject to the gravitational force of their attractor. In
the real world, the orbits are said to be non-Keplerian, meaning they are subjected to
perturbations. The most impactful ones are, for instance, aerodynamic drag due to
residual atmosphere and irregular mass distributions of planets (i.e. Earth oblateness
at the poles) that generate gravity potential harmonics. Among the less significant
ones there are solar radiation effects and third-body forces. The incidence of the
perturbations depends highly on the time window considered and on the required
degree of accuracy of the solutions. The Keplerian orbit assumption works for the
scope of this work.

2.1.3 Orbit geometry and orbital elements

Using the results discussed above, Eq. (2.39) appears to be the one of a conic section.
For θ ∈ [0,2π], using polar coordinates, r describes a conic.

A conic section (or simply conic) is the curve that is obtained by intersecting a
cone and a plane, with given inclination and distance from the vertex of the cone
governed by the parameters of the equation. In particular:

• The eccentricity e determines the shape. The conic section can be:

– ellipse, for 0 ≤ e < 1 (if e = 0 it degenerates into a circle)

– parabola, for e = 1

– hyperbola, for e > 1

• The semilatus rectum p determines the size
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Fig. 2.3 The ellipse and its nomenclature

and θ is calculated from the point of the conic closest to the focus, its origin. The
ellipse, particularly relevant in the context of orbital dynamics, is the locus of points
whose sum of the distances from two fixed points (focus) is a constant value, equal
to 2a, with a = p/(1− e2) being the semi-major axis.

If interpreted as an orbit, the two vertices of the ellipse are called apsides. The
periapsis (perigee for an orbit around the Earth, perihelion around the Sun) is the
closest apsidis to the central planet, it corresponds to θ = 0 and its distance from the
main focus is rp = p/(1+ e). The apoapsis (apogee for an orbit around the Earth,
aphelion around the Sun) is the furthest, it corresponds to θ = π and its distance
from the main focus is rp = p/(1−e). Most of the objects in the Solar System reside
in elliptical orbits around the sun.

From the results of Eq. (2.36) one can derive the vis-viva equation:

v =
√

2
µ

r
− µ

a
(2.41)

which expresses the univocally determined velocity of an object in a given orbit.
By computing it for a parabolic orbit, which is the first open conic case, that is
with a → ∞, one can compute the velocity needed for an object to leave a given
closed orbit. For any orbital position with radius r it is called escape velocity and is
computed as v =

√
2µ/r.
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Assumed that the central planet occupies one of the two foci of a given elliptical
orbit, the essential practice is to define a reference frame. The current standard
celestial reference system is the International Celestial Reference System (ICRF)
used by the International Astronomical Unit. It is centered in the Solar System’s
center of mass, and its axis are fixed pointing towards distant very active and luminous
galaxy nuclei, called quasars, which are assumed to be stationary given their extreme
distances. This choice ensures stability and no rotational motion effects.

An easier and sufficiently accurate definition for scopes restricted to Earth orbits
is the Earth Centered Inertial (ECI) frame. It is defined as follows:

1. Z-axis (K) pointing towards the celestial north pole.

2. X-axis (I) pointing towards the vernal equinox. The equinoxes are the two
points in which Earth’s orbital plane (ecliptic plane) intersects Earth’s equato-
rial plane (celestial equator). The vernal (or March) equinox, for the northern
hemisphere, is the point crossed when the Sun is heading northwards, as seen
from the Earth.

3. Y-axis (J) completes the right-handed triad on the equatorial plane, J = K× I.

Contrarily to the ICRS, the ECI frame does not adjust for small changes in Earth’s ori-
entation due to precession, nutation and polar changes, but it is however a sufficiently
accurate choice for some applications. For this reason, it needs to be defined as the
ICRS for a given epoch of time. Common practice is to consider the ECI equivalent
with the ICRS at epoch J2000, i.e. 1st January 2000 of the Julian calendar. A wide
variety of possible reference frames is available. The choice is made depending on
the requirements of the problem, on the point of view to be considered and on what
simplifies calculations. For a thorough description of other reference frames used in
space applications, the reader might refer once again to the book in [21].

Defined the reference frame, there is need for a unique definition of an orbit.
Among the different ways to mathematically describe one, the most widely used
representation are the classical orbital elements. Since the solution of Eq. (2.35)
has six degrees of freedom (seven with µ , which is assumed defined), the orbital
elements are a set of six independent parameters that uniquely define an orbit, as
follows:

1. a, semimajor axis
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Fig. 2.4 A visualization of the classical orbital elements

2. e, eccentricity

3. i, inclination: the angle between the orbital plane and the fundamental plane
of the central planet (reference plane, K)

4. Ω, right ascension of the ascending node: the angle from I to the ascending
node. The ascending node is the point of intersection between the orbit and
the reference plane, when the body in orbit crosses from below to above

5. ω , argument of perige: the angle from the ascending node to the periapsis

6. θ (or ν), true anomaly: angle from periapsis to the orbiting body position

The choice of such parameters and their notation is not unique in scientific literature.

For easier visualization, the reader might refer to Fig. 2.4 or to the resource in
[1], which also provides the standard formulas for representation changes between
orbital elements and Euclidean vectors.

Using orbital elements, an astronomical classification of orbits can be defined,
with respect to the strictly analytical one, see Tables 2.1 and 2.2.

Rather trivially, depending on the specific setting, some values may be unde-
fined and therefore irrelevant. Moreover, orbit integration models, even the most
sophisticated, suffer from propagation errors, which requires periodic updates of the
orbital information of objects. This is why better orbit description standards have
been developed, with the Two-Line Element (TLE) being the most common. A TLE
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Table 2.1 Classification of orbits

Orbit Type Altitude
(km)

Period Inclination Eccen-
tricity

Low Earth Orbit (LEO) 160 – 2,000 90–120
min

0°–90° (varies) ≈ 0

Medium Earth Orbit
(MEO)

2,000 –
35,786

2–12
hours

Varies (e.g., 55°
GPS)

≈ 0

Geostationary Orbit
(GEO)

35,786 24 hours ≈ 0◦ ≈ 0

High Earth Orbit
(HEO)

300 –
40,000

12–24
hours

≈ 63.4◦

(Molniya)
≈ 0.7

Sun-Synchronous Orbit
(SSO)

600 – 800 90–100
min

≈ 98◦ (polar) ≈ 0

Table 2.2 Typical missions per orbit type

Orbit Type Usual Missions

LEO Earth observation, ISS, scientific missions
MEO Navigation (GPS, Galileo), communications
GEO Communications, weather monitoring, broadcasting
HEO High-latitude communications, reconnaissance
SSO Earth observation, remote sensing



24 Theoretical background

Table 2.3 Two-Line Element (TLE) format, line 1

Column Description

01 Line Number of Element Data
03−07 Satellite Number

08 Classification (U=Unclassified)
10−11 International Designator (Last two digits of launch year)
12−14 International Designator (Launch number of the year)
15−17 International Designator (Piece of the launch)
19−20 Epoch Year (Last two digits of year)
21−32 Epoch (Day of the year and fractional portion of the day)
34−43 First Time Derivative of the Mean Motion
45−52 Second Time Derivative of Mean Motion (Leading decimal point)
54−61 BSTAR drag term (Leading decimal point)

63 Ephemeris type
65−68 Element number

69 Checksum (Modulo 10)
(Letters, blanks, periods, plus signs =0; minus signs =1)

orbit description is provided in a text file whose first line is a 24-character name, and
the following lines are 69 characters long and have the information as described in
Tables 2.3 and 2.4. Orbit propagation errors have a different impact depending on
the type of the orbit, affecting the TLEs update frequency required to maintain their
accuracy. Orbits in LEO require almost daily updates, while TLEs for orbits in GEO
can be maintained up to weeks.

2.1.4 Relative motion

Extending from the outlined equations presenting an individual spacecraft’s dy-
namics, a model for the description of the spacecraft relative motion is presented.
Considering two rigid-body spacecraft orbiting around the earth. Label one space-
craft as the Target and the other as the Servicer. In this setting, the relative motion
equations, rather intuitively, aim at providing a description of the relative attitude
and relative translation dynamics of the two spacecrafts.

Among several spacecraft relative dynamics models, the one from [5] is used.
Such model is particularly suited for usage in a scenario where the Target is assumed
to be an uncooperative object, which applies to the scope of this work. The cited
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Table 2.4 Two-Line Element (TLE) format, line 2

Column Description

01 Line Number of Element Data
03−07 Satellite Number
09−16 Inclination [Degrees]
18−25 Right Ascension of the Ascending Node [Degrees]
27−33 Eccentricity (Leading decimal point assumed)
35−42 Argument of Perigee [Degrees]
44−51 Mean Anomaly [Degrees]
53−63 Mean Motion [Revs per day]
64−68 Revolution number at epoch [Revs]

69 Checksum (Modulo 10)

source references the model in [9], but re-derives the equations expressing them
with respective to the Target spacecraft’s frame. The dynamics works under the
assumption of Keplerian orbits, thus with no perturbations included.

For the chosen representation, the relative translational dynamics is dependent on
the relative attitude dynamics, which will be presented first. This formulation shows
how to build the equation for the relative dynamics assuming single integration of
the two individual attitude and translational dynamics.

Let qT S = q−1
S ∗qT be the quaternion error between the attitude of the Target qT

and the attitude of the Servicer qS, representing the relative orientation between the
two. The equivalent rotation matrix RT

S = R(qT S) transforms a vector expressed
in the Servicer frame to the Target frame with an extrinsic rotation. For the sake
of clarity, the trivial representation change from quaternion to rotation matrix is
represented as

R(q) =

q2
0 +q2

1 −q2
2 −q2

3 2(q1q2 −q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 −q0q1)

2(q1q3 −q0q2) 2(q2q3 +q0q1) q2
0 −q2

1 −q2
2 +q2

3

 (2.42)

The relative angular velocity expressed in the Target frame is given as

ω
T
ST = ω

T
S −ω

T
T = RT

S ω
S
S −ω

T
T (2.43)
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knowing that ωT
ST =−ωT

T S. Relative attitude and relative angular velocity follow the
quaternion kinematics equation as in (2.24).

The relative angular acceleration is expressed as

α
T
ST =

(
dωST

dt

∣∣∣∣
T

)T

= RT
I

(
dωST

dt

∣∣∣∣
I

)I

−ω
T
T ×ω

T
ST

(2.44)

where the subscripts after the vertical bar represent in which reference frame the
differentiation is done, I is the Inertial ECI frame as introduced in 2.1.2, and RT

I is
the rotation matrix that transforms a vector from the ECI frame into the Target frame,
represented by the Target’s attitude.

The expression of the relative angular acceleration with respect to the ECI frame,
differentiated in the ECI frame, is computed as(

dωST

dt

∣∣∣∣
I

)I

=

(
dωS

dt

∣∣∣∣
I

)I

−
(

dωT

dt

∣∣∣∣
I

)I

(2.45)

Knowing that

RT
I

(
dωT

dt

∣∣∣∣
I

)I

=

(
dωT

dt

∣∣∣∣
T

)T

= J−1
T

(
mT −ω

T
T ×JT ω

T
T
)

RT
I

(
dωS

dt

∣∣∣∣
I

)I

= RT
S

(
dωS

dt

∣∣∣∣
S

)S

= RT
S

[
J−1

C

(
mC −ω

S
S ×JSω

S
S

)]
(2.46)

where JT and JS are respectively the inertia matrices of the Target and of the Servicer,
and mT and mS are respectively external moments applied to the Target and to the
Servicer, the final expression for the relative angular acceleration then becomes

α
T
ST = RT

S

[
J−1

S

(
mS −ω

S
S ×JCω

S
S

)]
−J−1

T
(
mT −ω

T
T ×JT ω

T
T
)
−ω

T
T ×ω

T
ST

(2.47)
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The relative dynamics description is instead computing starting from the ex-
pressions of rT

T and rS
S, which are, respectively, the Target’s and Servicer’s position

expressed in their respective body frames. The relative position is defined as

rT
ST = rT

S − rT
T = RT

S rC
S − rT

T (2.48)

The relative velocity expressed in the target frame is obtained as:

vT
ST =

(
drST

dt

∣∣∣∣
T

)T

=

(
drST

dt

∣∣∣∣
I

)T

−ω
T
T × rT

ST , (2.49)

= RT
S RS

I

(
drST

dt

∣∣∣∣
I

)I

−
(

RT
S ω

S
S −ω

T
T

)
× rT

ST . (2.50)

developed using Eq. (2.43).

The relative acceleration in the Target frame is computed as

aT
ST =

(
d2rST

dt2

∣∣∣∣
T

)T

=

(
d2rST

dt2

∣∣∣∣
I

)T

−2ω
T
T ×vT

ST

+

(
dωT

dt

∣∣∣∣
T

)T

× rT
ST +ω

T
T ×

(
ω

T
T × rT

ST
)

(2.51)

The relative acceleration term expressed in the Target frame, differentiated with
respect to the ECI frame, is simply corresponding to(

d2rST

dt2

∣∣∣∣
I

)T

=

(
d2rS

dt2

∣∣∣∣
I

)T

−
(

d2rT

dt2

∣∣∣∣
I

)T

(2.52)
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The absolute accelerations of the Target and the Servicer with respect to the ECI
frame are (

d2rS

dt2

∣∣∣∣
I

)T

=− µ

r3
S

RT
S rS

S (2.53)(
d2rT

dt2

∣∣∣∣
I

)T

=− µ

r3
T

rT
T

=− µ

∥RT
S rS

S − rT
ST∥3

(RT
S rS

S − rT
ST ).

(2.54)

which correspond to the standard Keplerian free restricted two body equation in Eq.
(2.35). By substituting Eqs. (2.52), (2.53) and (2.54) into Eq. (2.51), the complete
expression of the relative translational dynamics expressed in the Target’s body frame
yields

aT
ST =− µ

r3
S

RT
S rS

S

+
µ∥∥RT

S rS
S − rT

ST

∥∥3

(
RT

S rS
S − rT

ST

)
+J−1

S

(
mS −ω

T
S ×JSω

T
S
)
× rT

ST

−2ω
T
S ×vT

ST +ω
T
S ×

(
ω

T
S × rT

ST
)

(2.55)

The complete dynamics of the spacecraft relative motion problem, expressed in
state-space representation, thus propagates as follows:

ẋ =
dx
dt

∣∣∣∣
T
=

d
dt


qT S

ωT
ST

rT
ST

vT
ST


|T

=


1
2Q(q)ωT

T S

αT
ST

vT
ST

aT
ST

 (2.56)

As stated in the introduction, all the description is presented in its most general
form. At the same time, it provides also the expressions that allow to derive a
representation solely dependent on relative states and absolute states of the Servicer,
which will be needed later during the discussion.
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2.2 Kalman filtering

The Kalman Filter is a well established estimation algorithm introduced by Rudolf E.
Kalman in 1960 [12]. It finds applications in a wide variety of fields, ranging from
economics and medicine to robotics and aerospace, while being also particularly
well suited for real-time applications in general. It in facts references an internal
representation of the system, and can take into account prior modeled knowledge
of the environment. During the online processing, at a reasonable computational
cost, the filter uses new measurements as they arrive for continuously refining the
estimates. The Kalman filter is in fact defined as a recursive estimator. This means
that, in contrast to batch estimation techniques, only the estimation at the previous
time step and the current estimate are needed, and no history of the observations is
required.

A general description will follow, without going into too much mathematical
detail. Different formulations, which are derived on the most general one, will then
be presented. The representation in discrete time is chosen, as relatively simpler and
more suitable for direct online implementation. The reader is expected to intuitively
interpret vector expressions, with bold notation reserved for vectors with physical
meaning, as in the previous section.

Consider a generic discrete-time Linear Time Varying (LTV) system, described
by the standard state equations

xk+1 = Fkxk +Gkuk +dk

yk = Hkxk +dy
k

(2.57)

where k ∈ Z is the time index, xk ∈ Rn is the state, uk is the input, yk ∈ Rm is the
output, dk is the process noise and dy

k is the measurement noise. In this context,
suppose that xk,dk,d

y
k are unknown, not measured, and yk,uk are measured.

The goal of a Kalman Filter is then to obtain a possibly accurate estimate x̂k of xk,
from current and past measurements of yk and uk.

First, key assumptions have to be stated. Assume that both process noise dk

and measurement noise dy
k are independent and identically distributed and white

noises. This mean they have zero mean (E[dk] = E[dy
k ] = 0), bounded variance and
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auto-correlation (which is auto-covariance for a zero-mean process) equal to

E[dkdT
i ] = δkiQd, i ∈ Rn

E[dy
k(d

y
i )

T ] = δkiRd, i ∈ Rq
(2.58)

where δkk = 1,δki = 0 with i ̸= k is the Kronecker delta. Following this representation,
two matrices arise, Qd and Rd , respectively the process noise covariance matrix and
the measurement noise covariance matrix, whose form and effects will be discussed
later. Moreover, those disturbances are uncorrelated mutually and with respect to
the inputs, which means, respectively, E[dk(d

y
i )

T ] = 0 and E[dkuT
i ] = E[dy

i uT
i ] = 0.

This essentially models noise in a rather simple and mathematically convenient
way, following a common assumption on engineering applications that nonetheless
reflects the majority of real world disturbances.

Like many other state observer algorithms, the Kalman Filter (KF) is based on
two fundamental operations: a prediction step, followed by an update step, which
are presented below.

1. Prediction
Knowing the estimated state of the system at time k−1, the filter predicts the
future state estimate x̂−k using the system model

x̂−k = Fk−1 +Gk−1uk−1 (2.59)

At the same time, a prediction of the error covariance matrix Pk is computed:

P−
k = Fk−1Pk−1FT

k−1 +Qd (2.60)

2. Update
The filter then corrects the prediction x̂−k using the current output measurement
yk, producing the updated estimate

x̂k = x̂−k +Kkδyk (2.61)

δyk = yk −Hkx̂−k (2.62)
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where δyk is called measurement innovation term, and the Kalman gain matrix
Kk is computed as

Sk = HkP−
k HT

k +Rd (2.63)

Kk = P−
k HT

k S−1
k (2.64)

The error covariance matrix is also updated at this step, evolving according to
the Difference Riccati Equation (DRE)

Pk = (I −KkHk)P−
k (2.65)

As clearly visible, a crucial role is played by the Kalman gain matrix Kk during
the process. It in fact, on a high level, weights the innovation term δyk in the
update step, and determines how much the predicted estimates and the new sensor
measurements should be weighted to ensure that the estimation error is minimized.
From a rigorous point of view, it can be demonstrated that, under the aforementioned
assumptions, in a globally observable system, a Linear Kalman Filter guarantees an
estimation error with zero mean and minimum variance. This means that the Kalman
gain computed in (2.64) is the optimal solution in terms of the Least Square problem

Kk = argmin
K

E
[
∥xk − x̂k∥2

2
]
, ∀k (2.66)

The detailed analysis of the algebraic derivation [12] is beyond the scope of this
thesis and would be redundant.

As very common in a wide variety of engineering solutions, the implementation
of a Kalman Filter requires some design phases and possibly some previous knowl-
edge of the environment under analysis. First rather evident subjects are the Qd and
Rd matrices, respectively the covariance matrix of the process noise dk and of the
measurement noise dy

k . The values of these matrices basically embed the "trust"
that is given on the model of the process and on the quality of the measurements
(lower value, higher confidence) and have an impact on the convergence time and
the amplitude of the oscillations at steady state (lower value, fewer oscillations
but slower convergence). Typically, they are chosen as diagonal matrices with the
variances of dk and dy

k on the diagonal. Such values, as explained, can be modeled
from prior understanding of the environment, and usually require trial and error
tuning procedures. Another crucial aspect in the implementation of a Kalman Filter
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is its sampling frequency. There is usually little room for design of such value,
as it is forcedly constrained by the one of slowest (in processing frequency sense)
processing unit in the real pipeline implementation. The value of the sampling rate,
quite intuitively, has quite a big impact on the performance of the estimation process,
both in terms of accuracy and convergence time.

In the end, a relevant role in the process is played by the chosen initializations
of the estimated variables, x̂0 and P0, which are typically set to 0 ad I respectively.
Once again, however, difference choices can be made if any a priori information on
the system is available. If any, the initial value of P0 shall reflect the confidence that
is given on those (lower value, higher confidence). Accurate initialization values
for the Kalman Filter are of extreme value to achieve faster convergence and better
performance, and can be one of the most impactful design choices. This is why this
aspect is in fact is a huge foundation for the scope of this work.

As presented earlier, different extensions and applications of the Kalman Filter
have been developed starting from this basic formulation [15]. Continuing the
chapter, three versions of this model are presented: the Linear Time Invariant (LTI)
Kalman Filter, simplified for LTI systems, the Extended Kalman Filter, an extension
for nonlinear systems, and the Unscented Kalman Filter, built for nonlinear systems
with an innovative procedure for generating state predictions.

2.2.1 Linear Kalman Filter

The Linear Time Invariant (LTI) Kalman Filter represents a simplification of the
most general formulation of the Linear Kalman Filter appropriate for, as the name
suggests, LTI systems.

Once again, the formulation will be directly presented in discrete-time for sim-
plicity. Consider the discrete-time LTI system described by

xk+1 = Fxk +Guk +dk

yk = Hxk +dy
k

(2.67)

The same assumptions on noise characterization as in Eq. (2.57) hold. For this
kind of system, as very common result, it can be proved that, if Qd,Rd ≻ 0 and
F,H are observable, then the error covariance matrix is guaranteed to converge to a
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steady-state solution
lim
k→∞

P−
k → P̄ (2.68)

Consequently, this implies that also Pk, Sk and Kk converge to given steady-state
values P, S and K as k → ∞. The equations of the Kalman Filter become then the
following asymptotic equations:

P̄ = FPFT +Qd

S = HP̄HT +Rd

K = P̄HT S−1

P = (I −KH)P̄

(2.69)

What in the general formulation was described as a Difference Riccati Equation, Eq.
(2.65) here is instead an Algebraic Riccati Equation (ARE) of the form

P̄ = F(P̄− P̄HT (HP̄HT +Rd)
−1HP̄)FT +Qd (2.70)

from whose solution, through simple operations, the Kalman gain expression be-
comes

K = P̄HT (HP̄HT +Rd)
−1 (2.71)

The real-time estimation, according to the formulation described above, then follows
the same steps prediction and update steps as in the general description.

The key property of the LTI Kalman Filter implementation is the fact that the
solution of Eq. (2.70), and consequently the Kalman gain matrix, can be computed
offline. Those matrices will then remain constant during the computation, thus
drastically reducing the computational effort required. The LTI Kalman Filter works
in steady-state and yet guarantees convergence to the optimal solution, with minimum
variance estimation error.

2.2.2 Extended Kalman Filter

The Extended Kalman Filter (EKF), originally developed by the same scientist
R.E. Kalman [13] constitutes the easiest and most straightforward extension of the
Kalman Filter for nonlinear systems.
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Consider the discrete-time nonlinear system

xk+1 = f (xk,uk)+dk

yk = h(xk)+dy
k

(2.72)

The same assumptions on noise characterization as in Eq. (2.57) hold.

The main goal of EKF is to adapt such modeling to the framework of the most
general LTV Kalman Filter. To achieve so, the easiest solution is therefore to linearize
the nonlinear system around the estimated state trajectory. That is, at each time step,
compute

Fk =
∂ f
∂x

(x̂k,uk)

Hk =
∂h
∂x

(x̂k)

(2.73)

where Fk is the Jacobian of f evaluated at (x̂k,uk) and Hk is the Jacobian of h
evaluated at (x̂k). Consequently, this allows to perform the standard estimation
procedure, adapting the equations accordingly. For improved clarity, an estimation
step of the EKF is made explicit below.

1. Prediction
x−k = f (x̂k−1,uk−1)

P−
k = Fk−1Pk−1FT

k−1 +Qd
(2.74)

2. Update
Sk = HkP−

k HT
k +Rd

Kk = P−
k HT

k S−1
k

δyk = yk −h(x−k )

x̂k = x−k +Kkδyk

Pk = (I −KkHk)P−
k

(2.75)

In such formulation, all assumptions made for the general structure still apply, as
well as all the design choices required.

Fundamental characteristic of the EKF is that it is suboptimal: unlike its linear
implementations, it does not guarantee the optimality of the solution. Its main
advantage resides clearly in the relatively straightforward implementation with
respect to the Linear case. This however comes at the cost of being potentially
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seriously affected by model uncertainties or high linearization errors, making it
impossible to guarantee convergence or stability in presence of highly nonlinear
systems. Another relevant drawback is that the derivation of the Jacobian matrices
can be rather nontrivial in most cases.

As a matter of fact, the EKF has demonstrated to be effective for applications
where models have low nonlinearities. For instance, in the space domain, it is well-
suited for pose estimation problems in relative navigation scenarios, as overviewed
in [19], where a Multiplicative EKF (MEKF) has been developed and proven partic-
ularly successful.

2.2.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another extension of the Kalman Filter for
nonlinear systems. It was originally developed to provide a framework for nonlinear
estimation that did not require any linearization [11]. The UKF employs in fact a
transformation, namely Unscented Transformation, to handle the nonlinearities in
the model. On a high level view, the core process behind the UKF is, at each step, to
generate a set of points, called Sigma Points, that sample that distribution of the state
estimate. Such points are then propagated individually through the nonlinear model,
and then the distribution of such points is retrieved, thus retrieving the new state
estimate. Its functioning will be clarified by the detailed mathematical description
that follows.

Consider the discrete-time nonlinear system

xk+1 = f (xk,uk)+dk

yk = h(xk)+dy
k

(2.76)

The same assumptions on noise characterization as in Eq. (2.57) hold. The first step
involves the creation of the aforementioned sigma points as

σk−1 =±
√

(n+λ )[Pk +Qd]

χk−1(i) = σk+1(i)+ x̂k−1

χk−1(0) = x̂k−1

(2.77)
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where
√

M is notation for a matrix Z such that M = ZZT , namely matrix square root,
i ∈ (0,2n) and λ is a parameter. The subscript k refers to the current variables and
estimates, that is, to the one coming from the previous iteration.

The value of α controls the spread of distribution of the sigma points, and it is
usually taken as a small number 0 < α ≤ 1. The value of κ usually set to 0 provides
a way to fine tune the higher order moments, and β weights the mean of the sigma
points incorporating prior knowledge of the distribution, and is usually taken β = 2
when dealing with Gaussian assumptions. Diverse notations for those parameters
can be found in the literature, but the reader shall know that all are equivalent and
can be refactored in the one proposed.

By means of the covariance matrix P, the distribution of the estimation error is
sampled and the mean of the points is shifted towards the last state estimate, whose
unperturbed value is also kept inside the set of sigma points.

Each one of the sigma points is propagated forward using the nonlinear model in
Eq. (2.76)

χk(i) = f [χk−1(i),k−1] (2.78)

and the predicted mean is computed as

x̂−k =
1

n+λ

[
λ χk(0)+

1
2

2n

∑
i=1

χk(i)

]
(2.79)

Consequently, the predicted covariance, not yet corrected via the measurement
innovation term, is given by

P−
k =

1
n+λ

[
λ (χk(0)− x̂−k )(χk(0)− x̂−k )

T

+
1
2

2n

∑
i=1

(χk(i)− x̂−k )(χk(i)− x̂−k )
T

]
+Qd

(2.80)
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To complete the prediction step, the mean observation and the output covariance are
computed:

ŷ−k =
1

n+λ

[
λγk(0)+

1
2

2n

∑
i=1

γk(i)

]
(2.81)

Pyy
k =

1
n+λ

[
λ (γk(0)− ŷ−k )(γk(0)− ŷ−k )

T

+
1
2

2n

∑
i=1

(γk(i)− ŷ−k )(γk(i)− ŷk−)T

]
+Rd

(2.82)

where
γk(i) = h[χk(i),k−1] (2.83)

are the updated measurements, taken for each sigma point. As a last intermediate
step, the cross-correlation matrix is calculated as

Pxy
k =

1
n+λ

[
λ (χk(0)− x̂−k )(γk(0)− ŷ−k )

T

+
1
2

2n

∑
i=1

(χk(i)− x̂−k )(γk(i)− ŷ−k )
T

] (2.84)

and the innovation covariance matrix results as

Pvv
k = Pyy

k +Rd (2.85)

Finally, the update step follows the same computation as in Eq. (2.61) the
standard Linear Kalman Filter formulation, with the computation of the Kalman
gain, the measurement innovation and updated state estimate as follows:

Kk = Pxy
k (Pvv

k )−1

Pk = P−
k −KkPvv

k KT
k

vk ≡ yk − ŷ−k = yk −h(x−k ,k)

x̂k = x̂−+Kkvk

(2.86)

where yk is the real measurement obtained at time k.
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Among the advantages of the UKF with respect to the EKF, apart from avoiding
the derivation of the Jacobians of the process model, as already mentioned, there
are lower expected errors and, reasonably, validity for higher-order expansions. The
principal drawbacks are usually higher computational costs and a more complex
tuning process. Moreover, once again, as very common in nonlinear models, the
optimality of the solution is never guaranteed.

Several extensions for the Unscented Kalman Filter have been proposed and
developed in the literature, to adapt the device to specific applications and environ-
ments. In this sense, the most relevant for this thesis are the ones that try to cope
with the unitary norm constraint of the quaternion, first among all the Unscented
Quaternion Estimator (USQUE) [7], that will be later presented.

2.2.4 Outlier rejection

Filtering theory has been widely explored in scientific literature, and advanced
techniques have been studied to overcome the main disadvantages of the Kalman
Filter. Arguably, the most important assumption behind any Kalman Filter model is
on the distribution of the noise sources, which need to be independent, identically
distributed and white, as shown in Eq. (2.58). If the real noise behaves differently,
the Kalman Filter would have no distribution to model and would thus diverge rather
rapidly. This is why scientists and engineers have developed techniques to increase
the robustness of the filter.

One of the main ideas to make a filter robust is to provide it with the capability
of detecting and rejecting measurement outliers. An outlier is a value that deviates
significantly from the rest of its set, in this case a measurement that deviate sig-
nificantly from its distribution and is likely originated by a faulty sensor. Among
the variety of different possible techniques [14], the one proposed in [18] has been
chosen and used in this work. Broadly speaking, the key idea is to, at each step,
compare the innovation term calculated using the latest measurement to a given
confidence threshold, and consequently decide whether to compute the filter’s update
step or to discard the measurement thus propagating the predicted state.
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In particular, a measurement validation gate is set around the innovation term
computing the normalized estimation error squared

e2
k = vT

k S−1
k vk (2.87)

where vk is the innovation term and S is the innovation covariance matrix (Pvv
k for

a UKF). The innovation covariance matrix acts as a way to weight the validation
gate with the trust that the filter would have given anyway, avoiding discarding
measurement that could result in a high innovation term simply because, for example,
the filter is still in convergence phase. The normalized estimation error squared e2

k

varies as a Chi-Squared (χ2) distribution with m is the dimension of the measurement
vector yk. By performing a Chi-squared test for a given confidence value it can be
determined whether the measurement is to be kept or discarded. This is one of
the most widely used approaches in statistics for hypothesis testing theory and
construction of confidence intervals.

A Chi-squared distribution with k degrees of freedom (please note the temporary
notation override) is the distribution of a sum of the squares of k independent standard
normal random variables, by definition, always positive and not symmetric about its
mean value, built as

Y =
k

∑
i=1

(
Xi −E[Xi]

σ

)2

(2.88)

where Xi is a random variable, E[Xi] is the expected value and σ is the standard
deviation. The larger the value of Y , the more the observed data, i.e. the measurement,
deviates from the expectations.

If you want to test your measurement against a α confidence, you have to find
the bounding values that cover (1−α)% of the total area of the distribution. That
is, the Kalman filter at each step verifies if the result of Eq. (2.87) falls inside the
interval (χ2

L,χ
2
U), as shown in Fig. 2.5. Those two boundaries, lower and upper,

are numerically computed as the inverse of the Chi-squared cumulative distribution
function with m degrees of freedom at the values, respectively, α

2 and 1− α

2 .

If a measurement is detected as faulty, the Kalman Filter discards it by not
performing its update step, thus relying only on the predicted state value. In case
the measurement vector is composed of values coming from more than one source,
the outlier rejection mechanism is applied individually to each portion of the mea-
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Fig. 2.5 Chi-squared distribution with 24 degrees of freedom. Critical values for 95%
confidence, from [18]

surement vector, as possibly not the full measurement vector is to be considered
as faulty. From the implementation perspective, having single measurement vector
components that can fail independently requires defining individual update step
execution flows. Each single filter update execution path, triggered by a potential
fault of another measurement portion, keeps then track of a covariance matrix R
restricted to the non-faulty measurement, which undergoes the standard update step
of the Kalman Filter as in Eq. (2.61) (or the respective equivalents for the Kalman
Filter extensions).

This technique is effectively able to detect measurement fault windows, as
far as their duration is limited. Having no chance of updating the measurements
would inhibit the update step, dropping the main concept behind the Kalman Filter
algorithm. Faults occurring too frequently of lasting too long lead in fact the filter to
diverge.



Chapter 3

Light curves

The goal of this section is to present what a light-curve is how can one be used to
infer knowledge on the object that generated it.

The definition of light curve will be first presented, alongside with an overview of
current light-curves analysis techniques. Some results for the chosen implementation
are then presented to justify the assumed quality of the motion priors extraction.

3.1 Definition and analysis techniques

A light curve is a plot of the variation in brightness of an astronomical object over
time. It is obtained by measuring the intensity of reflected light of an object from
ground-based observation.

In astronomy, a light curve constitutes thus a powerful technique that can be
used to extract valuable information about the object that generated it: its motion
is in fact strictly related to the periodicity that the light curve exhibits. Light
curve analysis has many applications, including determining rotation rates, shapes,
taxonomic classification of solar system objects, characterizing exoplanets and
extrasolar planetary systems and variable stars.

In the context of satellite and orbit debris tracking, the brightness variations are
directly related to the rotation of the object and the observation geometry. Performing
light curve frequency analysis allows to determine the attitude of the observed object
and provides important information for ADR and helps to model effects that influence
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the long-term dynamics of the object, such as the electromagnetic field, drag, solar
radiation, fuel sloshing or outgassing. This process is generally referred to as light-
curve inversion, or simply as light-curve analysis, when the focus is on extracting
the object’s rotation rate without inferring information about its mass distribution.

The most frequently used methods to extract the apparent (synodic) period from
the light curves are Fourier-based techniques. A comprehensive review on the
analysis techniques of optical measurements from space objects is given in [22].

In this work, we apply a method based on Fourier transform and CLEAN algo-
rithm (WindowCLEAN). This method was developed to characterize the complex
rotation of asteroids and comets in the solar system [16] and can reliably detect the
dominant frequencies in light curves obtained from non-principal axis rotators. It
was suggested that combining the periodicity analysis of light curves with Window-
CLEAN with the shape inversion of radar observations may be a powerful tool to
deduce non-principal axis spin states by significantly reducing the spin state parame-
ter space that the shape inversion algorithm has to search. This is why this tool has
been selected.

Extracting motion priors from an object in space rotating about a single axis
is relatively straightforward. Since an object orbiting about a single body axis is
characterized by a constant angular velocity, the period extracted by means of the
frequency analysis directly corresponds to the synodic period and is interpreted as the
rotation rate of the object that generated the light curve. The rotation rate extracted
is what will be referred to as kinematic prior.

While challenging, light curves scientific literature shows that it is possible
to extract rotation rates for object rotating about a nontrivial axis, resulting from
superposition of motion about multiple body-fixed axes. As results from Eq. 2.6,
an object orbiting about more than one of its body axes exhibits a tumbling motion,
with the angular velocity being non-constant due to inertia coupling effects. For this
reason, accounting for the axis precession period requires knowledge of the targets
body geometry, which cannot be always assumed for an uncooperative target if no
other shape determination methods are employed. Moreover, assuming a rotation
rate can be extracted, enabling usage of such motion prior usage would require
adjusting for phase, due to the time shift between the light curve observation and the
actual proximity operation with the Target.
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In the light-curves analysis context, the main issue lies in the scarce availability
of light curves and related ground truth attitude data to effectively enable validation
of the analyses. This is why, for the scope of this work, simulated light-curves
with thus known related angular velocity value have been produced making use of a
Light-curves Simulator.

3.2 Light-curves Simulator

Thanks to Luís Gonçalves, a PhD student from University of Coimbra, we had the
opportunity to have access to a Light-curve Simulator under his development.

Given an object model and a specific orbit TLE (Tables 2.3 and 2.4), the model
propagates the orbit and integrates the attitude motion. For a specified ground-based
observer on the surface of the earth the reflection of the sunlight onto the object
surface is computed with a given time step for a specified observation window. In
particular, using the Cook-Torrance reflection model described in [6], a synthetic
light curve is thus generated.

As the implementation currently stands, the tumbling integration only supports
one axis rotation with constant speed scenarios, and no additional simulated noise is
included.

3.3 One-axis tumbling analysis

This section describes the experiments carried out applying a light-curve analysis
technique on one-axis tumbling light curves.

As outlined in Section 3.1, the WindowCLEAN frequency analysis method has
been implemented. Given the brightness samples of a light curve, the algorithm
produces a dirty spectrum of the periodicities latent in the observations through a
Discrete time Fourier Transform that is then iteratively CLEANed from aliases and
unpredictable spurious periodicities.

An example with a synthetic light curve generated with the Simulator outlined
in Section 3.2 is shown first. After, a result on a high-fidelity simulated light curve
accessed in collaboration with our industry partner ClearSpace is presented.
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Fig. 3.1 Synthetic Light Curve of an Atlas Centaur R/B. One axis tumbling, 5 deg/s

3.3.1 Synthetic data

An example of a synthetically generated light curve, produced with the Simulator
described in Section 3.2, is presented in Fig. 3.1. It is generated by the simulated
tumbling motion of an Atlas Centaur Rocket Body model, similar to the one proposed
in [4]. The body is rotating about its z axis, aligned with its shorter dimension,
observed for a time window of 400 seconds with a sampling time of 0.5 seconds.

The WindowCLEAN tool has been fed with this light curve, and it was able to
recover the clean spectrum shown in Fig. 3.2.

The highest component of the extracted spectrum appears at frequency 0.028 Hz,
which corresponds to a period of around 35 seconds. Inspecting the nature of the
light curve, exhibiting peaks at different magnitudes values, one can infer that the
two different magnitude peaks are not generated by the same reflecting surface of
the body.

In fact, while rotating, the rocket body periodically exposes the two ends of its
cylindrical shape, which reflect with different intensities. The resulting frequency
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Fig. 3.2 Spectrum of a synthetic Light Curve of an Atlas Centaur R/B. One axis tumbling, 5
deg/s
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corresponds thus half to half the turns of the rocket body, that produces two different
brightness values for its two extremities.

The recovered rotation rate, associated to half the extracted period, thus cor-
responds to 5.04 deg/s. For a ground truth constant rotation rate of 5 deg/s, the
obtained precision is 99%.

3.3.2 Commercial data

As introduced, we had the opportunity to validate our work on commercial data
from industry partner ClearSpace. We had access to a generated light curve based
on high fidelity synthetic ground based observations of a tumbling VEga Secondary
Payload Adapter (VESPA), corresponding to the one currently left in Low Earth
Orbit after a launch in 2013. The VESPA is characterized by a nearly conical shape,
of approximately 1.6 meters in height and 2.3 meters in diameter, with variations
depending on specific mission requirements. We are unfortunately unable to share
the raw brightness data.

Once again, the frequency analysis using the WindowCLEAN tool has been
conducted on the light curve. The results of the motion prior extraction process
resulted in the recovered frequency spectrum shown in Fig. 3.3.

The commercial light curve analyzed is 550 seconds long, with a sampling time
of 1 s. As results from Fig. 3.3, the highest and most relevant frequency component
is detected at 0.0082 Hz, which leads to a rotation rate of around 2.9 deg/s. Given
the available ground truth value of 3 deg/s, the resulting precision is around 97%.

3.4 Motion prior extraction assumption

The experiments conducted in 3.3 had the goal of identifying the workflow of a
light-inversion process and characterizing the derived results. The next sections will
make use of the results obtained, and, as anticipated, will analyze the integration
of the extracted angular rates into a State estimation model. Therefore, this section
enabled defining realistic assumptions on the quality of the kinematic motion priors
resulting from a light-curve analysis process.
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Fig. 3.3 Spectrum of a Light Curve of a VESPA commercial model. One axis tumbling, 3
deg/s
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In particular, it is assumed that motion priors are obtainable for both single axis
and multi-axes tumbling cases, being aware of the results that exist in the literature.
Specifically, for the entirety of the work, we assume a conservative motion prior
rotation rate extraction error of 5% relative to the ground truth rotation rates.



Chapter 4

State estimation model

This chapter introduces the primary simulation framework used in this study. The
first section describes how the background mathematical theory is employed to build
a state estimation model for a proximity rendezvous mission with an uncooperative
target. Since a real-world application of the state estimation model would rely on
real-time measurements provided by a pose estimation neural network, the process
of simulating these real-time measurements is then described afterwards.

4.1 State modeling

In the simulation environment set up for this work, two Kalman Filters have been
developed. As introduced in the previous chapters, the problem that has to be
solved is to estimate the internal states, angular velocity most importantly, of a
Target uncooperative object in orbit. Specifically, a Servicer spacecraft operates in
proximity to the Target, utilizing real-time pose estimations provided by a neural
network model.

In this work, an Extended Kalman Filter and an Unscented Kalman Filter imple-
mentation have been developed to serve as real-time state estimation models. Both
filters internally reference the spacecraft relative dynamics model presented in 2.1.4.
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In particular, the two models iteratively estimate the following state vector:

x =


qT S

ωT
ST

rT
ST

vT
ST

Jk
T

 (4.1)

The first 4 components, for a total vector of dimensionality in R13, correspond
exactly to the 4 relative attitude and relative translational dynamics components from
Eq.(2.56). The last state component Jk

T refer to a parametrization of the Target’s
inertia matrix, to possibly enable its estimation in some scenarios. In particular,
as demonstrated in [20], in absence of external torques, as is the case with the
considered relative dynamics model, only 2 of the 3 elements of a diagonal Target
inertia matrix can be estimated. In the cited work, the following parametrization is
proposed:

JT =

 Jxx/Jyy 0 0
0 1 0
0 0 Jzz/Jyy

=

 ek1 0 0
0 1 0
0 0 e−k2

 (4.2)

where Jxx,Jyy,Jzz are the elements on the diagonal and the two parameters, whose
fixed value is:

k1 = ln(Jxx/Jyy)

k2 = ln(Jyy/Jzz)
(4.3)

are estimated during the filtering process. The Target’s inertia matrix can thus only be
estimated up to a scale factor, which represents the third missing degree of freedom.
The Euler equations that appear in the dynamics model, however, yield the same
result regardless.

This estimated inertia matrix is used inside the integration process of the filter.
Being constant, the inertia matrix parameters have no dynamics. Thus, with

J̇k
T =

[
k̇1

k̇2

]
= 0 (4.4)
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the complete process model function used inside the Kalman Filters becomes:

ẋ =
dc
dt

∣∣∣∣
T
=

d
dt


qT S

ωT
ST

rT
ST

vT
ST

Jk
T


|T

=



1
2Q(q)ωT

T S

αT
ST

vT
ST

aT
ST

0

 (4.5)

for a total dimensionality in R15.

When dealing with a Kalman Filter working on attitude dynamics integration,
dealing with the rotation representation becomes a delicate aspect. In particular, since
the chosen model uses quaternions as a representation, attention must be brought
into ensuring that its unitary norm constraint is kept during the estimation process.
An estimated quaternion whose norm deviates from being unitary leads to incorrect
rotation representation, loss of physical validity and drift in the attitude and angular
velocity estimated values.

From the computational point of view, the quaternion unitary norm constraint
is lost whenever the quaternion undergoes operations outside the quaternion space.
That happens precisely when a quaternion gets summed or subtracted in the Cartesian
space, that is by means of standard sum operations instead of multiplications. In a
Kalman Filter, this is guaranteed to happen, as its fundamental update step, as dis-
cussed in Eq. (2.61) for its most general formulation, is meant to happen in Cartesian
space. As the reader might trivially figure out, the amount of times the quaternions
space operations are violated influences the magnitude of the normalization error
accumulated. The direct consequence is that an Unscented Kalman Filter would
suffer more from this with respect to the Extended Kalman Filter, and would this
need a more sophisticated way of handling the issue. What in fact results from the
literature is that a simple forcing of the quaternion unitary norm after each iteration
is enough to prevent an EKF from being penalized. Instead, The way this has been
handled in the UKF implementation follows a more advanced method, as presented
in [7].

The basic idea is to use sigma points, for the attitude part of the state, built as atti-
tude errors, instead of quaternions, and represented in another rotation representation.
The propagation is still through the nonlinear model via quaternions, but the recon-
struction of the predicted mean and covariance matrices is done using attitude errors
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not represented as quaternions. Specifically, the chosen representation is a vector
p ∈ R3 of Modified Rodrigues Parameters (MRP), defined by the transformation:

p = f
q

a+q0
(4.6)

to go from a quaternion q= [q0,q] to a MRP vector, and the transformation:

q0 =
−a∥p∥2 + f

√
f 2 +(1−a2)∥p∥2

f 2 +∥p∥2

q = f−1(a+q0)p
(4.7)

where a is a parameter, set to a = 1 and f = 2∗ (a+1).

Going a little into the details, the UKF basically holds two sets of sigma points,
as follows:

χ
δ p
k−1(i) =


δ pk−1(i)
ωk−1(i)
rk−1(i)
vk−1(i)
Jk−1(i)

 , χ
q
k−1(i) =


qk−1(i)
ωk−1(i)
rk−1(i)
vk−1(i)
Jk−1(i)

 (4.8)

where χ
q
k−1(i) are the "natural" ones with the attitude portion represented as a quater-

nion and χ
δ p
k−1(i) are with the attitude error value represented in MRP (subscripts and

superscripts are avoided for clarity). The following description will only highlight
the changes in the algorithm to handle the attitude partition of the sigma points, the
rest of the state components remain unchanged.

At the beginning of each iteration, the UKF samples the P covariance matrix
to create the set of sigma points, as shown in Eq. (2.77). In this case, those will
correspond to the set of attitude errors in MRP. As shown in the same Eq. (2.77), the
UKF formulation keeps the last state estimate as the 0-th sigma point, but since the
two sets in (4.8) should have a direct correspondence, the error MRP sigma points
corresponding to the latest state estimate needs to be equal to 0.

In particular, the quaternion error sigma points are obtained by adding in the
quaternions space each error MRP sigma points converted in error quaternion to the
estimated quaternion integrated at the previous filter step, as:

qk−1(i) = δqk−1(i)⊕ q̂k−1(0) (4.9)
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where δqk(i) is the error MRP δ pk(i) converted via Eq. (4.7). Following Eq. (2.78),
each constructed quaternion sigma point is then propagated through the nonlinear
model. Consequently, the "propagated" attitude errors are computed as the error
between each propagated quaternion and the propagated 0-th quaternion from the
last estimate, as:

δq−k (i) = q̂−k (i)⊕
[
q̂−k (0)

]−1 (4.10)

Each error quaternion is converted to MRP via Eq. (4.6), creating the set of propa-
gated sigma points χ

δ p
k . The direct consequence is that the "propagated" MRP error

sigma point corresponding to the latest state estimate will once again be equal to
0. This set of sigma points then undergoes the standard UKF predicted mean and
covariance computations in Eqs. (2.79), (2.80) and (2.84).

Since also update step should now be performed by means of MRP representation,
all the UKF steps related to the measurement model have to be coherent with the
MRP representation. First, the predicted measurement sigma points in Eq. (2.83)
are created from the error MRP sigma points χ

δ p
k , and are naturally used for the

steps in Eqs. (2.81) and (2.84). Secondly, the incoming measurements need to be
handled accordingly as well. In particular, the quaternion error between the incoming
measurement ỹqk and the propagated quaternion of the latest state estimate sigma
point q̂−k (0) is computed. The resulting quaternion error is converted in MRP with
Eq. (4.6) and goes inside the computation of the innovation term with the predicted
measurement computed from Eq. (2.81), as an error value of attitude error values.
If the state estimation error was exactly 0, the incoming quaternion measurement
would be equal to the propagated quaternion from the previous state estimate, as
would the predicted measurement. The innovation term vδ p

k is in fact computed as:

δ p̃k = δ q̃k|MRP =
[
ỹqk ⊗

(
q̂−k (0)

)−1
]
|MRP

(4.11)

vδ p
k = δ p̃k − ŷ−,δ p

k (4.12)

and then it follows the computations in the UKF update step as in (2.86).

At the end of each iteration, the post-update estimated quaternion is rebuilt as:

x̂δq
k = x̂δ p

k |q
q̂+k = x̂−,δq

k ⊗ q̂−k (0)
(4.13)
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where x̂δq
k is post-update estimated attitude error, result of the UKF update step

performed using the innovation term in Eq. (4.12), represented in quaternions.

Since the implemented UKF works, as shown, with an attitude error in Modified
Rodrigues Parameters, thus dimensionality 3, all the covariance matrices P,Q and R
should thus be set to have the same dimensionality 3 on the attitude component.

4.2 Real-time measurements

As mentioned in introductory chapters, both the implemented Kalman Filters have
been developed to be fed by real-time measurements coming from a pose estimation
model working on proximity images. Notably, the majority of in-orbit demonstrations
have used conventional computer vision techniques such as edge detectors and
template matching. However, the spacecraft pose estimation competitions hosted by
ESA and the Stanford Space Rendezvous Laboratory yielded only machine learning
based pose estimation algorithms as state-of-the-art. Companies such as Airbus
and ClearSpace are planning on in-orbit demonstrations of machine learning Visual
Based Navigation (VBN).

In this model’s context, a simple measurement system consisting of an optical
camera and a Convolutional Neural Network (CNN) pose estimation algorithm is
proposed for this study. No additional sensor fusion is assumed to be performed here.
In particular, simulated errors proportional to the error rate of a deployable CNN
[10] are assumed.

The available measurements would thus be the relative orientation represented as
a quaternion and the relative distance, yielded by the measurement model:

yk = h(xk) =

[
qT S

rT
ST

]
(4.14)

The defined relative dynamics process model directly solves for the position and
orientation, which are in fact states in both the Kalman Filters. The evident result
is that the measurement model of the filter is linear, which leads to improved filter
robustness.
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The remaining measurements needed for the integration of the process model
are only the absolute states rS

S and ω of the Servicer, which are available from its
Attitude and Orbit Determination System. If instead the representation with respect
to the Servicer was chosen, the Filters would require knowledge of the absolute
states of the Target, which are not available since it is assumed uncooperative.

The environment in which this work has been developed is a simulated environ-
ment that individually integrates torque-free attitude dynamics and keplerian orbits
of the Servicer and of the Target. The real-time measurements coming from the pose
estimation model are thus simulated as the relative attitude and distance states of the
Target and the Servicer with added noise, fed at a rate fixed to the defined sampling
rate of the Kalman Filter.

The quaternion noise is modeled starting from a rotation vector of random
amplitude αn, Gaussian distributed with zero mean and variance σ

q
y = 0.12rad, and

random axis rn uniformly distributed on the unitary sphere. The corresponding noisy
quaternion measurement is thus computed as:

qn = q⊗δqn (4.15)

where q is the ground truth relative attitude and δqn is computed from the random
rotation vector as:

δq=
[
cos

(
αn
2

)
rn sin

(
αn
2

)]
(4.16)

The variance used is inferred from real pose estimation model results. This noise
modeling allows to truly represent a random quaternion of Gaussian distributed
angle with given variance. A more simple and intuitive random 4 dimensional vector
generator would have no room for specifying a known variance with a true physical
meaning.

The relative distance noise is instead modeled as a simple 3 dimensional random
vector whose norm follows a zero-mean Gaussian distribution with variance σ r

y =

0.37m, inferred again from real pose estimation model results.

The outlier rejection method outlined in Section 2.2.4 is implemented. In par-
ticular, as will be explained thoroughly in the next sections, the two individual
measurement source might fail independently and if no measurement source is avail-
able the sole predicted state value is kept. Faulty measurements are modeled as
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extremely noisy values, to reflect the unstable behavior that can characterize a pose
estimation model during fault windows.

In conclusion, in all the experiments carried out the Target object is assumed to
have the shape of a rocket body, a cylinder with on elongated dimension on the y axis
(ex. Atlas Centaur R/B). As shown in Eq. (2.6), since the mass is closer distributed
to y axis, the relative inertia matrix component is the smallest. The inertia matrix
used, assumed diagonal, represented according to the parametrization in (4.2), is
equal to:

JT =

4.33 0 0
0 1 0
0 0 4

 (4.17)

corresponding to k1 = 1.466,k2 =−1.439.

The simulation length Tsim and the sampling time τs are defined before each case
study. The state estimate initial condition for the Kalman Filter x̂0 is set to zero
unless specific otherwise. The inertia matrix component of the initial state estimate
ĴT,0 is always set to 80% of the true Target inertia matrix ground truth, to reflect
assumed knowledge on the rough shape of the object (around 2 or 3 times more
elongated along the y axis) but without precise values on the exact mass distribution
(Ĵx,0 = 3.16 vs Jx,0 = 4.33).

4.3 Software framework

The principal simulation environment has been designed in MATLAB/Simulink
version R2019b. All the integrations are performed using the ode4 integration
method with fixed simulation sampling time of 0.01 seconds. The integrations inside
the Kalman Filter exploit the same ode4 integration method with the fixed filter
sampling time defined before each case study.



Chapter 5

Kinematic priors injection studies

This section describes the experiments conducted on the model outlined in the
previous chapters. Different ideas for injecting the kinematic priors extracted from
light curves with the assumptions from Chapter 1 are explored. The results are
analyzed by means of convergence metrics, which will be defined first. After an
overview of the studies conducted, each one is described in detail.

The performance of the Kalman Filters is evaluated with measures of convergence
time and Root Mean Squared Error (RMSE) at steady-state, i.e. after convergence is
reached.

In this context, convergence can have a dual interpretation. The uncertainty
that the filter associates to each component of the state estimate is embedded in
the P matrix, and is decreased as part of the estimation process. Convergence from
the filter’s perspective is reached once the P matrix, for each one of its individual
components paired with the state components in Eq. (4.1), has sufficiently reduced
its oscillations. The P matrix convergence, tP

conv and RMSEP, is verified by setting
a threshold on the variation of the mean of the P matrix diagonal components, per
each state component.

The actual values of the state, however might still exhibit oscillations, still
needing for new measurement updates to reduce the error with respect to the ground
truth. The process has then converged by state value x perspective, tx

conv and RMSEx,
once the error with respect to the ground truth goes below a certain threshold that is
never exceeded again. The two convergence metrics thus report a different "meaning",
and are both needed at the same time.
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Convergence metric by filter P matrix is used to compare the performance
between different filters (different Qd and Rd parameter sets are considered as
different filters) regardless of the actual state value those converge to. Consider the
following example: two filters are tuned specifically one for a high frequency system
(FH), for example a body with a high angular velocity, and one for a low frequency
system (FL), a body with a low angular velocity. The Filter FH will likely never
convergence to the same state value that can be reached by FL, as estimation on
a faster system expects oscillations of higher amplitude. At the same time it will
likely reach its lowest state estimate error value faster than FL, since allowing for
more oscillations leads to faster exploration of the solution space and thus a faster
convergence.

Measuring this performance difference by looking at the state value x convergence
only would require to provide each convergence time measure in couple with the
state value threshold it has been calculated on. The filter P convergence metric,
instead, together with the associated RMSE, encapsulates this univocally, and is thus
suitable for different filters comparison. The state value x convergence metric is yet
still useful for defining the performance of a single Filter, as the time at which a
precise state value is met is not exactly represented behind the filter P metric.

The state value x convergence metrics are computed on the state error with respect
to the ground truth. The state error computes the difference between the L2-norm
of the state and the L2-norm of the ground truth, per individual state component.
The filter P metrics are computed on the L2-norm of each P matrix component.
The resulting convergence metrics, considering the state vector in Eq. 4.1, are thus
vectors in R5.

A visualization of the difference between the two convergence perspectives can
be visualized in Fig. 5.1

The initial estimated inertia parameters are set to 80% with respect to the ground
truth (as discussed in 4.2), and the rest of the initial estimate vector x̂0 is set to zero.

The three studies conducted differ from the way the kinematic prior is injected
inside the model and thus the effect that is obtained. In particular:

• Study 1 - Kalman Filter parameter tuning
The kinematic prior is injected as inferred knowledge on the system. This
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information can enable a scenario-aware parameter tuning, which performs
better than a parameter set based on assumptions.

• Study 2 - Inertia matrix estimation improvement
The kinematic prior injected as an initial condition for the Kalman Filter.
Setting a confidence of the initial angular velocity value by means of P0

allows to shift the energy of the estimation process towards the inertia matrix
component, that can converge faster.

• Study 3 - Enhanced outlier rejection
The kinematic prior injected as fictitious measurement during a pose fault. The
kinematic prior is also injected as initial condition for the Kalman Filters at
the same time. The additional measurement source gives the filter something
to rely on to mitigate the divergence.

5.1 Kalman Filter parameter tuning

In this experiment, we argue that availability of information on the order of magni-
tude of the speed and on the tumbling axes of the Target can be beneficial for the
parameters tuning process of the Kalman Filters. Four Target tumbling scenarios
are defined, and different Kalman Filer Qd parameter tunings are extracted for each
scenario. A performance comparison between each fine-tuned parameter set and a
general scenario-unaware parameter set is then discussed.

The four scenarios shown in Tab. 5.1 are defined. Each scenario sets a different
Target initial angular velocity for its attitude dynamics integration, defining the
ground truth state profile to be estimated. Values are chosen to span slow and fast

Table 5.1 Scenarios definition, respectively: 1 axis slow/fast, 2-axes slow/fast

ω[rad/s] SC1 SC2 SC3 SC4
ωx

T,0 0 0 0.020 0.100
ω

y
T,0 0 0 0 0

ω
z
T,0 0.050 0.200 0.045 0.150

tumbling scenarios, with half an order of magnitude offsets, about 1 or 2 body axes.
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The combination of the defined scenarios and the specified sampling rate are
overall rather challenging, and are meant find possible improvements when the
Kalman Filters are working under stressing conditions. Slower tumbling rates are
generally less realistic, more trivial for the Kalman Filters, and in any case would
not need further tuning with respect to the slow scenarios considered here (SC1 and
SC3). Faster rates with the same relatively limited sampling time and measurement
noise can lead to instabilities in the state estimation model. It can also be argued that
designing proximity missions with uncooperative targets with such kind of complex
tumbling motion would be less realistic anyhow.

The Qd matrix tuning process has been carried out using iterative simulations.
Given a pre-defined feasible range of potential Qd matrix weights, the set of all the
possible combinations of such values is created. An iterative optimization algorithm
to find the best performing parameter set is then run. The objective function defined is
sum of the per state component by filter convergence times and per state component
relative by filter RMSE values at steady-state, as:

g(x) = λttP
conv +λRMSERMSEP (5.1)

where each state component contribute is appropriately weighted, by means of
λt ,λRMSE ∈ R5, to match a common order of magnitude of 1. Since the goal is to
compare different Filter implementations, the filter P matrix convergence metric,
tP
conv,RMSEP, is chosen for the study.

The concept of best performing parameter set for each scenario, according to
the objective function, is now defined, Table 5.2 shows the results. Matrix Qd , as
already mentioned, is defined diagonal. For each state component, each value shown
weights equally the whole dimensionality of that given component. For example, the
quaternion component for the EKF is weighted 10−z ·14.

This study aims at demonstrating the effect of the Qd matrix tuning on the
performance of the Kalman Filters. Parameter tuning of a state estimation model is
crucial to obtain the best possible results out of the estimation process, as already
mentioned in Section 2.2. Parameter tuning is mainly referred to Qd and Rd diagonal
matrices values adjustment. The Rd matrix is modeled on the performance of the
measurement devices, which, being under control, simplifies the operation. The Qd

matrix tuning, while still slightly conditioned by aspects under control, as the Filter’s
sampling time or the known assumptions made for the simplified process model used
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Table 5.2 Optimal parameters for each scenario

SC 1 SC 2 SC 3 SC 4
UKF EKF UKF EKF UKF EKF UKF EKF

qT S 10−5 10−7 10−5 10−5 10−5 10−6 10−4 10−6

ωST 10−7 10−7 10−7 10−6 10−7 10−6 10−5 10−5

rST 10−5 10−7 10−5 10−7 10−7 10−6 10−6 10−6

vST 10−6 10−5 10−5 10−5 10−6 10−6 10−5 10−4

JT h 10−4 10−4 10−4 10−4 10−2 5 ·10−4 10−3 10−4

inside the Kalman Filter, is instead mainly dependent on the real physical behavior
of the system. This is the reason why, in case no prior knowledge on the system is
available in that sense, assumptions and trade off choices have to be made.

Scenario 4 represents a fast changing complex tumbling, as the rotation happens
on 2 axes with a high angular rate. Conceptually, the best parameter tuning for
such a scenario would need to allow for more oscillations, thus high Qd values
to let the filter adapt more quickly to the fast changing environment, and this is
fact what results from the tuning process. Scenario 4 Qd matrix is set to mimic
a fixed assumption based parameter set. For each defined scenario, a simulation
with the tuned scenario-aware parameters from Table 5.2 is run and compared. The
duration of the simulations is Tsim = 300 seconds, with a sampling time τs = 0.5s,
corresponding to a pose estimation model acquiring images at 2 Frames Per Second
(FPS) rate.

The comparison tables show, separately for the UKF and for the EKF, the metric
value obtained with the scenario-aware parameters versus the metric value corre-
sponding to the general assumption-based parameters between rounded brackets.

First, the results of this study are a good chance to visualize for the first time the
performance difference between the two filters implemented. The general considera-
tion is that the UKF performs overall worse than the EKF in almost all the considered
scenarios. This could be explained by the fact that the UKF is in general meant to
better exploit the incoming information from the measurements, if such information
is available. The little amount of sources of measurements, the relative attitude
and the relative distance only, and the few samples available for each measurement
source, due to the relatively high sampling time, define a rather challenging scenario.
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Table 5.3 UKF filter convergence times comparison. Format: scenario-aware parameters
(assumption-based SC 4 parameters)

SC1 SC2 SC3 SC4
qT S 73 (22.0) 36 (34.0) 35 (66.5) - (41.5)
ωST 4.0 (4.0) 5.5 (4.5) 4.0 (4.0) - (4.5)
rST 6.0 (3.5) 6.0 (3.5) 9.5 (3.5) - (3.5)
vST 5.5 (4.0) 5.5 (4.0) 7.5 (4.0) - (4.5)
JT - (N/D) - (N/D) 281.0 (108.5) - (30.0)

Table 5.4 UKF filter convergence RMSE at steady-state comparison. Format: scenario-aware
parameters (assumption-based SC 4 parameters)

SC1 SC2 SC3 SC4
qT S 0.7228 (1.1234) 0.7705 (0.9957) 1.3926 (1.1982) - (2.0174)
ωST 0.0031 (0.0035) 0.0047 (0.0054) 0.0046 (0.0043) - (0.0132)
rST 0.3233 (0.4152) 0.3456 (0.4218) 0.2833 (0.4157) - (0.4244)
vST 0.1318 (0.2818) 0.1780 (0.3032) 0.0905 (0.2820) - (0.3164)
JT - (N/D) - (N/D) 1.7410 (1.7372) - (1.3876)

Table 5.5 EKF state convergence times comparison. Format: scenario-aware parameters
(assumption-based SC 4 parameters)

SC 1 SC 2 SC 3 SC 4
qT S 56.5 (20.0) 84.5 (114.5) 37.0 (38.5) - (17.5)
ωST 7.0 (7.0) 7.5 (7.5) 7.0 (7.0) - (12.0)
rST 10.5 (5.5) 6.0 (5.5) 10.5 (5.5) - (5.5)
vST 12.0 (9.0) 11.5 (8.5) 11.5 (9.0) - (9.5)
JT - (N/D) - (N/D) 270 (224.5) - (69.0)
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Table 5.6 EKF state RMSE at steady-state comparison. Format: scenario-aware parameters
(assumption-based SC 4 parameters)

SC 1 SC 2 SC 3 SC 4
qT S 0.5170 (0.9437) 0.6190 (0.9432) 0.9602 (1.0321) - (1.4355)
ωST 0.0017 (0.0020) 0.0028 (0.0030) 0.0023 (0.0022) - (0.0059)
rST 0.2596 (0.3228) 0.3310 (0.3303) 0.2515 (0.3244) - (0.3555)
vST 0.0573 (0.1259) 0.4587 (0.4599) 0.0642 (0.1265) - (0.4477)
JT - (N/D) - (N/D) 0.1252 (1.2613) - (0.3340)

This aspect, combined with the fact that the spacecraft relative dynamics problem is
not a system with high nonlinearities, makes the local linearity assumption of the
EKF work better than the involved sigma points nonlinear propagation of the UKF.
Despite this, the quaternion error value almost in all cases is kept below 2 degrees,
which can be considered a maximum acceptable error.

The main result is that using the assumption-based general parameters (Scenario
4 used for the purpose) on a scenario which is instead slower, with fewer oscillations,
thus less challenging (as for example Scenario 1), results in a faster convergence
time with respect to the scenario-aware performance, as shown in the first column of
Tables 5.5 and 5.3. As already presented, this is to be expected, since allowing more
oscillations lets a filter converge faster.

At the same time, a cost is paid on the RMSE at steady-state, which for every set
of scenario-aware parameters is in fact lower. The faster the real system is, moving
from Scenario 1 towards Scenario 4, the lower the difference in the convergence
times becomes, and the difference in RMSE at steady-state, while more relevant than
the convergence time, becomes less significant. This possibly reflects a real scenario:
the more your assumptions are close to the real behavior of the system, which in
this analysis means the more the considered scenario is close to fixed scenario 4, the
less the performance difference between the assumption-based parameters and the
scenario-aware ones is evident.

The choice of considering Scenario 4 as the fixed scenario for comparisons
is done to mimic a possible assumption that would be defined in a real use-case.
However, it is important to point out that any choice of a given parameter set can
be made, and the cross comparisons still hold. Regardless of the choice made, that
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parameter set will never meet the performance of a single scenario-aware one, which
can be instead achieved leveraging kinematic priors.

Another relevant result is that the performance of the inertia matrix component
estimation appears very sensible to the parameter tuning. On the same regard, another
outcome of the study highlights how inertia matrix estimation is enabled only in two
axes tumbling scenarios, as in 1 axes rotations no inertia matrix coupling effect arise,
and the angular velocity remains in fact constant.

For this reason, in the presented tables, on the inertia matrix component for 1 axes
tumbling scenarios, the Not Defined N/D label represents no estimation occurring. It
corresponds to an error value equal to the error in the initial condition kept constant
during the estimation, but its interpretation is as Non Defined.

It could be argued that in a real mission one would design an adaptive algorithm
for Qd and possibly Rd matrix real-time tuning, in order to be more conservative.
What is also true is that adaptive algorithms are highly computationally intensive
and real missions implementations tend to choose a trade off shifted towards being
more risk-adverse, rather than conservative but with high computational and thus
energetic requirements. What in any case still holds is that the knowledge on the
scenario provided by the kinematic priors would enable a safe implementation with
standard non-adaptive computational requirements.

5.2 Inertia matrix estimation improvement

As results from the previous study, without a possible additional direct measurement
of the angular acceleration, inertia matrix estimation is enabled only in two axis
scenarios. For this study, the simulation is thus set to scenario 3 from Table 5.1,
which corresponds to a two axis tumbling with slow angular velocity. Simulations
are run for Tsim = 450 seconds with sampling time τs = 1 second, corresponding to
a pose estimation model acquiring images at 1 Frames Per Second (FPS) rate.

The kinematic prior is injected as an initial condition for ω̂0, angular velocity
component of the initial state estimate x̂0. At the same time the values of the initial
diagonal P0 matrix related to the angular velocity component are thus set to a lower
value, to reflect the trust given to this initial knowledge.
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Table 5.7 State value convergence times

UKF + priors EKF + priors
qT S 451 451 39 90
ωST 60 0 32 0
rST 176 176 176 176
vST 119 119 266 266
JT h 451 451 262 86

Table 5.8 State value convergence RMSE

UKF + priors EKF + priors
qT S N/D N/D 1.4659 1.2883
ωST 0.0038 0.0042 0.0014 0.0016
rST 0.3916 0.3916 0.3907 0.3909
vST 0.1012 0.0994 0.1076 0.1073
JT h N/D N/D 0.1838 0.1449

The results show how the trust in the kinematic prior initial condition is able to
shift the energy of the estimation process towards the Target inertia matrix component.
This reflects, both in the UKF and in the EKF, to a performance increase in the inertia
matrix estimation.

Looking at the filter convergence results on the inertia matrix component, Table
5.9, the values show how the two filters, without and with kinematic priors, exhibit
estimation convergence almost at the same time instant. However, the steady-state
squared error at which the two converge, Table 5.10, is higher for the filter without
priors. A different look on the same results is seen on the inertia matrix state
component on Tables 5.7 and 5.8. The state value convergence, for practically the
same RMSE, occurs almost 200 seconds earlier for the filter that exploits kinematic
priors.

As expected, the "cost" of such performance increase on the inertia matrix state
component is paid by a decrease in the performance on the relative quaternion
component estimation. The result of shifting energy towards the inertia matrix
estimation is having a filter that ends the quaternion component estimation earlier
(in the filter convergence sense), leaving a high error on the state estimate, that needs
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Table 5.9 Filter convergence times

UKF + priors EKF + priors
qT S 101 85 91 37
ωST 74 70 49 30
rST 10 8 12 12
vST 9 7 13 13
JT h 121 115 109 103

Table 5.10 Filter convergence RMSEs

UKF + priors EKF + priors
qT S 2.9499 2.5837 1.2749 1.9489
ωST 0.0037 0.0031 0.0012 0.0014
rST 0.4011 0.3969 0.3950 0.3952
vST 0.1186 0.1012 0.1158 0.1150
JT h 1.1810 0.7013 0.3102 0.1458

then more measurement corrections to adapt. For the quaternion component, the
results show in fact a higher filter convergence RMSE (Table 5.10) and a higher state
value convergence time for the filter with priors, for the same state value RMSE
(Tables 5.7, 5.8).

Moreover, the angular velocity component ωST on the filter working with priors
sees state value convergence time tconv = 0, as the forced initial value of the angular
velocity is already below the threshold defined for state value convergence. The
quaternion component estimation for the UKF never achieves state value conver-
gence, since it is kept too high and never definitively crosses the threshold of 2
degrees. The same result is evident from the filter convergence RMSE of the quater-
nion component 5.10. The same happens for the inertia matrix component for the
UKF. An overall conclusion is that the UKF is slightly more unstable and some of
its results do not exactly follow the expected trend obtained with the EKF.

As a final result, the kinematic priors injection impact on the relative distance
and relative velocity state components is irrelevant.

The discussed results also have a visual representation in Figs. 5.3 and 5.2.
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5.3 Enhanced outlier rejection

The idea behind this study is to find a possible performance improvement by injecting
the kinematic priors as an additional measurement source during faults in the real-
time measurements. Also, the kinematic prior is provided as initial condition to the
state estimation, as in Study 2, with the P0 value set up accordingly.

As explained in Section 2.2.4, adding the support for dealing with individual
sources of measurements failing requires defining individual execution paths trig-
gered by the faults. For this study, each possible individual execution path (quaternion
fault, relative distance fault, fault of both) is enhanced with an additional source
of measurement, represented by the kinematic prior being "pushed" at each time
step as a fixed fictitious measurement. Moreover, since each measurement needs
to be weighted by a component on the Rd measurement noise matrix, an additional
component Rω = 10−3[ 1 1 1 ] is defined to weight the forced kinematic prior
measurement inside the Kalman Filter computations.

The implementation of this work, as of now, supports kinematic prior measure-
ment injection as a constant value, thus applicable only for 1 axis rotation. Multiple
axis tumbling support would require accounting for phase during the injection. The
simulated scenario is thus Scenario 1 from 5.1.

Table 5.11 compares a simulation without kinematic priors injection, thus only
non-enhanced outlier rejection, and a simulation with the kinematic priors used as
initial condition for the state estimate and used as a measurement during the pose
fault. A fault window of 120 seconds of duration is simulated, with both relative
quaternion and relative distance measurements failing at the same time. The results
are analyzed by means of RMSE during the pose fault window, including 30 seconds
of settling time after the fault is finished, to account for re-acquisition of convergence.
Moreover, as results from 5.1, the Target inertia matrix component estimation is not
enabled, thus not shown.

As expected, all the results exhibit diverging behavior. It is however significantly
less impactful that it would be without the outlier rejection method, regardless if it is
enhanced or not.



5.3 Enhanced outlier rejection 71

50 100 150 200 250 300
time (s)

0

5

10

15

20

25

30

Er
ro

r (
de

g)

qTS UKF

Pose Fault Window
Measurement Noise
UKF With Priors
UKF No Priors

50 100 150 200 250 300
time (s)

0

5

10

15

20

25

30

Er
ro

r (
de

g)

qTS EKF

Pose Fault Window
Measurement Noise
EKF With Priors
EKF No Priors

50 100 150 200 250 300
time (s)

0

0.005

0.01

0.015

0.02

0.025

0.03

Er
ro

r (
ra

d/
s)

wST UKF

UKF With Priors
UKF No Priors

50 100 150 200 250 300
time (s)

0

0.005

0.01

0.015

0.02

0.025

0.03

Er
ro

r (
ra

d/
s)

wST EKF

EKF With Priors
EKF No Priors

Fig. 5.4 Relative attitude qT S, relative angular velocity ωT
ST state estimation errors

The effect of the enhancing the outlier rejection technique is very evident in
the results of the angular velocity state component ωST , both of the EKF and the
UKF, as its error is kept constant to the 5% assumed intrinsic error in the kinematic
prior. Moreover, the table shows how the method is able to significantly prevent the
quaternion state component qT S for the UKF from diverging. On the other hand, the
EKF instead experiences a slightly slower divergence without the kinematic prior
measurement injection.

Relative distance measurements faults raise a high offset error in the relative
distance and speed estimation, without a significant diverging behavior for the
time window considered. What is in fact also clear is that the kinematic prior
injection has a sufficiently relevant impact only in the attitude and angular velocity
components of the state. Even if the relative distance and speed estimates are coupled
with the Target’s angular velocity value, the diverging behavior of the latter, or its
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Table 5.11 State value RMSE during fault window and following 30 seconds of settling time.

UKF + priors EKF + priors
qT S 12.5006 4.9162 3.7476 4.8795
ωST 0.0085 0.0019 0.0016 0.0009
rST 42.6851 42.6898 39.8952 39.8946
vST 1.4836 1.4838 1.5518 1.5484
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improvement with the enhanced outlier rejection, is not impactful on the first. The
orders of magnitude difference in the values of ωST and rST could also be affecting
the coupled impact.

A visual analysis can also be carried out by looking at Figs. 5.4 and 5.5.



Chapter 6

Conclusions

This work explored the enhancement of uncooperative spacecraft kinematic state
estimation by leveraging kinematic priors extracted from light curves.

The simulation and state estimator’s relative spacecraft dynamics model were
first introduced. Two Kalman filter models enforcing the quaternion unitary norm
constraint were then implemented; an Extended Kalman Filter and an Unscented
Kalman Filter. A discussion on light curve analysis justified the source and fidelity
of the kinematic motion priors. Kinematic motion prior extraction was demonstrated
on synthetic and commercial 1-axis tumbling data. Three orthogonal studies were
performed to demonstrate the impact of injecting information from kinematic priors
into the Kalman filter.

By exploiting kinematic priors, convergence time and steady state error reduc-
tions of 3× or more are exhibited for certain state components, dependent on the
kinematic scenario and filter tuning. Overall, the EKF outperformed the UKF. No-
tably, the UKF was quite sensitive to tuning and also unstable in challenging low
sample rate conditions. If additional model nonlinearities (e.g., orbit perturbations,
kinematic damping or atmosphere-induced torque) were considered, the environment
would become intrinsically more challenging. Under such conditions, an UKF could
conceivably outperform an EKF due to its improved handling of high nonlinearities.
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6.1 Future work

Future efforts should be focused on easing the current assumptions.

First, model validation on higher precision synthetic data could be pursued. To
this extent, orbital perturbations (e.g., Earth oblateness J2, third-body etc.) and
dissipation torques (e.g., LEO atmospheric drag) in the attitude dynamics can be
incorporated. Additionally, a Servicer’s thrust model could be added to simulate
realistic rendezvous operations.

Second, improved support for 2-axes tumbling scenarios could be developed.
State-of-the-art light curve analysis and inversion techniques would enable more
accurate motion prior extraction characterization for complex body tumbling around
non-trivial axes. Consequently, the enhanced outlier rejection method in 5.3 could
be extended for supporting multi-axes angular velocity injection.
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