
POLITECNICO DI TORINO

Master’s Degree in Mechatronics Engineering
Control Technologies for Industry 4.0

A.A. 2024-2025

April 2025

Creation of an RL Environment to Monitor
Ocean Features with Autonomous Vehicles

Supervisors
Prof. Alessandro RIZZO
Dr. Ivan MASMITJA
Dr. Giacomo PICARDI

Candidate
Natalia LOIZZO

Abstract

The ability to detect and monitor dynamic ocean features is crucial for under-
standing and mitigating environmental impacts. These features, which can include
variations in temperature, salinity, biological phenomena, and chemical spills, play
a significant role in marine ecosystems and can have substantial ecological and eco-
nomic consequences. This thesis explores the application of Reinforcement Learning
(RL) for monitoring ocean features through the simulation of an autonomous agent
operating in a dynamic and uncertain environment. The work builds on a pre-
existing project, modifying the environment to integrate various ocean features and
implementing advanced detection techniques supported by sensors and an optimized
reward function to guide the agent’s behavior. Two different simulations have been
developed and compared, each characterized by a distinct reward function. The
first simulation relies on sensors capable of measuring the distance between the
agent and the ocean feature, while the second utilizes a sensor that detects only
the presence or absence of ocean features in the surrounding area. The obtained
results highlight the potential of the RL approach in providing an effective method
for detecting and monitoring ocean features, paving the way for future real-world
implementations. This study can be applied to various environmental monitoring
tasks, such as detecting oil spills, Posidonia meadow, and algal blooms, contributing
to advancements in autonomous environmental surveillance systems.

ii

Acknowledgements

I would first like to express my deepest gratitude to my internal supervisor, Professor
Alessandro Rizzo, for believing in me and my project, and for giving me the freedom
to pursue this work.

A heartfelt thank you to my external supervisors, Ivan Masmitja and Giacomo
Picardi, who have been my constant support throughout this journey. Your
guidance and encouragement have been invaluable, providing me with the strength
to continue, even when I felt discouraged. You placed immense trust in me, and I
am grateful for the opportunity to be part of the CSIC and your wonderful, talented,
and welcoming team, who made me feel included in every initiative. There has not
been a single day when I didn’t wake up with a smile, excited to go to the ICM
and continue working on my project.

I am deeply grateful to my family for giving me the greatest gift one can receive:
total support for my education, always offered with love and without hesitation.
Above all, your constant emotional support has been invaluable to me, and I cannot
thank you enough for being my rock throughout this journey.

A special thank you to my friends, who, even though they saw me grow distant,
have always cheered me on and supported me from afar.

Finally, to Tony, the best man I could ever ask to have by my side. You’ve
always been there to celebrate my successes, encourage me to reach new goals, and
give me your strength during my moments of weakness.

I can never thank you all enough for everything.

iii

Alle donne, e in particolare a quelle nelle STEM, con la speranza che un giorno,
quando diranno di aver scelto ingegneria, non ci sia più stupore o meraviglia nelle

persone.
Un pensiero speciale alle donne che hanno già raggiunto traguardi in questo campo,

che con il loro esempio mi hanno ispirata e mostrato che la passione e la
determinazione sono la vera forza per superare ogni barriera.

Che ogni passo che compiamo porti più donne a sentirsi libere di seguire le loro
passioni, senza limiti o pregiudizi.

Con stima e amore, Nataly

iv

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Overview of Machine Learning . 1

1.1.1 What is Machine Learning? 1
1.1.2 Connection Between Machine Learning and AI 1
1.1.3 Categories of Machine Learning 2

1.2 Fundamentals of Reinforcement Learning 4
1.2.1 Key Characteristics of Reinforcement Learning 4
1.2.2 The Concepts of Reward and Value 5
1.2.3 The Exploration-Exploitation Dilemma 6
1.2.4 A Holistic Approach to Learning 6

1.3 Markov Decision Processes (MDPs) 7
1.3.1 Definition and Components 7
1.3.2 Value Functions and Policy Optimization 7
1.3.3 Bellman Equations and Optimal Policies 8
1.3.4 Relevance to This Study . 8

1.4 Contributions and Objectives of the Thesis 9

2 Background and Related Works 11
2.1 Environmental Robotics and Monitoring 11
2.2 Plume Tracking in Environmental Robotics 12

2.2.1 Odour Plume Tracking in Environmental Robotics 12
2.2.2 Chemical Plume Tracking in Marine Robotics 15

2.3 Baseline System for Target Tracking in Marine Robotics 17
2.4 Conclusion . 17

3 Methodology 19
3.1 Algorithms . 21

3.1.1 Baseline Algorithms Used in the Original Framework 21
3.1.2 Adaptation to the Ocean Features Monitoring Problem . . . 22

vi

3.2 Environment Design . 24
3.2.1 Original Environment . 24
3.2.2 Modified Environment: Ocean Feature Monitoring 25
3.2.3 Patch Generation Using Bézier Curves 26
3.2.4 Integration of the Patch System into the Original Framework 27

3.3 Sensors Implementation . 29
3.3.1 Chemical Concentration Sensor 29
3.3.2 Distance-Based Sensor . 31

3.4 Reward Function Design . 32
3.4.1 Reward Function in the Original Framework 32
3.4.2 Redesigning the Reward Function for Ocean Feature Monitoring 33

3.5 Observation Space . 37
3.5.1 Observation Space in the Original Framework 37
3.5.2 Modified Observation Space for Ocean Feature Monitoring . 37

4 Results 39
4.1 Use of Drago for RL Agent Training 39
4.2 Test with InOut Configuration . 40

4.2.1 Test Configurations . 41
4.2.2 Reward Function Analysis and Selection of Evaluation Points 42
4.2.3 Performance Evaluation Across Five Checkpoints 44

4.3 Test with Update Configuration . 48
4.3.1 Test Configurations . 48
4.3.2 Initial Selection of Best Checkpoint 49
4.3.3 Global Comparison Across Training Steps 50
4.3.4 Performance Metrics at Best Checkpoint (800k) 51

4.4 Comparison Between InOut and Update Configurations 54
4.4.1 Sensing Configuration and Observation Space 54
4.4.2 Behavioral Performance Comparison 54
4.4.3 Which Configuration Performs Better? 55

4.5 Configurations Comparison and Final Considerations 55

5 Conclusions 57
5.1 Final Considerations . 57
5.2 Future Directions . 57

A How to work with HCP Drago 59

Bibliography 66

vii

List of Figures

1.1 Comparison of conventional machine learning (a) and self-directed
machine learning (b)[4]. 3

1.2 The agent–environment interaction in RL [5]. 5
1.3 Representation of the simulated RL environment for monitoring

Ocean Features using an Autonomous Surface Vehicle. 9

2.1 Example of an odor plume tracking scenario. The robot starts from
a distant position and follows the odor plume to locate the source,
adapting its trajectory based on concentration measurements and
wind conditions [15]. 13

2.2 Simulation of an AUV tracking a hydrothermal plume using rein-
forcement learning-based strategies. Adapted from [11]. 16

3.1 Agent trajectory in the original target-tracking environment. The
ASV, represented by the blue dot, follows a submerged target (black
dot) using a range-only tracking approach. The red dot represents
the estimated target position computed using a Least Squares (LS)
method. 20

3.2 Agent movement within the adapted environment. The trajectory
illustrates the agent’s approach and initial interaction with the fea-
ture patch (in green). Further details and a comprehensive analysis
of the results are provided in Chapter 4. 20

3.3 Deep RL concept as range-only path planning. An agent
was trained in a virtual environment that uses real conditions, such
as ocean currents and distance measurement noise (A). During the
training, multiple parallel scenarios were used to boost the process
(B), and different actor-critic algorithms were studied (C). Last, the
policy learned was transferred to the real vehicle as a path planning
method as part of its guidance system (D) [12]. 22

viii

3.4 A high-level representation of the implemented deep recur-
rent RL algorithms. The proposed H-LSTM-SAC algorithms in
which a single-cell RNN was used and the hidden state was passed to
the nextstep (A) and the version implemented from previous works,
where an RNN with a history h of the last n observations was used
(B). Both architectures can enable or disable the RNN part (dotted
line). In addition, besides the SAC architecture, a DDPG and a
TD3 were also implemented.[12]. 23

3.5 Comparison of patch generation methods. (a) The initial
method produced irregularly shaped patches, which were not well-
suited for simulation. (b) The refined approach used Bézier curves
to smooth the contours, resulting in a more realistic and usable patch. 26

3.6 Comparison between the original and modified environment visu-
alization. The agent now interacts with a dynamically generated
patch instead of a moving target. 29

3.7 Visual representation of the agent’s state based on its position relative
to the patch. (a) The agent turns green when inside the patch and
(b) red when outside, providing a clear indication of its detection
status. 31

4.1 Trajectory followed in the Baseline Test. The agent (blue) starts at
the center and follows an expanding spiral trajectory until it enters
the feature patch (green), where it remains. 41

4.2 Comparison of average patch occupancy across the four InOut setup
tests at their respective best-performing checkpoints. 42

4.3 Mean reward over training steps for Test 5 (InOut configuration).
The highest average reward is observed at 1300k steps. 43

4.4 Mean reward over training steps for Test 5 (InOut configuration).
Five specific checkpoints were selected for further evaluation: 400k,
600k, 900k, 1300k, and 1900k. 43

4.5 Mean and standard deviation of patch occupancy over 200 steps
for five different training checkpoints in Test 5. The 600k and 900k
models show more consistent and higher occupancy than the 1300k
model, despite the latter having the highest mean reward during
training. 44

4.6 Agent search trajectories at different training checkpoints. The 600k
and 900k models exhibit broader exploration patterns before converg-
ing to the patch, while the 1300k model shows a more constrained
search behavior. 45

ix

4.7 Percentage of time spent inside the patch over 200 simulation steps
for the 900k checkpoint. The shaded area indicates the standard
deviation across 100 simulations. 46

4.8 Boxplot of patch occupancy over early, middle, and late simulation
steps for the 900k checkpoint. The red markers represent the mean
values. 47

4.9 Percentage of time spent inside the patch for each of 100 simulations
(900k checkpoint). Simulations are sorted by performance. 47

4.10 Comparison of minimum distance trends across the five Update test
cases at their respective best-performing points. 49

4.11 Mean reward over training steps. The best-performing checkpoint
was reached at 800k iterations. 50

4.12 Comparison of the average minimum distance over 200 steps for five
different training iterations in Test 2 (Update configuration). 51

4.13 Mean and standard deviation of the minimum distance over 200 steps
at the 800k checkpoint (Test 2, Update). The red curve indicates the
mean distance, while the shaded area represents standard deviation
across 100 simulations. 52

4.14 Comparison of mean and standard deviation of the minimum distance
over time for the 800k checkpoint under two initial agent positions. 53

4.15 Boxplot of the minimum distance to the patch across three time
intervals of the simulation. 53

4.16 Patch occupancy comparison between InOut (900k) and Update
(800k) setups over 200 simulation steps. Shaded areas represent one
standard deviation. 55

x

Chapter 1

Introduction

1.1 Overview of Machine Learning

1.1.1 What is Machine Learning?
Machine Learning (ML) is a field that allows computers to learn from data
without explicit programming. Instead of being manually programmed for each task,
ML algorithms develop the ability to solve problems through experience, refining
their "knowledge" over time. ML algorithms implicitly extract information from
data. The goal is to approximate a statistical model using complex functions, such
as neural networks. ML is closely linked to pattern recognition, using techniques to
recognize elements and structures in data. A fundamental approach is supervised
learning, in which an algorithm learns to classify or predict outcomes based on the
positive and negative examples provided. The quality and quantity of data are
crucial for the success of any ML application [1].

1.1.2 Connection Between Machine Learning and AI
Machine learning is just one component required for a system to qualify as artificial
intelligence (AI). The machine learning aspect allows AI to perform the following
functions:

• Adjust to unforeseen situations that were not explicitly programmed by the
developer.

• Detect patterns in various types of data sources.

• Generate new behaviors based on identified patterns.

• Make choices depending on the effectiveness or failure of certain actions.

1

Introduction

The application of algorithms for processing data is central to machine learning.
For a machine learning process to be effective, it must use an algorithm suited to
achieving the intended goal. Additionally, data must be prepared appropriately for
analysis, either by the algorithm itself or by data analysts.

Other AI Disciplines Beyond Machine Learning
To accurately replicate human thought processes, AI incorporates various disciplines.
Besides machine learning, AI also typically includes:

• Natural language processing (NLP): conversion of text-based input to a
machine-readable format.

• Natural language understanding: interpreting human language to perform
tasks accordingly.

• Knowledge representation: organizing and storing information in a way
that allows fast retrieval.

• Planning (goal-driven problem-solving): leveraging stored data to make
decisions almost instantly.

As technological advancements continue, the practical implementation of theories
(technique) becomes just as crucial as the development of theories (science).

Specialists establish formalized guidelines known as specifications, which serve
as a framework for defining AI and ML processes.

Mathematics plays a crucial role in ML as it dictates how large datasets are
interpreted. Algorithms process input data to construct models that predict
outcomes. However, if no identifiable patterns exist within the data, it becomes
impossible to make reliable forecasts [2].

A key aspect of ML is its ability to learn from data without being explicitly
programmed. Unlike traditional rule-based systems, ML algorithms improve over
time by identifying patterns and adjusting their predictions based on experience.
However, conventional ML still relies heavily on manual design and expert inter-
vention. Addressing these limitations requires new approaches that improve the
autonomy of learning systems, allowing them to make independent decisions about
what and how to learn.

1.1.3 Categories of Machine Learning
One of the key challenges in AI is enabling systems to learn from data without
requiring explicit programming. Unlike traditional rule-based systems, which rely
on manually defined logic, modern ML techniques leverage data-driven learning to
improve performance over time.

2

Introduction

ML paradigms, depending on the type of experience they are allowed to have
during the learning process, can be broadly categorized into:

• Supervised Learning: models train on data sets where each example is
associated with a label or target. This allows the algorithm to learn an explicit
mapping between input features and outputs. The term supervised originates
from the idea that an instructor provides explicit guidance by showing the
system the correct answers. Thus, supervised learning excels in tasks such as
classification and regression, where clearly labeled data are available [3].

• Unsupervised Learning: deals with data sets that lack predefined labels.
Instead of learning a direct mapping from inputs to outputs, the algorithm
identifies patterns and structures within the data. Unlike supervised learning,
unsupervised approaches do not rely on an instructor, making them more
adaptable in scenarios where labeled data is scarce or unavailable [3].

Limitations of Traditional Machine Learning
A major limitation of supervised and unsupervised learning is their dependency
on predefined learning setups, where human experts design datasets, models, and
evaluation criteria. To increase machine autonomy, researchers have explored
methods that allow models to self-direct their learning process.

One such paradigm is Self-Directed Machine Learning (SDML), which
enables systems to make decisions about what to learn, which data to use, and
how to evaluate performance.
SDML draws inspiration from self-directed human learning, where learners set their
goals and strategies autonomously based on their experiences. By incorporating
self-awareness mechanisms, SDML allows models to dynamically adapt their learn-
ing process, moving closer to autonomous decision-making without full human
supervision [4].

Figure 1.1: Comparison of conventional machine learning (a) and self-directed
machine learning (b)[4].

3

Introduction

Beyond these paradigms, some machine learning models do not rely on a fixed
data set, but rather learn through interaction with an environment. This is the
case of Reinforcement Learning (RL), where an agent takes actions within
an environment and receives feedback in the form of rewards or penalties. Unlike
supervised learning, which requires a predefined dataset with explicit labels, and
unsupervised learning, which is limited to passive pattern recognition, RL enables
a system to learn dynamically through trial and error. This ability to adapt
based on experience rather than predefined instructions makes RL a powerful
tool for decision-making tasks in complex, changing environments.

1.2 Fundamentals of Reinforcement Learning
One of the most fundamental aspects of AI is the ability to learn from experience.
(RL) is a machine learning paradigm that relies on this principle, allowing an
agent to improve its behavior through direct interaction with a dynamic
environment. Unlike other ML techniques, where a model learns from labeled
data provided by a supervisor, RL does not rely on explicit instructions about
which actions are correct or incorrect. Instead, the agent must autonomously
explore, receive feedback from the environment, and adjust its strategy
to maximize a long-term numerical reward [5].

The fundamental idea behind RL is deeply rooted in natural learning processes.
Humans and animals learn through trial and error, interacting with their sur-
roundings and adapting their behavior based on the consequences of their actions.
For instance, a child does not need explicit instructions to grasp an object; they
attempt multiple times, receiving feedback from their body and the environment,
until they succeed. Similarly, an RL agent interacts with the environment
without direct supervision, gradually discovering which decisions yield the most
favorable outcomes.

1.2.1 Key Characteristics of Reinforcement Learning
Reinforcement learning is distinguished from other ML approaches by three essential
characteristics. First, it is a closed-loop problem, meaning that the agent’s
actions directly influence the future data it will learn from. Unlike supervised
learning, where models operate on fixed datasets, RL involves continuous interaction
with the environment, making the learning process dynamic and evolving over time.

Another defining characteristic is that the agent does not receive explicit instruc-
tions about which actions to take. In supervised learning, each training example
includes a correct answer provided by a supervisor, whereas in reinforcement learn-
ing, the agent must independently discover which decisions are beneficial by
experimenting and observing their consequences.

4

Introduction

Lastly, a crucial feature of RL is that the agent’s actions affect not only the
immediate reward but also future rewards. This introduces significant complexity,
as the agent must learn to optimize for long-term benefits rather than just short-
term gains. A strategy that seems optimal in the short run might lead to suboptimal
results in the long run, requiring the agent to carefully balance its decision-making
process.

1.2.2 The Concepts of Reward and Value
In reinforcement learning, the reward serves as the primary signal guiding the
agent’s learning process. Each time the agent takes an action, it receives numerical
feedback indicating the quality of its decision. This reward signal is crucial because
it incentivizes behaviors that maximize long-term returns.

However, relying solely on immediate rewards can lead to myopic decision-
making, where the agent chooses actions that offer short-term gains without
considering long-term consequences. To address this, RL introduces the concept
of value, which represents the expected sum of future rewards that an agent can
obtain starting from a given state. In other words, while the reward indicates
what is good in the short term, the value expresses what is advantageous in
the long run. A well-trained agent does not just maximize immediate rewards but
also evaluates how a decision influences the achievement of more complex
objectives over time.

Figure 1.2: The agent–environment interaction in RL [5].

5

Introduction

1.2.3 The Exploration-Exploitation Dilemma
A fundamental challenge in RL is the trade-off between exploration and exploitation.
To achieve high rewards, the agent should prefer actions that have previously yielded
favorable outcomes. However, to discover potentially better strategies, it must also
explore untested options.

This creates a delicate balance:

• Exploitation refers to selecting actions that, based on past experience, are
known to yield the highest reward.

• Exploration involves trying new actions to acquire information that may
lead to better strategies in the future.

An agent that relies entirely on exploitation risks becoming stuck in suboptimal
solutions, never discovering superior alternatives. Conversely, excessive exploration
may lead to inefficient learning, as the agent continuously gathers information
without applying it effectively to maximize rewards. In stochastic environments,
where action outcomes vary, an agent must test a given action multiple times to
estimate its expected reward accurately. This trade-off is unique to RL and does
not arise in supervised or unsupervised learning paradigms.

1.2.4 A Holistic Approach to Learning
RL is not just a method for solving isolated problems but provides a comprehen-
sive framework for decision-making in uncertain and dynamic environments.
Unlike many ML techniques that focus on specific subproblems, RL considers an
interactive agent with explicit goals, capable of perceiving the environment,
making decisions, and continuously adapting to evolving situations.

This approach is particularly effective in real-world applications where
explicit supervision is impractical or impossible. For example, in autonomous
robotics, complex system optimization, and strategic game playing, RL enables
the development of agents that can learn independently without requiring labeled
data sets. Additionally, RL explicitly addresses uncertainty, allowing agents to
operate even in environments where the consequences of actions are not entirely
predictable.

RL represents an advanced learning paradigm that allows agents to autonomously
learn from interaction with their environment. By leveraging key concepts such as
reward, value, and the balance between exploration and exploitation, RL provides
a flexible and powerful approach to solving complex, dynamic problems. Its ability
to adapt to unstructured scenarios makes Reinforcement Learning one of the most
effective techniques for developing intelligent, autonomous systems.

6

Introduction

1.3 Markov Decision Processes (MDPs)
RL problems are commonly modeled using Markov Decision Processes (MDPs),
which provide a mathematical framework for decision-making under uncertainty.
An MDP defines the interaction between an agent and an environment, where
the agent learns to take actions that maximize cumulative rewards.

1.3.1 Definition and Components
An MDP is defined by the tuple:

M = (S, A, P, R, γ) (1.1)

where:

• S: Set of possible states of the environment.

• A: Set of actions the agent can take.

• P (s′|s, a): Transition function, defining the probability of moving to state
s′ from state s after action a.

• R(s, a): Reward function, mapping state-action pairs to numerical rewards.

• γ ∈ [0,1]: Discount factor, determining the importance of future rewards.

The Markov property ensures that the next state depends only on the current
state and action, not on previous states.

1.3.2 Value Functions and Policy Optimization
In RL, the agent follows a policy π, which defines the probability of selecting an
action in a given state. The state-value function and action-value function
estimate the expected future rewards when following a specific policy.

The state-value function, denoted as vπ(s), represents the expected return
when the agent starts in state s and follows policy π (Equation 1.2).

vπ(s) = Eπ

C ∞Ø
k=0

γkRt+k+1 | St = s

D
(1.2)

Similarly, the action-value function, denoted as qπ(s, a), represents the ex-
pected return starting from state s, taking action a, and then following policy π
(Equation 1.3).

7

Introduction

qπ(s, a) = Eπ

C ∞Ø
k=0

γkRt+k+1 | St = s, At = a

D
(1.3)

These functions guide the optimization of an optimal policy π∗ that maximizes
expected rewards.

1.3.3 Bellman Equations and Optimal Policies

The Bellman equations establish a recursive relationship for value functions, provid-
ing the foundation for many RL algorithms. Specifically, the Bellman equation
for the state-value function expresses the expected return in terms of the
current reward and the discounted value of future states (Equation 1.4):

vπ(s) =
Ø
a∈A

π(a|s)
Ø
s′

P (s′|s, a) [R(s, a) + γvπ(s′)] (1.4)

The objective of RL is to determine the optimal policy π∗ that maximizes
cumulative rewards over time. The corresponding optimal state-value function
is defined by the Bellman optimality equation (Equation 1.5):

v∗(s) = max
a

Ø
s′

P (s′|s, a) [R(s, a) + γv∗(s′)] (1.5)

These equations form the theoretical backbone for various RL algorithms, includ-
ing Q-learning, Deep Q-Networks (DQN), and policy gradient methods,
enabling agents to learn optimal strategies through interaction with the environ-
ment.

1.3.4 Relevance to This Study

In this work, an MDP framework is used to model the interaction between an
autonomous agent and the ocean environment. The agent’s goal is to learn a policy
that allows it to remain within a dynamically evolving ocean feature, optimizing
its trajectory based on reward signals.

This framework enables the development of a RL-based system that can effec-
tively monitor and adapt to changing marine conditions.

8

Introduction

1.4 Contributions and Objectives of the Thesis

Figure 1.3: Representation of the simulated RL environment for monitoring
Ocean Features using an Autonomous Surface Vehicle.

The main objective of this thesis is the development of a RL environment for
monitoring oceanic features using autonomous vehicles. This environment provides
a structured framework to test different navigation strategies and sensor configura-
tions in dynamic scenarios, where patches of varying shapes and sizes are generated
in each simulation, as illustrated in Figure 1.3.

Unlike other works that focus primarily on training an agent to maximize a
specific reward function, this research emphasizes the design and validation of a
suitable RL environment, identifying key parameters that influence effective agent
learning.

The contributions of this work can be summarized as follows:

1. Development of an RL environment – Creation of a simulated framework
for monitoring oceanic phenomena, incorporating a patch model with varying
shape and size across simulations.

2. Analysis of agent observations – Evaluation of different observation space
configurations to determine which information is most relevant for the agent’s
learning process.

3. Experimentation with reward functions – Implementation and testing of
various reward functions to assess their effectiveness in guiding the agent’s
behavior.

9

Introduction

4. Comparative analysis of sensor configurations – Investigation of different
sensor setups to evaluate their impact on the agent’s ability to detect and
monitor oceanic features.

5. Definition of future research directions – Identification of key areas for
improvement, including the potential integration of additional environmental
factors.

The insights gained from the preliminary simulations provide a strong foundation
for further development, paving the way for more advanced RL-based strategies in
ocean feature monitoring.

10

Chapter 2

Background and Related
Works

2.1 Environmental Robotics and Monitoring
Environmental monitoring is an essential field encompassing diverse applications,
including marine exploration, wildlife conservation, ecosystem assessment, and air
quality monitoring. The ability to collect accurate and timely data from remote
or hazardous locations is crucial for understanding and addressing environmental
challenges. Traditional methods often rely on manual sampling, satellite imaging,
or static sensor networks, which may be limited in resolution, coverage, or real-time
adaptability [6, 7, 8].

In recent years, environmental robotics has emerged as a transformative
solution to these challenges. By integrating autonomy and artificial intelligence,
robotic platforms can be deployed for extended periods in dynamic and inaccessible
environments, significantly enhancing data collection capabilities. These systems
leverage advanced decision-making algorithms to optimize their sensing strategies,
enabling efficient and adaptive monitoring of environmental phenomena [9].

The increasing need for autonomous sensing and environmental monitoring
has driven significant research efforts toward developing robotic platforms capable
of tracking, analyzing, and responding to dynamic environmental features. A
crucial area of study within this field is the development of autonomous agents
capable of detecting and tracking dispersed substances in complex and time-varying
conditions.

In this context, three key works have laid the foundation for this study, each
contributing fundamental insights that shaped the design and methodology of this
research:

• The first study investigates how flying insects track odour plumes by relying

11

Background and Related Works

on olfactory and mechanosensory cues, demonstrating how artificial agents
can leverage biologically inspired strategies for plume localization [10]. The
behavioural patterns observed in this work provide valuable inspiration for the
design of autonomous robots that must operate in turbulent flow environments.
(See Figure 2.1).

• The second study focuses on chemical plume tracking (CPT) in marine robotics,
specifically exploring how autonomous underwater vehicles (AUVs) can detect
hydrothermal vent emissions using a combination of probabilistic models and
deep RL [11]. This work is highly relevant to the challenges of tracking
chemical spills in oceanic environments, which share key similarities with
hydrothermal plume dispersion. (See Figure 2.2).

• The third work serves as the baseline system for this research, introducing
a range-only underwater target tracking framework that was later adapted
and modified for ocean features monitoring [12]. While originally designed
for tracking a mobile target, the methodology was extended in this study to
accommodate static ocean features, requiring a shift in sensing modalities and
agent behavior. (See Figure 3.1).

Each of these works contributes distinct yet complementary elements to the
problem of autonomous environmental feature localization, reinforcing the need
for robust sensing strategies that allow robotic agents to adapt to uncertain and
dynamic conditions.

2.2 Plume Tracking in Environmental Robotics
Among the various applications of environmental robotics, plume tracking rep-
resents a key challenge, particularly in scenarios where an agent must locate the
source of a dispersed substance in a dynamic medium, such as air or water. Plume
tracking has been extensively studied in both aerial and underwater environments,
leading to different approaches tailored to each domain.

2.2.1 Odour Plume Tracking in Environmental Robotics
Plume tracking is a crucial capability for autonomous agents operating in environ-
ments where substances disperse in a dynamic medium, such as air or water. One
of the most studied cases of plume tracking is related to airborne odour plumes,
which are widely explored in the context of insect flight behavior and bio-inspired
robotics [13, 14, 15].

Many flying insects rely on odor plumes to locate sources of food, mates, or
oviposition sites. The strategies they employ depend on multiple factors, including

12

Background and Related Works

the spatial scale and visibility of the odor source. At greater distances, or when
the source is obscured, the search process is primarily guided by olfactory and
mechanosensory cues, which allow the insect to estimate wind velocity and
direction. In this regime, stereotyped behavioral sequences play a crucial role:
insects tend to surge upwind when they detect the odor and perform crosswind
or U-turn maneuvers when they lose contact with the plume, helping them to
relocate the odor trail [16, 17].

An example of this behavior is shown in Figure 2.1, where a robotic agent tracks
an odor source using a bio-inspired approach. The robot follows a zigzagging
trajectory influenced by the wind direction, mimicking the search patterns observed
in insects [18]. The probability distribution of the source location is continuously
updated as the robot collects new sensor measurements.

Figure 2.1: Example of an odor plume tracking scenario. The robot starts from
a distant position and follows the odor plume to locate the source, adapting its
trajectory based on concentration measurements and wind conditions [15].

Recent studies suggest that agents track plumes based on their local
shape rather than relying purely on wind direction. While some models
propose explicit upwind surges near the plume centerline [13], other analyses do
not fully support this hypothesis [19]. This discrepancy highlights the importance
of investigating how local plume dynamics influence tracking behavior in non-
stationary wind conditions.

Deep reinforcement learning (RL) and recurrent neural networks (RNNs) have
been employed to train artificial agents for autonomous plume tracking. Unlike
traditional approaches that rely solely on instantaneous sensor readings, these
networks enable agents to process and retain past sensory information,
allowing for more adaptive and effective decision-making [14, 20].

Specifically, the neural networks learn to encode and utilize key task-related vari-
ables that extend beyond immediate egocentric observations. These representations

13

Background and Related Works

include:

• Agent’s heading direction: The agent continuously tracks its orientation
to determine how to navigate relative to the plume source [15].

• Elapsed time since last plume encounter: If the agent has not detected
the plume for a certain duration, it must adjust its search strategy to relocate
it [19].

• Exponentially weighted moving average of detected odor concentra-
tions: Rather than relying on a single sensor reading, the agent maintains
a weighted average of past odor detections to assess the overall trend of the
plume [19].

• Binary signal tracking odor encounters over time: The agent records
whether it has detected the plume in recent time steps, helping it decide
whether to persist in its current direction or adopt a new search strategy [19].

By integrating these learned representations, the agent does not merely react to
instantaneous sensory inputs but instead leverages memory of past encounters
to optimize its plume-tracking behavior, similar to how biological organisms follow
odor cues in dynamic environments.

Notably, the activity of these networks is low-dimensional, meaning that the
complex neural responses can be described using only a few key variables, rather
than requiring an extremely large number of parameters [21, 22].

The way the network’s activity evolves over time follows distinct patterns
associated with different behaviors:

• When the agent loses track of the plume and starts searching randomly, its
neural activity follows quasiperiodic limit cycles, meaning that the agent’s
behavior repeats in a structured, cyclical manner.

• When the agent successfully tracks the plume, the network activity forms
attractor-like structures that guide the agent toward the source, effectively
shaping its trajectory in a predictable way [23, 24].

These insights reinforce the idea that memory is critical for plume tracking,
particularly in non-stationary wind environments, where recent sensory history
informs decision-making [25]. However, in steady-wind conditions, short-term
reflexive mechanisms (lasting <0.5 s) may suffice for successful tracking [19].

This research has direct implications for robotic applications, as bio-inspired
algorithms can enhance plume-tracking efficiency in complex environments. By
leveraging memory-driven strategies and encoding sensory history, artificial agents

14

Background and Related Works

can improve their robustness in real-world conditions, such as gas leak detection,
environmental monitoring, and search-and-rescue operations [26, 27].

In the next section, the application of similar principles to the tracking of
chemical plumes in underwater environments is examined, focusing on how an
autonomous agent identifies hydrothermal vent sources using chemical concentration
measurements.

2.2.2 Chemical Plume Tracking in Marine Robotics
In underwater environments, chemical plume tracking (CPT) is essential
for detecting hydrothermal vents, monitoring oil spills, and studying underwater
chemical emissions. Autonomous underwater vehicles (AUVs) equipped with
chemical sensors have been widely employed for this task, using a combination
of bio-inspired behaviors and probabilistic models to navigate toward the source.
Traditional CPT methods can be broadly categorized into two main approaches.
Bio-inspired strategies mimic the olfactory search behaviors observed in animals,
such as the surge-and-cast technique seen in moths, where the agent moves up-
current when detecting a chemical and performs lateral sweeps when the signal is
lost [16, 18].

On the other hand, probabilistic models estimate the likely position of the source
based on a mathematical representation of plume dispersion, often employing
Bayesian inference to refine estimations over time [28, 26].

While these techniques have been successfully applied in controlled conditions,
they exhibit notable limitations in real-world oceanic environments. Bio-
inspired methods struggle in turbulent flow conditions, where plumes become
fragmented and intermittent, making simple chemotaxis-based approaches unreli-
able. Probabilistic models, though more robust, require significant computational
resources and can be challenging to implement in real-time tracking scenarios.
These constraints have motivated the development of reinforcement learning-based
strategies, which dynamically integrate multiple tracking approaches to improve
adaptability and efficiency.

A recent study [11] introduced a novel CPT framework that leverages deep RL
to fuse bio-inspired and probabilistic tracking strategies. In this approach, two deep
RL algorithms—Double Deep Q-Network (DDQN) and Deep Deterministic Policy
Gradient (DDPG), were trained to determine the optimal tracking behavior in
response to changing environmental conditions. The system dynamically switched
between a moth-inspired surge-and-cast behavior and a Bayesian inference-based
strategy, allowing for adaptive plume tracking in both laminar and turbulent flow
environments. The training process was conducted in a high-fidelity simulated
ocean setting, as illustrated in Figure 2.2, where an AUV successfully tracks a
simulated hydrothermal plume.

15

Background and Related Works

Figure 2.2: Simulation of an AUV tracking a hydrothermal plume using reinforce-
ment learning-based strategies. Adapted from [11].

The findings from this study are particularly relevant to the work presented
in this thesis, as both investigations employ RL to enable autonomous agents to
monitor oceanic features. While the primary focus of the referenced study was
hydrothermal vent detection, the underlying methodology of using deep RL to
integrate multiple tracking strategies closely aligns with the approach adopted in
this work. However, a key distinction lies in the environmental assumptions: while
the CPT study considers a dynamic ocean setting with turbulent flows, the present
work simplifies the problem by assuming a static environment, neglecting ocean
currents. Moreover, while the referenced study specifically focuses on tracking
hydrothermal plumes, the framework developed in this thesis is designed for general
ocean feature monitoring, which could include oil spills or other oceanographic
phenomena. Despite these differences, both approaches rely on RL to process
real-time environmental data and adapt the agent’s behavior accordingly.

Moreover, the use of deep RL for decision-making enhances the agent’s ability to
operate in complex environments where traditional methods fail. The integration
of DDQN and DDPG allows the system to transition smoothly between different
search strategies based on environmental feedback, significantly improving tracking
efficiency in turbulent conditions.

The insights gained from this research highlight the potential of deep RL-based
tracking systems for environmental monitoring. By enabling autonomous agents
to adapt to complex and dynamic conditions, these methods pave the way for
more effective and scalable solutions in oceanic surveillance, disaster response, and
ecological research.

16

Background and Related Works

2.3 Baseline System for Target Tracking in Ma-
rine Robotics

One of the key contributions that shaped this study is the RL framework developed
by Masmitja et al. [12], which serves as the foundation for the modifications
implemented in this work. Originally designed for underwater target tracking, this
system enables an autonomous surface vehicle (ASV) to estimate the position of a
submerged target using range-only localization techniques.

Unlike the studies previously discussed, which focused on biologically inspired
odor plume tracking [10] and deep RL-based hydrothermal vent localization [11],
this framework was specifically developed for RL applications in marine robotics.
The environment integrates several real-world constraints such as ocean currents,
measurement errors, and acoustic communication failures, providing a robust
platform for training autonomous agents in underwater navigation.

Underwater target tracking presents significant challenges compared to other
RL-based tracking problems, as it involves optimizing vehicle navigation in highly
dynamic and uncertain marine conditions. Oceanographic monitoring is often
hindered by the unreliability and limited bandwidth of underwater communication
systems, where GPS technology is not operational [29]. As a result, robotic
platforms and autonomous underwater vehicles (AUVs) have emerged as essential
tools for gathering oceanographic data while reducing costs and improving mission
efficiency [30, 31, 32, 33]. However, as mission complexity increases, so do the
challenges related to system reliability and endurance. Since energy resources
are limited, optimizing control strategies becomes essential to ensure efficient and
prolonged operations in underwater environments.

The future development of autonomous vehicles capable of dynamically adapting
to environmental changes could enable large-scale studies, reducing the uncertainty
that often characterizes oceanographic research. ML-driven control systems are
emerging as a promising solution to enhance autonomy and adaptability in these
challenging marine settings [34, 35].

To align with the objectives of this study, the original framework was significantly
modified, shifting its focus from target tracking to ocean feature monitoring. This
transition required adjustments in various aspects of the environment, including:
reward function, observation space, policy optimization process.

2.4 Conclusion
This chapter has explored the role of robotics in environmental monitoring applica-
tions such as plume tracking across different domains, emphasizing its significance
in both aerial and marine environments. Two fundamental studies were reviewed:

17

Background and Related Works

one investigating RL-based odor plume tracking in airborne scenarios [10], and
another demonstrating deep RL techniques for hydrothermal vent detection in
complex underwater conditions [11].

However, the most significant contribution shaping this work is the baseline
RL framework developed by Masmitja et al. [12]. This system provides a robust
environment for underwater navigation and RL-based target tracking, forming the
foundation for the modifications introduced in this study to enable ocean feature
monitoring.

In the next chapter, the key modifications introduced to transition from a target-
tracking RL system to a framework for autonomous ocean feature monitoring will
be presented in detail.

18

Chapter 3

Methodology

In this work, a new RL-based environment was developed to track ocean features,
adapting an existing RL framework initially designed for underwater target tracking.
The baseline environment, developed by Masmitja et al. [12], focused on training an
autonomous surface vehicle (ASV) to track a moving submerged target using deep
RL techniques such as SAC [36], DDPG, and TD3. This system was built on top
of the OpenAI Particle Environment [37, 38], integrating realistic constraints
such as ocean currents, measurement errors, and communication failures.

To address the specific problem of monitoring ocean features, the original
environment was modified by introducing a patch, which the agent needs to detect
and remain within. This adaptation required changes to the rendering system,
the agent’s reward function, and the simulation parameters. Furthermore,
a chemical concentration sensor was implemented to determine whether the
agent was inside or outside the polluted area. This sensor was used in conjunction
with a distance-based detection system, providing supplementary information
to enhance the agent’s monitoring performance.

Before diving into the technical details of the methodology, it is useful to visualize
the transition from the original project to the modified system developed in this
study. The figures below illustrate the graphical representation of the environment
before and after adaptation.

19

Methodology

(a) Initial trajectory (b) Midway trajectory (c) Final trajectory

Figure 3.1: Agent trajectory in the original target-tracking environment. The
ASV, represented by the blue dot, follows a submerged target (black dot) using a
range-only tracking approach. The red dot represents the estimated target position
computed using a Least Squares (LS) method.

(a) Initial trajectory (b) Approaching the patch (c) First entry into the patch

Figure 3.2: Agent movement within the adapted environment. The trajectory
illustrates the agent’s approach and initial interaction with the feature patch (in
green). Further details and a comprehensive analysis of the results are provided in
Chapter 4.

The original environment (Figure 3.1) was designed for underwater target
tracking, where an ASV was trained to follow a submerged target using a range-
only tracking method. This technique estimates the target’s position using
acoustic distance measurements and estimation algorithms such as Least
Squares (LS) and Particle Filter (PF). The ASV, trained via deep RL, optimizes
its trajectory to maintain a stable acoustic link with the target.

In contrast, the modified environment (Figure 3.2) shifts the focus towards
ocean features monitoring, where the agent must learn to navigate and ac-
curately localize and follow the boundary of a dynamically generated patch
instead of tracking a single moving target. The modifications introduced required a
redesign of the rendering system, the localizaton sensors and techniques,
the agent’s reward function, and the simulation parameters.

20

Methodology

This chapter details the methodology used to build and train this new environ-
ment, explaining the modifications applied to the original system, the design of the
agent, and the learning algorithms employed.

3.1 Algorithms
The control of ASVs in complex marine environments requires robust decision-
making strategies that can handle uncertainty, sensor noise, and dynamically
changing conditions. RL has emerged as a powerful tool for optimizing control
policies in such scenarios. The underlying idea is to train an agent that interacts
with the environment, receives feedback through rewards, and learns to maximize
long-term performance.

3.1.1 Baseline Algorithms Used in the Original Framework
The original framework developed by Masmitja et al. [12] employs deep RL
techniques, particularly focusing on off-policy actor-critic methods. The main
challenge in using deep Q-learning in continuous state and action spaces is ensur-
ing stability and convergence [39]. To address this issue, Deep Deterministic
Policy Gradient (DDPG) [40] was implemented, allowing the policy to learn a
deterministic mapping from states to actions while using an actor-critic structure.
However, DDPG suffers from hyperparameter sensitivity, making it difficult to
train reliably.

To improve stability and sample efficiency, Soft Actor-Critic (SAC) [36] was
introduced in the original framework (Figure 3.3). SAC is based on the maximum
entropy RL framework, where the objective is not only to maximize the expected
reward but also to maximize the entropy of the policy, encouraging more
exploratory behavior. This property is particularly useful in robotic applications
where sensor readings contain noise or environmental conditions change dynamically.
By exploring multiple strategies to complete a task, SAC allows for more robust
and adaptable decision-making. Both DDPG and SAC were implemented
and tested as part of the range-only target tracking and path-planning
system.

Additionally, Long Short-Term Memory (LSTM) networks were incorpo-
rated into the SAC architecture to study their impact on performance (Figure 3.4).
Two different recurrent structures were developed:

• LSTM-SAC: A recurrent neural network (RNN) that takes as input the last
n states, inspired by [41, 42].

• H-LSTM-SAC: A simplified implementation where one of the hidden layers

21

Methodology

is replaced by an RNN with a history length of 1. The internal hidden state
is used as input at the next step as a memory unit.

Figure 3.3: Deep RL concept as range-only path planning. An agent
was trained in a virtual environment that uses real conditions, such as ocean
currents and distance measurement noise (A). During the training, multiple parallel
scenarios were used to boost the process (B), and different actor-critic algorithms
were studied (C). Last, the policy learned was transferred to the real vehicle as a
path planning method as part of its guidance system (D) [12].

3.1.2 Adaptation to the Ocean Features Monitoring Prob-
lem

The transition from underwater target tracking to ocean feature monitoring required
a fundamental shift in the agent’s objective. Instead of pursuing a moving target
using acoustic range measurements, the agent needed to learn how to identify and
interact with oceanic phenomena, such as oil spills, Posidonia meadows, or algal
blooms. This shift necessitated modifications in both the training framework and
the environment dynamics to better reflect the new monitoring task.

One of the most significant modifications involved the observation space, which
redefined how the agent perceives its surroundings and directly influenced the
structure of the neural network’s input layer. As described in Equation 3.3, the

22

Methodology

Figure 3.4: A high-level representation of the implemented deep re-
current RL algorithms. The proposed H-LSTM-SAC algorithms in which a
single-cell RNN was used and the hidden state was passed to the nextstep (A) and
the version implemented from previous works, where an RNN with a history h of
the last n observations was used (B). Both architectures can enable or disable the
RNN part (dotted line). In addition, besides the SAC architecture, a DDPG and a
TD3 were also implemented.[12].

observation space in the original framework included agent’s position and velocity,
the relative position of surrounding entities, the relative position of other agents
(when in a multi-agent setting), the range measurement to the target, the target’s
depth and the agent’s origin point .

These modifications expanded the observation vector, requiring adjustments
to the first fully connected layer of the neural network in Multi-Agent Hybrid
Recurrent SAC (MAHRSAC) algorithm to accommodate the increased input
dimensionality. A detailed breakdown of the observation states is provided in
Section 3.5.2.

In order to minimize changes to the original structure, the training was conducted
using the MAHRSAC. This algorithm is an adaptation of SAC [36], integrating
RNN to enhance temporal dependencies in decision-making. The implementation
is based on Hybrid Recurrent SAC (HRSAC) and incorporates modifications
inspired by existing PyTorch SAC frameworks [43, 44, 45].

Although MAHRSAC is generally designed for multi-agent learning, it
was adapted for single-agent training by configuring the agent count in the
configuration file:

23

Methodology

1 # Number of agents per environment
2 num_agents = 1

By setting this parameter to 1, the existing MAHRSAC implementation was
effectively converted into a single-agent Hybrid Recurrent SAC model. This
approach allowed the training process to remain consistent with the original deep RL
framework, avoiding the need for extensive modifications to the network architecture
or environment interface, and allowing future applications in MARL configurations.

The MAHRSAC algorithm extends SAC by integrating recurrent memory
components, making it particularly well-suited for monitoring dynamic ocean
features. Even though the original framework leveraged LSTM-enhanced SAC
architectures (LSTM-SAC and H-LSTM-SAC), the implementation of MAHRSAC
inherently maintains memory over past states, enabling better adaptability to
complex spatial patterns, such as evolving oceanic formations.

The reinforcement learning agent optimizes its behavior by maximizing the total
expected return:

R =
TØ

t=0
γtrt (3.1)

where:

• R is the total expected reward,

• γ is the discount factor controlling the importance of future rewards,

• rt is the reward at time step t,

• T is the episode horizon.

3.2 Environment Design

3.2.1 Original Environment
The simulation environment used in this study is based on the OpenAI Particle
Environment [37], originally designed for multi-agent interactions in continuous
observation and action spaces. The baseline framework developed by Masmitja et
al. [12] adapted this environment for underwater target tracking by integrating
a range-only estimation algorithm and visualization tools based on (LS) and
(PF) methods.

The target estimation module plays a crucial role in this environment. The
LS method, which provides fast but less adaptable estimations, was used during
training due to its lower computational cost compared to PF, which is more effective

24

Methodology

for tracking moving targets. The distance measurements between the agent and
the target were modeled using a Gaussian noise distribution.

The environment also incorporated ocean current effects, simulating their
impact by modifying the agent’s position at each time step. To introduce additional
realism, a dropping factor was implemented, simulating potential communica-
tion failures between the agent and the target, preventing distance measurements
in certain conditions. During training, both the target’s position, velocity, and
movement direction were randomized to simulate real-world tracking challenges.

3.2.2 Modified Environment: Ocean Feature Monitoring

To accommodate this new objective, the original target-tracking environment was
redesigned into a system where the agent interacts with a dynamically generated
patch, representing an ocean feature. Unlike the previous setup, where the agent
followed a submerged target, the new design required it to recognize and adapt its
behavior based on the spatial properties of the patch.

This adaptation involved the removal of the target-tracking components, includ-
ing the target itself and the associated estimation modules. These modifications
provided the agent with a new challenge: rather than chasing a single entity, it had
to develop a strategy to remain engaged with an extended environmental feature.

The first step in implementing the new environment was the patch generation
system. Initially, this was tested separately using an external script, where a
random polygon was generated in a defined space. A reference implementation
from [46] was used as a starting point, but significant modifications were made to
meet the study’s requirements. The original implementation created four small
patches in a limited area, which was not suitable for this application. To address
this, the code was modified to generate a single patch per execution in a random
position within a broader environment space. The scaling of the patch was
adjusted to match the simulation’s spatial parameters. The initial patch generation
method produced irregular shapes (Figure 3.5a), which were later refined using
Bézier curves to obtain smoother contours better suited for simulation (Figure 3.5b)
[46, 47, 48, 49, 50].

25

Methodology

(a) Initial patch generation: irregular
shape

(b) Refined patch using Bézier curves

Figure 3.5: Comparison of patch generation methods. (a) The initial method
produced irregularly shaped patches, which were not well-suited for simulation. (b)
The refined approach used Bézier curves to smooth the contours, resulting in a
more realistic and usable patch.

3.2.3 Patch Generation Using Bézier Curves
Initially, the randomly generated patches had highly irregular shapes, which could
lead to unrealistic scenarios. To smooth the patch boundaries, a Bézier curve
approach was adopted [50]. The patch was generated using a set of random
control points, which were then smoothed using a Bézier interpolation method.

The Bézier interpolation was implemented using the function shown in List-
ing 3.1.

Listing 3.1: Bézier Curve Generation Function
1 import numpy as np
2 from scipy. special import binom
3 ...
4 def bezier (points , num =200):
5 """
6 Generates a Bézier curve from a set of control points .
7

8 Parameters :
9 points : array -like

10 List of control points defining the curve.
11 num : int , optional
12 Number of points in the generated curve.
13

26

Methodology

14 Returns :
15 curve : ndarray
16 Array of (x, y) coordinates representing the Bézier

curve.
17 """
18 bernstein = lambda n, k, t: binom(n, k) * t**k * (1. - t

)**(n - k)
19

20 N = len(points)
21 t = np. linspace (0, 1, num=num)
22 curve = np.zeros ((num , 2))
23

24 for i in range(N):
25 curve += np.outer(bernstein (N - 1, i, t), points [i])
26

27 return curve

This function generates a Bézier curve from a set of random control points,
ensuring a smooth and continuous boundary for the patch.

3.2.4 Integration of the Patch System into the Original
Framework

To enable visualization and interaction with the dynamically generated patch within
the original environment, modifications were required in multiple components of
the codebase.

The first step in this integration involved duplicating the existing tracking
script. The original tracking.py file was copied and renamed as patch.py, which
was then modified to support the new simulation logic. Since ocean currents
and landmark velocities were no longer relevant to the ocean feature monitoring
problem, these components were removed to simplify the environment.

To facilitate the generation and rendering of the polygonal patch, a new script
polygon_generator.py was introduced. This file imported all necessary libraries
and functions from the initial standalone patch generation script, integrating them
into the simulation framework. Unlike the original system, which relied exclusively
on circular objects using:

Listing 3.2: Function to Generate a Circular Shape
1

2 def make_circle (radius =10, res =30, filled =True):
3 points = []
4 for i in range(res):
5 ang = 2 * math.pi * i / res

27

Methodology

6 points . append ((math.cos(ang) * radius , math.sin(ang)
* radius))

7

8 if filled :
9 return FilledPolygon (points)

10 else:
11 return PolyLine (points , True)

the updated framework introduced a new function:

Listing 3.3: Function to Generate a Polygon
1

2 def make_polygon (v, filled =True):
3 if filled :
4 return FilledPolygon (v)
5 else:
6 return PolyLine (v, True)

which allowed the creation of arbitrary polygonal shapes based on a set of input
vertices.

Finally, modifications were made to environment.py to correctly render the
patch within the visualization system. The following code snippet (Listing 3.4)
illustrates how the generated polygon was integrated into the rendering pipeline:

Listing 3.4: Integration of the dynamically generated patch into the rendering
system.

1 # Create geometry from polygon vertices
2 geom = rendering . make_polygon (v=self.poly , filled =True)
3

4 # Set green color with transparency
5 geom. set_color (0, 1, 0, alpha =0.8)
6

7 # Append the new polygon geometry to the rendering list
8 self. render_geoms . append (geom)
9

10 # Add transformation attributes
11 self. render_geoms_xform . append (xform)

This modification ensured that the patch was visually represented within the
simulation, replacing the original circular target visualization.

Figure 3.6 illustrates the original environment at the start of training, where
the agent was tasked with tracking a moving target. After the integration of the
patch system, the modified rendering (Figure 3.6) now displays the dynamically
generated ocean feature, enabling a new mode of interaction for the agent.

28

Methodology

Original environment: agent
tracking a moving target.
Legend: Blue dot = agent, Black dot
= target, and Red dot = predicted
target position.

Modified environment: agent in-
teracting with a patch.
Legend: Green patch = ocean feature,
Pink circle = agent.

Figure 3.6: Comparison between the original and modified environment visual-
ization. The agent now interacts with a dynamically generated patch instead of a
moving target.

3.3 Sensors Implementation
In RL-based tracking systems, sensors play a fundamental role in providing the
agent with essential environmental information. This study required the adaptation
of the original tracking system to monitor ocean features, replacing the acoustic
range-based detection system with a combination of chemical concentration
sensing and distance-based detection.

3.3.1 Chemical Concentration Sensor
The primary sensing mechanism in this study was a chemical concentration
sensor, responsible for determining whether the agent was inside or outside a
feature patch. This was achieved through a point-in-polygon (PIP) detection
algorithm [51], which evaluates the agent’s position relative to the patch boundaries
in real time.

The implementation leveraged the Shapely library, specifically its built-in
functions for geometric operations:

• within(): Determines whether a given Point is inside a Polygon.

29

Methodology

• contains(): Checks whether a Polygon fully encloses a Point.

The contains() function was used to check whether the agent’s position was
within the dynamically generated ocean feature patch. This function is based on
standard computational geometry techniques for PIP detection, such as:

• Ray-Casting Algorithm: A horizontal ray is cast from the point in question,
and the number of intersections with the polygon’s edges is counted. An
odd number of intersections indicates that the point is inside, while an even
number means it is outside.

• Winding Number Algorithm: Computes how many times the polygon
winds around the point. A nonzero winding number indicates the point is
inside the polygon.

Shapely’s implementation is optimized for computational efficiency, likely inte-
grating one of these standard techniques to enable real-time detection in the RL
environment.

Listing 3.5: Implementation of the Chemical Concentration Sensor
1 from shape ly . geometry import Point , Polygon
2

3 agent_pos i t ion = Point (agent . s t a t e . p_pos) # Current agent p o s i t i o n
4 s e l f . world . i n s i d e = patch_polygon . conta in s (agent_pos i t ion)
5

6 i f s e l f . world . i n s i d e :
7 agent . c o l o r = [0 , 1 , 0] # Green when i n s i d e the patch
8 e l s e :
9 agent . c o l o r = [1 , 0 , 0] # Red when out s id e the patch

Agent Interaction with the Patch

To facilitate debugging and validation, a visual representation of the agent’s state
was introduced:

• The agent is displayed in green when inside the patch.

• The agent is displayed in red when outside the patch.

30

Methodology

(a) Agent inside the patch (b) Agent outside the patch

Figure 3.7: Visual representation of the agent’s state based on its position relative
to the patch. (a) The agent turns green when inside the patch and (b) red when
outside, providing a clear indication of its detection status.

This visualization played a crucial role in validating the effectiveness of the
implemented detection mechanism.

Real-World Implications

In real-world applications, chemical concentration sensors are widely used to
measure environmental properties such as salinity, pollutants, or pH levels [52].
Among these, pH sensors are particularly relevant for detecting environmental
changes in aquatic ecosystems.

The virtual chemical sensor implemented in this study serves as a conceptual
approximation of such real-world sensors. In a future deployment, an autonomous
system could integrate an actual chemical sensor, such as a pH detector, to dynam-
ically identify and track oceanic features, mirroring the functionality simulated in
this study.

3.3.2 Distance-Based Sensor
In addition to the chemical concentration sensor, a distance-based sensor was
implemented to estimate the agent’s proximity to the monitored ocean feature.
This sensor provides spatial awareness, allowing the agent to refine its trajectory
by detecting proximity to the patch boundaries.

The distance estimation was implemented using the distance() function from
the Shapely library [53], which computes the minimum Euclidean distance
between the agent’s position and the patch perimeter.

31

Methodology

Listing 3.6: Computation of the Agent’s Distance from the Patch Perimeter
1 # Compute the agent ’ s d i s t anc e from the patch per imeter
2 s e l f . d istance_to_per imeter = polygon . e x t e r i o r . d i s t anc e (agent_pos i t ion

)

The key characteristics of this approach include:

• If the agent is inside the patch, the distance is automatically set to zero.

• If the agent is outside the patch, the function computes the shortest
Euclidean distance to the patch perimeter.

While this method provides an effective approximation in simulation, real-world
applications would require an actual camera-based distance sensor. Such
sensors typically rely on vision-based techniques, including object detection and
geometric depth estimation [54], to determine an agent’s distance from a detected
feature.

By integrating this distance information into the reinforcement learning process,
the agent was encouraged to refine its trajectory, enhancing tracking accuracy
and optimizing navigation strategies. A more detailed discussion of its impact on
learning is provided in Section 3.4 (Reward Function Design).

3.4 Reward Function Design
The design of the reward function is a crucial aspect of RL, as it directly
influences the agent’s learning process and final behavior. A well-defined reward
function ensures that the agent learns meaningful strategies aligned with the task’s
objectives, whereas a poorly designed reward function can lead to suboptimal
behavior or convergence to undesired policies.

To align with the objective of ocean feature monitoring, the reward function
was redesigned to guide the agent in detecting and interacting with a dynami-
cally generated patch, rather than tracking a moving target. Unlike the original
framework by Masmitja et al. [12], which relied on range-only measurements, the
adapted approach encourages the agent to learn an exploration strategy that allows
it to effectively delineate the patch boundaries and adjust its trajectory accordingly.

3.4.1 Reward Function in the Original Framework
The original implementation used a combination of dense and sparse rewards,
where the agent was incentivized to reduce its distance to the target while improving
the accuracy of its estimated position. Specifically, three main reward components
were defined:

32

Methodology

• Distance-Based Reward: Encouraged the agent to minimize the distance
to the estimated target position.

• Estimation Error Reward: Penalized discrepancies between the predicted
and actual target positions.

• Terminal Reward: Penalized excessive deviations from the target and
rewarded successful tracking.

The final reward function was computed as:

r = rd + re + rterminal (3.2)

where each term contributes to optimizing the tracking trajectory.

3.4.2 Redesigning the Reward Function for Ocean Feature
Monitoring

Unlike target tracking, where the agent follows a moving object, the objective in
this work is to monitor a specific ocean feature by learning to detect and respond
to its presence.

The detection of the ocean feature is facilitated by a binary variable called the
inside flag. This variable stores the output of the chemical concentration sensor,
assigning a value of 1 when the agent is inside the patch and 0 when it is outside.
Effectively, it represents the agent’s perception of the feature based on simulated
chemical concentration measurements.

Two different reward function designs were implemented:

1. Chemical Concentration-Based Reward: The agent receives a reward
based on its position relative to the patch.

2. Distance-Based Reward: The agent is rewarded based on its proximity to
the patch boundary.

Both approaches were tested separately to evaluate their effects on learning
dynamics. In the second approach, even though the reward function did not
explicitly rely on the chemical concentration sensor, the agent still received the
inside flag as input, indirectly incorporating feature presence into the policy.

Reward Function Based on Chemical Concentration

The first reward function directly utilizes the chemical concentration sensor,
reinforcing the agent for remaining inside the patch.

The reward function was designed to incentivize the agent to detect and interact
with the ocean feature effectively. The implementation is shown in Listing 3.7.

33

Methodology

Listing 3.7: Updated reward function implementation. The agent is incentivized
to detect and interact with the ocean feature while ensuring effective navigation.

1 de f reward (s e l f , agent , world) :
2

3 # Reset at each func t i on c a l l to ensure reward c a l c u l a t i o n i s
independent o f prev ious s t a t e s

4 g l o b a l done_state
5 done_state = False # When done_state = True , the ep i sode i s

terminated
6

7 rew = 0 .0 # I n i t i a l i z e the reward
8

9 # STEP 1 : Bas ic i n s i d e de t e c t i on (commented out a l t e r n a t i v e)
10 # i f world . i n s i d e == True :
11 # rew += 1
12 # e l s e :
13 # rew −= 0.1
14

15 # STEP 2 : Reward based on i n s i d e h i s t o r y b u f f e r
16 i f l en (world . i n s i d e _h i s t o r y) > 0 :
17 aux = sum(world . i n s i d e _h i s t o r y) # Sum of the l a s t recorded

i n s i d e va lue s
18

19 i f aux > 1 : # Agent has been i n s i d e r e c e n t l y
20 rew += 1 # Encourage s tay ing near the patch
21 # Save cur rent p o s i t i o n as the new r e f e r e n c e po int
22 agent . s t a t e . p_pos_origin = agent . s t a t e . p_pos . copy ()
23 e l s e :
24 rew −= 0 # No penalty f o r remaining out s id e
25

26 # Termination cond i t i on : End the ep i sode i f the agent moves too
f a r

27 dist_from_orig in = np . sq r t (np . sum(np . square (agent . s t a t e . p_pos −
agent . s t a t e . p_pos_origin)))

28 i f d i s t_from_orig in > s e l f . set_max_range ∗ 2 . : # Agent i s
ou t s id e the v a l i d world boundary

29 rew −= 100 # Strong pena l ty f o r l e av ing the environment
30 done_state = True
31 s e l f . agent_outofworld += 1
32 e l s e :
33 rew −= 0.1 # Small pena l ty f o r e x c e s s i v e wandering
34

35 re turn rew # Return the computed reward

The variable inside_history is a memory buffer that stores the last eight
values of the inside flag. This allows the agent to track whether it has been inside
or outside the patch over the previous eight time steps, providing a short-term
memory of its interaction with the feature.

34

Methodology

The variable done_state is used to indicate whether the training episode should
terminate. Specifically:

• Initialization: At the beginning of the reward function, done_state is set
to False, indicating that the episode is still active.

• Termination condition: If the agent’s distance from its original position
exceeds a predefined threshold (self.set_max_range * 2.), done_state is
set to True, signaling that the episode should end.

• Effect: When done_state = True, the reinforcement learning framework
can terminate the current episode and start a new one, preventing the agent
from straying too far from the patch without obtaining useful information.

In summary, done_state acts as a safety mechanism to prevent ineffective
exploration and ensure that the agent remains focused on interacting with the
ocean feature.

Key Features of this Reward Function:

• Encourages the agent to detect and interact with the patch, learning to
navigate around it effectively.

• Discourages prolonged absence from the patch.

• Implements a termination condition to prevent excessive wandering far from
the relevant area.

Reward Function Based on Distance to Patch

The second reward function leverages the distance to the patch perimeter as
its primary metric. This approach incentivizes it to navigate around the boundary,
ensuring efficient interaction with the ocean feature.

The implementation is given by the following code snippet (Listing 3.8):

Listing 3.8: Reward function based on agent’s distance to the patch boundary.
The agent is rewarded for staying near the perimeter of the patch while penalized
for being too far.

1 de f reward (s e l f , agent , world) :
2

3 g l o b a l done_state
4 done_state = False # Reset at each reward c a l c u l a t i o n
5

6 rew = 0 .0 # I n i t i a l i z e the reward
7

8 polygon_points = world . polygon_points # Retr i eve polygon po in t s

35

Methodology

9

10 # Create the polygon
11 t ry :
12 polygon = Polygon (polygon_points)
13 except Exception as e :
14 pass # Handle p o t e n t i a l e r r o r s in polygon c r e a t i o n
15

16 agent_pos i t ion = Point (agent . s t a t e . p_pos) # Convert agent
p o s i t i o n to a Point ob j e c t

17

18 # Compute the d i s t ance from the agent to the patch per imeter
19 s e l f . d istance_to_per imeter = polygon . e x t e r i o r . d i s t ance (

agent_pos i t ion)
20

21 # Reward l o g i c : The c l o s e r the agent i s to the per imeter , the
h igher the reward

22 i f s e l f . d istance_to_per imeter < 0.05 or world . i n s i d e == True : #
Threshold f o r being " on the per imeter "

23 rew += 1.0 # Reward f o r being near the per imeter
24 agent . s t a t e . p_pos_origin = agent . s t a t e . p_pos . copy () # Update

r e f e r e n c e p o s i t i o n
25 e l s e :
26 rew −= s e l f . d istance_to_per imeter # Pena l i z e the agent based

on d i s t anc e
27

28 # Termination cond i t i on : I f the agent moves too f a r from the
o r i g i n a l r e f e r e n c e p o s i t i o n

29 dist_from_orig in = np . sq r t (np . sum(np . square (agent . s t a t e . p_pos −
agent . s t a t e . p_pos_origin)))

30 i f d i s t_from_orig in > s e l f . set_max_range ∗ 2 . : # Agent out s i d e
v a l i d area

31 rew −= 100 # Strong pena l ty f o r l e av ing the environment
32 done_state = True
33 s e l f . agent_outofworld += 1
34

35 re turn rew # Return the computed reward

Key Features of this Reward Function:

• Encourages the agent to stay near the boundary of the patch.

• Provides continuous feedback, improving training stability.

• Allows for better adaptation in scenarios where precise boundary detection is
required.

36

Methodology

3.5 Observation Space
In a RL framework, the observation space represents the information available
to the agent at each time step. The design of this spaces significantly impacts the
learning process, as it determines how the agent perceives its surroundings and
interacts with them.

3.5.1 Observation Space in the Original Framework
In the original target-tracking framework developed by Masmitja et al. [12], the
observation vector consisted of various environmental and agent-related parameters.
Specifically, at each time step, the agent received the following information:

• The agent’s velocity vt

• The agent’s position pt

• The relative position of surrounding entities (e.g., landmarks) et

• The relative position of other agents ot (when in a multi-agent setting)

• The range measurement to the target drange

• The target’s depth ddepth

• The agent’s origin point po

Formally, the observation at time step t was defined as:

ot = [vt, pt, et, ot, drange, ddepth, po] (3.3)

This observation structure was specifically designed for a range-only target
tracking problem, where the agent relied on acoustic distance measurements to
estimate the target’s position. The inclusion of range information (drange) and
depth measurement (ddepth) was essential for optimizing the agent’s trajectory.

However, in the newly developed environment, the objective shifted from tracking
a moving target to monitoring ocean features, requiring a revision of the observation
space to better accommodate the new task.

3.5.2 Modified Observation Space for Ocean Feature Moni-
toring

In this study, two different observation structures were implemented, corresponding
to the two different reward functions discussed in the previous section:

37

Methodology

Observation Structure Based on Historical Data

In the first formulation, the agent received historical data on whether it had been
inside the patch in recent time steps, providing a more nuanced understanding of
its trajectory relative to the feature:

ot = [vt, pt, inside_history, po] (3.4)

This formulation complemented the first reward function, which used chemical
concentration data (Listing 3.7).

Observation Structure Incorporating Distance Information

In the second formulation, the agent received information from both the chemical
concentration sensor and the distance sensor. The observation vector included
the agent’s velocity and position, the distance to the patch boundary, the agent’s
origin point and a binary flag indicating whether the agent was inside or outside
the patch:

ot = [vt, pt, dperimeter, po, inside] (3.5)

where:

• dperimeter represents the agent’s distance to the patch boundary.

This observation structure aligned with the second reward function (Listing 3.8),
which utilized both chemical concentration feedback and distance measurements to
guide the agent’s navigation.

The flexibility of these observation spaces allowed for a comparative analysis of
different sensor-based learning approaches, helping determine the most effective
strategy for autonomous ocean feature monitoring.

With the methodological framework established, the next step is to evaluate the
performance of the RL agent. The following chapter presents the results obtained
from the training process, analyzing how different reward functions and observation
spaces influenced the agent’s ability to monitor ocean features effectively.

38

Chapter 4

Results

The performance of the reinforcement learning (RL) agent in the newly designed
environment is crucial for evaluating the effectiveness of the proposed methodology.
This chapter presents a comprehensive analysis of the experimental results obtained
from training and testing the agent under various configurations.

In line with the methodological framework outlined in Chapter 3, the results
focus on assessing the agent’s ability to navigate and monitor ocean features
effectively, utilizing two distinct observation structures and reward functions, as
introduced in Sections 3.4.2 and 3.5.2. The evaluation emphasizes key performance
metrics, including the agent’s ability to remain within the feature patch and the
distance between the agent and the patch.

Before diving into the results of these experiments, the first section of this
chapter provides an overview of the computational environment used for the agent’s
training and testing. Specifically, the role of the remote server Drago is discussed,
highlighting how it facilitated the efficient execution and monitoring of the RL
experiments. This section serves to set the context for the subsequent analysis of
the agent’s performance, as the computational resources available were crucial to
obtaining meaningful results in a timely manner.

4.1 Use of Drago for RL Agent Training
In this work, the training of the reinforcement learning (RL) agent was carried out
on a High-Performance Cluster (HPC), named Drago, from ICM-CSIC in Spain.

The use of the HPC Drago was essential for several reasons, including:

• High Computational Capacity: The training of RL agents, particularly
with deep reinforcement learning algorithms, demands significant computa-
tional resources. These algorithms rely heavily on neural networks, requiring
intense operations such as backpropagation and the updating of network weights.

39

Results

Additionally, executing numerous simulations in parallel further exacerbates
the computational demand.

• GPU Utilization: Drago is equipped with high-performance GPUs, which
dramatically accelerate the training process. Training without GPU support
would have resulted in prohibitively long timescales, possibly taking several
days or weeks to reach a satisfactory level of learning.

• Remote Execution and Monitoring with TensorBoard: Drago, being
a remote server, allows experiments to be run without overloading the local
PC. The use of monitoring tools, such as TensorBoard, enabled real-time
observation of critical metrics, such as the evolution of the reward function,
loss values, and other key parameters, directly from the workstation.

• Parallel Simulation Execution: To collect statistically significant data
across various experiments (e.g., Update and InOut setup tests), hundreds of
simulations were required. On a regular computer, this would have taken an
unacceptably long amount of time. Drago, however, provided the capability to
run multiple simulations in parallel, significantly reducing the time required
for data collection and analysis.

In summary, Drago proved to be indispensable in enabling efficient and timely
development, testing, and analysis of the RL environment. Its high computational
resources, GPU support, remote execution capabilities, and parallel simulation
processing allowed for a comprehensive exploration of the RL algorithms and sensor
configurations, contributing to the successful completion of this project.

Additionally, an appendix has been included with the main instructions and
configurations for using Drago (see Appendix A).

4.2 Test with InOut Configuration
To evaluate the agent’s performance under the first reward function formulation, a
series of experiments were conducted using the InOut configuration.

Four test cases were designed, all based on the same observation space defined
in Section 3.5.2 as:

ot = [vt, pt, inside_history, po] (4.1)
This configuration provides a binary flag indicating whether the agent is currently

inside the feature patch. Instead of using only the current value, the observation
space includes the inside_history, a vector that stores the last eight values of
this flag, allowing the agent to incorporate short-term temporal information when
making decisions.

40

Results

4.2.1 Test Configurations

The following test cases were executed under the same scenario, with the agent’s
initial position set to (0,0):

• Test 5: The reward function assigns a value of +1 when the agent is inside
the patch (inside = True).

• Test 56: Identical to Test 5, but with a larger reward of +10 when inside the
patch.

• Test 57: Same as Test 56, but the done condition was removed. For more
details on the done condition, see Section 3.4.2.

• Baseline Test: A reference test in which the agent does not rely on a learned
policy. The agent starts at the center of the environment and moves outward
in a gradually expanding circular motion, forming a spiral trajectory. This
continues until the agent encounters the feature patch, at which point it
remains inside. The predefined motion is governed by an increasing radius
variable, ensuring a systematic search pattern. This trajectory is illustrated
in Figure 4.1, where the agent’s spiral motion converges on the feature patch.

Figure 4.1: Trajectory followed in the Baseline Test. The agent (blue) starts at
the center and follows an expanding spiral trajectory until it enters the feature
patch (green), where it remains.

41

Results

Each test was initially evaluated at its respective best-performing checkpoint,
based on the evolution of the reward function of each test:

• Test 5: 900k steps

• Test 56: 1600k steps

• Test 57: 600k steps

• Baseline: no learning involved

Figure 4.2: Comparison of average patch occupancy across the four InOut setup
tests at their respective best-performing checkpoints.

As shown in Figure 4.2, Test 5 outperforms the other configurations in terms
of average time spent inside the patch. Despite the higher reward in Test 56, its
learning outcome is less stable and effective. Test 57, where the done condition is
disabled, performs worse, likely due to the absence of a termination mechanism
that encourages the agent to stay within the patch. The baseline test, as expected,
performs moderately but serves primarily as a reference trajectory rather than a
competing policy.

4.2.2 Reward Function Analysis and Selection of Evaluation
Points

To further analyze the learning dynamics of Test 5, the evolution of the reward
function was studied in detail.

42

Results

Figure 4.3: Mean reward over training steps for Test 5 (InOut configuration).
The highest average reward is observed at 1300k steps.

From the reward curve shown in Figure 4.3, five training checkpoints were
selected for deeper analysis: 400k, 600k, 900k, 1300k, and 1900k. These points
include the highest reward value and additional intermediate steps to observe how
performance evolves.

Figure 4.4: Mean reward over training steps for Test 5 (InOut configuration).
Five specific checkpoints were selected for further evaluation: 400k, 600k, 900k,
1300k, and 1900k.

43

Results

4.2.3 Performance Evaluation Across Five Checkpoints

Following the selection of the five main training checkpoints (400k, 600k, 900k,
1300k, and 1900k), each model was evaluated over 100 independent simulations.
Although the 1300k checkpoint achieved the highest average reward (see Figure 4.4),
further behavioral analysis revealed that the models at 600k and 900k achieved
superior performance in terms of time spent inside the patch.

Figure 4.5: Mean and standard deviation of patch occupancy over 200 steps for
five different training checkpoints in Test 5. The 600k and 900k models show more
consistent and higher occupancy than the 1300k model, despite the latter having
the highest mean reward during training.

To further analyze the agent’s behavioral differences across training stages,
Figure 4.6 illustrates the search trajectories for the models trained at 600k, 900k,
and 1300k iterations.

As seen in Figure 4.6, the models trained at 600k and 900k exhibit a more
extensive exploration phase before consistently reaching and remaining in the patch.
In contrast, the 1300k model demonstrates a more constrained movement pattern,
indicating less exploration. This suggests that, although the 1300k agent achieved
the highest mean reward during training, its learned policy may have become too
conservative, limiting its adaptability in more dynamic scenarios.

The broader search behavior observed at 900k enables the agent to efficiently
locate and track the patch over extended time horizons, leading to superior long-
term performance in patch occupancy (Figure 4.5). Based on these observations,
the 900k checkpoint was selected for final evaluation.

44

Results

(a) Agent trajectory at 600k (b) Agent trajectory at 900k

(c) Agent trajectory at 1300k

Figure 4.6: Agent search trajectories at different training checkpoints. The 600k
and 900k models exhibit broader exploration patterns before converging to the
patch, while the 1300k model shows a more constrained search behavior.

45

Results

Step-by-Step Patch Occupancy (900k)

Figure 4.7: Percentage of time spent inside the patch over 200 simulation steps
for the 900k checkpoint. The shaded area indicates the standard deviation across
100 simulations.

In Figure 4.7, the red curve represents the average percentage of time the agent
remains inside the patch at each step, across 100 simulations. The occupancy
increases progressively over time, stabilizing around 50% in the final portion of
the simulation. The narrow standard deviation band confirms the stability and
repeatability of the policy.

Distribution Across Time Windows

To evaluate temporal consistency, the simulation was divided into three time
intervals: early (steps 1–50), middle (steps 75–125), and late (steps 150–200).
The boxplot in Figure 4.8 shows the distribution of patch occupancy across these
intervals.

The agent shows a clear improvement in patch occupancy from the early to the
middle and late phases of the episode. The median and mean values both increase
steadily, and the interquartile range narrows over time, confirming that the agent
not only finds the patch but learns to remain inside it consistently.

Occupancy Distribution Across Simulations

Finally, the histogram in Figure 4.9 provides a global overview of performance
across all simulations. A large number of simulations achieve patch occupancy

46

Results

Figure 4.8: Boxplot of patch occupancy over early, middle, and late simulation
steps for the 900k checkpoint. The red markers represent the mean values.

Figure 4.9: Percentage of time spent inside the patch for each of 100 simulations
(900k checkpoint). Simulations are sorted by performance.

levels above 70%, with several exceeding 80%. Only a small portion of episodes fall
below 40%, confirming that the learned policy is not only effective but also robust
across different starting conditions.

These metrics collectively indicate that the agent trained at 900k steps offers the
best balance between reward function performance and reliable behavior. The
policy is stable, generalizable, and consistently leads the agent to enter and remain

47

Results

within the feature patch throughout the simulation.

4.3 Test with Update Configuration
To evaluate the agent’s performance under the second reward function formulation,
experiments were conducted using the Update configuration. This configuration
provides the agent with both chemical concentration data and distance to the patch
boundary. Five test cases were designed to assess different aspects of the training
process.

4.3.1 Test Configurations
The following test cases were executed under the same scenario, with the agent’s
initial position set to (0,0):

• Test 2: The observation space in this test includes only the agent’s velocity
(vt), position (pt), and distance to the patch boundary (dperimeter).

ot = [vt, pt, dperimeter] (4.2)

The agent was evaluated at its best-performing checkpoint, reached at 800k
training steps, where the highest cumulative reward was observed (see Fig-
ure 4.11).

• Test 23: This test follows the same configuration as Test 2 but includes two
additional observation states: the inside flag, indicating whether the agent
is within the patch, and the agent’s origin point (po).

ot = [vt, pt, dperimeter, po, inside] (4.3)

The test was conducted using the checkpoint corresponding to the highest
average reward during training, which occurred at 1800k steps.

• Test 26: Identical to Test 23, except that the agent’s initial position is set
to (0,0). The highest average reward during training was achieved at 1300k
steps.

• Test 27: This test follows the same configuration as Test 26 but removes the
done condition (see explanation in Section 3.4.2). The agent’s most effective
performance was observed at the 1600k step checkpoint.

48

Results

• Baseline Test: Unlike the previous tests, this scenario does not involve a
learned policy. Instead, the agent follows a predefined trajectory, independent
of environmental feedback. This trajectory is illustrated in Figure 4.1, where
the agent’s spiral motion converges on the feature patch.

4.3.2 Initial Selection of Best Checkpoint

For each test case, the model checkpoint corresponding to the highest average
reward was selected and evaluated through 100 simulations. This allowed for a
statistically meaningful comparison across all five configurations.

Figure 4.10: Comparison of minimum distance trends across the five Update test
cases at their respective best-performing points.

From this comparison, Test 2 emerged as the most effective configuration and
was selected for further analysis. Despite having a reduced observation space
compared to other configurations, Test 2 demonstrated superior performance. This
suggests that increasing the number of observation states does not necessarily lead
to better tracking efficiency. Instead, a more concise state representation may help
the agent focus on the most relevant features of the environment, reducing potential
distractions and facilitating more stable learning. The results indicate that Test
2 effectively balances environmental awareness and decision-making, leading to a
more robust tracking behavior.

49

Results

4.3.3 Global Comparison Across Training Steps

The evolution of the reward function for Test 2 is shown in Figure 4.11, where
five checkpoints were selected: one at the highest average reward (800k), and four
others chosen to observe performance trends over training.

Figure 4.11: Mean reward over training steps. The best-performing checkpoint
was reached at 800k iterations.

To evaluate performance behaviorally, each checkpoint was simulated over 100
episodes, and average distance to the patch was computed.

50

Results

Figure 4.12: Comparison of the average minimum distance over 200 steps for five
different training iterations in Test 2 (Update configuration).

The best performance was observed at 800k and 1200k steps, both demonstrating
low mean distances and narrow standard deviations. In contrast, the 1900k model
showed signs of overfitting and degraded consistency.

4.3.4 Performance Metrics at Best Checkpoint (800k)

Based on the trends shown in Figure 4.12, the 800k checkpoint was selected for
detailed metric analysis. The following subsections report the agent’s tracking
performance in different forms.

51

Results

Step-by-Step Distance to Patch

Figure 4.13: Mean and standard deviation of the minimum distance over 200 steps
at the 800k checkpoint (Test 2, Update). The red curve indicates the mean distance,
while the shaded area represents standard deviation across 100 simulations.

Figure 4.13 shows that the agent maintains a low average distance to the patch
across the episode, with limited fluctuations and strong stability. This confirms
the agent’s ability to remain close to the target once detected.

Effect of Initial Agent Position

To understand how the initial position affects learning, the agent was evaluated
both with random starting points and from a fixed origin (0,0). The results are
shown in Figure 4.14.

52

Results

(a) Old configuration: agent starts away from
the patch

(b) New configuration: agent starts at the
origin (0,0)

Figure 4.14: Comparison of mean and standard deviation of the minimum distance
over time for the 800k checkpoint under two initial agent positions.

The fixed-origin configuration (Figure 4.14b) shows more stable results, as the
agent starts closer to the patch. However, the random-start configuration better
highlights the learning trajectory from exploration to convergence.

Distribution Across Time Windows

To assess temporal robustness, patch distance was analyzed in three windows: early
(1–50), middle (75–125), and late (150–200) steps.

Figure 4.15: Boxplot of the minimum distance to the patch across three time
intervals of the simulation.

53

Results

As shown in Figure 4.15, the agent consistently maintains proximity to the
patch across all intervals. The low dispersion confirms that the learned policy is
both effective and stable throughout the episode.

4.4 Comparison Between InOut and Update Con-
figurations

This section presents a comparative analysis between the two tested approaches:
the InOut configuration and the Update configuration. Although both setups
were designed to guide the agent towards staying inside the target patch, their
operational principles and learning outcomes differ significantly.

4.4.1 Sensing Configuration and Observation Space
The InOut configuration provides a binary indicator of whether the agent is
inside the patch. This information is encoded in the observation vector as a short-
term history (inside_history) over the last 8 steps (Equation 3.4). Despite the
simplicity of this approach, the agent was able to learn effective strategies for patch
occupancy.

The Update configuration, in contrast, offers richer feedback: it combines
both chemical concentration data and the Euclidean distance to the patch boundary.
This leads to a more informative observation space, potentially allowing the agent
to reason more precisely about its relative location with respect to the patch.

4.4.2 Behavioral Performance Comparison
From a behavioral standpoint, both configurations led to successful learning of
patch-seeking behavior. However, differences emerged in terms of:

• Learning efficiency: The InOut-based agent reached stable performance
faster (around 600k–900k), while the Update setup required longer training
(800k–1200k).

• Occupancy stability: InOut (at 900k) showed strong consistency, with
narrow variance and a smooth convergence in patch occupancy. The Update
setup (800k) exhibited slightly higher fluctuations over time, especially in
early steps.

• Interpretability: The InOut setup produced more easily interpretable met-
rics, as the binary nature of the signal aligns directly with the reward. The
Update configuration, while more expressive, introduced complexity in corre-
lating reward signals with specific behaviors.

54

Results

4.4.3 Which Configuration Performs Better?
Based on the final analysis, the InOut configuration demonstrates superior
practical performance. Despite its minimalistic formulation, it led to:

• higher average patch occupancy (over 50% in the final steps),

• consistent behavior across simulations (as shown in Figures 4.7 and 4.9),

• a smoother and earlier convergence during training.
The Update configuration still holds value for future extensions (e.g., navigating

towards complex gradients or dynamically changing plumes), but under the static
conditions of this study, the InOut setup provided more robust and efficient learning.

4.5 Configurations Comparison and Final Con-
siderations

To evaluate the effectiveness of the two setups modalities explored in this thesis, a
comparative analysis was conducted between their best-performing configurations:
Test 5 with the InOut configuration at 900k training steps and Test 2 with the
Update configuration at 800k training steps. Figure 4.16 illustrates the average
patch occupancy over 200 simulation steps, along with the standard deviation.

Figure 4.16: Patch occupancy comparison between InOut (900k) and Update
(800k) setups over 200 simulation steps. Shaded areas represent one standard
deviation.

55

Results

The results clearly indicate the superior performance of the InOut setup. It
achieves a consistently higher percentage of time inside the patch while exhibiting
significantly lower variability across simulations. This suggests a more stable and
reliable policy, an essential factor for real-world applications where robustness
outweighs occasional peak performance.

Despite having access to a richer observation space, including distance to the
patch perimeter and chemical concentration, the agent trained with the Update
setup displayed lower and more fluctuating occupancy patterns. This instability
may be attributed to the increased complexity of the Update configuration’s reward
landscape, which introduces additional noise during training.

These findings reinforce the principle that clarity and simplicity in feedback
mechanisms lead to more effective learning [5]. The binary nature of the
InOut setup provides unambiguous information (inside or outside), allowing the
agent to develop a reliable strategy for maintaining patch occupancy. The observed
performance confirms that minimal yet well-structured information is sufficient to
drive the emergence of robust behaviors.

56

Chapter 5

Conclusions

5.1 Final Considerations
This thesis focused on the development of a RL environment for monitoring ocean
features using autonomous vehicles. As outlined in Section 1.4, the primary
objective was not to achieve an optimal agent capable of perfectly staying inside
the patch but rather to construct a robust and flexible simulation environment.
The proposed framework allows for the testing of different agent configurations,
observation spaces, and reward functions, providing a foundation for future research
in this domain.

The results obtained from the preliminary simulations highlighted key aspects:

• The inside_history buffer proved to be more effective than simply using the
binary inside flag combined with the distance to the patch.

• The InOut setup showed superior performance in terms of patch occupancy
and consistency compared to the Update setup.

• The analysis of reward functions provided valuable insights into how different
feedback mechanisms influence the agent’s learning process.

These findings suggest that well-structured, minimal information can significantly
improve learning efficiency. The use of memory-based feedback, such as the
inside_history buffer, enables the agent to make better decisions over time, leading
to more stable and effective tracking behaviors, as also discussed in Section 2.2.

5.2 Future Directions
The results obtained in this work provide a strong foundation for further research
in RL-based ocean monitoring. Several key areas for future investigation include:

57

Conclusions

• Enhanced Observation Space: Investigating the combination of the in-
side_history buffer with the agent-to-patch distance in the observation space
to provide both historical and spatial awareness.

• Improved Reward Functions: Refining the reward structure to encourage
more efficient exploration and tracking behaviors.

• Integration of Environmental Dynamics: Extending the environment by
incorporating ocean currents, sensor noise, and other real-world constraints to
make the simulation more representative of actual marine conditions.

• Multi-Agent Exploration: Expanding the framework to support multi-
agent systems for cooperative monitoring and tracking.

In conclusion, the work presented in this thesis successfully establishes a struc-
tured RL environment for monitoring oceanic phenomena. The insights gained from
the initial simulations provide a valuable starting point for refining agent behavior
and optimizing RL strategies in marine monitoring applications. By continuing in
this direction, future research can further enhance the realism, adaptability, and
efficiency of autonomous ocean-monitoring systems.

58

Appendix A

How to work with HCP
Drago

Documentation:
Listado de Software | Portal Documentación AIC SGAI

Basic instructions:
Modify files:

1 vim <nameo fyour f i l e . extens ion >

After this command:

• To start inserting text at the cursor position, press i or a

• To save and quit forcefully, ignoring warnings, press ESC and then :wq!

Check modules installed:

1 module av

Instead of manually entering certain instructions each time, you can simply edit
the .sh file by adding the instructions you want to be executed every time just
before the last blank line.

59

https://docaic.rstools.csic.es/es/software/listadosoft

How to work with HCP Drago

Load modules
For example, if you don’t want to load the modules every time, you can just put
the following commands in the runner.sh, before the last blank line.

1 module unuse / drago f s /sw/campus /0 .2/ modules/ a l l /Core
2 module unuse / drago f s /sw/ r e s t r i c t e d /0 .2/ modules/ a l l /Core
3 module load fo s scuda /2020b
4 module load Horovod /0.23.0 − TensorFlow −2.5 .0
5 module load rama0 . 3
6 module load CUDA/ 1 2 . 2 . 0

New stuff to run with GPU partition:

1 module load rama0 . 3
2 module load GCC/ 1 2 . 2 . 0
3 module load OpenMPI/ 4 . 1 . 4
4 module load Transformers / 4 . 3 0 . 2

Install Python packages:

1 pip i n s t a l l gym==0.10.0
2 pip i n s t a l l imageio
3 pip i n s t a l l protobuf ==3.20.3
4 pip i n s t a l l torch ==1.13.1

Launch execution:

1 sbatch −p compile runner . sh (10H)
2 sbatch −p gpu runner . sh (7d)

Manage and monitor jobs:
To see jobs that have been scheduled but have not yet started running:

60

How to work with HCP Drago

1 squeue start

To see only the jobs that are currently running:

1 squeue −t RUNNING

To list your running or pending jobs:

1 squeue

To immediately remove a job from the job queue or also if is currently running:

1 s c a n c e l <jobID>

See .txt files:

1 t a i l <name . txt> −n <numlines>

When you execute the command tail -n <numlines> <name.err>, you’ll see
various parameters displayed:

• Percentage: Shows the percentage of the total training completed.

• <num>/<numlines>: The current step within the episode/the total num-
ber of planned steps for the training.

• <time> < <a bigger time> : the elapsed time since the start of the
training < the estimated remaining time until the training is complete

• <num>it/s : This is the average iteration speed, indicating how many
iterations are completed per second.

• avg_rew = <num> : This is the average reward obtained so far during the
episode, indicating performance. Negative values suggest poor performance.

• avg_err= <num> : This is the average error metric for the current episode,
reflecting the performance of the model. Lower values typically indicate better
performance.

61

How to work with HCP Drago

Copy files:
Commands for copying a directory from your computer to Drago, unzipping it, and
then removing the ZIP file:

• Compress the Directory: On your local machine, compress the folder you want
to transfer:

1 Compress−Archive −Path "<source_folder_path>" −
Dest inat ionPath " dest inat ion_zip_path>"

Example:

1 Compress−Archive −Path "C: \ Users \ f r ago \Desktop\CODICE_NUOVO\
RLforUTrackingUpdate " −Dest inat ionPath "C: \ Users \ f r ago \Desktop
\RLforUTrackingUpdate . z ip "

• Transfer the ZIP File: Use scp to copy the ZIP file to Drago:

1 scp "<local_zip_path>" <remote_user>@<remote_host >:<
remote_dest inat ion>

Example:

1 scp "C: \ Users \ f r ago \Desktop\RLforUTrackingUpdate . z ip " <
username@drago_address >:~/ o i l s p i l l

• Unzip the File on Drago: Log in to Drago, navigate to the destination folder,
and unzip the file:

1 ssh <remote_user>@<remote_host>
2 cd <remote_dest inat ion>
3 unzip <zip_file_name>

Example:

1 ssh <username@drago_address>
2 cd ~/ o i l s p i l l
3 unzip RLforUTrackingUpdate . z ip

62

How to work with HCP Drago

• Remove the ZIP File on Drago (Optional): Navigate to the folder containing
the ZIP file and delete it:

1 ssh <remote_user>@<remote_host>ù
2 cd <remote_dest inat ion>
3 rm −r <zip_file_name>

Example:

1 ssh <username@drago_address>
2 cd ~/ o i l s p i l l
3 rm −r RLforUTrackingUpdate . z ip

TensorBoard:
How to run TensorBoard on a remote server like Drago and access it from your
local computer? You need to perform SSH tunneling to redirect the TensorBoard
port from the server to your computer. Here’s how to do it:

• Log in to your Drago server via SSH writing this in the Prompt, Then write
the password.

• Launch the job:

1 cd o i l s p i l l
2 source o i l s p i l l _ e n v / bin / a c t i v a t e
3 source o i l s p i l l _ e n v 9 / bin / a c t i v a t e
4 cd RLforUTracking
5 cp t e s t _ c o n f i g u r a t i o n . txt test1inGPU . txt
6 l s make sure that the re i s the copy o f the f i r s t

c o n f i g u r a t i o n f i l e

• After copying it:

1 vim test1inGPU . txt I can remove the # from the
a lgor i thm that I want to use

2 After modifying the new c o n f i g u r a t i o n f i l e :
3 cd . .
4 vim runner . sh change the o ld c o n f i g u r a t i o n f i l e with the

new one (in the l a s t white row) test1inGPU

63

How to work with HCP Drago

• Launch the updated runner.sh:

1 sbatch −p compile runner . sh OR sbatch −p gpu runner . sh
2 Make sure that the job was submitted proper ly :
3 squeue −t RUNNING

Now, you are in your environment and you can run TensorBoard specifying the
port you want to run it on.

• First you have to load the tensorflow module:

1 module load rama0 . 2
2 module load GCC/ 1 0 . 2 . 0
3 module load OpenMPI/ 4 . 0 . 5
4 module load TensorFlow / 2 . 4 . 1

• Then you can launch tensorboard. For example, you can use port 6006 (which
is the default port for TensorBoard):

1 tensorboard −− l o g d i r=<path_to_your_log_directory> −−host
=127 .0 .0 .1 −−port=<your_desired_port>

Make sure to replace <path_to_your_log_directory> with the actual path
where your event files are located and <your_desired_port> with the port
number you want to use.
In our case the logs are with the initial folder, not inside the oilspill:

1 tensorboard −− l o g d i r=l o g s /RLforUTracking / [CONFIG FILE NAME]/
log −−host =127 .0 .0 .1 −−port =6006

1 tensorboard −− l o g d i r=l o g s /RLforUTracking/ t e s t _ c o n f i g u r a t i o n /
log −−host =127 .0 .0 .1 −−port =6008

1 tensorboard −− l o g d i r=l o g s /RLforUTracking/test2inGPU/ log −−
host =127 .0 .0 .1 −−port =6008

64

How to work with HCP Drago

1 tensorboard −− l o g d i r=l o g s /RLforUTrackingUpdate/
test2_update_incompile / l og −−host =127 .0 .0 .1 −−port =6008

• A new round of tests on March 4th:

1 tensorboard −− l o g d i r=l o g s /RLforUTrackingUpdateIvan/
test22_update_inGPU/ log −−host =127 .0 .0 .1 −−port =6001

• Open another terminal on your local computer and create an SSH tunnel
to redirect the port. Replace username with your username on Drago and
drago_address with the server address (it could be an IP address or a host-
name):

1 ssh −L 6 0 0 6 : 1 2 7 . 0 . 0 . 1 : 6 0 0 6 <username@drago_address>

• After establishing the tunnel, open your browser and go to the address:

1 http : / / 1 2 7 . 0 . 0 . 1 : 6 0 0 6
2 http : / / 1 2 7 . 0 . 0 . 1 : 6 0 0 8

You should see the TensorBoard interface and your logs.

65

Bibliography

[1] Ethem Alpaydin. Introduction to Machine Learning. 2nd. The MIT Press,
2010. isbn: 026201243X.

[2] J.P. Mueller and L. Massaron. Machine Learning For Dummies. For dummies.
Wiley, 2016. isbn: 9781119245513.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[4] Wenwu Zhu, Xin Wang, and Pengtao Xie. «Self-directed machine learning».
In: AI Open 3 (2022), pp. 58–70. issn: 2666-6510. doi: https://doi.org/10.
1016/j.aiopen.2022.06.001. url: https://www.sciencedirect.com/
science/article/pii/S2666651022000109.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html.

[6] Sadiku Sani, Ibrahim Amina, Abuhuraira Musa, Muntaka Dahiru, and Muham-
mad Baballe. «Drawbacks of Traditional Environmental Monitoring Sys-
tems». In: Computer and Information Science 16 (Aug. 2023), pp. 30–30. doi:
10.5539/cis.v16n3p30.

[7] Naga Venkata Sudha Rani Nalakurthi, Ismaila Abimbola, Tasneem Ahmed,
Iulia Anton, Khurram Riaz, Qusai Ibrahim, Arghadyuti Banerjee, Ananya
Tiwari, and Salem Gharbia. «Challenges and Opportunities in Calibrating
Low-Cost Environmental Sensors». In: Sensors 24.11 (2024). issn: 1424-8220.
url: https://www.mdpi.com/1424-8220/24/11/3650.

[8] Abdallah Yussuf Ali Abdelmajeed and Radosław Juszczak. «Challenges and
Limitations of Remote Sensing Applications in Northern Peatlands: Present
and Future Prospects». In: Remote Sensing 16.3 (2024). issn: 2072-4292. doi:
10.3390/rs16030591. url: https://www.mdpi.com/2072-4292/16/3/591.

[9] Yoonchang Sung, Zhiang Chen, Jnaneshwar Das, Pratap Tokekar, et al. «A
survey of decision-theoretic approaches for robotic environmental monitoring».
In: Foundations and Trends® in Robotics 11.4 (2023), pp. 225–315.

66

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.06.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.06.001
https://www.sciencedirect.com/science/article/pii/S2666651022000109
https://www.sciencedirect.com/science/article/pii/S2666651022000109
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.5539/cis.v16n3p30
https://www.mdpi.com/1424-8220/24/11/3650
https://doi.org/10.3390/rs16030591
https://www.mdpi.com/2072-4292/16/3/591

BIBLIOGRAPHY

[10] Satpreet H Singh, Floris van Breugel, Rajesh PN Rao, and Bingni W Brunton.
«Emergent behaviour and neural dynamics in artificial agents tracking odour
plumes». In: Nature machine intelligence 5.1 (2023), pp. 58–70.

[11] Lingxiao Wang and Shuo Pang. «Autonomous underwater vehicle based
chemical plume tracing via deep reinforcement learning methods». In: Journal
of Marine Science and Engineering 11.2 (2023), p. 366.

[12] Ivan Masmitja, Mario Martin, Tom O’Reilly, Brian Kieft, Narcıs Palomeras,
Joan Navarro, and Kakani Katija. «Dynamic robotic tracking of underwa-
ter targets using reinforcement learning». In: Science robotics 8.80 (2023),
eade7811.

[13] K. L. et al. Baker. «Algorithms for Olfactory Search Across Species». In:
Journal of Neuroscience 38 (2018), pp. 9383–9389.

[14] I. J. et al. Park. «Neurally Encoding Time for Olfactory Navigation». In:
PLoS Computational Biology 12 (2016), e1004742.

[15] F. Singh, F. van Breugel, S. Rao, and B. Brunton. «Emergent Behaviour and
Neural Dynamics in Artificial Agents Tracking Odour Plumes». In: Nature
Machine Intelligence 5 (2023), pp. 112–124.

[16] J. S. Kennedy and D. Marsh. «Pheromone-Regulated Anemotaxis in Flying
Moths». In: Science 184 (1974), pp. 999–1001.

[17] J. S. Kennedy. «Zigzagging and Casting as a Programmed Response to Wind-
Borne Odour: A Review». In: Physiological Entomology 8 (1983), pp. 109–
120.

[18] T. C. Baker. «Upwind Flight and Casting Flight: Complementary Phasic and
Tonic Systems Used for Location of Sex Pheromone Sources by Male Moths».
In: Proceedings of the 10th International Symposium on Olfaction and Taste
(1990), pp. 18–25.

[19] R. Pang, F. van Breugel, M. Dickinson, J. A. Riffell, and A. Fairhall. «History
Dependence in Insect Flight Decisions During Odor Tracking». In: PLoS
Computational Biology 14 (2018), e1005969.

[20] K. Rajan and L. F. Abbott. «Eigenvalue Spectra of Random Matrices for
Neural Networks». In: Physical Review Letters 97 (2006), p. 188104.

[21] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy. «Computation Through
Neural Population Dynamics». In: Annual Review of Neuroscience 43 (2020),
pp. 249–275.

[22] S. Saxena and J. P. Cunningham. «Towards the Neural Population Doctrine».
In: Current Opinion in Neurobiology 55 (2019), pp. 103–111.

67

BIBLIOGRAPHY

[23] J. D. Seelig and V. Jayaraman. «Neural Dynamics for Landmark Orientation
and Angular Path Integration». In: Nature 521 (2015), pp. 186–191.

[24] J. et al. Green. «A Neural Circuit Architecture for Angular Integration in
Drosophila». In: Nature 546 (2017), pp. 101–106.

[25] T. S. Okubo, P. Patella, I. D’Alessandro, and R. I. Wilson. «A Neural Network
for Wind-Guided Compass Navigation». In: Neuron 107 (2020), 924–940.e18.

[26] D. Grünbaum and M. A. Willis. «Spatial Memory-Based Behaviors for Locat-
ing Sources of Odor Plumes». In: Movement Ecology 3 (2015), p. 11.

[27] M. Demir, N. Kadakia, H. D. Anderson, D. A. Clark, and T. Emonet. «Walking
Drosophila Navigate Complex Plumes Using Stochastic Decisions Biased by
the Timing of Odor Encounters». In: eLife 9 (2020), e57524.

[28] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. «Condi-
tional Variable Importance for Random Forests». In: BMC Bioinformatics 9
(2008), p. 307.

[29] John Heidemann, Milica Stojanovic, and Michele Zorzi. «Underwater sensor
networks: applications, advances and challenges». In: Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences
370.1958 (2012), pp. 158–175.

[30] KL Smith Jr, AD Sherman, PR McGill, RG Henthorn, J Ferreira, TP Connolly,
and CL Huffard. «Abyssal Benthic Rover, an autonomous vehicle for long-
term monitoring of deep-ocean processes». In: Science Robotics 6.60 (2021),
eabl4925.

[31] Ivan Masmitja et al. «Mobile robotic platforms for the acoustic tracking
of deep-sea demersal fishery resources». In: Science Robotics 5.48 (2020),
eabc3701.

[32] Enrica Zereik, Marco Bibuli, Nikola Mišković, Pere Ridao, and António
Pascoal. «Challenges and future trends in marine robotics». In: Annual
Reviews in Control 46 (2018), pp. 350–368.

[33] S Revindran. «Underwater robot can follow marine organisms over record
distances». In: Nature 10 (2010).

[34] Dana R Yoerger et al. «A hybrid underwater robot for multidisciplinary
investigation of the ocean twilight zone». In: Science Robotics 6.55 (2021),
eabe1901.

[35] Aya Saad et al. «Advancing ocean observation with an ai-driven mobile robotic
explorer». In: Oceanography 33.3 (2020), pp. 50–59.

68

BIBLIOGRAPHY

[36] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. «Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor». In: International conference on machine learning. Pmlr.
2018, pp. 1861–1870.

[37] Igor Mordatch and Pieter Abbeel. «Emergence of Grounded Compositional
Language in Multi-Agent Populations». In: arXiv preprint arXiv:1703.04908
(2017).

[38] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
«Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments».
In: Neural Information Processing Systems (NIPS) (2017).

[39] Volodymyr Mnih et al. «Human-level control through deep reinforcement
learning». In: nature 518.7540 (2015), pp. 529–533.

[40] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. «Continuous control with
deep reinforcement learning». In: arXiv preprint arXiv:1509.02971 (2015).

[41] Bohao Li and Yunjie Wu. «Path planning for UAV ground target tracking
via deep reinforcement learning». In: IEEE access 8 (2020), pp. 29064–29074.

[42] Lingheng Meng, Rob Gorbet, and Dana Kulić. «Memory-based deep rein-
forcement learning for pomdps». In: 2021 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE. 2021, pp. 5619–5626.

[43] Denis Yarats and Ilya Kostrikov. Soft Actor-Critic (SAC) implementation in
PyTorch. https://github.com/denisyarats/pytorch_sac. 2020.

[44] Phil Tabor. SAC Implementation for Reinforcement Learning. 2019. url:
https : / / github . com / philtabor / Youtube - Code - Repository / blob /
master/ReinforcementLearning/PolicyGradient/SAC/sac_torch.py.

[45] Pranav Shyam. PyTorch Soft Actor-Critic (SAC) Repository. 2018. url:
https://github.com/pranz24/pytorch- soft- actor- critic/blob/
master/sac.py.

[46] Stack Overflow Community. Create Random Shape Contour Using Matplotlib.
Online forum post. 2018. url: https://stackoverflow.com/questions/
50731785/create-random-shape-contour-using-matplotlib.

[47] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. 3rd. Springer, 2008.
isbn: 978-3-540-77973-5.

[48] Mike Kamermans. A Primer on Bézier Curves. Online article. 2013. url:
https://pomax.github.io/bezierinfo/.

69

https://github.com/denisyarats/pytorch_sac
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/SAC/sac_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/SAC/sac_torch.py
https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py
https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py
https://stackoverflow.com/questions/50731785/create-random-shape-contour-using-matplotlib
https://stackoverflow.com/questions/50731785/create-random-shape-contour-using-matplotlib
https://pomax.github.io/bezierinfo/

BIBLIOGRAPHY

[49] Shapely Developers. Shapely Documentation. Online documentation. 2025.
url: https://shapely.readthedocs.io.

[50] S. Siahposhha. «Approximation Methods for Quadratic Bézier Curve by
Circular Arcs». In: Plus Journal (2021). url: https://www.plus.ac.at/wp-
content/uploads/2021/02/Paper_Siahposhha.pdf.

[51] MatecDev. How to Check if a Point is Inside a Polygon in Python. 2023.
url: https://www.matecdev.com/posts/point-in-polygon.html#how-
to-check-if-a-point-is-inside-a-polygon-in-python.

[52] Abel Inobeme et al. «Chemical Sensor Technologies for Sustainable Develop-
ment: Recent Advances, Classification, and Environmental Monitoring». In:
Advanced Sensor Research 3.12 (2024), p. 2400066.

[53] Stack Overflow Community. Distance Outside Shapely Polygon. 2018. url:
https://stackoverflow.com/questions/53882074/distance-outside-
shapely-polygon.

[54] S. Park et al. «Vision-Based Detection and Distance Estimation of Micro
Unmanned Aerial Vehicles». In: Sensors 15.9 (2015), pp. 23805–23833. doi:
10.3390/s150923805.

70

https://shapely.readthedocs.io
https://www.plus.ac.at/wp-content/uploads/2021/02/Paper_Siahposhha.pdf
https://www.plus.ac.at/wp-content/uploads/2021/02/Paper_Siahposhha.pdf
https://www.matecdev.com/posts/point-in-polygon.html#how-to-check-if-a-point-is-inside-a-polygon-in-python
https://www.matecdev.com/posts/point-in-polygon.html#how-to-check-if-a-point-is-inside-a-polygon-in-python
https://stackoverflow.com/questions/53882074/distance-outside-shapely-polygon
https://stackoverflow.com/questions/53882074/distance-outside-shapely-polygon
https://doi.org/10.3390/s150923805

	List of Figures
	Introduction
	Overview of Machine Learning
	What is Machine Learning?
	Connection Between Machine Learning and AI
	Categories of Machine Learning

	Fundamentals of Reinforcement Learning
	Key Characteristics of Reinforcement Learning
	The Concepts of Reward and Value
	The Exploration-Exploitation Dilemma
	A Holistic Approach to Learning

	Markov Decision Processes (MDPs)
	Definition and Components
	Value Functions and Policy Optimization
	Bellman Equations and Optimal Policies
	Relevance to This Study

	Contributions and Objectives of the Thesis

	Background and Related Works
	Environmental Robotics and Monitoring
	Plume Tracking in Environmental Robotics
	Odour Plume Tracking in Environmental Robotics
	Chemical Plume Tracking in Marine Robotics

	Baseline System for Target Tracking in Marine Robotics
	Conclusion

	Methodology
	Algorithms
	Baseline Algorithms Used in the Original Framework
	Adaptation to the Ocean Features Monitoring Problem

	Environment Design
	Original Environment
	Modified Environment: Ocean Feature Monitoring
	Patch Generation Using Bézier Curves
	Integration of the Patch System into the Original Framework

	Sensors Implementation
	Chemical Concentration Sensor
	Distance-Based Sensor

	Reward Function Design
	Reward Function in the Original Framework
	Redesigning the Reward Function for Ocean Feature Monitoring

	Observation Space
	Observation Space in the Original Framework
	Modified Observation Space for Ocean Feature Monitoring

	Results
	Use of Drago for RL Agent Training
	Test with InOut Configuration
	Test Configurations
	Reward Function Analysis and Selection of Evaluation Points
	Performance Evaluation Across Five Checkpoints

	Test with Update Configuration
	Test Configurations
	Initial Selection of Best Checkpoint
	Global Comparison Across Training Steps
	Performance Metrics at Best Checkpoint (800k)

	Comparison Between InOut and Update Configurations
	Sensing Configuration and Observation Space
	Behavioral Performance Comparison
	Which Configuration Performs Better?

	Configurations Comparison and Final Considerations

	Conclusions
	Final Considerations
	Future Directions

	How to work with HCP Drago
	Bibliography

