
POLITECNICO DI TORINO
DEPARTMENT OF ELECTRONICS AND

TELECOMMUNICATIONS
Master’s degree course in Mechatronic Engineering

Develop a self-sufficient system capable
of detecting people’s physiological

parameters during Search and Rescue
(SAR) missions

Advisor

Prof. Massimo VIOLANTE

Co-advisors

Dr. Jacopo SINI

Dr. Luigi PUGLIESE

Company Reference

Gea CARENA, M.Eng

Candidate

Nicolò FANTASIA

Academic Year
2023/2024

Abstract

The main objective of this thesis is to develop a self-sufficient system capable
of detecting people’s physiological parameters during Search and Rescue (SAR)
missions. Specifically, we focused on creating a battery-powered device capa-
ble of counting the number of people in an image and extracting their physio-
logical parameters such as Heart and Respiration rate using the remote photo-
plethysmography (RPPG) technique. The goal is to integrate this system into
a rover or a drone, allowing an operator to control it remotely. In the first part
of the study, we focused on hardware selection. It was necessary to identify a
sufficiently powerful board capable of handling the computational load of the
program while being lightweight, compact, and with low power to allow it to
operate on battery. For this reason, we chose the Raspberry Pi 5. After carefully
selecting all device components, with particular attention to the cameras, an in-
depth analysis was current requirements of each component, we determined the
need for a 10,000 mAh power bank capable of delivering 5V/5A from a single
port. However, since no commercially available power banks met these specifi-
cations, we opted for a model with the required capacity but with a maximum
output of 12V/3A from a single port. We adjusted the power supply using a trig-
ger decoy board and a step-down converter to obtain the necessary input values
for the system. In the second part of the study, we focused on developing an
application, based on open-source frameworks, to implement the aforementioned
functionalities. For people counting, we used YOLO (You Only Look Once), a
computer vision algorithm for real time body and object detection. For remote
photoplethysmography, the script was developed using MediaPipe and HeartPy.
MediaPipe allowed us to extract, through FaceMesh, the forehead and cheek
regions of the face, which serve as input for HeartPy, an open source library for
heart rate analysis. Finally, during the testing phase, we verified that, under
standard conditions (direct natural light and both direct and diffuse artificial
light), the obtained results were promising, with heart rate estimation errors
below 10 bpm. The main goal of this project is to enable an operator to view in
real-time the images captured by the device, so potential future developments in-
clude integrating a stabilized camera (particularly useful for drone applications),
implementing motors to allow the operator to adjust the camera’s orientation,
and using an infrared light source with a dedicated camera to improve perfor-
mance in low-light conditions.

ii

Dedica

ii

Summary

List of Tables vi

List of Figures vii

1 The choice of components 1
1.1 Introduction . 1
1.2 Hardware Selection . 2

1.2.1 Single Board Computer . 2
1.2.2 Battery Module . 5
1.2.3 Cameras . 10

1.3 3D Printed Support . 20

2 Code description 22
2.1 Introduction . 22
2.2 Main structure of the code . 23
2.3 HR/Age/Gender Recognition . 31
2.4 People counting and Body Pose detection 42
2.5 Video Streaming . 46
2.6 Raspberry Pi Adaptations . 49

3 Testing 51
3.1 Introduction . 51
3.2 Software . 51

3.2.1 Age/Gender Detection . 52
3.2.2 Body Pose detection /People Counting 56
3.2.3 Heart Rate detection . 59

3.3 Hardware Testing . 64

A USB Camera 70

B Raspberry Camera v3 77

iv

C Raspberry Camera v3 Wide 81

D Raspberry HQ Camera 85

Bibliography 89

v

List of Tables

1.1 Power Requirements of System Components[1] [2][3] [4][5] 6
1.2 Key Parameters of the Raspberry Camera Module v3. 14
1.3 Sensor Dimensions and Resolution. 14
1.4 Field Test Results. 15
1.5 Key Parameters of the Raspberry Camera Module v3. 16
1.6 Sensor Dimensions and Resolution. 16
1.7 Field Test Results. 17
1.8 Key Parameters of the Raspberry Camera Module v3 with 8mm lens. 18
1.9 Sensor Dimensions and Resolution. 19
1.10 Field Test Results. 19

vi

List of Figures

1.1 Image of a raspberry pi 5 . 4
1.2 Our raspberry Pi 5 in its case with the Active Cooler applied 5
1.3 Image of the chosen powebank . 8
1.4 Image of the choosed Decoy . 9
1.5 Image of the choosed step down . 10
1.6 Image of a general DOF . 12
1.7 Image of the Raspberry camera module v3 15
1.8 Image of the Raspberry Camera Module v3 wide 17
1.9 Images of the Raspberry High Quality Camera and the choosen 8mm

lens . 19
1.10 Design of the support . 20
1.11 Image of the cases of the HQ camera and the v3s 21
1.12 The raspberry Pi5 with all the 3D printed parts 21

2.1 Text on the video that shows the buttons for changing the execution
mode and the current mode . 28

2.2 Face mesh applied on the real-time webcam feed 32
2.3 The extraction of the cropped image and facial portions in real-time 34
2.4 Heart Rate values, fancybox and age/gender recognition drawings . 42
2.5 Output of SHOW_BBOX mode . 45
2.6 Output of SHOW_KEYPOINTS mode 45
2.7 Output of SHOW_BOTH mode . 46
2.8 Autentication system . 48
2.9 Video streaming . 48

3.1 Age recognition confusion matrix 54
3.2 Gender recognition confusion matrix 55
3.3 Graph of inference times of different YOLO-compatible frameworks 57
3.4 Comparison of the results of the Australian Open and the film . . . 58
3.5 Comparison of the frame and the model applied 59
3.6 Natural light test environment . 61

vii

3.7 Direct artificial light environment 61
3.8 Indirect artificial light environment 61
3.9 Reliability table of the misuration of the two devices 62
3.10 Reliability table of the misuration of the camera v3 62
3.11 Reliability table of the misuration of the camera v3 63
3.12 Reliability table of the misuration of the HQ camera 63
3.13 Test of the first chain . 64
3.14 Test with all the Clock frequency 65
3.15 Test with the stepdown connected in parallel 65
3.16 Ripple shown by the oscilloscope 66
3.17 Raspberry connected to the only power bank 67
3.18 The output video of the Raspberry streamed 67

A.1 PC results of forehead in natural light conditions 70
A.2 Raspberry results of forehead in natural light conditions 70
A.3 PC results of left cheek in natural light conditions 71
A.4 Raspberry results of left cheek in natural light conditions 71
A.5 PC results of right cheek in natural light conditions 71
A.6 Raspberry results of right cheek in natural light conditions 71
A.7 PC results of total face in natural light conditions 72
A.8 Raspberry results of total in natural light conditions 72
A.9 PC results of forehead in direct artificial light conditions 72
A.10 Raspberry results of forehead in direct artificial light conditions . . 72
A.11 PC results of left cheek in direct artificial light conditions 73
A.12 Raspberry results of left cheek in direct artificial light conditions . . 73
A.13 PC results of right cheek in direct artificial light conditions 73
A.14 Raspberry results of right cheek in direct artificial light conditions . 73
A.15 PC results of total face in direct artificial light conditions 74
A.16 Raspberry results of total face in direct artificial light conditions . . 74
A.17 PC results of forehead in indirect artificial light conditions 74
A.18 Raspberry results of forehead in indirect artificial light conditions . 74
A.19 PC results of left cheek in indirect artificial light conditions 75
A.20 Raspberry results of left cheek in indirect artificial light conditions . 75
A.21 PC results of right cheek in indirect artificial light conditions 75
A.22 Raspberry results of right cheek in indirect artificial light conditions 75
A.23 PC results of total face in indirect artificial light conditions 76
A.24 Raspberry results of total face in indirect artificial light conditions . 76

B.1 Results of forehead in natural light conditions 77
B.2 Results of left cheek in natural light conditions 77
B.3 Results of right cheek in natural light conditions 78

viii

B.4 Results of total face in natural light conditions 78
B.5 Results of forehead in direct artificial light conditions 78
B.6 Results of left cheek in direct artificial light conditions 78
B.7 Results of right cheek in direct artificial light conditions 79
B.8 Results of total face in direct artificial light conditions 79
B.9 Results of forehead in indirect artificial light conditions 79
B.10 Results of left cheek in indirect artificial light conditions 79
B.11 Results of right cheek in indirect artificial light conditions 80
B.12 Results of total face in indirect artificial light conditions 80

C.1 Results of forehead in natural light conditions 81
C.2 Results of left cheek in natural light conditions 81
C.3 Results of right cheek in natural light conditions 82
C.4 Results of total face in natural light conditions 82
C.5 Results of forehead in direct artificial light conditions 82
C.6 Results of left cheek in direct artificial light conditions 82
C.7 Results of right cheek in direct artificial light conditions 83
C.8 Results of total face in direct artificial light conditions 83
C.9 Results of forehead in indirect artificial light conditions 83
C.10 Results of left cheek in indirect artificial light conditions 83
C.11 Results of right cheek in indirect artificial light conditions 84
C.12 Results of total face in indirect artificial light conditions 84

D.1 Results of forehead in natural light conditions 85
D.2 Results of left cheek in natural light conditions 85
D.3 Results of right cheek in natural light conditions 86
D.4 Results of total face in natural light conditions 86
D.5 Results of forehead in direct artificial light conditions 86
D.6 Results of left cheek in direct artificial light conditions 86
D.7 Results of right cheek in direct artificial light conditions 87
D.8 Results of total face in direct artificial light conditions 87
D.9 Results of forehead in indirect artificial light conditions 87
D.10 Results of left cheek in indirect artificial light conditions 87
D.11 Results of right cheek in indirect artificial light conditions 88
D.12 Results of total face in indirect artificial light conditions 88

ix

Chapter 1

The choice of components

1.1 Introduction

The purpose of this study is to design and develop a system, both at
the hardware and software levels, that can be integrated into a drone
or a rover. This system aims to assist rescue teams in identifying
the number of individuals in need of assistance and providing critical
information about the health status of each person. By combining
advanced hardware and software capabilities, the proposed solution
seeks to enhance the efficiency and effectiveness of search and rescue
missions, particularly in challenging and time-sensitive environments.

For this reason, the selection of hardware is arguably the most critical
aspect of this study. The entire suite of dedicated software must be
able to operate seamlessly and without real-time latency. The hardware
components must therefore provide sufficient computational power and
reliability to support the demanding requirements of this application,
ensuring the smooth operation of algorithms for image processing, facial
recognition, and health monitoring.

In this chapter, we will delve into the selection of hardware compo-
nents, thoroughly analyzing the reasoning and considerations behind

1

The choice of components

each choice. The discussion will highlight the factors that influenced the
decisions, ensuring that the chosen hardware aligns with the system’s
objectives and operational requirements.

1.2 Hardware Selection

The selection of hardware was primarily driven by the goal of finding
a machine that is not only as powerful as possible, but also capable
of supporting high-quality image acquisition peripherals. Addition-
ally, it was essential to choose a system that is compact in size and
lightweight, ensuring ease of integration into the design while main-
taining portability and efficiency. In this context, the hardware needed
to strike a delicate balance between computational power, imaging
capabilities, and physical constraints. The system had to be robust
enough to handle demanding tasks, such as real-time image processing
and facial recognition, while also being small enough to fit seamlessly
into a drone or rover platform, ensuring mobility and ease of use in field
conditions. The final choice of hardware had to meet these multifaceted
requirements, ensuring that the system could operate efficiently without
compromising on performance or practicality.

1.2.1 Single Board Computer

The decision to use the Raspberry Pi 5 with 8GB of RAM for this
project was based on several compelling reasons, making it an optimal
choice for our system. The Raspberry Pi 5, with its powerful hardware
specifications, offers a robust platform capable of handling demanding
tasks such as real-time image processing and facial recognition. The
8GB of LPDDR4-3200 RAM ensures smooth performance even when
running memory-intensive applications, which is crucial for tasks that
involve processing large amounts of data, such as high-resolution image

2

The choice of components

acquisition and analysis.

Physically, the Raspberry Pi 5 is a compact single-board computer,
measuring just 90mm x 60mm, with a weight of approximately 46
grams. Despite its small size, it offers impressive computational power
thanks to its quad-core ARM Cortex-A76 processor running at 2.0 GHz.
This combination of size, power, and efficiency makes the Raspberry
Pi 5 the perfect candidate for use in portable systems like drones or
rovers, where space and weight constraints are critical.

In addition to its processing power, the Raspberry Pi 5 is equipped
with a wide range of connectivity options, including USB 3.0 and USB
2.0 ports, Gigabit Ethernet, Wi-Fi 6, and dual micro-HDMI ports
supporting 4K output. The board also includes a camera interface with
two MIPI CSI connectors, making it ideal for connecting high-quality
camera modules for image acquisition.

Another significant advantage of the Raspberry Pi 5 is its power
supply. The device is powered via a USB-C port, which supports Power
Delivery (PD) technology. This allows us to power the Raspberry Pi
through a carefully modified power bank, which is particularly useful
for portable applications like drones or rovers. The ability to use a
power bank with USB-C PD support ensures a reliable, long-lasting
power source, essential for operating the Raspberry Pi 5 in remote or
field environments without the need for traditional power outlets.

Raspberry Pi 5 specifications[1]:
3

The choice of components

Figure 1.1: Image of a raspberry pi 5

• Processor: Quad-core ARM Cortex-A76, 2.0 GHz

• RAM: 8 GB LPDDR4-3200

• Storage: MicroSD card slot (supports up to 1TB)

• USB Ports: 2x USB 3.0, 2x USB 2.0

• Networking: Gigabit Ethernet, Wi-Fi 6 (802.11ax)

• Video Output: 2x micro-HDMI (supports up to 4K resolution)

• Camera Interface: 2x MIPI CSI connectors for high-quality camera
modules

• GPIO: 40-pin header, compatible with various sensors and periph-
erals

• Power Supply: USB-C with Power Delivery (PD) support for
efficient and portable power solutions

The Raspberry Pi 5 with 8GB of RAM not only meets the techni-
cal requirements for image processing but also provides the flexibility
and expandability needed to integrate with a wide range of sensors
and devices, ensuring the system can evolve to meet future demands.
Its compact design, coupled with its powerful processing capabilities

4

The choice of components

and efficient power delivery system, makes it a perfect fit for portable
applications in challenging environments, such as search and rescue
missions.

Given the significant computational load and the intention to over-
clock the machine, the need to cool the board and maintain it at a
constant operating temperature, below the thermal throttling threshold,
cannot be overlooked. It was therefore decided to use a device from
Raspberry Pi, namely the Raspberry Pi Active Cooler, which, through
a passive heatsink and a fan, should keep the board’s temperatures
under control. This device is applied directly to the card in contact
with the CPU and GPU via thermal pads and is powered by the card
itself.

Figure 1.2: Our raspberry Pi 5 in its case with the Active Cooler applied

1.2.2 Battery Module

It is crucial that the system operates independently from the main
electrical grid, as it is intended to be deployed in remote or inaccessible
areas. For this reason, the entire system is designed to be powered by
a battery. To ensure proper functionality and sufficient autonomy, the
current required by each component was calculated using the formula:

5

The choice of components

I = P

V

where I is the current in milliamperes (mA), P is the power con-
sumption in watts (W), and V is the operating voltage in volts (V).

The table below summarizes the power requirements of the primary
components of the system:

Table 1.1: Power Requirements of System Components[1] [2][3] [4][5]

Component [W] [V] [mA]
Raspberry Pi 5 8GB RAM 10.0 5 2000
Raspberry Pi 5 Active Cooler 1.0 5 200
Raspberry camera module v3 (autofocus) 1.5 5 300
Raspberry camera module v3 Wide (autofocus) 1.5 5 300
Raspberry HQ camera C-CS Mount (manual focus) 2.0 5 400
Radar Doppler 2.5 5 500

The Raspberry Pi 5 will be connected via a USB-C to USB-C cable
to a decoy trigger equipped with Power Delivery (PD) technology. This
decoy requests the power bank to supply 12V at 3A. The power is then
delivered to a step-down converter through properly dimensioned cables.
The step-down converter regulates the output to 5V at a maximum of
5A, which is provided to the Raspberry Pi through a USB-A to USB-C
cable. This configuration ensures stable and efficient power delivery to
the board and all connected peripherals.

The choice of cables, especially the USB cables, is a critical aspect
of the system’s design. USB-C cables with a power rating of up to
100W and support for Power Delivery (PD) technology were selected to
ensure both compatibility and reliability. These cables are essential for
negotiating the correct power profile with the battery module, allowing
it to deliver the necessary voltage and current without interruption.
Furthermore, these high-capacity cables ensure that the 5A current

6

The choice of components

required by the Raspberry Pi 5 and its peripherals can be transported
safely and efficiently, avoiding voltage drops or overheating issues.

The combination of a robust decoy trigger, properly rated cables,
and a high-efficiency step-down converter ensures that the Raspberry
Pi 5 and its connected components receive stable power, maintaining
reliable operation in all scenarios. This meticulous power management
setup is critical for achieving the autonomous functionality required by
the system.

Powerbank

As mentioned earlier, the choice of the powerbank was primarily driven
by the need to have a device capable of delivering 12V/3A from a
single output port. This requirement is essential for ensuring stable
and sufficient power supply for the Raspberry Pi 5 and its associated
components during operation.

For the prototype, we plan to utilize only one camera module, sim-
plifying the power demand calculation. From the total current values
listed in Table 1.1, the estimated power consumption of the system
amounts to:

Iestimated = 3460 mA

To ensure the system is resilient to factors such as power surges,
cable resistance losses, and potential overheating, I introduced a safety
factor of 1.2 in the current calculation. This accounts for fluctuations
and unexpected power draw. The total current requirement, including
this safety margin, is calculated as:

Irequired = 3460
1000 × 1.2 = 4.152 A

Regarding the dimensioning of the powerbank itself, I considered
7

The choice of components

a hypothetical usage time of 2.5 hours, which is significantly longer
than what I expect for the actual operational timeframe. To estimate
the energy requirement, I multiplied the current consumption by the
usage time and an additional safety coefficient of 1.15, which accounts
for potential underperformance of the powerbank’s actual capacity
compared to its nominal rating. The required capacity is therefore
calculated as:

Capacityrequired = 3460 × 2.5 × 1.15 = 9947.5 mAh

Based on this calculation, I selected a powerbank with a nominal
capacity of 10,000 mAh. This ensures sufficient power availability for
the system’s operation, even accounting for inefficiencies or unexpected
power draw during use.

Figure 1.3: Image of the chosen powebank

8

The choice of components

Decoy Trigger

In order to trigger the powerbank and make it supply 12V/3A, a decoy
trigger board will be used. The selection of this decoy was based on
specific requirements, as the board must be capable of handling 12V
input, feature a USB-C port, and support the USB Power Delivery (PD)
2.0 standard. The chosen board meets these criteria, as it is equipped
with a USB-C input port and DIP switches. These DIP switches
allow for voltage adjustments, enabling the board to handle a range
of voltages from 5V to 20V, depending on the position of the switches.
Therefore, this decoy will act as a bridge between the powerbank and
the step-down converter, ensuring that the correct voltage is supplied
to the system.

Figure 1.4: Image of the choosed Decoy

Step Down DC/DC Converter

The step-down converter is a crucial component in the system, as it is
used to reduce the input voltage from 12V to 5V, ensuring compatibility
with the Raspberry Pi. This converter receives its input voltage directly
from the decoy trigger board, which manages the power output of the
powerbank. The step-down board provides its output through a USB-A
port, delivering a stable 5V supply.

9

The choice of components

To connect the step-down converter to the Raspberry Pi, a high-
quality USB-A to USB-C cable is used. This ensures efficient power
transfer to the Raspberry Pi while maintaining a reliable connection.
The use of this step-down converter allows for safe and stable operation
of the Raspberry Pi, which requires a consistent 5V power input for its
functionality.

Figure 1.5: Image of the choosed step down

1.2.3 Cameras
Camera Selection

The choice of the camera is crucial for the intended application because
obtaining a sharp and high-resolution image is essential. The entire
software pipeline heavily depends on the quality of the input image, in
addition to the computational power of the Raspberry Pi board. For
our system, the image of the subject’s face must be at least 100-150
pixels wide to be effectively processed by OpenCV, ensuring acceptable
accuracy in measurements and estimations derived from the software.

Several key parameters were considered during the camera selection
process:

• F-stop (Aperture): To control the light entering the camera and
depth of field.

• Sensor Diagonal: The physical size of the sensor affecting field
of view (FOV) and resolution.

10

The choice of components

• Focal Length: To determine the magnification and FOV.

• Field of View (FOV): Measured in degrees, essential for capturing
the required scene.

• Sensor Resolution: Specified as width × height in pixels, deter-
mining the level of detail in the captured image.

Using these parameters, we calculated the circle of confusion (c),
which is an important factor in determining depth of field. The formula
used is:

c = Diagonal of the sensor
1500

Subsequently, the Depth of Field (DOF) was calculated. DOF is
the range within which objects appear acceptably sharp in an image
and is divided into one-third in front of the subject and two-thirds
behind. The DOF is determined using the following formula:

DOF = 2 · N · c · u2 · f 2

f 4 − N2 · c2 · (u − f)2

Where:

• N : F-number (focal ratio or aperture setting).

• c: Circle of confusion.

• u: Distance to the subject.

• f : Focal length.

These calculations have been instrumental in selecting a camera that
meets the system’s requirements for accuracy and reliability.

After calculating the sensor dimensions in terms of width and height,
and considering the average dimensions of a human face (both height
and width), we proceeded to calculate the Field of View (FOV) for both
width and height at varying distances ranging from 1 meter to 5 meters.
These calculations were performed using the following formulas:

11

The choice of components

Figure 1.6: Image of a general DOF

FOVw = Sw · D

f
, FOVh = Sh · D

f

Where:

• FOVw: Field of View in width.

• FOVh: Field of View in height.

• Sw: Sensor width.

• Sh: Sensor height.

• D: Distance to the subject.

• f : Focal length of the lens.

Using the calculated FOV values, we then determined the dimensions
of the face in pixels. This was achieved by considering the real-world
dimensions of the face (Ow for width and Oh for height), the resolution
of the sensor (Rw for width and Rh for height), and the FOV. The pixel
dimensions were computed using the following formulas:

12

The choice of components

Opixel_w = Ow · Rw

FOVw
, Opixel_h = Oh · Rh

FOVh

Where:

• Opixel_w: Face width in pixels.

• Opixel_h: Face height in pixels.

• Ow: Real-world face width.

• Oh: Real-world face height.

• Rw: Sensor resolution in width (in pixels).

• Rh: Sensor resolution in height (in pixels).

• FOVw: Field of View in width (in real-world units).

• FOVh: Field of View in height (in real-world units).

These calculations allowed us to verify whether the face dimensions in
pixels at various distances meet the required threshold of 100-150 pixels
in width. This is essential to ensure that the captured image provides
sufficient resolution for OpenCV to process and for the software to
make accurate measurements and predictions.

We opted to use Raspberry Pi cameras for this project. The primary
motivation for this choice is the seamless hardware and software com-
patibility these cameras offer with the Raspberry Pi boards. I include
below the calculations and procedures just explained, along with the
numerical results that guided us in selecting the cameras.

Raspberry camera module v3

The Raspberry Camera Module v3 was the first camera considered for
our prototype, primarily due to its autofocus capability. This feature

13

The choice of components

is particularly advantageous in challenging conditions, such as when
the camera is mounted on a drone where vibrations and movement can
affect image clarity. The autofocus ensures sharper images, which is
critical for accurate processing.
The specifications of the Raspberry Camera Module v3 are as follows[2]:

Parameter Value Unit
N (f-stop) 1.8 -
d (diagonal sensor) 7.4 mm
u (subject distance) 2000 mm
f (focal length) 4.74 mm
FOVl 66 degrees
FOVh 41 degrees

Table 1.2: Key Parameters of the Raspberry Camera Module v3.

The circle of confusion (c) was calculated using the formula:

c = Diagonal of the sensor
1500 = 7,4/1500 = 0.005

The depth of field (DOF) was calculated as follows:

DOF = 8362.28 mm

The physical dimensions and resolution of the sensor are presented
in the table below:

Parameter Value Unit
Sw (sensor width) 6.45 mm
Sh (sensor height) 3.63 mm
Rw (sensor resolution width) 4608 px
Rh (sensor resolution height) 2592 px
Ow (face width) 150 mm
Oh (face height) 200 mm

Table 1.3: Sensor Dimensions and Resolution.

We conducted tests to calculate the Field of View (FOV) and the
pixel dimensions of a face at various distances. The FOV calculations

14

The choice of components

and the pixel dimension of the faces are computed with the formulas
indicated before.

The results of these calculations are presented in the table below,
where the column Opixelw has been highlighted in green:

Test Distance FOVw FOVh Opixelw Opixelh

1m 1000 mm 1360.76 765.82 507.95 676.92
2m 2000 mm 2721.52 1531.65 253.98 338.46
3m 3000 mm 4082.28 2297.47 169.32 225.64
4m 4000 mm 5443.04 3063.29 126.99 169.23
5m 5000 mm 6803.80 3829.11 101.59 135.38

Table 1.4: Field Test Results.

Figure 1.7: Image of the Raspberry camera module v3

Raspberry camera module v3 wide

The Raspberry Camera Module v3 is the same sensor as the previous
one, with the key difference being that it has a larger field of view
(FOV). This increased FOV could be particularly useful when using a
rover, as it allows for a wider image capture, which is advantageous
for better situational awareness and navigation. Additionally, the
autofocus capability of the camera ensures sharper images in dynamic

15

The choice of components

and challenging environments, such as when the camera is mounted on
a rover or drone, where vibrations could affect the image quality.

The specifications of the Raspberry Camera Module v3 are as fol-
lows[3]:

Parameter Value Unit
N (f-stop) 2.2 -
d (diagonal sensor) 7.4 mm
u (subject distance) 500 mm
f (focal length) 2.75 mm
FOVl 102 degrees
FOVh 67 degrees

Table 1.5: Key Parameters of the Raspberry Camera Module v3.

The circle of confusion (c) was calculated using the formula:

c = Diagonal of the sensor
1500 = 7,4/1500 = 0.005

The depth of field (DOF) was calculated as follows:

DOF = 1462.25 mm

The physical dimensions and resolution of the sensor are presented
in the table below:

Parameter Value Unit
Sw (sensor width) 6.45 mm
Sh (sensor height) 3.63 mm
Rw (sensor resolution width) 4608 px
Rh (sensor resolution height) 2592 px
Ow (face width) 150 mm
Oh (face height) 200 mm

Table 1.6: Sensor Dimensions and Resolution.

16

The choice of components

We conducted tests to calculate the Field of View (FOV) and the
pixel dimensions of a face at various distances. The FOV calculations
and the pixel dimension of the faces are computed with the formulas
indicated before.

The results of these calculations are presented in the table below,
where the column Opixelw has been highlighted in green:

Test Distance FOVw FOVh Opixelw Opixelh

1m 1000 mm 2345.45 1320 294.70 392.73
2m 2000 mm 4690.91 2640 147.35 196.36
3m 3000 mm 7036.36 3960 98.23 130.91
4m 4000 mm 9381.82 5280 73.67 98.18
5m 5000 mm 11727.27 6600 58.94 78.55

Table 1.7: Field Test Results.

Figure 1.8: Image of the Raspberry Camera Module v3 wide

As seen from the table, at distances of 4 and 5 meters, this camera
does not reach the threshold value of 150 pixels. As a result, its use is
limited to a fairly short range

17

The choice of components

Raspberry HQ camera with 8mm CS-Mount with adjustable aperture

This time, we are using a high-quality Raspberry Camera Module sensor,
which, unlike previous models, does not feature autofocus. Instead, it
utilizes a C/CS mount for attaching lenses, offering greater flexibility
and complexity. In this case, we are using an 8mm lens with an
adjustable aperture, which provides more control over image sharpness
and depth of field. However, it requires manual adjustment of the lens
for optimal performance.

The specifications of the Raspberry Camera Module v3 with the new
lens are as follows[4][6]:

Parameter Value Unit
N (f-stop) 1.2 -
d (diagonal sensor) 7.6 mm
c (circle of confusion) 0.005066667 mm
u (subject distance) 3000 mm
f (focal length) 8 mm
FOVl 58.4 degrees
FOVh 44.6 degrees

Table 1.8: Key Parameters of the Raspberry Camera Module v3 with 8mm lens.

The circle of confusion (c) was calculated using the formula:

c = Diagonal of the sensor
1500 = 7.6

1500 = 0.005066667 mm

The depth of field (DOF) was calculated as follows:

DOF = 1860.29789 mm

The physical dimensions and resolution of the sensor are presented
in the table below:

We conducted tests to calculate the Field of View (FOV) and the
pixel dimensions of a face at various distances. The FOV calculations

18

The choice of components

Parameter Value Unit
Sw (sensor width) 6.287 mm
Sh (sensor height) 4.712 mm
Rw (sensor resolution width) 4056 px
Rh (sensor resolution height) 3040 px
Ow (face width) 150 mm
Oh (face height) 200 mm

Table 1.9: Sensor Dimensions and Resolution.

and the pixel dimensions of the faces are computed with the formulas
indicated before. The results of these calculations are presented in the
table below, where the column Opixelw has been highlighted in green:

Test Distance FOVw FOVh Opixelw Opixelh

1m 1000 mm 785.88 589 774.17 1032.26
2m 2000 mm 1571.75 1178 387.08 516.13
3m 3000 mm 2357.63 1767 258.06 344.09
4m 4000 mm 3143.50 2356 193.54 258.06
5m 5000 mm 3929.38 2945 154.83 206.45

Table 1.10: Field Test Results.

Figure 1.9: Images of the Raspberry High Quality Camera and the choosen 8mm
lens

19

The choice of components

1.3 3D Printed Support

For our application, a stable support for the camera is essential. There-
fore, together with Marco Chabod from R3DSIGN, we developed a
support and two different cases for the cameras: one for the HQ camera
and one for the v3 and v3 wide cameras, which share the same shape

The support is a plate with holes, rounded corners, and grooves
for M4 nuts, with a raised neck and a fork mount with grooves and a
transverse hole. The plate has been designed to follow the curvature
of the Raspberry Pi 5 case, and the holes for the nuts are positioned
in a way that does not obstruct the board’s operation. Furthermore,
the off-axis position of the neck was designed to avoid bending the flat
cable more than necessary, as these are very delicate components.

The support was then fixed with 3 M4 bolts to the top of the
Raspberry Pi case, which was drilled using a column drill.

Figure 1.10: Design of the support

The two cases were designed to protect the camera PCBs without
covering the flat cable connection, making the mounting and dismount-
ing of the cameras safer and quicker. Both supports have a fork mount
with grooves and a through hole aligned with the one in the support,
allowing a through bolt to secure the camera to the support.

20

The choice of components

Figure 1.11: Image of the cases of the HQ camera and the v3s

The supports and cases were printed using a Bambu Lab P1S,
with PLA as the material, particularly for its low printing temperature,
making it ideal for prototyping.

Figure 1.12: The raspberry Pi5 with all the 3D printed parts

21

Chapter 2

Code description

2.1 Introduction

In this chapter, we will discuss the functionality of the software. The
main goal of the code is to monitor heart rate, age, and gender, as well
as perform real-time people counting. The software is written in Python
and developed using Visual Studio Code as the IDE. Its core is based
on OpenCV (Open Source Computer Vision Library), an open-source
library that includes hundreds of algorithms for computer vision[7] that
we used to have acces to the webcam image and make possible all the
necessary analysis and predictions.
Morover, we used a virtual environment to isolate the necessary depen-
dencies and packages, thus avoiding conflicts between libraries. For this
reason, Conda, specifically its more complete distribution, Anaconda,
was chosen as the package manager.[8]

In addition to OpenCV, other frameworks and libraries have been
used, including Mediapipe and HeartPy for heart rate calculation, and
YOLO for body pose estimation and people counting. Mediapipe is a
framework developed by Google that provides tools and libraries for
multimedia image processing in real time, based on machine learning
and computer vision technologies [9] [10]. HeartPy, on the other hand, is
an open-source toolkit developed in Python for heart rate analysis using

22

Code description

photoplethysmogram (PPG) technology[11]. By accurately extracting
portions of the face through Mediapipe, it is possible to calculate the
subject’s heart rate with a certain margin of error. Regarding people
counting, the choice was made to use YOLO (You Only Look Once), a
real-time object detection algorithm widely used in the field of computer
vision.[12] .

The software offers several modes of use: people counting only, heart
rate/age/gender recognition only, or both functionalities active simul-
taneously. To manage these modes, multithreading technology was
implemented. However, the version of Python used on the development
machine (Python 3.10.11), which is the last one compatible with Medi-
apipe on Windows environments[13], still uses the Global Interpreter
Lock (GIL). This mechanism enforces that only one thread at a time
can execute Python code, preventing true multithreading[14]. To work
around this problem, Python manages execution by "switching" between
different threads.

Events and queues were also used to allow threads to share informa-
tion and trigger events only when necessary, and to improve readability,
many of the functions used in the code have been organized into sepa-
rate files.

In the following sections, we will analyze the main structure of the
code and the code blocks where measurements and predictions are
made.

2.2 Main structure of the code

In this section, we will focus on how the code actually works, providing
an overview of its execution before diving into the individual blocks of
code in the following sections.

The first part concerns the imports, where we include all the modules
23

Code description

and packages required for the execution of the code, which are available
in the requirements.txt file and can be installed using a simple pip
command.

For convenience, I divided the imports based on how the software
uses them, specifically:

1 # GENERAL IMPORTS
2 import cv2
3 from threading import Thread , Event
4

5 #HR RECOGNITION IMPORTS
6 import heartpy as hp
7 from queue import Queue
8 from datetime import datetime
9 import mediapipe as mp

10 import csv
11 import numpy as np
12

13 # BODYPOSE / PEOPLE COUNTING IMPORTS
14 from ultralytics import YOLO

The GENERAL IMPORTS refer to the main structure of the code,
meaning the use of OpenCV, the threading and event system.

The HR RECOGNITION IMPORTS refer to the modules used
for heart rate prediction. Specifically, the following are imported:

• mediapipe for creating the face mesh used to extract portions of
the face for heart rate prediction.

• heartpy and numpy for the actual heart rate prediction.

• queue, datetime, and csv for creating shared queues between
threads and constructing and filling the CSV files where measure-
ments are saved.

Regarding the BODY POSE/PEOPLE COUNTING IMPORTS,
the YOLO module is imported to load and use the selected model.

Next, the output files for the calculated values, the queues that are
needed for sharing data between threads, and the event used to trigger

24

Code description

heart rate calculations are defined:

1 output_file_1 = " heartpy_results_total .csv"
2 output_file_2 = " heartpy_results_forehead .csv"
3 output_file_3 = " heartpy_results_left .csv"
4 output_file_4 = " heartpy_results_right .csv"
5

6 data_queue = Queue ()
7 bpm_queue = Queue ()
8 time_queue = Queue ()
9 hr_analysis_event = Event ()

Then, the files containing the additional functions are imported,
organized according to the main topics to make the file more readable
and organized, followed by the setup for the models used to generate
predictions.

1 # FUNCTION IMPORTS
2 import General_utils as utils
3 import Face_detection_utils as fd
4 import Body_pose_utils as bp # currently empty
5 import Age_gender_utils as ag
6 import HeartRate_Functions as hr
7

8 #SET UP MEDIAPIPE
9 mp_drawing = mp. solutions . drawing_utils # type: ignore

10 mp_face_mesh = mp. solutions . face_mesh # type: ignore
11

12 #LOAD AGE GENDER MODELS
13 age , gender = ag. ag_model_loads ()
14

15 #LOAD YOLO MODEL
16 model = YOLO(’Models /Yolo/ yolo11n .pt’)

In particular, the age and gender prediction model is loaded using a
function defined in the external Age_Gender_utils file.

The function ag_model_loads() defines the paths for the .prototxt
and .caffemodel files, which contain the configuration of the neural
network and the weights trained by the model. Then, the function
cv2.dnn.readNet() is used to load the neural networks using the
mentioned configuration files.

25

Code description

In the final part of the code initialization, OpenCV is set up to
access the camera feed (webcam), adjust the auto-exposure settings
(if supported by the device), and select the frame size to be analyzed,
which depends on the device.

We can now proceed to the actual functioning of the code. As
mentioned earlier, it is divided into two threads called main and
analyze_heartbeat. When the program starts, it enters the main
thread, setting the test variable to its default value, which represents
one of the three modes of code execution:

• "0" People Counting

• "1" HR, Gender/Age recognition

• "2" Both

The default mode at startup is, in this case, "People Counting"
(Test=0).

The video_writer = None variable is then defined, which will be
used shortly to start recording video of the test images.

Next, the mediapipe model is loaded with a with statement, and after
generating the file and writing the header with the write_header_file
function (if the file is not already present) called from the "general_utils"
file, and declaring the variables that will hold the values of the shared
queue between threads, the first operations on the image are executed.

There is a check to see if the camera feed is received correctly.If the
test is successful, the image is:

1. Converted from RGB to BGR color space

2. Flipped

3. Processed by Mediapipe for the computation of the face mesh

4. Converted back to RGB
26

Code description

5. Overlayed to show graphically MediaPipe’s execution results

The BGR conversion is crucial because it allows mediapipe to perform
face mesh detection[15]. Then, the FPS of the feed is calculated, and the
image dimensions are obtained so that the FPS value can be displayed
on the image.

The code checks if the video_writer is None and initializes the
video output file, the pixel format, and the codec to use, which in
this case is H264 obtaining a .mp4 file. It is important to resize all
the frames to the same standard resolution (1280x768, 1820x1080) to
obtain a valid video output since otherwise we will obtain an empty
file without any exception raised by openCV.

The main thread contains two important blocks of code: the first
performs the heart rate calculation and the age/gender prediction, and
the second handles body pose and people counting. These two blocks
will be referred to as BLOCK HR 1 and BODY POSE/PEOPLE
COUNTING BLOCK for simplicity, and they will be explained in
the next paragraphs. It is important to understand how the flow works
in the modes.

Before the HR BLOCK 1, there is an if statement that, when
the Test variable is set to 1 or 2 (HR/Gender/Age recognition mode,
or Both mode), executes this part of the code, which, along with the
analyze_heartbeat thread containing HR BLOCK 2, calculates the
heart rate and displays the gender and age predictions.

Similarly, there is another if statement that checks if the Test
variable is set to 0 or 2 (People counting mode or Both mode), leading
to the execution of the portion of the code that we referred at with
PEOPLE COUNTING BLOCK.

At this point, a function from the general_utils file is called to
display the execution mode (depending on the Test variable) on the
image, resize the image, display the real-time video, and start recording
it.

27

Code description

Figure 2.1: Text on the video that shows the buttons for changing the execution
mode and the current mode

Here is a small extract of the main thread:

1 def main(cap , data_queue , bpm_queue , time_queue):
2 # Test Variables
3 # 0 People Counting
4 # 1 HR , Gender /Age recognition
5 # 2 Both
6 Test = 0 # Default value People Counting
7 Stream =0 # default stream value
8

9 video_writer = None
10

11 with mp_face_mesh . FaceMesh (static_image_mode =True ,
max_num_faces =6, min_detection_confidence =0.5) as facemesh :

12

13 while cap. isOpened ():
14 ret , frame = cap.read ()
15

16 # Pre - operation with the image
17 image = cv2. cvtColor (frame , cv2. COLOR_BGR2RGB)
18 image = cv2.flip(image , 1)
19

20 results = facemesh . process (image)
21 image = cv2. cvtColor (image , cv2. COLOR_RGB2BGR)
22

23 fps = cap.get(cv2. CAP_PROP_FPS)
24 frame_width = int(cap.get(cv2. CAP_PROP_FRAME_WIDTH))
25 frame_height = int(cap.get(cv2. CAP_PROP_FRAME_HEIGHT))
26

27 cv2. putText (image , f"FPS :{ fps}", (frame_width - 110,
frame_height - 10) , cv2. FONT_HERSHEY_SIMPLEX , 0.7, (0, 0, 255) ,

1)
28

29 if video_writer is None:
30 fourcc = cv2. VideoWriter_fourcc (*’MP4V ’)
31

32 video_writer = cv2. VideoWriter (" test_1 .avi",
fourcc , fps , (912 , 480))

28

Code description

33

34 if Test == 1 or Test == 2:
35 # HR BLOCK 2
36 pass
37

38 if Test == 0 or Test == 2:
39 # BODY POSE/ PEOPLE COUNTING BLOCK
40 pass
41

42 utils. show_mode_selection (Test ,image , frame_width)
43

44 final_image = cv2. resize (image ,(912 ,480) ,
interpolation =cv2. INTER_AREA)

45 video_writer .write(final_image)
46

47 if Stream ==1:
48 cv2. imshow ("Model Detection ",final_image)
49 utils. send_frame_to_server (final_image , SERVER_URL)
50

51 elif Stream ==0:
52 cv2. imshow ("Model Detection ",final_image)
53

54 key = cv2. waitKey (0) & 0xFF
55 if key == ord(’c’):
56 Test = 0
57 hr_analysis_event .clear ()
58 elif key == ord(’h’):
59 Test = 1
60 hr_analysis_event .set ()
61 elif key == ord(’b’):
62 Test = 2
63 hr_analysis_event .set ()
64 elif key == ord(’r’):
65 hr_analysis_event .clear ()
66 print("Reset in corso")
67 utils. write_new_misuration (output_file_1 ,

output_file_2 , output_file_3 , output_file_4)
68 utils. clear_queue (bpm_queue)
69 utils. clear_queue (data_queue)
70

71 red_values_total .clear ()
72 green_values_total .clear ()
73 blue_values_total .clear ()
74

75 red_values_forhead .clear ()
76 green_values_forhead .clear ()
77 blue_values_forhead .clear ()
78

79 red_values_left .clear ()

29

Code description

80 green_values_left .clear ()
81 blue_values_left .clear ()
82

83 red_values_right .clear ()
84 green_values_right .clear ()
85 blue_values_right .clear ()
86

87 if Test ==1 or Test ==2:
88 print ("Reset completato ")
89 hr_analysis_event .set ()
90 else:
91 print ("Reset completato ")
92 elif key == ord(’s’):
93 if Stream ==0:
94 Stream =1
95 else:
96 Stream =0
97

98 elif key == ord(’q’): # Premere ’q’ per uscire
99 break

The capability of the program to change mode of execution is possi-
ble because the Test variable is dynamic.In fact with waitKey() the
program wait for a certain key and pressing a key from C, H, and B
switches between the modes in real time, and pressing Q stops the
execution. As you can see above this switch between the keys C, H, B
activates and deactivates also the HR event. Therefore, when the Test
variable changes from 0 to 1 or 2, the analyze_heartbeat thread will
not wait anymore, so the HR BLOCK 2 will be executed.

1 def analyze_heartbeat (data_queue , bpm_queue , time_queue):
2 while True:
3 hr_analysis_event .wait ()
4 # HR BLOCK 2

Thread execution mode is managed by the following code, where the
analyze_heartbeat thread is set as a daemon to ensure that pressing
the Q key stops both threads and terminates the script.

There are also two other modes, which we could define as “ghost
mode”: the streaming mode and the reset mode. Pressing the S key

30

Code description

will change the default value of the Streaming variable from 0 to 1 (and
vice versa). In this way, every frame processed by the code will be
both displayed using the imshow() function and sent to a Flask server,
which will stream the video on a local network. We will look at this
implementation in detail in a later paragraph.

Pressing the R key, instead, activates the reset mode, which, as
you can see from the previous code, deletes all queues and variables
containing raw values useful for heart rate estimation, allowing for a
new measurement.

Essentially, this portion of code:

• disables the hr_analysis() event to prevent multiple portions of
code from accessing resources simultaneously

• deletes queues and variables containing values for heart rate esti-
mation

• checks the Test variable and, consequently, re-enables or keeps
disabled the hr_analysis() event

1 if __name__ == ’__main__ ’:
2 Thread (target =main , args =(cap , data_queue , bpm_queue ,

time_queue), daemon =False).start ()
3 Thread (target = analyze_heartbeat , args =(data_queue , bpm_queue ,

time_queue), daemon =True).start ()

2.3 HR/Age/Gender Recognition

In this section we analyze the code used for heart rate estimation.
The code is structured into two main parts, HR BLOCK 1 and HR
BLOCK 2, corresponding to the HR and Both modes (with the test
variable set to 1 and 2, respectively). We follow the exact execution
order, starting with the main thread (main) and then examining the

31

Code description

secondary thread (analyze_heartbeat), which runs in parallel with
the main thread as explained in the previus chapter.

First, facemesh is computed using the MediaPipe framework, which is
later used to extract the necessary facial regions for heart rate estimation.
MediaPipe Face Mesh estimates 468 3D facial landmarks in real time
by employing machine learning to infer the 3D facial surface, requiring
only a single camera input (without the need for a dedicated depth
sensor)[16]. This makes it an excellent solution for our application.

Figure 2.2: Face mesh applied on the real-time webcam feed

At this point, the dimensions of the frame are extracted to deter-
mine the actual positions of the landmarks. Since MediaPipe returns
normalized values between 0 and 1, these are multiplied by the frame
dimensions to obtain the absolute positions[17].

32

Code description

1 if results . multi_face_landmarks :
checks if the list is empty or not

2 for face_landmarks in results . multi_face_landmarks :
iterates over each face found in the landmarks list

3

4 # fd. show_facemesh (image , mp_drawing , face_landmarks ,
mp_face_mesh)

5

6 img_height , img_width , _ = image.shape
7 x_coords = []
8 y_coords = []
9

10 for landmark in face_landmarks . landmark : # iterates over
all landmarks of a single face

11 x = int(landmark .x * img_width) # multiplies
by the image dimensions since values are normalized

12 y = int(landmark .y * img_height) # multiplying
by the image dimensions yields the absolute position

13 x_coords . append (x)
14 y_coords . append (y)

Using the minimum and maximum landmark values (with a toler-
ance), a cropped image is extracted for further processing:

1 cropped_image = image[y_min:y_max , x_min:x_max]

The cropped image is then passed to the extract_heartbeat func-
tion which extracts the mean values of each color channel (red, green,
and blue) for the forehead, left cheek, and right cheek using three differ-
ents masks [18] And a fourth mask that sums the three as a comparison,
the total mask. The choice to use these three Regions Of Interest (ROI)
is due to the fact that these areas are less prone to movement due to
the facial expression, have a high blood perfusion (also influenced by
the reduced size of the tissues)[19], lower interference from shadows
and hair, and a uniform distribution of light.

33

Code description

Figure 2.3: The extraction of the cropped image and facial portions in real-time

1 def extract_heartbeat (image , face_landmarks , width , height , x_min ,
y_min):

2 # Indices for specific regions
3 forehead_indices = [54, 103, 67, 109, 10, 338, 297, 332, 284,

298, 336, 8, 107, 68] # see image
4 right_cheek_indices = [330 , 266, 423, 436, 434, 376, 352]
5 left_cheek_indices = [101 , 36, 203, 216, 214, 147, 123]
6

7 # Obtain the contours of the forehead
8 forehead_points = []
9 right_cheek_points = []

10 left_cheek_points = []
11

12 for i in forehead_indices :
13 x = int(face_landmarks . landmark [i].x * width) - x_min
14 y = int(face_landmarks . landmark [i].y * height) - y_min
15 forehead_points . append ((x, y))
16

17 for i in right_cheek_indices :
18 x = int(face_landmarks . landmark [i].x * width) - x_min
19 y = int(face_landmarks . landmark [i].y * height) - y_min
20 right_cheek_points . append ((x, y))
21

22 for i in left_cheek_indices :
23 x = int(face_landmarks . landmark [i].x * width) - x_min
24 y = int(face_landmarks . landmark [i].y * height) - y_min
25 left_cheek_points . append ((x, y))
26

34

Code description

27 # Create a mask for the forehead
28 forehead_mask = np.zeros(image.shape [:2] , np.uint8)
29 cv2. fillPoly (forehead_mask , [np.array(forehead_points , np.

int32)], 255)
30

31 right_cheek_mask = np.zeros(image.shape [:2] , np.uint8)
32 cv2. fillPoly (right_cheek_mask , [np.array(right_cheek_points ,

np.int32)], 255)
33

34 left_cheek_mask = np.zeros(image.shape [:2] , np.uint8)
35 cv2. fillPoly (left_cheek_mask , [np.array(left_cheek_points , np.

int32)], 255)
36

37 combined_mask = cv2. bitwise_or (forehead_mask , right_cheek_mask
)

38 combined_mask = cv2. bitwise_or (combined_mask , left_cheek_mask)
39

40 # Apply the masks to the image
41 masked_forehead = cv2. bitwise_and (image , image , mask=

forehead_mask)
42 masked_right_cheek = cv2. bitwise_and (image , image , mask=

right_cheek_mask)
43 masked_left_cheek = cv2. bitwise_and (image , image , mask=

left_cheek_mask)
44 total_mask = cv2. bitwise_and (image , image , mask= combined_mask)
45

46 # Calculate the mean RGB values for each region
47 mean_forehead = cv2.mean(masked_forehead , mask= forehead_mask)

[:3]
48 mean_right_cheek = cv2.mean(masked_right_cheek , mask=

right_cheek_mask)[:3]
49 mean_left_cheek = cv2.mean(masked_left_cheek , mask=

left_cheek_mask)[:3]
50 mean_combined = cv2.mean(total_mask , mask= combined_mask)[:3]
51

52 cv2. imshow ("Total Mask", total_mask)
53

54 return mean_combined , mean_forehead , mean_right_cheek ,
mean_left_cheek

Next, a timestamp is recorded for the measurement so that the
algorithm’s output can later be compared with that of a wrist heart
rate monitor. The mean values are used to populate data lists us-
ing upload_hr_lists and to limit their length to 300 values via
limit_hr_list:

35

Code description

1 def upload_hr_lists (mean_total , mean_forehead , mean_right ,
mean_left ,

2 red_values_total , green_values_total ,
blue_values_total ,

3 red_values_forhead , green_values_forhead ,
blue_values_forhead ,

4 red_values_left , green_values_left ,
blue_values_left ,

5 red_values_right , green_values_right ,
blue_values_right):

6

7 r_total , g_total , b_total = mean_total
8 r_forehead , g_forehead , b_forehead = mean_forehead
9 r_right , g_right , b_right = mean_right

10 r_left , g_left , b_left = mean_left
11

12 # Total
13 red_values_total . append (r_total)
14 green_values_total . append (g_total)
15 blue_values_total . append (b_total)
16 # Forehead
17 red_values_forhead . append (r_forehead)
18 green_values_forhead . append (g_forehead)
19 blue_values_forhead . append (b_forehead)
20 # Left cheek
21 red_values_left . append (r_left)
22 green_values_left . append (g_left)
23 blue_values_left . append (b_left)
24 # Right cheek
25 red_values_right . append (r_right)
26 green_values_right . append (g_right)
27 blue_values_right . append (b_right)

1 def limit_hr_list (red_values_total , green_values_total ,
blue_values_total , red_values_forhead , green_values_forhead ,
blue_values_forhead , red_values_left , green_values_left ,
blue_values_left , red_values_right , green_values_right ,
blue_values_right):

2

3 if len(red_values_total) > 300: # 10 seconds at 30 FPS
4 red_values_total .pop (0)
5 green_values_total .pop (0)
6 blue_values_total .pop (0)
7

8 if len(red_values_forhead) > 300:
9 red_values_forhead .pop (0)

10 green_values_forhead .pop (0)

36

Code description

11 blue_values_forhead .pop (0)
12

13 if len(red_values_left) > 300:
14 red_values_left .pop (0)
15 green_values_left .pop (0)
16 blue_values_left .pop (0)
17

18 if len(red_values_right) > 300:
19 red_values_right .pop (0)
20 green_values_right .pop (0)
21 blue_values_right .pop (0)

The limitation of the measurement values is performed by deleting
the oldest value from the list. The choice of the 300 is to keep the
necessary number of samples in memory without running the risk of an
early deletion of the value before it is analyzed and making sure not to
overload the machine to the detriment of the execution speed. Then
data is then added to the queue for processing in the secondary thread:

1 data_queue .put ((red_values_total , green_values_total ,
blue_values_total , red_values_forhead , green_values_forhead ,
blue_values_forhead , red_values_left , green_values_left ,
blue_values_left , red_values_right , green_values_right ,
blue_values_right))

Execution then shifts to analyze_heartbeat and, being in HR or
Both execution mode the hr_analysis_event event will already be
active and consequently the execution of HR BLOCK 2 will occur without
any problem. So, after verifying that there are at least 180 values for
each color channel, the data is processed with HeartPy to compute the
heart rate:

1 working_data_red_total , measures_red_total = hp. process (np. asarray
(hr. bandpass (red_values_total)), sample_rate =30)

2 working_data_green_total , measures_green_total = hp. process (np.
asarray (hr. bandpass (green_values_total)), sample_rate =30)

3 working_data_blue_total , measures_blue_total = hp. process (np.
asarray (hr. bandpass (blue_values_total)), sample_rate =30)

4

5 working_data_red_forehead , measures_red_forehead = hp. process (np.
asarray (hr. bandpass (red_values_forhead)), sample_rate =30)

37

Code description

6 working_data_green_forehead , measures_green_forehead = hp. process (
np. asarray (hr. bandpass (green_values_forhead)), sample_rate =30)

7 working_data_blue_forehead , measures_blue_forehead = hp. process (np
. asarray (hr. bandpass (blue_values_forhead)), sample_rate =30)

8

9 working_data_red_left , measures_red_left = hp. process (np. asarray (
hr. bandpass (red_values_left)), sample_rate =30)

10 working_data_green_left , measures_green_left = hp. process (np.
asarray (hr. bandpass (green_values_left)), sample_rate =30)

11 working_data_blue_left , measures_blue_left = hp. process (np. asarray
(hr. bandpass (blue_values_left)), sample_rate =30)

12

13 working_data_red_right , measures_red_right = hp. process (np. asarray
(hr. bandpass (red_values_right)), sample_rate =30)

14 working_data_green_right , measures_green_right = hp. process (np.
asarray (hr. bandpass (green_values_right)), sample_rate =30)

15 working_data_blue_right , measures_blue_right = hp. process (np.
asarray (hr. bandpass (blue_values_right)), sample_rate =30)

This processing is done through HeartPy, which through the hp.process
function, gives us the average heart rate of the considered frame. Its
sample has been set to 30 Hz corresponding to the FPS of the video
signal. The average values of the color each channel is then filtered
through a band pass filter with the cutoff frequencies set between 0.7
and 2 Hz which would allow an HR value measurement ranging from
42 to 120 bpm, subsequently these values are passed to a low pass filter
with a cutoff frequency of 0.9 Hz in order to remove sudden signal
variations at very high frequencies.

1 def bandpass (data , fs=20, order =2, fc_low =0.7 , fc_hig =2,
fc_lowpass =0.9):

2 nyq = 0.5 * fs % Nyquist frequency
3 cut_low = fc_low / nyq % Low cutoff frequency
4 cut_hig = fc_hig / nyq % High cutoff frequency
5

6 # Design of the bandpass filter
7 bp_b , bp_a = sig. butter (order , (cut_low , cut_hig), btype=’

bandpass ’)
8

9 # Low -pass filter to remove very high frequencies (optional)
10 lowpass_b , lowpass_a = sig. butter (order , fc_lowpass / nyq ,

btype=’low ’)
11

38

Code description

12 # Apply the bandpass filter
13 filtered_data = sig. filtfilt (bp_b , bp_a , data)
14

15 # Apply the low -pass filter (if necessary)
16 filtered_data = sig. filtfilt (lowpass_b ,lowpass_a ,

filtered_data)
17

18 return filtered_data

Since these filters are digital, to avoid aliasing effect a lowpass filter is
needed. The filters were implemented using second order Butterworth
filters for their minimal signal distortion and smooth, ring-free response.
These were applied to the data via filtfilt, then filtering back and
forth to avoid signal delays and thus maintain temporal alignment
with the timestamp which is critical for testing the results. The newly
obtained heart rate values were then loaded into the previously created
csv files corresponding to the time values and added to the bpm_queue
queue in order to allow the main thread to draw the results on the
image frame by frame.

1 with open(output_file_1 , mode=’a’, newline =’’) as file:
2 writer = csv. writer (file)
3 writer . writerow ([date_list , time_list , measures_green_total [’

bpm ’], measures_blue_total [’bpm ’], measures_red_total [’bpm ’]])
4

5 with open(output_file_2 , mode=’a’, newline =’’) as file:
6 writer = csv. writer (file)
7 writer . writerow ([date_list , time_list , measures_green_forehead

[’bpm ’], measures_blue_forehead [’bpm ’], measures_red_forehead [’
bpm ’]])

8

9 with open(output_file_3 , mode=’a’, newline =’’) as file:
10 writer = csv. writer (file)
11 writer . writerow ([date_list , time_list , measures_green_left [’

bpm ’], measures_blue_left [’bpm ’], measures_red_left [’bpm ’]])
12

13 with open(output_file_4 , mode=’a’, newline =’’) as file:
14 writer = csv. writer (file)
15 writer . writerow ([date_list , time_list , measures_green_right [’

bpm ’], measures_blue_right [’bpm ’], measures_red_right [’bpm ’]])
16

39

Code description

17 bpm_queue .put ((measures_green_total [’bpm ’], measures_blue_total [’
bpm ’], measures_red_total [’bpm ’],

18 measures_green_forehead [’bpm ’],
measures_blue_forehead [’bpm ’], measures_red_forehead [’bpm ’],

19 measures_green_left [’bpm ’], measures_blue_left [’bpm
’], measures_red_left [’bpm ’],

20 measures_green_right [’bpm ’], measures_blue_right [’
bpm ’], measures_red_right [’bpm ’])) % added as tuple

Finally, the heartbeat data is drawn on the image under the "box"
drawn by the function draw_fancy_box

1 def draw_BPM (bpm_queue , image , x_min , y_max):
2 try:
3 bpm = bpm_queue . get_nowait () % Non -blocking , raises an

exception if the queue is empty
4 bpm_g_t = bpm [0]
5 bpm_b_t = bpm [1]
6 bpm_r_t = bpm [2]
7 bpm_g_f = bpm [3]
8 bpm_b_f = bpm [4]
9 bpm_r_f = bpm [5]

10 bpm_g_l = bpm [6]
11 bpm_b_l = bpm [7]
12 bpm_r_l = bpm [8]
13 bpm_g_r = bpm [9]
14 bpm_b_r = bpm [10]
15 bpm_r_r = bpm [11]
16

17 cv2. putText (image , f"T BPM: g:{ int(bpm_g_t)} b:{ int(
bpm_b_t)} r:{ int(bpm_r_t)}", (x_min +5, y_max -10) , cv2.
FONT_HERSHEY_SIMPLEX , 0.7, (255 , 0, 0), 2)

18 cv2. putText (image , f"F BPM: g:{ int(bpm_g_f)} b:{ int(
bpm_b_f)} r:{ int(bpm_r_f)}", (x_min +5, y_max +10) , cv2.
FONT_HERSHEY_SIMPLEX , 0.7, (0, 255, 0), 2)

19 cv2. putText (image , f"L BPM: g:{ int(bpm_g_l)} b:{ int(
bpm_b_l)} r:{ int(bpm_r_l)}", (x_min +5, y_max +40) , cv2.
FONT_HERSHEY_SIMPLEX , 0.7, (0, 0, 255) , 2)

20 cv2. putText (image , f"R BPM: g:{ int(bpm_g_r)} b:{ int(
bpm_b_r)} r:{ int(bpm_r_r)}", (x_min +5, y_max +60) , cv2.
FONT_HERSHEY_SIMPLEX , 0.7, (255 , 255, 255) , 2)

40

Code description

1 def draw_fancy_box (frame , x_min , x_max , y_min , y_max , radius =20,
color =(255 , 255, 255) , thickness =2):

2 cv2. ellipse (frame , (x_min + radius , y_min + radius), (radius ,
radius), 180, 0, 90, color , thickness)

3 cv2. ellipse (frame , (x_max - radius , y_min + radius), (radius ,
radius), 270, 0, 90, color , thickness)

4 cv2. ellipse (frame , (x_min + radius , y_max - radius), (radius ,
radius), 90, 0, 90, color , thickness)

5 cv2. ellipse (frame , (x_max - radius , y_max - radius), (radius ,
radius), 0, 0, 90, color , thickness)

Age and gender are estimated using the age_gender_recognition
function, which leverages a pre-defined model:

1 def age_gender_recognition (frame , image , age , gender , y_min , y_max
, x_min , x_max):

2 try:
3 face_crop = frame[y_min:y_max , x_min:x_max]
4 face_blob = cv2.dnn. blobFromImage (face_crop , 1.0, (227 ,

227) , MEAN_VALUES , swapRB =False)
5

6 gender . setInput (face_blob)
7 gender_preds = gender . forward ()
8 gender_out = gender_classification [gender_preds [0]. argmax

()]
9

10 # Age recognition
11 age. setInput (face_blob)
12 age_preds = age. forward ()
13 age_out = age_classifications [age_preds [0]. argmax ()]
14

15 # Display age and gender on the face
16 label = f"{ gender_out }, { age_out }"
17 cv2. putText (image , label , (x_min , y_min - 10) , cv2.

FONT_HERSHEY_SIMPLEX , 0.5, (255 , 255, 255) , 2)
18 except :
19 print(’Error ’)

Finally, the following classifications and mean values are used:

41

Code description

1 % CLASSIFICATION SETUP
2 age_classifications = [’(0 -2) ’, ’(4 -6) ’, ’(8 -12) ’, ’(15 -20) ’, ’

(22 -32) ’, ’(38 -43) ’, ’(48 -53) ’, ’(60 -100) ’]
3 gender_classification = [’M’, ’F’]
4

5 MEAN_VALUES = [114 , 117, 123]

Figure 2.4: Heart Rate values, fancybox and age/gender recognition drawings

2.4 People counting and body pose detection

In this section, we will analyze the part of the code that deals with peo-
ple counting, which we previously defined as BODYPOSE/PEO-
PLE COUNTING BOX. This is the portion of the code that is
activated in People Counting mode (the default mode) or in BOTH
mode.

This portion of the code has three modes too, which can be activated
using three boolean variables:

1 SHOW_BBOX = False
2 SHOW_KEYPOINTS = False

42

Code description

3 SHOW_BOTH = True

These variables must be set so that only one of them is True, while
the other two must be False. Specifically, the three modes perform
the following functions:

• SHOW_BBOX: Displays only the bounding box and the confi-
dence score with which YOLO recognizes a person.

• SHOW_KEYPOINTS: Displays only the keypoints for each
detected body.

• SHOW_BOTH: Displays the bounding box, confidence score,
and keypoints with their connections, forming what is called a
"skeleton".

The confidence score represents how certain the model is that the
detected element in the image is a person. This value ranges from 0 to
1.

Once the mode is set, the actual frame prediction takes place:

1 results = model(image , conf =0.45 , classes =[0] , verbose =False)

This function performs the image prediction (in this case, a video
frame) with specific parameters for our application:

• image is the frame to be analyzed.

• conf=0.45 is the minimum confidence threshold we set. The
algorithm will only detect and count people if their confidence
score is above this value.

• classes=[0] ensures that the model predicts only people, since
YOLO is designed to recognize a wide range of objects.

• verbose=False prevents the terminal from displaying a message
for each frame prediction.

43

Code description

At this point, we have a series of if and else statements that allow
the code to execute in the desired mode.

The code checks whether the variable SHOW_BOTH is set to True. If
so, it draws both the bounding box and the skeleton on the frame:

1 results = model(image , conf =0.45 , classes =[0] , verbose =False)

If SHOW_BOTH is False, execution moves to another section of the
code, where the bounding box coordinates and confidence score are
first extracted:

1 for result in results :
2 for box in result .boxes:
3 x1 , y1 , x2 , y2 = map(int , box.xyxy [0])
4 conf = box.conf [0]. item ()

Depending on the selected mode, the bounding box and confidence
score will be drawn if SHOW_BBOX=True, and the keypoints will be drawn
if SHOW_KEYPOINTS=True.

1 # Draw BBOX
2 if SHOW_BBOX :
3 cv2. rectangle (annotated_frame , (x1 , y1), (x2 , y2), (0, 255, 0)

, 2)
4 label = f" Person {conf :.2f}"
5 cv2. putText (annotated_frame , label , (x1 , y1 - 10) ,
6 cv2. FONT_HERSHEY_SIMPLEX , 0.5, (0, 255, 0), 2)
7

8 # Draw KEYPOINTS
9 if SHOW_KEYPOINTS :

10 if SHOW_KEYPOINTS :
11 keypoints_array = result . keypoints .xy
12 for person_keypoints in keypoints_array :
13 filtered_keypoints = [(int(x), int(y)) for x, y in

person_keypoints if (x, y) != (0, 0)]
14 for x, y in filtered_keypoints :
15 cv2. circle (annotated_frame , (x, y), 5, (0,

0, 255) , -1)

As seen in the code above, keypoints at position (0,0) are removed.
44

Code description

This is due to a YOLO bug, where manually extracted keypoints
always include one fixed at (0,0).

Regarding people counting, this process occurs regardless of the
execution mode. The algorithm counts the bounding boxes detected
by the model and displays the count at the top-left corner of the
frame.

Figure 2.5: Output of SHOW_BBOX mode

Figure 2.6: Output of SHOW_KEYPOINTS mode

45

Code description

Figure 2.7: Output of SHOW_BOTH mode

2.5 Video Streaming

As previously mentioned, the script includes a "ghost mode", called
"Streaming mode", which allows the program to display video frames
using the imshow() function while simultaneously transmitting them
in streaming over a local network.

This functionality has been implemented using a Flask server, a
lightweight and modular web application written in Python, which
handles HTTP requests and enables web application development.

By pressing the S key, the program activates the send_frame_to_server()
function, which sends the video frames to the previously defined server
URL.

The server is configured to receive, process, and transmit frames as
follows:

1 from flask import Flask , request , send_file , Response , abort
2 from flask_httpauth import HTTPBasicAuth
3 import cv2
4 import numpy as np
5 import io
6

7 app = Flask(__name__)

46

Code description

8 auth = HTTPBasicAuth ()
9

10

11 USERNAME = ’user ’
12 PASSWORD = ’tigre ’
13

14 latest_frame = None
15

16 # per verificare le credenziali
17 @auth. verify_password
18 def verify_password (username , password):
19 if username == USERNAME and password == PASSWORD :
20 return True
21 return False
22

23 @app.route (’/ upload_frame ’, methods =[’POST ’])
24 def upload_frame ():
25 global latest_frame
26 file = request .files[’file ’]
27 file_bytes = np. frombuffer (file.read (), np.uint8)
28 latest_frame = cv2. imdecode (file_bytes , cv2. IMREAD_COLOR)
29 return "Frame ricevuto ", 200
30

31 @app.route (’/ latest_frame ’)
32 @auth. login_required # Protezione con autenticazione
33 def get_latest_frame ():
34 global latest_frame
35 if latest_frame is None:
36 return " Nessun frame ricevuto ", 404
37 _, buffer = cv2. imencode (’.jpg ’, latest_frame)
38 return send_file (
39 io. BytesIO (buffer),
40 mimetype =’image/jpeg ’,
41 as_attachment =False
42)
43

44

45 def generate_frames ():
46 global latest_frame
47 while True:
48 if latest_frame is not None:
49 ret , buffer = cv2. imencode (’.jpg ’, latest_frame)
50 if ret:
51 frame = buffer . tobytes ()
52 yield (b’--frame\r\n’
53 b’Content -Type: image/jpeg\r\n\r\n’ + frame

+ b’\r\n\r\n’)
54

55

47

Code description

56 @app.route (’/ video_feed ’)
57 @auth. login_required # Protezione con autenticazione
58 def video_feed ():
59 return Response (generate_frames (), mimetype =’ multipart /x-mixed

- replace ; boundary =frame ’)
60

61 if __name__ == ’__main__ ’:
62 app.run(host = ’0.0.0.0 ’ , port =5000 , debug=True)

As seen above, the frame is encoded and sent to the server. Anyone
connected to the same network and aware of the server URL can access
the stream and view the video in real time.

Additionally, to ensure a basic level of security, a simple authentica-
tion system with username and password has been implemented,
allowing only authorized users to access the streaming service.

Figure 2.8: Autentication system

Figure 2.9: Video streaming

48

Code description

2.6 Raspberry Pi Adaptation

The code just explained was initially written and tested with a USB
webcam on a Windows Machine, but to make it work on the raspberry
Pi with a Linux Os, some modifications were necessary. USB webcams
on Linux work through a generic USB driver like v4l2 [20], while
Raspberry Pi cameras work through one of the two CSI (Camera Serial
Interface) serial ports [21]. As a result, the code was modified using
Picamera2, an integrated module with Raspberry Pi, to work with
official cameras to obtain the frame, while the rest of the processing
remained unchanged using OpenCV for all the image elaboration. We
then installed and imported Picamera2 and replaced this portion of
code from this:

1 cap=cv2. VideoCapture (0)
2 cap.set(cv2. CAP_PROP_AUTO_EXPOSURE , 1)
3 cap.set(cv2. CAP_PROP_FRAME_WIDTH , 2048)
4 cap.set(cv2. CAP_PROP_FRAME_HEIGHT , 1080)

to this:

1 picam2 = Picamera2 ()
2 picam2 . preview_configuration .main.size = (912 , 480)
3 picam2 . preview_configuration .main. format = " RGB888 "
4 picam2 .start ()

Thus, activating the camera before the actual execution begins.
In the main thread, we had to change the extraction of the frame from
this:

1 ret , frame = cap.read ()

to this:

1 frame = picam2 . capture_array ()

49

Code description

Of course we had to we had to delete all the references of the code
to "cap" to make the code work flawless.

50

Chapter 3

Testing

3.1 Introduction

In this chapter, we will describe the tests performed on the device as a
whole, starting from the software and proceeding to the verification of
the device’s operation when powered solely by a power bank.

As already described in the previous chapter, the script operates
in three distinct modes: People Counting,HR and Age/Gender
Detection , Both . However, since the Both mode is essentially the
simultaneous execution of the first two, in the first section, we will
analyze only the two main modes.

In the second section, we will examine how the device runs the script
while being powered solely by a power bank and what strategies have
been adopted to ensure its proper functioning, thus making the device
self-sufficient.

3.2 Software

Here, we will analyze how the tests of the two previously described
modes were conducted, detailing the testing procedures, the conditions
under which they were performed, and the results obtained. These
tests were carried out both on the test machine and on the device,

51

Testing

consistently yielding the same results due to the shared code.

3.2.1 Age/Gender Detection

For the HR and Age/Gender Detection testing, it was necessary
to use a specific dataset. In this case, the choice fell on UTKFace,
a dataset consisting of 23,761 JPEG images containing human faces
with ages ranging from 0 to 116 years [22]. To perform the test, we
wrote a dedicated script that follows the same execution pattern as
the main code, using MediaPipe for face extraction and .Prototxt
and .CaffeModel for performing the estimation in the age and gender
classes. The only difference compared to the main script concerns the
input: in this code, OpenCV does not access the camera feed to perform
the predictions, but the code is placed inside a for loop to process all
the images in the dataset.

1 import cv2
2 import os
3 import glob
4 import pandas as pd
5 import mediapipe as mp
6

7 age_classifications = [’(0 -2) ’, ’(4 -6) ’, ’(8 -12) ’, ’(15 -20) ’, ’
(22 -32) ’, ’(38 -43) ’, ’(48 -53) ’, ’(60 -100) ’]

8 gender_classification = [’M’, ’F’]
9 MEAN_VALUES = [114 , 117, 123]

10

11 age_prototxt = " Models / Gender_Age_Models / deploy_age2 . prototxt "
12 age_model = " Models / Gender_Age_Models / age_net2 . caffemodel "
13 gender_prototxt = " Models / Gender_Age_Models / gender_deploy . prototxt

"
14 gender_model = " Models / Gender_Age_Models / gender_net . caffemodel "
15

16 age_net = cv2.dnn. readNet (age_model , age_prototxt)
17 gender_net = cv2.dnn. readNet (gender_model , gender_prototxt)
18

19 mp_face_detection = mp. solutions . face_detection
20 face_detection = mp_face_detection . FaceDetection (

min_detection_confidence =0.5)
21

22

52

Testing

23 def process_utkface_dataset (dataset_path , output_file):
24 image_paths = glob.glob(os.path.join(dataset_path , "*.*"))
25 results = []
26 i = 0
27

28 for image_path in image_paths :
29 image = cv2. imread (image_path)
30 if image is None:
31 continue
32

33 filename = os.path. basename (image_path)
34 h, w, _ = image.shape
35

36 image_rgb = cv2. cvtColor (image , cv2. COLOR_BGR2RGB)
37 results_faces = face_detection . process (image_rgb)
38

39 if results_faces . detections :
40 for detection in results_faces . detections :
41 bboxC = detection . location_data .

relative_bounding_box
42 x, y, width , height = int(bboxC.xmin * w), int(

bboxC.ymin * h), int(bboxC.width * w), int(bboxC. height * h)
43 x, y = max (0, x), max (0, y)
44 face_crop = image[y:y+height , x:x+width]
45

46 try:
47 face_blob = cv2.dnn. blobFromImage (face_crop ,

1.0, (227 , 227) , MEAN_VALUES , swapRB =False)
48

49 gender_net . setInput (face_blob)
50 gender_preds = gender_net . forward ()
51 gender_out = gender_classification [

gender_preds [0]. argmax ()]
52

53 age_net . setInput (face_blob)
54 age_preds = age_net . forward ()
55 age_out = age_classifications [age_preds [0].

argmax ()]
56

57 results . append ([filename , gender_out , age_out
])

58 i += 1
59 print (f" Elaborata immagine {i}")
60 except :
61 print (" Errore elaborazione immagine ")
62 results . append ([filename , "Error", "Error"])
63 continue
64 else:
65 print(f" Nessun volto rilevato in: { filename }")

53

Testing

66 results . append ([filename , "No face", "No face"])
67

68 df = pd. DataFrame (results , columns =[" Filename ", " Gender ", "Age
"])

69 df. to_excel (output_file , index=False)
70

71 if __name__ == " __main__ ":
72 dataset_path = " UTKFace "
73 output_file = " utkface_results .xlsx"
74 process_utkface_dataset (dataset_path , output_file)

Moreover, as seen in the code, the results are inserted into an Excel file
structured with [filename],[gender_prediction],[age_prediction]
to allow comparison of the results. The decision to include the filename
in the output file is due to the fact that each image in the dataset
is named in the format [age][gender][race]_[date&time].jpg[22].
In this way, with a small reformatting of the data, it became possible
to compare the dataset information with the results obtained from the
model and, accordingly, extract the results and the following confusion
matrices.

Figure 3.1: Age recognition confusion matrix

54

Testing

Figure 3.2: Gender recognition confusion matrix

From the confusion matrix related to Age/Gender measure-
ments, we can observe that most of the high values are located along
the diagonal, indicating that the model is fairly accurate, although the
presence of errors is not negligible. It can also be noted that many errors
are mainly distributed in adjacent classes. For example, individuals
in the (4-7) class are often confused with (0-3) and (8-14), while
individuals in the (22-37) class are incorrectly classified as (38-47).

This type of error may be due to the fact that aging does not follow
strict boundaries. Consequently, it is difficult for a machine learning
model to distinctly characterize the facial features of adjacent age
classes.

We also notice that the (60-116) class is often confused with (48-
59) or (38-47), which could mean that the model does not recognize
distinctive features of very elderly individuals.

From the gender detection confusion matrix, we can conclude
that the prediction is significantly more stable. The model has an
accuracy of around 80%, and we observe a clear difference between the

55

Testing

diagonal values and the other entries. This result was expected, as facial
differences between male and female subjects are more pronounced, and
there is a drastic reduction in the number of classes compared to age
classification.

3.2.2 Body Pose /People Counting

For the people counting test, we directly used the main program,
modifying the code segment responsible for video frame acquisition and
providing a 720p video file as input.

To evaluate the accuracy and reliability of body pose estimation
and people counting algorithms, we used two tennis match videos with
different characteristics:

• A match from the 2012 Australian Open, characterized by
professional recordings and fairly stable shots, ideal for evaluating
the model’s behavior under optimal conditions.

• A scene from a film by Paolo Villaggio [23], with less structured
recordings, lower resolution and overall video quality, and uncon-
ventional angles, useful for testing the algorithm’s robustness under
non-standard and more complex conditions.

The tests were repeated using three variants of the same YOLOv11-
Pose model:[24]:

• YOLOv11-n (Nano): the lightest and fastest model, specifically
designed for devices with limited computational resources, such as
embedded systems or edge devices.

• YOLOv11-s (Small): a compromise between speed and accuracy,
more powerful than YOLO-N but with excellent inference speed,
making it perfect for scenarios requiring a good balance between
performance and resource usage.

56

Testing

• YOLOv11-m (Medium): a much more accurate model com-
pared to YOLOv11-s, with more parameters and higher detection
capability, but at a significant computational cost.

To improve inference speed on devices with limited computing power,
such as our Raspberry Pi, we exported the model in NCNN format.
This is a framework developed by Tencent for high-performance neu-
ral network inference computation, specifically optimized for mobile
platforms.[25]

The choice to use NCNN over other frameworks is due to its signifi-
cantly higher inference speed compared to competing frameworks, as
illustrated in the following graph.[26]

Figure 3.3: Graph of inference times of different YOLO-compatible frameworks

Regarding the test results: In the Australian Open video, all three
models perform very well. The number of people and the body poses
found are practically the same, although there is an obvious difference
in measurement precision between the three models.

Also in the video excerpt from the Paolo Villaggio film, the three
models perform very well. Although in the scene the players are always
covered in fog, the models are always able to find the people present in
the image

57

Testing

Result from YOLOv11-n Result from YOLOv11-m

Result from YOLOv11-m

Result from YOLOv11-n Result from YOLOv11-s

Result from YOLOv11-m

Figure 3.4: Comparison of the results of the Australian Open and the film

58

Testing

Furthermore, it is interesting to note that in a frame of this video,
the fog is so thick that the person appears practically as a very light
shadow, but the most powerful model that we’re testing (YOLOv11-m)
is still able to predict the position of the subject.

The player covered by the fog Result from YOLOv11-m

Figure 3.5: Comparison of the frame and the model applied

3.2.3 Heart Rate detection

For heart rate detection testing, we considered three main situations:
natural light, direct artificial light, and indirect artificial light.
As a result, we conducted heart rate detection tests with the three
cameras chosen for the application, whose selection was explained in
Chapter 1. Additionally, we performed a test with a fourth camera, a
4K USB camera with autofocus and auto-exposure, because this allowed
us to reproduce the same three tests (natural light, direct artificial
light, and indirect artificial light) both on the test machine and on the
Raspberry Pi, in order to compare the results obtained.

The tests were all performed with the same subject stationary in
front of the camera for a total of 5 minutes while wearing a Garmin
VIVO on their wrist, which simultaneously measured the heart rate
using photoplethysmography (PPG) through an optical sensor.
The results were saved in a .csv file.

Regarding the test conditions:
59

Testing

• For the tests with natural light, we positioned a tripod near
a window, trying as much as possible to achieve similar lighting
conditions, particularly with a cloudy sky, to have the most diffused
light possible. This was because direct light could have "burned"
the image, thus distorting the measurement.

• For the tests direct and indirect artificial light, the camera was
placed slightly in front of a warm light source: Facing the subject’s
face in the case of the direct artificial light test and pointed at a
white wall for the indirect artificial light test, so as to diffuse the
light evenly.

All the measurements performed were processed in post-processing
to compare them with the values from the .csv file, the output of the
Garmin. Here is an overview of what we did with the data obtained
from the script:

• Created a pivot table to gather all the measurements from the
same color channel related to the same second, so they could be
averaged and compared to the measurements from the Garmin,
which takes a reading every second.

• Applied a 5-second moving average to the averaged data to achieve
more uniform measurements.

• Calculated a weighted average of the Red, Green, and Blue color
channel results to obtain a smoother measurement, using 20%R-
60%G-20%B thus giving greater weight to the values extracted
from the green channel [27].

– The only exception was the Raspberry HQ Camera:
Here we applied a different weighted average giving more im-
portance to the Blue channel compared to the Red channel.
This is because the camera has an IR filter, and consequently,

60

Testing

it tends to give more accurate values on the Blue channel. We
therefore applied a weighted average of 20%R-20%G-60%B.

• Finally, we compared the HR signal derived from the Garmin with
our measurements to generate a comparison graph and reliability
values computed respect our goal of 15 BPM maximum error.

Figure 3.6: Natural light test environ-
ment

Figure 3.7: Direct artificial light envi-
ronment

Figure 3.8: Indirect artificial light en-
vironment

Let’s now look at some of the main numerical results of the tests we
have performed. Each of the graphs drawn for each measurement are
available in the appropriate appendices A,B,C and D.

61

Testing

USB Camera

In the table below, we can see the reliability values of the measurements
performed by the script in the three light conditions tested using the
same USB camera on both devices.

Figure 3.9: Reliability table of the misuration of the two devices

We can observe that, in general, both solutions perform well under
these lighting conditions, with accuracy values consistently exceeding
80%. As expected, the highest accuracy values are obtained under
natural light conditions, particularly in measurements taken on the
forehead. Except for a few exceptions, both solutions seem to follow
more or less the same pattern. Consequently, since their values are
very similar, we can conclude that both solutions are reliable. We can
also observe, from the graphs in Appendix A, that in both tests, the
values obtained by the script follow those recorded by the Garmin
with obvious exceptions due to the imperfect measurement environment

Raspberry Camera v3 and v3 wide

Just like in the previous paragraph, we analyze the numerical reliability
results of these two cameras. We chose to discuss them together because
they share the same sensor but not the same aperture (f) value.

Figure 3.10: Reliability table of the misuration of the camera v3

As shown in the tables, both cameras perform quite well under
natural and direct artificial light conditions. However, the V3 has

62

Testing

Figure 3.11: Reliability table of the misuration of the camera v3

significantly lower accuracy values compared to the Wide under indirect
artificial lighting.

Looking at the graphs in Appendices B and C, we can see that the
values predicted by the script are always higher than the actual Garmin
readings and those from the V3 Wide camera. This could be due to
the fact that the V3 has a much lower aperture (f) value than the V3
Wide. Consequently, the error could be caused by a greater amount of
light entering the sensor, despite the same lighting conditions used in
the test.

Raspberry HQ Camera

As you can see from the table below, the camera in question appears
to be the one with the highest accuracy values across all conditions

Figure 3.12: Reliability table of the misuration of the HQ camera

In fact, along with the USB camera used and described earlier, it is
one of the cameras with the highest sensor quality in terms of megapix-
els and lens.

Furthermore, by comparing the values obtained in the table with the
graphs presented in Appendix D, this camera is the one whose values
deviate the least from the Garmin measurement. Considering its weight
and size, it seems to be the best candidate for our application.

63

Testing

3.3 Hardware Testing

Now that we have verified that all the code works correctly, we need to
determine whether the device can actually function when powered by a
battery, ensuring complete self-sufficiency. For this reason, we started
by connecting the power bank to the decoy via a USB-C/USB-C
cable, as explained in the first chapter, to request 12V from the power
bank. Then, we soldered two wires to the terminals of the decoy and
connected the other ends to a step-down converter, allowing us to use
its 5V USB-A output to power the Raspberry via a USB-A/USB-C
cable.

Figure 3.13: Test of the first chain

With this setup, the Raspberry was able to boot up and perform
basic operations. However, as soon as it started the first inference
using the YOLO model, the board would suddenly shut down. We
immediately suspected that the issue was caused by the overclocking
of the raspberry, which likely required more power than our power
supply circuit could provide.
We performed this overclock to improve performance by simply modi-
fying the config.txt configuration file. We then added 3 lines, namely:
force_turbo=1, arm_freq=2900, and GPU_freq=1000 and in the same
way we can gradually decrease the clock frequency until we reached

64

Testing

the base frequency to check our theory, as shown in the table below:

Figure 3.14: Test with all the Clock frequency

As you can see, even at the default clock frequency, the board shut
down shortly after the script started executing. We then connected an
oscilloscope to the output of the decoy and observed that the voltage
was stable, both on the decoy and on the step-down converter.
However, as soon as the program started the first YOLO inference, the
voltage dropped below 4.7V. Even after attempting to modify the code
to prevent the board from shutting down due to protection mechanisms,
execution remained unstable. To address this, we tried connecting two
step-down converters in parallel to ensure a stable 5V supply
and then repeated the test.

Figure 3.15: Test with the stepdown connected in parallel

65

Testing

However, using the oscilloscope, we noticed that although the voltage
was 5.1V, the Raspberry was not requesting the necessary power from
the decoy PD 2.0. As a result, the Raspberry continued shutting
down during testing. Additionally, connecting two power supplies in
parallel introduced a ripple of approximately 500mV, which led us to
seek another solution.

Figure 3.16: Ripple shown by the oscilloscope

Ultimately, we decided to underclock the Raspberry, reducing
the CPU frequency to 2GHz, compared to its default 2.5GHz and
2.9GHz in overclocked mode. With this configuration, we managed
to keep the board running in BOTH mode, simultaneously execut-
ing YOLO, FaceMesh, and models for age, gender, and heart
rate estimation, while also streaming the video output via a Flask
server running directly on the Raspberry.All this only connecting the
Raspberry directly to the power bank, removing all intermediary
circuits, achieving a stable and fully functional system.

66

Testing

Figure 3.17: Raspberry connected
to the only power bank

Figure 3.18: The output video of
the Raspberry streamed

67

Conclusions

In this thesis project, we focused on the development of a device capable
of detecting physiological values of individuals during search and rescue
(SAR) missions. We first analyzed and selected the necessary compo-
nents, considering weight, cost, and performance, and then developed
a script capable of estimating age, biological gender, and heart rate.
Additionally, the system can detect both stationary and moving people
in real time, with the possibility of streaming the output to a local
network.

The results we obtained were reasonably good, particularly in terms
of body counting and body detection, biological gender estimation (with
positive estimates above 80

Although the results obtained could have significant applications
in SAR missions, helping estimate the number of people, their age,
biological gender, and health status, they are not without limitations.

Indeed, at the current state of the art, the age detection model may
not be accurate enough, and the algorithm’s ability to estimate the
heart rate of a single subject might not be sufficient for real-world
applications. Furthermore, the decision to underclock the machine
could have repercussions on the real-time application of the device.

For future research, in my opinion, it would be necessary to focus on
ensuring a stable power supply, so the device can request and utilize
all the necessary power. I also believe that, in addition to focusing on
developing stable and accurate models, it is essential to conduct an

68

Conclusions

in-depth study and testing of optimized models that can run on low-
power machines, aiming to minimize the consumption of computational
resources, such as memory and processing power.

69

Appendix A

USB Camera

Figure A.1: PC results of forehead in natural light conditions

Figure A.2: Raspberry results of forehead in natural light conditions

70

USB Camera

Figure A.3: PC results of left cheek in natural light conditions

Figure A.4: Raspberry results of left cheek in natural light conditions

Figure A.5: PC results of right cheek in natural light conditions

Figure A.6: Raspberry results of right cheek in natural light conditions

71

USB Camera

Figure A.7: PC results of total face in natural light conditions

Figure A.8: Raspberry results of total in natural light conditions

Figure A.9: PC results of forehead in direct artificial light conditions

Figure A.10: Raspberry results of forehead in direct artificial light conditions

72

USB Camera

Figure A.11: PC results of left cheek in direct artificial light conditions

Figure A.12: Raspberry results of left cheek in direct artificial light conditions

Figure A.13: PC results of right cheek in direct artificial light conditions

Figure A.14: Raspberry results of right cheek in direct artificial light conditions

73

USB Camera

Figure A.15: PC results of total face in direct artificial light conditions

Figure A.16: Raspberry results of total face in direct artificial light conditions

Figure A.17: PC results of forehead in indirect artificial light conditions

Figure A.18: Raspberry results of forehead in indirect artificial light conditions

74

USB Camera

Figure A.19: PC results of left cheek in indirect artificial light conditions

Figure A.20: Raspberry results of left cheek in indirect artificial light conditions

Figure A.21: PC results of right cheek in indirect artificial light conditions

Figure A.22: Raspberry results of right cheek in indirect artificial light conditions

75

USB Camera

Figure A.23: PC results of total face in indirect artificial light conditions

Figure A.24: Raspberry results of total face in indirect artificial light conditions

76

Appendix B

Raspberry Camera v3

Figure B.1: Results of forehead in natural light conditions

Figure B.2: Results of left cheek in natural light conditions

77

Raspberry Camera v3

Figure B.3: Results of right cheek in natural light conditions

Figure B.4: Results of total face in natural light conditions

Figure B.5: Results of forehead in direct artificial light conditions

Figure B.6: Results of left cheek in direct artificial light conditions

78

Raspberry Camera v3

Figure B.7: Results of right cheek in direct artificial light conditions

Figure B.8: Results of total face in direct artificial light conditions

Figure B.9: Results of forehead in indirect artificial light conditions

Figure B.10: Results of left cheek in indirect artificial light conditions

79

Raspberry Camera v3

Figure B.11: Results of right cheek in indirect artificial light conditions

Figure B.12: Results of total face in indirect artificial light conditions

80

Appendix C

Raspberry Camera v3 Wide

Figure C.1: Results of forehead in natural light conditions

Figure C.2: Results of left cheek in natural light conditions

81

Raspberry Camera v3 Wide

Figure C.3: Results of right cheek in natural light conditions

Figure C.4: Results of total face in natural light conditions

Figure C.5: Results of forehead in direct artificial light conditions

Figure C.6: Results of left cheek in direct artificial light conditions

82

Raspberry Camera v3 Wide

Figure C.7: Results of right cheek in direct artificial light conditions

Figure C.8: Results of total face in direct artificial light conditions

Figure C.9: Results of forehead in indirect artificial light conditions

Figure C.10: Results of left cheek in indirect artificial light conditions

83

Raspberry Camera v3 Wide

Figure C.11: Results of right cheek in indirect artificial light conditions

Figure C.12: Results of total face in indirect artificial light conditions

84

Appendix D

Raspberry HQ Camera

Figure D.1: Results of forehead in natural light conditions

Figure D.2: Results of left cheek in natural light conditions

85

Raspberry HQ Camera

Figure D.3: Results of right cheek in natural light conditions

Figure D.4: Results of total face in natural light conditions

Figure D.5: Results of forehead in direct artificial light conditions

Figure D.6: Results of left cheek in direct artificial light conditions

86

Raspberry HQ Camera

Figure D.7: Results of right cheek in direct artificial light conditions

Figure D.8: Results of total face in direct artificial light conditions

Figure D.9: Results of forehead in indirect artificial light conditions

Figure D.10: Results of left cheek in indirect artificial light conditions

87

Raspberry HQ Camera

Figure D.11: Results of right cheek in indirect artificial light conditions

Figure D.12: Results of total face in indirect artificial light conditions

88

Bibliography

[1] Raspberry Pi Foundation. Raspberry Pi 5 Product Brief. Accessed: 2025-03-09.
2025. url: https://datasheets.raspberrypi.com/rpi5/raspberry-pi-
5-product-brief.pdf (cit. on pp. 3, 6).

[2] Raspberry Pi Foundation. Camera Module 3 Product Brief. Accessed: 2025-
03-09. 2025. url: https://datasheets.raspberrypi.com/camera/camera-
module-3-product-brief.pdf (cit. on pp. 6, 14).

[3] Raspberry Pi Foundation. Camera Module 3 (Wide) Product Brief. Accessed:
2025-03-09. 2025. url: https://datasheets.raspberrypi.com/camera/
camera-module-3-product-brief.pdf (cit. on pp. 6, 16).

[4] Raspberry Pi Foundation. Camera Module 3 (HQ) Product Brief. Accessed:
2025-03-09. 2025. url: https://datasheets.raspberrypi.com/camera/
camera-module-3-product-brief.pdf (cit. on pp. 6, 18).

[5] Raspberry Pi Foundation. Raspberry Pi Active Cooler Product Brief. Accessed:
2025-03-09. 2025. url: https://datasheets.raspberrypi.com/cooling/
raspberry-pi-active-cooler-product-brief.pdf (cit. on p. 6).

[6] Arducam. Arducam CS-Mount Lens for Raspberry Pi HQ Camera 8mm Focal
Length with Manual Focus and Adjustable Aperture. Accessed: 2025-03-09.
2025. url: https://www.arducam.com/product/arducam-cs-mount-lens-
for-raspberry-pi-hq-camera-8mm-focal-length-with-manual-focus-
and-adjustable-aperture/ (cit. on p. 18).

[7] OpenCV Team. OpenCV: Open Source Computer Vision Library. Online.
Available: https://docs.opencv.org/4.10.0/d1/dfb/intro.html. 2024
(cit. on p. 22).

[8] Anaconda. Working with Conda Environments. Accessed: March 6, 2025.
2024. url: https://www.anaconda.com/docs/tools/working- with-
conda/environments?utm_source=chatgpt.com (cit. on p. 22).

[9] Google AI. MediaPipe Solutions Guide. Accessed: 2025-03-06. 2024. url:
https://ai.google.dev/edge/mediapipe/solutions/guide?hl=it (cit.
on p. 22).

89

https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/camera/camera-module-3-product-brief.pdf
https://datasheets.raspberrypi.com/cooling/raspberry-pi-active-cooler-product-brief.pdf
https://datasheets.raspberrypi.com/cooling/raspberry-pi-active-cooler-product-brief.pdf
https://www.arducam.com/product/arducam-cs-mount-lens-for-raspberry-pi-hq-camera-8mm-focal-length-with-manual-focus-and-adjustable-aperture/
https://www.arducam.com/product/arducam-cs-mount-lens-for-raspberry-pi-hq-camera-8mm-focal-length-with-manual-focus-and-adjustable-aperture/
https://www.arducam.com/product/arducam-cs-mount-lens-for-raspberry-pi-hq-camera-8mm-focal-length-with-manual-focus-and-adjustable-aperture/
https://docs.opencv.org/4.10.0/d1/dfb/intro.html
https://www.anaconda.com/docs/tools/working-with-conda/environments?utm_source=chatgpt.com
https://www.anaconda.com/docs/tools/working-with-conda/environments?utm_source=chatgpt.com
https://ai.google.dev/edge/mediapipe/solutions/guide?hl=it

BIBLIOGRAPHY

[10] Satya Mallick. Introduction to MediaPipe. Accessed: 2025-03-06. 2023. url:
https://learnopencv.com/introduction-to-mediapipe/ (cit. on p. 22).

[11] HeartPy Team. HeartPy: Python Toolkit for Heart Rate Analysis. Accessed:
2025-03-06. 2024. url: https://python-heart-rate-analysis-toolkit.
readthedocs.io/ (cit. on p. 23).

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. «You
Only Look Once: Unified, Real-Time Object Detection». In: arXiv preprint
arXiv:1506.02640 (2015). url: https://arxiv.org/abs/1506.02640 (cit.
on p. 23).

[13] MediaPipe Documentation. Getting Started - Troubleshooting. Accessed: 2025-
02-08. 2024. url: https : / / mediapipe . readthedocs . io / en / latest /
getting_started/troubleshooting.html (cit. on p. 23).

[14] Python Software Foundation. Thread State and the Global Interpreter Lock.
Accessed: 2025-03-06. 2021. url: https://docs.python.org/3.10/c-api/i
nit.html?highlight=gil#thread-state-and-the-global-interpreter-
lock (cit. on p. 23).

[15] Google. Face Mesh with Mediapipe. Accessed: 2025-03-06. 2024. url: https:
//colab.research.google.com/github/spmallick/learnopencv/blob/
master/Introduction- to- MediaPipe/MediaPipe- sample- solutions.
ipynb (cit. on p. 27).

[16] Google AI. MediaPipe Face Mesh. Accessed: 2025-03-06. 2025. url: https://
github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/
face_mesh.md (cit. on p. 32).

[17] Google Developers. MediaPipe 3D Face Transform. Accessed: 2025-03-06.
2020. url: https://developers.googleblog.com/en/mediapipe- 3d-
face-transform/ (cit. on p. 32).

[18] Patrik Hansen, Marianela García Lozano, Farzad Kamrani, and Joel Bryniels-
son. «Real-Time Estimation of Heart Rate in Situations Characterized by
Dynamic Illumination using Remote Photoplethysmography». In: Proceedings
of the Conference on Remote Photoplethysmography. FOI Swedish Defence
Research Agency and KTH Royal Institute of Technology. 2023 (cit. on p. 33).

[19] Karan Chopra et al. «A Comprehensive Examination of Topographic Thick-
ness of Skin in the Human Face». In: Aesthetic Surgery Journal 35.8 (2015),
pp. 1007–1013 (cit. on p. 33).

[20] Linux Kernel Documentation. Video4Linux2 (V4L2) API documentation.
Accessed: 2025-03-09. 2017. url: https://www.kernel.org/doc/html/v4.
9/media/uapi/v4l/common.html (cit. on p. 49).

90

https://learnopencv.com/introduction-to-mediapipe/
https://python-heart-rate-analysis-toolkit.readthedocs.io/
https://python-heart-rate-analysis-toolkit.readthedocs.io/
https://arxiv.org/abs/1506.02640
https://mediapipe.readthedocs.io/en/latest/getting_started/troubleshooting.html
https://mediapipe.readthedocs.io/en/latest/getting_started/troubleshooting.html
https://docs.python.org/3.10/c-api/init.html?highlight=gil#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3.10/c-api/init.html?highlight=gil#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3.10/c-api/init.html?highlight=gil#thread-state-and-the-global-interpreter-lock
https://colab.research.google.com/github/spmallick/learnopencv/blob/master/Introduction-to-MediaPipe/MediaPipe-sample-solutions.ipynb
https://colab.research.google.com/github/spmallick/learnopencv/blob/master/Introduction-to-MediaPipe/MediaPipe-sample-solutions.ipynb
https://colab.research.google.com/github/spmallick/learnopencv/blob/master/Introduction-to-MediaPipe/MediaPipe-sample-solutions.ipynb
https://colab.research.google.com/github/spmallick/learnopencv/blob/master/Introduction-to-MediaPipe/MediaPipe-sample-solutions.ipynb
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/face_mesh.md
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/face_mesh.md
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/face_mesh.md
https://developers.googleblog.com/en/mediapipe-3d-face-transform/
https://developers.googleblog.com/en/mediapipe-3d-face-transform/
https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/common.html
https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/common.html

BIBLIOGRAPHY

[21] Raspberry Pi Foundation. Raspberry Pi Camera Guide. Accessed: 2025-03-09.
2025. url: https://datasheets.raspberrypi.com/camera/raspberry-
pi-camera-guide.pdf (cit. on p. 49).

[22] SusanQQ. UTKFace: A Large-Scale Dataset for Age, Gender, and Ethnicity
Classification. Accessed: 2025-03-29. 2021. url: https://susanqq.github.
io/UTKFace/ (cit. on pp. 52, 54).

[23] Gigi Reder Paolo Villaggio Anna Mazzamauro. Fantozzi. Accessed: 2024-03-30.
1975. url: https://www.imdb.com/title/tt0071489/ (cit. on p. 56).

[24] Ultralytics. YOLOv11 Documentation. https://docs.ultralytics.com/
it/models/yolo11/?utm_source=chatgpt.com#supported-tasks-and-
modes. 2024 (cit. on p. 56).

[25] Ultralytics. NCNN Integration and Installation Guide. Accessed: 2024-03-30.
2024. url: https://docs.ultralytics.com/it/integrations/ncnn/
#installation (cit. on p. 57).

[26] Ultralytics. YOLOv11 on Raspberry Pi. Accessed: 2024-03-30. 2024. url:
https://docs.ultralytics.com/it/guides/raspberry-pi/#convert-
model-to-ncnn-and-run-inference (cit. on p. 57).

[27] Rodrigo Castellano Ontiveros, Mohamed Elgendi, Giuseppe Missale, and
Carlo Menon. «Evaluating RGB channels in remote photoplethysmography:
a comparative study with contact-based PPG». In: Frontiers in Physiology
14 (2023). issn: 1664-042X. doi: 10 . 3389 / fphys . 2023 . 1296277. url:
https://www.frontiersin.org/journals/physiology/articles/10.
3389/fphys.2023.1296277 (cit. on p. 60).

91

https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf
https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf
https://susanqq.github.io/UTKFace/
https://susanqq.github.io/UTKFace/
https://www.imdb.com/title/tt0071489/
https://docs.ultralytics.com/it/models/yolo11/?utm_source=chatgpt.com##supported-tasks-and-modes
https://docs.ultralytics.com/it/models/yolo11/?utm_source=chatgpt.com##supported-tasks-and-modes
https://docs.ultralytics.com/it/models/yolo11/?utm_source=chatgpt.com##supported-tasks-and-modes
https://docs.ultralytics.com/it/integrations/ncnn/#installation
https://docs.ultralytics.com/it/integrations/ncnn/#installation
https://docs.ultralytics.com/it/guides/raspberry-pi/#convert-model-to-ncnn-and-run-inference
https://docs.ultralytics.com/it/guides/raspberry-pi/#convert-model-to-ncnn-and-run-inference
https://doi.org/10.3389/fphys.2023.1296277
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1296277
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1296277

	List of Tables
	List of Figures
	The choice of components
	Introduction
	Hardware Selection
	Single Board Computer
	Battery Module
	Cameras

	3D Printed Support

	Code description
	Introduction
	Main structure of the code
	HR/Age/Gender Recognition
	People counting and Body Pose detection
	Video Streaming
	Raspberry Pi Adaptations

	Testing
	Introduction
	Software
	Age/Gender Detection
	Body Pose detection /People Counting
	Heart Rate detection

	Hardware Testing

	USB Camera
	Raspberry Camera v3
	Raspberry Camera v3 Wide
	Raspberry HQ Camera
	Bibliography

