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Summary

In the wake of escalating global environmental challenges, sustainable waste man-
agement practices have emerged as a major concern. The need for efficient recycling
strategies has been evolving. Recycling has become more and more popular and
adopted amongst most of people lives. There is a need to find easier and more
attractive ways to encourage people to recycle more and more accurately.

In this context, recycling practices with state-of-the-art natural language pro-
cessing technologies present an opportunity to improve the way we approach waste
management. For the past 10 years, the technological advancements in Deep Natu-
ral Language Processing (DNLP) have been a huge milestone in the field of Artificial
Intelligence (AI). Since 2017, with the paper ”Attention is All You Need” [1], DNLP
has progressed at a rapid rate, leveraging for broader and more advanced applica-
tions. Every day, new technologies, new models, and papers give the opportunity
to explore new original ways to solve various problems of all kinds.

This thesis embeds the development of a new recycling approach in a more
intuitive way. It combines different state-of-the-art and recent models to create
a speech-to-classification pipeline consisting of two different steps: a speech-to-
text phase and then a classification phase. We create a new ”user experience”
of throwing waste and recycling. This thesis also presents the different steps of
creating datasets to train and evaluate the models and the pipeline using different
models, from text datasets in English and Italian to audio datasets in Italian.
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Chapter 1

Introduction

1.1 Introduction

Waste management refers to the collection, transportation, processing, and disposal
of waste materials produced by human activities. This complex system is a crucial
aspect of modern life, as the quantity of wastes generated continues to rise over
time, playing a vital role in mitigating the environmental impact of our consumption
habits. There is typically 5 types of waste management, varying in sustainability
and ecological impact:

1. reduce : Cut down on the initial resources needed to lessen eventual waste

2. reuse : Prolong a product’s lifespan to get the most out of the material

3. Recycle : Turn waste into new products as part of an effective circular
economy model

4. Recovery : Use waste to generate energy, extracting value from it that can’t
be repurposed

5. Landfill : A last resort for waste disposal, safely ensuring it’s contained and
doesn’t leak into the environment

Effective waste management requires a collaborative effort. Individuals can
contribute by actively participating in recycling programs, reducing waste genera-
tion through mindful consumption, and advocating for policies that promote waste
reduction and resource conservation. Communities can organize educational ini-
tiatives and implement waste collection systems encouraging proper sorting and
disposal.

Governments have a significant role to play by establishing regulations, pro-
moting sustainable practices, and investing in infrastructure. The European Union
exemplifies this approach by setting ambitious goals for waste management. The
aim is to significantly reduce the amount of municipal waste ending up in landfills.
By 2035, Member States are required to take necessary measures to ensure that no
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Introduction

more than 25% of the total municipal waste generated is disposed of in landfills1. In
some countries, like Bulgaria and Romania, more than 60% of the municipal waste
is disposed of in landfills, and in Europe, 40.8% of the waste is recycled. Actually,
Italy is the leading country in Europe in waste recovery by recycling2.

Achieving these goals depends on the active participation of citizens. However,
navigating the complexity of waste disposal can be challenging. Confusing regu-
lations and unclear labeling can lead to incorrect waste sorting, depending on the
effectiveness of waste management programs. This highlights the need for clear
communication, educational and intuitive initiatives to encourage individuals to
make accurate choices about waste disposal.

Furthermore, waste management must evolve to address waste’s growing volume
and complexity. Technological advancements offer promising solutions. By working
together, individuals, communities, and governments can create a more efficient and
sustainable waste management system, minimizing our environmental footprint and
ensuring a cleaner future for later generations.

Several companies are also taking action to promote waste management at dif-
ferent levels. ReLearn, an Italian startup that combines technology and dynamic
education with a data-driven approach to help people adopt conscious behavior in
terms of waste production, is one of these, as it is contributing to the EU Sustain-
able Development Goals (UN-SDGs) 9, 11, 12, 133. NANDO, ReLearn’s Artificial
Intelligence (AI) system, turns a regular bin into a smart bin through an AI-powered
sensor and a screen that allows user interaction. It enables the collection of accu-
rate data on the amount of waste produced and facilitates sustainability reporting,
reducing waste-related CO2 emissions and empowering the community.

In this thesis, we present a speech processing pipeline that allows users to in-
teract with NANDO using their voices, thus improving user experience. It follows
three steps:

• The user approaching the smart bin can ask where to dispose of a waste
object.

• The system processes the user’s voice and identifies the object category.

• The system provides an answer to the user with the target disposal bin.

The steps above have been achieved using state-of-the-art machine learning models
and specific datasets created for addressing this task.

1.2 ReLearn

This master thesis was proposed on behalf of ReLearn and contributed to making
this project real. ReLearn was founded in January 2021 based on the desire of a

1http://data.europa.eu/eli/dir/2018/850/oj

2https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_

statistics

3https://www.undp.org/european-union/sustainable-development-goals
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Introduction

group of university colleagues to harness their academic and professional skills to
drive sustainable innovation.

ReLearn’s smart sensor, NANDO, is the first waste monitoring tool to constantly
monitor waste production with professional reporting while spreading sustainable
practices to the community engagingly.

NANDO’s main focus is to bring a waste-free lifestyle into everyone’s daily
routine: ReLearn is the first company able to monitor the waste directly in the
place in which they are produced and, at the same time, educate the users. A
problem cannot be fixed if it is not monitored.

ReLearn installs the small IoT sensor on a customer’s existing bins and then
uses artificial intelligence to collect data on the amount and type of waste produced
daily.

• MONITORING AND REPORTING: NANDO reports the quantity and qual-
ity of waste through precise data on a waste monitoring dashboard, creating
a professional report according to the GRI 306 standard. Customers can also
monitor their live recycling rate, recycling trends, and the filling level of the
bins.

• EDUCATION: NANDO spreads sustainable practices to achieve the best re-
cycling rate in an office space. A tablet helps to identify which bin the waste
should go to depending on waste disposal regulations in the region. More-
over, it constantly communicates with users: it is able to understand and
warn users if they have thrown the waste in the correct container or correct
them if they have made a mistake!

• IMPROVEMENT: Thanks to this monitoring, reporting, and education pro-
cess, NANDO guarantees an increase in the company’s recycling rate of +58%.
If the company reduces its environmental impact and carbon footprint, it will
only do so because its community is acting responsibly.

3



Chapter 2

State of the Art

The designed speech processing pipeline consists of several stages:

- voice acquisition,

- Automatic Speech Recognition (ASR in the following),

- an optional automatic translation,

- text classification,

- and response to the user.

Each pipeline stage leverages state-of-the-art models and techniques that have
shown promising results in recent studies, particularly with the Transformers ar-
chitecture.

2.1 Transformers

Transformers are a type of model architecture introduced in the paper ”Attention
is All You Need” [1] in 2017, considered an inflection point in modern Natural
Language Processing. They have since become the foundation for most (if not
all) state-of-the-art Natural Language Processing/Understanding models and close
fields, such as automatic speech recognition and generation. They are based orig-
inally on an encoder/decoder architecture, similar to previous architectures, and
introduce the attention mechanism.

Figure 2.1 depicts a typical and simplistic encoder decoder architecture typically
used in sequence-to-sequence tasks such as translation. It is interesting to notice
the encoder and decoder are note inter-dependent but can be used independently
depending on the context of the task as we’ll explain later.

The encoder and decoder are both transformers-based. All transformers are
made of the same components:

- A tokenizer.

4
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Encoder Decoder

Transformers

Je suis ton père io sono i tuo padre

Figure 2.1: Encoder-Decoder Architecture

- An embedding layers.

- The transformer layers, composed of feed-forward network and multi-head
attention.

- An un-embedding layer.

2.1.1 Embeddings

The tokenizer role is to map the discrete text input data into numerical data, such
as one-hot vocabulary encoding for instance. This tokenized vector is then passed
through the embedding layer.

The role of the embedding layer is to produce embedding vectors. An embedding
vector represents a word, also designated as token, in a new continuous space with a
certain number of dimensions demb. This vector alone does not carry much semantic
information since it is not contextualised within the input sequence. To solve this
problem, the transformer model performs what is called a Positional Encoding.
It consists of adding information about the word regarding the input sequence,
typically its position in the input sequence.

The output of the decoder is the passed through an un-embedding layer. The
role of the un-embedding layer serves as the opposite of the embedding layer, taking
a vector and transforms it into a probability vector over a set of predefined tokens
(like the input vocabulary). So the role of the un-embedding is to map continuous
vectors representation back to discrete tokens.

2.1.2 Core Principle of the Transformers

The encoder and decoder themselves are composed of 2 alternating layers: the atten-
tion layer and the feed-forward layer. These two layers are what really characterise
the transformer architecture.

Attention Layer

Attention in Machine Learning is the process to calculate the importance of inter-
dependencies between components, in our case tokens, in a sequence. This task

5
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encompasses the principal principle of Natural Language Processing and the atten-
tion layer has revolutionised our capability to construct model with understanding
capacity better than ever.

The Attention Layer corresponds to stacked Attention Head, also called scaled
dot-product units. One attention head is composed of three different trainable
weight matrices: the query W q, key W k and value W v weights. To compute the
attention, we want the query Q, key K, and value V matrices, obtained by mul-
tiplying the weight matrices with corresponding Xquery, key Xkey and value Xvalue

vectors obtained from the input vector. These vectors are build depending on the
specific usage of the transformers. We speak of self-attention when all the queries,
keys, and values vectors are extracted from the same sequence. For instance, with
an encoder-only model such as BERT, all the input vectors are a same input vector
X due to the self-supervised nature of the training. So we would have these 3
matrices:

Q = XW q

K = XW k

V = XW v

The (self-)attention score is obtained by performing a Scaled Dot-Product At-
tention transformation. The query and key are combined using the dot product,
computing the similarity, or attention scores, between queries and keys. The whole
is then scaled according to the dimension dk to prevent large values. The whole is
then transformed in probabilities by applying the softmax function, resulting in the
Attention weights between the inputs. Each coefficient of this matrix corresponds
to a similarity score between the query and keys. The whole is then multiplied by
the value matrix to obtain a weighted sum.

Attention(Q,K, V ) = softmax

(

QK⊤

√
dk

)

V

These transformations aim to extract features with ”high attention” by mim-
icking the retrieval of a value for a query on some keys, focusing on specific passage
of the input.

Dot product Scaling Softmax

MatMul Attention(Q, K, V)

Q

K

V

Figure 2.2: Attention Head
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Figure 2.2 depicts the flow chart for the scaled dot product attention. It is
important to remember that Q, K and V are matrices while the attention score is
a weighted sum, so a number.

A stack of multiple attention heads is called a multi-head attention. Each atten-
tion head focuses on a specific portion of the input and has a different set of query,
key, and value weights matrices (W q,W k,W v), allowing the mapping of different
kinds of relationships from the same input. The output of each attention head is
then concatenated into a new vector. Each multi-head attention has a learnable
projection matrix W o, allowing the concatenated output to have the right dimen-
sion.

MultiHead(Q,K, V ) = [head1, . . . , headh]W
o

Unlike the scaled dot-product attention, the multi-head attention output is a
matrix and they shouldn’t be confused.

There are many advantages to using multiple-head attention. They can cap-
ture a broader range of dependencies and nuances in the input data, and it has
been proven that attention head has better results for a wide range of applications
compared to previous architectures. Also, because there is no recurrence in atten-
tion heads and each one is independent from one another, they can be processed
in parallel during model training and inference, allowing high-speed computation.
Leveraging these properties has enabled the construction of more prominent and
more powerful models scaling up two tens of billions of parameters and trained on
behemothic datasets ranging up to trillions of tokens !

Xq

XK

XV Wv

Attention Head
Attention Head

Attention Head Concat

Wq

Wk Wo MultiHead(Xq, Xk, Xv)Wo

Figure 2.3: Multi-head Attention

Figure 2.3 depicts the flow chart of the multi-head attention. The parallelisation
appears clearly, since most of the computation appears in the attention head, this
architecture is ideal for building large models with less computation overhead as
previous architectures.

Feed-Forward Layer

The feed-forward layer, more commonly established as Convolutional Neural Net-
work (CNN), is one of the two classic types of neural network. This architecture
characterised by an uni-directional information flow from the input to the output.

7
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Input

...

hidden layer

... ...

Output

...

hidden layer

Figure 2.4: Feed-Forward Architecture

Figure 2.4 represents a simple CNN characterised by nodes and links. The input
is a vector of dimension demb, typically the same dimension as the embedded input
vector. The network is composed of successive vertical layers called the hidden
layers of various dimension dlayer. These successive layers are fully connected,
meaning that a node is connected to all the nodes in the next layer. Each node
value is the weighted sum of the previous node values. This weighted sum is then
passed through an activation function. The goal of the activation function is to
introduce non-linearity in the output of the neurons, thus allowing to solve non-
trivial problems. In the original Attention paper, the activation function is the
ReLU function, lesser-known as Rectifier Linear Unit, which corresponds to a slope
if the input is positive and zero otherwise.

ReLU(x) = x+ = max(0, x)

The output layer/vector of the feedforward network is usually passed through a
softmax function to obtain probabilities. For a vector z = (z1, . . . , zn) correspond-
ing to the output of a feed-forward network for a classification with n classes, the
i-th component softmax layer output corresponds to:

σi(z) =
ezi

∑n

j=1 e
zj

The whole network is trained using the backpropagation algorithm, a gradient-
based algorithm used to modify the network weights for each input-output pair to
minimise a Loss function, or Cost function. This function evaluates the difference
between the network output and the actual output for a single input/output pair.
In other words, the algorithm minimises the cost function with respect to the real
values, called ground truth, of the training data.

8
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Encoder/Decoder Architecture

The encoder is a stack of identical layers composed of alternating multi-head at-
tention (Figure 2.3) and feed-forward layers (Figure 2.4). Its goal is to process the
embedded input sequence and transform it into a fixed-size representation, cap-
turing the semantic information of the input. The output vector is often called
context representation or latent representation, which is a dense representation of
the input.

The decoder is also a stack of identical layers composed of alternating multi-
head and feed-forward layers. In a decoder architecture, such as GPT, the input
is tokenized and passed through an embedding layer applying positional token em-
bedding before feeding it to the alternating layers of the transformers. The output
vectors are generated one after another by predicting the next element of the output
sequence, conditioned by the previous outputs and context vectors.

The encoder and decoder work well together on many tasks, such as transla-
tion, text summarisation, or text generation. The decoder follows the encoder and
takes context vectors from the encoder output to generate the output sequence.
They can also be independently used for other tasks that wouldn’t require both
elements. For instance, BERT [2] architecture is solely based on the encoder part,
such that its output is a contextual vector embedding of the input sequence (and
not only a token embedding). This architecture works best for tasks that does not
require the generation Natural Language, such as sentiment analysis, also called
text classification or question answering.

Transformers revolutionised language processing with the self-attention mech-
anism allowing the models to weigh the importance of different input parts, over-
coming the limitations of previous models in Natural Language Processing, such
as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs).
This parallel processing capability enables faster training of large models, with up
to billions of parameters, on large datasets, with up to trillions of words. During the
past few years, we have witnessed the rise of what we call Large Language Models,
or LLMs. As suggested by its name, they are models with a very large number of
parameters trained on massive amounts of data, allowing these models to enable
human-like performances on a wide range of complex tasks without further training
or fine-tuning, thus the term pre-trained. The goal is to have a unified architecture
for many tasks.

2.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR), also called Speech-To-Text (STT), is the task
of converting spoken language into text. The first research on speech recognition
dates back to the 1950s and has never stopped since. This field has hugely bene-
fited from the advances in Deep Learning and, more recently, in Natural Language
Processing, leading to significant improvements in several downstream tasks [4, 5],
including ASR.

9
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ASR model I am your father

Audio
input

Textual
output

Figure 2.5: ASR pipeline

Those models usually have a encoder-decoder architecture due to the sequence-
to-sequence nature of the task and are trained on large-scale datasets, using self-
supervised learning [6, 7] to learn audio representations. The encoder produces
previous context vectors, but on audio snippets rather than on text snippets, that
can be used for downstream tasks such as speech classification, or supervised learn-
ing [8] to directly predict the text from the audio signal. In this thesis, we will not
use audio representations; thus, we will not develop this aspect of ASR further.

In this part, we will elaborate on the technologies and principles used inWhisper
[8], a multilingual model made by OpenAI with state-of-the-art performances on
several ASR benchmarks. We will subsequently motivate this decision in Section
3.1.2. It is a transformer-based model composed of an encoder-decoder architecture.
Since ASR and various NLP tasks share many similarities, this architecture is
well-suited for these tasks. We can note that historically, both speech-to-text and
language processing have often benefited from the same technologies.

Audio representation and encoding

An audio signal is simply the addition of different single frequencies, in Hertz (Hz),
and their associated amplitude in Decibels (dB) over time, such as shown in Fig-
ure 2.6.

The encoder input is a pre-processed representation of the audio called log-
magnitude Mel spectrogram. Introduced in 1937, A Mel, after Melody, is a per-
ceptual scale designed to reproduce the human perception of frequencies. The
frequency describes the number of vibrations of a wave per second, while the pitch
measures the (human) perception between low and high frequencies. So the formula
between Hz and Mel is empirical, and the most common one is given by:

m = 2595 log10

(

1 +
f

700

)

This unit measure is specifically valuable for Deep Learning applications because
ASR aims to mimic how humans process speech.

Because the signal varies over time, it is depicted as a non-periodic signal making
it hard to analyse. To solve this issue, the signal is subdivided such that each
division can be approximated as a periodic signal. Periodic signals have been
widely studied for centuries within the field of signal processing, tracing back to

10
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(a) A signal of amplitude 1 and fre-
quency of 2 Hz

(b) A signal of amplitude 1 and fre-
quency of 6 Hz

(c) The sum of the previous signals

Figure 2.6: Representation of a signal decomposition

to numerical analysis principles from the 17th century ! Thus, it is easy to link a
signal and the Mel scale with few mathematical tools.

A Fourier transform is a mathematical transformation to break a signal (and
more generally a function) down into its frequencies, so into a sum of sine and
cosine functions. The Fourier transform has been widely studied over time, and
remarkably optimised algorithms exist to efficiently compute a Fourier transform
of any function, leveraging its mathematical properties. Thus, we can extract each
frequency and its associated amplitude by applying a Fourier transform to the signal
subdivisions. It is then easy to convert the frequencies from Herz to Mel.

Fourrier Transform

Figure 2.7: Representation of Fourier Transform

In the end, the Mel-spectrogram (Figure 2.8) is a visualisation of an audio signal
over time, such that the y-axis represents the frequencies of each subdivision, and
the amplitudes of each frequency are shown using a heatmap.

11
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Figure 2.8: Mel-spectrogram example

The encoder consists of a feature extractor based on a Convolutional Neural
Network (CNN) followed by a stack of transformer layers (multi-head attention) to
extract high-level features from the input audio signal, as described in the previous
Section.

The decoder is a transformer-based language model that predicts the transcrip-
tion of the input audio signal given the features extracted by the encoder.

The Whisper model is available in different sizes, ranging from tiny to large,
with the number of parameters increasing from 39M to 1.55B. While the large
version of the model has shown state-of-the-art performance on several benchmarks,
smaller versions may be more suitable for real-time applications due to their lower
computational requirements and faster inference time.

2.3 Text Classification

Text classification consists in the task of assigning a label to an input text.

Similarly to the ASR task, transformer-based models have shown state-of-the-
art performance on several text classification benchmarks. Text classification is a
broad term that includes different tasks. For instance, we have Natural Language
Inference (NLI), where the goal is to establish the relationship between two inputs,
or Grammatical Correctness, which is the task of assessing if a phrase is gram-
matically correct. Among the text classification tasks, we will focus on Sentiment
Analysis, which corresponds to a classical classification task. It consists of assigning
a label to a phrase according to a predefined list of classes.

To perform such a task, The encoder architecture is particularly appropriate.
Indeed, after a phrase is fed into an encoder, it is transformed into a fixed-size
vector, the embedding vector, capturing and carrying information about the phrase.

12
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I love NLP ! ??Text classification
Model

Positive

Negative

Figure 2.9: Sentiment Analysis

This embedded vector is then fed into classification layers, which is usually a Feed
Forward Network. It has the same number of outputs as the number of classes. A
softmax function is applied to transform its output in label probabilities.

Input Transformers Based
Encoder

Embedded
Vector

Feed Forward
Network

Softmax
Function logits

Figure 2.10: Text Classification Architecture Pipeline

For a vector z = (z1, . . . , zn) corresponding to the output of a feed-forward
network for classification with n classes, the i-th component softmax layer output
corresponds to:

σi(z) =
ezi

∑n

j=1 e
zj

BERT [2], standing for Bidirectional Encoder Representations from Transform-
ers, launched by Google in 2018, is an encoder-only model designed for natural
language understanding tasks and is among the first transformer-based models
that have shown significant improvements in several Natural Language Processing
tasks. This model has been widely used, and since we are using it, we are going to
elaborate on some of its specificities.

It consists of a stack of transformer layers that analyse the input text in a
bidirectional way, allowing the model to capture the context of the input text.
Unlike the classical transformers model, and what was previously explained in 2.1,
where the attention mechanism was uni-directional from left to right, giving only
left-context, BERT proposes to capture context from left to right and right to left
directions allowing to capture complex semantic information and solve some issues,
like polysemy, so when a word changes meaning depending on the context.

It is pre-trained using self-supervised learning on large corpora and can be fine-
tuned on downstream tasks even with a small amount of labeled data using super-
vised learning. The self-supervised learning consists of two tasks: Masked Language
Modeling (LM and Next Sentence Prediction (NSP). Masked LM consists of mask-
ing a certain percentage of the input and then predicting the masked tokens using
the output of the transformer encoder. NSP is motivated by many downstream
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tasks consisting of understanding sentence relationships, such as Natural Language
Inference and Question Answering. The training consists of picking two phrases,
A and B, and choosing if B is the sentence following A, such that 50% of the time
B is the following sentence. Despite the tasks’ simplicity, they have proven to be
beneficial for some downstream tasks.

My

dog

is

hairy

My

dog

is

[MASK]

BERT
Masked LM

FFN +
Softmax Prediction

Figure 2.11: Masked Language Modeling
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playing
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BERT
NSP

??FFN

IsNext

[SEP]

NotNext

Figure 2.12: Next Sentence Prediction

RoBERTa [9] and DistilBERT [10] are some of the models that have been pro-
posed as improvements to the original BERT model. RoBERTa is trained using
slightly different pre-training objectives (e.g., dynamic masking) and more data,
while DistilBERT is a distilled version of BERT that is trained using Knowledge
Distillation to create a smaller model that keeps most of the performance of the
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original model while being faster and more compact. The concept of Knowledge
Distillation is shown in Figure 2.4.

Intent classification is a specific text classification task and a fundamental con-
cept in Natural Language Processing that assigns a label to an input text repre-
senting the user’s intention and plays a critical role in understanding the underlying
purpose behind a user’s text input. To perform

In waste management, the goal is to classify the user’s request into one of the
available recycling options. Several intent classification datasets have been pro-
posed in the literature, each focusing on specific modalities (e.g., text, speech) and
domains (e.g., voice assistants, customer service). MASSIVE [11] is a large multi-
lingual dataset for text-based intent classification in the voice assistant domain. It
covers 1M+ utterances in more than 50 languages. Speech-based language-specific
versions of the dataset have been proposed in English [12] and Italian [13]. Other
datasets have been proposed for specific domains, such as the ATIS dataset for
flight booking [14] and the CLINC dataset for banking [15].

This work aims to propose a novel dataset specifically designed to classify user
intents related to waste disposal. It covers 50 different classes of objects. To the
best of our knowledge, no dataset is available for this specific task, and we believe
it can be a valuable resource for the research community1.

This dataset encompasses a comprehensive range of 50 different object cate-
gories, providing a valuable resource for researchers dedicated to advancing waste
management through the power of intent classification.

By facilitating such interactions, intent classification can improve waste man-
agement practices. Users can receive clear and consistent information, leading to
increased recycling rates and a more sustainable future. This novel dataset serves
as a stepping stone towards achieving this goal, offering researchers the tools they
need to develop intelligent systems that empower individuals to make informed
waste disposal decisions.

2.4 Knowledge Distillation

Knowledge Distillation is a machine learning technique where a large model, called
teacher, transfers its knowledge into a smaller and simpler model, called student.
Its name comes from classical chemical distillation, consisting of extracting a com-
ponent from a liquid mixture, which is a good analogy. It allows the student
model to achieve similar performances while being much smaller and requiring
fewer computational resources. These kinds of models allow for more accessibility
for deployment and inference speed due to the much smaller size of the student
model.

The proposed pipeline has substantial computational resources and inference
time requirements. For this reason, we focus on DistilBERT, which allows for a

1Resources are available at: https://huggingface.co/collections/thomasavare/

waste-classification-datasets-662f67e6ef20106ac99d87db
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good trade-off between model size and performance.

The training process consists of the student model mimicking the teacher’s
behavior, resulting in a ”distillation” of the teacher’s knowledge. The student
model is trained on the same dataset as the teacher but with an additional loss
function encouraging to immitate the teacher behavior called knowledge distillation
loss measuring the difference between the outputs of the teacher and student model.
This loss allows the student model to learn from the data and the output of the
teacher learning its behavior.

data

outputTeacher model

outputStudent model

training values

distillation knowledge
loss

Figure 2.13: Knowledge Distillation training set up

This can also be used in the case of transfer learning to enhance the knowledge
of smaller models using larger models. By successfully transferring data to a simpler
model, we can develop more versatile and efficient models.
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Chapter 3

Methodology

3.1 Establishing the appropriate pipeline

3.1.1 The pipeline itself

As discussed in Section 1.1, the thesis aims to establish a speech classification
pipeline. Several approaches were considered, each offering its advantages.

Different pipelines were considered. The speech classification model pipeline,
depicted in Figure 3.1, allows the use of fewer data and eliminates the speech trans-
lation step. Unfortunately, few models exist and do not allow for much flexibility.
They often are only in English and are much bigger than needed.

A two-step pipeline, as depicted in Figure 3.2, which is composed of an ASR
step followed by a classification model, seemed more appropriate. ASR models can
reach human-like performances. Many ASR models are multilingual and can also
perform Automatic Speech Translation (AST). This would allow future products to
be easily deployed in multiple countries. AST also allows the classification model
to be mono-lingual. The transcripted/translated then passes through the classifica-
tion model. Many classification models achieving human-like performances on the
required tasks exist and are easily trained and deployable using cloud technologies.
A two-step pipeline allows more versatility, but breaking down the tasks introduces
more complexity and loss of information throughout the pipeline.

Speech
(Italian)

Speech Classification
Model Class

Figure 3.1: Speech Classification Model Pipeline

Speech
(Italian) ASR Model English

Text
Text Classification

Model Class

Figure 3.2: Two Step Pipeline
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Both solutions offer advantages and flaws. We need to find a good trade-off
between these solutions. This project is subject to real-world applications, so we
can consider some specifications to lead our decision:

- The input has to be in Italian and/or English.

- The computation has to be quick for a better user experience

- The performances have to be as good as possible to avoid wrong recycling.

- The models must have a license suitable for commercial use (e.g., MIT,
Apache . . . ).

- Cloud deployment vs embedded system.

After reviewing the state-of-the-art literature about available models, we de-
cided that the two-step pipeline was more suited and versatile according to the pre-
vious specifications. The available models’ quality, flexibility, and (multi-)language
availability guided this decision. Taking leverage of pre-trained LLMs (and distilled
LLMs) allows for less data because only fine-tuning for our domain-specific task is
needed.

3.1.2 The speech-to-text step

After profoundly studying state-of-the-art ASR models and the available models for
multi-language speech (especially in Italian) to English text, we decided that the
best choice was Whisper [8]. It was introduced in December 2022 by OpenAI; it is
multilingual, easily scalable, has state-of-the-art results, and is under the Apache-
2.0 license.

Whisper is a multi-task speech recognition model. It performs English speech
recognition, multilingual speech recognition, language identification, and speech
translation. It differs from previous approaches by using a large and diverse dataset
(680,000 hours of audio, about a third in foreign languages, collected from the web)
and wasn’t fine-tuned for any specific task. It has a straightforward architecture
that is described off-the-shelf. An off-the-shelf architecture is a pre-designed ar-
chitecture ready to be used like it is. The goal was to develop a single robust
speech processing system that works reliably without needing specific fine-tuning
to achieve high-quality results on particular distributions.

Whisper has similar results as previous models and sometimes outperforms them
for certain tasks on various benchmarks on zero-shot evaluations. Usually, a bench-
mark comprises a training and test set, and we fine-tune the model on the training
set before benchmarking on the test set; zero-shot evaluation consists of skipping
the training part and directly evaluating the performances on the test set. For the
purposes of our project, we focus only on specific translation tasks. It achieves a
new state-of-the-art result at that time. It was outperformed by SeamlessM4T [16]
from Facebook or AudioPaLM [17] and Google USM [18] by Google
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X → en High Mid Low All

XMEF-X 34.2 20.2 5.9 14.7
XLS-R 36.1 27.7 15.1 22.1
mSLAM-CTC 37.8 29.6 18.5 24.8
Maestro 38.2 31.3 18.4 25.2
Zero-shot whisper 36.2 32.6 25.2 29.1

Google-USM > 36.2 > 32.6 > 25.2 30.7
SeamlessM4T N/A N/A N/A 34.1
AudioPaLM N/A N/A N/A 37.8

(a)X → english BLEU scores for Speech Translation Performances on CoVoST2 Dataset
(with language resource score).

ita → en size score

XLS-R 2B 34.9v
mSLAM-CTC 2B 37.3
Whisper Large v2 1.5B 30.9v

Seamlessm4T 2.3B 39.97
AudioPaLM 8B 44.3

(b) Italian → English BLEU scores for Speech Translation Performances on CoVoST2
Dataset.

In Tables 3.1a and 3.1b, and in the rest of this thesis, information in gray
indicate that the model were released after the end of the project and are here as
a reference to show the insane improvement pace transformers have started.

In Table 3.1b, we can see that Zero-shot whisper is outperformed in Italian,
but it outperforms existing models (Table 3.1a) on CoVoST2 [19] in the overall,
medium, and low resource settings, corresponding to the number of resources in
specific languages, but still moderately under-performs on high-resource languages
compared to prior (and posterior obviously) directly supervised work.

Another advantage is that different model sizes are available and easily deploy-
able. In fact, they trained similar architecture models in different sizes using the
same dataset and hyperparameters to produce models with similar behaviors. In
the end, we chose to use the base or small one in CPU-only cases; these models
are very effective even tho they are smaller, but they are also much faster than
the bigger models (Table 3.2). In the context of cloud-based deployment, If we
have access to GPU units, we can take advantage of the parallelization of the
transformers-based models and use more prominent alternatives for better results
and similar inference times.

The smaller models do not have similar performances as the bigger and newer
models, but smaller models with such performances and versatility do not seem to
exist. It is also easily accessible, deployable, and tunable using HugginFace plat-
form, libraries and cloud technologies. In conclusion, these arguments guided our
choice towards Whisper, making it the best opportunity among the other candi-
dates.
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Whisper size Number of parameters BLEU Score

Tiny 39M 5.3
Base 74M 11.3
Small 244M 17.8
Medium 769M 21.6
Large 1.55B 23.5
Large v2 1.55B 23.6

Table 3.2: Number of parameters and overall BLEU score of whisper versions.

3.1.3 Classification task

The classification task consists of classifying a phrase among 50 different classes of
wastes, such as aluminum cans, cigarette packs, paper plates, etc. . . (see Table 5.1
for all the classes). There are many classes because, depending on the geographical
situation of the use, some wastes do not go in the same recycling bins. The classic
recycling bins are organic waste, paper and/or plastic, sometimes glass and indif-
ferent. All the waste classes are then mapped to a specific recycling bin according
to the location rules. For instance, in Milano and Roma, the coffee paper cup goes
in the paper bin, but in Torino, it goes in the indifferent bin.

The approach to choosing an appropriate Language Model for the text clas-
sification was similar to previous ones, i.e., we studied the latest state-of-the-art
pre-trained models. A good thing that wasn’t available in automatic speech trans-
lation, unfortunately, are benchmarks used to compare most of the recent models.
The benchmarks chosen are called GLUE [20] and SuperGLUE [21]. They consist
of a collection of evaluations such as single sentence tasks, similarity and para-
phrase tasks, and Inference tasks. These tasks allow the testing of different tasks
and give an average score for model performance in various aspects. Most of the
benchmarked models, especially the top of the leaderboard, are not always pub-
lic or under licenses that do not allow commercial use and are too big. In our
case, we will focus on one particular task because the others are not essential to
the development, even if some models are really incredible and outperform human
performances. The task is SST-2, which stands for Stanford Sentiment Treebank
and consists of sentences from movie reviews and human sentiment annotations.
The task is to predict the sentiment of a given sentence (positive/negative) and is
similar to the classification task we need to do.

Model Name Number of Parameters SST-2 Score

Turin UlRv6 4.6B 97.5
T5-11B 11B 97.5
BERT 340M 92.55
RoBERTa 355M 96.7
DistilRoBERTa 82M 92.5
DistilBERT 66M 92.3

Table 3.3: Various Models Results on SST-2 task
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After Analysing the leader of these benchmarks, we came up with different
possible solutions, including T5 [22], BERT [2], DistilBERT [10], RoBERTa [9]
and DistilRoBERTa. Considering different criteria such as number of parameters,
robustness, easily trainable, and inference speed, the final choices were DistilBERT
and DistilRoBERTa; we ended up using DistilBERT because there was no real
improvement using DistilRoBERTa and the model implementation was harder than
DistilBERT with the HuggingFace tools.

Over the past years, Large Language Models (LLM) have tended to grow bigger
and bigger. For instance GPT-2 [3] has 1.5 billion parameters, GPT-3 [23] has
175 billion parameters and GPT-4 [24] has an astonishing 1.7 trillion parameters
(all three models were developed and pre-trained by OpenAI), Megatron-Turing
NLG [25] has 530 billion parameters, BARD [26] has 137 billion parameters and
PaLM 2 [27] has 340 billion parameters.

DistilBERT aimed to construct a model much smaller than BERT while pre-
serving its performance. Distillation techniques are already known but were mainly
used for task-specific models. DistilBERT innovates with distillation during the
pre-training phase. At last, it was possible to reduce the size of BERT by 40%
(BERT-base: 110 million parameters, BERT-large: 345 million parameters, Distil-
BERT: 66 million parameters) while retaining 97% of its understanding capabilities
and being 60% faster.

Model Average Score SST-2 Score

BERT-base 79.5 92.7
DistilBERT-uncased 77.0 91.3

(a) BERT and DistilBERT on GLUE benchmark

Model number of parameters Inference time

BERT-base 110M 668s
DistilBERT 66M 410s

(b) BERT and DistilBERT inference time on full pass on SST-B task

More precisely, we used the ”distilbert-base-uncased” model available on Hug-
ging Face1. It was important to use the uncased version so it does not consider the
uppercase letters.

3.2 The datasets

Another important aspect of Artificial Intelligence, and the most significant part
of this work, is finding the correct datasets. The biggest challenge encountered was
that the assigned task had no public dataset available for both training/testing
DistilBERT (similar to the SST-2 task) and evaluating the pipeline’s performance.
For both of these, we had to make our own ad-hoc dataset.

1Available here: https://huggingface.co/distilbert/distilbert-base-uncased
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3.2.1 Training and testing the classification task

As explained in Section 2.3, the classification task consists of feeding the model
a phrase in English and classifying it in one of the 50 waste classes available (see
Table 5.1). At one point, it was discussed about creating an ”other” class as a 51st
class, but it was hard to find real-life applications, except for useless cases such as
proper nouns or unusual wastes (i.e., nuclear wastes).

After searching for information on the datasets already available, we found that
none of the ones already released had the characteristics we were interested in, so we
had to create an ad-hoc one. It was created in different steps. The first step was to
obtain different phrasing of how someone would naturally address the recycling bin.
To broaden the possible number of combinations and variety of the future dataset,
we asked some friends how they would phrase their demands. We ended up with
50 different phrasings (not including duplicates) in English and/or French; all the
phrases were then translated into English. For instance, some sentences we got were
”Where do I have to throw out my plastic bag?” or ”I have a Starbucks, where do
I throw it?”. We extracted the main part from these phrasings and eliminated the
actual waste. The demand would then look like, ”Where do I have to throw out
[article] [object]?” or ”I have [article] [object], where do I throw it?”. The article
token takes either ”a,” ”an,” ”my,” or ”the value.

For each of the 50 waste classes, we generated a list of different wastes, either
by hand or sometimes using language models such as ChatGPT. We tried to make
the repartition of the classes as balanced as possible (see Figure 5.1), but some
classes are obviously going to be more crowded because sometimes it is hard to find
objects for the class, and there are too many objects for one class.

To make our dataset, we just had to combine the previously obtained datasets by
replacing our [object] token with the objects that we listed and their corresponding
labels.

 Where do I have
to throw out my

plastic bag?

 Where do I have
to throw out [art]

[object]?

 Where do I have
to throw out my

paper bowl?

 Where do I have
to throw out a

can?

...

[art]

a/an/the/my

[object]

object list
Phrase

paper 
Bowl

Aluminium
Can

...

Class

Figure 3.3: Data Creation Pipeline

We randomly selected phrases from the created dataset to make the train and
test set. We chose only to use 80% of the total data created because it will be
uselessly big. During the project, the datasets were modified to evaluate the optimal
one. The two best-performing datasets consist of an 80%-20% (see Figure 3.4)
train/test split and a 60%-20%-20% train/test/validation split (the second one
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created for the purpose of the writing of a paper based on this work several months
later [28]).
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Figure 3.4: Number of samples per object classes in the first set

In the end, for the first dataset, we obtained a total of 21528 phrases in the
training set and 5382 in the test set. Because we randomly selected the different
phrases going into the different sets, the repartition of the classes should be similar
between the original set and the train/test split (see Figure 3.4. For the second
dataset, which aimed at balancing the classes, the training set comprises 16,146
sentences, while the validation and testing datasets contain 5,382 sentences each
(see Figure 3.5).
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Figure 3.5: Number of samples per object classes in the second set
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As a matter of fact, the datasets were modified several times due to balance
issues and size issues. It was so unbalanced that the classification models was
ignoring some of the classes. When a class is under-represented, the cost function
optimizes it by only misclassifying it resulting in an overall better accuracy.

3.2.2 Giving more depth to the data

The rise of generative AI over the past few years has been marked by significant
advancements in machine learning, natural language processing, and computer vi-
sion technologies. These advancements have led to the development of increasingly
sophisticated generative models that can generate realistic and creative content.
Generative AI continues to evolve rapidly and is expected to profoundly impact
various industries and domains, including entertainment, healthcare, education,
and beyond. As technology advances and models become even more powerful, ad-
dressing the ethical and societal implications will be essential while harnessing the
creative and productive potential of generative AI. Generative AI has become so
efficient and valuable that it is sometimes hard to notice if a person or a genera-
tive AI wrote it. For instance, the beginning of this Section was generated asking
ChatGPT (GPT-3) to ”detail the rise of generative AI over the past few years”.
This technology can be a real benefit and an enormous leverage for projects like
this one; in our case, it can be helpful for the test dataset.

Using generative AI to modify a dataset for a text classification task can of-
fer several advantages, which can help improve the quality and robustness of our
model. Generative AI can generate additional data samples by creating new text
that is similar to the existing dataset. This helps in data augmentation, which is
particularly beneficial when there are limited labeled data. More data can lead to
a better-performing model, as it exposes the model to a broader range of varia-
tions and examples. By generating new data samples, you can reduce the risk of
overfitting. Overfitting occurs when a model becomes too specialized in learning
from a limited dataset and performs poorly on unseen data. Generative AI can in-
troduce diversity into the dataset, allowing the model to generalize better to new,
unseen examples. Real-world datasets often contain noise, errors, and inconsisten-
cies. Generative AI can help generate cleaner versions of the data or fill in missing
values, making the dataset more suitable for training reliable text classification
models.

The use of generative AI to modify a dataset for text classification tasks can
enhance the quantity and quality of the data, improve model generalization, address
class imbalances, and even strengthen privacy and security. It is a valuable tool for
improving the performance and robustness of text classification models, especially
in scenarios with limited or noisy labeled data.

In our case, we used ChatGPT to rephrase a thousand phrases from the 20%
phrases that weren’t used for the train/test splits. It gives more sense to some
phrases; for instance, ”Where do I throw the rest of my plastic knife?” becomes
”Where should I dispose of my remaining plastic knife?”. It also allows us to have
more varied examples because of how the previous model was made. It allows to
have a ”zero-shot” dataset with different phrases and more advanced and diverse
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Figure 3.6: Repartitions of classes in the GPT modified set

to test the performance of the models. We did not modify all the data because it
would have been a long process and not free. Another important point is that the
model we are using, DistilBERT, is pre-trained and offers many advantages, such
as that it does not need a lot of data and the variety of the data used has not to
be enormous to make it domain-specific. We will see later that the performances
achieved on the test set and the modified data are not very far apart from each
other (see Figure 3.6).

Figure 3.8 is a detailed flow chart visually explaining how the original data is
split to make the different datasets.
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Figure 3.7: Text Dataset Creation Flow Chart

3.2.3 Evaluating the pipeline

The whole pipeline takes audio as input and infers the classification of this audio
after the speech recognition task. To evaluate the pipeline, we need a dataset con-
stituted by audios of phrases in Italian. Such a dataset, unfortunately, does not
exist, so we had, once again, to make our own ad-hoc Italian audio set. To do so,
we used a fraction of our English phrases test set. Using a translation language
model, we translated 500 phrases from this set. At first, we used the ”Helsinki-
NLP/opus-mt-en-it” model [29] available on HuggingFace. It is a model made by
researchers from Helsinki University; since it is available on HuggingFace, it was
quickly implemented and used for translation. Unfortunately, its BLEU score (bilin-
gual evaluation understudy) is around 35. This score is an evaluation algorithm
used to measure the quality of a translation; it measures the similarity between a
professional human translation and the translation score. The BLEU score can be
between 0 and 100 (or 0 and 1). The best we can often achieve is around 60-70;
even a human can often not achieve a score of 100. As a second translation model,
we used the Deepl-API, promising better translation than any other translator on
their website2 and even better than the Google translate traductions models [30].

Model BLEU score

Helsinki 0.41
Google 0.44
DeepL 0.45

Table 3.5: BLEU scores of different models for Italian to English translation.

Figure 3.5 shows the different BLEU scores computed for the Helsinki, Google
translate, and Deepl models on the same dataset for English-to-Italian translations.

2Deepl website: https://www.deepl.com/en/translator
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The dataset is composed of a thousand English and Italian traduction phrases
extracted from the Tatoeba project 3. The Tatobea project is a collection of English
example sentences and their translations. Experimentally, on a tiny and ”unknown”
subset, DeepL seems slightly better than the rest.

After translating a subset of the test set, we used Bark [31], a transformer-based
text-to-audio model created by SunoAI4. It creates realistic multilingual speech,
including Italian. Eight speakers in Italian are available, allowing us to nuance our
dataset. Using Bark, we made two datasets of 500 audio based on the two translated
datasets. Each one is based on the exact English phrases and uses the same speaker
to not only have the overall performances of the model but to compare the quality
of the translations accurately and have an idea of how much information we have
lost through the whole translating process of the subset and generating audio.

500
PhrasesEnglish Test Set

translation

English test
Subset

text to speech Italian Text SetItalian Audio Set

Figure 3.8: Audio Dataset Creation Flow Chart

3.3 Assembling the Pipeline

Even if the pipeline is straightforward, actually integrating the pipeline is another
task. Other tasks weren’t in the pipeline, such as audio acquisition, downloading,
and inferring on the different models. These things are crucial for the inference
time and user interaction.

For the audio, we used the sounddevice modules that provide a binding for the
portAudio library (based in C) in Python. It allows the use of different audio ports,
especially inputs. Unfortunately, we noticed that sometimes Whisper, especially
the smaller models, struggles with long ”empty” audio inferring weird things, and
cutting the audio when the user is finished speaking could shorten the computation
time. So, having a fixed record time could be problematic, and to solve that
problem, we integrated a stopping criteria for the recording. This stopping criterion
is simply the standard deviation of the signal recorded over the previous second (or
any preset time unit). We record blocks of one second by default that we stack to
have the full recording using the aforementioned stopping criterion.

3Tatoeba project: https://tatoeba.org/fr
4Bark available here: https://github.com/suno-ai/bark
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(a) The amplitude of a signal (b) The mean of the signal

(c) The variance of the signal (d) The standard deviation of the signal

Figure 3.9: Analysis of audio, speaking the first 5 seconds and busy street road
noises in the background and then silence

The signal amplitude being positive and negative is unusable and, therefore, also
the mean of this signal. Empirically, the standard deviation seemed more practical
to set up and more stable as a stopping criterion. As Figure 3.9 shows, the signal’s
amplitude and mean can’t easily be used since it can be negative. On the other
hand, after empirical testing, it was more practical to choose a stopping threshold
using the standard deviation rather than the variance, which offers more stability
in practical use.

Another important thing for the pipeline is its initialization and deployment.
Indeed, this project is subject to real-life applications, and the practical pipeline is
slightly different than the theoretical one (see Figure 3.10). The models are loaded
either from HuggingFace or locally, initialized, and then ready for inference to avoid
downloading DistilBERT and whisper before each use. The pipeline is then looped
to be used without waiting between classification requests.

We have downloaded the models from Hugging Face using the Transformers
library, so when launching the pipeline, we have to download whisper and our
fine-tuned DistilBERT. This leads us to a very long computation time if we have
to download everything again for each classification. To avoid that, we loop the
classification process after downloading everything. So our complete pipeline looks
like Figure 3.10.
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Whisper + DistilBERT
Download

Start
Recording

Start
Recording Whisper English

Text DistilBERT STOPClass

 Restart 

Figure 3.10: Complete pipeline
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Chapter 4

Results

4.1 Results of the classification task

After different training conditions on the previously presented datasets, We have
four different interesting models that we are going to analyze. For all the models,
we used the Sparse Categorical Cross entropy loss from Keras, which allows us
not to one hot encode our predictions and is suitable for multi-label classification.
We are using this one because it is one of the most commonly used for multi-
class classification and works well. This loss corresponds to the Kullback-Leibler
Divergence, which measures the loss of information between two series when one is
supposed to be an approximation of the other.

For the optimizer, we are using Adam [32], which is the most common optimizer
nowadays; it is a stochastic gradient descent method based on adaptive estimation
of first-order and second-order moments. Adam has various hyperparameters that
can be set up, but, in our case, we are only going to modify the learning rate,
which, as its name suggests, defines the rate of learning of the model, and also the
ε [33] which is used to avoid 0 division and large ε can have an impact.

Three different versions were tested on our final testing set. We trained the
various model versions using the hyperparameters specified in Table 4.1.

model dataset epochs learning rate epsilon

1st model 1 3 1× 10−7 1× 10−8

2nd model 1 3 5× 10−7 1× 10−8

3rd model 2 3 1× 10−7 1× 10−8

4th model 2 3 5× 10−7 1× 10−8

Table 4.1: Training parameters and hyperpameters of the different models

As explained before, the first two models were trained on a dataset without
a validation and the 2 second with a validation set. The validation test is used
during training to fine-tune hyperparameters. All of the models were trained on
three epochs; taking into account the size of the dataset, the size of the model, and
its performance, training for more epochs could cause overfitting.
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If we denote:

• True positive (TP): Truth is positive and prediction is positive.

• True negative (TN ): Truth is negative and prediction is negative.

• False positive (FP): Truth is negative and prediction is positive.

• False negative (FN ): Truth is positive and prediction is negative

Predicted Values
Positive Negative

A
ct
u
al

V
al
u
es

Positive
True Pos
(TP)

False Neg
(FN)

Negative
False Pos
(FP)

True Neg
(TN)

Table 4.2: Confusion Matrix

The metrics that we are using are the following:

- The accuracy is the ratio of good predictions amongst all the predictions.

- The precision (or true positive rate) is the probability of a positive result, so
true positives

true positives+false positives
and a low precision involves a lot of false positives.

- The recall (or true positive rate) is the ratio positive predictions among the
actual positive values, so true positives

true positives+false negatives
, a low recall involves a lot of

false negatives.

- The f1 score represents the arithmetic mean of the precision and recall. It
carries both information.

metrics Formulas

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

f1 score 1
1

prec
+ 1

recall

= 2TP
2TP+FP+FN

Table 4.3: Metrics used and their formulas.

It is essential to choose coherent metrics that carry the information we need to
analyze and that can be interpreted as it varies. For instance, the specificity (or true
negative rate) is a very classic metric that can be useful to analyze the population
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of false positives, the specificity being the probability of a negative outcome, so
FP

FP+TN
. Unfortunately, in our case, since the number of objects per class compared

to the number of objects is very low and there are not a lot of false negatives, the
specificity does not vary enough to be exploited and meaningful.

In multi-label classification, the metrics are computed class per class, and the
result is the average (the classes are unweighted). Because of the number of positive
cases for each case relative to the large number of cases, both the precision and
recall are good indicators and carry different information.

model metrics

1st model - accuracy: 0.9729
- precision: 0.9809
- recall: 0.9709
- f1 score: 0.9714

2nd model - accuracy: 0.9739
- precision: 0.9805
- recall: 0.9732
- f1 score: 0.9725

3rd model - accuracy: 0.9710
- precision: 0.9677
- recall: 0.9771
- f1 score: 0.9666

4th model - accuracy: 0.9703
- precision: 0.9773
- recall: 0.9695
- f1 score: 0.9673

Table 4.4: Metrics on test set for different versions of the models.

In Figure 4.4, we can see that adding the validation set did not really change
the overall result. There was also a slight improvement when changing the learning
rate between models 1 and 2.

The results of the models seem balanced overall with slightly different behav-
ior. The precision is higher than the recall for model 1, meaning that the model
is more specific than sensitive, so we produce slightly more false negatives than
false positives. We also computed the results per class for model 2 (see Table 4.5
only showing the classes without perfect classification) to see what is precisely the
classification behavior.

The classification is not perfect in only eight classes, actually, being 5: com-
postable packaging, 18: paper bowl, 19: paper cup, 21: paper magazine, 30: plastic
bowl, 34: plastic cutlery, 36: plastic gloves, 42: receipt. In all cases, except for plas-
tic bottles, it is either the recall or the precision that is not 1, so there are only
false positives or false negatives.

The results of these classes are also interesting. For each class, the results are not
random but seem biased. Among one class when false negatives are produced, it is
always only in one class, and sometimes, there is another one. Still, we can observe
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class mean precision recall f1 score

cigarette butt 0.9998 1.0000 0.9894 0.9947
compostable packaging 0.9872 1.0000 0.4052 0.5767

paper bowl 0.9976 0.9449 1.0000 0.9717
paper cup 0.9974 1.0000 0.9278 0.9626

paper magazine 0.9870 0.7154 1.0000 0.8341
plastic bottle 0.9918 0.6556 0.8194 0.7284
plastic cap 0.9974 0.8833 1.0000 0.9381

plastic cutlery 0.9946 1.0000 0.6506 0.7883
plastic gloves 0.9978 0.8261 1.0000 0.9048

receipt 0.9974 1.0000 0.8667 0.9286

Table 4.5: Classes without perfect classification on test set with model 2.

the same phenomenon with false positives in fewer instances. False negatives and
positives are inter-influential between classes, so it is a good sign that we also have
only one/two classes among the false positives, showing a bias. A solution for this
problem is to analyze the AUC score and the ROC curve and work with thresholds
just like in binary classification. The ROC curve, standing for Receiver Operating
Characteristic, is the curve of true positive rate, the proportion of correctly classified
positive cases, depending on the false positive rate, the proportion of negative
cases incorrectly classified as positive. A good model will have a high true positive
rate and a low false positive rate, maximizing the number if true positives while
maximizing the number of false positives. The AUC, standing for Area Under the
Curve, is a metric used to summarize the ROC curve by calculating the area under
the ROC curve. The AUC indicator is between 0 and 1, and an AUC close to 1
indicates that a model has a good ability to differentiate classes.

Given the number of classes, it is normal to have this kind of behavior during
the classification process. The more classes we have, the more complicated it is to
be specific in the majority of classes without having to degrade the sensitivity. This
kind of error can be corrected through more training by modifying the dataset and
the optimizer parameters. Given the size of the dataset and the number of classes,
this might be difficult.

We can observe that, on the set modified using ChatGPT, the metrics of the 2nd
model are slightly higher than the metrics of the final model (Table 4.6), showing
that even if the final model has better results on the actual test set, the third model
may have slightly better adaptation capabilities but, in overall, the performances
of both models are extremely close and negligible. An important thing to consider
here is that there’s no significant difference between the results of the test set and
the ChatGPT ”improved” set. The models do not seem to lose their capabilities to
capture the semantics of a phrase even after training over a ”monotone” dataset,
and this is where we see the advantages of pre-trained models. Over only three
epochs, the slight change in the learning rate provides small changes in the training
behavior and their behavior towards new data. If we do a performance comparison,
we have a lot of errors in the same classes showing similarities in the learning, but
the 3rd model seems more stable overall.
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model metrics

1st model - accuracy: 0.964
- precision: 0.9773
- recall: 0.9486
- f1 score: 0.9542

2nd model - accuracy: 0.96
- precision: 0.9683
- recall: 0.9482
- f1 score: 0.9457

3rd model - accuracy: 0.96
- precision: 0.9483
- recall: 0.9684
- f1 score: 0.9457

4th model - accuracy: 0.9620
- precision: 0.9716
- recall: 0.9538
- f1 score: 0.9546

Table 4.6: Metrics on ChatGPT modified set for different versions of the model

These results (see Figures 4.4 and 4.6) also highlight some behaviors of pre-
trained large language models, such that they do not always need, in specific con-
ditions like here, validation sets to fine-tune hyperparameters to achieve similar
performances as training with validation set.

We can also note that, with or without a validation set, the models have similar
learning patterns and, thus, behaviors.

4.2 Performances of the pipeline

Before showing and analyzing the results, it is essential to understand how the infor-
mation has changed and degraded. We have translated a subset of our dataset and
generated audio to create a new dataset. To only create the new dataset, we have
degraded our original dataset. The beginning of the whole pipeline uses whisper
for automatic speech translation. The BLEU score for the speech translation from
Italian to English is very low (between 5.3 and 23.6 depending on the model size,
see Figure 3.2). So, the input of the classification model might be really different
from the original dataset, and sometimes it does not even make sense anymore. For
instance: ”Where do I throw a tetra pack” becomes ”Where? On the whiteboard.”
using whisper base. Unfortunately, this method of measuring the results is not the
most accurate, and future results are certainly lower than actual results due to the
loss of information in the process of creating the dataset. The full pipeline is still
working, and we can test it with the different models that are available.

We are using the same metrics as before to analyze the results of the prediction
of the full pipeline on our audio datasets.
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class # elements mean precision recall f1 score
overall 1000 0.96 0.9684 0.9482 0.9457

aluminium tray 6 (0.6%) 0.9950 1.0000 0.1667 0.2857
compostable packaging 25 (2.5%) 0.9820 1.0000 0.2800 0.4375
condiment packets 37 (3.7%) 0.9990 1.0000 0.9730 0.9863

paper bowl 40 (4.0%) 0.9980 0.9524 1.0000 0.9756
paper cup 35 (3.5%) 0.9980 1.0000 0.9429 0.9706

paper magazine 38 (3.8%) 0.9810 0.6667 1.0000 0.8000
plastic bottle 16 (1.6%) 0.9940 0.7778 0.8750 0.8235
plastic cap 9 (0.9%) 0.9980 0.8182 1.0000 0.9000

plastic cutlery 15 (1.5%) 0.9950 1.0000 0.6667 0.8000
plastic gloves 11 (1.1%) 0.9960 0.7692 0.9091 0.8333

plastic snack packaging 15 (1.5%) 0.9960 0.7895 1.0000 0.8824
plastic sticks 15 (1.5%) 0.9940 0.9091 0.6667 0.7692

receipt 15 (1.5%) 0.9940 0.7368 0.9333 0.8235

(a) Classes with not perfect classification on GPT modified set with model 2

class # elements mean precision recall f1 score
overall 1000 0.964 0.9773 0.9486 0.9542

aluminium tray 6 (0.6%) 0.9970 1.0000 0.5000 0.6667
compostable packaging 25 (2.5%) 0.9820 1.0000 0.2800 0.4375

organic scraps 43 (4.3%) 0.9980 0.9556 1.0000 0.9773
paper bowl 40 (4.0%) 0.9980 0.9524 1.0000 0.9756
paper cup 35 (3.5%) 0.9970 0.9211 1.0000 0.9589

paper magazine 38 (3.8%) 0.9810 0.6667 1.0000 0.8000
plastic bottle 16 (1.6%) 0.9940 0.7778 0.8750 0.8235
plastic cap 9 (0.9%) 0.9970 1.0000 0.6667 0.8000

plastic cutlery 15 (1.5%) 0.9950 1.0000 0.6667 0.8000
plastic gloves 11 (1.1%) 0.9960 0.7692 0.9091 0.8333
plastic sticks 15 (1.5%) 0.9990 1.0000 0.9333 0.9655

receipt 15 (1.5%) 0.9960 0.8235 0.9333 0.8750
tetrapack 6 (0.6%) 0.9980 1.0000 0.6667 0.8000

(b) Classes with not perfect classification on GPT modified set with model 3

With the results from Table 4.8 that we have, we can clearly observe the degra-
dation of the information before being classified. In the baseline column, we have
computed the metrics of the same dataset before its modifications. We can also
observe that the metrics of the two models are overall almost the same, the 4th
model is a little bit better, but most importantly, we can observe that the transla-
tion quality significantly impacts the quality of the classification. It is conceivable
that the results on a ”real” dataset might be better.

Given that the goal of the project is to offer a good user experience, another
important thing to consider is the inference time. The goal is to find a compromise
between the performance of the model and the inference time. To achieve these
measures, we are using a MacBook Air 2022 with an Apple M2 chip, 8GB of
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helsinki Deepl baseline

- accuracy: 0.6820
- precision: 0.6836
- recall: 0.6737
- f1 score: 0.6491

- accuracy: 0.6940
- precision: 0.6959
- recall: 0.6617
- f1 score: 0.6500

- accuracy: 0.9620
- precision: 0.9716
- recall: 0.9538
- f1 score: 0.9546

Table 4.8: Metrics computed with whisper large-v2 and model 4

RAM, and no GPU. We do not know the specifications of the future machine that
the company will use. Looking at Table 4.9, the computation time is linear with
respect to the size of the model. In a practical situation, even if the performance
of the medium model is much better, the computation time is not suited for the
appropriate use, whereas the two others are more suited for daily use.

whisper size inference time
base (74M) ∼ 2.5 seconds
small (244M) ∼ 6.5 seconds
medium (769M) ∼ 18 seconds

Table 4.9: Inference time depending on the size of whisper

Only a few months later, after the first inferences on the pipeline, HuggingFace
integrated the deployment of whisper using its pipeline tool, taking advantage of
the transformers architecture and their parallelization capabilities. Using V100
GPUs rented from Google Colab notebooks, the inference time for all models is
very similar for all model sizes (from tiny with 34 million parameters to large-V2
or large-V3 with 1.5 billion parameters), ranging from 1 to 1.4 seconds.

Since all the models have very similar results and behaviors, we only computed
the inference on different whisper sizes on the 4th model. The other models have
also very similar results.

Whisper Version Accuracy Precision Recall F1-Score

baseline 0.9620 0.9716 0.9538 0.9546

Tiny 0.1040 0.1141 0.0829 0.0818
Base 0.2580 0.3543 0.2330 0.2491
Small 0.4760 0.5089 0.4541 0.4400
Medium 0.664 0.697 0.630 0.634
Large-v2 0.6940 0.6959 0.6617 0.6500

Table 4.10: Results of the entire speech classification pipeline with different versions
of whisper and model 4

The results align with our expectations. As the quality of the ASR component
improves, we see a positive impact on the system’s overall metrics. This highlights
ASR’s crucial role within the pipeline as the foundation for accurately interpreting
user requests. By continuously refining the ASR module, we can ensure a more
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robust system capable of consistently delivering exceptional performance. It is
good to remember that these results are also informative on how well the pipeline
would behave in a real-world application. The audio dataset is generated using
transformers Deep Learning models, extracted from translated phrases from English
to Italian using Deepl API, also a tranformers Deep Learning Model.
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Conclusion

Smart bins like NANDO can optimize waste management and recycling processes.
This thesis contributes to NANDO’s effectiveness by introducing a novel speech
classification pipeline for accurately recognizing and categorizing user requests ac-
cording to available recycling options.

The pipeline’s success hinges on its modular design, incorporating components
for voice acquisition, automatic speech recognition (ASR), and text classification.
In this context, we crafted a novel text classification dataset, which includes 50
classes of waste objects that can be used to train and evaluate models for the
identification of the correct bin for the disposal of a specific object. The system
has shown promising results in both Italian and English languages.

Looking ahead, the future work could focus on multiple parts. The first could be
to optimize the pipeline and expand its language capabilities. Such things can be
done by modifying and upgrading the dataset and/or the training flow. This could
include training DistilBERT on the output of the ASR outputs and creating new
specific datasets to improve the quality of the evaluation of the component of the
pipeline. Additionally, integrating this pipeline into a real-world NANDO system
with a user feedback mechanism is crucial. Such a mechanism would allow users to
correct misclassifications, fostering a human-in-the-loop system that continuously
improves over time. This collaborative approach holds immense promise for the
future of smart waste management and responsible resource recovery.
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Annex: Tables and figures

0: aluminium can 1: aluminium sheet 2: aluminium tray
3: cigarette butt 4: cigarette pack 5: compostable packaging
6: condiment packets 7: covid test 8: crumbled tissue
9: cylindrical battery 10: face mask 11: glass bottle
12: glass jar 13: laptop charger 14: meds blister
15: metal cap 16: mixed paper-plastic packaging 17: organic scraps
18: paper bowl 19: paper cup 20: paper food packaging
21: paper magasine 22: paper packaging 23: paper plate
24: paper sheet 25: paper sugar bag 26: paper tray
27: phone charger 28: pizza box 29: plastic bag
30: plastic bottle 31: plastic bowl 32: plastic cap
33: plastic cup 34: plastic cutlery 35: plastic dish
36: plastic gloves 37: plastic packaging 38: plastic snack packaging
39: plastic sticks 40: plastic straw 41: plastic tray
42: receipt 43: smartphone 44: tea bag
45: tetrapack 46: tobacco pack 47: transport ticket
48: wooden cutlery 49: wooden sticks

Table 5.1: All classes indexes and their names
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Figure 5.1: Number of objects per class
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