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Abstract

Video streaming represents a substantial share of internet traffic, driven by the

increasing demand for high-quality content and live broadcasts. This trend is

particularly evident with the widespread adoption of HTTP-based adaptive bi-

trate streaming protocols, such as DASH and HLS. Internet Service Providers

(ISPs) are often evaluated based on their customers’ perceptions of premium

services (e.g., video streaming), which are delivered over ISP networks by con-

tent providers like DAZN and Amazon Prime. While content providers have di-

rect access to their customers’ Quality of Experience (QoE), ISPs must infer this

data from key performance indicators (KPIs) such as throughput, packet loss,

and latency, especially given the growing prevalence of end-to-end encryption.

This highlights the need for models capable of estimating QoE from passive

metrics. In this research, we propose a methodology that leverages machine

learning algorithms to infer video quality—one of the key QoE factors—using

these passive metrics.
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1. Introduction

Live streaming services, especially those broadcasting major sports events, have

surged in popularity, attracting millions of viewers worldwide. The demand for

high-quality live sports streaming has created significant challenges for service

providers, as these events generate massive spikes in traffic that strain network

infrastructures.

Ensuring a seamless viewing experience is crucial for retaining audiences, mak-

ing Quality of Experience (QoE) a top priority. Achieving optimal QoE requires

minimizing buffering, delivering consistent video quality, and efficiently distribut-

ing content, even under fluctuating network conditions. Technologies such as

adaptive bit-rate streaming, which adjusts video quality dynamically, and Con-

tent Delivery Networks (CDNs), which optimize content distribution, play a

vital role in meeting these demands.

As live streaming continues to evolve, QoE estimation has become essential for

ISPs (Internet Service Providers) to ensure a high-quality viewing experience

for their customers.

6



Chapter 1: Introduction 7

1.1 Motivation

Live streaming events such as sports events (e.g., the Italian Serie A, the UEFA

Champions League), are particularly interesting to many users. An ISP is inter-

ested in estimating QoE factors – primarily video resolution, or how clearly the

user is viewing content – their users experience while watching these events -

see Figure 1.1.

Figure 1.1: Users are interested in consuming popular video streaming services.
The ISP is expected to fulfill this demand by deploying a network infrastruc-
ture that can actively support both downstream and upstream requirements for
their users. For an ISP, assessing whether the infrastructure is sufficient and sat-
isfactory for their users involves estimating the QoE their users experience

QoE encompasses factors like video resolution1, rebuffering frequency2, startup time3,

1Higher video resolution (e.g., 4K, HD) enhances visual clarity but requires more bandwidth.
2Rebuffering occurs when the video pauses to load more data, negatively impacting the

viewing experience.
3The time it takes for a video to begin playing after being requested. A longer startup time

can frustrate users.
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which shape the user’s perception of service quality.

From a technological perspective, estimating and optimizing the QoE enables

ISP to efficiently manage network resources. By continuously monitoring QoE,

ISP can identify bottlenecks and optimize bandwidth allocation, ensuring that

video streaming is delivered with minimal interruptions, even during peak traf-

fic times.

From a business perspective, high QoE is essential for customer satisfaction

and retention. A positive viewing experience directly impacts user loyalty, as

poor streaming quality can lead to customer churn. By ensuring that users con-

sistently enjoy high-quality streaming, ISP can maintain a competitive edge in

the market.

Unlike content providers, who offer video streaming content and have direct

access to video quality metrics through proprietary analytics, ISP must infer

video quality solely from passive network metrics. Due to modern data en-

cryption protocols, ISP are unable to access detailed content data transmitted

over the network. This encryption, designed to protect user privacy, prevents

ISP from directly observing application data, which could otherwise suggest

what content the client is requesting—particularly if the content provider uses

a commercial application protocol such as HTTP. As a result, ISP rely on aggre-

gate network traffic metrics, such as upstream and downstream throughput4, and

the impulsiveness5 of the data stream as their primary inputs for estimating QoE.

With video streaming traffic comprising a significant portion of global Inter-

net traffic, ISPs are increasingly interested in defining models to infer QoE fac-

4Upstream and downstream throughput are computed by measuring the amount of data
transferred over time, often measured in bytes per second or packets per second.

5Impulsiveness refers to sudden bursts or irregular patterns in the data stream, which could
indicate periods of rebuffering or network congestion.
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tors—particularly, in the case of this research, video resolution—using network

passive metrics as input.

1.2 Related Work

Before the prevalent adoption of traffic encryption, network-based QoE moni-

toring solutions primarily utilized Deep Packet Inspection (DPI) to gather data

on video quality metrics such as resolution, codecs, and bit-rate. [6, 13]. The

shift towards encryption have forced many of these methods largely to be inef-

fective, leading to new research challenges concerning the estimation of QoE in

the context of encrypted video traffic analysis.

Broadly, two strategies have emerged to address this issue: session-modeling-

based (SM) and machine-learning-based (ML) techniques. SM-based methods

depend on a thorough understanding of the streaming protocols and utilize

session reconstruction to infer key performance indicators (KPIs) that impact

QoE. For instance, Mangla et al. describe a solution known as eMIMIC in [9],

which demonstrates its effectiveness compared to ML methods. This system

reconstructs the chunk-based delivery sequence from packet traces and models

a video session to estimate metrics like average bit-rate, re-buffering ratio, bit-

rate fluctuations, and startup time.

However, the complexity of this problem is increased by the diversity of de-

vices, platforms, streaming services, and applications involved (including mo-

bile, web, and desktop), as well as variations in network types and protocols. In-

deed, adapting this system for QUIC traffic could pose challenges, particularly

affecting the performance of chunk detection on which it relies. Additionally,

as service providers might alter their streaming protocols—whether regarding
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adaptation strategies, network protocols, or other factors—network operators

may need to adjust their QoE estimation models accordingly. As a result, find-

ing analytical solutions that work for many different use cases is not definitely

trivial.

For these reasons, many recent studies have shifted towards using machine

learning techniques for QoE estimation, arguing that these approaches may of-

fer greater flexibility and long-term viability [3, 5, 8, 11, 15].

In both SM and ML frameworks, collecting application-level ground-truth data

is essential for the training phase. This process can be straightforward for cer-

tain platforms, such as YouTube, Netflix, and Twicth, especially on browser, but

can be significantly more challenging for others, like DAZN or Amazon Prime,

whose absence of any APIs make more challenging recording data. This ex-

plains why we are interested in developing a system that addresses unpopular

streaming services using a general methodology that can be exploited in any

case. Indeed, much of the related research has focused on YouTube, partly due

to the easier accessibility of application-layer data.

1.3 Problem Statement

ISPs are interested in estimating the quality of experience for their customers,

particularly in the case of video streaming services, where network require-

ments are more restrictive than for other types of services. However, due to

the widespread adoption of end-to-end encryption, it is not possible to inspect

application data directly. As a result, ISPs can only measure network metrics

such as bytes, packets, jitter, and round-trip time, which they can capture on

the wire. Based on these metrics, they aim to predict whether the underlying
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application is performing well enough to ensure a satisfactory experience for

customers during video playback.

1.4 Proposed Methodology

We propose a methodology for identifying live streaming data flows associated

with a specific content provider and deriving features to be used as input for

an ML model, following the current state-of-the-art in estimating QoE from net-

work traffic. Our approach involves extracting relevant network metrics—those

that an ISP can also obtain—and training, validating, and testing popular ML

models to predict video quality, specifically video resolution.

Specifically, we propose:

(a) Live Server Name Discovery. A procedure to identify server names asso-

ciated with a content provider that actively supports live streaming.

(b) Inferring Video Quality from Network Passive Metrics. A procedure

for training and testing popular supervised machine learning algorithms

to predict video quality (particularly, video resolution) in live streaming

flows using passively collected network metrics.



2. Background

HTTP (Hypertext Transfer Protocol) has become the dominant protocol for de-

livering web content and media over the internet, owing to several key advan-

tages that make it particularly well-suited for modern content delivery.

First, HTTP is highly effective in overcoming common network barriers, such

as firewalls and Network Address Translation (NAT). Unlike other protocols,

HTTP traffic is typically allowed to pass through firewalls without restriction,

as it uses standard web ports (usually port 443 for HTTPS). This characteristic

is essential for ensuring that content can be accessed across different network

configurations, regardless of network security measures or location.

Additionally, HTTP integrates seamlessly with widely adopted network proto-

cols such as the TCP and QUIC.

Another significant advantage of HTTP is its compatibility with CDNs. CDNs

are distributed networks of servers designed to deliver content to end users

with high efficiency and low latency. By caching video content closer to end

users, CDNs reduce the distance and number of hops required to deliver media,

leading to faster load times, reduced buffering, and improved overall video

quality. This is especially crucial in the context of video streaming, where large

amounts of data need to be transferred in real-time to ensure smooth playback.

12
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As a result, video streaming technologies have increasingly shifted toward HTTP,

making specific technologies such as RTP (Real-Time Protocol), SRTP (Secure

Real-Time Protocol), RTSP (Real-Time Streaming Protocol), and MMS (Microsoft

Media Services) obsolete. These older protocols, which were originally used for

live video streaming, have been largely replaced by HTTP-based solutions due

to their ability to adapt more effectively to varying network conditions and de-

liver content through scalable and efficient mechanisms like CDNs.

The widespread adoption of HTTP-based streaming protocols, such as HTTP

Live Streaming (HLS) and Dynamic Adaptive Streaming over HTTP (DASH),

has further contributed to the protocol’s popularity.

2.1 Progressive Streaming

A preliminary implementation of video streaming over HTTP was progressive

streaming. It involves transferring video files from a server to a client using

the HTTP protocol, typically at a fixed resolution. Unlike traditional downloads,

playback begins before the entire file is fully downloaded. Indeed, the original

video is split into chunks, each lasting between 2 to 10 seconds of encoded

video, and the client dynamically requests these chunks during playback.

2.1.1 Fetching Chunks

In a progressive streaming setup, the video is divided into small, sequential

chunks, which are typically 2 to 10 seconds long. The video is stored on the

server and divided into these chunks to facilitate easier and faster delivery.

When the client starts the video, it first requests the manifest file, which is usu-
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ally a simple text or XML-based file that provides metadata about the video

stream, such as the chunk URLs, their durations, and the sequence in which

they should be fetched.

For example, a manifest file (in format .m3u8) might look like this:

#EXTM3U

#EXT-X-TARGETDURATION: 10

#EXT-X-MEDIA-SEQUENCE: 0

#EXTINF: 10,

http://server_hostname/live3/chunk_t=121212121.m4s

#EXTINF: 10,

http://server_hostname/live3/chunk_t=121212121.m4s

The manifest file is initially requested via an HTTP GET request by the client.

Once the client receives the manifest, it begins to download the first chunk,

which can then be immediately played as playback starts. The client then con-

tinues to request subsequent chunks in the correct order to allow continuous

playback.

2.1.2 Playback

Once the initial chunk is downloaded, the client begins playback. As play-

back progresses, the client continuously fetches the next chunk in the sequence,

typically requesting them in a buffered manner (ahead of the current playback

position) to avoid interruptions. This pre-buffering ensures that the client has

enough video data stored to continue playback smoothly, even in the event of

minor fluctuations in network speed.

If playback reaches the end of a chunk and the next chunk is unavailable due
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Figure 2.1: In progressive streaming, the client selects a fixed video quality dur-
ing playback and requests only chunks associated with that quality. Once a
sufficient number of chunks are collected, the application buffer is filled, and
the video starts. If the consumption rate exceeds the network goodput (the rate
at which data is delivered to the application), the buffer depletes, causing the
playback to stall
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to slow network conditions, the client may experience buffering, resulting in a

brief pause in playback until more data is available. While progressive stream-

ing can help mitigate this issue by starting playback before the entire file is

downloaded, slow or unstable network conditions may still lead to playback

interruptions.

2.1.3 Limitations of Progressive Streaming

While progressive streaming offers a simple and efficient way of delivering

video content over HTTP, it has several limitations:

1. Fixed Video Quality: In progressive streaming, the video is typically de-

livered at a single, fixed resolution and bit-rate. If the network conditions

change, the video quality remains the same, and the client cannot adjust

the resolution dynamically. This means that if the network connection

slows down or becomes unstable, playback may stutter or pause.

2. Buffering and Latency: Although progressive streaming reduces the need

for pre-buffering by starting playback before the entire file is downloaded,

it still requires sufficient bandwidth to prevent buffering during playback.

In the event of a slow or inconsistent network, buffering may occur, which

can significantly disrupt the viewing experience. Additionally, since the

chunks are typically of a fixed size, delays in fetching the next chunk can

result in a noticeable lag between the playback and data retrieval.

3. Inefficient Network Usage: Progressive streaming does not make use of

the sophisticated techniques available in adaptive streaming, such as the

ability to cache and fetch segments at different quality levels. This results
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in a less efficient use of the available bandwidth, especially in environ-

ments where the network conditions are variable.

4. No Support for Live Content: Although progressive streaming can work

for pre-recorded content, it is not well-suited for live streaming scenarios

where content is generated in real-time.

2.2 Adaptive Streaming

Modern video streaming over HTTP relies on adaptive streaming technologies

such as HLS [4], HDS [2], and DASH [1], which represent advanced techniques

compared to traditional progressive streaming. Unlike progressive streaming,

which delivers video at a fixed resolution throughout the session, adaptive

streaming provides a more flexible approach by adjusting video quality in real-

time based on network conditions. This dynamic adjustment ensures uninter-

rupted playback even in the presence of fluctuating network bandwidth.

Adaptive streaming leverages multiple video representations, also referred to

as bit-rate ladders or quality levels. Each representation is encoded at a distinct

resolution and bit-rate to accommodate varying network conditions. Similar

to progressive streaming, the video is divided into small segments or chunks.

However, in adaptive streaming, each chunk is available in multiple quality

levels, allowing the client to dynamically select the most appropriate represen-

tation based on the current network conditions.

For example, if the client detects a decrease in network bandwidth, it may

switch to a lower-resolution stream, thereby reducing the data required for each

chunk and ensuring smooth playback. Conversely, as network conditions im-

prove, the client can seamlessly switch to a higher-resolution stream for better
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Figure 2.2: In adaptive streaming, the client initially selects a video quality but
can change it during playback. An engine within the application continuously
monitors whether the consumption rate exceeds the network goodput (the rate
at which data is delivered to the application). If necessary, the engine pre-
vents buffer stalls by lowering the quality of subsequent chunks, passing from
HD (High-Definition) to SD (Standard Definition), and eventually LD (Low-
Definition)
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video quality.

An example of manifest file (in format .m3u8) for adaptive streaming might

look like this:

#EXTM3U

#EXT-X-TARGETDURATION: 10

#EXT-X-MEDIA-SEQUENCE: 0

#EXT-X-STREAM-INF: BANDWIDTH=800000,RESOLUTION=640x360

http://server_hostname/live3/chunk_t=121212121/video_800kbits.m4s

#EXT-X-STREAM-INF: BANDWIDTH=1500000,RESOLUTION=1280x720

http://server_hostname/live3/chunk_t=121212221/video_1500kbits.m4s

...

The adaptive streaming paradigm is commonly used in the following contexts:

• On Demand Streaming: Adaptive streaming enhances the traditional pro-

gressive streaming model by allowing the client to select the initial play-

back quality and adjust it dynamically during the session. This provides

better quality in variable network conditions but comes at the cost of a

more complex manifest structure and additional overhead in managing

multiple video representations.

• Live Streaming: While progressive streaming is generally unsuitable for

real-time video streaming, adaptive streaming addresses this challenge by

allowing the client to periodically request updated manifest files. These

manifest files provide URLs for newly generated chunks that are being

streamed from the server, enabling real-time video delivery with minimal

latency and buffering.
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2.3 Network Protocols for Video Streaming

The two primary transport layer protocols used for video streaming are TCP

and UDP, each with distinct characteristics in terms of speed, quality, and relia-

bility.

TCP is renowned for its reliability, ensuring that data is delivered in the cor-

rect order and without errors. However, its mechanisms for error correction

and retransmission can introduce delays, which may not be ideal for real-time

applications like streaming.

On the other hand, UDP is faster and more lightweight because it lacks these

error-checking mechanisms, but it sacrifices reliability. However, a modern

transport protocol called QUIC has been developed to improve upon TCP’s

performance for internet communications. QUIC, which is based on UDP, pro-

vides several advantages, including reduced latency [7], enhanced congestion

control, and faster connection establishment. It has been increasingly adopted

to improve Quality of Experience (QoE) for end users [10], [16].

2.3.1 HTTP streaming over TCP

In this approach, HTTP messages are encapsuled within a TCP connection, us-

ing HTTP/1.1 or HTTP/2 at the application layer. One significant challenge

with using TCP for streaming is head-of-line blocking, a performance issue

where the delivery of subsequent packets is delayed if a single packet is lost or

delayed. This issue can be especially problematic for video streaming, where

video chunks tend to be larger than audio chunks, causing unexpected delays

in playback when packets are lost. A common workaround is to use multiple
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open connections: one for video and another for audio. This strategy helps

avoid interference between the two data streams, allowing more efficient deliv-

ery of video and audio content.

2.3.2 HTTP streaming over UDP/QUIC

If the content provider relies on QUIC (which is designed for HTTP/3), the mul-

tiplexing feature is inherently supported. QUIC was specifically designed to

handle multiplexed streams efficiently, meaning that the client no longer needs

to open multiple sockets for video and audio streams. This reduces complexity,

improves connection speeds, and minimizes latency, all while maintaining the

ability to handle packet loss in a more graceful manner compared to TCP.



3. Tools

This chapter provides an overview of the software, tools, and experimental

testbed used to conduct the experiments and collect data for this research. Specif-

ically, in Sections 3.1 and 3.2, we describe the two main software tools utilized

for data acquisition. In Section 3.3, we detail the equipment used for gathering

content provider data at desktop installation.

3.1 Tstat

Tstat [12] processes standard .pcap trace files as input and reconstructs net-

work flows for protocols including TCP, UDP, DNS, and HTTP. For the pur-

poses of this research, the focus is primarily on the reconstruction of TCP and

UDP flows. These flows are presented in text files, with each file containing

statistics for both directions of communication: from client to server and vice

versa. Specifically, the following log files are generated:

(a) log tcp complete: This document provides a comprehensive overview

of all data exchanges that occurred over TCP. For each entry, Tstat details

a reconstructed TCP connection, offering primarily volumetric metrics

(see Table 7.1) for both client-to-server and server-to-client flows through-

22



Chapter 3: Tools 23

out the connection’s entire lifespan. Given that TCP is a connection-oriented

protocol, the lifespan of each connection is defined by the duration from

the initiation of the SYN/SYN-ACK/ACK three-way handshake to the

termination of the connection via the FIN/RST sequence.

(b) log tcp periodic: This document decomposes TCP flows into time

bins, where each bin represents a short time interval of up to one sec-

ond. For each bin, Tstat associates the same set of features available in

the complete mode, thereby offering a more granular overview of flow

impulsiveness and the dynamics of upstream and downstream data over

time.

(c) log udp complete: This document provides an overview of all data ex-

changes that occurred over UDP. Each entry records a UDP socket-pair

data exchange, presenting volumetric metrics (see Table 7.1) for both client-

to-server and server-to-client flows throughout the entire flow’s lifespan.

Since UDP is a connectionless protocol, the lifespan of each UDP connec-

tion is defined as the time range between the first observed packet and the

last packet seen before a timeout occurs between the socket pair.

(d) log udp periodic: This document decomposes UDP flows into time

bins, similar to TCP.

For each reconstructed couple of flows in TCP and UDP, Tstat appends the

server name to which the client was connected. As shown in Table 7.2, the

server name can be retrieved from various application layer sources.
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3.2 Streambot

Considering the following definitions:

Event

The time interval during a video streaming playback. The interval is

[tstart, tend], where tstart is when it starts, while tend when it finishes.

Supervised Experiment

An organized, repeatable, and automated method for observing 1 to N

events. During the events, network packets and HTTP messages ex-

changed are traced, then logged into a file.

we developed a lightweight JavaScript tool called Streambot for running su-

pervised experiments.

It automates browser interactions by navigating through a list of provided URLs

(list of live streaming events), simulating human watching live events, and

recording all HTTP requests made during the browsing session. The tooling re-

lies on the JavaScript library Puppeteer for handling browser session life-cycle

and URL typing, while the sub-module puppeteer-har is used for capturing

HTTP messages exchanged by the client during web browsing in HAR format.

For packet-level tracing, Streambot runs Wireshark.

3.2.1 Streambot Runtime

The data acquisition process (Figure 3.1) begins by launching a new Wireshark

packet capture. Next, a browser instance (e.g., Google Chrome or Firefox) is

opened. Once the browser is active, Streambot begins tracing HTTP messages
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at the application layer. It then cycles through a predefined list of URLs, each

corresponding to a streaming period. For each URL, Streambot waits for a

specified duration before proceeding to the next one. This cycle repeats until all

URLs in the list have been processed.

Upon completion of a supervised experiment, Streambot stops HTTP tracing,

terminates the browser session, and finally stops Wireshark, generating three

output files:

(a) log net complete – a standard .pcap packet trace.

(b) log har complete – a standard .har trace1.

(c) log bot complete – a text document that records, row by row, the start

time (tstart) and end time (tend) of each channel x, using Unix timestamps

(Table 3.1).

Figure 3.1: Streambot Runtime

1The HTTP Archive (.har) format is a JSON-based standard for logging interactions be-
tween web browsers and websites. It records HTTP request and response headers, metadata,
and timing information, enabling performance analysis and debugging.
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Channel Name tstart tend
... ... ..
golf-tv 1739522079 1739522259
mega-calcio 1739522300 1739522450
all-serie-a 1739522600 1739522800
... ... ..

Table 3.1: In a supervised experiment, each log bot complete file records the
start and end time of each channel

3.3 Testbed

The experimental testbed is designed to simulate a real-world scenario, where

a domestic user, acting as the client, collects data in the last mile behind the

network of the ISP, where application data is accessible. The testbed consists of

a Virtual Machine (VM) running a fresh distribution of Debian 12, serving as

the client. The client is then equipped with Streambot.

As shown in Figure 3.2, the host machine operates within a high-speed domes-

tic LAN (Local Area Network), representing one side of the end-to-end data

transfer. The LAN includes an Ethernet connection with a speed of 1 Gbps and

a WiFi connection with a speed of 300 Mbps, ensuring high-speed communica-

tion for the testbed’s operations.

Figure 3.2: Experimental testbed used for data collection



4. Methodology

As mentioned in Section 1, the entire methodology consists of two stages:

1. Live Server Names Discovery: Identifying server names responsible for

hosting video chunks, and therefore involved in the event, as servers from

which the client effectively downloads live streaming data.

2. Inferring Video Quality from Passive Network Metrics: Training, vali-

dating, and testing off-the-shelf machine learning models using only pas-

sive network metrics to infer video quality (i.e., video resolution), in live

video streaming flows associated with a content provider.

Tthe chapter is structured as follows:

(1) In Section 4.1, we outline the preliminary process of manifest file retrieval,

which is essential for gaining comprehensive insights into the streaming

deployment used by the content provider.

(2) In Section 4.2, we explain the method for preparing and consolidating raw

Streambot data into a single, serializable data structure.

(3) In Section 4.3, we describe the methodology for identifying server names

associated with a content provider, a crucial step in recognizing servers

actively involved in live streaming.

27
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(4) In Section 4.4, we present the process for training, validating, and testing

machine learning classification algorithms to predict video quality using

passive network metrics derived from Tstat periodic logs.

4.1 Gathering Manifest File

As discussed in Section 2, the manifest file assists the client during playback by

helping it discover the URL of the next chunk to be requested, as well as the

representation offered by the content provider.

During playback, HTTP requests for video chunks may follow patterns such as:

GET server.com/live-show/chunk_t=121212121/video1500kbits.m4s

GET server.com/live-show/chunk_t=121212221/video3000kbits.m4s

...

Alternatively, requests may follow this pattern:

GET server.com/live-show/chunk_t=121212121/id_profile_0.m4s

GET server.com/live-show/chunk_t=121212221/id_profile_1.m4s

...

In both cases, the client is expressing the chunk IDs (i.e., chunk t=121212121

and chunk t=121212221) along with the corresponding representation. In

the first case, the representation ID directly includes an indicator of video qual-

ity—the video bit-rate. In the second case, however, the representation ID is

simply an anonymized string without a direct indication of video quality.

With an instance of the manifest file on hand, we can easily look up and retrieve

video quality parameters (e.g., video bit-rate, video resolution, video CODEC,

and so on) associated with a representation ID.
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We obtain the manifest file by observing network requests in the browser’s

network tab. We manually search through the network requests to identify

those related to the manifest, typically labeled with tokens like manifest, mpd,

or playlist.

Once we have the manifest file, we save it and create a mapping between the

string used by the client in the URL to identify a specific video chunk and its

properties, including chunk bit-rate, width, height, and frame rate.

4.2 Streambot Data Consolidation

Based on the output of a supervised experiment conducted with Streambot

(see Section 3.2), we consolidate the TCP/UDP flows and bins reconstructed

by Tstat from log net complete, along with the HTTP requests from

log har complete into JSON files, as shown in Figure 7.1. Specifically, we

perform the following steps:

(a) The packet trace log net complete is input into Tstat, resulting in

the reconstruction of TCP and UDP flows—log tcp complete and

log udp complete—as well as the reconstruction of TCP/UDP flow

bins—log tcp periodic and log udp periodic.

(b) From the trace log bot complete, we select all events that occurred

during the experiment. Each event is represented as [tstart, tend], where tstart

denotes the start time of the event and tend denotes the end time. For each

i-th event [tstart, tend], we perform the following stages:

(i) From the traces log tcp complete and log udp complete, we

select all TCP and UDP flows that overlap with the event [tstart, tend].
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A TCP/UDP flow is considered overlapping if it satisfies the follow-

ing condition:

ts ≤ tend ∧ te ≥ tstart

where:

• ts is the timestamp when the flow starts

• te is the timestamp when the flow ends

Each selected flow (originally a space-separated record) is converted

into a JSON object.

(ii) From the traces log tcp periodic and log udp periodic, we

select the corresponding Tstat bins associated with the pre-

viously identified TCP/UDP flows in log tcp complete and

log udp complete. Each selected bin (originally a space-separated

record) is converted into a JSON object.

(iii) From the trace log har complete, we select all HTTP requests

falling within the event [tstart, tend]. For each request, we extract the

following information: the host name, the URL of the requested re-

source, the timestamp when the request (treq) was issued, the times-

tamp when the response (tres) was received, and the MIME type. If

the MIME type corresponds to one used by the content provider to

encapsulate video chunks (e.g., video/mp4), we append the video

chunk quality by identifying the bit-rate associated with that chunk

using the manifest file as a lookup table.
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4.3 Live Server Names Discovery

Based on content provider network, when a client interacts with remote content

provider infrastructure, we expect to have:

(1) Live Servers. These servers are responsible for delivering video/audio

chunks over TCP or QUIC connections, enabling the streaming experi-

ence. They are typically part of a CDN, which helps improve scalabil-

ity, caching efficiency, and low-latency delivery. As a result, these server

names often follow patterns that include identifiers like the CDN provider,

the content provider’s name, and words like live or linear, which in-

dicate the server’s role.1

(2) Supplementary Servers. These servers play a supporting role, handling

tasks like authentication, fetching metadata (such as text, images, and

stylesheets), managing DRM, or collecting telemetry data. These servers

are usually centralized, managed by the content provider on-premise.

Their names tend to be simpler, often just reflecting the name of the con-

tent provider as it is in domain part in the FQDN.

In order to identify the server names associated with a content provider, we

follow a systematic, incremental approach that involves several key steps, as

illustrated in Figure 4.1. In the following, we will outline each stage.

1In live streaming, server names usually have a hierarchical structure, including details like
geographic location, service type, and content type. For example, a server name might have
a region code (e.g., us-east), a service type (e.g., live), and a content provider tag (e.g.,
netflix). This helps with routing, load balancing, and troubleshooting within CDN systems.
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Figure 4.1: Pipeline and operational steps for discovering live streaming server
names associated to a content provider

4.3.1 Data Collection

Using Streambot, we monitor N events, each lasting a few seconds (up to 60

seconds), covering all live channels offered by the content provider during each

supervised experiment. Our primary goal is to detect when the client connects

to the server. Since nearly all traffic is protected by TLS (Transport Layer Secu-

rity), this typically involves intercepting the TLS handshake procedure. During

this process, the client authenticates the server and selects the cipher suite to

establish a secure and integrity-preserving end-to-end channel.

4.3.2 Data Preparation

Once the raw data is collected, we consolidate the TCP/UDP flows and bins,

along with the HTTP requests and responses for each event into a single JSON

document, as described in Section 4.2.
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4.3.3 Data Processing

Server Names Extraction

For each event, we extract server names associated with TCP and UDP flows,

which will serve as keys in two separate maps. The server names are extracted

using the following algorithm:

(a) For TLS-based flows, the server name is identified using the Server Name

Identifier (SNI) found in the ClientHellomessage, which the client uses

to initiate the handshake and request the server’s certificate.

(b) For non-TLS flows, the server name is extracted from the host field in

HTTP responses, assuming the application layer utilizes HTTP.

(c) If neither of the above methods is applicable, the Fully Qualified Domain

Name (FQDN) is used as the server name identifier, which corresponds to

the server’s name as recorded in the DNS.

(d) In cases where none of the aforementioned methods can be applied, the

flow is discarded and not processed further.

Server Names Ranking

The server names extracted from these flows serve as keys in the following

maps:

(a) Server-Request-Frequency-and-Data-Volume. This map tracks each

server name, showing how often it appears in an event and how many

bytes the client has downloaded from it.
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(b) Server-to-Video-Request-Count. This map records how many video re-

quests (e.g., video/mp4) the client has made to each server. As a result, it

clearly identifies which server names are likely serving multimedia con-

tent during the event, making it easy to pinpoint video-serving servers.

4.3.4 Data Post-processing

Trevisan et al. [14] demonstrated that using regular expressions to filter TCP

and UDP flows based on well-defined patterns in server names has proven to

be an effective approach for identifying network traffic associated with specific

public entities, such as Spotify and Facebook. Therefore, the last step involves

manually creating regular expressions to match server names linked to the con-

tent provider, following this procedure:

(a) By analyzing the Server-Request-Frequency-and-Data-Volume map, we can

easily determine which server names have received at least one request

for video, thereby identifying those associated with live streaming.

(b) By sorting the Server-Request-Frequency-and-Data-Volume map according to

volume data, server names associated with video delivery flows will rank

highest.

These two results help us identify an alphabetical patterns for:

a) Server names circumstantially linked to a content provider during an

event, revealing the event’s activity within the web application life-cycle.

b) Server names that are physically associated with streaming activity (the

most relevant result).
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4.4 Inferring Video Quality from Network Passive

Metrics

In this section, we describe the process of inferring video quality from passive

network metrics using a classification model that estimates the quality of video

requested during an event.

To estimate video quality based on passive network metrics, we rely on two

key data sources collected after a supervised experiment: the list of Tstat bins

associated with live streaming flows and the list of HTTP video requests made

by the client.

The data sources—network metrics from Tstat bins and video quality indica-

tors derived from HTTP request parsing—are processed using a sliding win-

dow approach, as illustrated in Figure 4.2. This approach segments the data

into windows of a predefined duration (winsize). Each window captures the

subset of Tstat bins and HTTP requests that fall within it. From the Tstat

bins, we extract aggregated volumetric and temporal features, while from the

HTTP requests, we derive the ground truth.

These labeled windows serve as the input data for training and evaluating

supervised machine learning models. The model learns to correlate passive

network features extracted from the Tstat bins with the corresponding video

quality values obtained from HTTP tracing. During training, the model iden-

tifies patterns within the data, adjusting its internal parameters to minimize

the difference between the predicted video quality and the actual ground truth.

Once trained, the model can then be applied to unlabeled data, inferring video

quality based on the network metrics observed, thus enabling the prediction of
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video quality in real-world scenarios.

Figure 4.2: Pipeline and operational steps for training and testing a model ca-
pable of inferring video quality from network passive metrics

4.4.1 Data Collection

Using Streambot, we monitor N events long enough to ensure that the net-

work connections have stabilized, overcoming the initial phase during which

transitory effects (e.g., slow-start, startup) may introduce fluctuations. In prac-

tice, this means monitoring a live stream for at least 300 seconds.

Since the objective is to infer the video quality (namely the video resolution), we

constrain the available bandwidth at the client side. This is approach sufficient

to simulate scenarios where the most critical Quality of Service (QoS) parame-

ter—available bandwidth—forces the bitrate adaptation algorithm to maintain

video quality below the optimal level.

To impose these bandwidth restrictions, we adopt wondershaper2, a

command-line tool designed for network traffic shaping, which interacts at low-

level with Linux tc network hook.

4.4.2 Data Preparation

Once the raw data is collected, we consolidate the Tstat flows and bins, along

with the HTTP requests and responses, into a single YAML document for each

2wondershaper is a Linux command-line utility that enables bandwidth limitation by con-
trolling maximum upload and download rates.
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event, utilizing the serialization methodology outlined in Section 4.2.

4.4.3 Data Pre-processing

Figure 4.3: Windowing procedure of live streaming flow bins. Upper case is
related to TCP live streaming flows, lower case is referred to UDP/QUIC live
streaming flows.

Flows Filtering For each event, we select all live streaming flows whose server

name matches the regular expression we derived as result from Section 4.3.

Bins Filtering For each event, considering all selected live streaming flows,

we select all associated bins.

Protocol Selection We determine the predominant protocol (TCP versus

UDP) by counting the number of bins associated with selected live streaming
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flows. If 90% or more of the bins are in TCP live flows, we conclude that the

event has been served over TCP. If 90% or more of the bins are in UDP live

flows, we conclude that the event has been served over UDP.

Windowing Considering tstart as the timestamp when the event begins and

tend as the timestamp when the event ends, live streaming flow bins are seg-

mented using a sliding-window technique, as illustrated in Figure 4.3. For

each window [ti, tj], all bins falling within the window are considered. These

bins may belong to different flows, particularly if the event is delivered over

HTTP/1.1 on top of TCP, while another is delivered over HTTP/3 on top of

UDP/QUIC. Some bins may be only partially contained within the current win-

dow wi, as well as the adjacent windows wi+1 and wi−1. In such cases, the start

and end timestamps of each bin, denoted as ts and te, are adjusted as follows:

t′s = max(ts, ti), t′e = min(te, tj)

where:

• ts: original timestamp signaling the starting of the bin

• te: original timestamp signaling the ending of the bin

• ti: start time of the window

• tj : end time of the window

Feature Extraction Considering window wi, we derive two sets of features:

temporal and volumetric.
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• Temporal Features. These features will represent the impulsiveness in

live streaming flows. In particular, we derive:

win idle = winsize− merge (|tlast − tfirst|) (4.1)

where winsize is the window size in seconds, and |tlast − tfirst| is the over-

all duration across bins if they merged within the window [ti, tj], which

returns an estimation of the period of inactivity within the window.

Then, we derive

max span =
n

max
i=1

xi (4.2)

min span =
n

min
i=1

xi (4.3)

avg span =
1

n

nX
i=1

xi (4.4)

std span =

vuut 1

n

nX
i=1

 
xi −

1

n

nX
i=1

xi

!2

(4.5)

where xi = |t′s− t′e| is the duration of the i-th bin, and n is the total number

of bins within the window [ti, tj], which returns an estimation of the bin

inactivity within the window.

• Volumetric Features. These features will represent the downstream and

upstream rates observed during an event in live streaming flows. All per-

bin metrics outlined in Table 7.1 are aggregated into features considering
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all n bins falling in the window, using the additive property as mathe-

matical operator. On doing so, we consider proportional distribution of

bytes and packets exchanged withing a bin: if the i-th bin is 30% contained

within window wi and 70% within window wi+1, the generic x metric (e.g.,

packet count) will contribute 30% of their total to wi and 70% to wi+1, as-

suming a uniform distribution. In formula:

x =
nX

i=1

xi ·
|te − ts|
|t′e − t′s|

(4.6)

where x denotes the generic volumetric feature from Table 7.1, xi denotes

such feature in the i-th bin within the window [ti, tj], and n is the number

of bins in the window [ti, tj].

In Table 4.2, we report the complete list of extracted features for each window

with a short description, in TCP and UDP cases.

Video Quality Extraction Considering window wi, we derive the average

video quality of the chunks requested during the event by selecting only those

that fall within the window. In formula:

avg video rate =
1

n

nX
i=1

vi (4.7)

where vi denotes the video bit-rate quality extracted from the URL in the i-th

HTTP request, and n is the number of all HTTP requests for video falling in the

window [ti, tj].

Video Quality Classes Definition Considering that a content provider can

offer several different video qualities, and that a common way to express video
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resolution (i.e., quality) is by measuring the number of pixels in the height of

each video frame (e.g., 480p, 720p), video quality classes are defined based on

the ranges of bit-rates that ensure receiving frames at low, medium, and high

quality. These classes are determined by their relative distance from 720p (HD)

or 1080p (Full HD), which are commercially accepted as high-quality standards.

Therefore, based on the average video bit-rate computed in each window, the

resulting value is classified into K discrete classes, ranging from label 0 to label

K − 1.

4.4.4 Data Processing

We evaluate and compare off-the-shelf machine learning algorithms to iden-

tify the most effective model for predicting video quality using features docu-

mented in Table 4.2 of live streaming flows. We utilize well-established imple-

mentations from the scikit-learn library, applying robust model validation

techniques and hyperparameter optimization to achieve optimal performance.

The version of scikit-learn used in this study is 0.24.23.

The classification algorithms selected for this study include K-Nearest Neigh-

bors (KNN), Decision Tree, and Random Forest. Below is a brief description

of each algorithm and its relevance to this study:

• K-Nearest Neighbors (KNN): KNN is a simple, instance-based learning

algorithm used for classification and regression tasks. It classifies a data

point based on the majority vote of its K nearest neighbors in the feature

space. The distance between points is typically calculated using metrics

like Euclidean distance. KNN is non-parametric, meaning it does not

3scikit-learn is a widely used Python library for machine learning, offering various tools
for classification, regression, clustering, and dimensionality reduction, among others.
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make assumptions about the underlying data distribution. However, it

can be computationally expensive as the dataset grows, and its perfor-

mance is heavily influenced by the choice of K and the distance metric.

• Decision Tree: A Decision Tree is a supervised learning model that splits

the data into subsets based on feature values, recursively partitioning the

data to minimize a certain criterion (e.g., Gini impurity or information

gain for classification)

• Random Forest: Random Forest is an ensemble method that combines

multiple Decision Trees to improve classification or regression accuracy.

Each tree is built using a random subset of the data and features, and

predictions from all trees are aggregated (usually by majority voting for

classification tasks).

Model Validation To ensure the validity and reliability of our model eval-

uation, we employ the Leave-One-Group-Out Cross-Validation (LOGO-CV)

technique, available in the scikit-learn library.

LOGO-CV is particularly useful when the data is organized into interdependent

groups, as in our case, where each window corresponds to a specific event. This

cross-validation method divides the dataset into groups, and during each itera-

tion, one group is held out as the validation set while the remaining groups are

used for model training. The application of LOGO-CV in this study guarantees

that, at each fold, the data windows from a single event are never included in

both the training and validation sets. This ensures that the model is evaluated

on entirely unseen data, providing a more accurate estimate of its generalization

performance in real-world scenarios.
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Classifier Hyperparameters
KNN nneighbors ∈ {20, 40, 80, 120}

weights ∈ {uniform,distance}
metric ∈ {euclidean,manhattan}

Decision Tree maxdepth ∈ {2, 3, 4, 5, 6}
minsamples leaf ∈ {20, 40, 80, 120}

criterion ∈ {gini, entropy}
Random Forest nestimators ∈ {5, 10, 15, . . . , 45}

maxdepth ∈ {2, 3, 4, 5, 6}
minsamples leaf ∈ {20, 40, 80, 120}

criterion ∈ {gini, entropy}

Table 4.1: Hyperparameters used for the different models. Each row presents
a set of hyperparameters specific to each model: Decision Tree, and Random
Forest. The table shows the value options for each parameter used in model
optimization.

Model Optimization To fine-tune our models, we apply GridSearch, a

widely-used technique for hyperparameter optimization. For this study, we

employed the evaluation metric scikit-learn’s default scoring options, se-

lecting the macro F1-score to ensure a balanced assessment across all classes.

An overview of the hyperparameter configurations tested for each algorithm is

presented in Table 4.1.
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Name Description
s bytes all Sum of all bytes observed across all bins in window wi

from server in TCP packets.
c bytes all Sum of all bytes observed across all bins in window wi

from client in TCP packets.
s pkts all Sum of all TCP packets observed across all bins in

window wi from server.
c pkts all Sum of all TCP packets observed across all bins in

window wi from client.
s ack cnt Sum of all TCP packets with ACK = 1 observed across

all bins in window wi from server.
c ack cnt Sum of all TCP packets with ACK = 1 observed across

all bins in window wi from client.
s ack cnt p Sum of all TCP packets with exclusively ACK = 1 ob-

served across all bins in window wi from server.
c ack cnt p Sum of all TCP packets with exclusively ACK = 1 ob-

served across all bins in window wi from client.
s pkts data Sum of all TCP packets with application data ob-

served across all bins in window wi from server.
c pkts data Sum of all TCP packets with application data ob-

served across all bins in window wi from client.

(a) TCP Volumetric Features

Name Description
s bytes all Sum of all bytes across all bins in window wi from

server in UDP packets.
c bytes all Sum of all bytes across all bins in window wi from

client in UDP packets.
s pkts all Sum of all UDP packets across all bins in window wi

from server.
c pkts all Sum of all UDP packets across all bins in window wi

from client.

(b) UDP Volumetric Features

Name Description
win idle Idle time within the window wi.
avg span Average span across all bins in the window wi.
max span Maximum span across all bins in the window wi.
std span Standard deviation of span across all bins in the win-

dow wi.
min span Minimum span across all bins in the window wi.

(c) TCP and UDP Temporal Features

Table 4.2: Feature set derived within a window wi, including volumetric and
temporal characteristics in live streaming flows



5. Experimental Results

In this chapter, we present the experimental results derived from network pas-

sive traces associated with DAZN activity. Specifically, we first discuss the de-

ployment of DAZN inferred from offline observations of their usage. Then, we

discuss the server names associated with this content provider. Finally, we pro-

vide numerical results on classifying DAZN live streaming flows.

5.1 DAZN Live Streaming Deployment

DAZN utilizes the DASH protocol for video delivery in the video/mp4 format.

The platform categorizes video into nine distinct profiles, as illustrated in Table

5.1. For video streaming, DAZN employs different network protocols based on

the type of streaming. For TCP-based streaming, the platform uses HTTP/1.1,

where multiple connections are employed to prevent head-of-line blocking and

ensure seamless delivery of both audio and video. On the other hand, for UDP

streaming, DAZN leverages HTTP/3 with QUIC, a protocol that provides low-

latency, efficient transport for real-time data delivery.

45
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Representation ID Bitrate (kbps) Width (px) Height (px) FPS
video 288kbps 288 480 270 25
video 480kbps 480 640 360 25
video 840kbps 840 640 960 25
video 1500kbps 1500 960 540 25
video 2300kbps 2300 1280 720 25
video 3000kbps 3000 1280 720 25
video 4400kbps 4400 1280 720 50
video 6500kbps 6500 1280 720 50
video 8000kbps 8000 1920 1080 50

Table 5.1: Video qualities derived from DAZN manifest file. According to
DAZN’s official page, the recommended network bandwidth for different reso-
lutions on TVs, consoles, and computers is as follows: Full HD (1080p) requires
at least 16 Mbps, HD (720p) requires at least 9 Mbps, and SD (below 720p) re-
quires at least 3 Mbps

5.2 Live Server Names Discovery in DAZN

5.2.1 Data Collection

We used Streambot to monitor all available linear channels offered by DAZN

(i.e., Eurosport1, Eurosport2, DAZN TV, Milan TV, Radio DS Serie A Enlive,

PGA Tour). Overall, we collected 480 events, each lasting 60 seconds.

5.2.2 Data Processing

Supplementary DAZN servers The server names extracted from all events

are summarized in Table 5.4. The server names most consistently associated

with DAZN contain the keyword dazn, typically within the domain part. Our

analysis reveals that DAZN predominantly relies on TCP as the transport layer
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protocol for its web-related services, while the use of UDP is minimal across the

DAZN-associated entries.

Live DAZN servers As shown in Table 5.2, consulting the Server-Request-

Frequency-and-Data-Volume map reveals clear evidence that these server names

are used by the client when requesting video content during all events. More

over, they account the largest portion of downloaded data from client - Table 5.3.

As an additional demonstration, inspecting the headers of these server names

via curl reveals the EDM-Stream-Type field, which is set to linear for live

streaming servers. This custom header indicates that the stream is live and

continuous, differentiating it from on-demand content and optimizing the de-

livery of real-time broadcasts. Moreover, the Server-to-Video-Request-Count map

reveals that these server names have received requests for video.

5.2.3 Data Post-processing

To identify the presence of DAZN-related flows, a regular expression as simple

as searching for DAZN is used to match domains containing the keyword, as

follows:

.*dazn.*

This expression matches any string that includes dazn, regardless of its position

within the domain.

For detecting live streaming server names, the regular expression must capture

keyword live somewhere in name alongside DAZN’s name. A suitable pat-

tern for this task is:
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(?=.*live)(?=.*dazn)

To improve the identification of server names, we use a Go-based tool called

subfinder. This tool helps find more server names that might be linked to

live streaming, allowing us to check how well the proposed regular expressions

work.

Server name Requests for mp4
dce-ak-livedazn.akamaized.net 4351
dcf-de-livedazn.daznedge.net 7193
dcj-ac-live.cdn.indazn.com 5100
dce-fs-live-dazn-cdn.dazn.com 45
dcj-ak-livedazn.akamaized.net 17
dcf-fs-live-dazn-cdn.dazn.com 2242

Table 5.2: Server names that have received requests for video during events.
For each name, there is the number of requested collected across all events in
the dataset

Downloaded bytes from servers operating over TCP
Server name Volume Ratio
dcf-de-livedazn.daznedge.net 29.17 GiB 86.8%
dce-ak-livedazn.akamaized.net 1.72 GiB 5.1%

Downloaded bytes from servers operating over UDP
Server name Volume Ratio
dce-ak-livedazn.akamaized.net 19.93 GiB 60.1%
dcf-fs-live-dazn-cdn.dazn.com 8.85 GiB 26.6%
dcj-ac-live.cdn.indazn.com 4.23 GiB 12.7%

Table 5.3: Decomposition of downloaded bytes across all events in the dataset
according to server name
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Server names that use TCP
Name Frequency Downloaded Bytes
... ... ...
api.playback.indazn.com 469 11,419,204
www.dazn.com 477 1,443,918,938
pkg.fe.indazn.com 470 7,261,977
rails.discovery.indazn.com 469 8,395,799
static.dazndn.com 477 1,343,934
resource-strings.acc.indazn.com 475 17,077,141
event.discovery.indazn.com 469 21,376,756
dcf-de-livedazn.daznedge.net 282 31,319,597,061
drm.playback.indazn.com 466 6,580,945
onboarding.indazn.com 469 10,446,504
images.discovery.indazn.com 476 906,436
image.discovery.indazn.com 478 72,728,477
search.discovery.indazn.com 410 551,998
startup.core.indazn.com 478 37,919,248
... ... ...

Server names that use UDP
Name Frequency Downloaded Bytes
rs.eu1.fullstory.com 477 13,919,224
api.rlcdn.com 474 3,095,689
www.google.it 473 2,695,326
imasdk.googleapis.com 46 9,223,711
safe.dazn.com 475 3,234,665
fundingchoicesmessages.google.com 474 42,467,221
dce-ak-livedazn.akamaized.net 119 21,396,600,740
dcj-ac-live.cdn.indazn.com 79 4,536,574,423
... ... ...

Table 5.4: Frequent server names identified over TCP and UDP flows during
DAZN streaming events. For each name, the table presents the frequency of
its occurrence during the streaming events (Frequency) and the total volume of
data downloaded from that source (Volume).
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Provider Server name
Akamai dce-ak-livedazn.akamaized.net

dcf-ak-livedazn.akamaized.net
...

Amazon dcf-ac-live.cdn.indazn.com
ac-live.cdn.indazn.com
dc1-ac-live2.cdn.indazn.com
1535932-ac-live.cdn.indazn.com
mss-ac-live.cdn.indazn.com
live.dca.cdn.indazn.com
dcf-ac-live.cdn.indazn.com
913712-ac-live.cdn.indazn.com
dcp1-ac-live.cdn.indazn.com
1402144-ac-live.cdn.indazn.com
dcl-ac-live.cdn.indazn.com
befake1402144-ac-live.cdn.indazn.com
twfake1402144-ac-live.cdn.indazn.com
dc1-ac-live3.cdn.indazn.com

...
Google dcb-gc-live.cdngc.dazn.com

dca-gc-livefree.cdngc.dazn.com
...

Fastly dcf-fs-live-dazn-cdn.dazn.com
dce-fs-live-dazn-cdn.dazn.com
...

Daznedge dce-de-livedazn.daznedge.net
dcf-de-livedazn.daznedge.net
dcj-de-livedazn.daznedge.net
dcaos-de-livedazn.daznedge.net
...

Table 5.5: Server names associated with streaming activity discovered using
subfinder
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5.3 Inferring Video Quality from Network Passive

Metrics in DAZN

5.3.1 Data Collection

To generate a dataset of realistic events that are sufficiently long to be consid-

ered non-transitory, we used Streambot to record 300-second-long playback

sessions. Since DAZN relies on both TCP and UDP, we created two separate

datasets: the TCP-dataset, which contains only events over TCP, and the UDP-

dataset, which contains only events over UDP. Each dataset includes the same

number of events, as shown in Table 5.6.

Bandwidth (Kbit/s) #Events
1500 25
3000 25
4500 25
6000 25
7500 25

50000 25

Table 5.6: Number of events collected for each network rate in both the TCP-
dataset and the UDP-dataset

5.3.2 Data Pre-processing

We apply the operational steps discussed in Section 4.4, setting the parameter

winsize = 10 (10 seconds) for both the TCP-dataset and the UDP-dataset.

Each event lasts 300 seconds, so with winsize = 10, each event is divided into

30 windows, resulting in a total of 4,500 windows. In the following, we provide

a graphical walkthrough of the dataset’s features, considering both the TCP-
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dataset and the UDP-dataset.

Features Set Visualization

In Figures 5.1 and 5.2, we observe that a reduction in available bandwidth shifts

the CDF of application bytes sent from the server (s bytes all) leftward along

the x-axis, for both TCP and UDP. Notably, in TCP, the application bytes rep-

resent only streaming data, while in UDP, they also include flow-control data

managed by QUIC at the application layer. This shift indicates that, under re-

duced bandwidth, the amount of application data downloaded during stream-

ing decreases.

We also observe a strong correlation between application bytes and application

packets (s pkts data for TCP and s pkts all for UDP), likely explained by

the constancy of the Maximum Segment Size (MSS).

Additionally, for TCP (Figure 5.3), there is a perfect correlation between

s pkt data and s ack cnt (the number of packets with the ACK flag set to 1),

suggesting that every data packet sent from the server contains an ACK, mak-

ing it a piggybacking packet. Conversely, the number of pure ACK packets (TCP

packets with only the ACK flag set) remains constant, regardless of the tested

bitrate.

In Figures 5.4 and 5.5, the patterns observed for TCP and UDP differ. Applica-

tion bytes sent from the client are used primarily for requesting the MPD and

multimedia chunks, consisting of HTTP GET requests. The size of these re-

quests is independent of the video quality. While the CDFs of s bytes all

for TCP overlap, the presence of ACK packets in UDP (managed by QUIC and

resulting in application data at the UDP layer) causes a slight separation in the

CDFs.
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Figure 5.1: Considering all events collected in TCP dataset, from the left to right
it is reported: the CDF of server bytes observed within all 10-seconds windows
at different network bit-rates; the CDF of TCP packets with payload; the corre-
lation between the two variables

Figure 5.2: Considering all events collected in UDP dataset, from the left to right
it is reported: the CDF of server bytes observed within all 10-seconds windows
at different network bit-rates; the CDF of UDP packets; the correlation between
the two variables

Figure 5.3: Considering all events collected in TCP dataset, from the left to right
it is reported: the CDF of TCP packet with ACK = 1; the CDF of TCP packets
with exclusively ACK = 1 and no data; the relationship between TCP packets
with data and packets with ACK = 1
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For TCP (Figure 5.6), there is no correlation between c pkt data and

c ack cnt. We also observe that the CDFs of c ack cnt and c ack cnt p

are nearly identical, suggesting that most ACK packets sent by the server are

pure acknowledgments for the application bytes sent.

In Figures 5.7 and 5.8, we observe that as available bandwidth increases, the

CDF of avg idle shifts left and the CDF of avg span shifts right along the

x-axis for both TCP and UDP. This shift occurs only when the bandwidth con-

straint is set to 50 Mbps. This behavior aligns with expectations: when the

client’s bandwidth is insufficient to sustain playback at the highest available

quality in DAZN (or even beyond, given that DAZN requires only about 16

Mbps for Full HD playback), the ratio of utilized to idle bandwidth remains

stable. The bitrate adaptation algorithm adjusts video quality based on net-

work conditions. Only when the client’s bandwidth exceeds the maximum re-

quirement (50 Mbps) does the client experience more free bandwidth, leading

to more impulsive transmission.

Feature Set Definition for DAZN

Since the feature sets of TCP and UDP do not completely overlap (e.g., ACKs

are unavailable in UDP, and UDP packets carrying application data cannot be

distinguished from those transporting QUIC ACKs), we focus on a shared set

of features. By removing redundant features and selecting only those common

to both protocols, we ensure consistency and coherence while facilitating the

training and testing of a unified model applicable to both scenarios.

In Table 5.7, we present the final set of features selected for model training and

evaluation.
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Figure 5.4: Considering all events collected in TCP dataset, from the left to right
it is reported: the CDF of client bytes observed within all 10-seconds windows at
different network bitrates; the CDF of TCP packets with payload; the correlation
between the two variables

Figure 5.5: Considering all events collected in UDP dataset, from the left to right
it is reported: the CDF of client bytes observed within all 10-seconds windows
at different network bit-rates; the CDF of UDP packets; the correlation between
the two variables

Figure 5.6: Considering all events collected in TCP dataset, from the left to right
it is reported: the CDF of TCP packet with ACK = 1; the CDF of TCP packets
with exclusively ACK = 1 and no data; the relationship between TCP packets
with data and packets with ACK = 1
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Feature Description
s bytes all Total number of server bytes (in TCP/UDP packets)

observed in all bins within the window wi

c bytes all Total number of client bytes (in TCP/UDP packets)
observed in all bins within the window wi

win idle Idle time within the window wi

avg span Average span across all bins in the window wi

max span Maximum span across all bins in the window wi

std span Standard deviation of span across all bins in the win-
dow wi

min span Minimum span across all bins in the window wi

Table 5.7: Feature Set in DAZN for Training and Testing. Volumetric features
have been unified to support seamlessly both TCP and UDP scenarios

Video Quality Classes Definition

Since it is quite common to categorize the quality of something into three lev-

els—low, medium, and high—we define three classes by setting nclasses = 3.

This three-tier classification is widely used because it provides a balance be-

tween simplicity and granularity, making it easy to interpret while still captur-

ing meaningful differences in quality. These classes are determined based on

the average bit-rate within each window wi, divided into three distinct ranges.

Each range corresponds to a subset of video quality levels, as illustrated in Fig-

ure 5.1, and is defined according to video resolution (i.e., the number of pixels

in height).

Class Range (Kbit/s)
0 0 ≤ video rate < 1500
1 1500 ≤ video rate < 6500
2 6500 ≤ video rate ≤ 8000

Table 5.8: Considering video bit-rate ranges, class 0 corresponds to low-quality
definition (ranging from 280p to 480p), class 1 corresponds to medium quality
(ranging from 480p to 720p), and class 2 corresponds to high quality (ranging
from 720p to 1080p)
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Figure 5.7: Considering all events collected in TCP dataset, from the left to right
it is reported: the CDF of idless in all windows; the CDF of the average bin
duration

Figure 5.8: Considering all events collected in UDP dataset, from the left to
right it is reported: the CDF of idless in all windows; the CDF of the average
bin duration

Training and Testing Sets

For both the TCP-dataset and the UDP-dataset, we split each dataset into a

training set and a testing set as follows:

• Training Set: The training set consists of data from 20 events per network

rate. Since data is collected across multiple network rates, this results in

a total of 120 events, capturing a diverse range of network conditions for

model training.

• Testing Set: The testing set includes 5 events per network rate, totaling 30

events. This set is used to evaluate the model’s performance and assess its
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generalization ability on previously unseen data.

5.3.3 Data Processing

Considering winsize = 10 and nclasses = 3, we present the numerical results

obtained using KNN, Decision Tree, and Random Forest. The TCP model refers

to a model trained exclusively on the TCP-dataset, while the UDP model is

trained solely on the UDP-dataset. Additionally, we also introduce the MIX

model. This model is trained on the combined dataset, formed by merging the

TCP-dataset and UDP-dataset.

KNN

In Table 5.12, we present the optimal hyperparameters obtained via GridSearch

for each model. The classification reports for the TCP, UDP, and MIX models

are shown in Tables 5.9, 5.10, and 5.11, respectively. Additionally, Figure 5.9

displays the confusion matrices for all three models.

Class Precision Recall F1-Score Support
0 0.95 0.98 0.96 222
1 0.98 0.94 0.96 495
2 0.91 0.97 0.94 179
Accuracy 0.96 896
Macro Avg 0.95 0.96 0.95 896
Weighted Avg 0.96 0.96 0.96 896

Table 5.9: Classification Report for TCP-model with KNN
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Class Precision Recall F1-Score Support
0 0.92 0.94 0.93 185
1 0.97 0.94 0.96 508
2 0.94 0.98 0.96 206
Accuracy 0.95 899
Macro Avg 0.95 0.96 0.95 899
Weighted Avg 0.95 0.95 0.95 899

Table 5.10: Classification Report for UDP-model with KNN

Class Precision Recall F1-Score Support
0 0.91 0.91 0.91 378
1 0.95 0.94 0.94 997
2 0.93 0.97 0.95 421
Accuracy 0.94 1796
Macro Avg 0.93 0.94 0.93 1796
Weighted Avg 0.94 0.94 0.94 1796

Table 5.11: Classification Report for MIX-model with KNN

Model Name Metric Num. Neighbors Weights
TCP-model manhattan 40 uniform
UDP-model euclidean 40 uniform
MIX-model manhattan 80 distance

Table 5.12: Optimal Hyperparameters for KNN

(a) TCP model: Accuracy =
95.6%

(b) UDP model: Accuracy =
95.0%

(c) MIX model: Accuracy =
93.8%

Figure 5.9: Confusion matrices for KNN: TCP (left), UDP (middle), and MIX
(right) models.
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Decision Tree

In Table 5.16, we present the optimal hyperparameters obtained via GridSearch

for each model. The classification reports for the TCP, UDP, and MIX models

are shown in Tables 5.13, 5.14, and 5.15, respectively. Additionally, Figure 5.10

displays the confusion matrices for all three models.

Class Precision Recall F1-Score Support
0 0.94 0.99 0.96 222
1 0.98 0.96 0.97 495
2 0.96 0.96 0.96 179
Accuracy 0.97 896
Macro Avg 0.96 0.97 0.96 896
Weighted Avg 0.97 0.97 0.97 896

Table 5.13: Classification Report TCP-model with Decision Tree

Class Precision Recall F1-Score Support
0 0.92 0.94 0.93 185
1 0.97 0.94 0.95 508
2 0.93 0.98 0.95 206
Accuracy 0.95 899
Macro Avg 0.94 0.95 0.94 899
Weighted Avg 0.95 0.95 0.95 899

Table 5.14: Classification Report UDP-model with Decision Tree

Class Precision Recall F1-Score Support
0 0.82 0.94 0.88 378
1 0.96 0.90 0.93 997
2 0.95 0.95 0.95 421
Accuracy 0.92 1796
Macro Avg 0.91 0.93 0.92 1796
Weighted Avg 0.93 0.92 0.92 1796

Table 5.15: Classification Report MIX-model with Decision Tree
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Model Name Max. Depth Min. Leaves Criterion
TCP-model 6 20 gini
UDP-model 6 20 entropy
MIX-model 6 20 entropy

Table 5.16: Optimal hyperparameters with Decision Tree

(a) TCP model: Accuracy
on testing set = 96.5%

(b) UDP model: Accuracy
on testing set = 94.8%

(c) MIX model: Accuracy
on testing set = 92.8%

Figure 5.10: For the Decision Tree, the confusion matrix for the TCP model is
shown on the left, the confusion matrix for the UDP model is shown in the
middle, and the confusion matrix for the MIX model is shown on the right.

Random Forest

In Table 5.20, we present the optimal hyperparameters obtained via GridSearch

for each model. The classification reports for the TCP, UDP, and MIX models

are shown in Tables 5.17, 5.18, and 5.19, respectively. Additionally, Figure 5.11

displays the confusion matrices for all three models.

Class Precision Recall F1-Score Support
0 0.95 0.97 0.96 222
1 0.95 0.96 0.96 495
2 0.96 0.89 0.93 179
Accuracy 0.95 896
Macro Avg 0.95 0.94 0.95 896
Weighted Avg 0.95 0.95 0.95 896

Table 5.17: Classification Report TCP-model with Random Forest
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Class Precision Recall F1-Score Support
0 0.93 0.93 0.93 185
1 0.97 0.94 0.95 508
2 0.91 0.99 0.95 206
Accuracy 0.95 899
Macro Avg 0.94 0.95 0.94 899
Weighted Avg 0.95 0.95 0.95 899

Table 5.18: Classification Report UDP-model with Random Forest

Class Precision Recall F1-Score Support
0 0.91 0.91 0.91 378
1 0.95 0.94 0.95 997
2 0.95 0.96 0.95 421
Accuracy 0.94 1796
Macro Avg 0.94 0.94 0.94 1796
Weighted Avg 0.94 0.94 0.94 1796

Table 5.19: Classification Report MIX-model with Random Forest

Model Name Num. Trees Max. Depth Min. Leaves Criterion
TCP-model 15 6 20 entropy
UDP-model 45 6 80 entropy
MIX-model 15 6 20 entropy

Table 5.20: Optimal hyperparameters with Random Forest

(a) TCP model: Accuracy
on testing set = 95.2%

(b) UDP model: Accuracy
on testing set = 94.7%

(c) MIX model: Accuracy
on testing set = 94.0%

Figure 5.11: For the Random Forest, the confusion matrix for the TCP model
is shown on the left, the confusion matrix for the UDP model is shown in the
middle, and the confusion matrix for the MIX model is shown on the right.
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5.3.4 Model Evaluation

Overall, we conclude that:

• KNN demonstrated solid performance across all models. The TCP-model

achieved the highest accuracy at 95.6%, followed by the UDP-model at

95.0%, and the MIX-model at 93.8%. The confusion matrices indicate that

the KNN model is generally effective, with higher recall values for the

majority class (1) in each model, reflecting its sensitivity to the dominant

class.

• Decision Tree models offered competitive accuracy, with the TCP-model

performing best at 96.5%, followed by the UDP-model at 94.8%, and the

MIX-model at 92.8%. The confusion matrices for the Decision Tree models

indicated a strong performance, particularly for the TCP and UDP models,

with high precision and recall across all classes. Additionally, the Decision

Tree’s interpretability provides valuable insights into feature importance,

which could be leveraged for further model refinement.

• Random Forest, a more complex ensemble model, showed similar per-

formance to the Decision Tree in terms of classification accuracy, with

the TCP-model achieving 95.2%, the UDP-model at 94.7%, and the MIX-

model at 94.0%. The Random Forest model demonstrated stability and ro-

bustness, with balanced precision and recall across the models. However,

despite its higher complexity, the Random Forest model did not dramat-

ically outperform the simpler Decision Tree, suggesting that the dataset

may not require the extra complexity offered by ensemble methods.

In general, all models performed well on the task, but a key observation in the
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feature importance profiling, for models like Decision Tree and Random Forest,

is that the feature s bytes all was identified as the most predictive feature

across all models. In the case of the Decision Tree, s bytes all accounted

for nearly 92% of the importance. For Random Forest, there was a more bal-

anced distribution of importance among features, particularly s bytes all,

avg span, and win idle. This finding aligns with the expected outcome, as

reducing video quality primarily affects downstream performance, which is di-

rectly linked to the reduced amount of data that needs to be downloaded at

runtime.



6. Conclusion

Video streaming has emerged as the dominant form of Internet traffic, with its

share of global bandwidth usage steadily increasing in recent years. As the

demand for high-quality streaming content grows, the need for effective man-

agement and optimization of streaming services becomes increasingly critical.

Platforms delivering live content, particularly sports events, cause significant

traffic spikes, which place considerable strain on network infrastructures. This

has prompted the adoption of advanced technologies and strategies aimed at

enhancing the QoE for end users.

This research experimentally demonstrates the feasibility of using regular ex-

pressions for filtering relevant network flows and passive metrics to infer video

quality, with a specific focus on determining video resolution. By applying su-

pervised machine learning algorithms, we show how passive network metrics

can be leveraged for video streaming future estimations.

The results obtained from the DAZN datasets highlighted the effectiveness of

this approach in classifying and predicting streaming behavior, validating the

potential of this method for content providers in the streaming industry.

This research methodology, initially applied to DAZN, is also extended to Ama-

zon Prime Video. Below, we provide an early overview of the findings.

65
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6.1 Early Findings with Amazon Prime

Amazon utilizes the DASH protocol for video delivery in the video/mp4 for-

mat. The platform categorizes videos into ten distinct profiles, as illustrated in

Table 6.1. Amazon uses the classical TCP with HTTP 1.1 messages exchanged

on top of it during the streaming process.

Representation ID Bitrate (kbps) Width (px) Height (px) FPS
video 1 0 1800 960 540 25
video 2 0 200 512 288 25
video 3 0 500 704 396 25
video 4 0 800 704 396 25
video 5 0 1200 960 540 25
video 6 0 2000 1280 720 25
video 7 0 4000 1280 720 25
video 8 0 5000 1280 720 25
video 9 0 6500 1280 720 25
video 10 0 8000 1280 720 25

Table 6.1: Video qualities derived from Amazon manifest file

For detecting live streaming server names, the regular expression must capture

the keywords live or linear somewhere in the name, alongside Amazon

Prime’s acronyms (i.e., aiv, pv). A suitable pattern for this task is:

(linear|live).*(aiv|pv).*cdn.*|a.akamaihd.net

We applied this pattern to intercept live streaming flows in a dataset of similar

size to the one used for DAZN and analyzed temporal and volumetric patterns

in the live streaming traffic related to Amazon Prime’s streaming service. Fig-

ures 6.1 and 6.2 present some of the early findings obtained from the data
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Figure 6.1: Considering all collected events, from left to right, the following
is reported: the CDF of server bytes observed within all 10-second windows
at different network bitrates, the CDF of TCP packets with payload, and the
correlation between the two variables

Figure 6.2: Considering all collected events from left to right, the following are
reported: the CDF of idleness across all windows, the CDF of the average bin
duration, the CDF of the standard deviation in bin duration, the CDF of the
maximum bin duration, and the CDF of the minimum bin duration
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We experimentally find similarities between features extracted from DAZN and

Amazon Prime live streaming flow dynamics, suggesting that the methodology

can be fully applied to Amazon Prime in the same way.

6.2 Future Work

In future work, we plan to explore the QoE factor of rebuffering frequency. To

achieve this, we will introduce Streambot tracing activity, a functionality that

is already supported but not fully tested. This will allow us to monitor the

minplayer and log every instance when the video pauses. By doing so, we can

define periods where the user experiences such poor network conditions that

even the lowest video resolution is being used, thereby directly impacting the

overall QoE.

Additionally, we intend to train and test models for Amazon Prime Video qual-

ity inference, applying the same methodology used for DAZN. Furthermore,

we plan to evaluate the performance of these models using real-world network

traces from an ISP, specifically Fastweb, to assess how well the models general-

ize to real-world conditions.



7. Appendix

Name Description
s bytes all Bytes from server within TCP packets.
c bytes all Bytes from client within TCP packets.
s pkts all TCP packets from server.
c pkts all TCP packets from client.
s ack cnt TCP packets from server with ACK = 1.
c ack cnt TCP packets from client with ACK = 1.
s ack cnt p TCP packets from server with ACK = 1 with no pay-

load.
c ack cnt p TCP packets from client with ACK = 1 witg no pay-

load.
s pkts data TCP packets from server with payload.
c pkts data TCP packets from client with payload.

(a) TCP Volumetric Metrics

Name Description
s bytes all Bytes from server within UDP packets.
c bytes all Bytes from client within UDP packets.
s pkts all UDP packets from server.
c pkts all UDP packets from client.

(b) UDP Volumetric Metrics

Table 7.1: TCP and UDP volumetric metrics available in Tstat in
log tcp complete and log udp complete documents
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Name Description
fqdn Fully Qualified Domain Name of the server, extracted

from DNS request/response messages before connect-
ing to the remote IP.

c SNI Specifies the server name with which the client is com-
municating, extracted from the Server Name Indica-
tion field during the TLS handshake (if the connection
is TLS-protected or if UDP transports QUIC).

http hostname* Specifies the server name from HTTP headers (if com-
munication occurs without encryption).

* HTTP hostname is available only if TCP flow reconstruction occurs.

(a) Server names in Tstat log tcp complete and log udp complete

Name Description
first Unix timestamp when the first TCP packet (SYN

packet) is sent from client to server in a TCP connec-
tion.

last Unix timestamp when the last TCP packet (RST or FIN
packet) is sent from client to server (or vice-versa) in a
TCP connection.

s first Unix timestamp when the first UDP packet is sent
from server to client over UDP from a new socket.

s duration Duration of of the server-to-client data stream over
UDP expressed in seconds.

(b) Timestamps in Tstat log tcp complete and log udp complete for time
location of flows

Name Description
first Unix timestamp when the a TCP/UDP bins starts.
duration TCP/UDP bins duration expressed in milliseconds.

(c) Timestamps in Tstat log tcp periodic and log udp periodic for time
location of bins

Table 7.2: TCP and UDP metadata reconstructed by Tstat for server name iden-
tification and timestamping
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{
"ts": 1739522079,
"te": 1739522259,
"tcp_flows": [

{
"s_ip": "12.23.34.34",
"c_bytes_all": 17391,
"s_bytes_all": 172239,
"ta": 1739522080,
"tb": 1739522212,
"sni": "www.playback.content-provider.com"

}
],
"udp_flows": [

{
"s_ip": "98.76.54.32",
"c_bytes_all": 8291,
"s_bytes_all": 98127,
"ta": 1739522095,
"tb": 1739522200,
"sni": "www.playback.content-provider.com"

}
],
"tcp_flow_bins": [

{
"start": 1739522080,
"end": 1739522090,
"c_bytes": 4000,
"s_bytes": 45000

},
...

],
"udp_flow_bins": [

...
],
"http_reqs": [

{
"server": "server.com",
"url": "/live-show/chunk_t=121212121/video1500kbits.m4s",
"mime": "video/mp4",
"rate": "1500kbps",
"treq": 1739522090,
"tres": 1739522120

},
...

]
}

Figure 7.1: An instance of a JSON document containing TCP/UDP flows, flow
bins, and HTTP requests for an event



Bibliography

[1] 3GPP and MPEG. Dynamic adaptive streaming over http (dash), 2012.

[2] Adobe Systems Inc. Adobe http dynamic streaming (hds), 2010.

[3] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan.

Prometheus: Toward quality-of-experience estimation for mobile apps

from passive network measurements. In Proceedings of the 15th Workshop

on Mobile Computing Systems and Applications (HotMobile), page 18, 2014.

[4] Apple Inc. Http live streaming (hls), 2009.

[5] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and N. Feamster.

Inferring streaming video quality from encrypted traffic: Practical models

and deployment experience. Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 3(3):1–25, Dec. 2019.

[6] P. Casas, R. Schatz, and T. Hossfeld. Monitoring YouTube QoE: Is your

mobile network delivering the right experience to your customers? In

Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC), pages 1609–1614, Apr. 2013.

72



BIBLIOGRAPHY 73

[7] Z. Gurel, T. E. Civelek, and A. C. Begen. Need for Low Latency: Media

Over QUIC. In Proceedings of the 2nd Mile-High Video Conference, pages 139–

140, May 2023.

[8] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and

G. Zussman. Requet: Real-time QoE detection for encrypted YouTube traf-

fic. In Proceedings of the ACM on Measurement and Analysis of Computing

Systems (Internet-QoE), 2019.

[9] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura. Using session mod-

eling to estimate HTTP-based video QoE metrics from encrypted network

traffic. IEEE Transactions on Network and Service Management, 16(3):1086–

1099, Sept. 2019.

[10] M. Nguyen, H. Amirpour, C. Timmerer, and H. Hellwagner. Scalable High

Efficiency Video Coding Based HTTP Adaptive Streaming Over QUIC. In

Proceedings of the Workshop on the Evolution, Performance, and Interoperability

of QUIC, pages 28–34, Aug. 2020.

[11] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov. A machine learn-

ing approach to classifying youtube QoE based on encrypted network traf-

fic. Multimedia Tools and Applications, 76(21):22267–22301, Nov. 2017.

[12] PoliTO. Tstat: Network monitoring tool. http://tstat.polito.it,

2009.

[13] R. Schatz, T. Hossfeld, and P. Casas. Passive YouTube QoE monitoring for

ISPs. In Proceedings of the 6th International Conference on Innovative Mobile

Internet Services and Ubiquitous Computing, pages 358–364, July 2012.

http://tstat.polito.it


BIBLIOGRAPHY 74

[14] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Munafò. Five years
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