
POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

Master’s degree thesis

Development and Optimization of a Firmware for
Real-Time Monitoring of Network Traffic and Threat

Detection

Supervisor Candidate
prof. Andrea Atzeni Gianluca Iadicicco

Academic Year 2024-2025

Ad Anna
Ai miei genitori Anna e
Lucio
Alla mia famiglia e a
tutti coloro che credono
in me

Summary

The increase in cyber threats has made it essential to adopt advanced solutions for mon-
itoring and securing network traffic. Among these, Intrusion Detection Systems (IDS)
represent a fundamental tool for identifying and preventing suspicious activities within an
IT infrastructure.

An IDS is designed to analyze network traffic or system activities with the aim of
detecting anomalous or potentially harmful behavior. There are two main types of IDS:
Network-based IDS (NIDS), which monitor network traffic in real time, and Host-based
IDS (HIDS), which focus on analyzing operations performed on a single device or server.

Threat detection can occur according to two approaches: signature-based detection,
which identifies already known attacks by comparing traffic with a database of predefined
signatures, and anomaly-based detection, which analyzes network behavior in search of
deviations from a normal model.

IDS can operate in passive mode, generating alerts without directly intervening, or
integrate with prevention systems (IPS) to automatically block suspicious activities. These
tools are essential to ensure the security of corporate networks, critical infrastructures
and cloud environments, offering advanced protection against cyber attacks, malware and
unauthorized access.

Among the most advanced open-source IDS, Suricata stands out for its multi-threading
support, high configurability and the ability to analyze a wide range of protocols. However,
this flexibility entails a high consumption of resources, making it less suitable for embedded
devices or contexts in which it is necessary to monitor only a subset of the supported
protocols.

The goal of this thesis is to optimize Suricata 8.0.0 to improve its efficiency on platforms
with few resources, while maintaining its effectiveness in detecting threats. In particu-
lar, a system was developed that allows to make support for network protocols optional
already at the compilation stage, thus reducing the software footprint and improving its
performance. The approach adopted required modifications to the Suricata source code,
modifying various elements such as the protocol decoders, the detection engine and the
build configuration system.

The changes had a measurable impact, quantified using three metrics: RAM con-
sumption, executable size, and log file size. Tests were conducted on different Suricata
configurations running on a Virtual Machine with Ubuntu 24.10, revealing that enabling
or disabling specific protocols—based on the network being analyzed—can significantly
optimize the software. In particular, removing HTTP and the associated libhtp library,

2

a complex library specifically designed to parse and analyze HTTP traffic, drastically
reduced all three metrics.

Once Suricata was optimized, its performance needed to be tested on an embedded
device with limited resources. For this purpose, the project used a Raspberry Pi 3 Model
B, which has an ARM architecture and only 1 GB of RAM and a relatively low-power
processor. Given these constraints, OpenWrt was chosen as the reference operating sys-
tem due to its open-source nature, flexibility in integrating third-party software, and low
resource requirements.

OpenWrt is a Linux-based OS, mainly developed for routers and low-resource devices.
Despite its lightweight nature, it offers a wide range of features explored in this thesis,
including routing and relatives protocols, firewall with both iptables and nftables, VPN
support, and QoS management.

When implementing Suricata on OpenWrt 23.05.5, three different compilation ap-
proaches were explored:

• Direct compilation on OpenWrt: Failed because the lack of some development li-
braries required by Suricata.

• Using the official OpenWrt Software Development Kit (SDK): Failed due to the
SDK’s limited set of libraries, causing compatibility issues during compilation.

• Creating a custom OpenWrt image with Suricata pre-integrated: This method en-
abled the inclusion of all necessary libraries and extensions.

Once this phase was completed and a functional OpenWrt image with Suricata was suc-
cessfully built, the next step was its integration on the board. However, due to the
board’s limited resources, the compilation had to be performed on another machine. Ad-
ditionally, because of the architectural differences between the host and the target, cross-
compilation was required. This introduced several challenges, including compatibility with
the toolchain and managing libraries not designed for cross-compilation.

The biggest issue that has been encountered was caused by Suricata-lua-sys, a Suricata
library that was not designed for cross-compilation. As a result, when compiled, it pro-
duced an output compatible only with the host machine’s architecture (x86_64), rather
than the Raspberry Pi 3’s architecture (aarch64).

Once a functional OpenWrt instance with Suricata was created, an additional opti-
mization was implemented: an autoconfiguration system based on traffic analysis. This
system identifies the most frequently used protocols and adapts Suricata’s configuration
accordingly.

Using a combination of Bash and Python scripts, a cooperative process was established
between OpenWrt and the host machine. The bash script initially start Suricata that
monitors network traffic, then it passes the captured packets log to the python script that
detects the most common protocols, and then re-compiles and re-installs an optimized
configuration.

This optimization further reduces resource consumption without compromising Suri-
cata’s threat detection capabilities, as it is specifically tailored to the analyzed network.

3

The final phase involves performance testing to assess the system’s efficiency. These
tests were conducted using both Ethernet and wireless connections, under normal condi-
tions and during an attack.

The attack chosen to evaluate the system’s performance was the DoS attack, as it
is commonly used to overwhelm a system’s resources. This made it an ideal choice to
determine whether Suricata had issues with detection and whether it consumed excessive
resources, potentially causing a system crash. To carry out this attack, two tools were
used:

• tcpreplay, which replays captured network traffic logs.

• hping3, which was specifically used to perform a SYN flood attack, a type of DoS
attack that exploits the TCP three-way handshake mechanism.

The evaluation was based on three key metrics: Suricata’s RAM and CPU consump-
tion, as well as the system’s idle percentage, to determine the risk of a crash. As high-
lighted in previous tests, different Suricata configurations impact performance—the fewer
protocols a configuration supports, the lower the RAM and CPU consumption, resulting
in a more efficient operating system.

Finally, the comparison with another open-source IDS, Snort, confirmed the advantages
of Suricata and the optimizations applied to it. Test results showed that while Snort
have a more stable CPU consumption, even if slightly higher than Suricata’s, its RAM
consumption is significantly higher, especially during the SYN flood attack.

In conclusion, this thesis demonstrates how an advanced IDS can be adapted to work
effectively in resource-limited contexts, without sacrificing detection capabilities. The
implemented modifications can make Suricata suitable for areas such as the Internet of
Things (IoT) or Industrial IoT (IIoT), perimeter security and distributed network infras-
tructures, improving cybersecurity in scenarios where lightness and efficiency are critical
factors.

4

Acknowledgements

Desidero esprimere la mia sincera gratitudine al Professor Andrea Atzeni, relatore di
questa tesi, per il costante supporto, l’interesse e i preziosi consigli ricevuti durante la
stesura dell’elaborato.

Un sentito ringraziamento va anche a Saverio Milo, tutor aziendale, per la sua disponi-
bilità, competenza e assistenza nella parte pratica dell’implementazione. La sua esperienza
e i suoi suggerimenti hanno contribuito in modo significativo al raggiungimento degli obi-
ettivi di questa tesi. Inoltre, i suoi consigli si sono rivelati preziosi anche oltre questo
lavoro, aiutandomi a chiarire le idee e a orientare le mie scelte per il futuro professionale.

Ad entrambi va la mia gratitudine per aver reso possibile portare a termine questo
percorso con entusiasmo e determinazione.

5

Desidero dedicare un sentito ringraziamento ai miei genitori, Anna e Lucio, che con
il loro sostegno, il loro amore e i loro sacrifici mi hanno permesso di arrivare fino a qui.
Senza il vostro aiuto, sia morale che economico, questo traguardo sarebbe stato solo un
sogno lontano.

Un ringraziamento speciale va a mia mamma, che non ha mai smesso di credere in me,
anche nei momenti di difficoltà. Grazie per la tua forza, la tua perseveranza e per essere
stata sempre al mio fianco, spronandomi a dare il meglio di me. Questo risultato è anche
il tuo.

Un grande grazie a mio papà per la sua costante presenza, il suo supporto e il suo
spirito sempre positivo. Il tuo modo di affrontare la vita con ottimismo è stato per me un
grande esempio.

Grazie anche a mio fratello Emanuele e a Francesca per il loro affetto e il loro supporto,
e a mio fratello Mattia, che tra una presa in giro e l’altra, riesce comunque a strapparmi
un sorriso. E poi c’è Beatrice, la mia nipotina arrivata da un anno per scombussolare
tutti gli equilibri di famiglia e farmi guadagnare il titolo di zio per la prima volta, con
suoi sorrisi è stata capace di migliorare le brutte giornate.

Un grazie di cuore a mio cugino Luca, che è stato una presenza costante in questo
percorso, sempre pronto a sostenermi e a darmi preziosi consigli. Il tuo supporto ha fatto
la differenza.

Un doveroso ringraziamento a “Riunione Bilderberg”, il gruppo di menti eccelse che
ha seguito e sostenuto questo mio percorso, spesso a distanza ma sempre con lo spirito
giusto. Grazie per i consigli, le risate, il supporto e per aver dimostrato che l’amicizia non
ha bisogno di riunioni segrete. . . o forse sì. Senza di voi, questi cinque anni sarebbero
stati molto meno divertenti (e probabilmente molto più produttivi, ma chi vuole davvero
quello?).

Inoltre, un applauso a "Gli Incredibili Tre", il trio accademico più caotico di sempre,
composto da me e le mie due cugine, che nonostante la distanza abbiamo condiviso ogni
passo (e ogni crollo emotivo) dei nostri percorsi universitari. Grazie per aver ascoltato le
mie crisi, per averne avute di vostre da condividere con me e per avermi dimostrato che il
panico da esami è molto più sopportabile quando si è in tre a disperarsi. Se siamo riusciti
a superare questo, possiamo affrontare qualsiasi cosa. . . o almeno così ci piace credere.

Un enorme grazie alla mia famiglia — nonni, zii e cugini — per il sostegno, la pazienza
e per aver sempre trovato il modo di farmi sorridere, anche nei momenti più complessi.
La vostra presenza è stata il miglior promemoria che non si cresce mai da soli.

Un grazie va anche a Gennaro, che oltre ad aver cresciuto una persona speciale, ha
sopportato anche me. E grazie anche per gli ottimi consigli dati lungo il percorso.

Infine, un grazie speciale ad Anna, la mia roccia e il mio porto sicuro. Grazie per
esserci sempre stata, per aver creduto in me anche quando io stesso non lo facevo, per la
tua forza che mi ha sostenuto e per il tuo amore che mi ha dato energia nei momenti più
difficili. Sei stata la mia più grande tifosa, la mia motivatrice e, quando serviva, anche
la mia dolce rompiscatole. Senza di te, questo percorso sarebbe stato molto più difficile
(e sicuramente meno bello). Questo traguardo è anche tuo, perché ogni passo l’abbiamo
fatto insieme. Tamu.

Vi voglio bene. (anche se non lo dico spesso, quindi segnatevi questa data)

6

Contents

List of Tables 12

List of Figures 13

I IDS: Concepts and Fundamentals 15

1 Introduction to IDS 16
1.1 Characteristics and purposes . 16
1.2 Role in Cybersecurity . 18

1.2.1 Continuous monitoring of activities 18
1.2.2 Advanced threat detection . 18
1.2.3 Incident Response Support . 18
1.2.4 Integration into multi-layered defense strategies 18
1.2.5 Adaptation to specific scenarios . 19
1.2.6 Limitations . 19

1.3 Typologies . 20
1.3.1 Based on the position in the network 20
1.3.2 Based on the detection method . 21
1.3.3 Based on the analysis mode . 21
1.3.4 Based on architecture . 22

2 Architecture and operating principles of IDS 24
2.1 Main components . 24

2.1.1 Data sources . 24
2.1.2 Analysis Engine . 25
2.1.3 Alert system . 25

3 Challenges and usage scenarios 26
3.1 Challenges in Accuracy and Adaptation . 26

3.1.1 Performance: The trade-off between speed and accuracy 26
3.1.2 False Positives and False Negatives: The Accuracy Problem 27
3.1.3 The importance of continuous updating 27

3.2 IDS in Companies, Cloud and IoT Networks 28

7

3.2.1 IDS in Corporate Networks: Protection at Scale 28
3.2.2 Cloud IDS: Visibility and Scalability Challenges 28
3.2.3 IDS in IoT: Protecting a Heterogeneous Ecosystem 29
3.2.4 Integration and synergies between different environments 29

3.3 SIEM: Integration and Cooperation with IDS 29
3.3.1 Requirements for Integration . 29
3.3.2 Benefits of IDS and SIEM Cooperation 30
3.3.3 Challenges and Future Opportunities 31

3.4 Emerging and currently used technologies 31
3.4.1 Current Technologies . 31
3.4.2 Emerging Technologies . 31
3.4.3 Synergies between existing and emerging technologies 32

II Suricata: Architecture, Applications, and Challenges 33

4 An Introduction to Suricata 34
4.1 What is Suricata and why is it important? 34
4.2 Comparison with other NIDS . 36

4.2.1 Snort vs Suricata . 36
4.2.2 Zeek (Bro) vs Suricata . 36
4.2.3 Cisco Secure IPS vs Suricata . 37
4.2.4 Conclusions and use cases . 38

5 Suricata Architecture 39
5.1 A multi-language architecture . 39

5.1.1 The C language . 39
5.1.2 The Rust language . 40
5.1.3 A balance between performance and security 40

5.2 Analysis of the main components . 41
5.2.1 Packet Processing: traffic management and analysis 41
5.2.2 Detection Engine: the heart of detection 42
5.2.3 Logging and Reporting: Visibility into Network Events 43

5.3 Suricata Rule Format and Possible Actions 44
5.3.1 General Rule Structure . 45
5.3.2 Available Actions . 46
5.3.3 Some Advanced Options . 47
5.3.4 Advanced Example: SQL injection attempt 47

5.4 Suricata’s Two-Phase Architecture . 47
5.4.1 Setup Phase . 48
5.4.2 Runtime Phase . 48

5.5 Multi-Threading and Multi-Protocol Support in Suricata 49
5.5.1 Multi-Threading Support . 49
5.5.2 Multi-Protocol Support . 49
5.5.3 Operational Benefits . 50

8

5.5.4 Limitations and Challenges . 50

6 Strengths and Weaknesses 52
6.1 Hardware Performance . 52
6.2 Limitations in Standard Configurations . 53

6.2.1 Non-Optimized Performance . 53
6.2.2 Rules Configuration . 53
6.2.3 Interface and Configuration Complexity 54
6.2.4 Generic Approach to Protocols . 54

III Suricata in Practice: Customization and Optimization 55

7 Project objectives 56
7.1 Target Scenarios . 56
7.2 Project Requirements . 57

8 Build Flow and Core Files 58
8.1 The Suricata compilation process . 58

8.1.1 Running ./configure . 58
8.1.2 Running make . 58
8.1.3 Running make install . 59

8.2 configure.ac . 59
8.3 /src/Makefile.am . 59

8.3.1 Decoder (decode, decode-*) . 60
8.3.2 App-Layer (app-layer, app-layer-*): 61
8.3.3 Detection (detect, detect-*) . 64
8.3.4 Output (output, output-lua, output-json-*) 66

8.4 /rust/Makefile.am and lib.rs . 68
8.5 /rules/Makefile.am . 68
8.6 suricata.yaml.in . 68

8.6.1 File Structure . 68
8.6.2 Generating the suricata.yaml file 70

9 Changes Made 71
9.1 Adding Configuration Flags in configure.ac 71
9.2 Changes to src/Makefile.am . 72
9.3 Updates to suricata.yaml.in . 73
9.4 Changes to the rules folder . 73
9.5 Changes to rust/Makefile.am . 74
9.6 Updates to the lib.rs File . 74
9.7 Changes in Suricata C Code (src) . 74
9.8 Problems Encountered . 75

9.8.1 HTTP and libhtp . 75
9.8.2 TCP and UDP . 75

9

10 Change Impacts 76
10.1 Executable Size . 76
10.2 Memory Usage . 76
10.3 Impact on log files . 77

IV OpenWrt: A Lightweight Network Firmware 78

11 Introduction to OpenWrt 79
11.1 From Evaluating Options to Choosing OpenWrt 79
11.2 What is OpenWrt and its main features . 80

11.2.1 Key Features of OpenWrt . 80
11.2.2 Differences from a full Linux system 80

12 Advantages and Limitations of OpenWrt 82
12.1 Efficiency . 82
12.2 Modularity . 83
12.3 Scalability . 83
12.4 Challenges related to hardware compatibility and configuration 83

12.4.1 Hardware Compatibility . 84
12.4.2 Configuration Challenges . 84
12.4.3 Mitigating Challenges . 84

13 Technical Aspects of OpenWrt 85
13.1 SDK and Toolchain . 85

13.1.1 What is the OpenWrt SDK . 85
13.1.2 OpenWrt Toolchain . 86
13.1.3 Differences between SDK and Toolchain 86
13.1.4 Cross-Compilation Process . 86
13.1.5 Practical Example of Use . 87

13.2 OpenWrt Build System . 89
13.2.1 Build System Structure . 89
13.2.2 Build Process . 89
13.2.3 Advanced Configurations . 90
13.2.4 Practical Example: Creating a Firmware Image 91

13.3 OpenWrt Key Features . 91
13.3.1 Advanced Routing . 92
13.3.2 Firewall and Security . 93
13.3.3 QoS Management and Traffic Shaping 96
13.3.4 VPN Support . 98
13.3.5 Wireless Network Support . 100
13.3.6 Other Advanced Features . 102

10

V Integrating Suricata with OpenWrt: Compilation and Test-
ing 105

14 Porting Suricata to OpenWrt 106
14.1 The first attempt: compiling on OpenWrt 106

14.1.1 Initial setup and configuration . 106
14.1.2 Issues encountered . 107

14.2 The Suricata package for OpenWrt . 107
14.2.1 Package definition and code source 107
14.2.2 Dependency Management and Build Configuration 107
14.2.3 Build and Installation Process . 108

14.3 The second attempt: cross-compilation with the SDK 109
14.3.1 SDK setup and compilation environment 109
14.3.2 C library and toolchain issues . 109

14.4 Third attempt: Rebuilding OpenWrt from scratch 109
14.4.1 Build System Setup . 110
14.4.2 Building and Image Generation . 110
14.4.3 Verifying Suricata Integration . 110

14.5 Implementing OpenWrt on a Raspberry Pi 3 111
14.5.1 Raspberry Pi 3 Model B Hardware Specifications 111
14.5.2 Build environment setup . 111
14.5.3 Building and image generation . 111
14.5.4 suricata-lua-sys library and cross-compilation issue 112

14.6 Auto-configuration of Suricata based on network traffic 113
14.6.1 Autoconfiguration script implementation 113
14.6.2 Log parsing and settings generation 114

15 OpenWrt Performance with Suricata 115
15.1 Resource Monitoring . 115
15.2 DoS Attacks . 116

15.2.1 SYN Flood Attacks . 117
15.3 System Performance . 117

15.3.1 Snort Performance . 118
15.3.2 Suricata Full Configuration . 118
15.3.3 Network flag only configuration . 119
15.3.4 Configuration without any optional protocols 119
15.3.5 Analysis of results . 120

11

List of Tables

1.1 Centralized vs. Distributed IDS Comparison 23
10.1 Size of Suricata’s executable (in MB) . 76
10.2 Suricata’s memory usage (in GB) . 77
10.3 Suricata’s log file size (in MB) . 77
15.1 Transmission speed in Mbps and packet rate in Kpps for Ethernet and

Wireless connections. 118
15.2 System performance with Snort . 118
15.3 System performance in Full configuration 119
15.4 System performance with Suricata with Network flag only 119
15.5 System performance with Suricata without optional protocols 119

12

List of Figures

1.1 Schema of an IDPS. 17
1.2 Graphic difference between a NIDS and a HIDS. 20
13.1 Use case of a firewall. 94
13.2 Schema of a VPN. 99
13.3 General schema of a captive portal. 103
14.1 The Raspberry Pi 3 . 111

13

Passwords are like underwear: don’t share
them, don’t leave them lying around, and
change them often.
[Chris Pirillo, About password choices]

Part I

IDS: Concepts and
Fundamentals

15

Chapter 1

Introduction to IDS

Over the past few decades, the growing dependence on computer networks has trans-
formed the way individuals, organizations, and governments operate. While this techno-
logical evolution has led to greater efficiency and connectivity, it has also exposed digital
infrastructures to a wide range of cyber threats, from targeted attacks to malware to
unauthorized intrusions.

In this context, Intrusion Detection Systems (IDS) have emerged as essential tools to
ensure the security of networks and computer systems[13]. IDS are designed to monitor
network traffic or system activities in order to identify anomalous behavior or potential se-
curity breaches. They not only detect threats but also provide many valuable information
that allows network administrators to intervene promptly and mitigate risks.

The importance of IDS is accentuated by the continuous evolution of attack techniques
used by cyber criminals, which are becoming more and more sophisticated and difficult
to detect with traditional tools. Therefore, the development and optimization of modern
IDS solutions, such as the one addressed in this thesis, represent a crucial step towards a
more robust and proactive cybersecurity.

In this chapter, we will introduce the basic concepts of IDS, analyzing the way they
work, purposes, and role in cybersecurity. We will also explore the main types of IDS,
highlighting the advantages and limitations of each.

1.1 Characteristics and purposes
Intrusion Detection Systems (IDS) are tools designed to monitor and analyze network
traffic and system activity in real time, with the aim of identifying intrusion attempts,
suspicious behavior, or violations of security policies. In other words, an IDS acts as a
cybersecurity alarm, alerting administrators of potential threats.

An IDS differs from other security tools, such as firewalls, in its passive approach to
detection: while a firewall actively blocks unauthorized traffic, an IDS simply observes,
records, and reports anomalies or malicious activity. The primary function of an IDS is
not to prevent attacks, but to detect them, allowing operators to act quickly to mitigate
the damage.

16

Introduction to IDS

Figure 1.1. Schema of an IDPS.

The main purpose of an IDS can be divided into three basic objectives:

1. Malicious activity detection
An IDS can identify behaviors that indicate possible attacks, such as unauthorized
access attempts, malware, or lateral movement of an intruder within a compromised
network.

2. Proactive protection
Although they do not directly prevent attacks, IDS help strengthen security by
providing detailed information about suspicious events[1]. This data allows admin-
istrators to improve the configuration of other defense systems, such as firewalls and
antivirus, and take appropriate countermeasures.

3. Regulatory compliance Many cybersecurity regulations, such as GDPR[24][16] or
the NIST Cybersecurity Framework, require organizations to implement monitoring
and analysis systems to detect any breaches. IDS comply with these requirements,
generating logs and reports useful for audits and verification.

IDS, therefore, not only represent an essential component of modern cybersecurity infras-
tructures, but also integrate into broader strategies, such as those based on the concept
of "Defense in Depth" (layered defense), where different layers of protection work together
to safeguard digital assets. Their effectiveness depends on the ability to accurately detect
threats, minimizing false positives and false negatives, and on their integration with other
security tools.

17

Introduction to IDS

1.2 Role in Cybersecurity
Intrusion Detection Systems (IDS) play a crucial role in the cybersecurity ecosystem,
representing an essential tool to protect networks and computer systems from increasingly
sophisticated attacks. In a context where cyber threats continue to evolve, IDS provide
an indispensable line of defense, complementing other security solutions such as firewalls,
antivirus and intrusion prevention systems (IPS).
Let’s analyze the contribution of IDS to cybersecurity from different perspectives.

1.2.1 Continuous monitoring of activities

IDS operate continuously, analyzing network traffic or system logs to identify anomalies,
security policy violations, or unauthorized access attempts. This constant surveillance
capability allows organizations to have a real-time view of potential threats, reducing the
time to detect and respond.

1.2.2 Advanced threat detection

Unlike more static tools like firewalls, which often simply block traffic based on predefined
rules, IDS are designed to detect complex and unpredictable attack patterns. Using
signature-based detection techniques or behavioral analysis, they can identify threats such
as:

• Advanced malware (es. ransomware, spyware).

• Network attach (es. DDoS, ports scanning).

• Actions of intruders within the network.

1.2.3 Incident Response Support

An IDS does more than just report anomalies, it provides detailed information about the
suspicious activity detected. This data is critical for security analysts, who can use it to
respond quickly to incidents and prevent further damage. IDS also facilitate the creation
of logs and reports useful for post-incident investigations and security audits.

1.2.4 Integration into multi-layered defense strategies

IDS fit into the cybersecurity model known as “Defense in Depth”, where multiple layers
of protection work together to address threats on multiple fronts. In the context of a
corporate network, for example, an IDS can integrate firewalls, VPNs, and authentication
systems, contributing to a holistic defense strategy.

18

Introduction to IDS

1.2.5 Adaptation to specific scenarios
IDS are particularly useful in contexts where security must be customized to specific needs.
For example:

• In IoT environments, an IDS can monitor resource-constrained devices to detect
anomalies.

• In cloud systems, IDS support distributed monitoring and analysis of traffic between
nodes.

• In industrial environments, IDS can detect suspicious activity on SCADA systems
or critical networks.

1.2.6 Limitations
Despite their importance, IDS are not without limits. Managing false positives (alerts
generated by legitimate activity) is a major challenge, as it can overwhelm administrators
and reduce the effectiveness of the system. Additionally, an IDS is typically a passive
system, which does not block detected threats unless combined with an IPS.

In short, the role of IDS in cybersecurity is to provide an additional layer of monitoring
and detection, helping to build a strong and resilient defense against modern threats.
Their ability to adapt to different scenarios and identify complex threats makes them an
essential element in any organization’s security strategies.

19

Introduction to IDS

1.3 Typologies
Intrusion Detection Systems are divided into different types[6] based on the method of
detecting intrusions, their location in the network, and the mode of analysis. Each type
has specific advantages and disadvantages, and the choice depends on the specific security
needs of a network or organization.
The main types of IDS are:

1.3.1 Based on the position in the network

1. Network-based IDS (NIDS)
Network-based IDS monitor traffic on a network and analyze data packets in tran-
sit. These systems are typically placed at strategic points in the network, such as
gateways, routers, or switches, to monitor all traffic entering or leaving the net-
work. NIDS are very effective at detecting attacks that target the network, such as
port scans, denial of service (DoS), and anomalous traffic. However, they may have
limitations in monitoring encrypted traffic (for example, HTTPS).

2. Host-based IDS (HIDS)
Host-based IDS monitor the internal traffic of a single device (host), such as a server,
computer, or other network device. HIDS focus on the host’s behavior, monitoring
log files, system activity, and running processes. They can detect suspicious changes
to system files, malware, and abnormal behavior at the individual device level. How-
ever, their monitoring scope is limited to the host, making them less effective at
detecting complex network attacks.

Figure 1.2. Graphic difference between a NIDS and a HIDS.

20

Introduction to IDS

1.3.2 Based on the detection method
1. Signature-based IDS (SIDS)

Signature-based IDS detect intrusions by comparing network traffic or system activ-
ity to a database of known attack signatures or patterns. Each signature represents
a behavior or sequence of events that corresponds to a known attack. This type of
system is very effective at detecting known and well-documented attacks, but it is
not able to detect new or unknown threats (zero-day attacks). SIDS are used to
detect common attacks such as viruses, worms, and Trojans.

2. Anomaly-based IDS (AIDS)
Anomaly-based IDS rely on the analysis of normal network or host behavior to
detect suspicious activity. Initially, a model of “normal behavior” is built, and any
significant deviation from this model is flagged as a possible intrusion. This type
of IDS can detect new and unknown attacks, such as advanced malware or hacking
attempts, but can be more susceptible to false positives, as some legitimate variations
in traffic can be interpreted as threats.

3. Hybrid-based IDS
Hybrid IDS combine the features of signature-based and anomaly-based systems.
This approach seeks to leverage the strengths of both methods, providing more ac-
curate detection for both known and unknown threats. Hybrid IDS are particularly
effective at balancing reliability and detection capacity, reducing false positives with-
out sacrificing the ability to detect new threats.

1.3.3 Based on the analysis mode
1. Active IDS (Intrusion Prevention Systems - IPS)

An active IDS, or more precisely an Intrusion Prevention System (IPS), not only
detects intrusions, but also takes immediate action to prevent the attack. If an attack
is detected, the IPS can block suspicious traffic, terminate compromised connections,
or even isolate vulnerable systems. This type of system is more proactive than passive
IDS, which simply report the threat without taking direct action. One potential
problem with this type of system is false positives.

2. Passive IDS
Passive IDS simply monitor traffic or activity and generate alerts or logs when a
potential intrusion is detected. They do not block attacks directly, but provide
crucial information for timely response by system administrators. Their strength lies
in the accuracy of detection and the ability to analyze and record detailed attack
information, which can be used to improve overall security.

21

Introduction to IDS

1.3.4 Based on architecture
1. Centralized IDS

A centralized IDS relies on a single processing point where all information is collected
and analyzed. This configuration is particularly advantageous in simpler environ-
ments, such as small or medium-sized networks. By concentrating operations in a
single node, it is easier to manage and configure the system, as well as to keep the
signature database up to date.
However, this architecture has some inherent limitations. The presence of a central
point represents a potential bottleneck, as all information must be processed in the
same place, with the risk of overload in high-traffic networks. Furthermore, the
central node becomes a single point of failure: an attack or malfunction could render
the entire system unusable.
Centralized IDS are a practical solution for situations where the amount of data to
be analyzed is relatively limited and a highly distributed coverage is not required.
For example, small offices or local area networks (LAN) can benefit from the ease of
implementation and maintenance of a centralized system.

2. Distributed IDS (DIDS)
Distributed IDS rely on a network of nodes – often referred to as sensors or agents
– that work cooperatively to monitor different segments of a network or system.
This architecture is ideal for large networks or complex infrastructures, where a
centralized approach would not be scalable or robust enough.
Each sensor can perform a preliminary analysis of local activities and, if necessary,
communicate with other nodes or a central analysis engine for further processing.
This decentralized model allows for greater resilience: even if one node is attacked
or fails, the others can continue to operate, ensuring monitoring continuity.
On the other hand, distributed IDS require more complex management. Synchroniz-
ing and configuring nodes can be a challenging task, and data transmission between
sensors can introduce latencies, especially in environments with high traffic volumes.
This architecture is particularly suited to contexts such as large enterprises, dis-
tributed geographic networks and cloud environments, where it is essential to man-
age large amounts of data from numerous sources, while maintaining a high threat
detection capacity.

22

Introduction to IDS

Centralized IDS vs. Distributed IDS Comparison

A comparison of the two approaches highlights that the choice depends mainly on the size
of the network, the traffic load and the security requirements:

Centralized IDS Distributed IDS
Ease of management High Low
Scalability Limited High
Risk of failure High (single point of failure) Low (redundancy)
Performance on large networks Poor Excellent
Adaptability to modern threats Limited High

Table 1.1. Centralized vs. Distributed IDS Comparison

23

Chapter 2

Architecture and operating
principles of IDS

To fully understand how Intrusion Detection Systems work and their role in cybersecurity,
it is essential to analyze their architecture and main components. IDS are designed to
monitor, detect and report suspicious activity in a system or network, and they do so
thanks to an architecture composed of distinct elements, each of which contributes to the
process of analyzing and reporting threats.

In this chapter, we will explore the main components that make up an IDS, from the
data sources to the analysis engine, up to the alert system that notifies any anomalies or
attacks detected.

This overview is essential to understand not only how an IDS performs its functions,
but also how it can be integrated into network infrastructures of varying complexity,
adapting to specific security needs.

2.1 Main components
Intrusion Detection Systems are made up of a series of essential components that work
together to monitor and analyze network or system activity, detecting any anomalous
or dangerous behavior. Each component plays a specific role in the detection process,
allowing IDS to operate efficiently and accurately.

2.1.1 Data sources
Data sources are the first level of input for an IDS. They are responsible for collecting the
information needed to identify potential intrusions. The main data sources include:

• Network traffic
Network-based IDS analyze data packets in transit on a network. This data can be
collected by traffic mirroring from switches or routers.

24

Architecture and operating principles of IDS

• Systems log
Host-based IDS monitor logs generated by operating systems and applications, look-
ing for suspicious events such as unauthorized access attempts or changes to config-
uration files.

• Audit files
Some IDS use information from audit files, which contain a detailed log of system
activity, useful for identifying unauthorized changes.

These sources provide raw data that the system must process, and their quality and
completeness directly influence the detection capabilities of an IDS.

2.1.2 Analysis Engine
The analysis engine is the operational heart of an IDS. It is responsible for processing
the collected data, analyzing it and comparing it with predefined models (signature-based
analysis) or normal behaviors (anomaly-based analysis).

The analysis engine must be able to handle large volumes of data in real time, main-
taining a balance between accuracy and processing speed.

2.1.3 Alert system
The alert system is the interface between the IDS and network or system administrators.
When the analysis engine identifies a potential attack, the alert system takes care of
notifying the event. Alerts can take different forms:

• Internal Logs: Detailed event logging within the logging system.

• Visual Notifications: Display alerts on dashboards or GUI.

• Real-time Messaging: Send emails, push notifications or SMS messages to network
administrators.

A good alert system must be configurable, to reduce false positives and ensure that only
critical events are reported immediately.

25

Chapter 3

Challenges and usage scenarios

Intrusion Detection Systems are fundamental tools for ensuring the security of computer
networks, but their use is accompanied by a series of technical and operational challenges.
The effectiveness of an IDS depends not only on its ability to detect malicious activities,
but also on its accuracy, scalability and ability to adapt to increasingly diverse and complex
technological contexts.

In this chapter, we will analyze some of the main issues related to the operation of IDS,
such as the balance between performance and accuracy, and their adaptation to contin-
uously evolving threats. Next, we will explore the application scenarios of IDS, focusing
on specific environments such as corporate networks, cloud computing and the Internet
of Things (IoT), where security takes on different characteristics and priorities. Finally,
we will discuss the emerging technologies that are shaping the future of IDS, including
the introduction of artificial intelligence algorithms and advanced machine learning tech-
niques.

The goal of this chapter is to provide an overview of the challenges that IDS face to
remain effective and relevant in a rapidly evolving technology and threat landscape, while
highlighting the opportunities that innovation offers.

3.1 Challenges in Accuracy and Adaptation
IDS play a crucial role in detecting suspicious or malicious activity, but their operation is
influenced by a number of critical factors that determine their effectiveness and usefulness
in real-world operating environments. These include the balance between performance
and accuracy, the management of false positives and negatives, and the ability to quickly
adapt to new threats.

3.1.1 Performance: The trade-off between speed and accuracy
Real-time network monitoring requires extremely fast processing of large volumes of data.
IDS must analyze network packets, system logs, and other inputs in fractions of a second
to detect anomalies or suspicious behavior.

26

Challenges and usage scenarios

A high-performance IDS can process massive amounts of data without introducing
significant delays (latency) or compromising the quality of detection. However, increasing
speed can reduce the accuracy of the system[3], potentially leaving more sophisticated
malicious activity undetected. This trade-off is one of the main challenges in IDS devel-
opment and optimization.

3.1.2 False Positives and False Negatives: The Accuracy Prob-
lem

The accuracy of an IDS is measured by its ability to distinguish between legitimate activity
and malicious behavior. However, errors are inevitable:

• False positives: Occur when the IDS flags legitimate activity as malicious. These
events can generate unnecessary alarms, increasing the workload for security opera-
tors and reducing confidence in the system.

• False negatives: Occur when the IDS fails to detect a real threat. These cases pose
a serious security risk, as they leave attacks undetected and unresolved.

Balancing the ratio of false positives to false negatives is a complex challenge, requir-
ing accurate and constantly updated detection models. Machine learning and artificial
intelligence techniques are emerging as promising solutions to reduce these types of errors.

3.1.3 The importance of continuous updating
The cyber threat landscape is constantly evolving, with increasingly sophisticated attacks
exploiting zero-day vulnerabilities and advanced obfuscation techniques. Traditional IDS,
based on static rules or signatures, may be ineffective against these new or unknown
threats.

To address this challenge, IDS must:

1. Be frequently updated with new signatures and rules to identify emerging threats.

2. Incorporate behavioral techniques, which analyze anomalous traffic patterns rather
than relying solely on predefined signatures.

3. Integrate machine learning algorithms to detect unconventional patterns and au-
tonomously adapt to new attack scenarios.

Adaptability is especially important in dynamic environments such as cloud computing
and IoT, where network parameters and attack vectors can change rapidly.

27

Challenges and usage scenarios

3.2 IDS in Companies, Cloud and IoT Networks
Intrusion Detection Systems are essential to many technology scenarios, but their use
varies greatly depending on the environment in which they are deployed. This requires
adapting IDS technologies to the specific needs of enterprise networks, cloud infrastruc-
tures, and IoT devices, each of which presents unique security challenges.

3.2.1 IDS in Corporate Networks: Protection at Scale
Corporate networks are complex environments, characterized by a variety of devices and
intense and continuous network traffic. In this context, IDS are used to:

• Monitor internal and external traffic.

• Identify suspicious activity, such as lateral movement of an attacker within the net-
work.

• Detect advanced attacks, such as Advanced Persistent Threats (APT).

IDS for enterprise networks must be scalable and capable of analyzing large volumes of
data in real time. In addition, it is essential to integrate the IDS with other security
tools, such as Security Information and Event Management (SIEM), to correlate events
and obtain a complete view of threats.

Another critical aspect is the use of advanced behavioral analysis techniques, which
allow to detect anomalies in traffic and report unusual activity that could indicate a
security breach.

3.2.2 Cloud IDS: Visibility and Scalability Challenges
Cloud computing introduces new dynamics for IDS, especially due to the distributed and
virtualized nature of resources. In this environment, the main challenges include:

• The lack of direct access to the physical infrastructure.

• The need to monitor traffic distributed across multiple regions or cloud providers.

• The protection of shared resources in multi-tenancy environments.

Cloud IDS must be designed to monitor not only network traffic, but also application-
level events, such as unauthorized access or suspicious configuration changes. In addition,
automation plays a crucial role: many cloud-native security solutions use automated tools
for incident detection and response.

A practical example is the use of IDS based on lightweight software agents, which can
be installed directly on virtual machines or containers, providing deep visibility without
compromising performance.

28

Challenges and usage scenarios

3.2.3 IDS in IoT: Protecting a Heterogeneous Ecosystem
The Internet of Things (IoT) has transformed the cybersecurity landscape, connecting de-
vices ranging from household appliances to industrial systems. However, the wide variety
of protocols and standards used, combined with the limited processing power of many IoT
devices, makes their protection particularly challenging.

In this context, IDS must be designed to operate in heterogeneous networks, where
devices with very different processing capabilities coexist. Lightweight solutions, based
on traffic behavior analysis, are often the most practical approach to detect anomalies.

A distinctive aspect of IDS for IoT is the need for a distributed architecture, where
IoT gateways play a central role in monitoring and aggregating traffic. These systems not
only help reduce the load on IoT devices, but also enable the task of in-depth analysis to
be transferred to more powerful and sophisticated central IDS systems.

Securing IoT networks also requires constant attention to signature updates and vul-
nerability management, as many devices are not designed to receive regular updates,
increasing the risk of targeted attacks.

3.2.4 Integration and synergies between different environments
The convergence of enterprise networks, cloud and IoT requires IDS solutions that can
operate effectively in hybrid and complex environments. The adoption of distributed
IDS, where the various modules work together to analyze traffic and share information,
represents a step forward towards the complete protection of increasingly integrated digital
ecosystems.

Emerging technologies, such as machine learning, are further enhancing the capabilities
of IDS, allowing them to quickly adapt to changes in traffic behavior and detect new
threats, regardless of the environment in which they operate.

3.3 SIEM: Integration and Cooperation with IDS
Security Information and Event Management (SIEM) is an essential component of modern
security infrastructures[9]. By integrating data from multiple sources, including IDS,
SIEM provide a centralized, comprehensive view of threats and anomalies in the network.
In this section, we explore the key features that an IDS must have to work effectively with
a SIEM.

3.3.1 Requirements for Integration
To ensure optimal integration between an IDS and a SIEM, some technical and functional
requirements must be met:

• Standardized Output Formats: IDSs should support common log formats to
make data processing and analysis easier for the SIEM, such as:

29

Challenges and usage scenarios

1. JSON (JavaScript Object Notation): A structured, machine- and human-readable
text format that is ideal for representing hierarchical or complex data due to its
object and array structure.
Example:

{
"timestamp": "2024-12-27T10:00:00Z",
"event": "login_attempt",
"status": "success",
"user": "gian"

}

2. CSV (Comma-Separated Values): A simple format for representing tabular
data, where each row represents a record and fields are separated by commas
(or other delimiters).
Example:

timestamp,event,status,user
2024-12-27T10:00:00Z,login_attempt,success,gian

3. Syslog: A standard protocol for sending system log messages, widely used to
centralize and analyze events from network devices and applications.
Example:

<34>1 2024-12-27T10:00:00Z mymachine app - ID47
[exampleSDID@32473] event="login_attempt"
status="success" user="gian"

with the following schema:
PRIORITY VERSION TIMESTAMP HOST-NAME APP-NAME PID MSGID
STRUCTURED-DATA MSG

• Generating Relevant Events: It is essential that the IDS filters and classifies
events to avoid flooding the SIEM with meaningless data.

• Real-Time Integration: Support for protocols such as Kafka allows to send events
to the SIEM in real time, ensuring a timely response to threats.

3.3.2 Benefits of IDS and SIEM Cooperation
The synergy between IDS and SIEM offers numerous advantages, including:

1. Event Correlation: SIEM can combine IDS events with data from firewalls, end-
points, and other sources to identify complex attack patterns.

30

Challenges and usage scenarios

2. Noise Reduction: The IDS can be configured to detect only high-impact events,
while the SIEM takes care of the in-depth analysis.

3. Regulatory Compliance: Through integration, SIEM make it easy to generate
reports that comply with regulations such as GDPR or ISO 27001.

3.3.3 Challenges and Future Opportunities
Despite the benefits, there are some challenges in integrating IDS and SIEM:

• Scalability: In large network environments, the amount of data generated by the
IDS can overload the SIEM.

• Event Accuracy: The generation of false positives by the IDS can negatively
impact the effectiveness of the SIEM.

• Interoperability: Not all IDS offer native support for popular SIEM, requiring
custom solutions.

In the future, the adoption of open standards and the use of artificial intelligence to
analyze IDS data could further improve the effectiveness of SIEM integration.

3.4 Emerging and currently used technologies
The evolution of Intrusion Detection Systems (IDS) is closely linked to technological inno-
vation and the need to respond to increasingly sophisticated cyber threats. Current IDS
technologies represent the state of the art for intrusion detection, but emerging approaches
are rapidly transforming the cybersecurity landscape, providing new opportunities to im-
prove the effectiveness and efficiency of these systems.

3.4.1 Current Technologies
Traditional IDS technologies rely on two foundational methodologies: signature-based
detection and anomaly-based detection, as previously described. However, modern IDS
solutions have evolved to incorporate event correlation techniques, which enhance the
contextual understanding of network activity. By aggregating and analyzing information
from multiple data sources, these techniques enable IDS systems to identify patterns and
relationships that may not be evident in isolated events. This not only improves the
precision of detections but also helps to significantly reduce false positives, offering a
clearer and more actionable view of potential threats.

3.4.2 Emerging Technologies
Emerging technologies are revolutionizing the way IDS operate, making them more intel-
ligent, adaptable, and capable of dealing with sophisticated threats.

31

Challenges and usage scenarios

• Machine Learning:
The use of machine learning is becoming increasingly common in IDS[17], due to its
ability to analyze large amounts of data and identify complex patterns. Supervised
learning models can be trained with labeled data to detect specific attacks, while un-
supervised models can discover anomalies without the need for predefined signatures.
This technology enables IDS to evolve and adapt to new threats proactively.

• Artificial Intelligence (AI):
AI is an extension of machine learning, using advanced techniques such as deep
neural networks to improve detection capabilities. AI-based IDS can process data in
real time, providing accurate detection even in complex and dynamic environments.
AI can also be used to automate incident response, reducing response times and
improving the effectiveness of countermeasures.

• Distributed and decentralized detection:
With the rise of cloud and IoT networks, IDS are adopting distributed architectures
that allow them to monitor traffic locally, reducing the processing load on central
systems. Technologies such as blockchain are being explored to ensure the integrity
and transparency of collected data, creating a more reliable detection infrastructure.

• Contextual and adaptive detection:
Next-generation IDS are moving toward contextual approaches that consider not
only network traffic, but also user behavior and system conditions. For example, an
IDS could increase detection sensitivity during off-hours, when anomalous activity
is easier to identify.

3.4.3 Synergies between existing and emerging technologies
Emerging technologies do not necessarily replace those currently in use, but rather com-
plement them, creating more powerful and versatile solutions. For example, machine
learning can be integrated with signature-based detection to improve accuracy and reduce
false positives. Similarly, AI-based automation can support human analysts in managing
reports, allowing them to focus on complex threats.

This combination of techniques allows IDS to adapt to an ever-changing threat land-
scape, ensuring effective protection against both traditional attacks and advanced threats.

32

Part II

Suricata: Architecture,
Applications, and Challenges

33

Chapter 4

An Introduction to Suricata

In recent years, Network Intrusion Detection Systems (NIDS) have assumed a crucial role
in protecting computer networks, allowing to monitor traffic and detect potential threats
in real time. Among the different tools available, Suricata stands out as one of the most
advanced and versatile open-source NIDS, thanks to its modern architecture and its ability
to support a wide range of network protocols.

The choice to adopt Suricata for the project described in this thesis arises from the
combination of several factors. First, Suricata is a mature open-source project and actively
supported by the community, ensuring regular updates and excellent documentation. Fur-
thermore, its scalable architecture, designed to exploit multi-threaded hardware, makes it
particularly suitable for complex network scenarios and high traffic volumes.

Compared to the available alternatives, Suricata offers a superior level of modernity
and flexibility. Although tools like Zeek or Snort have found widespread use, each has
limitations: Zeek, while excellent at forensic analysis, is not designed as a pure IDS, while
Snort, despite its long history, is less efficient and versatile than Suricata. The latter has
therefore proven to be an ideal choice, thanks to its ability to combine high performance,
configuration flexibility and support for modern protocols.

In this chapter, we will analyze the main features of Suricata, focusing on its internal
functioning, practical applications in enterprise and large-scale contexts, and a critical
assessment of its strengths and limitations. This will allow us to better understand the
reason for its choice and lay the foundations for its integration with lightweight environ-
ments, such as OpenWrt, described in the following chapters.

4.1 What is Suricata and why is it important?

Suricata is an advanced network traffic analysis engine designed to provide intrusion de-
tection (IDS), intrusion prevention (IPS) and deep traffic monitoring (NSM) capabilities.
Developed by the Open Information Security Foundation (OISF), Suricata is an open-
source project known for its flexibility, scalability and ability to adapt to a wide range of
network scenarios.

34

An Introduction to Suricata

Suricata’s distinguishing feature is its modern architecture, designed to meet the de-
mands of today’s increasingly complex and high-performance networks. With native sup-
port for protocols such as HTTP, DNS, TLS and many others, Suricata not only detects
threats but also provides a detailed understanding of the analyzed traffic. This makes
it a key tool for network security, capable of addressing the increasingly sophisticated
challenges posed by emerging attacks and vulnerabilities.

Unlike many traditional solutions that process traffic sequentially, Suricata takes full ad-
vantage of the parallel processing capabilities of modern multi-core CPU. This approach
ensures superior performance, especially in high-traffic environments such as large enter-
prise networks or cloud infrastructures.

In addition, Suricata stands out for its ability to provide detailed information on net-
work flows, through advanced logging and analysis capabilities. This provides a complete
view of network activity, which goes beyond simple attack detection, allowing network ad-
ministrators to identify trends, anomalies and potential weaknesses in the configuration.

Suricata is also particularly important in the context of modern networks because of
its open-source nature, which not only ensures accessibility, but also fosters continuous in-
novation through the contribution of the global community of developers and researchers.
This collaborative approach ensures that the software stays ahead of evolving threats,
offering regular updates and new features to meet emerging needs.

Thanks to these features, Suricata represents a natural choice for those looking for a
flexible, high-performance and continuously improvable monitoring and detection solution,
making it a point of reference in the field of cybersecurity.

35

An Introduction to Suricata

4.2 Comparison with other NIDS
In the landscape of intrusion detection tools, several solutions have established them-
selves, offering different approaches and features. Among the most popular open-source
alternatives are Snort and Zeek (formerly known as Bro), while in the field of proprietary
solutions, Cisco Secure IPS is one of the main players. As shown by Waleed, Jamali, and
Masood [25] or by Shah and Issac [23] in their articles, while sharing the goal of protect-
ing networks by monitoring and analyzing traffic, Suricata stands out for its advanced
technical features and the flexibility guaranteed by its open-source nature.

4.2.1 Snort vs Suricata
Snort is a well-established and widely used open-source IDS. However, it has some limi-
tations compared to Suricata:

• Performance: Snort, up until version 2.9, used a single-threaded architecture,
which was a bottleneck in high-traffic environments. Starting with version 3.0, Snort
introduced multi-threading support, significantly improving performance[2]. In com-
parison, Suricata was designed with a native multi-threaded architecture from the
start, effectively leveraging multi-core CPU to deliver superior performance in com-
plex network scenarios[11].

• Modern Protocol Support: Suricata offers native support for complex protocols
(e.g. HTTP, DNS, TLS) and advanced features such as network flow monitoring,
while Snort focuses primarily on rule-based inspection.

• Additional Features: Suricata includes Network Security Monitoring (NSM) ca-
pabilities, making it more versatile than Snort, which is designed primarily as a
traditional IDS.

4.2.2 Zeek (Bro) vs Suricata
Zeek is well-regarded for its behavioral analysis and forensic capabilities, but it is not a
pure IDS[22] like Suricata. This distinction arises from fundamental differences in their
design goals, architecture, and use cases:

• Purpose: Suricata is explicitly designed for real-time intrusion detection and pre-
vention, leveraging signature-based rules to immediately identify and mitigate threats.
Zeek, on the other hand, acts primarily as a network monitoring and analysis tool,
focusing on the collection of detailed data about network activity for post-event in-
vestigation and analysis. This difference means that Zeek is less effective in scenarios
where immediate threat detection and response are critical.

• Threat Detection: Suricata relies on a robust set of pre-defined rules for signature-
based detection, allowing it to recognize known threats in real time. Zeek, however,
uses custom scripts written in its domain-specific language to perform behavioral
analysis. While this provides flexibility and makes Zeek powerful for identifying

36

An Introduction to Suricata

unknown or emerging threats. Furthermore, Zeek’s focus on behavioral patterns
may result in a higher rate of false positives, especially if the scripts are not finely
tuned to the specific environment.

• Real-time Mitigation: Unlike Suricata, which can actively block malicious traffic
when configured as an Intrusion Prevention System (IPS), Zeek lacks native capabil-
ities for real-time traffic blocking. This limitation means that Zeek is better suited
for forensic analysis and monitoring rather than active defense.

4.2.3 Cisco Secure IPS vs Suricata
Cisco Secure IPS is a proprietary solution integrated into the Cisco Firepower platform,
used primarily in enterprise and government environments. Compared to Suricata, it has
distinctive features:

• Integrated Architecture: Cisco Secure IPS is part of a broader security ecosystem
that includes firewall, VPN, and centralized management, providing complete control
over the network. Suricata, being open source, must be manually integrated with
other tools to replicate a similar environment.

• Automation and AI: Cisco Secure IPS uses AI algorithms to automatically identify
new and emerging threats. Suricata, while powerful, relies primarily on manual rules
and configuration, with limited support for machine learning technologies.

• Cost: One of the main differences is the licensing model. Cisco Secure IPS requires
a significant investment, with recurring costs for licensing and upgrades. Suricata,
being open source, is free, although it does require resources to configure and main-
tain.

• Flexibility: Suricata is best suited for advanced users who need customization
and integration into complex environments. Cisco Secure IPS, on the other hand,
provides a pre-configured, easy-to-manage package, but is less flexible for custom
scenarios.

37

An Introduction to Suricata

4.2.4 Conclusions and use cases
The choice between these solutions depends on the context and specific needs:

• Suricata excels in high-traffic environments and scenarios that require flexibility
and customization, especially for those looking for a powerful, open-source solution.

• Snort is suitable for less complex environments, where simplicity and reliability are
priorities.

• Zeek is ideal for forensic analysis and behavioral monitoring, rather than real-time
intrusion detection.

• Cisco Secure IPS is suitable for large enterprises looking for an integrated, auto-
mated solution with dedicated technical support.

With its combination of high performance, multi-protocol support and flexibility, Suricata
represents a modern and competitive choice in the NIDS landscape.

38

Chapter 5

Suricata Architecture

To fully understand the capabilities of Suricata, it is essential to analyze its internal
architecture, which is the heart of its operation and determines its distinctive capabilities.
Suricata is designed with a modular and highly parallel architecture, which allows it to
process large volumes of network traffic in real time while maintaining high accuracy.

This chapter will explore the main components that make up Suricata, including:
• Packet Processing, responsible for capturing and analyzing network traffic.

• Detection Engine, the detection engine that applies rules and signatures to identify
potential threats.

• Logging and Reporting, the recording and reporting systems that provide detailed
visibility into detected events.

The goal of this chapter is to provide a clear and detailed understanding of how these
elements work together to transform Suricata into a state-of-the-art monitoring and in-
trusion detection tool. Through this analysis, it will be possible to highlight the strengths
and challenges of its implementation, preparing us for subsequent discussions on the op-
timizations and customizations needed for specific scenarios.

5.1 A multi-language architecture
One of Suricata’s distinctive features is the multi-language approach, which combines C
and Rust to implement different parts of the system. This choice reflects a strategy aimed
at balancing performance and security, taking advantage of the strengths of each language.

5.1.1 The C language
C is one of the most popular programming languages in the world of low-level systems
and applications. Due to its proximity to hardware and its ability to directly manage
memory and resources, it is often the ideal choice for implementing high-performance
software, such as Suricata. However, this proximity to hardware also entails a greater risk
of security errors, such as buffer overflows and dangling pointers.

39

Suricata Architecture

The role of C

Most of Suricata’s architecture was originally written in C, especially the components re-
lated to resource management and performance-critical features. Some examples include:

• Packet Capture: The code to interface with libraries such as libpcap, AF_PACKET
and DPDK is written in C, allowing for direct, high-performance handling of network
packets.

• Inspection Engine: The core functions for parsing and decoding packets, as well
as applying detection rules, are implemented in C.

• Interface with external libraries: Suricata uses C to integrate external libraries
such as libhtp for HTTP processing.

5.1.2 The Rust language
Rust is a relatively new programming language that stands out for its strong focus on
safety and memory management[15]. Thanks to an innovative property system, Rust
eliminates entire categories of memory-related bugs, such as buffer overflows and use-
after-free. Furthermore, Rust offers performance comparable to that of C, making it an
attractive choice for developing software.

Rust in Suricata

Suricata has adopted Rust for some targeted components, with the goal of improving the
security and maintainability of the code without sacrificing performance. Some examples
include:

• Advanced Parsing: Some protocol parsers, such as the one for TLS, have been
rewritten in Rust to reduce the risks associated with manual memory management.

• Experimental Modules: New features, such as parts of the advanced analysis of
encrypted traffic, are implemented in Rust to take advantage of its inherent security.

• Shared Libraries: Suricata uses Rust components for common libraries, contribut-
ing to the improvement of the open-source ecosystem.

5.1.3 A balance between performance and security
The choice to combine C and Rust allows Suricata to take advantage of the best of both
worlds: the high performance and flexibility of C for critical operations, combined with
the security and maintainability of Rust for more complex or potentially risky features.
This multi-language approach allows it to address the technical challenges of a modern
IDS/IPS engine, while maintaining a focus on quality and innovation.

40

Suricata Architecture

5.2 Analysis of the main components
Suricata’s architecture is composed of distinct modules, each designed to handle specific
functionalities. This modularity allows Suricata to effectively address a wide range of
network and threat scenarios, while maintaining high flexibility.

5.2.1 Packet Processing: traffic management and analysis
Packet Processing is the first step in processing network data. This module is responsible
for capturing packets, decoding them, and extracting relevant information for subsequent
analysis stages.

Packet Capture

Suricata uses efficient packet capture libraries. Capture occurs directly at the network
driver level, allowing Suricata to access packets as they pass through the monitored net-
work. This is optimized by:

• Multi-threaded support: Suricata distributes the workload across multiple CPU
cores, capturing packets from multiple interfaces or a single interface with traffic
split into flows.

• Offloaded capture: In high-speed environments, Suricata can leverage technologies
such as offloaded NIC to improve performance and reduce CPU load.

Among the libraries used for capture we have:

1. libpcap[10]
It is a widely used open-source library for capturing and filtering network packets at
the user level. It is the heart of tools such as Wireshark and, indeed, Suricata, pro-
viding an interface to directly access network packets from the card in promiscuous
mode. This allows developers to create network analysis applications. Its simplicity
and portability between different operating systems, such as Linux, macOS and Win-
dows, make it very popular. However, it has performance limitations in high-traffic
environments, as packets must be transferred from kernel mode to user-space, which
introduces overhead.

2. AF_PACKET
This is a native interface of the Linux kernel that allows raw packets to be received
and sent directly to network cards, without going through the full TCP/IP stack.
This approach operates at a lower level than libpcap, making it ideal for applica-
tions that require direct and fast packet handling. One of its distinguishing features
is its support for "fanout", which allows packets to be distributed across multiple
threads or processes, improving parallel processing. While it offers better perfor-
mance than libpcap in high-traffic environments, it is more complex to manage and
is not portable to operating systems other than Linux.

41

Suricata Architecture

3. DPDK (Data Plane Development Kit)[7]
represents an even more advanced solution for high-performance network packet
handling. It moves packet processing from kernel space to user space, eliminating
many of the bottlenecks associated with the traditional TCP/IP stack. By using
polling-mode drivers, DPDK provides direct access to network hardware, allowing
it to process millions of packets per second. It requires specialized hardware to take
full advantage of its capabilities and involves complex configuration. Additionally,
it is primarily supported on Linux, limiting its adoption in other environments.

Protocol Decoding

Suricata supports a wide range of network protocols, from IP and TCP/UDP to applica-
tion protocols such as HTTP, TLS, DNS and SMB. This decoding capability allows for
detailed and contextual analysis of traffic.

• Hierarchical Pipeline: Decoding occurs following a hierarchy of protocols, from the
physical layer down to the application layer.

• Dynamic Detection: Suricata can automatically identify the protocol in use, even on
non-standard ports, by analyzing the packet contents.

Data Normalization

Captured traffic is normalized to eliminate unnecessary variations that could mask attack
patterns. For example, Suricata reassembles IP packet fragments and reconstructs TCP
flows to obtain a complete view of connections.

5.2.2 Detection Engine: the heart of detection
The Detection Engine is the central component of Suricata, responsible for detecting
threats using a rules and signature-based approach.

Detection Engine Architecture

The Detection Engine works by applying rules defined in a specific language, designed to
describe patterns or conditions that allow suspicious or malicious activity to be identified.

One of its key features is the adoption of a parallel pipeline, which allows for the simul-
taneous analysis of multiple packets or data flows. This capability takes full advantage
of multi-threaded support, ensuring high efficiency even in environments with significant
traffic volumes.

Additionally, the engine implements rule optimization mechanisms, splitting rules into
sets based on pre-filtering criteria. This approach reduces the number of rules that need to
be applied to each packet, thus improving overall performance without sacrificing analysis
accuracy.

42

Suricata Architecture

Rule Types

• Signature-based rules: Identify known threats through predefined patterns (e.g. spe-
cific strings in payloads).

• Behavior-based rules: Detect suspicious activity by observing anomalous sequences
of events.

• Custom rules: Users can define specific rules for particular scenarios, improving the
system’s adaptation to local needs.

Multi-protocol detection

Unlike many traditional IDSs, Suricata offers native support for application-layer threat
detection. For example:

• DNS query analysis to detect tunneling or suspicious domains.

• HTTP traffic inspection to detect web exploit attempts.

• TLS certificate decoding to detect anomalies or insecure configurations.

5.2.3 Logging and Reporting: Visibility into Network Events
Suricata’s logging system is essential to provide visibility and context into detected events.
Proper log management allows to analyze incidents, monitor rule effectiveness, and identify
anomalous behavior in network traffic.

Log types

Suricata supports different logging formats, adapting to multiple usage scenarios:

• EVE JSON: Structured format based on JSON, used for advanced and configurable
logs. It is ideal for integration with tools such as ELK (Elasticsearch, Logstash,
Kibana) and SIEM. For example:

{
"timestamp": "2023-12-27T12:34:56.789Z",
"event_type": "alert",
"src_ip": "192.168.1.1",
"dest_ip": "192.168.1.2",
"alert": {
"signature": "ET MALWARE Possible Malware Traffic",
"severity": 2

}
}

43

Suricata Architecture

• PCAP: Binary format that captures raw network packets, useful for forensic analysis
with tools such as Wireshark. Contains data that is not directly readable as text
but is useful for reconstructing network traffic.

• Syslog: Standard protocol for sending centralized logs. Useful for integrating with
log servers like Rsyslog or Splunk. An example:

<165>1 2023-12-27T12:34:56.789Z suricata-host suricata
1234 - - [event] alert: ET MALWARE Possible Malware
Traffic src_ip=192.168.1.1 dest_ip=192.168.1.2

• File Log: Logs in separate text files for specific protocols, such as HTTP, DNS, and
TLS. For example:

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: curl/7.68.0

• Alert Logs (Plain text): Plain text file containing detected alerts, readable di-
rectly without the need for advanced tools. For example:

12/27/2023-12:34:56.789 [**] [1:12345:1] ET MALWARE
Possible Malware Traffic [**] [Priority: 2] {TCP}
192.168.1.1:12345 -> 192.168.1.2:80

External System Integration

Suricata can send logs to external platforms for centralized and advanced management:
• SIEM (Security Information and Event Management): Like Splunk or Graylog, to

correlate network events with other data sources.

• Monitoring Dashboards: Tools like Kibana allow you to create interactive visualiza-
tions of traffic and detected threats.

Reporting and Automation

Suricata supports the generation of custom reports based on log data, giving administra-
tors a detailed overview of system effectiveness and network activity.

5.3 Suricata Rule Format and Possible Actions
Rules[8] in Suricata are text strings structured according to a specific format, designed
to identify particular events or behaviors in network traffic. Each rule combines match
conditions with a specific action to take when those conditions are met.

44

Suricata Architecture

5.3.1 General Rule Structure
A rule in Suricata is composed of two main parts:

1. Header: Specifies the type of traffic to monitor. Composed by:

• Action: Specifies the action to take (e.g. alert, log, drop).
• Protocol: The network protocol to apply the rule to (e.g. TCP, UDP, ICMP).
• Addresses and Ports: Specifies the source and destination of the monitored

traffic (e.g. any any or 192.168.1.1 80).
• Direction: Identifies the flow of traffic (e.g. ->, <-, <>).

2. Body: Contains options that define the matching criteria:

• msg: A descriptive message that is logged if there is a match.
• content: Specifies the data or pattern to search for in the packet payload.
• SID: A unique identifier for the rule.
• Other options: These can include criteria such as packet size, TCP flags, pat-

terns in application protocols, etc.

Example rule:

alert tcp any any -> 192.168.1.1 80 (msg:"Possible HTTP attack";
content:"malicious"; sid:100001;)

The defined action is alert, which indicates that when the rule conditions are met, only
an alert will be generated. This rule applies to TCP traffic, as specified by the TCP
attribute.

The monitored traffic is that which starts from any source IP address and port, in-
dicated by any any respectively, and is directed to the IP address 192.168.1.1 on port
80, typically used for the HTTP protocol. The symbol -> specifies that the direction of
the traffic considered is unidirectional, i.e. from the source IP/ports to the destination
IP/ports. To monitor bidirectional traffic, the symbol <-> could be used.

Inside the round brackets, you can find the rule options. The option msg:"Possible
HTTP attack"; defines the message associated with the alarm, which is recorded in the
logs to indicate the cause of the activation. The content:"malicious"; condition speci-
fies that the "malicious" string must be present in the TCP packet payload for the rule
to be triggered. The analysis focuses only on application data, making this condition
critical for detection. Finally, the SID:100001; option assigns a unique identifier to the
rule. Identifiers below 100000 are reserved for official rules, while those above 100000 are
used for custom rules.

This rule is used to monitor suspicious activity on an HTTP server, detecting content
that may indicate an attack. For example, if a packet to IP 192.168.1.1 on port 80
contains the "malicious" string in its payload, an alert will be generated with the message
"Possible HTTP attack".

45

Suricata Architecture

5.3.2 Available Actions
1. alert: Generates an alert and logs the event. This action is used to identify potential

threats and create logs for analysis.
Example:

alert tcp any any -> any 80
(msg:"Alert example"; content:"attack"; sid:1;)

2. pass: Stops further inspection of the packet. Typically used to whitelist known safe
traffic or reduce false positives.
Example:

pass tcp any any -> any 80
(msg:"Pass example"; content:"safe_traffic"; sid:2;)

3. drop: Drops the packet without forwarding it and generates an alert. This action
is primarily used in IPS mode to silently block malicious traffic.
Example:

drop tcp any any -> any 80
(msg:"Drop example"; content:"malicious"; sid:3;)

4. reject and rejectsrc: Blocks the packet and sends a TCP RST(TCP flag that
signal that the sender should reset the connection state) or ICMP unreachable error
message to the sender. This provides feedback to the source of the matching packet.
Example 1:

reject tcp any any -> any 80
(msg:"Reject example"; content:"deny"; sid:4;)

Example 2:

rejectsrc tcp any any -> any 80
(msg:rejectsrc example"; content:"source_block"; sid:5;)

5. rejectdst: Sends the RST/ICMP error to the receiver (destination) of the packet.
Example:

46

Suricata Architecture

rejectdst tcp any any -> any 80
(msg:rejectdst example"; content:"dest_block"; sid:6;)

6. rejectboth: Sends RST/ICMP error packets to both the source and the destination
of the communication.
Example:

rejectboth tcp any any -> any 80
(msg:rejectboth example"; content:"both_block"; sid:7;)

5.3.3 Some Advanced Options
• threshold: Limits the alert rate to reduce noise and false positives.

• classtype: Categorizes the rule into a specific class for organization and priority.

• flow: Specifies the flow direction (e.g. from_client, to_server).

• http_*: Dedicated options to analyze HTTP traffic (e.g. http_method, http_uri)

5.3.4 Advanced Example: SQL injection attempt
The following rule:

alert http any any -> any 80 (msg:"SQL Injection Attempt";
content:"SELECT"; nocase; http_uri; sid:200002;)

This rule applies only to the HTTP protocol, indicated by the http prefix. It monitors
traffic from any IP address and port, to any destination IP on port 80, commonly used for
HTTP traffic. When triggered, the rule generates an alert action, indicating the potential
presence of a threat. The message associated with the alert is "SQL Injection Attempt",
which is useful for quickly identifying the event in the logs generated by Suricata.

The content searched for in the communication is the "SELECT" string, a distinguishing
feature of SQL queries that may suggest an SQL injection attempt. The nocase modifier
ensures that the search is not case-sensitive, which ensures that the rule works regardless
of the capitalization used in the input. Additionally, the http_uri directive specifies
that the search should be limited to the HTTP request URI, a common location for such
attacks.

5.4 Suricata’s Two-Phase Architecture
Suricata’s architecture can be broadly divided into two distinct phases: the setup phase
and the runtime phase. Each phase is designed to handle specific tasks essential for
efficient packet analysis and threat detection.

47

Suricata Architecture

5.4.1 Setup Phase
During the setup phase, Suricata initializes its internal structures and prepares the system
for traffic inspection. This involves loading the configuration files, which specify rules,
output formats, and other operational parameters. Various components, such as protocol
parsers, packet decoders, and logging outputs, are registered and made available.

Rules are optimized through a process known as prefiltering, where each rule con-
tributes one primary condition—often the most computationally efficient one—for pre-
matching. This step significantly reduces the number of rules that require full inspection
during runtime. A core element of this optimization is the use of Multi-Pattern Match-
ing (MPM), also referred to as fast_pattern. The MPM engine extracts a single unique
pattern from each rule and compiles them into an efficient pre-matching mechanism.

Protocol parsers are linked to their respective handlers, enabling Suricata to under-
stand and process different network protocols. Similarly, decoders for protocols like Ether-
net, IP, and TCP/UDP are initialized to ensure that packets can be accurately dissected.
Output modules, such as JSON, Syslog, or file-based logging, are configured to handle
alerts and event logs.
This phase ensures that Suricata is fully prepared to process network traffic effectively.

5.4.2 Runtime Phase
The runtime phase begins when Suricata starts capturing traffic from the network. This
phase is where the actual inspection and analysis of packets occur. The process follows a
well-defined pipeline:

When a packet is captured by Suricata, it is first passed to the packet acquisition layer.
This layer interacts with the underlying network stack or capture engine, such as libpcap,
AF_PACKET, or DPDK, depending on the configuration. After acquisition, the packet enters
the decoding stage.

At the decoding stage, Suricata dissects the packet into its individual layers, starting
from the link layer (e.g., Ethernet) and moving up through the network (IP) and transport
layers (TCP/UDP). Each layer is parsed using the decoders initialized during the setup
phase. If a protocol-specific payload is identified, it is forwarded to the appropriate parser
for deeper inspection.

Once decoded, the packet enters the detection engine, where the prefiltering mechanism
comes into play.

In the prefiltering step, the Multi-Pattern-Matcher or MPM engine scans the packet
payload against the patterns extracted during the setup phase. Only if the MPM detects
a match does the packet undergo further detailed inspection against the full set of rules
associated with the matched pattern. This tiered approach ensures high performance by
eliminating the need to evaluate every rule for every packet.

If a packet triggers a rule match, Suricata may execute one of several configured actions,
such as generating an alert, logging the packet, or dropping it entirely. Additionally,
output modules configured during the setup phase handle the recording of logs and alerts
in formats such as JSON or PCAP, allowing for integration with external analysis tools
or storage systems.

48

Suricata Architecture

Packets that do not match any rules continue through the pipeline without interrup-
tion, ensuring minimal impact on non-malicious traffic.

This structured and modular pipeline enables Suricata to deliver high-performance and
accurate threat detection across diverse network environments.

5.5 Multi-Threading and Multi-Protocol Support in
Suricata

Suricata stands out among Intrusion Detection System (IDS) tools for its ability to scale
efficiently on modern hardware thanks to its native support for multi-threading and recog-
nition of a wide range of protocols. These features make it particularly suitable for complex
and high-performance environments.

5.5.1 Multi-Threading Support
One of the key innovations of Suricata is the ability to fully exploit multi-core architec-
tures, ensuring high performance even on networks with significant traffic volumes. The
analysis engine is designed to divide the workload between multiple threads, each of which
handles a portion of the traffic.

• Multi-Threaded Architecture: Suricata uses a flexible threading model, where
packets are distributed to threads based on available CPU. This approach minimizes
bottlenecks and maximizes the use of hardware resources.

• Load Balancing: Traffic can be distributed to threads using algorithms such as:

– Flow-based balancing: Packets belonging to the same flow are assigned to the
same thread to ensure consistency in the analysis.

– Packet-based balancing: Packets are dynamically distributed to balance the
load between cores.

• Performance Tuning: The user can manually configure the number of threads,
adapting it to the characteristics of the network and hardware. The configuration
is done through the suricata.yaml file, which also allows to optimize the use of
memory and CPU cache.

5.5.2 Multi-Protocol Support
Suricata is designed to analyze network traffic at various OSI model layers, offering support
for a wide range of protocols. This capability allows you to identify and manage threats
that leverage less common protocols, often ignored by traditional IDS.

• Layer 3 and Layer 4 Protocols such as IP, TCP, UDP, ICMP, IPv6 and offers in-depth
header analysis and IP fragment handling.

49

Suricata Architecture

• Layer 7 (Application) Protocol: Suricata can decode high-level protocols such as
HTTP, FTP, SMB, SMTP, DNS, and TLS/SSL. Native protocol decoding provides
detailed traffic insights, improving detection accuracy.

• Automatic Protocol Identification: An advanced feature of Suricata is the ability
to identify application protocols regardless of the port used (Protocol Identification,
DPI). This means that HTTP or DNS traffic is recognized even if it is not traveling
on standard ports (e.g. 80 or 53).

5.5.3 Operational Benefits
With these features, Suricata offers several advantages:

• Scalability: It can handle complex enterprise networks with high bandwidth.

• Accuracy: Multi-protocol support provides in-depth analysis even for encrypted traf-
fic or lesser-known protocols.

• Efficiency: The multi-threaded model ensures low latencies and high throughput,
reducing processing times.

5.5.4 Limitations and Challenges
Despite the many advantages, Suricata’s multi-threaded and multi-protocol support is
not without its challenges. First, optimizing performance on specific hardware can be
complex, requiring advanced technical skills and in-depth knowledge of available config-
urations. Second, the multi-threaded model, while ensuring high performance, requires
significant resource allocation, especially CPU and memory, which may be a limitation
in environments with limited hardware. Finally, analyzing encrypted traffic is one of
the most significant challenges for intrusion detection systems like Suricata. Although
Suricata supports protocols such as Transport Layer Security (TLS), which is used to se-
cure communications over the Internet, deep inspection of encrypted traffic is a complex
task. When data is encrypted, its content becomes unreadable without a decryption key,
preventing Suricata from applying deep analysis techniques such as pattern searching or
anomaly detection in transmitted data.

Suricata can handle some aspects of the TLS protocol, such as analyzing initial nego-
tiations (handshakes) and certificates. However, this capability is limited to processing
the information visible in the clear during the connection establishment phase. Subse-
quent traffic, encrypted using TLS, remains inaccessible unless advanced techniques are
implemented, such as decryption using private key access or Man-in-the-Middle (MitM)
approaches. However, these techniques raise significant legal implications and privacy
concerns, making them difficult to use at scale. Furthermore, the adoption of technolo-
gies such as Perfect Forward Secrecy (PFS) makes these solutions even more difficult to
implement, as the ephemeral keys used in sessions make access to the master keys useless.

The difficulty of analyzing encrypted traffic increases when it comes to detecting ad-
vanced attacks hidden within protected connections, such as "Man-in-the-Browser" or

50

Suricata Architecture

malware that extracts sensitive data. Without direct access to the transmitted data, such
threats risk going unnoticed. Despite these limitations, there are opportunities for im-
provement, Suricata could improve the analysis of TLS certificates or integrate decryption
tools that work transparently to analyze traffic for specific environments (e.g. enterprise),
while balancing security and privacy needs.

51

Chapter 6

Strengths and Weaknesses

Suricata is recognized as one of the most advanced IDS/IPS systems due to its scalable
and flexible architecture. However, like any technology, it has strengths that make it ideal
for certain scenarios and weaknesses that must be managed to get the most out of its use.

In this chapter, we will highlight the benefits of multi-threading and multi-protocol
support. We will then explore the limitations that emerge in standard configurations,
where inefficiencies or difficulties in adapting it to specific contexts may arise. Finally,
we will discuss the need for optimization and customization, which are fundamental to
ensure effective integration in different operating environments.

The goal is to provide a comprehensive overview that allows you to understand not
only the benefits of Suricata, but also the challenges to be faced in order to fully exploit
its potential.

6.1 Hardware Performance
One of Suricata’s most distinctive qualities is its ability to leverage modern hardware to
deliver high performance, especially in environments with heavy network traffic. This is
achieved through an advanced design that combines multi-threading support, the use of
advanced network adapters, and optimal management of available resources.

Native multi-threading support allows Suricata to distribute the workload across mul-
tiple CPU cores, processing packets in parallel. This feature is particularly beneficial
for hardware with multi-core processors, where high throughput can be achieved while
maintaining low latency[5].

Suricata can also leverage advanced network adapters that support technologies such
as SR-IOV (Single Root I/O Virtualization) and DPDK (Data Plane Development Kit).
These features provide significant benefits:

• SR-IOV allows direct interaction with the NIC (hardware component that allows a
device to connect to a network), reducing kernel bottlenecks.

• DPDK allows packet processing at wire speed, bypassing the traditional TCP/IP
stack to improve overall performance.

52

Strengths and Weaknesses

These optimizations are critical in high-performance environments, such as enterprise
networks or data centers. In these environments, Suricata scales linearly with increasing
hardware resources, managing network speeds above 10Gbps without sacrificing analysis
accuracy[12].

However, even on high-end hardware, there are some challenges. For example, the co-
ordination between threads introduced by the multi-threaded model can lead to significant
overhead if configurations are not well-optimized. Additionally, processing large volumes
of traffic can saturate available memory, negatively impacting overall system performance.

Despite these limitations, Suricata remains an excellent choice to fully exploit the capa-
bilities of powerful hardware. Adopting targeted configurations and optimizing resources
are key to ensuring maximum performance in complex and traffic-intensive network sce-
narios.

6.2 Limitations in Standard Configurations
Although Suricata is a high-level IDS/IPS, its standard configurations can have significant
limitations that affect its effectiveness and usability, especially in complex operating envi-
ronments. These limitations mainly arise from the need to balance performance, flexibility
and ease of use in the default settings.

6.2.1 Non-Optimized Performance
Suricata’s default configurations are designed to work in a wide range of scenarios, but
this generality can be inefficient in specific contexts. For example, the default rules may
not be adequately calibrated for the traffic volumes or threat types of a given network
environment. This leads to:

• Increased resource consumption: Some processes may require more CPU or memory
than necessary.

• Reduced speed: Failure to optimize rules and processes can slow down traffic pro-
cessing.

6.2.2 Rules Configuration
Suricata’s rules are the heart of its operation, but their default configuration can be too
generic. This leads to two main problems:

1. Too many active rules: The default rules are designed to cover a wide range of
scenarios, including many rules not needed for specific environments, which increases
processing time.

2. Non-custom rules: The lack of environment-specific rules increases the likelihood of
false positives and false negatives.

53

Strengths and Weaknesses

6.2.3 Interface and Configuration Complexity
Suricata’s interface and configuration system, while powerful, can be challenging, espe-
cially for less experienced users. While using YAML files simplifies many tasks, some key
options, such as load balancing between threads or advanced NIC optimization, require
in-depth technical knowledge to configure correctly.

The documentation, while comprehensive, can be difficult to interpret, especially for
those new to the system. This can significantly slow down the configuration process. In
addition, incorrect settings or incomplete configurations can compromise performance,
making the system less effective and more resource-intensive.

6.2.4 Generic Approach to Protocols
Suricata supports a wide range of protocols, providing considerable versatility in detecting
threats in different network scenarios. However, standard configurations are not optimized
for networks that use a narrow subset of protocols. This generic approach can lead to
inefficiencies, as highlighted in the chapter 10. For example, in a network that primarily
uses protocols such as HTTP and DNS, default support for lesser-used protocols such as
FTP or SMTP can lead to unnecessary resource consumption, slowing down the overall
system operation.

This issue is particularly relevant when analyzing the source code of Suricata and its
modular functionality. In the next part, we will delve into this aspect in more detail,
with a detailed analysis of the changes that can be made to the code to selectively disable
support for non-essential protocols, thus optimizing the performance and efficiency of the
system.

54

Part III

Suricata in Practice:
Customization and

Optimization

55

Chapter 7

Project objectives

Suricata offers a wide range of features and support for numerous network protocols, how-
ever, this flexibility comes at a cost in terms of resource usage. Each protocol supported
by Suricata defines global structures and processes that, even if not used, can increase
memory and processor consumption.

In many operational scenarios, such as specialized networks or environments with lim-
ited resources, the need to monitor only a subset of protocols makes it inefficient to keep
all supported protocols active. From this observation comes the main goal of the project:
to make protocol support optional in Suricata, allowing administrators to disable unnec-
essary ones, resulting in a reduction of the software footprint and improved performance.

In this chapter, we will define the project requirements, linking them to the operational
scenarios that benefit most from a modular approach.

7.1 Target Scenarios
The changes to Suricata have been designed to adapt to specific contexts where network
monitoring requires greater lightness and optimization. Among these, the following main
scenarios stand out:

1. Enterprise networks with limited protocols
In many organizations, network traffic is dominated by a few core protocols, such as
HTTP, HTTPS, and DNS. In such environments, maintaining support for lesser-used
protocols, such as FTP (File Transfer Protocol) or SCTP (Stream Control Transmis-
sion Protocol, transport protocol that allows the creation of multiple independent
flows within the same connection), consumes valuable resources. Optimizing Suri-
cata to monitor only the protocols that are actually needed increases efficiency and
reduces system load.

2. Resource-constrained devices

• Embedded and IoT environments: Routers, switches, and firmware-based
network devices, such as OpenWrt, are often resource-constrained. A more

56

Project objectives

modular and streamlined Suricata can run in these environments by reducing
memory and CPU consumption.

• Lightweight virtualization: In containers, reducing software size and re-
source usage is crucial to maintaining a high container density without compro-
mising overall performance.

3. High-Performance Networks
In high-speed environments, such as data centers and clouds, the ability to process
large volumes of traffic is essential. By eliminating support for unnecessary proto-
cols, Suricata can focus its resources solely on analyzing critical traffic, improving
performance.

7.2 Project Requirements
To ensure that the proposed changes are practical and easily adoptable, it was necessary
to establish some fundamental requirements:

1. Modularity of protocol support
It is essential to make Suricata more flexible, allowing users to enable or disable
support for certain protocols during the configuration or compilation phase. This
requires a modular approach, where each protocol is separated into independent
components, which can be activated via compilation flags or configuration options.

2. Compatibility with existing configurations
The changes must not break the functionality of standard Suricata installations. To
this end, the new features will be implemented in a non-invasive way, leaving the
default behavior of the system unchanged.

3. Resource optimization
The goal is to reduce CPU and memory consumption without sacrificing effectiveness
in detecting threats. Data structures and processes related to the excluded protocols
must be optimized to avoid consuming unnecessary resources.

4. Adaptability to different contexts
Suricata must be easily customizable for different types of environments, from corpo-
rate networks to IoT systems, through cloud infrastructures. This involves providing
well-documented configuration options that make it easy to adopt changes.

5. Code maintainability
Changes must follow the official project guidelines, avoiding introducing unnecessary
complexity. Code modularization will allow the software to be kept updatable and
manageable, facilitating any future developments.

57

Chapter 8

Build Flow and Core Files

The Suricata build process follows a well-defined pipeline that combines configuration,
generation of intermediate files, and the actual build. This flow is orchestrated by a
series of key files, such as configure.ac and Makefile.am, that determine the features
included, the dependencies managed, and the optimizations applied.

This chapter describes the build flow and analyzes the core files that make up the
project architecture.

8.1 The Suricata compilation process
Suricata compilation follows the classic three-step process common to many open-source
software: ./configure, make, and make install. Each of these steps plays a specific
role in preparing, compiling, and installing the software.

8.1.1 Running ./configure

The ./configure command starts the project configuration process, generating the files
needed for the next compilation phase using the instructions defined in the configure.ac
file. This script checks for the presence of required dependencies, such as libraries and
development tools (for example, libpcap, libhtp, and gcc), and configures the Makefiles
according to the system characteristics. During this phase, it is possible to enable or
disable specific features using options such as –-enable-nfqueue, feature that allows
Suricata to interact directly with network packets through kernel-managed queues so that
it can analyze the packets and decide whether to allow or block them. At the end of the
execution, using the Makefile.am files (input files manually written by the developers) as
a basis, the Makefile files are generated, which guide the compilation of the source code.

8.1.2 Running make

The make command uses the Makefile files generated in the previous phase to start the
actual compilation. In this phase:

58

Build Flow and Core Files

• The source code written in C and Rust is compiled, producing object files (.o) and
shared libraries (.so).

• The parsers and other modular components are linked together via the linker, cre-
ating the main Suricata executable.

• The options configured in ./configure determine which modules and protocols are
included in the final binary.

At the end of this phase, the main executable (suricata) and the necessary libraries are
ready for installation.

8.1.3 Running make install

The make install command copies the compiled files and default configurations to the
appropriate system directories. Typically:

• The Suricata executable is installed in a directory such as /usr/local/bin.

• Configuration files (e.g. suricata.yaml) are copied to /usr/local/etc/suricata.

• Required libraries and files are placed in /usr/local/lib.

After this step, Suricata is fully installed and ready to run. You can start it by using the
suricata command and specifying the desired configuration file and listening port.

8.2 configure.ac

The configure.ac file is one of the core elements of the Suricata build system, used to
generate the ./configure script. This script allows you to configure the project based
on the characteristics of the target system, checking for the presence of dependencies,
libraries and required tools. configure.ac is written using the m4 language, which is
specific to the autotools tools.

8.3 /src/Makefile.am

Taking into account the compilation flow described above, the starting point of the
analysis of Suricata was the analysis of the file Makefile.am, in the directory /src,
which defines how the various components of the system are included in the main library
libsuricata.a. The variable libsuricata_c_a_SOURCES is central to this process, list-
ing the source files needed for the compilation.

Each component contributes significantly to Suricata’s capabilities, but also to its
resource footprint. The indiscriminate inclusion of source files in the build process means
that each supported protocol adds complexity and memory usage, even when unnecessary.

Here is an overview of the main files included in libsuricata_c_a_SOURCES and what
they do:

59

Build Flow and Core Files

8.3.1 Decoder (decode, decode-*)
These files are responsible for interpreting network packets at a low level. Each decode-*
file handles a specific protocol, for example:

1. decode-tcp: Decoder for the TCP protocol.

2. decode-sctp: Decoder for the SCTP protocol.

3. decode-ipv6: Decoder for IPv6 packets.

The main decode.c file initializes the specific decoders and coordinates their invocation
based on the type of packet received, so removing a decoder of a certain protocol means
removing its reference from the decode.c file

Example: decode-arp.c The decode-arp.c file implements the DecodeARP function,
which is responsible for decoding Address Resolution Protocol (ARP) packets. This func-
tion follows a rigorous flow of checks and interpretations to ensure that the packets are
valid and compliant with standards.

The DecodeARP function analyzes ARP packets by performing a series of operations:

• Stats Increment: At the beginning of the function, a specific counter for processed
ARP packets is updated:

StatsIncr(tv, dtv->counter_arp);

• Packet Length Check: Check if the packet is long enough to contain a minimum
ARP header:

if (unlikely(len < ARP_HEADER_MIN_LEN)) {
ENGINE_SET_INVALID_EVENT(p, ARP_PKT_TOO_SMALL);
return TM_ECODE_FAILED;

}

• ARP header parsing: The PacketSetARP function extracts and parses the ARP
header and assigns it to the packet structure:

const ARPHdr *arph = PacketSetARP(p, pkt);
if (unlikely(arph == NULL))
return TM_ECODE_FAILED;

• Validity checks: The function checks the main fields of the ARP header:

– Hardware type: Must be Ethernet (ARP_HW_TYPE_ETHERNET).

60

Build Flow and Core Files

– Protocol: Must be IPv4 (ETHERNET_TYPE_IP).

– Opcode: Checks whether the ARP operation (e.g. Request or Reply) is sup-
ported.

An example of a check:

if (SCNtohs(arph->hw_type) != ARP_HW_TYPE_ETHERNET) {
ENGINE_SET_INVALID_EVENT(p, ARP_UNSUPPORTED_HARDWARE);
PacketClearL3(p);
return TM_ECODE_FAILED;

}

• Conclusion: If all checks pass, the function returns TM_ECODE_OK, indicating that
the packet was decoded successfully:

return TM_ECODE_OK;

8.3.2 App-Layer (app-layer, app-layer-*):

These files handle logging and parsing of application layer protocols. They are responsible
for invoking parsing functions for each protocol, such as HTTP, DNS, or TLS. Each
app-layer-* file corresponds to an application layer protocol:

1. app-layer-http: Parsing HTTP requests and responses.

2. app-layer-dns: Handling DNS queries.

3. app-layer-tls: Parsing the TLS protocol.

Example 1: app-layer-ftp.c

The app-layer-ftp.c file implements support for analyzing the FTP (File Transfer Pro-
tocol) protocol, which is a network protocol used to transfer files between clients and
servers over a TCP/IP network, characterized by the use of two connections: one used for
data exchange and one used for sending commands from the client and receiving responses
from the server. This file is responsible for decoding and analyzing the control connection,
detecting any anomalies or suspicious behavior.

Main features

61

Build Flow and Core Files

1. Protocol registration The app-layer-ftp.c file registers the FTP protocol
in the Suricata application engine during the initialization phase. This is done through
a function like FTPAppLayerInit, which maps the protocol to parsing and management
functions:

void FTPAppLayerInit(void) {
AppLayerParserRegister(IPPROTO_TCP, "ftp", ALPROTO_FTP,
FTPParser, NULL);

}

In this example, the FTP protocol is registered for the TCP transport layer and maps to
the FTPParser function for packet analysis.

2. Command and response parsing The main parsing function, FTPParser,
analyzes the data from the control connection. This function identifies FTP commands
and responses based on protocol delimiters, such as end-of-line characters (\r\n):

int FTPParser(Flow *f, void *state, AppLayerParserState *pstate,
uint8_t *input, uint32_t input_len) {
// Parsing FTP commands
FTPCommandParse(input, input_len);
// Parsing FTP responses
FTPResponseParse(input, input_len);

}

Each command or response is parsed and mapped to an internal state to track the flow
of the connection.

3. Managing protocol state app-layer-ftp.c uses a data structure to track
the state of the FTP connection, associating commands and responses. This is useful
for identifying anomalies, such as invalid command sequences or the use of potentially
malicious commands:

typedef struct FTPState {
uint8_t cmd[MAX_CMD_LEN];
uint8_t response[MAX_RESP_LEN];

} FTPState;

4. Callbacks and Engine Integration The file includes callbacks that are invoked
when specific events are detected, such as a USER or PASS command. These callbacks
allow the FTP parser to be integrated with other components of the system, for example
to generate alarms:

if (strncmp(cmd, "USER", 4) == 0) {
GenerateAlert(ALERT_FTP_USER_COMMAND);

}

62

Build Flow and Core Files

Example 2: ssh.rs

The ssh.rs file, written in Rust, implements support for decoding the SSH (Secure Shell)
protocol. SSH is a critical protocol used for secure connections, remote administration,
and file transfers. This file takes care of decoding SSH traffic and provides features for
identifying anomalies and collecting statistics.

Main Features

1. Parsing SSH packets The ssh.rs file implements a parser that analyzes SSH
protocol messages, breaking them down into their main components. The parse_ssh_packet
function is responsible for interpreting the received raw data and transforming it into a
readable structure:

pub fn parse_ssh_packet(input: &[u8]) -> Result<SshPacket, SshError> {
let mut cursor = Cursor::new(input);

let packet_length = cursor.read_u32::<BigEndian>()?;
let padding_length = cursor.read_u8()?;
let payload = cursor.read_exact(packet_length as usize)?;

Ok(SshPacket {
length: packet_length,
padding_length,
payload: payload.to_vec(),

})
}

This function extracts the main fields of an SSH packet such as the packet length, padding
length and the actual payload, using the standard Cursor module that allows treating an
in-memory buffer of data as an input source, similar to a file or stream.

2. Protocol data structures The file defines specific data structures to represent
SSH messages. These structures are designed to be safe and easy to use during protocol
analysis:

pub struct SshPacket {
pub length: u32,
pub padding_length: u8,
pub payload: Vec<u8>,

}

Each SSH packet is represented by an instance of the SshPacket structure, which contains
the decoded fields.

63

Build Flow and Core Files

3. Error Handling Rust provides a robust error handling model, which is leveraged
in the SSH decoder to identify and handle malformed packets. Errors are represented by
a SshError enumeration:

#[derive(Debug)]
pub enum SshError {
InvalidPacket,
IoError(std::io::Error),

}

This approach allows to clearly distinguish between decoding errors (e.g. malformed
packets) and input/output errors.

4. Packet parsing The process_ssh_packet function is used to parse packets
received by the network engine and generate events:

pub fn process_ssh_packet(packet: &[u8]) -> Result<(), SshError> {
let ssh_packet = parse_ssh_packet(packet)?;
// Additional parsing logic
Ok(())

}

5. Integration with the main engine The SSH decoder integrates with the rest
of the system by exposing its main features through the app-layer-ike.c file that defines
the function:

void RegisterIKEParsers(void)
{
rs_ike_register_parser();

}

This function integrates the previously described functions written in Rust into the Suri-
cata source code, written in C.

8.3.3 Detection (detect, detect-*)
Responsible for applying detection rules to identify suspicious or malicious activity:

1. detect-engine: Central engine for interpreting rules.

2. detect-engine-register: Part of the detection engine, they manage the registration
of rules associated with different protocols. Each protocol has specific detection
patterns, which are mapped to rules via these files.

3. detect-content: Implementation of content-based matching.

4. detect-pcre: Detection with regular expressions.

64

Build Flow and Core Files

Example: detect-smb-version.c

The detect-smb-version.c file implements a detection rule, registered in
detect-engine-register, specific to the SMB (Server Message Block) protocol, which
is mainly used for sharing files and resources in networks. This file is responsible for
identifying the SMB protocol versions within network traffic and associating them with
the detection rules configured by the user.

Main features

1. Registering the SMB Version rule The DetectSmbVersionRegister func-
tion registers the SMB Version rule within the detection engine. This is done using the
SigMatchSignRegister function, which maps a rule option to a processing function:

void DetectSmbVersionRegister(void) {
SigMatchSignRegister("smb_version", DetectSmbVersionSetup, 0);

}

In this example, the smb_version rule option is mapped to the
DetectSmbVersionSetup function for configuration.

2. Rule Configuration The DetectSmbVersionSetup function is called during the
rule parsing phase. This function parses the parameters specified in the rule and associates
them with a data structure representing the matching condition:

static int DetectSmbVersionSetup(DetectEngineCtx *de_ctx,
Signature *s, const char *str) {
SmbVersionData *data = SCMalloc(sizeof(SmbVersionData));
if (data == NULL)
return -1;

data->version = atoi(str);
SigMatchAppendSM(s, DetectSmbVersionMatch, data);
return 0;

}

In this snippet, the SMB version specified in the rule is extracted and saved in the
SmbVersionData structure, which will be used during the matching phase.

3. Packet matching The DetectSmbVersionMatch function is the heart of the
detection. When processing a packet, this function compares the packet data to the
conditions specified in the rule:

static int DetectSmbVersionMatch(ThreadVars *tv,
DetectEngineThreadCtx *det_ctx, Flow *f, Packet *p, void *data) {
SmbVersionData *smb_data = (SmbVersionData *)data;

65

Build Flow and Core Files

if (p->smb_version == smb_data->version)
return 1; // Match found

return 0; // No match
}

If the packet’s SMB version matches the one specified in the rule, the function returns 1,
indicating a match.

8.3.4 Output (output, output-lua, output-json-*)
The output management in Suricata is responsible for logging and exporting detected
events in different formats. The files associated with this component implement mech-
anisms to send data to external systems or save them in structured formats for further
analysis.

1. output: Contains generic functions to manage output, allowing configuration and
sending of logs and alarms in various formats.

2. output-lua: Handles integration with Lua scripts, allowing advanced customization
of output. It is especially useful for scenarios where you need to transform or filter
data before exporting it.

3. output-json: Implements log generation in JSON format, the most used struc-
tured format in Suricata. It provides detailed and highly configurable output for
integration with analysis and visualization tools.

4. output-json-alert: Exports alerts in JSON format. Each alert includes details such
as timestamp, IP addresses, ports, protocol, and the rule that triggered the alert.

5. output-json-dns: Specific to DNS traffic, logs queries and responses in JSON for-
mat for in-depth DNS traffic analysis.

6. output-json-tls: Saves TLS traffic details, such as certificates, protocol versions,
and cipher suites, in a structured format useful for encrypted traffic analysis.

These output files offer a high degree of flexibility, allowing Suricata to adapt to different
network infrastructures and analysis requirements.

Example: output-json-dns.c

The output-json-dns.c file implements support for outputting DNS traffic in JSON
format. This file allows you to log DNS queries and responses in a structured format, useful
for DNS traffic analysis and integration with analytics tools such as ELK (Elasticsearch,
Logstash, Kibana).

Key Features

66

Build Flow and Core Files

1. Output Module Registration The file registers the JSON output module for
DNS during the Suricata initialization phase. This is done via the TmModuleRegister
function:

void TmModuleJsonDnsLogRegister(void) {
TmModuleRegister(TM_DNS_LOG, "dns-log", DnsLogThreadInit,
DnsLogThreadExit, DnsLogDispatch);

}

This function registers the module with the name dns-log, associating it with specific
functions for initialization, release, and output management.

2. Creating JSON output The DnsLogDispatch function is responsible for cre-
ating and sending JSON logs. When processing a DNS event, this function constructs a
JSON object representing the traffic details:

void DnsLogDispatch(ThreadVars *tv, void *data, Packet *p) {
json_t *js = json_object();

json_object_set_new(js, "timestamp", TmTimeToJson(p->ts));
json_object_set_new(js, "src_ip", JsonIPAddress(p->src_ip));
json_object_set_new(js, "dst_ip", JsonIPAddress(p->dst_ip));
json_object_set_new(js, "query", json_string(dns_data->query));
json_object_set_new(js, "response", json_string(dns_data->response));
json_object_set_new(js, "type", json_string(dns_data->type));

OutputLogJson(tv, js);
json_decref(js);

}

In this example:

• The timestamp and source/destination IP addresses are added to the JSON object
using the TmTimeToJson and JsonIPAddress functions.

• Specific details of the DNS query and response, such as the domain name and query
type (e.g. A, MX, PTR), are included.

3. Sending the JSON log After the JSON object is created, the OutputLogJson
function takes care of sending it to the configured destination, such as a file or a network
pipeline:

void OutputLogJson(ThreadVars *tv, json_t *js) {
char *json_str = json_dumps(js, JSON_COMPACT);
SCLogInfo("DNS Log: %s", json_str);
SCFree(json_str);

}

67

Build Flow and Core Files

8.4 /rust/Makefile.am and lib.rs

The Makefile in the rust directory is responsible for managing the compilation of com-
ponents written in Rust. In a project that combines multiple languages, such as C and
Rust, this file defines the rules for including Rust modules in the general compilation flow
orchestrated by autotools. Among its various functions is the specification of feature
flags used to enable or disable specific features at build time.

This Makefile is closely tied to the lib.rs file which represents the main entry point
for code written in Rust within Suricata. In a Rust project, lib.rs is conventionally used
to define the main module of a library or a software component. In the case of Suricata,
this file coordinates and organizes the Rust modules that implement specific features.

Integration with C via FFI

A key aspect of the lib.rs file is its integration with C code. Thanks to support for FFI
(Foreign Function Interface), functions written in Rust can be exposed and used by the
rest of the project. For example:

#[no_mangle]
pub extern "C" fn rust_function() -> i32 {
420

}

In this example, the rust_function function is made available to be called from C code,
allowing for close collaboration between the two languages.

8.5 /rules/Makefile.am

The Makefile.am file in the rules directory is responsible for managing the configura-
tion, installation, and organization of detection rules. Rules are a key component of how
Suricata works, used by the detection engine to identify suspicious or malicious activity
on the network. This file defines the dist_rule_DATA variable that contains the .rules
rule files.

8.6 suricata.yaml.in

The suricata.yaml.in file is the main template for generating the suricata.yaml con-
figuration file, which Suricata uses to define the behavior of the IDS/IPS engine. This file
contains a detailed and flexible structure that allows users to configure key components,
such as traffic analysis, supported protocols, detection rules, output formats, and more.

8.6.1 File Structure
The suricata.yaml.in file structure is organized into hierarchical sections, each repre-
senting a specific aspect of the engine.

68

Build Flow and Core Files

Main File Sections

The details of the most important sections are as follows:

1. vars This section defines network variables, such as IP addresses and ports, that are
used in detection rules. Example:
vars:
HOME_NET: "[192.168. 1.0/24]"
EXTERNAL_NET: "!$HOME_NET"

HOME_NET is the internal network being monitored, while EXTERNAL_NET is everything that
is not part of the internal network.

2. interfaces In this section, you configure the network interfaces that Suricata uses
to capture traffic:
af-packet:
- interface: eth0
cluster-type: cluster_flow
defrag: yes

The eth0 interface is configured to use af-packet, a high-performance capture mode.

3. logging The logging section defines settings for system-generated logs:
logging:
default-log-level: info
outputs:
- console:
enabled: yes

- file:
enabled: yes
filename: /var/log/suricata/suricata.log

In this example, logs are sent to both the console and a specified file.

4. outputs This section manages the format and destination of the generated output.
An example for JSON format:
outputs:
- eve-log:
enabled: yes
filetype: json
filename: /var/log/suricata/eve.json
types:
- alert
- dns
- http

69

Build Flow and Core Files

In this case eve-log is configured to save alert, DNS and HTTP events in JSON format.

5. app-layer The app-layer section allows you to enable or disable specific application
layer protocols. This means that Suricata will analyze or ignore traffic associated with
those protocols during runtime, but it will not remove the global structures defined in the
source code.

app-layer:
protocols:
http:
enabled: yes
request-body-limit: 100kb
response-body-limit: 100kb

dns:
enabled: yes

In this example, HTTP and DNS support is enabled, with size limits configured for the
HTTP request body.

8.6.2 Generating the suricata.yaml file
The suricata.yaml.in file is a template that contains placeholders, such as @VARIABLE@,
that are replaced with values defined during configuration via ./configure. For example:

HOME_NET: "@HOME_NET@"

When generating the suricata.yaml file, @HOME_NET@ is replaced with the actual address
specified by the user.

70

Chapter 9

Changes Made

The changes shown in this chapter are aimed at optimizing Suricata 8.0.0 to adapt it to
devices with limited resources or with specific monitoring needs. Although Suricata offers
support for many network protocols, this flexibility comes with a high resource consump-
tion, even for unused features. The optimization implemented consists of providing the
ability to choose which protocols to enable already at compile time, so as to exclude any
structures in memory.

The integration of the changes must offer a reduction in CPU and memory consump-
tion, without compromising the effectiveness of threat detection and provide adaptability
to different operational scenarios. The modified source code has been uploaded to this
GitHub repository and can be deployed following this guide.
Additionally, a comprehensive list of all the defined flags and the files modified for each
flag is available in this other repository.

To better illustrate the nature of the modifications, the following sections will detail
the changes made to various parts of the source code using the Internet Key Exchange
(IKE) protocol as an example.

9.1 Adding Configuration Flags in configure.ac

To make a protocol optional, the first step is to define a flag, to be used at compile
time to request its enabling or removal, and the relative variables to be used in the file
associated to the protocol. For this reason, the following code fragment has been added
to the configure.ac file:

AC_ARG_ENABLE([ike],
[AS_HELP_STRING([--enable-ike], [Enable IKE protocol])],
[if test "x$enable_ike" = "xyes"; then
ENABLE_IKE=1
ENABLE_IKE_STRING="yes"

else
ENABLE_IKE=0
ENABLE_IKE_STRING="no"

71

https://github.com/guca11/SuricataIDS-onlyCode
https://docs.suricata.io/en/latest/devguide/codebase/installation-from-git.html
https://github.com/guca11/SuricataIDS/blob/main/DefinedFlags.md

Changes Made

fi],
[ENABLE_IKE=1
ENABLE_IKE_STRING="yes"])

AC_SUBST(ENABLE_IKE)
AC_SUBST(ENABLE_IKE_STRING)
AC_DEFINE_UNQUOTED([ENABLE_IKE],[$ENABLE_IKE],[Enables support for IKE])

AM_CONDITIONAL([ENABLE_IKE], [test "x$ENABLE_IKE" = "x1"])

This code introduces the –-enable-ike configuration option, which enables or disables
IKE support and is based on the following Autoconf statements:

• AC_ARG_ENABLE: defines a configurable option for the ./configure command. This
macro accepts:

1. feature name.
2. AS_HELP_STRING which contains the description that appears in the ./configure

command help.

• if directive: Checks whether the user specified –-enable-ike during configura-
tion and defines the global variable ENABLE_IKE. If not explicitly disabled (via
–-disable-ike) the feature is enabled by default.

• AC_SUBST: Macro that tells Automake to substitute the value of the specified variable
(ENABLE_IKE or ENABLE_IKE_STRING) in generated files, such as Makefiles and .yaml.

• AC_DEFINE_UNQUOTED: Defines a macro in C code during compilation. Accepts:

1. The name of the defined macro.
2. The value of the ENABLE_IKE variable, which will be 1 or 0.
3. A short description added as a comment in the generated file.

• AM_CONDITIONAL: Defines a condition for Automake, based on the value of a variable.
Requires:

1. The name of the condition.
2. the condition, in this case true if ENABLE_IKE is equal to 1.

This condition can be used in the Makefile.am file to include or exclude files.

9.2 Changes to src/Makefile.am

Once the variables has been defined in the configure.ac file, the Makefile.am file has
been modified to include IKE-related source and header files only if the protocol is enabled:

72

Changes Made

if ENABLE_IKE
noinst_HEADERS += app-layer-ike.h
noinst_HEADERS += detect-ike-exch-type.h
noinst_HEADERS += detect-ike-spi.h
noinst_HEADERS += detect-ike-vendor.h
noinst_HEADERS += detect-ike-chosen-sa.h
noinst_HEADERS += detect-ike-key-exchange-payload-length.h
noinst_HEADERS += detect-ike-nonce-payload-length.h
noinst_HEADERS += detect-ike-nonce-payload.h
noinst_HEADERS += detect-ike-key-exchange-payload.h
noinst_HEADERS += output-json-ike.h

endif

if ENABLE_IKE
libsuricata_c_a_SOURCES += app-layer-ike.c
libsuricata_c_a_SOURCES += detect-ike-exch-type.c
libsuricata_c_a_SOURCES += detect-ike-spi.c
libsuricata_c_a_SOURCES += detect-ike-vendor.c
libsuricata_c_a_SOURCES += detect-ike-chosen-sa.c
libsuricata_c_a_SOURCES += detect-ike-key-exchange-payload-length.c
libsuricata_c_a_SOURCES += detect-ike-nonce-payload-length.c
libsuricata_c_a_SOURCES += detect-ike-nonce-payload.c
libsuricata_c_a_SOURCES += detect-ike-key-exchange-payload.c
libsuricata_c_a_SOURCES += output-json-ike.c

endif

In this case headers and sources of IKE parser, IKE options detectors and IKE output
formatter.

9.3 Updates to suricata.yaml.in

suricata.yaml.in has been modified to include the following condition under the outputs
and app-layer sections:

- ike:
enabled: @ENABLE_IKE_STRING@

In this file, it is not possible to use "1" or "0" values to express a condition. This is why an
additional variable was defined to store a string value instead. If the protocol is enabled,
the ENABLE_IKE_STRING variable will hold the value "yes"; otherwise, it will be set to "no".

9.4 Changes to the rules folder
The rules directory contains files that define the detection rules that Suricata uses to
analyze network traffic and generate alerts based on suspicious behavior or anomalies.

73

Changes Made

There are two major changes to this folder in the project:

1. The decoder-events.rules file, which originally contained rules for handling anoma-
lies or errors detected during traffic processing, has been split into multiple files, each
dedicated to a specific protocol. For example, the rules for DCERPC have been
moved to the decoder-events-dcerpc.rules file, while those for GRE have been
included in decoder-events-gre.rules.

2. In the Makefile.am file, the dist_rule_DATA variable is used to specify the .rules
files that should be included in the distribution. The files have been split by pro-
tocol and made optional by using the ENABLE_* variables, previously defined in the
configure.ac file. This approach allows you to include only the necessary files
based on the protocols enabled during configuration. An example is the following:

if ENABLE_IKE
dist_rule_DATA += ipsec-events.rules

endif

Note that IKE rules are defined in the ipsec-events.rules file because IKE serves
as a fundamental protocol for the implementation of IPsec.

9.5 Changes to rust/Makefile.am

As explained in the chapters before, Suricata is written using a mix of C and Rust lan-
guages, this is why, in the rust/Makefile.am file, the following code has been added to
handle Rust features to enable them according to the variable defined in the configure.ac:

if ENABLE_IKE
RUST_FEATURES += ike

endif

9.6 Updates to the lib.rs File
In the lib.rs file, a conditional module has been added that is enabled only if the ike
feature has been enabled in the corresponding Makefile.am:

#[cfg(feature = "ike")]
pub mod ike;

9.7 Changes in Suricata C Code (src)
To dynamically enable or disable IKE-related code, #if ENABLE_IKE directives have been
added. For example:

74

Changes Made

#if ENABLE_IKE
RegisterIKEParsers();

#endif

These changes ensure that IKE-specific functions are only included in the program if IKE
support is enabled.

9.8 Problems Encountered
During the project, some specific problems arose related to disabling certain protocols.
These problems highlighted the importance of understanding the internal architecture of
Suricata and its dependencies. The main obstacles encountered are discussed below.

9.8.1 HTTP and libhtp
The HTTP protocol handling in Suricata is delegated to an external library called libhtp.
This library is responsible for parsing and normalizing HTTP data, providing an abstrac-
tion layer to simplify the processing of the protocol.

Disabling HTTP posed an additional challenge, as libhtp also had to be excluded
from the build process. This means that the file src/Makefile.am had to be modified to
remove references to the library and its associated files.

9.8.2 TCP and UDP
The TCP and UDP protocols, while theoretically disableable, are a fundamental part of
network flow and how Suricata works. They play a key role in multiplexing and decoding
source and destination ports, which are essential for analyzing network flows.

Disabling these protocols would drastically reduce Suricata’s capabilities, making it
impossible to identify communications between hosts. This would render the IDS ineffec-
tive for most use cases. Therefore, it was decided to keep these protocols enabled as part
of the system.

75

Chapter 10

Change Impacts

The modifications made to the Suricata code to make certain protocols optional have had
a notable impact on both the software’s size and its performance. This chapter provides
an in-depth analysis of these effects, emphasizing the benefits achieved as well as any
limitations introduced.

The subsequent sections explore how these changes influenced the overall size of the
software and examine their impact on the system’s performance and flexibility.

All tests were conducted on a virtualized machine running Ubuntu 24.10 with 8 cores
and ≈ 9 GB of RAM.

10.1 Executable Size
The table 10.1 shows the results of the measurements of the Suricata executable in different
configurations of Suricata itself:

Table 10.1. Size of Suricata’s executable (in MB)

Configuration Dimension
All protocols enabled ≈ 100 MB
Core protocols enabled (network flag) ≈ 55 MB
Only essential protocols (IPv4, TCP, UDP) ≈ 42 MB

10.2 Memory Usage
The memory usage has been measured using the following command:
sudo pmap -x $SURICATA_PID

This command is used to display the memory map of a process that is how memory
is allocated and distributed within a running process. Table 10.2 shows the memory
consumption measured during runtime:

76

Change Impacts

Table 10.2. Suricata’s memory usage (in GB)

Configuration Memory used
All protocols enabled ≈ 1,91 GB
Core protocols enabled (network flag) ≈ 1,89 GB
Only essential protocols (IPv4, TCP, UDP) ≈ 1,04 GB

The possibility of excluding unused protocols contributed to a significant reduction in
dynamic memory allocation.

To be noted that the major boost to the efficiency has been obtained removing the
support of HTTP and the libhtp library.

10.3 Impact on log files
Each test has been made using the same sample, that is a capture of real network traffic
on a busy private network’s access point to the Internet. This log contains several packets,
approximately 790k, of different protocols like IPv4 and IPv6, TCP and UDP, ARP, ICMP
and many others.

We can note that removing the support to the protocols also means the generation of
less events, the table 10.3 shows this result:

Table 10.3. Suricata’s log file size (in MB)

Configuration Log size
All protocols enabled ≈ 36.0MB
Core protocols enabled (network flag) ≈ 34.6MB
Only essential protocols (IPv4, TCP, UDP) ≈ 18.7MB

By reducing the number of supported protocols and eliminating their logs, the software’s
ability to analyze traffic in depth is reduced. This results in a reduction in the accuracy
of threat detection. It is therefore essential to find the optimal balance between security
and efficiency, ensuring high performance without excessively compromising monitoring
and protection capabilities.

77

https://tcpreplay.appneta.com/wiki/captures.html

Part IV

OpenWrt: A Lightweight
Network Firmware

78

Chapter 11

Introduction to OpenWrt

OpenWrt is an open source Linux-based operating system designed for network devices
such as routers, access points, and other embedded platforms. Unlike pre-installed firmware
from manufacturers, OpenWrt offers users a flexible and customizable platform that allows
complete control over the functionality of the device.

Throughout this chapter, we will analyze why OpenWrt was chosen, its main features,
and how it differs from a full Linux system. The goal is to highlight why OpenWrt is a
popular choice for developers and networking enthusiasts.

11.1 From Evaluating Options to Choosing OpenWrt
Before selecting OpenWrt, other options were explored, including:

1. VyOS: An open-source Linux-based distribution designed for routing and network
management. While VyOS is robust and highly configurable, it is more geared toward
complex network infrastructures and less suited to resource-constrained embedded
devices, this is easily notable looking at the minimum requirements of this OS.
Additionally, its customization requires a level of abstraction that can prevent low-
level optimization.

2. OPNsense: is an open-source distribution based on FreeBSD, designed primarily
for firewalls, routers, and advanced network security. It offers a full-featured GUI
for managing network features such as VPN, firewall, IDS/IPS, and more.

3. Ubuntu: As a full-featured Linux distribution, Ubuntu offers a wide range of fea-
tures and a large community of support. However, its general structure and resource
consumption make it poorly suited to devices with limited hardware capabilities,
reducing operational efficiency compared to a leaner system like OpenWrt.

Of the options considered, OpenWrt allowed us to build a tailor-made system, capable
of balancing efficiency, flexibility and scalability. Its intrinsic characteristics made it the
ideal basis to address the challenges of the project.

79

https://docs.vyos.io/en/latest/installation/install.html.
https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements

Introduction to OpenWrt

11.2 What is OpenWrt and its main features
As Studied by Damasceno, Dantas, and Araujo [4], OpenWrt is a lightweight and versatile
operating system, specifically designed for network devices and embedded environments.
Unlike proprietary firmware provided by manufacturers, OpenWrt is open source and offers
a wide range of features that make it a preferred solution for many networking scenarios.

11.2.1 Key Features of OpenWrt
1. Modular Architecture

OpenWrt uses an optimized Linux kernel and a package-based system. This modular
approach allows you to install only the components you need, minimizing resource
consumption and increasing flexibility.

2. Extensive Package Repository
OpenWrt has a rich package repository that includes advanced networking tools,
lightweight servers, VPNs, firewalls, and more. Each package can be installed or
removed as needed by the user.

3. Extensive Hardware Support
OpenWrt supports a wide range of embedded devices, from low-cost routers to high-
end networking systems. With community support, new devices are added all the
time.

4. Graphical Interface and CLI
The LuCi graphical interface simplifies configuration for novice users, while the CLI
provides advanced control for more complex configurations.

5. Continuous Updates and Security
The OpenWrt community ensures regular updates, feature enhancements, and timely
security patches, reducing the risk of vulnerabilities in the firmware.

6. Full Customization
Users can modify every aspect of OpenWrt, from the kernel to packages to specific
configuration of networking features.

11.2.2 Differences from a full Linux system
Although OpenWrt is based on Linux, it differs from a full Linux system like Ubuntu or
Kali in several key ways:

• Optimization for embedded devices: OpenWrt is designed to run on hardware with
limited resources, such as low-power CPUs and low memory[20].

• Custom build system: The Buildroot framework allows you to create custom firmware
images, including only the required components.

80

Introduction to OpenWrt

• Lacks some desktop features: To reduce size and resource consumption, OpenWrt
excludes many graphics libraries and tools that are common in PC Linux systems.

These features make OpenWrt an ideal platform for developers, network administrators,
and enthusiasts looking for a powerful, lightweight, and customizable solution for network
devices.

81

Chapter 12

Advantages and Limitations of
OpenWrt

OpenWrt stands out as a versatile and innovative platform in the panorama of firmware
for network devices. Its features make it a privileged choice for scenarios that require
efficiency, modularity and flexibility on embedded hardware. However, like any technology,
it also presents challenges, especially regarding hardware compatibility and configuration
complexity.

In this chapter, the main advantages of OpenWrt will be analyzed, highlighting how
it manages to meet specific needs of advanced networking. Subsequently, the limitations
of the platform will be discussed, offering a complete picture of its potential and the
difficulties that may arise in its adoption and use.

The goal is to provide a clear understanding of the reasons why OpenWrt represents an
effective solution for many scenarios, without neglecting the aspects that require attention
or advanced technical skills.

12.1 Efficiency
OpenWrt’s efficiency comes from its ability to optimize the use of hardware resources. For
example, this OS uses dynamic memory allocation and release algorithms inherited from
the Linux kernel, such as kmalloc and the slab allocator system, to optimize memory use
in resource-constrained environments. kmalloc is a function that allows you to allocate
contiguous blocks of memory in kernel space, ideal for small or medium-sized allocations.
Internally, kmalloc often relies on the slab allocator, a subsystem designed to manage
fixed-size objects, organizing them in dedicated caches to reduce fragmentation and over-
head. The slab allocator reuses already allocated blocks of memory, thus improving overall
efficiency and allocation speed.

In addition, OpenWrt benefits from other advanced features of the Linux kernel, such
as the OOM Killer (Out-Of-Memory Killer), which kills low-priority processes in low-
memory situations to preserve system stability. For extreme scenarios, support for swap
partitions or files allows to temporarily extend virtual memory, reducing the risk of crashes.

82

Advantages and Limitations of OpenWrt

Thanks to these mechanisms, OpenWrt can operate reliably even on devices with limited
memory.

Furthermore, the size of the operating system can be customized to include only the
strictly necessary modules, ensuring a very small footprint.

12.2 Modularity
One of the distinguishing features of OpenWrt is its modularity. The platform uses a
package system that allows users to install only the components they need, minimizing
the system footprint. Some examples include:

• Customizable packages: OpenWrt provides a large repository of packages, such as
web servers, advanced firewalls, and monitoring tools, that can be added or removed
as needed.

• LuCI interface: The web graphical user interface (LuCI) can be installed or unin-
stalled to optimize resource usage, offering a compromise between ease of use and
light weight.

12.3 Scalability
Despite being designed for limited hardware, OpenWrt is highly scalable. It can be con-
figured to run on a wide range of devices, from small home routers to powerful systems
used in enterprise environments. Its scalability strengths include:

• Multi-architecture support: OpenWrt supports multiple hardware architectures, in-
cluding MIPS, ARM, and x86.

• Advanced configurations: Advanced features, such as VLAN, VPN, and QoS, can
be integrated without compromising system stability.

• Cluster and mesh networking: OpenWrt can be used to create scalable mesh networks
and complex network infrastructures, such as Wi-Fi hotspot systems.

12.4 Challenges related to hardware compatibility and
configuration

Despite its many advantages, OpenWrt does have some significant challenges, especially
in terms of hardware compatibility and configuration. These aspects can be a stumbling
block, especially for those who are new to the platform or operate in environments with
a large variety of devices.

83

Advantages and Limitations of OpenWrt

12.4.1 Hardware Compatibility
Hardware compatibility is one of the main pain points of OpenWrt. This firmware must
adapt to a wide range of embedded devices[21], each with unique specifications and limi-
tations.

The diversity of supported architectures, such as MIPS, ARM, and x86, provides con-
siderable flexibility, but not all devices have official pre-built images.

Additionally, support for components such as Wi-Fi network cards depends on the
availability of appropriate drivers. While many open source drivers are supported, others
are only available in proprietary versions, limiting the options for the user. Added to this
is the difficulty in dealing with older devices, for which manufacturers often stop releasing
updates.

Another critical aspect is the installation procedures. For unsupported hardware, the
user must resort to custom firmware builds or undocumented flashing techniques. This
process, if not done correctly, can lead to the risk of rendering the device unusable, a
condition known as "bricking".

12.4.2 Configuration Challenges
Even once installed, OpenWrt can be difficult to configure. While the LuCI web interface
simplifies interaction for many users, some advanced options require manual management
of configuration files.

For example, correctly configuring VLANs or Quality of Service (QoS) often requires
detailed knowledge of networks. Files such as /etc/config/network or
/etc/config/firewall must be carefully edited, and a mistake here can cause the device
to fail.

Package management is another complex issue. Devices with limited flash memory
force users to carefully choose which packages to install, balancing functional needs with
space limitations. Additionally, updates can introduce dependency conflicts, especially
when using custom builds of the firmware.

Finally, while OpenWrt offers extensive documentation, it is often technical and geared
toward experienced users. Beginners may find it difficult to navigate the available infor-
mation or understand the specific details of a given hardware or package.

12.4.3 Mitigating Challenges
Despite these difficulties, there are tools and resources that can help overcome many of
the challenges of using OpenWrt. For example, the custom build system allows users to
create optimized firmware images, avoiding the inclusion of unnecessary components and
improving hardware support.

Furthermore, the OpenWrt community is extremely active and a great strength. Through
forums, detailed guides, and contributions from experienced users, it is possible to find
practical solutions to many issues.

84

Chapter 13

Technical Aspects of OpenWrt

Thanks to its ecosystem, composed of an SDK, a flexible toolchain and a highly con-
figurable build system, OpenWrt allows developers to create custom firmware images to
meet specific technical and application needs.

In this chapter, the main technical aspects of OpenWrt will be analyzed. We will start
from the use of the SDK and the toolchain for compiling packages, then describe the build
system based on Buildroot, highlighting the customization possibilities offered. Finally,
the main features of the platform will be discussed, such as advanced routing, firewall,
QoS management, VPN support and mesh networks. These technical tools and features
consolidate OpenWrt as a versatile and scalable solution for a wide range of network
applications.

13.1 SDK and Toolchain

13.1.1 What is the OpenWrt SDK
The OpenWrt Software Development Kit (SDK) is a set of pre-configured tools
and resources that allow developers to create, modify, and compile software packages for
embedded devices. The SDK is an isolated development environment, designed to simplify
the process of creating packages without requiring full firmware compilation.

The OpenWrt SDK includes:

• A pre-compiled version of the toolchain, specific to the target architecture.

• Libraries and header files (headers) needed for development.

• A build system based on Buildroot, optimized to manage packages and dependen-
cies.

• Scripts and tools for managing configurations and cross-compilation.

With the SDK, you can develop packages without having to build the entire firmware
image. This saves time and resources, making the process more efficient. For example, a

85

Technical Aspects of OpenWrt

user could download the ARM-specific SDK and compile a package like tcpdump with a
few simple commands, without having to recompile the kernel or base system.

13.1.2 OpenWrt Toolchain
The OpenWrt toolchain is a set of tools used to compile software for embedded de-
vices. The unique thing about the OpenWrt toolchain is that it is designed for cross-
compilation, which is the process of generating executable binaries for a different archi-
tecture than the development system.

The toolchain includes:

• GCC Compiler: The GNU C/C++ compiler is configured to generate code for
specific architectures, such as ARM, MIPS, or x86.

• Binutils: A collection of tools for managing binary files, including a linker and
assembler.

• C Library: A lightweight C library, such as musl libc, designed for embedded
environments to replace heavier libraries such as glibc.

• Debugger: Tools such as gdb for debugging compiled code.

With this configuration, the toolchain allows you to generate highly optimized binaries
for devices with limited resources. Each target architecture has its own version of the
toolchain, which includes optimizations for the specific instruction set of the hardware.

13.1.3 Differences between SDK and Toolchain
Although related, SDK and toolchain serve slightly different purposes:

• The toolchain is solely concerned with compilation, providing the compilers, linkers,
and libraries needed to generate executable binaries for a specific architecture.

• The SDK, on the other hand, is a broader development environment, which includes
the toolchain, but also adds configuration files, pre-compiled libraries, and scripts to
facilitate the development of packages or applications.

13.1.4 Cross-Compilation Process
The process of cross-compiling with the SDK and the toolchain can be summarized in the
following steps:

1. Environment Setup: Download the appropriate SDK for the target architecture
and set the necessary environment variables, such as STAGING_DIR.

2. Makefile Creation: Every package in OpenWrt uses a Makefile file to define the
sources, dependencies and build commands.

86

Technical Aspects of OpenWrt

3. Package Compilation: Run the command
make package/<package-name>/compile
to generate the .ipk package.

4. Installation on the device: The generated package can be installed on the target
device via the opkg package manager.

13.1.5 Practical Example of Use
To clarify the process of using the SDK and the toolchain, let’s consider the example of
creating a custom package called hello-world, which contains a simple program written
in C language.

Package Source Code

The source code of our program, called hello.c, is a simple file that prints a message to
the screen:

#include <stdio.h>

int main() {
printf("Hello, OpenWrt!\n");
return 0;

}

This file must be placed in a directory dedicated, for example
package/hello-world/src/hello.c.

The Package Makefile

To create a package in OpenWrt, you need a package-specific Makefile file, which defines
basic information such as the package name, the category it belongs to, dependencies,
and the commands to build it. Here is an example Makefile for hello-world:

include $(TOPDIR)/rules.mk

Package Definition
define Package/hello-world
SECTION:=examples
CATEGORY:=Examples
TITLE:=Hello World Example
endef

Build Commands
define Build/Compile
$(TARGET_CC) $(TARGET_CFLAGS) -o $(PKG_BUILD_DIR)/hello \
$(PKG_BUILD_DIR)/src/hello.c

87

Technical Aspects of OpenWrt

endef

Installation Commands
define Package/hello-world/install
$(INSTALL_DIR) $(1)/usr/bin
$(INSTALL_BIN) $(PKG_BUILD_DIR)/hello $(1)/usr/bin/
endef

Include the OpenWrt framework for packages
$(eval $(call BuildPackage,hello-world))

Explanation of Makefile

• include $(TOPDIR)/rules.mk: Includes the general OpenWrt framework for pack-
age management.

• Section Package/hello-world: - SECTION: Specifies the section the package be-
longs to (in this case, "Examples"). - CATEGORY: Defines the category the package
belongs to (e.g. "Examples"). - TITLE: Provides a short description of the package.

• Build/Compile section: - Uses the target compiler ($(TARGET_CC)) and build flags
($(TARGET_CFLAGS)) provided by the toolchain to build the executable. - Compiles
the hello.c source file located in the src directory, generating the hello binary in
the build directory ($(PKG_BUILD_DIR)).

• Package/hello-world/install section: - $(INSTALL_DIR): Creates the target di-
rectory on the target device. - $(INSTALL_BIN): Copies the compiled binary (hello)
to the /usr/bin directory of the target device.

• $(eval $(call BuildPackage,hello-world)): - This macro starts the package
building process using the specified rules.

Package Compilation

To compile the package, follow these steps:

1. Place the hello.c source file in the package/hello-world/src/ directory.

2. Place the Makefile in the package/hello-world/ directory.

3. Run the following command to compile the package:

make package/hello-world/compile V=s

4. At the end of the process, the generated package will be in the bin/packages/
directory, ready to be installed on the target device.

88

Technical Aspects of OpenWrt

Installation and Testing on the Target Device

After being moved to the target device, the generated package (hello-world.ipk) can
be installed using the opkg package manager. Example:

opkg install /tmp/hello-world.ipk

Once installed, the program can be run directly:

/usr/bin/hello

The output will be:

Hello, OpenWrt!

13.2 OpenWrt Build System
The OpenWrt build system is the heart of the process of generating custom firmware
images and software packages. Based on Buildroot, a flexible and modular framework,
the build system allows developers to configure, compile and assemble firmware for a
wide range of embedded devices, including only the necessary components to optimize
resources.

13.2.1 Build System Structure
The OpenWrt build system is organized into several directories and key files, each with a
specific purpose:

• target/: Contains configurations for the different hardware architectures (e.g. ARM,
MIPS, x86) and supported devices.

• package/: Contains the available software packages, each with its own Makefile to
define sources, dependencies and build commands.

• feeds/: Manages external repositories containing additional packages, which can be
easily integrated into the build system.

• rules.mk: Main file that defines global rules and variables for the build process.

• scripts/: Contains scripts used to automate common tasks, such as updating de-
pendencies or cleaning temporary files.

This modular structure allows you to easily extend the functionality of the build system,
adding new targets or packages without modifying existing files.

13.2.2 Build Process
The build process in OpenWrt consists of three main steps:

89

Technical Aspects of OpenWrt

1. Configuration

The configuration of the build system is done via the make menuconfig command, which
opens an interactive text interface. Here, the user can:

• Select the hardware architecture and target device.

• Enable or disable specific software packages.

• Customize the Linux kernel, choosing the modules to include.

After the configuration, the system saves the choices made in a file called .config, which
will be used in the following phases.

2. Compilation

The compilation phase is managed by the make command, which performs the following
operations:

1. Compilation of the toolchain for the target architecture, including compiler, linker
and base libraries.

2. Compilation of the Linux kernel, customized according to the options specified
during configuration.

3. Compilation of the enabled software packages, using the rules defined in their
respective Makefile.

During this phase, the system also generates intermediate files, such as compilation
logs and configuration files, which can be used for debugging.

3. Firmware Image Generation

Once the build is complete, the system generates a firmware image, which includes:

• The configured Linux kernel.

• The root filesystem (rootfs) containing the selected packages.

• Initial configuration files for the target device.

The generated image can have different formats, such as squashfs (read-only) or ext4
(read-write), depending on the needs of the device.

13.2.3 Advanced Configurations
OpenWrt offers several advanced options to customize the build process:

• Custom Images: Users can create firmware images that include only the strictly
necessary packages, reducing the overall size.

90

Technical Aspects of OpenWrt

• Custom packages: You can add user-defined packages by creating a Makefile in
the package/ directory.

• Parallel build: Using the -j<n> flag, where <n> is the number of threads, you can
speed up the build process by taking advantage of multi-core CPUs.

• Updating feeds: Package repositories (feeds) can be updated and synchronized
with the command:

./scripts/feeds update -a

./scripts/feeds install -a

13.2.4 Practical Example: Creating a Firmware Image
Suppose we want to create a firmware image for a router with ARM architecture:

1. Download the OpenWrt source code:

git clone https://git.openwrt.org/openwrt/openwrt.git
cd openwrt

2. Configure the build system:

make menuconfig

Select the target architecture (e.g. ARM) and enable the desired packages.

3. Start the compilation:

make -j4

4. Once completed, the firmware image will be available in the directory
bin/targets/<architecture>/<device>/.

13.3 OpenWrt Key Features
OpenWrt does more than just provide a lightweight operating system for embedded de-
vices, it also integrates a wide range of advanced features[19] that make it an ideal choice
for complex network applications. In this section, we will describe some of the main fea-
tures offered by the platform, with a focus on the technical aspects related to routing,
firewall, QoS management, VPN support and wireless networks.

91

Technical Aspects of OpenWrt

13.3.1 Advanced Routing
Routing is one of the central features of OpenWrt, allowing network devices to determine
the optimal path for data transfer between sources and destinations. Routing protocols
can be divided into two main categories: static and dynamic.

Routing Protocols: Static and Dynamic

Static routing protocols require routes to be manually defined by the network adminis-
trator. This approach is simple and suitable for small networks or networks with a stable
topology, but it does not scale to complex environments, where changes in the network
may require frequent updates.

Dynamic routing protocols, on the other hand, allow network devices to exchange
route information and automatically update themselves based on the current topology.
This flexibility makes them ideal for larger, dynamic networks, where routes may change
frequently due to failures or traffic variations.

Protocols Supported by OpenWrt

With the integration of routing daemons such as Bird, Quagga and FRRouting, OpenWrt
supports a wide range of dynamic routing protocols, including:

• OSPF (Open Shortest Path First): OSPF is a dynamic routing protocol based on
a link-state algorithm, where each router maintains a complete map of the network
and calculates the shortest paths using Dijkstra’s algorithm. It is ideal for complex
internal networks (intradomain routing) and supports advanced features such as load
balancing over multiple paths (equal-cost multipath routing).

• BGP (Border Gateway Protocol): BGP is the primary routing protocol used on the
Internet to connect autonomous domains (Autonomous Systems, AS). Unlike OSPF,
BGP relies on a path vector algorithm and considers custom criteria, such as network
policies and route attributes, to determine the best path. It is especially useful for
managing enterprise networks with multiple connections to ISPs.

• Babel: Babel is a lightweight dynamic protocol designed for heterogeneous and
mesh networks. It uses a hybrid algorithm that combines distance-vector and link-
state techniques to ensure fast convergence and adaptability to unstable networks.
Due to its lightweight and simplicity, Babel is often used in embedded scenarios.

Load Balancing Across Multiple WAN Connections

Load balancing is a technique that allows you to distribute network traffic across multiple
WAN connections, improving the overall speed and reliability of the network. OpenWrt
implements this functionality through the mwan3 package, which allows you to manage
multiple WAN interfaces and define rules for balancing traffic.

The operation of mwan3 is based on:

92

Technical Aspects of OpenWrt

• WAN interface monitoring: Each WAN interface is monitored in real time to
verify its availability.

• Traffic distribution: Connections are distributed among the active WAN interfaces
based on user-defined rules, such as weight (priority) or round-robin.

• Custom traffic policies: You can route specific types of traffic (for example, VoIP
or streaming) through a preferred WAN connection.

With load balancing, OpenWrt allows you to make the most of available network resources,
ensuring greater efficiency and reducing bottlenecks.

Automatic Failover

Automatic Failover is a complementary feature to load balancing, designed to ensure
continuity of service in the event of a WAN connection failure. If a primary connection
goes down, OpenWrt automatically redirects traffic to a secondary connection without
interrupting communications.

In OpenWrt, this feature is also implemented via mwan3, which uses a monitoring
system based on ping or DNS queries to detect connectivity issues. When a connection
fails:

1. The affected WAN interface is marked as unavailable.

2. Traffic is automatically routed to an available alternate connection.

3. When the primary connection comes back up, traffic can be restored to the original
connection.

Automatic failover is especially useful in enterprise or mission-critical environments where
continuity of service is critical.

13.3.2 Firewall and Security
A firewall is one of the fundamental tools for protecting networks, and in OpenWrt it is a
crucial component to ensure security and traffic control. A firewall acts as a filter between
networks, allowing or blocking traffic based on predefined rules.

Role of a Firewall

A firewall performs several key functions within a network:

• Access Control: Prevents unauthorized users or devices from accessing internal
resources.

• Cyber Attack Protection: Detects and blocks intrusion attempts or malicious
attacks such as port scanning and Denial of Service (DoS).

• Traffic Shaping: Filters traffic based on protocols, IP addresses, ports, and other
criteria, ensuring that only the intended connections are allowed.

93

Technical Aspects of OpenWrt

• Internal Network Isolation: Protects specific segments of the network by pre-
venting unauthorized communication between internal devices.

Figure 13.1. Use case of a firewall.

Based on iptables and nftables

OpenWrt’s firewall system is traditionally based on iptables, a tool that allows you to
configure and apply traffic filtering rules using a table structure. Each table contains a
series of chains, which represent ordered sequences of rules. Each chain is associated
with a specific phase of the packet flow through the device. The main chains are:

• INPUT, for packets destined for the device itself.

• FORWARD, for packets traversing the device, such as a router.

• OUTPUT, for packets originating from the device.

When a packet arrives at the device, it is analyzed by passing through the relevant
chains based on its direction and purpose. Each rule in the chain can specify criteria such
as source or destination IP address, protocol, and port, and define an action to take (for
example, accept or reject the packet). For example, a rule in iptables to block TCP
traffic to port 22 (SSH) might be:

iptables -A INPUT -p tcp --dport 22 -j DROP

94

Technical Aspects of OpenWrt

This rule adds (-A) a rule to the INPUT chain, specifying that TCP packets destined
for port 22 should be blocked (-j DROP).

In recent years, OpenWrt has introduced support for nftables, a more modern solution
that is gradually replacing iptables[14]. Unlike its predecessor, nftables uses a single
shared internal structure for all tables and chains, making the system more efficient and
less affect by synchronization problems. nftables rules are written in a more concise and
readable syntax. For example, the same rule to block SSH traffic with nftables would
be:

nft add rule ip filter input tcp dport 22 drop

In this case, a rule is added to the filter table in the input chain, specifying to block
(drop) TCP packets destined for port 22.

One of the key features of nftables is its ability to simplify rule management. While
in iptables rules are distributed across separate tables, nftables allows you to com-
bine multiple criteria and actions into a single rule, reducing complexity. Additionally,
nftables is extensible and supports advanced features such as connection tracing and
time-based filtering.

In OpenWrt, firewall configuration remains abstracted to the end user thanks to the
/etc/config/firewall file, which uses a high-level format to define rules and policies.
This file is automatically translated into iptables or nftables commands, depending on
the backend used. This abstraction allows users to benefit from the advanced features of
nftables without having to master its complex syntax.

Internal Network Isolation

One of the most powerful features offered by OpenWrt is the ability to isolate segments
of the internal network. This feature is crucial for scenarios where you want to separate
different types of traffic, such as:

• Create a separate network for guests, preventing them from accessing the main
devices.

• Segment IoT traffic to protect the main network from potentially vulnerable devices.

• Configure VLANs (Virtual Local Area Networks) to assign each network segment its
own isolated subnet.

In OpenWrt, isolation is implemented using VLANs combined with firewall rules. For
example:

• VLANs are configured in the /etc/config/network file, assigning each VLAN a
virtual interface.

• Firewall rules are configured to block traffic between VLANs, while maintaining
isolation.

95

Technical Aspects of OpenWrt

A practical example would be to configure one VLAN for guest Wi-Fi traffic and another
for IoT devices. To ensure complete isolation, you would define two firewall rules, as
follows:

config rule
option src ’guest’
option dest ’iot’
option target ’REJECT’

config rule
option src ’iot’
option dest ’guest’
option target ’REJECT’

These rules ensure that traffic between the guest and iot VLANs is blocked in both
directions, maintaining complete isolation between devices on the two networks.

IDS/IPS Support

OpenWrt offers the ability to integrate intrusion detection and prevention systems (ID-
S/IPS) to further enhance security. Although Snort is included in the official packages,
Suricata is not natively supported, but can be installed manually. These tools ana-
lyze traffic in real time and generate alerts for suspicious activity, with the possibility of
directly blocking malicious traffic.

Configuring an IDS like Snort on OpenWrt requires:

• Installing the snort package via the opkg package manager.

• Configuring detection rules in the snort.conf file.

• Firewall integration to automatically block packets that trigger rules.

In the case of Suricata, installation requires manual cross-compilation, as it is not part
of the official packages. Once installed, Suricata can be configured to analyze traffic on
specific interfaces and generate logs in JSON format.

13.3.3 QoS Management and Traffic Shaping
QoS (Quality of Service) management and traffic shaping are fundamental techniques to
ensure efficient use of network resources, especially in the presence of congested connec-
tions or devices competing for the same bandwidth.

QoS refers to the ability of a network to prioritize certain types of traffic, such as
VoIP calls or video streaming, over less critical traffic such as file downloads or software
updates. Traffic shaping, on the other hand, is the process of controlling the flow of data
to prevent traffic from exceeding the maximum capacity of the network by regulating the
rate at which packets are transmitted.

96

Technical Aspects of OpenWrt

SQM (Smart Queue Management)

In OpenWrt, QoS management and traffic shaping are implemented primarily through
SQM (Smart Queue Management). SQM is an advanced framework that combines queue
management algorithms to reduce latency, improve user experience, and ensure fairer
bandwidth usage.

SQM is based on a concept known as Active Queue Management (AQM), where packets
are dynamically inspected and organized before they are sent. This helps reduce excessive
buffering, known as bufferbloat, a major cause of delays in congested networks. Bufferbloat
occurs when routers or switches accumulate too many packets in their internal buffers,
causing high delays and a degraded user experience.

With SQM, users can easily configure rules to limit the available bandwidth for each
device or application, improving fairness and reducing overall latency.

CAKE and fq_codel Algorithms

The CAKE and fq_codel algorithms are two of the main mechanisms used by SQM to
manage network traffic.

CAKE (Common Applications Kept Enhanced) CAKE is a queuing algorithm de-
veloped specifically for home and small business networks. It is designed to be easy to
configure, reduce bufferbloat, and improve traffic fairness. Its key features include:

• Fair Queueing: Divides the available bandwidth equally among active flows, pre-
venting a single device from monopolizing the network.

• Bandwidth Shaping: Allows you to set a maximum bandwidth limit, ensuring
that traffic does not exceed the capacity of the connection.

• DiffServ Integration: Supports Differentiated Services (DiffServ) traffic classes,
allowing you to prioritize certain types of packets.

A practical example of using CAKE is in a home network with multiple devices: thanks to
fair queueing, each device gets a fair share of bandwidth, preventing a single download or
stream from saturating the connection.

fq_codel (Fair Queue Controlled Delay) fq_codel is an AQM algorithm designed
to reduce latency in congested networks by eliminating "old" packets from buffers and
organizing traffic into distinct flows. Its main features include:

• Latency Reduction: Automatically identifies congested flows and applies drop
policies to excess packets, keeping delays low.

• Automatic Fairness: Splits traffic into separate streams and ensures each stream
receives a fair amount of bandwidth.

• Simplicity: fq_codel requires no complex configuration, making it an ideal choice
for home and business networks.

97

Technical Aspects of OpenWrt

For example, in a congested network during a video call and a large download, fq_codel
ensures that the video call packets have a higher priority, maintaining quality of service.

SQM Configuration on OpenWrt

In OpenWrt, SQM configuration is simplified through the luci-app-sqm package, which
provides an intuitive graphical interface. The user can define the main parameters, such
as the maximum download and upload speed, and choose the preferred algorithm (CAKE
or fq_codel). The associated configuration file is /etc/config/sqm.

An example configuration might include:

config queue ’eth1’
option interface ’eth1’
option download ’100000’
option upload ’20000’
option qdisc ’cake’
option script ’piece_of_cake.qos’
option enabled ’1’

This configuration applies traffic shaping on the eth1 interface, limiting the download
speed to 100 Mbps and the upload speed to 20 Mbps using the CAKE algorithm.

13.3.4 VPN Support

A Virtual Private Network (VPN) is a technology that allows you to create an encrypted
tunnel between two or more devices, ensuring the security and privacy of communications.
VPNs are commonly used to securely access private network resources over the Internet,
protecting the data transmitted from interception or manipulation. Through encryption,
VPNs mask sensitive information such as IP addresses and browsing activity, making
them an essential tool in public or untrusted networks.

98

Technical Aspects of OpenWrt

Figure 13.2. Schema of a VPN.

In OpenWrt, setting up a VPN is made easy by the modularity of the platform, which
supports numerous VPN protocols. Among these, the most used are OpenVPN, Wire-
Guard and IPsec, each with specific characteristics that make it suitable for different
scenarios.

OpenVPN

OpenVPN is an extremely versatile open-source solution for creating secure VPN con-
nections. It is based on standard encryption protocols, such as TLS (Transport Layer
Security), and supports various encryption algorithms such as AES (Advanced Encryp-
tion Standard). One of the main features of OpenVPN is its flexibility, which allows it to
be configured in client-server or peer-to-peer mode.

OpenVPN uses TCP or UDP protocols to transmit data and offers the advantage of
being able to easily pass through firewalls and NATs thanks to the use of port 443 (the
same used by HTTPS traffic). However, this versatility can lead to more complexity in
configuration compared to other protocols.

An example of configuration in OpenWrt is to create a .ovpn file containing creden-
tials and connection parameters and upload it via the luci-app-openvpn package, which
provides a graphical interface for easy management.

WireGuard

WireGuard is a modern VPN designed to be faster, simpler and more secure than
traditional solutions. Unlike OpenVPN, WireGuard is implemented directly in the Linux
kernel, ensuring superior performance and reduced latency. Its configuration is extremely

99

Technical Aspects of OpenWrt

simple: it uses public and private key pairs to authenticate devices, eliminating the need
for a complex certificate infrastructure.

WireGuard relies on modern cryptographic algorithms, such as Curve25519 for au-
thentication and ChaCha20 for encryption, which ensure a high level of security. The
lightweight nature of the protocol makes it ideal for embedded devices such as OpenWrt
routers, where hardware resources may be limited.

In OpenWrt, WireGuard can be configured using the luci-app-wireguard package.
An example configuration includes defining public and private keys and setting up VPN
interfaces in the /etc/config/network file.

IPsec

IPsec (Internet Protocol Security) is a protocol widely used in enterprise environments to
create secure connections between remote networks. Unlike OpenVPN and WireGuard,
IPsec operates at the network layer (Layer 3 of the OSI model), making it suitable for
configurations such as site-to-site (gateway to gateway) VPNs.

IPsec uses two main protocols to provide security:

• AH (Authentication Header): Ensures the integrity and authenticity of IP pack-
ets.

• ESP (Encapsulating Security Payload): Provides encryption, authentication,
and protection against replay attacks.

IPsec is very robust and scalable, but its configuration can be complex due to the many
options available, such as cipher type and authentication methods. In OpenWrt, the
strongSwan package is commonly used to configure IPsec connections. This includes
defining tunnels, pre-shared keys (PSK), or certificates to authenticate connections.

13.3.5 Wireless Network Support
One of the distinguishing features of OpenWrt is its ability to manage wireless networks
in an advanced way, giving users unmatched flexibility in configuring and customizing
Wi-Fi. OpenWrt allows you to optimize wireless networks for different scenarios, ensuring
high performance, security and scalability.

Configuring Multiple SSIDs and VLANs

OpenWrt allows you to configure multiple SSIDs (Service Set Identifier), which are distinct
Wi-Fi network names, on a single radio interface. This feature is particularly useful in
contexts where you need to segment wireless traffic, such as:

• Create separate networks for guests, employees and IoT devices.

• Implement different access policies, ensuring greater security.

100

Technical Aspects of OpenWrt

• Assign each SSID to a VLAN (Virtual Local Area Network), isolating devices on one
network from each other. For example, a guest SSID can be assigned to a VLAN
that blocks access to devices on the internal network.

Multiple SSIDs are configured using the /etc/config/wireless file, where each SSID can
be associated with a separate logical interface. An example configuration is as follows:

config wifi-iface
option device ’radio0’
option network ’guest’
option mode ’ap’
option ssid ’GuestWiFi’
option encryption ’psk2’
option key ’guestpassword’

In this example, an SSID named GuestWiFi is created on the primary radio (radio0) and
assigned to the VLAN guest.

Wireless Mesh Networks

OpenWrt supports wireless mesh networking, an ideal technology for extending Wi-Fi
coverage in large spaces or areas that are difficult to wire. Mesh networks allow Wi-
Fi nodes to communicate with each other dynamically, creating a scalable and resilient
infrastructure.

With support for the 802.11s standard, OpenWrt allows you to configure mesh net-
works natively. In a mesh configuration, each node acts both as an access point for wireless
clients and as a forwarding point for traffic to other nodes in the network. This approach
improves coverage and reduces bottlenecks, as traffic can be routed through alternate
paths in the event of failures or congestion.

Advanced Protocol Support: 802.11r and 802.11s

OpenWrt provides support for advanced wireless protocols that improve the speed, mo-
bility, and scalability of networks:

• 802.11r: This protocol, known as Fast Roaming, allows wireless clients to quickly
switch between multiple access points within the same network, minimizing down-
time. It is especially useful in environments such as offices or campuses, where users
frequently move between areas covered by different access points.

• 802.11s: This standard defines a framework for creating wireless mesh networks,
allowing multiple access points to dynamically collaborate to provide continuous Wi-
Fi coverage. Mesh networks based on 802.11s are self-configuring and self-healing,
automatically adapting to changes in network topology.

101

Technical Aspects of OpenWrt

Wireless Client Isolation

To ensure the security of shared Wi-Fi networks, OpenWrt includes features to isolate
wireless clients. Isolation prevents devices connected to the same Wi-Fi network from
communicating directly with each other, reducing the risk of attacks such as ARP spoofing
or packet sniffing. This option is especially useful in public or guest networks.

Client isolation can be enabled for a given SSID by adding the following option to the
/etc/config/wireless file:

option isolate ’1’

With this configuration, devices connected to the same SSID will not be able to exchange
packets, improving the security of the network.

13.3.6 Other Advanced Features
In addition to the features already described, OpenWrt includes a number of advanced
tools and options that further expand its capabilities. These capabilities make it suitable
for complex scenarios, where flexibility, scalability, and fine-grained control are essential.

Lightweight Containerization

OpenWrt supports containerization technologies such as LXC (Linux Containers) and, on
more powerful hardware, Docker. Containerization allows you to run isolated applications
in lightweight virtual environments, sharing the operating system kernel but maintaining
separate user spaces.

LXC is particularly suitable for embedded devices, as it is designed to be lightweight
and requires minimal resources. For example, you can create a LXC container to run a
specific application, such as a DNS server or web server, without interfering with the main
system.

Docker, on the other hand, offers greater flexibility to run modular and scalable ap-
plications, making it ideal for more powerful routers or OpenWrt-based devices used in
enterprise environments. Containerization allows you to separate services, improve secu-
rity, and simplify application management.

Captive Portal

A captive portal is a feature often used in public or commercial networks, such as hotels,
airports, or coffee shops, to authenticate users before allowing access to the Internet.
With OpenWrt, you can implement captive portals using packages such as nodogsplash,
CoovaChilli, or wifidog.

A captive portal redirects users to an authentication page before granting access to
the network, as shown in image 13.3. This page can be used to request credentials,
collect usage policy acceptances, or integrate marketing features, such as data collection
or serving advertisements.

Setting up a captive portal in OpenWrt involves:

102

Technical Aspects of OpenWrt

• Creating a dedicated network for guest users, often isolated via VLANs.

• Installing and configuring the captive portal software.

• Integration with an authentication backend, such as a database or RADIUS server.

This feature is particularly useful in scenarios where you need to balance network access
with security and control requirements.

Figure 13.3. General schema of a captive portal.

Dynamic DNS

OpenWrt simplifies the setup of dynamic DNS services, allowing users to associate a static
domain name with an IP address that can change over time. This is particularly useful for
home networks or small businesses with Internet connections with dynamic IP addresses.

The OpenWrt ddns-scripts package allows you to set up a dynamic DNS service with
providers such as DynDNS, No-IP, or others. A typical setup allows you to automatically
update the public IP address associated with the domain whenever it changes, ensuring
constant remote access.

An example ddns-scripts configuration might include:

config service ’myddns’
option service_name ’no-ip.com’
option domain ’mynetwork.ddns.net’
option username ’myusername’

103

Technical Aspects of OpenWrt

option password ’mypassword’
option interface ’wan’

This configuration ensures that the Dynamic DNS service is always up to date, allowing
remote access to devices or services on the internal network.

IPv6 Support

OpenWrt offers full support for IPv6, the network protocol designed to replace IPv4,
due to its much larger address space. IPv6 introduces advanced features such as address
autoconfiguration, hierarchical routing, and native support for IPsec security.

In OpenWrt, IPv6 can be configured for both WAN and LAN connections. Key features
include:

• Stateless Autoconfiguration (SLAAC): Allows devices to automatically gen-
erate an IPv6 address based on the router’s published prefix, simplifying network
management.

• DHCPv6 Support: Allows dynamic configuration of IPv6 addresses and network
options for devices in the LAN.

• Advanced Routing: OpenWrt supports IPv6 routing protocols such as OSPFv3
and BGP.

104

Part V

Integrating Suricata with
OpenWrt: Compilation and

Testing

105

Chapter 14

Porting Suricata to OpenWrt

Integrating Suricata with OpenWrt represents a significant technical challenge, due to the
hardware limitations of embedded devices and the differences between a traditional Linux
system and the OpenWrt environment. While Suricata is designed to run on complete sys-
tems with abundant CPU and memory resources, OpenWrt requires careful optimization
to ensure efficient operation without compromising performance.

Initial efforts focused on determining whether Suricata could actually be ported to
OpenWrt, initially using a virtual environment (VM). After successfully demonstrating
the feasibility of this approach in the VM, it was decided to move forward with porting
OpenWrt, along with Suricata, to real hardware.

This chapter describes the process of porting Suricata, both original and the optimized
version, to OpenWrt 25.05.5, addressing dependency management, cross-compilation con-
figuration, and adapting the code to be compatible with the OpenWrt environment. It will
analyze the attempts made, the issues encountered, and the solutions adopted to ensure
a stable and efficient integration.

14.1 The first attempt: compiling on OpenWrt

The first approach to run Suricata on OpenWrt was to compile it directly on the OpenWrt
system already installed on a virtual machine in Virtual Box (link of the guide to do it
on Virtual box). The goal was to see if a native installation could be achieved without
having to resort to cross-compilation.

14.1.1 Initial setup and configuration

To start the build, we had to install a development environment on OpenWrt, including
tools like gcc, make and basic dependencies. However, OpenWrt is designed to be a
minimal system, with a small set of libraries and development tools. To fill these gaps,
we tried to install the necessary packages via the opkg package manager.

106

Porting Suricata to OpenWrt

14.1.2 Issues encountered
Despite adding the build tools, the build process was halted due to the lack of several key li-
braries required by Suricata, including libpcre2-dev, libyaml-dev and libjansson-dev.

Another challenge was the limited computational power of the OpenWrt device used
for the compilation. Suricata is a complex software that requires an advanced compilation
environment, and the limited processing power of the device would have made the process
extremely slow and inefficient.

14.2 The Suricata package for OpenWrt
To integrate Suricata into OpenWrt, it was necessary to create a dedicated package with
a specific Makefile, which defines the build process, dependencies and necessary config-
urations. This section analyzes the fundamental parts of the Makefile, explaining their
role in the build process.

14.2.1 Package definition and code source
The first part of the Makefile establishes the package name, version and repository from
which to get the source code:

PKG_NAME:=suricata
PKG_VERSION:=8.0.0
PKG_RELEASE:=1

PKG_SOURCE_PROTO:=git
PKG_SOURCE_URL:=https://github.com/guca11/SuricataIDS-onlyCode.git
PKG_MIRROR_HASH:=skip

14.2.2 Dependency Management and Build Configuration
Suricata requires several libraries to run properly. These dependencies are defined in the
Makefile with:

PKG_BUILD_DEPENDS:=rust/host python3/host
DEPENDS:= +libexpat +jansson +libbpf ...

• PKG_BUILD_DEPENDS specifies the dependencies needed for the build, in-
cluding support for Rust and Python.

• DEPENDS specifies the packages required for the run, such as libpcap for network
packet capture, libyaml for configuration file management, and libnss for security
management.

In addition, the Makefile includes several build options including:

107

Porting Suricata to OpenWrt

CONFIGURE_ARGS += --target=$(RUSTC_TARGET_ARCH) \
--host=$(RUSTC_TARGET_ARCH) \
--build=$(RUSTC_HOST_ARCH) \

• CONFIGURE_ARGS contains options for the configuration process, including:

– –target, –host, –build: Defines the build and target architectures.
– –disable-sctp, –disable-gre, –disable-nfs, ...: Disables unnecessary

protocols to reduce memory usage and improve performance.

14.2.3 Build and Installation Process
The Makefile defines the compilation and installation process through the following rules:

Configuration Phase

define Build/Configure
(\
$(CONFIGURE_VARS) cargo install --force --root $(STAGING_DIR)/host cbindgen ; \
cd $(PKG_BUILD_DIR) && $(CONFIGURE_VARS) ./scripts/bundle.sh ; \
cd $(PKG_BUILD_DIR) && $(CONFIGURE_VARS) ./autogen.sh &&
$(CONFIGURE_VARS) ./configure $(CONFIGURE_ARGS) ; \
)
$(call Build/Configure/Default)
endef

These commands run:

• cargo install to install cbindgen, a Rust tool for generating C bindings.

• ./scripts/bundle.sh to prepare the source code for compilation.

• ./autogen.sh and ./configure to configure the build with the specified options.

Installation Phase

define Package/suricata/install
$(INSTALL_DIR) $(1)/usr/bin
$(INSTALL_BIN) $(PKG_INSTALL_DIR)/usr/bin/suricata $(1)/usr/bin/suricata
$(INSTALL_BIN) $(PKG_INSTALL_DIR)/usr/bin/suricatactl $(1)/usr/bin/suricatactl
$(INSTALL_BIN) $(PKG_INSTALL_DIR)/usr/bin/suricatasc $(1)/usr/bin/suricatasc
$(INSTALL_BIN) $(PKG_INSTALL_DIR)/usr/bin/suricata-update $(1)/usr/bin/suricata-update

$(INSTALL_DIR) $(1)/usr/lib
$(CP) -r $(PKG_INSTALL_DIR)/usr/lib/* $(1)/usr/lib/

108

Porting Suricata to OpenWrt

This step:

• Copy Suricata binaries and its management tools (suricatactl, suricata-update)
to the /usr/bin directory.

• Install the necessary libraries to the /usr/lib directory.

• Copy the essential configuration files to /etc/suricata.

14.3 The second attempt: cross-compilation with the
SDK

After realizing that direct compilation on OpenWrt was impractical, a more structured
approach was chosen: cross-compilation using the official OpenWrt SDK (Software De-
velopment Kit). This method would allow Suricata to be compiled on a more powerful
machine, generating a package compatible with OpenWrt.

14.3.1 SDK setup and compilation environment
To start the cross-compilation process, the OpenWrt SDK for the desired target architec-
ture was downloaded. The development environment was configured on a virtual machine
with Ubuntu 24.10, installing the necessary dependencies and the SDK.

Subsequently, the Suricata package was added to the packages to be compiled.

14.3.2 C library and toolchain issues
One of the main obstacles that arose during the compilation was the fact that the OpenWrt
SDK comes pre-configured with a limited set of libraries and development tools, excluding
some compatibility extensions. When trying to compile with the SDK, several errors
occurred due to missing functions in musl[18], including:

• fopen64 – Used for handling large files, not defined in musl.

• fstat64 – Function to get information about files, not supported in musl with the
same interface as glibc.

14.4 Third attempt: Rebuilding OpenWrt from scratch
After encountering compatibility issues between Suricata and the OpenWrt SDK toolchain,
it was decided to completely rebuild OpenWrt from scratch using the Buildroot system,
with a custom configuration that included all the dependencies required by Suricata.

109

Porting Suricata to OpenWrt

14.4.1 Build System Setup
To start the OpenWrt rebuild, the official source code of the project was downloaded and
then the environment was configured with the command:

make menuconfig

Inside the configuration interface, the following options were selected to ensure compati-
bility with Suricata and optimize the system for use on a virtual machine:

• BPF Toolchain → Build LLVM toolchain for eBPF
Enables support for eBPF (Extended Berkeley Packet Filter), useful for advanced
traffic analysis and to improve network performance.

• Libraries → libintl-full
Includes the full version of the libintl library, which is required for advanced lo-
calization support and string handling in programs.

• Compile with Full language support
Ensures that the system supports multiple programming languages, which is neces-
sary since Suricata is based on multiple languages.

• Kernel build options → Enable XDP sockets support
Enables support for XDP (eXpress Data Path) sockets, a framework optimized for
high-performance network packet handling.

• Target Images → GZip images
Disables GZip compression of firmware images, reducing overhead when starting the
VM because the image doesn’t have to be decompressed.

• Target Images → Build VirtualBox image files
Generates a VirtualBox compatible image.

Once the configuration was complete, we started the build with:

make -j$(nproc)

14.4.2 Building and Image Generation
The build took several hours, as Buildroot had to download and build all the packages
from scratch, including the kernel, libraries, and system tools. At the end of the process,
we generated a custom firmware image that was used to create a virtual machine.

14.4.3 Verifying Suricata Integration
After booting the VM, we verified that Suricata was up and running by running the
executable with:

suricata

The output confirmed that the Suricata build was correctly compiled and ready to run in
an OpenWrt environment.

110

Porting Suricata to OpenWrt

14.5 Implementing OpenWrt on a Raspberry Pi 3
After successfully porting Suricata to OpenWrt for the x86_64 architecture, the next goal
was to adapt the solution to run on a real embedded device, specifically the Raspberry
Pi 3 Model B. This device, based on the ARM aarch64 architecture, offers a great test
platform to evaluate the performance of Suricata in resource-constrained environments.

14.5.1 Raspberry Pi 3 Model B Hardware Specifications
The Raspberry Pi 3 Model B is an embedded system with the following features:

• Processor: Broadcom BCM2837 ARM Cortex-A53 quad-core @ 1.2 GHz.

• RAM: 1 GB LPDDR2 SDRAM.

• Storage: MicroSD for OS and data.

• Networking: 10/100 Mbps Ethernet port, 2.4 GHz Wi-Fi 802.11 b/g/n.

The 64-bit Cortex-A53 processor is an improvement over previous models, but the lim-
ited amount of RAM (1GB) and 100 Mbps Ethernet limit running advanced network
monitoring applications like Suricata. Also, using the microSD card as the main storage
can create bottlenecks in logging operations.

14.5.2 Build environment setup

Figure 14.1. The Raspberry Pi 3

To generate an OpenWrt image compatible with
Raspberry Pi 3, the Buildroot system was used
again.

The steps to follow are the same as previously
seen with the difference of the following options in
the configuration menu:

• Target System → Broadcom BCM27xx (to
support the Raspberry Pi family).

• Subtarget → BCM2710 (specific for Raspberry
Pi 3).

14.5.3 Building and image genera-
tion
Once the system was configured, the build was started with:

make -j$(nproc) V=sc

111

Porting Suricata to OpenWrt

After several hours, once the firmware image was generated, it was necessary to write it
to a microSD card to boot the device. For this operation, BalenaEtcher was used, a
simple and effective graphical software for writing images to storage media.

BalenaEtcher offers several advantages, including:

• Intuitive graphical interface, which reduces the risk of errors in selecting the
target device.

• Automatic integrity verification of the written image, to avoid boot problems
due to errors in copying.

After writing the image, the SD card was inserted into the Raspberry Pi 3 and the device
successfully booted, loading OpenWrt.

14.5.4 suricata-lua-sys library and cross-compilation issue

One of the main bugs encountered when porting Suricata to Raspberry Pi 3 was related
to the suricata-lua-sys library, a component that enables integration between Suricata
and the Lua scripting language. This library is used to run Lua scripts directly within
Suricata, allowing users to customize threat detection and log management in an advanced
way. However, its configuration during the build process presented some issues, mainly
related to toolchain management.

The original Makefile for suricata-lua-sys used the following commands to build:

CC= gcc -std=gnu99
AR= ar rcu
RANLIB= ranlib

This setup was problematic for cross-compiling, as it referenced the host machine’s
toolchains instead of those intended for the target architecture. As a result, the build
process generated an executable that was only compatible with the architecture of the
machine used for compilation (e.g., x86_64) and not with that of the Raspberry Pi 3 (ARM
aarch64).

To fix this, it was necessary to modify the Makefile to explicitly use the target
toolchain’s compiler and archiver:

CC?= gcc
AR?= ar rcu
RANLIB?= ranlib

This way, if the CC, AR and RANLIB variables are already defined in the build envi-
ronment, the assigned values will be used, ensuring that they are specific for the build
target.

112

Porting Suricata to OpenWrt

14.6 Auto-configuration of Suricata based on network
traffic

One of the main problems of an IDS like Suricata is to find a balance between efficiency
and accuracy. Analyzing all supported protocols can provide more complete monitoring,
but at the cost of increased resource usage. To solve this problem, a dynamic auto-
configuration system was developed, capable of adapting Suricata’s behavior based on
the protocols actually detected in network traffic.

The idea behind this solution is simple: start Suricata in a monitoring phase, collect
the generated logs and extract information about the protocols used. If a protocol is
never detected or rarely used, its analysis is superfluous and can be disabled to reduce
the computational load. Conversely, if a protocol is present with a significant frequency,
it is kept active. Once the relevant protocols are determined, the system automatically
changes the configuration and recompiles Suricata to reflect the new settings.

14.6.1 Autoconfiguration script implementation
Suricata autoconfiguration is done using this Bash script that automates the process of
detecting active protocols on the network and updating the software configuration based
on the data collected.

Suricata scouting the network

The script starts Suricata running on the OpenWrt router, for a certain period of time.
During this time, Suricata analyzes the network traffic and logs the detected events to the
eve.json log file.

After a configurable time interval (TIME), Suricata is stopped and the log file is trans-
ferred to the local system for analysis.

Log analysis and configuration generation

The eve.json log file is analyzed by a Python script that counts the frequency of the
observed protocols. If a protocol exceeds a predefined threshold (THRESHOLD), it is enabled
in the Suricata configuration; otherwise, it is disabled.

After that, this Python script produces a set of flags in the config_flags.txt file,
each corresponding to a protocol to enable or disable. For example, if the SSH protocol
has been detected frequently, the resulting flag will be:

--enable-communication

Conversely, if a protocol such as DNP3 is rarely present in traffic, it will generate:

--disable-dnp3

113

https://github.com/guca11/SuricataIDS/blob/main/suricata-configure.sh
https://github.com/guca11/SuricataIDS/blob/main/suricata-log-parser.py

Porting Suricata to OpenWrt

Makefile editing and recompilation

Once the flags are generated, the script updates the Makefile of the Suricata OpenWrt
package, inserting the new configuration options in the CONFIGURE_ARGS section. After-
wards, the Suricata package is recompiled with the new parameters and finally transferred
to the remote device and installed.

14.6.2 Log parsing and settings generation
The parsing of the eve.json log file is handled by a script written in Python, which scrolls
through the content line by line and identifies the protocols present. In particular, the
event_type field of each event indicates the corresponding protocol. The script maintains
a counter for each protocol and, at the end of the processing, compares these values with
the defined threshold. For example, if HTTP traffic was detected many times, the script
generates the –-enable-http flag, while if the IKE protocol was absent, or detected less
times than the threshold, the –-disable-ike flag is generated.

A special case concerns protocols that do not have a direct entry in the event_type
field, but can be detected within other events. For example, the script checks for the
DCERPC protocol by analyzing the content of the SMB logs, since DCERPC can be
transported via SMB. If detected, the script automatically enables DCERPC support.

The result of the analysis is saved to a temporary file, from which the Bash script reads
the generated flags and adds them to the OpenWrt Makefile. The entire process is fully
automated, avoiding the need for manual configuration.

114

Chapter 15

OpenWrt Performance with
Suricata

Analyzing Suricata performance on OpenWrt is essential to evaluate the impact of the
changes introduced and understand the real capabilities of the system in a resource-
constrained environment. The goal of these tests is to measure CPU and memory con-
sumption in realistic traffic scenarios, analyzing different Suricata configurations and their
behavior under stress.

The tests were run using Kali Linux 2024.4 as a traffic generation machine and an
external network interface, the AWUS1900 by Alfa Network, to overcome the limitations
of the integrated network card. The choice of an external USB network card is motivated
by the fact that many network interfaces integrated in the test devices have limitations
in terms of packet management, especially in high-traffic scenarios or in the presence of
DoS attacks.

These tests were performed using Suricata in three different configurations and
they were run on both Wired Ethernet and Wireless connections to evaluate the
performance differences between the two connection modes.

The obtained results allow to better understand the trade-off between detection ac-
curacy and resource consumption, helping to determine the optimal configuration for
embedded scenarios.

15.1 Resource Monitoring
To evaluate the resource consumption of Suricata on OpenWrt, we used the top command,
a process monitoring utility that provides detailed information about CPU, memory, and
running processes.

This command allows you to monitor system activity in real time, displaying running
processes and their impact on hardware resources. It was used during testing to observe
the behavior of Suricata in different traffic scenarios, checking the variations in CPU and
RAM consumption.

An example of the output of the top command on OpenWrt is as follows:

115

OpenWrt Performance with Suricata

Mem: 50456K used, 32156K free, 1120K buffers
CPU: 43.0% usr 5.0% sys 0.0% nic 50.0% idle
PID PPID USER STAT VSZ %CPU COMMAND
1354 1123 root R 243m 42.3% suricata

From the output you can get information like:

• Memory Usage: The Mem section shows the total amount of used and available
memory.

• CPU Usage: The CPU line shows the percentage of CPU usage split between user
(usr), system (sys), and idle (idle).

• Active Processes: Running processes with details about their virtual memory
(VSZ) and CPU load (%CPU).

Furthermore, to evaluate the RAM consumption of Suricata, the command was used

cat /proc/$(pgrep suricata)/status | grep VmRSS

This command allows you to read the file /proc/<PID>/status, containing detailed in-
formation about the process, and then extract only the line related to the "Resident Set
Size" (VmRSS), i.e. the amount of physical memory currently used by the process.

15.2 DoS Attacks
A Denial of Service (DoS) attack is a type of cyber attack that aims to make a system
or network unusable by overloading it with requests or exhausting its available resources.
This type of attack was simulated to evaluate Suricata’s capabilities to detect malicious
activity and the impact on the OpenWrt device’s resources.

To simulate a DoS attack, the tcpreplay tool was used:

tcpreplay -i wlan1 --mbps=100 log.pcap

The tcpreplay command is used to resend a network packet capture file (.pcap) through
a specified network interface:

• -i wlan1: Specifies the network interface to transmit packets through.

• –mbps=100: Sets the maximum packet transmission rate.

• log.pcap: Specifies the log file to replay.

116

OpenWrt Performance with Suricata

15.2.1 SYN Flood Attacks
A SYN Flood attack is a type of Denial of Service (DoS) attack that exploits the
TCP handshake process to exhaust the resources of the target system. The normal TCP
handshake process consists of three phases:

1. The client sends a SYN packet to the server to initiate the connection.

2. The server responds with a SYN-ACK packet.

3. The client responds with a ACK packet, completing the handshake.

In SYN Flood attacks, the third step never completes, leaving the server with numer-
ous pending connections, exhausting available resources and preventing new legitimate
connections.

To simulate this type of attack, the hping3 tool was used with the command:

hping3 --flood -S -p 80 192.168.1.1

Where:

• –flood: Send packets as fast as possible.

• -S: Send packets with the SYN flag set.

• -p 80: Attacks the server’s port 80 (HTTP).

• 192.168.1.1: Attack target (OpenWrt router).

15.3 System Performance
System performance tests were conducted using the log file previously used to evaluate
Suricata performance modified with the tcprewrite command to change the destination
IP. Tests were performed on two types of connections:

• Ethernet Connection, to measure performance in a wired environment with lower
latency and higher stability.

• Wireless Connection, to evaluate how bandwidth limitations and increased la-
tency affect System’s resource consumption.

To evaluate the performance of the various configurations during the tests, the data trans-
mission speed in Mbps and the number of packets per second (in Kpps) of the logs sent
with tcpreplay were measured both via Ethernet and Wireless connection. The table
15.1 reports the value obtained for the different types of traffic.

117

OpenWrt Performance with Suricata

Traffic Type Ethernet Wireless
Speed Packets Speed Packets

Mix of protocols 94 26 29 8
DNS 85 92 11 12
UDP 91 45 12 6

HTTP 98 11 48 5

Table 15.1. Transmission speed in Mbps and packet rate in Kpps for Ethernet
and Wireless connections.

For each Suricata configuration, measurements of the system’s idle percentage, Suricata’s
RAM and CPU consumption were collected.

15.3.1 Snort Performance

Since Snort is an IDS already available on OpenWrt, it is useful to compare its performance
with Suricata to evaluate its efficiency in environments with limited resources. Snort, while
idle, consumes about 175.5 MB of RAM.

Traffic type Ethernet Wireless
% Idle RAM % CPU % Idle RAM % CPU

Mix of protocols 57.7% 258.2 MB 26.8% 64% 221.9 MB 15%
DNS 58% 183.6 MB 28.9% 50% 183.6 MB 21.8%
UDP 54.1% 194.7 MB 27.8% 66.3% 191.9 MB 13.5%

HTTP 73.7% 217.9 MB 17.4% 73% 215.5 MB 9.9%
SYN Flood Attack 41.8% 500 MB 26.7% 62.8% 500 MB 18%

Table 15.2. System performance with Snort

15.3.2 Suricata Full Configuration

This configuration enables all protocols supported by Suricata, ensuring a complete anal-
ysis of network traffic, and it consumes, in idle, approximately 84.9 MB.

The following table shows the resource consumption under heavy load for different
types of traffic:

118

OpenWrt Performance with Suricata

Traffic type Ethernet Wireless
% Idle RAM % CPU % Idle RAM % CPU

Mix of protocols 61.9% 102 MB 21.2% 75.9% 92.2 MB 6.7%
DNS 15.9% 87.4 MB 71.4% 46% 90.7 MB 27.3%
UDP 48.4% 94 MB 30.1% 74.5% 92.4 MB 5.5%

HTTP 81.4% 91.5 MB 11.2% 81.9% 91.1 MB 5.4%
SYN Flood Attack 29.2% 129.9 MB 41.8% 63.4% 129.9 MB 16.1%

Table 15.3. System performance in Full configuration

15.3.3 Network flag only configuration
In this configuration, Suricata only scans the main network protocols (IPv4, TCP, UDP,
ICMPv4) and has an idle memory consumption of about 80.6 MB.

Traffic type Ethernet Wireless
% Idle RAM % CPU % Idle RAM % CPU

Mix of protocols 65% 95.1 MB 20.2% 73.8% 88.3 MB 6.9%
DNS 16% 86.9 MB 71.6% 47.6% 87.1 MB 26%
UDP 53% 88 MB 25.5% 73.2% 87.7 MB 5.7%

HTTP 80.4% 87.5 MB 10.3% 79.2% 87.5 MB 4.3%
SYN Flood Attack 29.7% 126.9 MB 40.5 % 63.7% 126.9 MB 15.7%

Table 15.4. System performance with Suricata with Network flag only

15.3.4 Configuration without any optional protocols
This configuration excludes all optional protocols, leaving only the minimum modules for
traffic analysis active. Suricata’s idle memory consumption is about 79.3 MB.

Traffic type Ethernet Wireless
% Idle RAM % CPU % Idle RAM % CPU

Mix of protocols 69.6% 92.7 MB 18.7% 71.3% 86.5 MB 7.3%
DNS 45.9% 82.4 MB 38.2% 65.1% 82.4 MB 7%
UDP 59% 83.9 MB 20.5% 74.5% 83.6 MB 5.1%

HTTP 81.3% 85.9 MB 10.4% 81% 85.5 MB 4.1%
SYN Flood Attack 31.8 % 124 MB 39.2% 65.8% 124 MB 14.3%

Table 15.5. System performance with Suricata without optional protocols

119

OpenWrt Performance with Suricata

15.3.5 Analysis of results
Performance analysis of Snort and different Suricata configurations revealed significant
differences in CPU usage, RAM usage, and system responsiveness.

In terms of resource consumption, Snort was more demanding than Suricata, with a
higher average RAM consumption. However, Snort showed more stability in CPU usage
in heavy traffic scenarios.

Comparing different Suricata configurations, it is clear that protocol selection impacts
performance. The Full Suricata configuration, with full support for all protocols, showed
relatively low RAM consumption (around 102 MB in Ethernet and 92 MB in Wireless),
but with significantly higher CPU usage, especially for DNS traffic, where CPU peaks
exceeded 70

The network-flag-only Suricata configuration reduced CPU consumption without
significantly sacrificing detection capability. Memory consumption was slightly reduced
compared to the full version, with a smaller impact on the system. However, the CPU
gain was marginal compared to the minimal configuration.

In the Minimal Suricata version, which excluded all optional protocols, the RAM
consumption was the lowest (about 86 MB in wireless mode) and the CPU percentage used
was the lowest in almost all scenarios. This shows that customizing Suricata configurations
allows for an efficient IDS even on devices with limited resources, adapting to the specific
needs of the network.

An interesting aspect is the impact of HTTP traffic, which in all configurations recorded
a lower CPU consumption than the other types of traffic. This can be attributed to the
numbers of packets send in the same second. On the contrary, DNS and UDP traffic
imposed a higher load, probably due to the high number of smaller packets, compared to
HTTP, that need to be processed individually.

Finally, the analysis of SYN Flood Attacks showed that these attacks generate
a significant increase in resource consumption, with an increase in CPU usage and a
decrease in the percentage of system idle. This is to be expected, since a SYN Flood
attack generates a high number of incomplete connections, increasing the work required
to monitor them.

Overall, the tests show that Suricata’s modularity offers a significant advantage, allow-
ing to balance security and performance based on the specific requirements of the system
and network.

120

Bibliography

[1] Asmaa Shaker Ashoor and Sharad Gore. Importance of intrusion detection system
(ids). International Journal of Scientific and Engineering Research, 2(1):1–4, 2011.

[2] Akram Abd Eldjalil Boukebous, Mohamed Islem Fettache, Gueltoum Bendiab, and
Stavros Shiaeles. A comparative analysis of snort 3 and suricata. In 2023 IEEE IAS
Global Conference on Emerging Technologies (GlobConET), pages 1–6. IEEE, 2023.

[3] Waleed Bulajoul, Anne James, and Mandeep Pannu. Network intrusion detection
systems in high-speed traffic in computer networks. In 2013 IEEE 10th International
Conference on e-Business Engineering, pages 168–175, 2013. doi: 10.1109/ICEBE.
2013.26.

[4] Jeorgithon Damasceno, Jamilson Dantas, and Jean Araujo. Network edge router
performance evaluation: An openwrt-based approach. In 2022 17th Iberian Con-
ference on Information Systems and Technologies (CISTI), pages 1–6, 2022. doi:
10.23919/CISTI54924.2022.9820027.

[5] David Day and Benjamin Burns. A performance analysis of snort and suricata net-
work intrusion detection and prevention engines. In Fifth international conference on
digital society, Gosier, Guadeloupe, pages 187–192, 2011.

[6] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805–822, 1999. ISSN 1389-
1286. doi: https://doi.org/10.1016/S1389-1286(98)00017-6. URL https://www.
sciencedirect.com/science/article/pii/S1389128698000176.

[7] Suricata Docs. About dpdk, . URL https://docs.suricata.io/en/latest/
capture-hardware/dpdk.html#dpdk.

[8] Suricata Docs. About suricata rules, . URL https://docs.suricata.io/en/
latest/rules/index.html.

[9] Gustavo González-Granadillo, Susana González-Zarzosa, and Rodrigo Diaz. Security
information and event management (siem): Analysis, trends, and usage in critical
infrastructures. Sensors, 21(14), 2021. ISSN 1424-8220. doi: 10.3390/s21144759.
URL https://www.mdpi.com/1424-8220/21/14/4759.

121

https://www.sciencedirect.com/science/article/pii/S1389128698000176
https://www.sciencedirect.com/science/article/pii/S1389128698000176
https://docs.suricata.io/en/latest/capture-hardware/dpdk.html#dpdk
https://docs.suricata.io/en/latest/capture-hardware/dpdk.html#dpdk
https://docs.suricata.io/en/latest/rules/index.html
https://docs.suricata.io/en/latest/rules/index.html
https://www.mdpi.com/1424-8220/21/14/4759

BIBLIOGRAPHY

[10] The Tcpdump group. About libpcap. URL https://github.com/
the-tcpdump-group/libpcap/blob/master/README.md.

[11] Qinwen Hu, Se-Young Yu, and Muhammad Rizwan Asghar. Analysing per-
formance issues of open-source intrusion detection systems in high-speed net-
works. Journal of Information Security and Applications, 51:102426, 2020. ISSN
2214-2126. doi: https://doi.org/10.1016/j.jisa.2019.102426. URL https://www.
sciencedirect.com/science/article/pii/S2214212619306003.

[12] Kire Jakimoski and Nidhi V Singhai. Improvement of hardware firewall’s data
rates by optimizing suricata performances. In 2019 27th Telecommunications Fo-
rum (TELFOR), pages 1–4, 2019. doi: 10.1109/TELFOR48224.2019.8971192.

[13] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. In-
trusion detection system: A comprehensive review. Journal of Network and Computer
Applications, 36(1):16–24, 2013. ISSN 1084-8045. doi: https://doi.org/10.1016/j.
jnca.2012.09.004. URL https://www.sciencedirect.com/science/article/pii/
S1084804512001944.

[14] Praveen Likhar and Ravi Shankar Yadav. Impacts of replace venerable iptables and
embrace nftables in a new futuristic linux firewall framework. In 2021 5th Interna-
tional Conference on Computing Methodologies and Communication (ICCMC), pages
1735–1742, 2021. doi: 10.1109/ICCMC51019.2021.9418298.

[15] Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):
103–104, October 2014. ISSN 1094-3641. doi: 10.1145/2692956.2663188. URL https:
//doi.org/10.1145/2692956.2663188.

[16] Florian Menges, Tobias Latzo, Manfred Vielberth, Sabine Sobola, Henrich C. Pöhls,
Benjamin Taubmann, Johannes Köstler, Alexander Puchta, Felix Freiling, Hans P.
Reiser, and Günther Pernul. Towards gdpr-compliant data processing in modern
siem systems. Computers and Security, 103:102165, 2021. ISSN 0167-4048. doi:
https://doi.org/10.1016/j.cose.2020.102165. URL https://www.sciencedirect.
com/science/article/pii/S0167404820304387.

[17] Adabi Raihan Muhammad, Parman Sukarno, and Aulia Arif Wardana. Inte-
grated security information and event management (siem) with intrusion detec-
tion system (ids) for live analysis based on machine learning. Procedia Computer
Science, 217:1406–1415, 2023. ISSN 1877-0509. doi: https://doi.org/10.1016/j.
procs.2022.12.339. URL https://www.sciencedirect.com/science/article/pii/
S1877050922024243. 4th International Conference on Industry 4.0 and Smart Man-
ufacturing.

[18] Musl. musl removed some functions. URL https://git.musl-libc.org/cgit/
musl/commit/?id=246f1c811448f37a44b41cd8df8d0ef9736d95f4.

[19] OpenWrt. About openwrt features, . URL https://openwrt.org/docs/
guide-user/start.

122

https://github.com/the-tcpdump-group/libpcap/blob/master/README.md
https://github.com/the-tcpdump-group/libpcap/blob/master/README.md
https://www.sciencedirect.com/science/article/pii/S2214212619306003
https://www.sciencedirect.com/science/article/pii/S2214212619306003
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://www.sciencedirect.com/science/article/pii/S0167404820304387
https://www.sciencedirect.com/science/article/pii/S0167404820304387
https://www.sciencedirect.com/science/article/pii/S1877050922024243
https://www.sciencedirect.com/science/article/pii/S1877050922024243
https://git.musl-libc.org/cgit/musl/commit/?id=246f1c811448f37a44b41cd8df8d0ef9736d95f4
https://git.musl-libc.org/cgit/musl/commit/?id=246f1c811448f37a44b41cd8df8d0ef9736d95f4
https://openwrt.org/docs/guide-user/start
https://openwrt.org/docs/guide-user/start

BIBLIOGRAPHY

[20] OpenWrt. About openwrt minimum requirements, . URL https://openwrt.org/
supported_devices/864_warning.

[21] OpenWrt. About openwrt supported devices, . URL https://openwrt.org/toh/
start.

[22] Zeek Project. About zeek. URL https://docs.zeek.org/en/master/about.html.

[23] Syed Ali Raza Shah and Biju Issac. Performance comparison of intrusion detection
systems and application of machine learning to snort system. Future Generation Com-
puter Systems, 80:157–170, 2018. ISSN 0167-739X. doi: https://doi.org/10.1016/
j.future.2017.10.016. URL https://www.sciencedirect.com/science/article/
pii/S0167739X17323178.

[24] Ana Paula Vazão, Leonel Santos, Rogério Luís de C. Costa, and Carlos Rabadão.
Implementing and evaluating a gdpr-compliant open-source siem solution. Journal
of Information Security and Applications, 75:103509, 2023. ISSN 2214-2126. doi:
https://doi.org/10.1016/j.jisa.2023.103509. URL https://www.sciencedirect.
com/science/article/pii/S2214212623000935.

[25] Abdul Waleed, Abdul Fareed Jamali, and Ammar Masood. Which open-source ids?
snort, suricata or zeek. Computer Networks, 213:109116, 2022. ISSN 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2022.109116. URL https://www.sciencedirect.
com/science/article/pii/S1389128622002420.

123

https://openwrt.org/supported_devices/864_warning
https://openwrt.org/supported_devices/864_warning
https://openwrt.org/toh/start
https://openwrt.org/toh/start
https://docs.zeek.org/en/master/about.html
https://www.sciencedirect.com/science/article/pii/S0167739X17323178
https://www.sciencedirect.com/science/article/pii/S0167739X17323178
https://www.sciencedirect.com/science/article/pii/S2214212623000935
https://www.sciencedirect.com/science/article/pii/S2214212623000935
https://www.sciencedirect.com/science/article/pii/S1389128622002420
https://www.sciencedirect.com/science/article/pii/S1389128622002420

	List of Tables
	List of Figures
	I IDS: Concepts and Fundamentals
	Introduction to IDS
	Characteristics and purposes
	Role in Cybersecurity
	Continuous monitoring of activities
	Advanced threat detection
	Incident Response Support
	Integration into multi-layered defense strategies
	Adaptation to specific scenarios
	Limitations

	Typologies
	Based on the position in the network
	Based on the detection method
	Based on the analysis mode
	Based on architecture

	Architecture and operating principles of IDS
	Main components
	Data sources
	Analysis Engine
	Alert system

	Challenges and usage scenarios
	Challenges in Accuracy and Adaptation
	Performance: The trade-off between speed and accuracy
	False Positives and False Negatives: The Accuracy Problem
	The importance of continuous updating

	IDS in Companies, Cloud and IoT Networks
	IDS in Corporate Networks: Protection at Scale
	Cloud IDS: Visibility and Scalability Challenges
	IDS in IoT: Protecting a Heterogeneous Ecosystem
	Integration and synergies between different environments

	SIEM: Integration and Cooperation with IDS
	Requirements for Integration
	Benefits of IDS and SIEM Cooperation
	Challenges and Future Opportunities

	Emerging and currently used technologies
	Current Technologies
	Emerging Technologies
	Synergies between existing and emerging technologies

	II Suricata: Architecture, Applications, and Challenges
	An Introduction to Suricata
	What is Suricata and why is it important?
	Comparison with other NIDS
	Snort vs Suricata
	Zeek (Bro) vs Suricata
	Cisco Secure IPS vs Suricata
	Conclusions and use cases

	Suricata Architecture
	A multi-language architecture
	The C language
	The Rust language
	A balance between performance and security

	Analysis of the main components
	Packet Processing: traffic management and analysis
	Detection Engine: the heart of detection
	Logging and Reporting: Visibility into Network Events

	Suricata Rule Format and Possible Actions
	General Rule Structure
	Available Actions
	Some Advanced Options
	Advanced Example: SQL injection attempt

	Suricata's Two-Phase Architecture
	Setup Phase
	Runtime Phase

	Multi-Threading and Multi-Protocol Support in Suricata
	Multi-Threading Support
	Multi-Protocol Support
	Operational Benefits
	Limitations and Challenges

	Strengths and Weaknesses
	Hardware Performance
	Limitations in Standard Configurations
	Non-Optimized Performance
	Rules Configuration
	Interface and Configuration Complexity
	Generic Approach to Protocols

	III Suricata in Practice: Customization and Optimization
	Project objectives
	Target Scenarios
	Project Requirements

	Build Flow and Core Files
	The Suricata compilation process
	Running ./configure
	Running make
	Running make install

	configure.ac
	/src/Makefile.am
	Decoder (decode, decode-*)
	App-Layer (app-layer, app-layer-*):
	Detection (detect, detect-*)
	Output (output, output-lua, output-json-*)

	/rust/Makefile.am and lib.rs
	/rules/Makefile.am
	suricata.yaml.in
	File Structure
	Generating the suricata.yaml file

	Changes Made
	Adding Configuration Flags in configure.ac
	Changes to src/Makefile.am
	Updates to suricata.yaml.in
	Changes to the rules folder
	Changes to rust/Makefile.am
	Updates to the lib.rs File
	Changes in Suricata C Code (src)
	Problems Encountered
	HTTP and libhtp
	TCP and UDP

	Change Impacts
	Executable Size
	Memory Usage
	Impact on log files

	IV OpenWrt: A Lightweight Network Firmware
	Introduction to OpenWrt
	From Evaluating Options to Choosing OpenWrt
	What is OpenWrt and its main features
	Key Features of OpenWrt
	Differences from a full Linux system

	Advantages and Limitations of OpenWrt
	Efficiency
	Modularity
	Scalability
	Challenges related to hardware compatibility and configuration
	Hardware Compatibility
	Configuration Challenges
	Mitigating Challenges

	Technical Aspects of OpenWrt
	SDK and Toolchain
	What is the OpenWrt SDK
	OpenWrt Toolchain
	Differences between SDK and Toolchain
	Cross-Compilation Process
	Practical Example of Use

	OpenWrt Build System
	Build System Structure
	Build Process
	Advanced Configurations
	Practical Example: Creating a Firmware Image

	OpenWrt Key Features
	Advanced Routing
	Firewall and Security
	QoS Management and Traffic Shaping
	VPN Support
	Wireless Network Support
	Other Advanced Features

	V Integrating Suricata with OpenWrt: Compilation and Testing
	Porting Suricata to OpenWrt
	The first attempt: compiling on OpenWrt
	Initial setup and configuration
	Issues encountered

	The Suricata package for OpenWrt
	Package definition and code source
	Dependency Management and Build Configuration
	Build and Installation Process

	The second attempt: cross-compilation with the SDK
	SDK setup and compilation environment
	C library and toolchain issues

	Third attempt: Rebuilding OpenWrt from scratch
	Build System Setup
	Building and Image Generation
	Verifying Suricata Integration

	Implementing OpenWrt on a Raspberry Pi 3
	Raspberry Pi 3 Model B Hardware Specifications
	Build environment setup
	Building and image generation
	suricata-lua-sys library and cross-compilation issue

	Auto-configuration of Suricata based on network traffic
	Autoconfiguration script implementation
	Log parsing and settings generation

	OpenWrt Performance with Suricata
	Resource Monitoring
	DoS Attacks
	SYN Flood Attacks

	System Performance
	Snort Performance
	Suricata Full Configuration
	Network flag only configuration
	Configuration without any optional protocols
	Analysis of results

