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Abstract

Every year, many workplace accidents occur due to workers’ accumulated fatigue,
especially in jobs that require a high level of physical exertion, resulting in stressful
environments. This research fits into this contest, with the goal of monitoring
physical fatigue: laying the groundwork for developing a device able to determine
when a person is too fatigued to continue working safely.

To create a controlled environment that induces physical fatigue, each of the
30 volunteers underwent an incremental exercise protocol designed to induce cardio-
respiratory fatigue. The protocol was performed on a Garmin bicycle (Tacx Neo
Bike Plus) and monitored via a Polar Chest strap (Polar H10). At each stage of
the exercise, participants were asked to complete the Rate of Perceived Exertion
(RPE) scale to obtain a subjective evaluation of fatigue.

Regarding data analysis, an adaptive filter algorithm was applied to RR intervals to
mitigate artifacts using a threshold range of 280-1200 ms (corresponding to 210-50
bpm). Artifacts were identified and replaced using an adaptive estimation of the
mean and standard deviation, preserving physiological variability while minimizing
nonphysiological distortions.

Subsequently, Detrended Fluctuation Analysis (DFA), a nonlinear method for
analyzing fractal signals such as heart rate variability (HRV), was applied. Since
HRV exhibits rapid fluctuations due to autonomic nervous system activity and slow
oscillations influenced by circadian rhythms and other physiological adaptations,
traditional linear analysis methods are limited in distinguishing these components.
In contrast, DFA applies detrending at different scales, allowing HRV fluctuations
to be more effectively analyzed.

By applying DFA to measure short-term correlation persistence (scales from 4 to 16
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beats), the α1 value ranged approximately from 1 to 1.4 for all subjects at rest. As
the Rate of Perceived Exertion (RPE) increased, α1 gradually decreased, reaching
a minimum of around 0.5 at maximal fatigue, followed by a rapid increase during
the recovery phase.
The results show an inverse relationship between perceived fatigue (RPE) and α1:
as subjective fatigue perception increases, α1 decreases. The findings suggest that
DFA applied to HRV is a promising approach to detect acute physical fatigue.

This research represents a first step in the algorithm development of low-cost
wearable devices aimed at monitoring and predicting worker fatigue, with potential
applications for workplace safety.
Future studies could extend this methodology to other contexts, focusing particu-
larly on fatigue in different industrial sectors.
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Chapter 1

Introduction

1.1 Background and Context
Fatigue is a complex and multifactorial phenomenon that affects humans daily in
different areas, including sports and occupational health. Being able to identify
fatigue objectively and in real-time is crucial to optimize athletic training, prevent
injuries, and improve safety in high-risk work environments.

In the occupational field, fatigue is a growing area of research due to its detri-
mental effects on productivity, increased injury risks, and potential long-term
health consequences [1]. The fatigue onset in workplace varies significantly among
individuals, it is influenced by factors such as age, fitness level, psychological state,
and lifestyle conditions (e.g. stress, anxiety, sleep deprivation). These variables
fluctuate day-to-day and are difficult to quantify, making fatigue detection a hard
task.

Since fatigue is multifactorial there is no universal threshold for identifying fatigue,
current detection methods remain largely subjective.
A common approach leans on self-reported questionnaires, which have acquired
plausibility but they represent inherently subjective information.
Recent advances in wearable sensor technology have opened new opportunities
for real-time physiological monitoring, representing a data-driven and objective
approach to fatigue detection. The ability to constantly monitor individuals, in
a non-invasive and accurate way, unlocks new perspectives in fatigue detection
studies.
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Introduction

Among the various physiological markers, Heart Rate Variability (HRV) has
gained significant attention as a reliable indicator of autonomic nervous system
(ANS) balance, making it a promising tool for fatigue assessment. HRV analysis
provides insight into sympathetic and parasympathetic regulation, which are closely
related to fatigue accumulation during exercise and prolonged workload.
HRV can be analyzed through three main approaches:

• Time-domain analysis.

• Frequency-domain analysis.

• Nonlinear analysis.

Recently, nonlinear methods, which capture hidden internal patterns in HRV
dynamics, have earned popularity in fatigue field. These approaches quantify the
complexity of RR interval fluctuations.
In particular, Detrended Fluctuation Analysis (DFA) is a widely used nonlin-
ear technique that describes HRV fractal behavior across different time scales.
Unlike conventional HRV metrics, DFA provides a dynamic, complexity-based
analysis. Given its strong correlation with exercise intensity and metabolic stress,
DFA emerges as a promising candidate for real-time fatigue detection.

The integration of physiological data and subjective fatigue perception
represents a crucial step toward developing reliable fatigue detection models. Lever-
aging wearable devices and advanced data analysis, this study aims to provide
an objective, low-cost and noninvasive solution for fatigue monitoring
with direct application in sport, and a first step for potential future applications in
occupational health for high-risk occupations.

1.1.1 Motivation

The motivation for this study derives from a critical issue: fatigue is a major
contributing factor in workplace accidents, many of which result in severe injuries
or fatalities.
Every year, a significant number of occupational incidents are directly or indirectly
linked to fatigue-related disorders, such as reduced alertness and slower reaction
times. Despite the growing awareness of the impact of fatigue, it remains one of
the most underestimated risks in occupational safety management.
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1.2 Objective of the Study
The main goal of this research is to detect the onset of physical fatigue using an
incremental cycling test designed to push participants to exhaustion. By ana-
lyzing data collected during this incremental exercise, the study aims to establish a
correlation between objective physiological measures of heart rate variability (HRV)
and subjective perceptions of fatigue.
Specifically, this research focuses on the HRV analysis through Detrended Fluc-
tuation Analysis and its relationship with the Rating of Perceived Exertion
(RPE), which represents a subjective fatigue perception metric.
This study seeks to investigate how DFA correlates with RPE across different
exercise intensities and to validate DFA as a reliable metric for fatigue
detection. In this way, this research lays the foundations for future studies about
fatigue onset, with potential applications not only in sports performance but also
in high-risk occupations where fatigue management is critical.

3



Chapter 2

Theoretical Insights

This chapter provides the essential information necessary to fully understand
Detrended Fluctuation Analysis (DFA) in the context of fatigue detection. It
starts with the fundamental concepts of Heart Rate Variability (HRV), followed by
essential notions of fractal time series, and it concludes with a detailed description
of the DFA algorithm.

2.1 Heart Rate Variability

Heart rate variability measures the time variation between two consecutive
heartbeats. One of the most commonly used methods to obtain HRV is by mea-
suring the distance between consecutive R-wave peaks using an electrocardiogram
(ECG).

Figure 2.1: Consecutive R-R distances [2].
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2.1.1 HRV and the Autonomic Nervous System: Mecha-
nisms and Implications

The cardiac electrical impulse starts from the sinoatrial node (SA Node) which
contains the so-called "Pacemaker Cells". From a chemical point of view, what
happened is that, at rest, the concentration of the K+ (Potassium) inside the cell
is much greater than outside, so the membrane exhibits a higher permeability to
K+. So, this favors the outward flow of K+ making the inside part of the cell more
electronegative concerning the outside, resulting in a maintaining resting poten-
tial of approximately -65mV. When an electrical stimulus occurs, the membrane
depolarizes caused by the opening of ion channels.

Figure 2.2: Electrophysiology of SA Node Pacemaker Cells[3].

At some point, a potential threshold is reached and the sodium (Na+) and
calcium (Ca2+) channels open, resulting in a rapid flux of positive ions inside the
cell, the so-called depolarization part. In particular, thanks to the Ca2+ channel the
potential inside the cell gets 0mV . Then, once the potential reaches approximately
+50mV , Na+ channels close while the K+ channels open, allowing the outward

5
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flow of K+ ions. This process restores the membrane’s negative charge through
repolarization. Before returning to its resting potential, the cell undergoes a phase
called hyperpolarization, during which it becomes temporarily too negative.
In this state, even if a new electrical stimulus arrives, the cell cannot respond,
preventing premature activation.

The autonomic nervous system is composed of the sympathetic nervous system
(SNS) and the parasympathetic nervous system (PNS). The SNS primarily
relies on noradrenaline as its neurotransmitter, which affects calcium (Ca2+) and
potassium (K+) channels. Noradrenaline triggers the opening of L-type calcium
channels, allowing more calcium to enter the cell. This speeds up depolarization,
leading to an increased heart rate. At the same time, noradrenaline reduces
the opening of potassium channels and slows down repolarization. As a result, the
affected cells become more excitable and fire more frequently.
In contrast, the parasympathetic nervous system (PNS), which uses acetyl-
choline as its neurotransmitter, has the opposite effect on ion channels. It reduces
the opening of calcium (Ca2+) channels, slowing depolarization and thereby de-
creasing the heart rate. At the same time, it increases the opening of potassium
(K+) channels, leading to faster repolarization and further reducing heart rate.

In a few words, the sympathetic nervous system (SNS) increases the heart rate
while the parasympathetic nervous system (PNS) decreases the heart rate. For
these reasons, it is possible to affirm that the HRV represents an indirect
measure of the ANS. [3]
The autonomic nervous system (ANS) plays a key role in regulating human mood
and activity. The SNS is dominant during emergencies and physical exer-
tion, while the PNS is more active during rest.

Since heart rate variability (HRV) represents a reflection of ANS activity, it can be
used to analyze different physiological and psychological states.
Moreover, HRV is influenced by respiration, body position, and individual character-
istics such as age, gender, and physical condition [2]. Generally, younger individuals
have higher HRV both at rest and during exercise[4]. Researches suggest that
regular physical activity helps increase HRV[5].

A high HRV is typically associated with greater energy reserves, an adaptable phys-
iological system, and well-functioning autonomic control system[6]. Conversely,
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a low HRV is often linked to increased SNS activation, ANS dysregulation,
chronic stress, reduced energy reserves, and overall autonomic imbalance[6].

2.1.2 HRV analysis
HRV analysis in time domain

HRV can be measured using short (5 to 10 min) or long (12 to 24 hours) periods.[7]
The RR intervals without artifacts are called normal-to-normal intervals (NN).
The following methods analyze variations in successive NN intervals over time.
They are divided into:
Main statistical measures:

• SDNN: Standard deviation of all NN intervals, the square root of variance. [8]

• SDANN: Standard deviation of the average NN interval computed over short
periods, in general of 5 minutes. [8]

• RMSSD: Root mean square of successive RR interval differences. It reflects
the vagal tone. [9]

• pNN50: the percentage of successive NN intervals longer than 50ms. It reflects
the vagal tone [9]

HRV analysis in frequency domain

In the frequency domain, the analysis requires filtering the signal into different
bands:

• ULF: Ultra low-frequency band, below 0.0033Hz. It reflects the circadian
oscillations. It requires long period recordings, as 24 hours. [9]

• VLF: Very low-frequency band, between 0.0033Hz and 0.04Hz. It expresses
long-term regulation mechanisms, thermoregulation, and hormonal mecha-
nisms. [9]

• LF: Low-frequency band, between 0.04Hz and 0.15Hz. It represents a mix of
sympathetic and vagal influences.[9]

• HF: High-frequency band, between 0.15Hz and 0.4Hz. It reflects the vagal
tone, and, it is referred to as variations of HR related to the respiratory cycle,
and it reflects the vagal tone (parasympathetic system).[9]
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• LF/HF ratio: represents the sympathovaga balance, which means the balance
between sympathetic and parasympathetic systems.[9]

HRV with non linear methods

HRV is connected to complexity science, which analyses how systems behave
as a whole rather than splitting them into little parts. In linear systems, the whole
system’s behavior can be explained by analyzing each component separately and
then summing them. In contrast, in complex systems, the relationshipships between
subsystems create properties that cannot be comprehended by examining each part
individually. [7]
Physiological systems exhibit complexity due to the interplay between cardio-
vascular, endocrine, and autonomic functions, making them inherently non-
stationary.
As a result, non-linear approaches can be particularly useful for HRV analysis when
the assumption of stationarity is not met, providing insights that linear methods
might miss. [10]
HRV is a fundamental feature for analyzing physiological complexity, drawing from
dynamical systems theory, fractal and chaos theory[7]. Several non-linear methods
are used to assess HRV, including:

• Poincare plot: scatter plot of HRV generated by plotting each RR interval as
a function of the prior RR interval. Fitting an ellipse to the data series, it
exploits three non-linear measures: [10]

– S represents the total area and it is a measure of the total variability.
– SD1, standard deviation related to fast HRV.
– SD2, standard deviation, reflecting long-term variability.[10]

• Entropy: supplies a measure of the level of regularity and complexity within
the time series. This method exploits the possibility that any given sequence
of intervals will be replicated. The higher the probability to be repeated, the
lower the computed entropy. [10]

• Detrended Fluctuation Analysis (DFA): a fractal-based method used to assess
the self-affinity of a signal. It is defined by two exponents:

– DFA-α1, which evaluates RR intervals ranging from 4 to 16 beats.
– DFA-α2, which analyzes interbeat intervals between 16 and 64 beats.

This technique is particularly useful for non-stationary data. [7]
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2.2 Fractal Time Series

When talking about fractals, it is important to take a step backward. Fractal is a
concept highly correlated with chaos theory, non-linearity, and complexity.
All these concepts together form the basis for properly analyzing biological systems.
Biological systems are represented as a single unit, where each part is interconnected
with others, and this single unit is in connection with the surrounding environment.
So, because of the interdependency of biological systems, it is not possible to
analyze parts as if they were ’stand-alone’.

Chaos Theory

Chaos theory represents a way to describe complex phenomena since it provides a
tool for looking at the entire structure instead of focusing on only a part.
Chaos theory can find order in systems that look completely random. Chaos refers
to the behavior of dynamic systems that are highly sensitive to initial conditions,
meaning that small changes can lead to divergence. It appears in non-linear and
interconnected systems where patterns arise through repeated evolution. This
process, often described as "fold and stretch," leads to self-similarity, making chaos
closely connected to fractals. [11]

Complex Systems

A complex system is characterized by a non-divisibility between the components
of the system and the system as a whole. This means that the identity of the
whole is shaped by its constituent parts, while at the same time, the identity of
each part is influenced by the system’s overall structure and interactions. Unlike
simple systems, where components function independently, complex systems exhibit
behaviors that result from the interrelated relationships among their elements. [12]
A fundamental property of complex systems is their organization on multiple
scales. They can often be approximated or simplified as networks of smaller,
interconnected elements, in which simpler and more complex structures exhibit
similar patterns. This leads to self-similarity on different scales, a feature
observed in fractals. However, despite these similarities, complex systems also
exhibit emergent behavior, in which changes at different levels of observation-moving
from finer to coarser scales can reveal distinct dynamics that are not predictable
from the properties of individual components. [11]
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2.2.1 Fractal and Fractal Dimension definitions

Fractal can be intuitively defined as "a set that shows irregular but self-similar
features on many or all scales"[13]. In this context, self-similarity means that
different segments of the object or time series, despite their irregularity, exhibit
structural resemblance to other parts. In other words, a fractal is a phenomenon
that has patterns repeated at different scales. In nature, fractals are not
exactly but almost the same at diverse scales.
The fractal dimension is a measure of the complexity of a self-similar system[11].
Fractal dimension was defined by the Hausdorff equation as mentioned in [14]:

d = log(N(s))
log(1/s) (2.1)

where:

• d: Fractal dimension

• N(s): Number of self-similar copies into which the figure is divided at each
iteration

• s: Scaling down factor at each iteration

To clarify this concept, let’s consider the Sierpinski triangle and reconstruct how it
is formed. As shown in Figure 2.3, starting with an equilateral triangle with side
length l:

1. Draw a reverse triangle with vertices at mid-length of each side. It creates
three equilateral triangles of side length l/2.

2. At each of these three triangle, draw a reverse triangle with vertices at the
mid-length of each side. It generates other 32 equilateral triangles of side
length 2−2l.

Iterating this, in iteration n, there will be 3n triangles of side length 2−nl. The
fractal dimension of this object is:

d = log(N(s))
log(1/s) = log(3)

log(2) ≈ 1.585 (2.2)

It means that 2d = 3
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Figure 2.3: Sierpinsky triangle [15].

As the figure is iterated, it becomes more and more complex, but its basic
element is a simple triangle. This is a distinctive feature of fractals: the end result
appears complex and difficult to analyze, but if one understands the rule that
governs its construction, it leads back to a simple, well-defined law.[16]

There exists different methods for the estimation of fractal dimension, but each of
them follows the same principles[11]:

1. Define the characteristic of the signal or phenomenon and determine the scale
of measurement.

2. Make measurements on multiple scales and analyze the limitations of any
relationship.

3. Plot measured values against corresponding scales on a log-log graph.

4. Approximate the trend using a linear fit to the plotted data.

5. Determine the fractal dimension (FD) as the slope of the fitted line, which
quantifies the complexity of the signal or event.

2.2.2 Long term memory and 1/f process
Fractal structures intrinsically exhibit long-term memory. This property mani-
fests in both the time and frequency domains through different statistical manners.
In the time domain, long-term memory is characterized by an autocorrelation
function (ACF) that follows a power-law decay, meaning that correlations con-
tinue over long periods instead of decreasing exponentially as in short-memory
processes [17]. In the frequency domain, this persistence is reflected in the spectral
density function S(f), which exhibits a power-law divergence around zero frequency,
indicating that low-frequency components dominate the system’s dynamics [18, 19].
Mandelbrot and Van Ness firmly established the in-depth relationship between
long-memory processes, scaling behavior, and fractal structures. These
properties underline the strong dependences within time series, where past events
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continue to influence future outcomes over extended periods. Unlike short-term
processes, where dependencies disappear quickly, long-memory processes main-
tain correlations across multiple scales[17].

An essential aspect of fractal structures is their ability to scale across different
resolutions while maintaining characteristic statistical properties. As introduced
before, this scaling behavior can be categorized into self-similarity and self-affinity.
Self-similarity presents isotropic properties while self-affinity has anisotropic prop-
erties, which means that fractal’s statistical properties scale in different ways along
different dimensions.[21]. From a mathematical point of view, both, self-affine
and self-similar processes, follows a power-law distribution. This relationship
is fundamental in fractal analysis, as it allows for the estimation of the fractal
dimension[22]. Specifically, if a phenomenon can be described by a single power-law
function, it is called monofractal; otherwise, it is called multifractal. [11]
The following equation represents a power-law distribution[21]:

Y (Lt) ≡ LHY (t) (2.3)

Where:

• Y: the process

• Y(t): value of the process at time window of length t

• Y(Lt): value of the process at time window Lt

• L: window length factor L > 0

• H: Hurst parameter 0 < H < 1

12
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Figure 2.4: Signals with different Hurst Exponents[23].

The Hurst exponent is commonly referred to as the ’index of dependence’ or
’index of long-range dependence’[24]. The value of H provides insight into the
nature of the process. Specifically:

• If 0 < H < 0.5, the series is anti-persistent, meaning that increases are likely
to be followed by decreases. It can be considered as a "stabilizer process".

• If H = 0.5, the series behaves like white noise (random process).

• If 0.5 < H < 1, the series exhibits long-memory with increasing persistence
as H approaches 1.

Then, applying the Fourier transform to the process Y(t) and computing the
average power spectral density (PSD) as the mean of the distribution power, it
results that the PSD follows a power-law function of the form:

S(f) ∼ f−β (2.4)

Processes with PSD as mentioned above are called 1/f processes[11].
Among these, an important example is the Fractional Gaussian Noise (fGn), where
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the spectral exponent β is directly related to the Hurst parameter H by the following
relationship:

β = 2H − 1 (2.5)

Following this framework, Mandelbrot and Van Ness introduced a new family of
Gaussian random functions, known as Fractional Brownian Motion (fBm), which
extends the classical Brownian Motion model to incorporate long-term dependencies
and self-similar properties.[25]
In this case, β is:

β = 2H + 1 (2.6)

Figure 2.5: White, Pink and Brown Noises, Power Spectra[26]

The following table provides a concise summary of the β and H parameters for
white, pink, and brown noise.

Process Memory Hurst exponent H Power-law exponent β Spectrum S(f)
White Noise No Memory H = 0.5 β = 0 Constant
Pink Noise (1/f noise) Long Memory H = 1 β = 1 1/f

Brown Noise (Brownian motion) Infinite Memory H = 1.5 β = 2 1/f 2

Table 2.1: Summary Table of Noise Processes and Their Characteristics [19]

Random, Anti-correlation and Correlation Processes

As mentioned by Hardstone et al., it is important to do a differentiation between
random walk and processes with memory.
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• A random walk is a type of series that has a cumulative pattern but it does
not present any trend. Thus, random walk is an example of an uncorrelated
signal. In particular, each step is random and the signal is "memory-less", it
means that it does not present a memory.

• An anti-correlated signal presents memory and has the tendency to "stabilize
itself". In the sense that, for each increment it will be more likely a decrement.
This leads to smaller fluctuations on longer time-scales.

• A correlated signal has memory and it tends to produce future values that
correspond to past movements. This leads to large fluctuations.

2.2.3 HRV as a fractal time series
Heart rate variability (HRV) is inherently nonstationary and scale-invariant,
so, it presents fractal properties.
Observing HRV data, it is possible to recognize fast fluctuations due to the
autonomic nervous system (ANS), as well as slower oscillations influenced by
circadian rhythms and physiological adaptations. These fluctuations are the result
of continuous interactions between cardiovascular regulatory mechanisms and
external factors, making HRV a complex system.[27]

Figure 2.6: Example of self-similar structure and a self-similar signal [28].

Other studies have demonstrated that HRV fluctuations follow 1/f noise processes,
indicating the presence of long-term memory in cardiac regulation[29]. Moreover,
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HRV is nonstationary, meaning its statistical proprieties vary in time.
Traditional linear methods, such as time and frequency domain analysis, provide
an understanding of the general magnitude of RR interval fluctuations but fail to
capture the intrinsic nonlinearity and complexity of cardiac dynamics. [27, 30]
Consequently, nonlinear analysis is crucial for extracting information that classical
methods cannot find out.[27]
Studies have underlined that HRV shows multifractal behaviours.

2.3 DFA - Detrended Fluctuation Analysis
Detrended Fluctuation Analysis (DFA) fits into this context. DFA represents
a tool fordetecting trends inside signals, fractal properties, and long-term
correlations for non-stationary time series.[31]
The output of the DFA, α, represents an estimation of the Hurst exponent.[32]

2.3.1 DFA Algorithm
As previously mentioned, scale-invariant processes can be modeled using either
fractional Gaussian noise (fGn) for stationary signals, or fractional Brownian motion
(fBm) for non-stationary signals.
An important relationship between these two is that the cumulative sum of an
fGn process produces an fBm, while differentiating an fBm yields an fGn. This
relationship is the basis of the first stage of detrended fluctuation analysis (DFA):

1. The signal of length N is transformed by computing its cumulative sum after
subtracting the mean. This produces what is known as the profile of the
signal:

y(k) =
NØ

i=1
(x(i) − x̄) (2.7)

x̄ represents the mean of the signal. The subtraction of it allows the remotion
of the global trend.

2. Split the profile into non-overlapping windows, w, of length called scale, s.
For each scale, the total number of windows is defined as M :

M = N

s
(2.8)

3. Then, for each window of the time series compute the local trend by fitting
a low-order polynomial using the least-squares method, p(s,w)(k).
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4. For each window compute the Squared Fluctuation Function, F 2
s,w, as follow:

F 2
s,w = 1

s
∗

MØ
k∈w

(Y (k) − ps,w(k))2 (2.9)

So, for each window of each chosen scale this function is performed.

5. Perform the average over the windows of the squared fluctuations, obtaining
an unique Fluctuation Function, Fs, at each scale.

Fs =

öõõô 1
M

∗
MØ

k∈w

F 2
s,w (2.10)

The calculations for obtaining the Fluctuation Function, Fs, are repeated for
different scales, s.

6. If the time series is fractal, it follows a power law of the following form:

Fs ∝ sα (2.11)

For this reason, plotting the log(Fs) as function of the logarithm of the scale,
log(s), it results a line. The slope of this line is the so-called Scaling Exponent,
α.

Figure 2.7: Detrended Fluctuation Analysis: Schematic Resume [33]
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2.3.2 Interpretation of the α Exponent
The Scaling Exponent, α, represents an estimation of the Hurst Exponent. In
particular:

• For 0 < α < 1, α = H

• For α > 1, α = H + 1

As mentioned by Peng et al., the interpretation of the Scaling Exponent, α can be
resumed by the following table.

Comparison with H Scaling exponent Interpretation Stationarity

α = H 0 < α < 1/2 anti-correlated stationary
α = H α = 1/2 white noise stationary
α = H 1/2 < α < 1 correlated stationary
α = H α = 1 1/f (pink) noise stationary
α = H + 1 1 < α < 3/2 anti-correlated increments nonstationary
α = H + 1 α = 3/2 Brownian noise stationary
α = H + 1 3/2 < α < 2 correlated increments nonstationary

Table 2.2: Scaling exponent interpretation

2.3.3 DFA applied to HRV
Applying DFA to HRV signals, the Scaling Exponent, α, is commonly calculated
over two ranges of scales [35],[36]:

• 4 < s < 16: α1: Short-Term Exponent

• 16 < s < 64: α2: Long-Term Exponent
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Chapter 3

State of Art

3.1 Fatigue: definition and measurements
Fatigue is a complex and multifaceted phenomenon that has been studied exten-
sively, but it still remains difficult to define with precision. As highlighted in the
review by Phillips, the concept of fatigue lacks a unified definition across the
literature, due to its multidimensional nature and the diversity of contributing
factors. Fatigue can refer to a subjective sensation, a physiological condition, or
a measurable decline in performance, and these interpretations vary significantly
across research fields.
In general terms, fatigue is defined as a temporary reduction in physical and
cognitive performance caused by multiple factors, such as prolonged exertion,
insufficient recovery, and external stressors [1]. It is influenced by a combination
of physiological, psychological, and environmental variables, and it represents a
significant challenge in terms of safety, productivity, and overall health [1].

To better illustrate the conceptual multiplicity of fatigue, Table 3.1 presents a
synthesis of key definitions across different domains. Adapted from Phillips, this
table underlines the diverse ways fatigue has been conceptualized, emphasizing
different dimensions such as subjective experience, physiological mechanisms, and
performance consequences.

A physiological distinction that is frequently discussed in the literature is be-
tween central fatigue and peripheral fatigue. Central fatigue originates in the
central nervous system (CNS) and is associated with a reduced neural drive from
the CNS to the muscles, resulting in decreased motor output. It is often aggravated
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Table 3.1: Various Definitions of Fatigue According to the Literature

Category Definition
Dictionary and Common Use Fatigue is described as extreme tiredness resulting from

physical or mental effort [38].
Subjective Experience Fatigue is perceived as a sense of exhaustion, sleepiness,

or reduced motivation to continue a task [39].
Physiological Condition A state of imbalance in the body’s physiological resources,

caused by prolonged physical or mental effort, with con-
sequences on metabolism and neural functioning [40].

Performance Decline Fatigue leads to measurable decreases in performance,
affecting attention, reaction time, and decision-making
abilities [39].

Multidimensional Model Fatigue is a complex phenomenon involving physiologi-
cal, cognitive, and emotional aspects, resulting from a
dynamic interaction between tasks, environment, and
the individual’s condition [41].

Note. Table adapted from Phillips.

by lack of sleep, mental fatigue, and stress, all of them influence brain activation
and the perception of exertion [42].
On the other hand, peripheral fatigue is localized at the muscular level and is
primarily caused by metabolic products and alterations in muscle contractility [43].
While central and peripheral fatigue are conceptually distinct, they are closely
interconnected: mental exertion can influence muscle activation, and peripheral
fatigue can impact motivation and cognitive performance. Therefore, both compo-
nents should be considered in any comprehensive understanding or assessment of
fatigue.

Another important distinction for this thesis concerns muscular and cardio-
respiratory fatigue during physical exercise.
Muscular fatigue refers to an exercise-induced decline in the muscle’s ability to
generate force or power, regardless of task completion. Although often broadly
used, most researchers define it more precisely as a reduction in contractile function
or measurable performance[44].
Cardio-respiratory fatigue arises mainly during prolonged or high-intensity
efforts, involving limitations in respiratory and cardiovascular systems. It is driven
by factors such as arterial oxygen desaturation and respiratory muscle fatigue, which

20



State of Art

can trigger a metaboreflex, causing sympathetic vasoconstriction and reducing limb
blood flow, thus worsening muscular fatigue[45].

This suggests that cardio-respiratory fatigue may precede and amplify periph-
eral muscle fatigue in endurance activities.

3.2 RPE: Rate of Perceived Exertion
The RPE (Rate of Perceived Exertion), developed by Borg, represents a valid
instrument for the evaluation of the personal fatigue exertion. The RPE scale,
traditionally is represented by a scale from 6 to 20[46]. In particular, it follows the
following division:

RPE Exertion Meaning
6 Zero Exertion - Rest
7

7.5 Extremely Light
8
9 Very Light Exertion
10
11 Light
12
13 Something Hard
14
15 Hard (Heavy)
16
17 Very Hard
18
19 Extremely Hard
20 Maximal Exertion

Table 3.2: RPE Scale (Borg 6-20) [46]

The RPE presents a correlation with the physiological parameters, as the heart
rate, in particular, during aerobic trainig. So, it acquires importance not just on
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the perceived exertion, but in the intensity of the exercise too.
There exist other conversion scales derived from the Borg-20, in particular the
Borg CR10 scale[47], represented in Tabel 3.3, which was used in this study
in a modified version, excluding the addition of 0.5.

RPE Value Meaning
0 No exertion at all

0.5 Very, very slight
1 Very slight
2 Slight
3 Moderate
4 Somewhat severe
5 Severe
6
7 Very severe
8
9 Very, very severe (almost maximal)
10 Maximal Exertion

Table 3.3: RPE Scale (CR10: 0-10) [47]

Furthermore, it is important to highlight some limitations of this method. In
particular, RPE can be influenced by external factors such as personal motivation
and environmental conditions, which is an inherent drawback of using subjective
metrics. Nevertheless, several studies confirm its validity and usefulness;
together with the Karolinska Scale, it remains among the most used methods for
assessing subjective exertion.

3.3 HRV and Fatigue Detection: Literature Re-
view

The use of Detrended Fluctuation Analysis (DFA) for HRV analysis has arisen as a
powerful tool for assessing fatigue across different domains, from sports performance
to occupational health. Given that HRV reflects autonomic nervous system
(ANS) adaptations in response to external stimuli, various studies have explored
its potential in detecting fatigue [48],[49]. This review synthesizes key findings
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from the literature, emphasizing why DFA stands out as a crucial method in this
research.

3.3.1 HRV Analysis in Sports Field: The Role of DFA
Fatigue monitoring is particularly relevant in sport and endurance training fields,
where physiological adaptations directly impact performance.

Traditional HRV metrics, such as time-domain measures (RMSSD, SDNN) and
frequency-domain ones (LF, HF, LF/HF ratio), have long been used to assess stress.
The 2018 review [50] confirmed that stress conditions lead to a decrease in HF and
an increase in LF.

In contrast, DFA-α1 provides a nonlinear measure of HRV that reflects organis-
mic demands during exercise. The study [51] showed that DFA-alpha1 changes
dynamically with exercise intensity. In particular, during moderate intensities,
it reaches 0.75, aligning with the aerobic threshold, then, as intensity increases,
it drops below 0.5, indicating a transition to uncorrelated fluctuations.
This makes DFA-α1 particularly advantageous in the fitness domain since other
traditional metrics are unable to differentiate these two phases, as they have already
reached their minimum at the anaerobic threshold.
The literature even describes DFA as an indicator of total "organismic demand"
rather than a subsystem-specific measure like HR or respiration rate [52].
Notably, during recovery phases, DFA-alpha1 exhibits a rapid increase, making it
a promising marker for monitoring fatigue onset and recovery dynamics.
Additional validation of DFA’s utility comes from [53], which confirms that DFA-
alpha1 is reliable for estimating exercise intensity thresholds in incremental cycling
tests.
Moreover, [54] combines DFA with time-domain, frequency-domain, and entropy-
based methods in a machine learning model for fatigue detection. This supports
the idea that combining DFA with other HRV features enhances its predictive power.

While time-domain HRV measures, such as RMSSD and SDNN, are widely used
in sports science, their limited sensitivity in detecting fatigue transitions makes
DFA a more suitable option. Studies such as [55], show that while RMSSD and
its logarithmic transformation (lnRMSSD) are valid, they cannot distinguish
between different fatigue states.

23



State of Art

3.3.2 Assessing Work-Related Fatigue via HRV: The Role
of DFA

HRV-based fatigue assessment has been extensively studied in construction workers,
miners, and industrial laborers, where the ability to monitor fatigue in real-time
could prevent accidents and improve worker safety.

One of the most compelling studies in this domain is [56], which used a machine
learning approach to classify fatigue levels using HRV features. The study defined
fatigue states based on the Borg scale, showing that time-domain HRV mea-
sures (SDNN, RMSSD) were the most accurate predictors. However, unaspectably,
DFA-α1 and α2 increased instead of decreasing, showing no clear correlation with
fatigue.
Although this specific result differs from what has been observed in sports, it un-
derscores the complexity of fatigue dynamics in different populations and working
conditions.

In extreme and high-altitude environments, HRV-based fatigue monitoring is
gaining popularity. The study [57] analyzed miners’ HRV using time-domain,
frequency-domain, and nonlinear methods (Poincaré plot, entropy measures). It
found that LF/HF and SDNN increased with fatigue, while SD1, SD2, and sample
entropy decreased, indicating heightened autonomic stress. This supports the
notion that nonlinear HRV parameters are essential in differentiating fatigue states
in demanding work conditions.

A broader perspective is offered by [58], which highlights HRV as a valuable
fatigue assessment tool alongside body movement and skin conductivity. This
reinforces the idea that HRV alone may not always be sufficient and that integrating
DFA with other physiological markers could enhance fatigue detection accuracy.

3.3.3 Rationale for Using DFA for Fatigue Detection
The collective findings from sports and occupational fatigue research highlight the
strengths and limitations of different HRV analysis methods. Traditional linear
and frequency-domain metrics provide valuable insights, but they often fail to
capture the complexity of fatigue-induced HRV changes.

DFA, in contrast, offers a dynamic, fractal-based perspective on HRV
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fluctuations. Unlike measures such as SDNN and LF/HF, which may plateau
or become unreliable at high levels of exertion, DFA-α1 maintains sensitivity
across different fatigue thresholds. This is particularly evident in sports
studies, where DFA provides a more nuanced reflection of exercise intensity and
recovery, as well as in occupational settings, where nonlinear HRV features like DFA
help to distinguish between fatigue and non-fatigue states in extreme conditions.

Additionally, machine learning models integrating DFA with time and frequency
domain HRV features, as seen in [54] demonstrate that DFA enhances fatigue
detection when combined with other metrics.

Finally, the previously mentioned capability of DFA to discern fractal properties,
makes it an excellent tool for analyzing fatigue through HRV, providing a more
precise and reliable metric compared to traditional HRV indices. Its ability to detect
subtle variations in autonomic regulation further reinforces its value. Moreover,
studies such as [48], where nonlinear metrics proved to be reliable despite the
absence of DFA, highlight its unexploited potential.
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Chapter 4

Methodology

4.1 Study Design
The main goal of the experiment is to be able to clearly determine the correlation
between changes in behavior of physiological parameters, such as heart rate and
heart rate variability, and the onset of fatigue. Specifically, this research focuses on
monitoring physiological signals during an incremental cycling test until exhaustion.
Therefore, designing a protocol that effectively induces cardio-respiratory
fatigue is essential.
As discussed in previous chapters, physical fatigue can be primarily classified into
two types:

• Muscular fatigue

• Cardio-respiratory fatigue

Although these two forms of fatigue are interrelated, this study aims to ensure that
participants reach their limit primarily due to cardio-respiratory exhaustion rather
than muscular fatigue.
During the incremental test, two types of data were collected:

• HRV (Heart Rate Variability), measured using a Polar H10 chest strap

• RPE (Rating of Perceived Exertion), recorded at each stage of the test

This dual approach allowed for the collection of both objective (HRV) and subjective
(RPE) data, providing a comprehensive assessment of perceived fatigue.
The data-set counts 31 participants, 26 males and 5 females.
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4.2 Literature Review and Rationale for Protocol
Design

This section outlines the development of the protocol design, which was formulated
based on a comprehensive review of the literature.

4.2.1 Analysis of Literature
The design of the testing protocol was developed based on a in-depth review of
existing literature on incremental cycling tests and their impact on physiological
parameters, particularly in relation to heart rate variability (HRV) and perceived
fatigue.

Citation Test Type N. Participants Participant Category
[62] Stepwise (50W start, 50W/4min) 40 Healthy men (29-69 years)
[63] Incremental (100W start,

+20W/3min)
16 Trained cyclists (8h/week

for 6 months)
[64] Incremental (30W/4min) after

warm-up
13 Elite cyclists

[65] Incremental (25W men, 15W
women / 2min)

40 General participants

[66] Incremental (+14.6W/min after a
rest of 3 min) until exhaustion

20 General participants

[67] 4 min at 20W, 6 min at 60W/80W,
then 4 min at 20W followed by
15W, 30W, or 45W/min until ex-
haustion

21 General participants

[68] Incremental (100W (Woman) and
160W (Men) start, 30W/2min) un-
til exhaustion

56 (18W,38M) Sub-elite Cyclists

[69] Incremental (4-6 min rest, 5 min
at 30W (W) and 40W (M) warm-
up, 5W/20s) until exhaustion

26 16 ME/CFS patients and 10
healthy controls

[60] Ramp protocol (3 min at 50W
warm-up, +1W/3.6s) until ca-
dence < 60rpm

31 General participants - only
females

Table 4.1: Summary of different incremental cycling test protocols from the
literature.

The analysis of the literature revealed a variety of approaches to incremental cycling
tests, differing in intensity progression, duration, and termination criteria. The
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studies examined (Table 4.1) highlight key methodological elements that influence
physiological responses, particularly in relation to heart rate variability (HRV) and
perceived fatigue.

From this review, several important considerations emerged:

• The majority of studies employed an incremental protocol to ensure pro-
gressive fatigue induction.

• Termination criteria varied, with some studies defining exhaustion based
on cadence drop [60], while others relied on volitional fatigue [66].

• Studies using stepwise increments with specific time intervals [62] provided
insights into the optimal workload increase to elicit fatigue without premature
muscular failure.

• Participant populations were diverse, with different studies targeting trained
cyclists, general participants, and clinical populations, indicating the need for
a protocol adaptable to different fitness levels.

Taking these findings into account, a customized protocol was developed
to induce cardio-respiratory fatigue while maintaining control over workload in-
crements, ensuring comparability with previous research while addressing gaps
identified in the literature. The following section outlines the final protocol design.

4.2.2 Protocol Design
Before starting the study, participants were required to sign an informed consent
form, which detailed the study’s objectives, procedures, and their rights as partici-
pants. The full document can be found in Appendix A.

The protocol is divided into three stages:

• Qualitative phase: Participants begin by completing three questionnaires
to assess their baseline conditions:

– Stress Level (Appendix D)
– Quality and quantity of sleep (Appendix B)
– Physical Condition (Appendix C)

These assessments provide a comprehensive understanding of each partici-
pant’s initial state before performing the physical tests.
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• Physical test: At each stage of the test, participants are asked to report their
Rate of Perceived Exertion (RPE) to provide direct feedback on their exertion
levels. Heart Rate Variability (HRV) and heart rate (HR) are collected.

• Recovery Phase: The final stage lasts 10 minutes, during which participants
remain seated while physiological parameters continue to be monitored. At
the end of this period, they are also required to report their final RPE to
assess their post-exercise condition.

Physical Test

After remaining stationary on the bike for 5 minutes, the test begins with a
5-minute warm-up, followed by an incremental phase where power increases
by 15 Watts every 3 minutes for women and 20 Watts every 3 minutes for men,
continuing until exhaustion(RPE = 10, corresponding to volitional exhaustion).
Upon completing the test, participants undergo a 3-minute cool-down. Since
the test continues until the participant reaches their limit, its duration is not
predetermined but varies based on individual endurance.
The stages of test are descripted in Table 4.2 for men and Table 4.3 for women.

4.3 Instrumentation
To ensure accurate and reliable data collection throughout the experiment, a
combination of wearable and environmental monitoring devices was employed. The
following instruments were used:

• Polar H10
The Polar H10 was used as the primary sensor for monitoring heart rate (HR)
and heart rate variability (HRV). Known for its high accuracy and reliability,
this chest strap sensor records RR intervals with a sampling rate of 1000 Hz,
making it ideal for analyzing autonomic nervous system (ANS) activity during
exertion and recovery phases.

• Tacx NEO Bike Plus Trainer
The physical test was conducted using the Tacx NEO Bike Plus Trainer, a
high-precision stationary cycling ergometer. This device allows for precise
control of resistance and power output, ensuring a standardized and replicable
testing protocol across all participants. Additionally, it provides real-time
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MEN TEST
Stage Duration Power(W) Minute
Warm up 00:05:00 60 to 70 00:05:00
Stage 1 00:03:00 90 00:08:00
Stage 2 00:03:00 110 00:11:00
Stage 3 00:03:00 130 00:14:00
Stage 4 00:03:00 150 00:17:00
Stage 5 00:03:00 170 00:20:00
Stage 6 00:03:00 190 00:23:00
Stage 7 00:03:00 210 00:26:00
Stage 8 00:03:00 230 00:29:00
Stage 9 00:03:00 250 00:32:00
Stage 10 00:03:00 270 00:35:00
Stage 11 00:03:00 290 00:38:00
Stage 12 00:03:00 310 00:41:00
Stage 13 00:03:00 330 00:44:00
Stage 14 00:03:00 350 00:47:00
Stage 15 00:03:00 370 00:50:00
Stage 16 00:03:00 390 00:53:00
Stage 17 00:03:00 410 00:56:00
Stage 18 00:03:00 430 00:59:00
Stage 19 00:03:00 450 01:02:00
Stage 20 00:03:00 470 01:05:00

Table 4.2: Incremental test protocol
for men.

WOMEN TEST
Stage Duration Power(W) Minute
Warm up 00:05:00 40 to 50 00:05:00
Stage 1 00:03:00 65 00:08:00
Stage 2 00:03:00 80 00:11:00
Stage 3 00:03:00 95 00:14:00
Stage 4 00:03:00 110 00:17:00
Stage 5 00:03:00 125 00:20:00
Stage 6 00:03:00 140 00:23:00
Stage 7 00:03:00 155 00:26:00
Stage 8 00:03:00 170 00:29:00
Stage 9 00:03:00 185 00:32:00
Stage 10 00:03:00 200 00:35:00
Stage 11 00:03:00 215 00:38:00
Stage 12 00:03:00 230 00:41:00
Stage 13 00:03:00 245 00:44:00
Stage 14 00:03:00 260 00:47:00
Stage 15 00:03:00 275 00:50:00
Stage 16 00:03:00 290 00:53:00
Stage 17 00:03:00 305 00:56:00
Stage 18 00:03:00 320 00:59:00
Stage 19 00:03:00 335 01:02:00
Stage 20 00:03:00 350 01:05:00

Table 4.3: Incremental test protocol
for women.

feedback on power and cadence, contributing to a comprehensive analysis of
exertion levels.

• Room thermometer
A room thermometer was used to measure the ambient temperature at both
the beginning and the end of each participant’s test session. Monitoring
environmental conditions ensures that external factors, such as temperature
variations, do not influence the physiological responses recorded during the
experiment. The temperature data were recorded systematically to assess
potential correlations with performance and fatigue levels.

4.4 Data Collection
During the test, an Excel table was compiled for each participant to systematically
record key time points and environmental conditions. The information collected in
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this phase included:

• Room Temperature Before the Test

• Exact Start Time

• Exact Sitting Time (performing the qualitative phase)

• End of the Qualitative Phase Time

• Sitting on the Bicycle Time

• Start of the Physical Test Time (at least 5 minutes after resting on the
bicycle)

• Time at the End of the Final Stage of the Physical Test (≡ Start of
Cool Down Phase)

• Cool Down Stop Time (after a minimum of 3 minutes of cool down)

• Recovery Start Time

• Recovery Stop Time (after a minimum of 10 minutes of recovery)

• Final Room Temperature

This table was particularly useful for data analysis, as it provides a clear reference
for determining the exact phase of the test each participant was in at any given time.
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Chapter 5

Data Analysis and
Pre-Processing

The data analysis process was conducted in MATLAB and involved multiple steps
to ensure accurate feature extraction while minimizing noise interference.

The process began with acquiring the previously mentioned time table, followed
by loading the RPE data for each subject along with their RR and HR data.
Once the RR data were imported, the initial step focused on filtering to enhance sig-
nal quality and eliminate potential artifacts. This was followed by the segmentation
of the data, which will be explained in the subsequent section.

5.1 RRi: Filtering and Artifact Removal
To ensure high signal quality and artifact correction, an adaptive filter was
applied to the RRi. The filter used in this study is a modified version of the method
proposed by Wessel et al. The applied filter involves the following steps:

• Initial Artifact Removal: RRi values outside the range of (280 − 1500)ms

(corresponding to (214 − 40) bpm) were considered artifacts and removed.

• Artifact Percent Filter: A dynamic correction was applied based on the relative
percentage change between consecutive RR intervals. If the variation exceeded
30%, the suspect value was replaced with the mean of the previous valid
intervals. This was integrated with an adaptive smoothing process using a
moving average (window of 7 samples), with a recursive estimation of mean
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(µ), variance (λ), and standard deviation (σ). Sudden deviations exceeding
both a relative threshold (ρ = 15%) and a sigma-scaled threshold (cx = 3σ)
were identified as artifacts and replaced with a random value within the
physiological range considering 7 values before.

• Adaptive Control Filter: A final pass was conducted using local adaptive
statistics (moving mean and standard deviation) to detect outliers. Intervals
deviating more than 3σ plus a fixed bias (σb = 0.02) from the local mean were
corrected to reduce residual fluctuations.

• Adaptive Mean and Variance Update: The adaptive mean µ(n) and variance
λ(n) were updated iteratively using a forgetting factor c, ensuring dynamic ad-
justment to the signal trend. The standard deviation σ(n) was then computed
to characterize RRi variability.

• Final Storage of Filtered Data: The corrected RR intervals were stored for
further analysis.

This approach ensures that RRi artifacts are effectively removed while preserving
physiological variability, making the filtered signal more reliable for HRV analysis.

5.2 Data Acquisition and Segmentation
Filtered RRi data was segmented according to each subject’s time table, following
these phases:

• 3 minutes seated during the qualitative assessment phase.

• 3 minutes resting on the bicycle.

• 5 minutes after the test initiation, corresponding to the warm-up phase.

• 3 minutes for each exercise stage.

• 3 minutes during the cool-down phase.

• 3 minutes in the recovery phase.

This segmentation results fundamental for the application of the described DFA
algorithm.
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5.3 Application of DFA
To analyze fluctuations in the heart rate signal, the Detrended Fluctuation
Analysis (DFA) method was applied to each segment.
DFA was previously described in 2.3.1, and its implementation followed these key
steps:

• Step 1: Importing each segmented data.

• Step 2: Set the parameters as:

– Scales: 4 − 16
– Polynomial Order, m = 1: Linear Detrending
– Generalized Fluctuation Exponent, q = 2: Standard DFA

• Step 3: Extract the Fluctuation Function Fs from the DFA function.

• Step 4: Extract the Scaling Exponent, α1.
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Chapter 6

Results

6.1 Introduction
This chapter presents the results obtained from the application of the filter, de-
scribed in Chapter 5, on RR intervals and the subsequent analysis based on
Fluctuation Analysis Detrended (DFA), described in the previous chapters.
The analysis is divided into two main steps:

• Application of the filter on the raw RR data to remove artifacts and outliers,
with comparison between the original and filtered signals.

• Analysis of heart rate variability (HRV) by DFA, applied to the filtered signals
to obtain DFA-α1 and correlate it with fatigue level.

To ensure the reliability of the analysis, a comparative statistical analysis is also
conducted on the data before and after filtering. In particular, the following
parameters are evaluated:

• The mean of total raw signal and mean of the filtered signal.

• The standard deviation of the raw and the filtered signal.

• The number of total corrected artifacts by applying filter, and the percentage
of them.

• The CV (CV = std
mean

) of raw and filtered signal.

From this analysis, subjects with a high percentage of artifacts, will be excluded
from further analysis.
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The results obtained are displayed through comparative graphs and statistical
metrics, thus providing a detailed picture of the effectiveness of filtering and the
impact on the subsequent analysis of cardiac variability.

6.2 Filter Application
Figure 6.1 shows a comparison between raw data and filtered ones of the RRi of
each subject.
The raw data, represented in blue, show a lot of artifacts and sudden variations,
which may result from movement, detection errors, or problems in the quality of
the acquired signal.
Filtered data (green signal) significantly reduces these abnormalities while conserv-
ing the expected physiological pattern of RR variability.

Figure 6.1: RR Intervals Raw vs Filtered

Figure 6.2 shows the filtered RR signals for each candidate.
It can be seen that the filter removed most of the outliers, returning a smoother
and more interpretable signal.
The overall trend indicates a common pattern among the subjects, with a gradual
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decrease in RR intervals during the power increase throughout the test, followed
by an increase in the cooling phase and a peak in the recovery phase.

Figure 6.2: RR Intervals Filtered

Figures 6.3 and 6.4 show a zoomed-in portion of the RRi before and after
the application of the filter. In Figure 6.3, the raw signal exhibits continuous noise
and irregularities. While, Figure 6.4 reveals a more stable raw signal, but with
some evident artifacts approximately every 60 samples.
In both of them it is evident the filter performs: signals are corrected but the
physiological variability is mainteined.
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Figure 6.3: RRi Filtered: Zoom-In1 Figure 6.4: RRi Filtered: Zoom-In2

Table 6.1 presents the statistical analysis of raw and filtered signals for different
candidates. The columns ’Mean Raw’ and ’Std Raw’ represent the mean and
standard deviation of the raw signal, while ’Mean Filt.’ and ’Std. Filt.’ correspond
to the same metrics applied to the filtered signal. The ’Tot. Art’ column indicates
the total number of detected artifacts substituted during the preprocessing analysis,
while ’%Art.’ shows the proportion of data points substituted due to artifacts.

This table illustrates how the total signal of each candidate is affected by the
application of the previously described filter.
Candidates exceeding a 2.5% artifact rate will be excluded from further analysis to
ensure data quality and reliability.
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Table 6.1: Signal Statistics of Raw and Filtered Data

Subject Mean Raw Std Raw Mean Filt. Std Filt. Tot Art. %Art. CV Raw CV Filt.
Candidate 1M 596.22 221.78 587.66 216.44 151 2.0472 0.3720 0.3683
Candidate 2M 532.18 194.88 531.65 194.06 8 0.0763 0.3662 0.3650
Candidate 3M 602.42 217.32 599.50 211.62 42 0.5119 0.3607 0.3530
Candidate 4M 568.90 199.21 564.53 179.04 59 0.6586 0.3502 0.3171
Candidate 5M 577.39 231.69 576.55 227.81 19 0.1795 0.4013 0.3951
Candidate 6M 599.36 132.80 598.87 131.83 9 0.1228 0.2216 0.2201
Candidate 7M 586.06 143.25 585.86 142.61 7 0.1044 0.2444 0.2434
Candidate 8M 464.81 152.43 464.56 152.14 5 0.0460 0.3279 0.3275
Candidate 9M 540.21 172.53 537.07 166.19 62 0.8131 0.3194 0.3094
Candidate 10F 620.45 317.17 595.79 178.34 124 1.8499 0.5112 0.2993
Candidate 11M 555.73 225.24 524.45 140.56 416 5.3977 0.4053 0.2680
Candidate 12F 620.94 240.14 612.86 216.55 80 1.1708 0.3867 0.3533
Candidate 13M 574.07 205.77 571.55 201.02 45 0.4757 0.3584 0.3517
Candidate 14M 640.61 291.44 640.45 291.37 12 0.1456 0.4549 0.4549
Candidate 15M 556.12 215.87 550.20 203.46 116 1.2675 0.3882 0.3698
Candidate 16M 524.20 212.42 511.06 164.06 258 2.4597 0.4052 0.3210
Candidate 17M 576.38 226.56 575.33 224.65 22 0.2137 0.3931 0.3905
Candidate 18M 503.95 178.83 501.75 174.18 42 0.4368 0.3549 0.3471
Candidate 19F 475.85 126.11 475.68 125.71 3 0.0317 0.2650 0.2643
Candidate 20F 532.19 168.60 531.91 168.21 16 0.1742 0.3168 0.3162
Candidate 21M 545.00 242.16 542.15 230.50 59 0.6170 0.4443 0.4252
Candidate 22M 525.79 156.12 525.56 153.88 89 1.0724 0.2969 0.2928
Candidate 23M 485.23 282.58 476.33 135.83 126 1.1572 0.5824 0.2852
Candidate 24M 561.55 258.60 557.67 251.78 70 0.9191 0.4605 0.4515
Candidate 25M 493.15 204.93 490.63 193.54 70 0.6332 0.4156 0.3945
Candidate 26M 538.60 216.10 531.65 186.26 102 1.0809 0.4012 0.3503
Candidate 27M 497.19 148.31 496.97 147.93 6 0.0590 0.2983 0.2977
Candidate 28M 486.41 148.64 484.91 145.01 35 0.3455 0.3056 0.2990
Candidate 29M 582.47 252.39 574.42 180.66 120 1.6847 0.4333 0.3145
Candidate 30F 487.13 239.85 479.44 196.65 167 1.7069 0.4924 0.4102
Candidate 31M 534.92 236.17 531.50 229.11 83 0.8322 0.4415 0.4311
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Figure 6.5 visually compares the mean RR intervals before and after filtering
across all test stages and candidates. Each subplot represents a specific candidate,
where the blue bars correspond to raw mean RR intervals and the green bars
represent the filtered values.
The x-axis denotes the different test stages, including rest phases (A, B, C),
increasing workload levels (1–16), the cool-down phase (D) and the recovery one
(E). The y-axis displays the mean RR interval in milliseconds (ms).
As expected, the results show a consistent decrease in RR intervals with increasing
workload, reflecting the expected cardiovascular response to exercise.
The close alignment between raw and filtered data suggests that the applied
filtering method effectively preserves the essential signal characteristics while
removing artifacts.

Figure 6.5: Mean Raw Vs Mean Filtered

Figure 6.6 illustrates the total percentage of detected artifacts for each
candidate. The x-axis represents the candidate index, while the y-axis quantifies
the percentage of artifacts present in the signal. The horizontal green line marks
the predefined exclusion threshold of 2.5%. Candidates exceeding this threshold
are excluded from further analysis. As observed, Candidate 11 exceeds this limit,
while Candidate 16 is just below the threshold.
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While figure 6.7 shows the total number of artifacts for each subject.

Figure 6.6: Percentage of Artifacts for
Each Subject

Figure 6.7: Total Artifacts for Each Sub-
ject

Figure 6.8 illustrates the distribution of artifact percentages relative to
the segment length for each subject across all stages of the test. Each cell in the
heatmap represents a specific subject-stage combination, where the color inten-
sity encodes the artifact percentage. Dark blue shades correspond to low artifact
presence, indicating high signal quality during that stage, while warmer colors
(ranging from yellow to red) highlight stages with higher percentages of artifacts,
suggesting lower data quality. This visual representation allows for a rapid and
intuitive identification of both isolated artifact peaks and subjects who consistently
exhibit high artifact rates across multiple stages.

Figure 6.9 presents a scatter plot illustrating the percentage of artifacts for
each test stage, calculated relative to the total number of RR intervals for each
subject; each color represents a different Candidate. The data, aggregated across all
participants, show that artifact percentages remain consistently low across stages,
with a maximum of approximately 0.9%, excluding Candidate11M, who exhibited
the highest artifact levels in stages 2, 3, 4, 5, as well as Cool-Down and Recovery
(depicted in burgundy).
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Figure 6.8: Heatmap About Artifacts Distribution

Figure 6.9: ScatterPlot of Percentage of Artifacts
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6.3 DFA Algorithm Application

This figure 6.10 shows the trend of DFA-α1 of HRV with respect to RPE during
the incremental test. Colours represent the bicycle power during the exercise, while
the blue line and the red one, correspond respectevely to the DFA-α1 and the RPE
values. Appendix E, shows a better visualization of the following subplots.

Figure 6.10: DFA-alpha1 vs RPE and Power Stages

The following figure 6.11 is similar to the previous one, but it represents the
inverse of DFA-α1 of HRV with respect to RPE. This representation emphatizes
that, for the majority of subjects, as the exercise power increases, the inverse of
DFA-α1 increases as the RPE does.
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Figure 6.11: Inverse of DFA-alpha1 vs RPE

The following figures, 6.12 and 6.13, represent the DFA-α1 values as radius,
the RPE as dimension of markers and HR as the colors, for each subject.
Each part of the circle represents a step of the exercise, starting from the resting
one to the maximum effort, without taking into account the recovery phase. It can
be observed:

• Rest part: little markers representing lower RPE values, low HR values and
higher DFA-α1 values.

• Increment of test: HR and RPE increases and DFA-α1 decreases.

Majority of subjects shows a spiral pattern, with the marker becoming bigger
(higher values of RPE), color becoming red (HR to higher values) and the radius
becoming shorter (DFA-α1 decrement).
This results, in a clear way demonstrates that as the effort increases, HR increases
and DFA-α1 decreases as the subjective perception of effort is increasing.
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Figure 6.12: Radial Plot of All Subjects: DFA-alpha1, Heart Rate, and RPE Across Exercise Stages

Figure 6.13: Radial Plot of All Subjects: DFA-alpha1, Heart Rate, and RPE Across Exercise Stages

The following plot, 6.14, shows all subjects together. Again the radius represents
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DFA-α1, HR is represented by the color of markers and RPE values are represented
by the markers’ size. This plot also displays the progression from resting phase to
maximal effort, excluding cool-down and recovery stages. This visualization results
useful to observ that the pattern is common for the majority of subjects, so,
at the resting phase the values of DFA-α1 are more dispersive, then, they become
more concentrate and lower as the fatigue increases.

Figure 6.14: Radial Plot of All Subjects Together: DFA-alpha1, HR, and RPE
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6.3.1 DFA-α1 and RPE Analysis
The first figure 6.15, represents a box plot of DFA-α1 with respect to RPE values:

• X − Axis → RPE Values [0 − 10].

• Y − Axis → DFA-α1 values.

• Blue Box → contains the 50% of total data.

• Red Line → data median for the corrispondent RPE level

• Black Lines → data dispersion, without taking into account outliers.

• Blue Circles → outliers, values out of normal range.

In general, it can be observed a decrease in DFA-α1 corresponding to an increase
of RPE. This rappresentation clearly illustrates that the pattern of decrease in
DFA-α1 is common for all the subjects.

Figure 6.15: DFA-α1 and RPE: Box Plot
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Table 6.2 presents the percentage distribution of DFA-α1 ranges for each RPE
(Rating of Perceived Exertion) level. Each column corresponds to a specific RPE
value, and the percentages within that column indicate how the DFA-α1 values are
distributed. To better illustrate, the cell in position (1,1), which reports a value of
17.647%, indicates that among all the observations with RPE = 0, 17.647% fall
within the range α1 > 1.45. So, the values in each column sum to 100%, reflecting
the relative occurrence of each DFA-α1 range within that specific level of perceived
exertion.

Table 6.2: Percentage Distribution of RPE by DFA-α1 Ranges (7-Class Classifica-
tion)

DFA-α1 Range 0 1 2 3 4 5 6 7 8 9 10
α1 > 1.45 17.647 45.946 39.286 36.364 32.353 16.667 16.667 12.121 0.000 0.000 0.000

1.2 < α1 ≤ 1.45 52.941 32.432 42.857 38.636 32.353 41.667 16.667 18.182 25.000 9.677 0.000
1.0 < α1 ≤ 1.2 29.412 10.811 8.929 15.909 5.882 11.111 25.000 9.091 19.231 6.452 5.000
0.75 < α1 ≤ 1.0 0.000 8.108 5.357 9.091 11.765 13.889 22.222 24.242 21.154 19.355 2.500
0.5 < α1 ≤ 0.75 0.000 2.703 3.571 0.000 14.706 11.111 16.667 27.273 23.077 35.484 22.500
0.25 < α1 ≤ 0.5 0.000 0.000 0.000 0.000 2.941 5.556 2.778 9.091 11.538 25.806 45.000

α1 ≤ 0.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.226 25.000

While Figure 6.16 represents a heatmap of the previous table, providing a more
intuitive and immediate visualization of the distribution of RPE values across
different ranges of DFA-α1. Each color indicates a range of RPE percentage
occurring. Specifically, colors indicate:

• 0% < blue < 10.5%

• 10.5% < cian < 21%

• 21% < green < 31.5%

• 31.5% < yellow < 42%

• 42% < orange < 52.5%
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Figure 6.16: Percentage Distribution of RPE by DFA-α1 Ranges - 7 Class: Heatmap

Table 6.3 is directly derived from Table 6.2, through a simplified categorization
of DFA-α1 values into four wider ranges. This summarization aims to enhance
interpretability while preserving the physiological meaning of each range. The
ranges are defined as:

• α1 > 1.15

• 0.85 < α1 ≤ 1.15

• 0.59 < α1 ≤ 0.85

• 0.0 < α1 ≤ 0.59

In particular, the table, together with the corresponding Figure 6.17, illustrates the
percentage distribution of RPE values across these four DFA-α1 intervals, offering
a clear visual representation of how perceived exertion relates to the progressive
loss of fractal complexity in physiological dynamics.
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Table 6.3: Percentage Distribution of RPE by DFA-α1 Ranges (4-Class Classifica-
tion)

DFA-α1 Range 0 1 2 3 4 5 6 7 8 9 10
α1 > 1.15 76.471 81.081 85.714 77.273 64.706 63.889 38.889 30.303 10.345 4.167 0.000

0.85 < α1 ≤ 1.15 23.529 13.514 10.714 18.182 8.824 13.889 41.667 27.273 24.138 12.500 7.500
0.59 < α1 ≤ 0.85 0.000 5.405 1.786 4.545 17.647 13.889 8.333 27.273 44.828 33.333 7.500
0.0 < α1 ≤ 0.59 0.000 0.000 1.786 0.000 8.824 8.333 11.111 15.152 20.690 50.000 85.000

Figure 6.17: Percentage Distribution of RPE by DFA-α1 Ranges - 4 Class: Heatmap

Based on these results, a fatigue classification is proposed, achieving an
overall accuracy of 61.78%.
The classification scheme, which combines DFA-α1 thresholds and corresponding
RPE values, is presented in Table 6.4.
The classification performance, including the per-class accuracy, is reported in
Table 6.5.
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Table 6.4: Correspondence Between DFA-α1 Ranges, RPE Values and Fatigue
Classification

DFA-α1 Range RPE Values Fatigue Classification
α1 > 1.15 0, 1, 2, 3, 4, 5 Low fatigue

0.85 < α1 ≤ 1.15 6, 7 Moderate fatigue
0.59 < α1 ≤ 0.85 8 High fatigue

α1 ≤ 0.59 9, 10 Critical fatigue

Table 6.5: Accuracy of DFA-α1 Fatigue Classification Compared to RPE Labels
(4-Class Scheme)

Class N.Total N.Correct Accuracy (%)
Low fatigue 224 170 75.893
Moderate fatigue 36 15 41.667
High fatigue 85 25 29.412
Critical fatigue 71 47 66.197

Figure 7.1 represents the obtained values of DFA-α1 and RPE at each stage with
the displayed color based on the classification proposed with respect to DFA-α1

ranges. Specifically:

• Green: Low Fatigue

• Yellow: Moderate Fatigue

• Orange High Fatigue

• Red Critical Fatigue

A better representation is illustrated in E.

Table 6.6 summarizes, for each subject, the number of the last completed stage,
the corresponding DFA-α1 value, the DFA-α1 during the cool-down phase, the
resulting ∆α1 , the respective RPE values (at the end of the test and during cool-
down), and the self-reported fitness level obtained from the questionnaire. The
data in this table show that the cool-down (CD) phase results in a ≈ 87% error rate.
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Highlighted αCD values represent cases in which the cool-down DFA-α1 lies
outside the expected range for RPE values of 8 or 9 (the only values reported by
the subjects).

Highlighted StageNum cells indicate high performance levels, using 8 as the
threshold (>8).

Highlighted ∆α1 values represent cases where the difference exceeds 0.5, sug-
gesting a rapid autonomic recovery following intense exercise, a potential indicator
of good fitness.

Highlighted Fitness cells indicate subjects who self-reported a fitness level> 8.

Figure 6.19 provides a graphical representation of the corresponding table. No-
tably, it highlights that the majority of subjects (27 out of 30) exhibit DFA-α1

values outside the expected range during the cool-down phase.

Figure 6.18: DFA-α1 values vs RPE and Fatigue Classification
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Table 6.6: Last Stage and Cool Down:∆α, RPE

Subject StageNum αlast αCD ∆α RP ELast RP ECool Fitness

Candidate 1 9 0.666533768 1.3806251 0.714091333 10 8 8
Candidate 2 11 0.334891278 1.201579809 0.866688531 10 8 6
Candidate 3 11 0.504759432 1.2146616 0.709902168 10 8 8
Candidate 4 8 0.400748689 1.417679957 1.016931268 9 8 7
Candidate 5 14 0.398720231 1.046700696 0.647980464 10 9 8
Candidate 6 5 1.028254854 1.339334491 0.311079637 10 8 6
Candidate 7 5 1.070367408 1.365071873 0.294704465 10 9 6
Candidate 8 11 0.47641187 0.733594819 0.257182949 9 8 8
Candidate 9 10 0.506922572 1.095095467 0.588172895 10 8 8
Candidate 10 6 0.923950578 1.288608245 0.364657667 10 8 9
Candidate 11 5 0.697389517 1.043324339 0.345934821 8 8 6
Candidate 12 11 0.422909736 1.40897502 0.986065283 10 8 6
Candidate 13 12 0.182699128 1.174863121 0.992163993 10 8 8
Candidate 14 11 0.287809984 1.420887308 1.133077324 9 8 10
Candidate 15 8 0.511328079 1.43358863 0.922260551 10 9 7
Candidate 16 14 0.282542765 1.296825603 1.014282838 10 8 8
Candidate 17 10 0.288382058 1.079204476 0.790822419 10 8 8
Candidate 18 10 0.365381858 0.90001991 0.534638051 10 9 10
Candidate 19 9 0.298049461 1.232454737 0.934405276 9 8 7
Candidate 20 11 0.33398518 1.078155815 0.744170634 10 8 7
Candidate 21 8 0.522597339 0.817794888 0.295197549 9 8 7
Candidate 22 13 0.247225902 0.754502112 0.50727621 10 8 7
Candidate 23 7 0.579513922 0.56764964 -0.011864283 10 8 7
Candidate 24 15 0.261492118 0.282855324 0.021363207 10 9 7
Candidate 25 8 0.488275345 0.96560533 0.477329986 7 9 8
Candidate 26 10 0.463737367 1.091058489 0.627321122 9 8 7
Candidate 27 12 0.596992557 1.299303502 0.702310945 10 8 7
Candidate 28 7 0.741749849 1.047996386 0.306246537 8 9 7
Candidate 29 12 0.694460598 0.912788221 0.218327622 10 8 8
Candidate 30 13 0.139949575 0.395684693 0.255735119 10 8 6
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Figure 6.19: DFA-α1 values vs RPE During Cool-Down
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6.3.2 DFA-α1 Before and After Exercise
The following table 6.7 and figure 6.20, show DFA-α1 values before the test, during
the cool down phase, at the very beginning recovery phase (minute 0 to 3), successive
recovery part (minut 3 to 6) and the end of the recovery (minute 6 to 9).
It can be notice that for almost all the candidates the DFA-α1 at the end of the
last recovery phase rises with respect to DFA-α1 before test.

Figure 6.20: DFA-α1 values Before Test, Cool Down, Recovery (min. 0-3), Recovery (min. 3-6),
Recovery (min. 6-9)
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Table 6.7: DFA-α1 Values of candidates: Before Test, Cool Down, Recovery (min.
0-3), Recovery (min. 3-6), Recovery (min. 6-9)

Candidate Pre Test CD Recovery Recovery2 Recovery3
Candidate 1M 1.323 1.381 1.598 1.648 1.618
Candidate 2M 1.241 1.202 1.736 1.634 1.518
Candidate 3M 1.235 1.215 1.578 1.450 1.491
Candidate 4M 1.242 1.418 1.473 1.687 1.744
Candidate 5M 1.319 1.047 0.988 0.962 1.241
Candidate 6M 1.393 1.339 1.335 1.368 1.515
Candidate 7M 1.339 1.365 1.041 1.305 1.550
Candidate 8M 1.415 0.734 1.699 1.808 1.695
Candidate 9M 1.276 1.095 1.611 1.726 1.654
Candidate 10F 1.254 1.289 1.407 1.639 1.632
Candidate 11F 1.179 1.043 1.622 1.687 1.592
Candidate 12M 1.020 1.409 1.496 1.511 1.603
Candidate 13M 0.694 1.175 1.486 1.350 1.225
Candidate 14M 1.249 1.421 1.732 1.593 1.611
Candidate 15M 1.361 1.434 1.823 1.713 1.705
Candidate 16M 1.242 1.297 1.605 1.618 1.736
Candidate 17M 1.301 1.079 1.578 1.331 1.714
Candidate 18F 1.178 0.900 1.476 1.387 1.435
Candidate 19F 1.504 1.232 1.716 1.779 1.676
Candidate 20M 0.988 1.078 1.670 1.713 1.625
Candidate 21M 1.508 0.818 1.419 1.646 1.662
Candidate 22M 1.375 0.754 1.443 1.144 1.293
Candidate 23M 1.077 0.568 1.314 0.970 1.476
Candidate 24M 1.312 0.283 1.160 1.344 1.262
Candidate 25M 1.396 0.966 1.475 1.594 1.793
Candidate 26M 1.281 1.091 1.725 1.739 1.790
Candidate 27M 1.202 1.299 1.814 1.772 1.842
Candidate 28M 1.183 1.048 1.486 1.468 1.500
Candidate 29F 1.083 0.913 1.700 1.620 1.617
Candidate 30M 1.129 0.396 1.317 1.358 1.583
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Chapter 7

Discussion

7.1 Filter Application
As illustrated in Figure 6.1, the raw RR intervals (RRi) exhibit various artifacts
and instabilities caused by motion, detection errors, or sensor inaccuracies. These
disturbances can affect HRV analysis, making artifact correction a crucial pre-
processing step. To address this issue, the previously described filtering method
was applied to the data, aiming to remove artifacts while preserving physiological
variability.
The necessity of filtering is evident and further emphasized in the zoomed-in views
shown in Figures 6.3 and 6.4. These figures clearly illustrate how the filter effec-
tively identifies and corrects artifacts by substituting them with plausible
values, ensuring that the natural variability of the signal remains intact.

Figure 6.2 reveals a common trend among all subjects: a progressive
decrease in RRi during the exercise phase, followed by an increase during the
cool-down stage and a peak during the recovery phase. The consistency of this
pattern across different subjects suggests that the filtering process successfully
eliminates artifacts while preserving the physiological characteristics of the signal.

Also, Table 6.1 presents statistical measures, including the Standard Deviation
(Std), Mean, Coefficient of Variation (CV), total number of artifacts, and percentage
of artifacts for the entire RR signal. The standard deviation, which quantifies
data dispersion around the mean, systematically decreases for all subjects after
filtering. This decline highlights how raw data, which contains sudden changes and
wide artifacts, exhibited higher standard deviation. By removing these extreme
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instabilities, the filtering process produces a more stable signal, characterized by
lower standard deviation values. A similar interpretation applies to the Mean RRi
and CV, both of which decrease in the filtered signals. This systematic decline
confirms that artifacts have been effectively detected and corrected with
plausible values, reinforcing the reliability of the processed data for further HRV
analysis.

Figure 6.6 shows the total percentage of artifacts detected for each subject. Can-
didates exceeding the 2.5% artifact rate were considered outliers and excluded
from further analysis. This threshold was chosen based on the heatmap shown
in Figure 6.8, which highlights the distribution of artifacts across stages.
Notably, Candidate 11M exhibited artifact rates above 7% in six out of eleven
stages, suggesting a signal quality issue likely due to an improper fit of the heart
rate monitor, possibly related to a very lean body type. In contrast, Candidate
16M, despite a total artifact rate close to 2.5%, was retained because the artifacts
were limited to only two out of thirteen stages.

The heatmap thus proves essential not only for quantifying artifact presence
but also for evaluating their distribution, supporting the 2.5% threshold as a
robust criterion for data quality control.

The scatter plot in Figure 6.9 shows that, excluding Candidate11M (represented
in burgundy), all data points exhibit an artifact percentage with respect to the
total RR intervals below ≈ 0.9%, confirming the general high quality of the
collected RRi. Moreover, the plot reveals a general trend of slightly higher artifact
percentages during the “Sitting on Chair” and “Cool Down” stages, suggesting
these phases may be more prone to signal disturbances.

7.2 DFA Algorithm Application

7.2.1 DFA-α1 and RPE: A Reliable Marker of Fatigue

The results in Figure 6.10 prove an inverse relationship between DFA-α1

and RPE. As the exercise intensity increases, DFA-α1 gradually decreases, while
the subjective perception of effort (RPE) rises. This outcome confirms previous
research, showing that DFA-α1 can be used as an objective physiological indicator
of physical fatigue during exercise [71, 52].
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In the initial phase of the incremental exercise, DFA-α1 temporarily stabilizes
or slightly increases, due to the autonomic nervous system (ANS) adaptation
to an increasing metabolic demand. So, the rise at the very beginning stage is
explained by the well-balanced autonomic regulation.
After this phase, as exercise intensity rises, the sympathetic nervous system (SNS)
becomes progressively dominant, while PNS declines. This change is visible through
a gradual reduction in DFA-α1, describing a loss of self-similarity in RRi.
During high-intensity exercise, DFA-α1 drops below 0.75-0.5, showing an important
reduction of the HRV complexity. This phase aligns with the anaerobic threshold
(VT2), where the metabolic stress and fatigue become more evident [71, 35].

The evident inverse relationship between RPE and DFA-α1, suggests and sup-
ports the idea that DFA-α1 can be used as a non-invasive marker of fatigue.
The inverse of DFA-α1, presented in figure 6.11, offers a different visualization

that emphasizes the correlation between DFA-α1 and RPE.

7.2.2 Radial Plots: Another Visualization

The radial plots in Figures 6.12 and 6.13 illustrate the strong correlation between
RPE, DFA-α1, and HR during the incremental exercise. An invariant pattern
emerges across all subjects, showing that as exercise intensity increases, HR and
RPE rise, while DFA-α1 progressively declines.

The spiral pattern is even more evident in Figure 6.14, where all subjects
are represented together. The previously mentioned, ANS adaptation phase is
reflected by higher and more scattered DFA-α1 values, accompanied by low HR
and RPE. This variability is evident in the first half of the radial plot, highlighting
subject-specific autonomic responses.
As the exercise progresses and power increases, HR rises and RPE grows, signaling
a higher perceived effort. Consequently, DFA-α1 starts decreasing, reflecting a
progressive loss of complexity in heart rate variability (HRV) due to the increasing
dominance of the sympathetic nervous system (SNS). This shift is visible in the
second half of the radial plot, where data points become more concentrated and
DFA-α1 values tend to cluster at lower levels. This outcome reinforces the previously
discussed ANS adaptation hypothesis:
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• Initially, the body adapts efficiently to the increased workload, maintaining a
stable DFA-α1 with low HR.

• Later, as exercise intensity rises, DFA-α1 declines, becoming progressively
more concentrated as subjects approach higher effort levels.

Moreover, this spiral pattern further confirms that DFA-α1 is a reliable parameter
for fatigue detection, as it does not suddenly collapse, but, its gradual decline
throughout the exercise reflects the progressive accumulation of fatigue.[51, 53]

7.2.3 RPE and DFA-α1: General Remarks
The box plot of DFA-α1 and RPE (Figure 6.15) reinforces the trends previously
discussed, highlighting the gradually decline in DFA-α1 as RPE increases.
The red line at 0.75, recognized as aerobic threshold, corresponds predominantly
to RPE values greater than 8.
Interestingly, in the mid-range of RPE, particularly 4,7,8, DFA-α1 exhibits a
broader distribution. This variability can be attributed to two key factors:

• Inter-individual differences in fitness levels: Subjects with varying
levels of aerobic capacity may perceive exertion differently, leading to a wider
dispersion of DFA-α1 values.

• Uncertainty in RPE estimation: While at the extremes of effort (very
low and very high RPE values), individuals can more accurately assess their
perceived exertion, mid-range RPE values may be more challenging to self-
evaluate, contributing to the observed variability.

These two factors together suggest that RPE assessment in the middle stages of
the test is more subjective and less reliable.
Conversely, at the very beginning and towards the end of the test (RPE = 0,1,2,3
and 9,10), the range of DFA-α1 values appears more constrained, further supporting
its role as an objective, non-invasive marker for monitoring perceived fatigue.

In general, Figure 6.15 clearly highlights a progressive decline in DFA-α1 values
as RPE increases, suggesting that a fatigue classification can be meaningfully
derived from this result. To deepen this analysis, the distribution of RPE across
seven ranges of DFA-α1 was computed. As shown in Figure 6.16, values of DFA-α1

greater than 1.2 are predominantly associated with low levels of perceived
exertion (RPE 0 to 4).

62



Discussion

The mid-range of DFA-α1 appears more ambiguous or transitional, which is consis-
tent with the previous explanation. Still, a clear lowered trend in DFA-α1 emerges,
as RPE increases. Most notably, the highest RPE scores (9 and 10) are almost
exclusively associated with the lowest range of DFA-α1 (< 0.5).

These results prompted the development of Figure 6.17, which shows the per-
centage distribution of RPE levels across four broader DFA-α1 ranges, allowing
a practical interpretation of fatigue states. Based on the Borg Scale of perceived
exertion [47], the following categories are proposed:

• Slight exertion: 0 ≤ RPE ≤ 5 corresponding to low fatigue level.

• Moderate exertion: 6 ≤ RPE ≤ 7 corresponding to moderate fatigue level.

• Severe exertion: RPE = 8 corresponding to high fatigue level.

• Maximal exertion: 9 ≤ RPE ≤ 10 corresponding to critical fatigue level.

Based on the explained results, a classification that correlates DFA-α1, fa-
tigue level and RPE values is proposed.

Table 7.1: Summary of DFA-α1 and RPE Ranges for Fatigue Classification with
Corresponding Accuracy

DFA-α1 Range RPE Values Fatigue Classification Accuracy (%)
α1 > 1.15 0, 1, 2, 3, 4, 5 Low fatigue 75.893

0.85 < α1 ≤ 1.15 6, 7 Moderate fatigue 41.667
0.59 < α1 ≤ 0.85 8 High fatigue 29.412

α1 ≤ 0.59 9, 10 Critical fatigue 66.197

The classification boundary between moderate and high exertion is notably
borderline, reflecting the previously discussed difficulty in accurately selecting
the appropriate RPE value.
This observation is also reflected in the computed accuracy. The proposed classifi-
cation achieves an overall accuracy of 61.78%.
As shown in Table 7.1, the classificator performs well in identifying low and critical
fatigue levels (with accuracies of 75.893% and 66.197%, respectively), but shows
lower precision for the intermediate categories: moderate and high fatigue (with
accuracies of 41.667% and 29.412%, respectively). The lowest performance is
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observed for the high fatigue category (RPE = 8). Although this category
is based on a single RPE score, so it is more restricted, it is possible to draw
additional insights from the analysis in Table 6.6:

• 20 out of 23 DFA-α1 values associated with RPECD = 8 fall outside the
range defined by the proposed classification.

• Considering RPE=8,9, the values out of the classification rise to 26/30.

• Subjects with higher self-reported fitness levels exhibit ∆α1 values greater
than 0.5 between the last stage and the cool-down phase.

These observations suggest that the CD phase negatively impacts the accu-
racy of the suggested classification.
In particular, subjects with higher fitness levels tend to experience a rapid in-
crease in DFA-α1 within just 3 minutes post-exercise, with differences ranging
from 0.5 to 1.13 between the last active stage and the cool-down. This points to a
fast autonomic recovery following intense effort.
While DFA-α1 increases significantly, RPE values remain elevated, highlighting
a disconnect between subjective perception and physiological recovery,
especially in well-trained individuals.
This emphasizes the limitations of RPE as a reliable fatigue indicator during the
cool-down phase.

When excluding the CD phase from the classification and recomputing the
accuracy, the overall performance improves to 65.54%

Moreover, it is important to highlight a notable discrepancy between the official
Borg scale classification proposed by Jakobsen et al. and the experimental classi-
fication introduced in this study. Specifically, while RPE = 5 is categorized as
"severe" exertion in the original scale, it is considered part of the low fatigue
range in the proposed model.
This divergence can be attributed to the previously discussed adaptive behavior
of the ANS. Although subjects may begin to perceive increased effort at this
stage, the ANS appears to be adapting without a substantial decline in complexity.
These findings further underscore the importance of incorporating an objective
physiological marker, such as DFA-α1, to enhance the accuracy and robustness of
fatigue assessment.
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For the sake of completeness, Figure 6.18 illustrates both the strengths and
limitations of the classification model.

Subjects M6 and M7, are always classified within the low fatigue zone, with no
transitions to higher fatigue levels. This could be attributed to their relatively
low training status, suggesting that the classifier may not be fully accurate for
individuals with lower fitness levels.
Conversely, subject F30 presents unusually low DFA-α1 values during the entire
test. Starting from the warm-up phase, all DFA-α1 values remain below 1.15, not
allowing a distinguishable classification for this subject.

Overall, the figure reveals that for many participants, an RPE of 5 appears
to mark a transitional point between low/moderate or low/high fatigue. As the
incremental protocol progresses, most subjects finally reach the critical fatigue
level by the end of the test.

The presented classification agrees with findings in the existing literature, where
high DFA-α1 values are typically associated with resting or non-exertional states,
while the threshold around 0.75 has been linked to the aerobic threshold and 0.5
indicates a transition to uncorrelated fluctuations, indicating high efforts.[35, 51].

7.2.4 DFA-α1 Before and After Test
Figure 6.20 shows values of DFA-α1 before test, during cool down, and after re-
spectively 3,6,9 minutes of recovery.

In recovery phase, an important increment is shown leading to higher values
with respect to rest.

This result is confirmed by previous research, [72], where was studied the ANS
during the recovery phase after single and multiple Wingate tests. Millar et al.,
obtained higher DFA-α1 values immediately after exercise.

A similar result was obtained by Casties et al., whose studied different HRV
indicators, including DFA-α1, during and after an incremental exercise. The re-
covery phase takes into account up to 60 minutes after the end of the exercise. In
particular, during the firstly 10 minutes of recovery, it is highlighted an important
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rise in DFA-α1, higher than the value at rest. After 60 minutes, DFA-α1 value
returns closely to the rest one. The author explains that, in the first 10 minutes of
recovery, the heart and autonomic nervous system go through a readjustment phase
after intense exercise, which can temporarily disrupt normal heart rate variability.

The same outcome is shown in another study of Gronwald et al., explaining
that after intense exercise, the body may over-activate the parasympathetic sys-
tem, the so-called supercompensation, to compensate for the autonomic stress
experienced and stimulate recovery.

These studies clearly explain why some subjects show higher DFA-α1 post-
exercise compared to pre-exercise.
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Chapter 8

Conclusions

8.1 Summary of Results
The results obtained from applying Detrended Fluctuation Analysis (DFA) to
Heart Rate Variability (HRV) during the designed incremental test demonstrate
that DFA-α1 progressively decreases as exercise intensity increases. This
reduction correlates with a rise in subjective fatigue, as measured by the Rating
of Perceived Exertion (RPE). At the heart of this physiological response is the
dominance of the sympathetic nervous system (SNS) during exercise, leading to a
loss of auto-correlation of the HRV, with the subsequent DFA-α1 decrease
supporting results of previous studies [71],[35],[51]. Additionally, at the onset of
exercise, many subjects exhibited a temporary increase in DFA-α1, likely due to
the autonomic nervous system (ANS) adaptation, before the above-mentioned,
shift towards sympathetic activation.

During the recovery phase, it was observed a super-compensation phenomenon.
This phenomenon is characterized by the excessive parasympathetic nervous system
(PNS) activation, which is reflected with a momentaneous peak in DFA-α1.
This effect was already discussed in previous studies [72],[73],[71], and it highlights
the interplay between autonomic nervous system dynamics and exercise-induced
stress.

Such results confirm DFA-α1 as a reliable marker of autonomic recovery
and organismic demand, in line with previous research [52]. They also support
its utility in assessing exercise-induced fatigue, as demonstrated in recent stud-
ies [63, 52, 53, 54].
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A classification model was proposed by relating DFA-α1 ranges with RPE
values, specifically adapted to physical exertion in sports. Four fatigue levels
were identified (low, moderate, high, and critical) each corresponding to specific
ranges of both DFA-α1 and RPE. The model achieved an overall accuracy of
61.8%, with particularly strong performance in detecting low (75.9%) and critical
(66.2%) fatigue. In contrast, classification accuracy for moderate and high fatigue
(the mid-range), was lower, at 41.7% and 29.4% respectively.

The reduced performance in the mid-range of exertion may reflect inter-
individual variability in fitness and the inherent subjectivity of RPE
scoring. In these zones, autonomic responses and perceived effort can diverge,
highlighting the importance of incorporating other objective markers.

An important observation was the role of the cool-down phase. When in-
cluded in the classification, this phase introduced mismatches between DFA-α1

and RPE, especially in trained individuals who exhibited rapid autonomic recovery.
The analysis shows that during this phase, only two RPE values are reported: 8
and 9. Among the 30 subjects, 26 present DFA-α1 values outside the proposed
classification range, resulting in an error rate of ≈ 87% for this phase. Excluding
the CD phase led to an improvement in model accuracy, increasing it to 65.5%.

Moreover, some inconsistencies emerged when comparing the proposed model
to the original Borg scale. In particular, RPE = 5, typically considered "severe"
in literature, was classified as low fatigue in this model, an outcome explained
by the adaptive behavior of the autonomic nervous system. In particular,
outcomes highlight that for this experiment, for the majority of subjects, RPE=5
indicates a transitional point between low fatigue and moderate/high fatigue.

Finally, individual fitness level played a key role: subjects with higher fitness
tended to show faster recovery and greater ∆α1 between the final exercise stage
and the CD phase. This supports the potential of DFA-α1 not only as a marker of
acute fatigue, but also as an indicator of recovery capacity and overall fitness
level.

An essential aspect of this analysis is the pre-processing analysis. By the
application of the filter on the RRi, was guaranteed integrity and reliability in
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HRV analysis. Although artifact presence was slightly higher during low-intensity
phases such as "Sitting on Chair" and "Cool Down", the overall signal quality
remained high across all stages. However, due to sensitivity of DFA to signal
fluctuations, employing a filter capable of preserving physiological variability was
crucial to maintain the validity and accuracy of the analysis.

Moreover, the results demonstrate that the designed exercise protocol was
effective, generating outcomes that align with the study’s initial hypothesis.
Specifically, the protocol successfully induced cardiorespiratory exhaustion, as
originally intended and confirmed by the observed data.

8.2 Limits of the Study and Purpose for the Fu-
ture

Although DFA-α1 has been validated as a reliable method for fatigue detection, the
results of the proposed classification model, while acceptable, especially considering
that it relies exclusively on DFA-α1 and the inherently subjective RPE scale, still
reveal some important limitations that should be handled in future research.

Indeed, one limitation concerns the use of RPE. While it is a valuable tool
for assessing subjective fatigue, it remains an inherently self-reported metric,
introducing inevitable limitations. Participants may have overestimated or un-
derestimated their fatigue levels, as shown in the middle stages of the test. In
particular, to enhance the accuracy of the proposed classification in the transitional
zone, it is recommended to merge additional objective markers, such as lactate
thresholds or muscle oxygenation levels. Combining these physiological indicators
with the subjective RPE and other techniques such as machine learning, would
allow for a more precise and reliable classification of exertion, especially in the
intermediate intensity range.

Another limitation concerns the recovery period. As shown in the results, a
clear peak in DFA-α1 was observed during this phase, likely due to the previously
discussed supercompensation effect. For future studies, it would be advantageous
to extend post-exercise monitoring to determine how long it takes for DFA-α1

to return to baseline values. This would provide valuable insights into recovery
dynamics and help refine strategies for fatigue management.
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Then, sports domain was chosen as the testing field, as it allows for a controlled
induction of fatigue. However, real-world workplace conditions differ, as
they involve lower-intensity but prolonged physical demands and additional
environmental stressors. Future studies should further explore occupational
settings, where fatigue accumulates gradually over extended periods rather than
occurring acutely, as in high-intensity exercise scenarios. So, from a methodological
point of view, for future studies in occupational settings, it may be beneficial
to incorporate DFA-α2 analysis, which accounts for longer-range correlations,
offering a more comprehensive understanding of autonomic fluctuations over ex-
tended durations. Furthermore, expanding HRV analysis metrics could further
improve the accuracy and reliability of fatigue detection.

Lastly, a significant limitation of this study was the underrepresentation of
female participants, mainly due to recruitment challenges. Future research would
benefit from a more heterogeneous dataset.

In summary, while this study represents an important initial step in exploring
non-linear HRV analysis for fatigue assessment, further research is needed to
validate these findings in occupational settings. The integration of advanced
analytical techniques and a more diverse participant pool will be important in
advancing this field and useful for developing even more reliable and personalized
monitoring systems with possible applications in both sports and workplace safety
fields.
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Appendix A

Informed Consent Form

Informed consent for the study on the monitoring of physiological signals during
an incremental physical fatigue test on a stationary bike

STUDY

The aim of this study is to monitor physiological signals, such as electrocardiogram
(ECG) and photoplethysmography (PPG), to gather information on parameters
such as heart rate, respiratory rate, and other indicators of fatigue. The goal is to
collect data to develop and improve an advanced algorithm capable of detecting
levels of physical fatigue across individuals of different ages, genders, and fitness
levels. To achieve this, the acquired data will be correlated with the information
provided voluntarily by participants through three pre-test questionnaires: a sleep
quality and quantity questionnaire, a stress level questionnaire, and a physical
activity level questionnaire.
This combination of objective measurements and self-reported data will facilitate
the development of an algorithmic model capable of accurately detecting varying
levels of physical fatigue in different contexts.

METHOD

The physiological signals from participants will be recorded using three devices: a
commercial smartwatch worn on the wrist (Garmin Venu), a chest strap for ECG
measurement (Polar H10), and an armband for PPG measurement (Polar OH1+).
Additionally, the test will be conducted using a stationary bike (Tacx Neo Bike
Plus) that allows for incremental power adjustments.
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Informed Consent Form

Participants are required to follow certain guidelines prior to the test:

• Avoid caffeine intake in the 12 hours preceding the test. If consumed, partici-
pants must specify the time of consumption.

• Refrain from eating in the hour prior to the test and report any food intake
within the past three hours.

• Indicate whether they are smokers and if they have smoked or consumed
alcohol within the last 24 hours.

If the test is conducted around lunchtime, participants will be provided with a
glass of water and sugar before the test begins to prevent hypoglycemia.
Upon arrival at the study site, participants will be required to wear the previously
mentioned monitoring devices. At this point, data collection will begin, and partic-
ipants will be asked to complete the three aforementioned questionnaires (sleep
quality, stress level, and physical activity level) and to perform the Psychomotor
Vigilance Task (PVT), a 5-minute test to assess attention and reaction time.
This preliminary phase, including the questionnaires and the PVT, lasts approxi-
mately 20 minutes.
Following this, participants will sit on the stationary bike for a 5-minute adaptation
period before commencing the main test.
The test consists of an initial warm-up phase of 5 minutes, followed by a gradual
increase in power every 3 minutes, continuing until the participant reaches their
fatigue limit or decides to stop due to discomfort or fatigue.
It is emphasized that participants may choose to stop the incremental test at any
time due to fatigue or any other discomfort.
After completing the incremental test, a 3-minute cool-down phase at a low intensity
follows.
During each incremental stage, participants will assess their perceived fatigue using
a subjective scale from 0 to 10, known as the Rating of Perceived Exertion (RPE)
scale.
After the cool-down phase, participants will engage in a recovery phase lasting
approximately 10 minutes. During this time, once their normal breathing has
resumed, they will perform the PVT again and provide a final assessment of their
perceived exertion using the RPE scale.
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Informed Consent Form

RISKS

As with any physical exercise, there are potential risks associated with this test.
These may include abnormal blood pressure, fainting, irregular heart rhythm (either
accelerated or slowed), and in rare cases, heart attack, stroke, or death. Every effort
will be made to minimize these risks by evaluating the participant’s preliminary
health and fitness information and carefully observing them during the test.
Under normal conditions, participants may experience temporary discomfort in
breathing and/or muscle soreness (especially in the quadriceps), similar to what one
might feel during or after intense physical activity such as running, gym workouts,
or other strenuous exercise.
Please note that no medical personnel will be present during the test.
Based on the information provided regarding your health status and risk level, the
laboratory reserves the right to cancel the exercise test if it is deemed unsafe.

RESPONSIBILITIES OF THE PARTICIPANT

The information you have regarding your health or any previous experiences of
exercise-related or cardiac symptoms (such as shortness of breath during low-
effort activities, pain, pressure, tightness, or heaviness in the chest, neck, jaw, back,
and/or arms) may impact the safety of your test. It is crucial that you communicate
these details.
Promptly reporting any unusual symptoms or sensations during the test is of great
importance. Any symptoms considered abnormal must be reported immediately.
You are responsible for disclosing your medical history and any symptoms that
may arise during the test.
Additionally, you are required to report all medications taken recently, particularly
those taken on the day of the test.

POTENTIAL BENEFITS FOR THE PARTICIPANT

Participating in this study will offer you the opportunity to receive a detailed
analysis of your physical condition, with particular emphasis on aerobic capacity.
During the test, key physiological parameters such as heart rate, respiratory rate,
and other fatigue indicators will be monitored. This data will provide a thorough
evaluation of your response to exercise, allowing you to gain valuable insights for
optimizing your training regimen or monitoring your general health status.
Furthermore, direct involvement in this research may enhance your awareness of
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your physical capabilities. This heightened awareness could translate into increased
motivation to improve your athletic performance, leading to positive impacts on
overall quality of life and promoting a healthier, more active lifestyle.

POTENTIAL BENEFITS FOR SOCIETY

By participating in this research, you contribute significantly to scientific progress
in the field of physical fatigue detection. The data collected and results obtained
may help in the development of advanced algorithms for the early detection of
fatigue. In the future, such algorithms could have a significant impact on various
sectors of society, aiding in the prevention of accidents and enhancing safety in
high-risk work environments. Specifically, this technology could be used to monitor
fatigue in professions that require high levels of attention and physical endurance,
where an error due to fatigue could have serious consequences for the worker and
those nearby. Examples include truck drivers, operators of heavy machinery, and
other critical occupations. Integrating fatigue detection systems in these settings
could help reduce the risk of accidents caused by fatigue and improve working
conditions, with benefits potentially extending to the entire community.
Your involvement, therefore, not only enriches scientific research but also promotes
the development of innovative solutions with positive effects on safety and quality
of life.

QUESTIONS FROM THE PARTICIPANT

You are encouraged to ask any questions regarding the test procedures or test
results.

USE OF DATA

All information collected for this test will be treated as confidential and safeguarded.
However, the data may be used for statistical analysis or scientific purposes and
subsequently published in an anonymous form, ensuring your right to privacy is
maintained.
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INCIDENTAL FINDINGS
Data analysis may occasionally reveal anomalies in the parameters measured during
the study.
If you are interested, you may choose to be informed of such findings.

A.1 Informed Question: To signature
I, the undersigned principal investigator, , hereby declare that I have
clearly and comprehensively informed the volunteer, , about the ob-
jectives, methods, potential consequences, and possible risks associated with this
study. Furthermore, I confirm my availability to provide the participant with any
additional clarification or information needed.
Turin, .
Signature of the principal investigator ..

VOLUNTARY CONSENT
I, the undersigned volunteer, , born on in

residing at hereby declare:

• I am fully aware and capable of making autonomous decisions.

• I have carefully read and understood this document, including the test proce-
dures, potential risks, and associated discomforts.

• I have received clear and satisfactory answers to all additional questions posed
to the study coordinator.

• I am participating in this study voluntarily and without any coercion.

• I am aware of my right to withdraw from the test at any time, without needing
to provide an explanation and without any negative consequences.

• I will disclose any pre-existing medical conditions, including chronic illnesses
or diseases, of which I am aware prior to the test.

• I will inform the study coordinator of any medications, supplements, or
substances recently taken. I commit to promptly reporting to the staff any
unusual symptoms or discomforts experienced during the test.
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• I acknowledge that there will be no supervising physician present on-site
during the test.

• I confirm that all information has been provided clearly and comprehensively,
and that I have had sufficient time to consider my participation.

Therefore, I voluntarily consent to participate in the study:
□ Yes
□ No
I consent to the collection, storage, reuse and publication of my data (anonymously
and while safeguarding your privacy):
□ Yes
□ No
If anomalies are found in my physiological parameters during data analysis, I wish
to be informed: □ Yes
□ No
In accordance with Legislative Decree N°196/03 (Articles 7 and 13) concerning
the protection of personal data, you are informed that your personal data will
be collected and stored appropriately and will be used exclusively for scientific
research purposes. Storage and data processing procedures will be followed to
prevent individuals outside our research group from associating your name with
the data.
Turin,
Signature of the volunteer
Signature of the principal investigator
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Appendix B

Sleep Questionnaire

Personal Information

1. ID (Name and Surname or Nickname):

2. Age:

3. Sex: □ M □ F □ Other

4. Weight (kg):

5. Height (cm):
Medication and Health Conditions

6. Do you take medications for hypertension?
□ Yes □ No
If yes, which ones?

7. Do you take medications for other heart
problems (e.g., antiarrhythmics, digoxin)?
□ Yes □ No
If yes, which ones?

8. Do you take medications for insomnia and
anxiety (e.g., tranquilizers, hypnotics, anx-
iolytics)?
□ Yes □ No
If yes, which ones?

9. Are you currently taking allergy medica-
tions (e.g., antihistamines)?
□ Yes □ No
If yes, which ones?

10. Do you have a pacemaker?
□ Yes □ No

11. Do you take other medications regularly?
□ Yes □ No
If yes, which ones?
Timing and Characteristics of Sleep

12. Do you use a CPAP (Continuous Positive
Airway Pressure) device?
□ Yes □ No
If yes, what pressure is set?

13. How much coffee do you drink per day?

14. How much alcohol do you drink per day
(or per week)?

15. What time do you go to bed on weekdays?
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Sleep Questionnaire

16. What time do you usually go to bed at the
weekend?

17. How long does it take for you to fall asleep
once you go to bed?
□ Less than 10 minutes
□ Between 10 and 30 minutes
□ More than 30 minutes

18. What time do you usually wake up on
working days?

19. What time do you usually wake up at the
weekend?

20. Do you wake up during the night?
□ No, never or almost never
□Yes, every night at least once
□ Yes, every night at least twice

21. When you sleep next to another person,
do they report that you snore?
□ Yes, every night
□ Yes, but only under certain circum-
stances
□ No, never
□ I don’t know

22. If you snore only under certain circum-
stances, specify:

23. When you sleep next to another person,
do they report that you have sleep apnea?
□ Yes, every night
□ Yes, occasionally
□ No, never
□ I don’t know

24. When you sleep next to another person,
do they report that you move a lot?
□ Yes, often

□ Yes, occasionally
□ No, never
□ I don’t know

25. How often do you feel tired or fatigued
after sleeping?
□ Almost every day
□ 2-3 times per week
□ Never or almost never
□ I don’t know
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Sleep Questionnaire

Epworth Sleepiness Scale (ESS) Rate
your tendency to fall asleep in the follow-
ing situations (0-3 scale): 0 = Never, 1 =
Slight chance, 2 = Moderate chance, 3 =
High chance

26. Sitting and reading
0 1 2 3

27. Watching TV
0 1 2 3

28. Sitting, inactive, in a public place (e.g., in
a meeting, theater, or conference)
0 1 2 3

29. As a passenger in a car for an hour or more

without stopping for a break
0 1 2 3

30. Lying down to rest when circumstances
permit
0 1 2 3

31. Sitting and talking to someone
0 1 2 3

32. Sitting quietly after a meal without alco-
hol
0 1 2 3

33. In a car, while stopped for a few minutes
in traffic or at a light
0 1 2 3
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Appendix C

Physical Activity Questionnaire

Personal Information

1. ID (Name and Surname or Nickname):

2. Age:

3. Sex: □ M □ F □ Other
Physical Activity Level

4. How many years have you been practicing
physical activity regularly?
□ Less than 1 year
□ 1-2 years
□ 3-5 years
□ More than 5 years
□ I am not practicing regularly

5. How many days a week do you practice
physical activity (on average)?
□ 0 days
□ 1-2 days
□ 3-4 days
□ 5 or more days

6. What kind of physical activity do you do
regularly? (Select all that apply)

□ Cycling
□ Running
□ Gym (weight training, strength train-
ing)
□ Swimming
□ Football
□ Tennis
□ Something else:

7. What is the average length of your work-
outs?
□ Less than 30 minutes
□ 30-60 minutes
□ 60-90 minutes
□ More than 90 minutes

8. What intensity do you usually train with?
□ Light (e.g., light walking, stretching)
□ Moderate (e.g., jogging, moderate cy-
cling)
□ High (e.g., intense cycling, fast running,
intense strength training)
□ Very high (e.g., competitive level, com-
petitions and competitive training)
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Physical Activity Questionnaire

Work Activity and Sedentary Behav-
ior

9. Does your work require significant physi-
cal exertion?
□ Yes, my job is physically demanding
(e.g., laborer, manual worker)
□ Moderately, sometimes I do physical ac-
tivity (e.g., teacher, salesperson)
□ No, my work is mainly sedentary (e.g.,
office, computer work)

10. How many hours do you spend sitting on
average each day (work and leisure)?
□ Less than 2 hours
□ 2-4 hours
□ 4-6 hours
□ More than 6 hours
Current Physical Condition and Re-
covery

11. Do you use active transportation (walking
or cycling) to get around during the day?
□ Yes □ No

12. Have you consumed alcohol in the last 24
hours?
□ Yes □ No
If yes, how many hours ago?

13. Have you eaten in the last 3 hours?
□ Yes □ No
If yes, specify if it was a full meal or a
snack:

14. Do you smoke?
□ Yes □ No

15. Did you smoke in the last 24 hours? If yes,
when?

16. Did you drink coffee today?
□ Yes □ No
If yes, how many hours ago?

Physical Fatigue and Perceived Ef-
fort

17. Did you do intense training yesterday or
in the previous days?
□ Yes, yesterday I carried out intense
training
□ Yes, yesterday I did a workout, but not
particularly intense
□ No, I didn’t train in the previous days

18. How are you feeling physically today?
□ Physically tired
□ Slightly physically tired
□ Rested
□ Energetic

19. Do you have muscle or joint pain right
now?
□ Yes, significant
□ Yes, slight
□ No, I feel good

20. How long does it take you to fully recover
following intense training?
□ Less than 12 hours
□ 12-24 hours
□ More than 24 hours

21. During usual physical activities (such as
walking or taking the stairs), how often do
you feel fatigue?
□ Never, I can do more than 5-10 floors
without feeling fatigue
□ Rarely
□ Often, after 2 floors of stairs I feel the
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fatigue
□ Always
Perceived Effort Scale (0-10)

22. How much effort do you perceive in your
usual physical activities?
0 1 2 3 4 5 6 7
8 9 10

Personal Sports Data (if known)

23. How do you rate your ability to withstand
physical fatigue during intense activities?
1 2 3 4 5

24. How do you rate your overall fitness level
on a scale of 1 to 10?

1 2 3 4 5 6 7 8
9 10

25. Do you know your FTP (Functional
Threshold Power)? If yes, what is it?

26. Have you ever done tests to measure your
VO2 max and Anaerobic/Aerobic Thresh-
old? If yes, when? What were the results?

27. Do you know your maximum heart
rate (HRmax)? If yes, what is it?
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Appendix D

Perceived Stress
Questionnaire
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Perceived Stress Questionnaire

# Question Never Rarely Sometimes Always

1 You feel rested □ □ □ □

2 You feel calm □ □ □ □

3 You are doing things you like □ □ □ □

4 You are full of energy □ □ □ □

5 You feel safe and protected □ □ □ □

6 You enjoy yourself □ □ □ □

7 You are lighthearted □ □ □ □

8 You have enough time for yourself □ □ □ □

9 Too many demands are being made on you □ □ □ □

10 You are irritable or grouchy □ □ □ □

11 You have too many things to do □ □ □ □

12 You feel lonely or isolated □ □ □ □

13 You find yourself in situations of conflict □ □ □ □

14 You feel tired □ □ □ □

15 You fear you may not manage to attain your
goals

□ □ □ □

16 You have too many decisions to make □ □ □ □

17 You feel frustrated □ □ □ □

18 You feel tense □ □ □ □

19 Your problems seem to be piling up □ □ □ □

20 You are in a hurry □ □ □ □

21 You have many worries □ □ □ □

22 You are under pressure from other people □ □ □ □

23 You feel discouraged □ □ □ □

24 You are afraid for the future □ □ □ □

25 You are doing things because you have to
not because you want to

□ □ □ □

26 You feel criticized or judged □ □ □ □

27 You feel mentally exhausted □ □ □ □

28 You have trouble relaxing □ □ □ □

29 You feel loaded down with responsibility □ □ □ □

30 You feel under pressure from deadlines □ □ □ □

Table D.1: Perceived Stress Questionnaire (Likert Scale 1-4)
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Appendix E

Individual Subject Plots

This appendix offers a more transparent visualization of the plots for all subjects,
facilitating the interpretation of individual data. Legends are explained in the
thesis.
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Individual Subject Plots

Figure E.1: DFA-alpha1 vs RPE and Power Stages: 1-15
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Individual Subject Plots

Figure E.2: DFA-alpha1 vs RPE and Power Stages: 16-30
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Individual Subject Plots

Figure E.3: DFA-alpha1 vs RPE and Fatigue Classification: 1-15
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Individual Subject Plots

Figure E.4: DFA-alpha1 vs RPE and Fatigue Classification: 16-30
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