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Abstract

Understanding the free energy landscape is a fundamental step for understanding the
thermodynamics and kinetics of complex molecular processes such as phase transitions,
conformational changes, and chemical reactions. Traditional molecular dynamics simu-
lations, however, are often limited by the difficulty of sampling rare-event due to high
free-energy barriers. To address these challenges, accelerated simulation techniques em-
ploying biasing forces have been developed, though they can pollute the estimation of
the underlying unbiased free energy profiles.

In this work, we introduce a novel inference framework that reconstructs unbiased
free energy landscapes directly from biased simulation data. Our approach employs
an overdamped Langevin model and exploits a Bayesian maximum likelihood estima-
tion strategy to accurately determine the drift and diffusion parameters governing the
system’s effective dynamics. The methodology is systematically validated using a se-
ries of benchmark toy models, including both one and two dimensional double-well
potentials under unbiased and biased conditions. Results show that when an optimal
collective variable is chosen, the framework successfully recovers the true free energy
landscape; conversely, suboptimal projections lead to noticeable inaccuracies, under-
scoring the critical role of variable selection. This work not only enhances the efficiency
of free energy estimation from biased simulations but also provides a robust tool for ex-
tracting detailed thermodynamic and kinetic insights, with potential applications across
biophysics, chemistry, and materials science.

Keywords

Bayesian Inference, Stochastic Processes, Langevin Equation, Free Energy estimation,
Molecular Dynamics

2



Contents

1 Introduction 4

2 Theoretical Setting 6
2.1 Langevin Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Bayesian criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Maximum Likelihood Inference . . . . . . . . . . . . . . . . . . . . 9

2.3 Addition of biasing forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Adiabatic Bias Molecular Dynamics . . . . . . . . . . . . . . . . . . 9

3 Simulation and Analysis Methods 11
3.1 The F.O.L.I.E. Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Models of statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Elerian method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Kessler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Drozdov method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Reconstructing the Free Energy Landscape . . . . . . . . . . . . . . . . . . 15
3.3.1 Reconstructing the Free Energy Landscape from biased trajectories 16

4 Toy models 17
4.1 Unbiased 1D Double Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Estimation of Free energy and diffusion constants . . . . . . . . . 18
4.2 Biased 1D Double Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Estimation of Free energy and diffusion constants . . . . . . . . . 20
4.3 2D Double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Application of bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Estimation of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusions 27

References 28

3



Chapter 1
Introduction

In the field of atomistic computer simulations, in particular concerning rare events in
biochemistry such as phase transitions, conformational changes or chemical reactions,
scientists are often interested in predicting the underlying free energy landscapes of the
process under exam.

A well suited tool to perform this kind of analysis is Molecular Dynamics (MD) sim-
ulations since they are able to sample metastable states, transitions and fluctuations [10].
However, especially in activation processes where a high-energy barrier has to be over-
come, the simulation might end up being stuck in a local energy minimum. In order to
escape such local minima simply by thermodynamical fluctuation, it is necessary to run
the simulation for an extremely long time. Hence, it is very challenging to ergodically
sample the entire energy landscape basing solely on trajectory data, for this reason some
accelerated simulation techniques such as umbrella sampling [12] are employed; these
techniques allow one to artificially lower free energy barriers adding ad hoc potentials,
increasing thermodynamical fluctuation sizes via temperature increase or to steer the
direction of the simulation exploiting fictitious forces.

Unfortunately the free energy landscape is often a highly dimensional and rarely
known a priori function, which brought the community to investigate and try to recon-
struct such free energy landscapes along a few selected Collective Variables (CV), chosen
to be the most representative for the problem under analysis.

Choosing an optimal collective variable to describe the state of the system is a hard
task, for instance, one might appreciate a CV that takes clear different values in different
phases, thus acting as a metric or order parameter [7] in the evolution of the simulation
itself.
Concerning dynamical aspects [3] it is sufficient to require it to obey an effective Langevin
equation (see sec(2.1)).
The team of Fabio Pietrucci, our collaborator at IMPMC, Sorbonne Université, laid the
foundation of this work [8], [9]. They inferred the drift and diffusion terms of an effec-
tive overdamped Langevin equation starting from some Molecular dynamics trajectories
and randomly changing this two parameters, accepting the new proposed drift and dif-
fusion if those lead to an increase of the likelihood function (see Sec. 2.2 ) according to
a Metropolis - Monte Carlo criterion.
Although effective, the above described method turns out to be very inefficient in terms
of computational cost and most importantly it was applicable only in unbiased simula-
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5

tions therefore not relying on the different acceleration techniques [10] available nowa-
days to sample bigger regions of phase space in a smaller amount of time.
To tackle this problem the following work will implement a new methodology to per-
form more efficiently the same estimation.
In particular the method used aims at updating the drift and force of the considered
Langevin model (see Sec.2.1) in order to reach ever-increasing values of likelihood of
the transitions observed in the data.
To do so we first calculate the Jacobian (gradient) of the likelihood with respect to the
input parameters, then the value of the parameters themselves are updated according
to a gradient descend algorithm of the likelihood profile, in contrast with the previous
method [9] who relied on random changes in the force and diffusion parameters.
In addition to this framework the presence of biasing forces is considered, such forces
are meant to accelerate the simulation, allowing for the exploration of further regions
of phase space. The effect of such additional (biasing) forces translates into a correction
term to the likelihood of the transition step. This consideration allows for the reconstruc-
tion of the underlying free energy landscape, provided that sufficient data is available
in the explored region of the phase space.



Chapter 2
Theoretical Setting

The phase space of the system under analysis is Θ(⃗x, p⃗), with Dim
(
Θ(⃗x, p⃗)

)
= 2N, the

Energy landscape is described by the function U(⃗x, p⃗) and the time evolution of the
dynamical variables x⃗ = (x1, x2, ..., xN) and p⃗ = (p1,p2, ...pN) is dictated by
Hamilton’s Equations: ẋi =

∂U(x⃗,p⃗)
∂pi

ṗi = −
∂U(x⃗,p⃗)

∂xi

The partition function of the system Z is the following

Z = e−βA =

∫
e−βU(x⃗,p⃗)dx⃗dp⃗

with A = −β−1log(Z) being the corresponding Free Energy.
We are interested in a projection onto a different space Ω(q⃗) of far lower dimension,
namely Dim

(
Ω(⃗x, p⃗)

)
= M << N.

This is done to reconstruct the kinetics and thermodynamics of a process that is well-
described by the set of collective variables q⃗ = {q1 . . .qM}, chosen to be a function of the
dynamical variables {⃗x, p⃗} themselves, i.e. qi = ξi(x1...xN,p1...pN).
In this M-dimensional manifold the relative Free Energy will be obtained integrating
the Boltzmann weight, imposing q⃗ = ξ⃗(x1...xN,p1...pN)) while computing the partition
function, obtaining the relative equilibrium probability density

ρeq(q⃗) =

∫
e−βU(x⃗,p⃗)δ(q⃗− ξ⃗(x1...xN,p1...pN)))dx⃗dp⃗

Then the logarithm of this expression returns the desired Free Energy A(q⃗):

A(q⃗) = −
1
β
log

{∫
e−βU(x⃗,p⃗)δ(q⃗− ξ⃗(x1...xN,p1...pN)))dx⃗dp⃗

}
The dynamics in this lower dimensional projected space is no more described Hamil-
ton’s equations but by an effective Langevin Equation [7] instead.
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2.1. LANGEVIN MODELS 7

To recap, the main shift in perspective consist in :

Θ(⃗x, p⃗) −→ Ω(q⃗)

High dimensional Low dimensional

Hamilton’s Equations −→ Effective Langevin Model

(Deterministic) (Stochastic)

In the following only unidimensional Langevin equation is considered :

2.1 Langevin Models

Restricting ourselves to a single generalised coordinate q with associated momentum
p = mq̇ the set of possible Langevin equations one can get [8] is the following :

• Generalised Langevin Equation

ṗ = −
∂A(q)

∂q
−

∫∞
0

dsΓ(s)p(t− s) + R(t) (2.1)

that, if written explicitly in the q variable, making use of the fact that p = mq̇ it
reads:

mq̈ = −
∂A(q)

∂q
−m

∫∞
0

dsΓ(s)q̇(t− s) + R(t)

where A(q) is the free energy landscape in which the dynamics takes place and
Γ(s) is a memory kernel, a time dependent function describing the correlation of
the velocity at time t with itself at a previous time t − s and R(t) is a random
force, relate to the memory kernel according to the fluctuation-dissipation theo-
rem ⟨R(0)R(t)⟩ = kBTmΓ(t).

• Standard Langevin Equation

Restricting ourselves to the case of delta-correlated velocities Γ(s) = γδ(s) implies
⟨R(0)R(t)⟩ = kBTmγδ(t) which is fulfilled by a random force of the kind

R(t) =
√

2kBTmγη(t)

where η(t) is a Gaussian white noise, for which ⟨η(t)⟩ = 0 and ⟨η(0)η(t)⟩ = δ(t).
This leads to a memory-less (Markovian) equation called Standard or Under-
damped Langevin Equation

mq̈ = −
∂A(q)

∂q
− γmq̇+

√
2kBTmγη(t) (2.2)
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• Overdamped Langevin Equation

If one were to consider the dynamics for underdamped motion on a time scale
τ >> m

γ non equilibrium fluctuations are quickly damped, this entitles us to im-
properly consider q̈ ≈ 0 leading to the Overdamped Langevin Equation

0 ≈ −
∂A(q)

∂q
− γmq̇+

√
2kBTmγη(t)

γmq̇ = −
∂A(q)

∂q
+
√

2kBTmγη(t)

Which if rearranged defining the diffusion coefficient D = kBT
mγ and reduced tem-

perature β = 1
kBT

as

q̇ = −βD(q)
∂A(q)

∂q
+
√

2D(q)η(t) (2.3)

sensibly simplifies the mathematical structure being a first order differential equa-
tion.
The idea of the following work is to develop a method to infer the correct free en-
ergy and diffusion profile of the reduced Langevin model starting from Molecular
dynamics trajectories, focusing on the Overdamped case.

2.2 The Bayesian criterion

In order to construct the optimal Overdamped Langevin model to describe the dynamics
in this lower-dimensional projection, we need to optimize the parameters of said model.
We do so through a Bayesian approach.

2.2.1 Bayes’ Theorem

Given a set of data x⃗ = {xi} generated from a probability distribution of unknown
parameters, the probability of θ⃗ = {θi} being the actual parameters of the distribution
from which x⃗ is sampled is p(θ⃗

∣∣⃗x) also known as Posterior distribution.
This probability is computed according to Bayes’ Theorem as:

p( θ⃗
∣∣ x⃗ )︸ ︷︷ ︸

Posterior

=
p( x⃗

∣∣ θ⃗ )p(θ⃗)
p(⃗x)

∝ p( x⃗
∣∣ θ⃗ )︸ ︷︷ ︸

Likelihood

Prior︷︸︸︷
p(θ⃗)

The Prior encodes preliminary information about the parameters θ while the Likelihood
gives the probability of observing the data x⃗ if the were to be generated by a distribution
of parameters θ⃗.
As it is often the case in bayesian estimation the goal of this approach is to recover the
values of the parameters more apt to describe the observed data, in other words those
who maximize the posterior probability.
Such quantity in called Maximum A Posteriori (MAP) estimate, consisting in :

θ⃗MAP = argmax
θ⃗

p( θ⃗
∣∣ x⃗ )
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2.2.2 Maximum Likelihood Inference

In the case under analysis the data are a set of molecular dynamics trajectories q⃗ while
θ⃗ stands for a compact way of regrouping both the force field F(q) = −βD(q)

∂A(q)
∂q and

position dependent diffusion D(q) present in equation (2.3).
Under the assumption of the so called "Uninformative Prior" the latter is considered as
constant reducing the problem of finding θ⃗MAP, thus maximizing the posterior distribu-
tion of parameters, to that of finding θ⃗MLE the value of θ⃗ maximizing p( x⃗

∣∣ θ⃗) ≡ Lq⃗(θ⃗),
the Likelihood of the observed trajectory q⃗.

θMLE = argmax
θ⃗

Lq⃗(θ⃗)

The analytical shape of the likelihood function is not always known a priory but, re-
stricting to the overdamped case, a convenient property comes into play.
In fact being the equation Markovian means that, if the simulation is in position qi at
the current timestep ti, the probability of it hopping to position qi+1 at timestep ti+1
depends only the present position qi!
Such probability pθ(qi+1, ti+1|qi, ti) is often called propagator.
For given initial conditions (q0, t0), the Likelihood of the dataset q⃗ = (q0,q1, ...,qN) is
nothing but the product of the short time transition probability between consecutive
trajectory points [9], namely:

Lq⃗(θ⃗) =

N−1∏
i=0

pθ(qi+1, ti+1|qi, ti) (2.4)

from which follows that the Log-Likelihood of the trajectory Lq⃗(θ⃗) is :

Lq⃗(θ⃗) = log {Lq⃗(θ⃗)} =

N−1∑
i=0

log
{
pθ(qi+1, ti+1|qi, ti)

}
(2.5)

2.3 Addition of biasing forces

In order to go forth with the simulation in case the trajectory were to be stuck in a
local free energy minimum, some additional biasing forces are employed to push the
simulation onwards and allowing it to sample larger portions of the phase space.

2.3.1 Adiabatic Bias Molecular Dynamics

ABMD [6] is a simulation method in which an harmonic biasing potential is used to
drive a system from an initial to a final position along a selected coordinate q employing
an quadratic biasing potential centered in position qmax and thus a linear force:

VABMD(q) =
1
2
k(q− qmax)

2

fABMD(q) = k(qmax − q)
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The center of this potential, qmax is updated at each step before computing the biasing
potential to make sure that qmax ⩾ q, ensuring a positive biasing fore along the q

direction at every step.
Whenever the system moves further along the coordinate, the center of the harmonic
potential follows this new position, effectively pushing the system towards the final
position specified at the beginning. If instead it moves backwards it encounters the
harmonic bias preventing it from moving further back, as depicted in Fig(2.1)

Figure 2.1: Example of particle moving in a 1D free energy landscape in the presence of
ABMD bias pushing it to towards increasing values of q(t)

This method of course drives the simulation towards a user’s specified direction
which is somewhat "unnatural" therefore proper care needs to be employed in the com-
putation of the likelihood function in order to correctly compensate for this phenomenon
( Sec. 3.3).



Chapter 3
Simulation and Analysis Methods

3.1 The F.O.L.I.E. Module

In order to validate this inferential method some benchmark analysis of toy models has
been produced as well as the underlying simulation of the trajectories themselves.
To carry out this task we co-developed further the F.O.L.I.E. project, a python module
aimed at performing inference analysis of molecular dynamics trajectories, the relative
code is available on the Folie GitHub Repository.[1]

The main features present in the package are:

• Model of Overdamped Langevin Dynamics:
Several models of possible implementation of Overdamped Langevin equations
are present starting from the parent python class Overdamped, followed by the im-
plementation of particular cases such as BrownianMotion and OrnsteinUhlenbeck,
the underdamped case is still under development.

• Transition densities
The different methods aimed at approximating the form of the propagator de-
scribed in sec.(3.2) are implemented. They require as input a Model object whose
force and diffusion will be used to compute the mean, variance, and, in case of
the Elerian transition probability density, the additional parameters to obtain the
relative likelihood.
These probability densities are later fed to the Likelihood estimator object who
will recover the adequate drift and diffusion parameters.

• Estimation
Given as input the probability densities used to compute the likelihood of the
observed trajectories, an estimator object is created.
The class of estimator objects playing a central role in performing the addressed
task is the LikelihoodEstimator class, within it, the MLE estimators are recovered
by making use of the optimize.minimize() method from the scipy library applied
to −L(q⃗|θ) the negative of the log-likelihood function eq.(2.5).

• Functions
The Function class has been implemented in order to specify for instance the

11
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analytical form of the force and diffusion function of a given Overdamped object, or
more generally to specify parameters of the different class objects defined above.
Such Function objects are in fact often needed to build the appropriate transition
densities and likelihood estimators.

• Simulation
In addition to the principal purpose of training the maximum likelihood estimator
for a given set of input trajectories, the F.O.L.I.E. module also allows to simulate
trajectories in the first place.
To do that one first needs to specify the model of the Langevin equation guid-
ing the evolution of the system through a suitable Overdamped object. Then this
passed to the Simulator (or possibly BiasedSimulator) class specifying the inte-
gration timestep employed. Eventually, the dataset is generated via the method
Simulator.run().
The latter tool is the one employed to generate the trajectories analyzed in Chap(4).

3.2 Models of statistical inference

Now to go further with the estimation of the free energy profile it is useful to have
at one’s disposal a suited approximation for the propagator pθ(qi+1, ti+1|qi, ti) so to
compute explicitly Eq. (2.5)
The starting point to achieve this is using Itô Stochastic Differential Equation (SDE)
formalism, where the infinitesimal increment of the position at time t namely dq(t) is
computed as:

dqt = F(qt)dt+ σ(qt, t)dWt (3.1)

to rewrite Eq.(2.3)

dqt = −βD(qt)
∂A(qt)

∂q
dt+

√
2D(qt)dWt (3.2)

where qt and dWt refer to q(t) and dW(t) respectively, the latter being the increment
of the Wiener process, a random variable normally distributed with zero mean and
variance equal to dt.

By comparing the two it is evident that F(qt) = −βD(qt)
∂A(qt)

∂q and σ(qt) =
√

2D(qt)
are respectively the deterministic and stochastic contributions to the evolution of pro-
cess qt.
The advance respect to the literature methods considered in this work consisted in ap-
plying to the system some external biasing force fbias(qt) , influencing the drift term of
the evolution equation according to

F̃(qt) = −βD(qt)
∂A(qt)

∂q
+ fbias(qt, t) (3.3)

In the following, four different methods to compute the likelihood of the transition are
presented.
To help them converge faster each one of them is fed as initial condition a first guess on
the mean and variance of the transition probability.
These two are estimated by performing a spline regression of the data at each step and



3.2. MODELS OF STATISTICAL INFERENCE 13

empirically calculating the deviation from said regression curve.
This procedure is equivalent to an empirical estimation of the first two coefficients in
the Kramers-Moyal [11] expansion of the master equation governing the evolution of the
equilibrium distribution.

In the following we illustrate the four methods considered to approximate the like-
lihood of transition (propagator) of the generic SDE Eq.(3.1), keeping in mind that for
what concerns our analysis:

F(qt) = −βD(qt)
∂A(qt)

∂q

σ(qt) =
√

2D(qt)

Moreover it is assumed that the analyzed trajectories evolve at constant temperature,
therefore we set β = 1 for convenience.

3.2.1 Euler Method

The Euler Method [5] consists in the approximation of Eq. (3.1) with the succession
{
qi

}
satisfying the iterative scheme :

qi+1 = qi + F(qi)∆t+ σ(qi)
√
∆tG (3.4)

where ∆t = ti+1 − ti is the time increment and ∆Wt has been replaced by
√
∆tG being

G ∼ N(0, 1) a standard normally distributed random variable.
From Eq.(3.4) it is clear that this increment is purely deterministic except for G.
This implies that the propagator at time ti is a Gaussian random variable with mean ϕi

ϕi = F(qi)∆t = −

[
D(qi)

∂A(qi)

∂q
+ fbias(qi)

]
∆t

and variance µi

µi = σ2(qi)∆t = 2D(qi)∆t

namely

pθ(qi+1, ti+1|qi, ti) =
1√

2πµi

e
−

(qi+1−qi−ϕi)
2

2µi

Thanks to this result we can now compute the log-likelihood (2.5) of the trajectory as :

L(q⃗|θ) =

N−1∑
i=0

1
2
log(2πµi) +

N−1∑
i=0

(qi+1 − qi −ϕi)
2

2µi

3.2.2 Elerian method

The Elerian method performs the same passages as the Euler one but takes as starting
point the Milstein discretization of the SDE [9].

qi+1 = qi +
[
F(qi) +

1
2
σ(qi)σ

′(qi)
]
∆t+ σ(qi)

√
∆tG+

1
2
σ(qi)σ

′(qi)G
2∆t (3.5)
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The latter consists in including a second-order term derived from applying the Itô for-
mula to the Itô-Taylor expansion [2] of the stochastic differential equation; here σ ′(qi)

stands for dσ
dq

∣∣∣
qi

.

Naturally Eq(3.5) falls into Eq.(3.4) for constant diffusion function.
The associated transition density for this model [5] is

pθ(qi+1, ti+1|qi, ti) =
z−1/2cosh(

√
Cz)

|K|
√

2π
e−

C+z
2

where

K =
D ′(qi)

2
∆t B = −

2D(qi)

D ′(qi)
+ qi + F(qi)∆t−K

z =
qi+1 −B

K
C =

2D

D ′(qi)
2∆t

3.2.3 Kessler method

Instead of focusing on approximations of the method of integration of SDE who pro-
duced the trajectories, as done in the previous two methods, Kessler proposed to approx-
imate directly the mean and variance of the transition density through a higher-order
Ito-Taylor expansion [2].
The result is a gaussian probability measure with mean ϕi and variance µi [5] :

µi = qi + F(qi)∆t+

(
F(qi)F

′(qi) +
1
2
σ2(qi)F

′′(qi)

)
∆t2

2
(3.6)

ϕi = q2
i +

(
2F(qi)qi + σ2(qi)

)
∆t+

{
2F(qi)

(
F ′(qi)qi + F(qi) + σ(qi)σ

′(qi)
)
+

+ σ2(qi)
(
F ′′(qi)qi + 2F(qi) + σ2(qi) + σ(qi)σ

′′(qi)
)}∆t2

2
−ϕ2

i

3.2.4 Drozdov method

The time evolution of the ensemble density ρ(q, t) associated to our Langevin model is
dictated by an appropriate Fokker-Planck equation

∂ρ(q, t)
∂t

=
∂

∂q

(
De−A(q) ∂

∂q
eA(q)ρ(q, t)

)
= G †ρ(q, t) (3.7)

where G † is the Fokker-Plank operator [11] defined in Eq.(3.7).
The short time propagator pθ(qi+1, ti +∆t|qi, ti) takes the form [8]

pθ(qi+1, ti +∆t|qi, ti) = eG †∆tδ(qi+1 − qi) = [1 + G †∆t+
1
2
(G †)2∆t2 + . . . ]δ(qi+1 − qi)

(3.8)
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Drozdov considered a second order expansion of (3.8) and retrieved an expression for
the propagator making use of generating functions [4].
The result is again a Gaussian with mean ϕi and variance µi given by the following
expressions:

ϕi = F(qi)∆t+
1
2
(F(qi)F

′(qi) +D(qi)F
′′(qi))∆t

2

µi = σ(qi)∆t+
{
F(qi)σ(qi)σ

′(qi) + σ2(qi)
[
F ′(qi) +

1
2

(
σ(qi)σ

′′(qi) + (σ ′(qi))
2
)]}

∆t2

3.3 Reconstructing the Free Energy Landscape

At this stage we find ourselves with four possible approximations for the shape of the
Likelihood function. Thus the maximum likelihood estimators for the parameters of the
Overdamped Langevin equation, namely FMLE(q) and DMLE(q) = 1

2σ
2
MLE(q) are retrieved.

To do so we make use of the scipy.optimize.minimize() method, providing also :

∇θ⃗

(
−Lq⃗(F,D)

)
=


−
∂Lq⃗(F,D)

∂F

−
∂Lq⃗(F,D)

∂D


the gradient of the negative Log-likelihood with respect to F(q) and D(q).
It is important to remark that this procedure is run multiple times,one for each approx-
imation considered (Euler, Elerian, Kessler, Drozdov).
Equipped now with said estimators FMLE(q) and DMLE(q), one can in principle generate
new trajectories with the MLE effective Overdamped Langevin model

q̇ = −FMLE(q) +
√

2DMLE(q)η(t)

simply by integrating the corresponding stochastic differential equation which, in Itô
form, reads:

dqt = FMLE(q)dt+
√

2DMLE(q)dWt (3.9)

This piece of information is used at the same time to infer the Free Energy Landscape
underlying the dynamics. In particular we focus on the Milstein Integrator Eq.(3.5), be-
ing more accurate in case of position-dependent diffusion.
Then we consider the average displacement between the position at timestep i and at
the subsequent timestep i+ 1 over the realization of the noise.

⟨∆qi⟩ = ⟨qi+1 − qi⟩

Writing equation (3.5) explicitly in terms of A(q),D(q) , and its derivative D ′(q) = dD
dq ,

the drift F(q) and diffusion σ(q) read:

F(qi) = −D(qi)
∂A(qi)

∂q
+

1
2
D ′(qi)

σ(q) =
√

2D(q)
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giving for ⟨qi⟩ the following expression:

⟨∆qi⟩ =
[
−D(qi)

∂A(qi)

∂q
+

1
2
D ′(qi)

]
∆t+ σ(qi) ⟨∆Wi⟩︸ ︷︷ ︸

=0

+
1
2
D ′(qi) ⟨∆W2

i ⟩︸ ︷︷ ︸
=∆t

=

⟨∆qi⟩ =
[
−D(qi)

∂A(qi)

∂q
+D ′(qi)

]
∆t (3.10)

Performing the same computation to the (SDE) with parameters of maximum likelihood
(3.9) one obtains

⟨dqt⟩ = FMLE(q)dt+
√

2DMLE(q) ⟨dWt⟩︸ ︷︷ ︸
=0

⟨dqt⟩ = FMLE(q)dt (3.11)

Therefore approximating ⟨dqt⟩ ≈ ⟨∆qi⟩ and dt ≈ ∆t in the two equations above enables
us to recover an the estimation for the free energy profile.
In fact,

⟨dqt⟩ ≈ ⟨∆qi⟩ =⇒ FMLE(q)dt ≈
[
−D(qi)

∂A(qi)

∂q
+

1
2
D ′(qi)

]
∆t

∂AMLE(q)

∂q
= −

FMLE(q) −D ′
MLE(q)

DMLE(q)

which, when integrated from an initial value q0, leads to

AMLE(q) = −

∫
q

q0

FMLE(q
⋆) −D ′

MLE(q
⋆)

DMLE(q⋆)
dq⋆ (3.12)

up to an additive constant.

3.3.1 Reconstructing the Free Energy Landscape from biased trajectories

A further step in this analysis, proposed for the first time, has been to include the effect
of an additional bias in the drift term as specified in Eq.(3.3).
Doing so implies that at each step in computing the likelihood, instead of computing
the MLE for F(qi), it computes the one relative to:

F̃MLE(qi) = FMLE(qi) +DMLE(qi)f
bias
i (qi)

One key observation about it is to underline the fact that it is necessary to correct
for this term at each instant. In fact for different timesteps to which it might correspond
the same position value qi = qj for i ̸= j the value of biasing force is not necessary the
same fbiasi (qi) ̸= fbiasj (qj) !
It is straightforward to recover the appropriate estimator for the unbiased drift by in-
verting this equation: FMLE(qi) = F̃MLE(qi) −D(qi)f

bias
i (qi).

Plugging this back to Eq.(3.12) returns once again the Maximum Likelihood Estimator
for the free energy landscape.



Chapter 4
Toy models

In the current section the numerical simulations and estimation of relative free energy
profile is carried out so to asses the quality of the methodology employed.
In particular a couple of benchmark validation "Toy-model" systems cosisting of a 1D
and 2D double well Free Energy profiles have been used.

4.1 Unbiased 1D Double Well

The first physically significant system considered was the one dimensional symmetric
double well potential along the x axis, where the free energy is obtained using a 4th

order polynomial.
A(x) = γ0x

4 + γ1x
2 (4.1)

with γ0 > 0 and γ1 < 0.
In this section the chosen coordinate for the training is the only one present q = x.
To run this simulation we initialized 50 copies of the system in x = 0 at t = 0 and, later
let evolve with the Euler integrator Eq.(3.4) for 20 000 steps.
The chosen diffusion constant is D = 1

2 and no additional external bias is applied.
The result is an ensemble of trajectories moving in this double well free energy profile
leading to approximately half of them falling into the right minimum and the other half

into the left one, located at x = ±
√
−

γ1

2γ0
; with our choice of parameters, x = ±

√
45
2 , as

shown in Fig.(4.1).
This result does not come as a surprise due to the symmetry of the model considered.

17



4.1. UNBIASED 1D DOUBLE WELL 18

(a) Free Energy and correspondent SDE Force of the simulation (b) Time evolution of the position of all the 50 trajec-
tories

Figure 4.1: Numerical simulation of 50 trajectories evolving according to Eq.(3.2) in force
field represented in Fig.(4.1a) for 20 000 timesteps,each of duration ∆t = 10−3

4.1.1 Estimation of Free energy and diffusion constants

Once having generated enough trajectories in the previous section it is now time to run
an estimation following the maximum likelihood approach to test the accuracy of the
method employing all the estimators described in Chapter(3.2).
The estimated force and diffusion fitted through the use of piece-wise polynomial (splines)
function are plotted in Fig.(4.2).
This class of functions has been chosen to achieve more generality and, as it is possible
to see from Fig.(4.2), they well fit both the polynomial behaviour of the force and the
constant nature of the diffusion function.
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Figure 4.2: Estimation of the maximum likelihood force and diffusion functions accord-
ing to the estimators described in Ch(3.2)

Having at our disposal the information regarding this two important parameters we
can then recover the underlying free energy profile numerically integrating Eq.(3.12).

Figure 4.3: Caption

This benchmark system, although quite trivial, sets a first step in the validation of
the maximum likelihood method giving good reason to hope that it will remain well-
behaved also in case of the application of an external bias.
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4.2 Biased 1D Double Well

The same analysis carried out for the one dimensional double well is now performed
for the same system but under the application of an external Adiabatic Bias described
in section (2.3.1) along the coordinate q ≡ x.

fbias(q) = k(q− qMAX) (4.2)

This time the ensemble of trajectories has been initialised in the left of one of the two
energy minima, precisely at x = −6 , and it is later pushed towards increasing value x

by the external bias.

Figure 4.4: Numerical simulation of 50 trajectories evolving according to Eq.(3.2) in force
field represented in Fig.(4.1a) for 20 000 timesteps,each of duration ∆t = 10−3 under the
application of the Adiabatic bias with k = 10

It is noticeable from the picture above that every trajectory underwent a transition
from one energy minimum to the other in a quite sharp manner by the time the simula-
tion ended.
Such transition, given the initialisation point, would have required an enormous amount
of time to happen ergodically! Therefore that is why it is so important to have at one’s
disposal a way to estimate the free energy profile even from biased numerical simula-
tions.

4.2.1 Estimation of Free energy and diffusion constants

The same estimation carried out for the unbiased case is now performed for the biased
data accounting for the bias which was known at each step, according to Eq.(3.3)
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Again the estimated force and diffusion are fitted with splines function and plotted
in the figure below

Figure 4.5: Estimation of the maximum likelihood force and diffusion functions accord-
ing to the estimators described in Ch(3.2) accounting for the presence of the external
bias

From which the underlying free energy profile is recovered.

Figure 4.6: Caption

The recovered free energy well describes the original profile also in this biased sit-
uation, showing how efficiently the proposed method performs in this controlled envi-
ronment.
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4.3 2D Double well

Moving to a scenario closer to a realistic employment of the method we examine the
dynamic of a bi-dimensional system evolving in a free energy landscape modelled by a
2D double well potential and subsequently project the dynamics to a one dimensional
collective variable in an attempt to fit the reduced dynamics with a one-dimensional
overdamped Langevin equation.
In addition to this we added a biasing force along said coordinate and follow the maxi-
mum likelihood principle to recover the projected free energy landscape.

(a) 2D double well potential (b) 2D dynamics

Figure 4.7: Numerical simulation of 50 trajectories evolving in the free energy landscape
represented in Fig.(4.7a) for 3000 timesteps, each of duration ∆t = 5× 10−4. Each one of
the trajectories has been initialized in the origin (x,y) = (0, 0)

The analytical shape of the potential used is decoupled in the two variables x and y :

A(x,y) = ν(x) + µ(y) where

ν(x) = a(x2 − 1)2

µ(y) = 1
2by

2

therefore the two Cartesian components evolve following two independent overdamped
Langevin equations in a free energy profile dictated by ν(x) and µ(y) respectively.

Instead of focusing along these two directions whose behavior was known, we de-
cided to project the given trajectories X⃗ = (x,y) along a collective variable q whose di-
rection (1, 1) is chosen to be the bisectrix of the 1st and 3rd quadrant i.e. q = X⃗ ·

( 1√
2
, 1√

2

)
equivalent to a rotation the reference frame by an angle θ = π/4.
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(a) Cartesian components of 2d the trajectories

(b) Projection of the 2D trajectories along the bisectrix of 1st

and 3rd quadrant

Figure 4.8

Running an estimation along this collective variable leads to a result that seems to
underestimate the depth of the free energy minima.
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(a) Free energy along q tilted by θ = π/4 (b) Free energy along q tilted by θ = π/16

Figure 4.9: Estimated free energy landscape along q = (x cos(π/4),y sin(π/4)), and
q = (x cos(π/16),y sin(π/16)) the reference red curve is obtained by Monte Carlo sam-
pling uniformly in the interesting area and reweighting the samples along q with their
Boltzmann’s weight exp

[
−U(x,y)

∣∣
q=(x cos(π/4),y sin(π/4))

]
If instead we employ a rotated frame by a different angle the estimated free energy

gets progressively more accurate when compared with the MC sampling the closer the
rotated frame is to one of the two original axis x : (θ = 0) or y : (θ = π/2) case, where
the estimation recovers the ν(x) and µ(y) functions respectively.

4.3.1 Application of bias

However while one runs a Molecular Dynamics simulation in a unknown Free Energy
landscape with the help of biasing forces, often the chosen coordinate might not be the
optimal one.
The remaining of this section is aimed at attempting to reconstruct the free energy of
the system along the collective variable q = x cos(θ) + y sin(θ) in presence of adiabatic
bias on the same coordinate and thus run an estimation to fit the dynamics in this one-
dimensional manifold.

In this case the trajectories are initialized in (x0,y0) = (−1.2,−1.2) with angle θ =
π

4
i.e. q0 = −

2.4√
2

, therefore the adiabatic bias pushed the simulation toward the 1st

quadrant.
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(a) 2D (biased) dynamics (b) Cartesian components of 2D the trajectories

Figure 4.10: Numerical simulation of 50 trajectories evolving in the free energy landscape
represented in Fig.(4.7a) for 3000 timesteps,each of duration ∆t = 5 × 10−4. Here the
biasing constant is k = 25 and trajectories were initialized (x0,y0) = (−1.2,−1.2)

This simulation well shows how the systems first initialized in the left basin of at-
traction x = −1, under the effect of the bias, is forced to perform a transition to the right
one in x = +1.
Training the overdamped model upon these data while keeping track of the biasing
force that has been used, lead to the following free energy

(a) Projection of the 2D trajectories along the
coordinate q=(xcos(π/4),ysin(π/4))

(b) Free energy profile relative to the projected
trajectory

In this case the method does not seem to recover the appropriate free energy land-
scape, a far better job is done when considering a situation not too far from the optimal
coordinate case θ = 0.
For instance the same analysis using the not optimal q = (cos(π/18), sin(π/18)) exhibits
a far better adherence to the Monte Carlo reference profile.
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(c) Projection of the 2D trajectories along the
coordinate q=(xcos(π/18),ysin(π/18))

(d) Free energy profile relative to the projected
trajectory

4.3.2 Estimation of error

To provide a qualitative assessment of the error, we calculated the maximum likelihood
estimation (MLE) for the free energy using four different datasets and computed the root
mean square deviation (RMSD) of the four estimations for the free energy landscape.

Figure 4.11: Estimation of the same free energy profile using four independent datasets,
here plotted with errorbars = 2 × RMSD

Unfortunately during the period of this internship, there was not enough time to
pursue a deeper analysis in this direction.



Chapter 5
Conclusions

The method proves itself to work satisfyingly well along good projection coordinates,
recovering the underlying free energy profile even in the case of biased dynamics.
However, in the case of a poorly chosen collective variable, it showed to work approxi-
mately well in certain conditions.

For instance, in the case of the 2D Biased Double Well projected along the tilted
coordinate, the result is not so far from the reference even though it moves further from
it the more the rotation angle approaches the bisectrix of first and third quadrant.
The reason behind this can be attributed to the fact that when projecting, many points
with different (x,y) values will fall to the same q (CV) value, thus when collecting
samples from a given q, they might come all from a similar portion of configuration
space leaving other important regions, belonging to the same collective variable value,
unexplored.

In addition to this, another possible explanation can be traced back to the assump-
tion about the dynamics itself. For instance it is possible that when projecting along
a badly chosen coordinate, a more appropriate choice of the fitting model might be a
Non-Markovian Langevin equation such as Eq.(2.1), opening for a far broader range of
flexibility in modeling the experimental data.
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