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Chapter 1

Introduction

Inspired by the huge relevance of simple exclusion processes models as biological
traffic models or vehicular traffic as well, we will focus our work on the Totally
Asymmetric Simple Exclusion Process (TASEP).

The latter is defined on a one dimensional lattice, where each site could be
occupied or not by only one particle. The particles can hop from left to right with
a given hopping rate provided that the lattice site on the right is empty1. There is
moreover a specified entry rate in the first lattice site where particles can enter in
the system and exit rate from the last one where particles can exit the system. This
is a sort of a skeleton of the model that can be filled with particular choices of rates
at which hopping processes happen together with suitable boundary conditions.
We consider the TASEP with Open Boundary Conditions (OBC) and non uniform,
slowly varying, hopping rates with non zero entry rate only at the first site and
non zero exit rate only from the last one. In a more general model, one could also
consider non zero entry rates and non zero exit rates through all lattice sites giving
rise to a generalization of the model called Totally Asymmetric Simple Exclusion
Process with Langmuir Kinetics (TASEP - LK). However, we do not focus on this
version explicitly, but we make only some comments about it that will be clearly
specified at the proper time.

The purpose of the present thesis is to investigate the so called dynamical tran-
sition making use of several analytical and numerical methods such as Mean Field
Theory (MFT), Domain Wall Theory (DWT) and Finite Lattice Extrapolation
(FLE).

1We can therefore easily see the connection with traffic models. In particular, in biological
contexts, the model is useful to describe the protein synthesis on mRNA via polyribosome;
instead, in vehicular traffic, the model could describe cars moving forward on a one lane road.
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Chapter 2

The model

2.1 Definitions of variables and parameters . . . . . . . . . 3

2.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Stationary density profiles . . . . . . . . . . . . . . . . . 10

In this chapter we analyse in detail the non homogeneous TASEP model with
OBC. After a brief explanation of the needed variables and parameters, we will
move to the description of the main phases the system face out through the phase
diagram. Finally, we will discuss the stationarity behaviour of the model. All
the results here presented are already known, however it is useful to describe it in
order to become familiar with concepts and notations.

2.1 Definitions of variables and parameters

The TASEP model with OBC is defined on a one dimensional lattice of L sites
each one labelled from left to right as

i = 1, . . . , L (2.1)

with an occupation number random variable

ni(t) =

{
0, node i not occupied at time t

1, node i occupied at time t
(2.2)

Particles can be injected in the system at the first lattice site i = 1 (provided it
is empty with n1(t) = 0) with rate α ∈ [0, 1] and can be extracted from the last
lattice site i = L (provided it is occupied with nL(t) = 1) with rate β ∈ [0, 1].
Moreover, particles can hop from site i (provided it is occupied with ni(t) = 1) to

3



CHAPTER 2. THE MODEL

Figure 2.1: Inverse of the hopping rates (mean hopping time) τ(k) as function of
the scaled position variable i

L
with L = 200 at different values of A.

i + 1 (provided it is empty with ni+1(t) = 0) with hopping rate qi. In the special
inhomogeneous TASEP considered here, the hopping rates from one site to the
adjacent one are characterized by a smooth spatial modulation according to the
following function of the lattice site i

qi =

[
1 + A sin2

(
π
i

L

)]−1

, i = 0, . . . , L (2.3)

where the constant A ≥ 0 controls the minimum of the hopping rate function.
This form of the hopping rates admit also a value for i = 0 and i = L that in
principle it is already included in the two boundary rates α and β. However, we
can safely consider qi as written before since q0 = qL = 1 in such a way that do
not affect α and β. Sometimes it will be useful to regard q as a function of the
scaled position variable k = i

L
∈ [0, 1]. In order to be clear, let us plot the profile

that we have chosen. In particular in Figure 2.1 we report the profile of the mean
hopping time τ(k) = q−1(k). We can notice the existence of a unique maximum
(unique minimum in q) and a flat behaviour constantly equal to 1 when A = 0
(uniform hopping rates).

A graphical representation of the entire model and its elementary kinetic pro-
cesses on the lattice with L sites is reported in Figure 2.2 We can clearly see the
particle - hole symmetry (a hole is equivalent to an empty site) which plays a
crucial role in the different phases the system can face as explained in the follow-
ing sections. It will be useful to define the average occupation in terms of local

Andrea Demaria 4
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i = 1 2 . . . . . . j j + 1 . . . L

α qj β∅

particle
hole

Figure 2.2: TASEP scheme in OBC with injection rate α, extraction rate β and
non homogeneous hopping rates qj.

densities at each lattice site i at time t

ρi(t) =
〈
ni(t)

〉
= (2.4a)

= P
(
ni(t) = 1

)
, i = 1, . . . , L (2.4b)

where ⟨·⟩ denotes the out of equilibrium average with respect to the realizations
of the process. The average is clearly out of equilibrium since a current exists.
Defining Ji(t) the current from site i to i + 1 at time t, we can interpret it as a
joint probability that at time t the site i is occupied and the site i + 1 is empty
(hence a hopping transition can happen with rate qi)

Ji(t) = qiP
(
ni(t) = 1, ni+1(t) = 0

)
(2.5)

and performing MFT2 for joint probability factorization in marginals, we arrive to

Ji(t) = qiP
(
ni(t) = 1

)
P
(
ni+1(t) = 0

)
= (2.7a)

= qiρi(t)
(
1− ρi+1(t)

)
, i = 1, . . . , L− 1 (2.7b)

2The mean field approximation assumes that at each time t the joint probability distribution

factors into single node marginals (here denoted as pi

(
ni(t)

)
, hence both time and position

dependent)

P
(
n1(t), n2(t), . . . , nL(t)

)
=

L∏
i=1

pi

(
ni(t)

)
(2.6)

5 Andrea Demaria
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i = 1 2 . . . . . . j j + 1 . . . L

α ωd
ωa

qj β∅

particle
hole

Figure 2.3: TASEP - LK scheme in OBC with injection rate α, extraction rate
β, non homogeneous hopping rates qj, attachment rate ωa and detachment rate ωd

independent on the sites.

In the same way, we can define the two boundary currents to be proportional to
the injection rate α and extraction rate β

J0(t) = α
(
1− ρ1(t)

)
, JL(t) = βρL(t) (2.8)

In order to be more uniform and clear we can write the current density as

Ji(t) = qiρi(t)
(
1− ρi+1(t)

)
, i = 0, . . . , L (2.9)

where we have defined two boundary extra densities

ρ0 = α, ρL+1 = 1− β (2.10)

assuming that the system is in contact with two reservoirs of fixed densities
ρ0, ρL+1.

Sometimes, as said previously, we will make use of the TASEP - LK model
(see Botto et al. (2020)) whose schematic representation is reported in Figure 2.3
where bulk attachment and detachment processes occur at a large number of sites
compared with the injection and extraction processes at the ends of the system.

Following Botto et al. (2018), local densities ρi(t) have to obey a set of con-
tinuity equations. Taking into account the more general TASEP - LK model, we
can write the variation in time of the local density in a specific site n as

ρ̇i(t) = Ji−1(t)− Ji(t) + ωa

(
1− ρi(t)

)
− ωdρi(t), i = 1, . . . , L (2.11)

meaning that the positive contributions come from the current arriving from site
i− 1 or a particle attachment provided that the site i is empty; the negative con-
tributions instead come from the current leaving site i or a particle detachment

Andrea Demaria 6



CHAPTER 2. THE MODEL

provided that the site i is occupied. In the following we will make use of a short-
hand notation χ′ = 1− χ, which permits us to write the expression of the density
current (2.9) in MFT as

Ji(t) = qiρi(t)ρ
′
i(t), i = 0. . . . , L (2.12)

with the usual boundary densities (2.10).

2.2 Phase diagram

Varying rates α and β, one can observe different behaviours of the system. In
particular, there are three main phases

• Low Density (LD) phase characterized by

α <
1

2
, α < β (2.13)

where particles leave faster than they enter, with bulk density lower than 1
2
.

• High Density (HD) phase characterized by

β <
1

2
, β < α (2.14)

where particles enter faster than they leave, with bulk density greater than
1
2
.

• Maximal Current (MC) phase characterized by

α >
1

2
, β >

1

2
(2.15)

where the current acquires the maximum value.

The bulk of the system is intended as the entire system without the so called
boundary layer at the left or at the right. The boundary layer is that region in
which the stationary density does not follow the profile of the bulk one becoming
a little bit higher or lower. However, in the analysis of the stationary densities we
can really appreciate the difference.

According to Goswami et al. (2022) we can write, at steady state, due to the
small variation of ρi from site i to i+ 1

J = q(x)ρ(x)
(
1− ρ(x)

)
, x =

i

L
(2.16)

7 Andrea Demaria
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where J is constant. Note that, since q(x) has an explicit dependence on x, one
should expect that also ρ(x) is x dependent. Moreover, for a given fixed J one can
retrieve two non uniform solutions ρ±(x)

ρ±(x) =
1

2

(
1±

√
1− 4J

q(x)

)
(2.17)

where, since we want ρ(x) to be real everywhere, an upper bound for the current
arises

J ≤ q(x)

4
=⇒ Jmax =

qmin

4
(2.18)

Starting from the LD phase we can notice that the current in the bulk of the
TASEP is equal to the entry one dictated by α, namely

JLD = q(0)α(1− α) (2.19)

with the constraint that JLD < Jmax. Since the steady state bulk density is less
than 1

2
everywhere in this phase, the profile in the LD phase is given by

ρLD(x) =
1

2

(
1−

√
1− 4JLD

q(x)

)
= (2.20a)

=
1

2

(
1−

√
1− 4

q(0)

q(x)
α(1− α)

)
(2.20b)

where in our case q(0) = 1 and therefore could be omitted.
In the HD phase instead, we can notice that the density current in the bulk of

the TASEP is equal to the exit one dictated by β, namely

JHD = q(1)β(1− β) (2.21)

with the constraint that JHD < Jmax. Since the steady state bulk density is greater
than 1

2
everywhere in this phase, the profile in the HD phase is given by

ρHD(x) =
1

2

(
1 +

√
1− 4JHD

q(x)

)
= (2.22a)

=
1

2

(
1 +

√
1− 4

q(1)

q(x)
β(1− β)

)
(2.22b)

where in our case q(1) = 1 and therefore could be omitted.

Andrea Demaria 8
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Finally, in the MC phase, the density current exhibits its maximum value

JMC =
qmin

4
(2.23)

and the corresponding density profile is a combination of both ρ±(x) whose inter-
section is at the point x0 such that

q(x0) = qmin (2.24)

where the value reached is 1
2
.

How can these three phases be represented on a plane α/β? We need to
determine the boundaries at which the phases meet.

Following again Goswami et al. (2022), the boundary between the LD and HD
phases is dictated by the fact that the two respective bulk currents (2.19) and
(2.21) are equal. From that condition it follows that

α(1− α) = β(1− β) (2.25)

which is verified for α = β or α = 1− β. Since β < 1
2
in the HD phase and α < 1

2

in the LD phase, α = β gives the LD - HD phase boundary. It reduces to the
well known result for the coexistence line in a TASEP with uniform hopping rate
function q(x) ≡ 1. Indeed, this is a consequence of the fact that we have ensured
q(0) = q(1) in such a way that (2.25) can be written in that form.

The boundary between the LD and MC phases instead is computed by imposing
the equality between the two respective bulk currents (2.19) and (2.23). From that
condition it follows that

αLD/MC =
1

2

(
1−

√
1− qmin

q(0)

)
(2.26)

is the boundary since α < 1
2
in the LD phase.

In the end, the boundary between the HD and MC phases is obtained by
imposing the equality between the two respective bulk currents (2.21) and (2.23).
From that condition it follows that

βHD/MC =
1

2

(
1−

√
1− qmin

q(1)

)
(2.27)

is the boundary since β < 1
2
in the HD phase.

As we can notice, the last two boundaries depend on the minimum of the
hopping rate function which in turn is a function of the parameter A. In particular,
from (2.3) it follows

qmin =
1

1 + A
(2.28)

9 Andrea Demaria
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Figure 2.4: Phase diagram of the TASEP model for different values of the constant
A ≥ 0. The HD region is bottom right, the LD region is top left and the MC region
is top right.

obtaining that the boundaries are exactly equal

αLD/MC = βHD/MC =
1

2

(
1−

√
A

1 + A

)
(2.29)

due to the fact that q(0) = q(1) = 1. The expression of the boundaries always
exists for A ≥ 0. Note that the case A = 0 corresponds to the ordinary TASEP
with uniform rates with the boundaries αLD/MC = βHD/MC = 1

2
.

The phase diagram for different values of A is shown in Figure 2.4 where we
can notice that by increasing the value of A, the MC region expands, as predicted
by the boundaries (2.29).

2.3 Stationary density profiles

Looking at the stationary density profiles, the time dependence in (2.11) is not
appearing anymore3 and setting the time derivative equal to 0 together with (2.12)

3When we are looking for the stationary behaviour of a time dependent quantity γi(t), we
will drop the time dependence writing γi.

Andrea Demaria 10
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we arrive to

ρi
(
qiρ

′
i+1 + ωd

)
= (qi−1ρi−1 + ωa) ρ

′
i, i = 1, . . . , L (2.30)

which can be solved numerically by recasting it into a fixed point form, namely

ρi =

(
1 +

qiρ
′
i+1 + ωd

qi−1ρi−1 + ωa

)−1

, i = 1, . . . , L (2.31)

while keeping fixed {
ρ0 = α

ρL+1 = 1− β
,

{
q0 = 1

qL = 1
(2.32)

Solving the recursive equation (2.31) with ωd = ωa = 0 numerically with a suitable
initial condition (we have assumed an empty lattice except for the boundaries) we
reached convergence and we have the entire profile of the stationary density. This
profile is composed by a bulk region and a boundary layer region. The bulk region
is the one that we have described before satisfying (2.20b) for the LD phase, (2.22b)
for the HD phase and the constraint (2.24) for the MC phase. The boundary layer
region instead is the one that deviates from the bulk region. In particular we can
notice a right boundary layer in the LD phase, a left boundary layer in the HD
phase and both left and right boundary layers in the MC phase. In Figure 2.5
the LD stationary density profiles for A = 1 and A = 0 are reported with a right
boundary layer. The HD stationary density profiles for A = 1 and A = 0 are
shown in Figure 2.6 with a left boundary layer. In these phases the current of the
inhomogeneous model coincides with that of the homogeneous one and satisfies
(2.18). Finally, in Figure 2.7 the MC stationary density profile for A = 1 and
A = 0 is presented with both the right and the left boundary layer. As expected,
here the two currents do not coincide because in the case of A = 0 the maximal
current is 1

4
, whereas for A ̸= 0 the maximal current is

qmin
4

.
The main goal now is to investigate the relaxation process towards the sta-

tionary state through different methods that we have briefly mentioned in the
introduction.

11 Andrea Demaria
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Figure 2.5: LD stationary density profile (on the left) with uniform hopping rates
(in blue) and non homogeneous ones (in orange) together with the bulk region
(2.20b) for L = 50, α = 0.1 and β = 0.3. On the right there is the density current
in same conditions.

Figure 2.6: HD stationary density profile (on the left) with uniform hopping rates
(in blue) and non homogeneous ones (in orange) together with the bulk region
(2.22b) for L = 50, α = 0.3 and β = 0.1. On the right there is the density current
in same conditions.

Figure 2.7: MC stationary density profile (on the left) with uniform hopping rates
(in blue) and non homogeneous ones (in orange) together with the constraint (2.24)
due to the profiles in the bulk region for L = 80, α = β = 0.8.

Andrea Demaria 12
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We will analyse the relaxation to the stationary state with particular attention
to the slowest relaxation rate, that is the inverse of the longest relaxation time. In
the treatment we make use of the MFT, DWT and FLE.

3.1 Mean field theory

Taking inspiration from Pelizzola and Pretti (2017) we can linearize the mean field
equations (2.11) for the time evolution of local densities around the stationary state
solution

ρ̇i(t) = −
L∑

j=1

Mi,j

(
ρj(t)− ρj

)
, i = 1, . . . , L (3.1)

where the matrix M ∈ RL×L characterizes the relaxation. In particular, its small-
est eigenvalue corresponds to the slowest relaxation rate.

Looking at (2.11) in the case of the TASEP model (set ωa = ωd = 0) the entries
of M are non vanishing only over the diagonal, lower diagonal and upper diagonal.

13
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Indeed 

Mi,i = −∂ρ̇i(t)
∂ρi(t)

∣∣∣
t→+∞

, i = 1, . . . , L

Mi,i−1 = − ∂ρ̇i(t)
∂ρi−1(t)

∣∣∣
t→+∞

, i = 2, . . . , L

Mi,i+1 = − ∂ρ̇i(t)
∂ρi+1(t)

∣∣∣
t→+∞

, i = 1, . . . , L− 1

(3.2)

are the only non vanishing derivatives whose explicit result is
Mi,i = qi(1− ρi+1) + qi−1ρi−1, i = 1, . . . , L

Mi,i−1 = −qi−1(1− ρi), i = 2, . . . , L

Mi,i+1 = −qiρi, i = 1, . . . , L− 1

(3.3)

resulting in a tridiagonal matrix. Unfortunately, the latter is not a Toeplitz4 one
as in the TASEP model with uniform hopping rates (A = 0) and α = 1− β. This
means that the minimum (non vanishing) eigenvalue has not an explicit analytical
closed form and we have to proceed numerically. In particular, we are interested
in the slowest relaxation rate in the infinite size limit L→ +∞.

The computational evaluation of the eigenvalues is performed with the QR
decomposition of the relaxation matrix whose detailed explanation can be found
in Appendix A. The latter leads to complex eigenvalues, indeed the matrix in
principle is not symmetric. We will see later that M can be symmetrized leading
to zero imaginary part of eigenvalues. The spectrum for A = 0.1 in HD phase with
suitable α and β is reported in Figure 3.1 where we can notice that the real part
of the eigenvalues is dominant with respect to the imaginary part.

4A matrix Ξ ∈ RL×L acquires a Toeplitz form if each diagonal has a constant value

Ξi,i+k ≡ ak, i = 1, . . . , L, k = 1− i, . . . , L− i (3.4)

where {ak}L−1
k=−(L−1) ∈ R. Indeed, in the case of uniform hopping rates (A = 0), the bulk

stationary densities are uniform in all phases (see Figure 2.5, Figure 2.6 and Figure 2.7) leading
to a Toeplitz relaxation matrix with α = 1− β

a0 = 1, a1 = β − 1, a−1 = −β, aj = 0, ∀j = ±2,±3, . . . ,±(L− 1) (3.5)

whose minimum eigenvalue satisfies

λ1 = 1− 2
√
β(1− β) cos

π

L+ 1

L→+∞−→ 1− 2
√
β(1− β) (3.6)

Andrea Demaria 14



CHAPTER 3. RELAXATION TO STATIONARY STATE

Figure 3.1: Real and imaginary parts of the eigenvalues of M in HD phase com-
puted with QR algorithm. The entry and exit rates are α = 0.1, β = 0.3 and
increasing size of the system L = 500, 700, 900, 1000.

The imaginary parts of the eigenvalues are only a numerical effect that can
be avoided by symmetrizing the matrix M . Following Botto et al. (2018) the
eigenvalue problem associated with the relaxation matrix is

Mi,ivi +Mi,i+1vi+1 +Mi,i−1vi−1 = λvi, i = 1, . . . , L (3.7)

where λ is the eigenvalue and vi are the eigenvectors components with v0 = vL+1 =
0. The generic relaxation mode of the system

yi(t) = vie
−λt, i = 0, . . . , L+ 1 (3.8)

in which yi(t) is a (small) time dependent perturbation of local densities with
respect to the stationary ones

ρi(t) = ρi + yi(t), i = 0, . . . , L+ 1 (3.9)

Solving the eigenvalue problem (3.7) leads to complex eigenvalues in principle,
however since the off diagonal entries of M never change sign it can be possible
to perform a symmetrization of the matrix that we denote by Msym. The latter is
a simple similarity transformation which preserves the eigenvalues of the original
matrix M .

In detail, one has to find an invertible matrix P ∈ RL×L such that

Msym = P−1MP (3.10)

15 Andrea Demaria



CHAPTER 3. RELAXATION TO STATIONARY STATE

Choosing P to be diagonal

P = diag(d1, . . . , dL) (3.11)

we have to ensure(
P−1MP

)
i,i+1

=
(
P−1MP

)
i+1,i

, i = 1, . . . , L− 1 (3.12)

which leads to the following condition on the entries of P

di = di+1

√
ρi
ρ′i+1

, i = 1, . . . , L− 1 (3.13)

Starting from dL = 1 the entries of the invertible diagonal matrix P has to satisfydi =
L−1∏
k=i

√
ρk

ρ′k+1
, i = 1, . . . , L− 1

dL = 1

(3.14)

implying that the elements above and below the diagonal of Msym coincide, indeed
the upper diagonal has elements

(Msym)i,i+1 =
(
P−1MP

)
i,i+1

= (3.15a)

=
1

di
Mi,i+1di+1 = (3.15b)

= −

(
L−1∏
k=i

√
ρk
ρ′k+1

)−1

qiρi

L−1∏
k=i+1

√
ρk
ρ′k+1

= (3.15c)

= −
(√

ρi
ρ′i+1

)−1

qiρi = (3.15d)

= −qi
√

ρ′i+1ρi, i = 1, . . . , L− 1 (3.15e)

whereas the lower diagonal, with a similar procedure, has elements

(Msym)i,i−1 = −qi−1

√
ρi−1ρ′i, i = 2, . . . , L (3.16)

Furthermore, it can easily be seen that the diagonal elements are left unchanged
leading to the eigenvalue problem

Mi,iui − qi

√
ρiρ′i+1ui+1 − qi−1

√
ρi−1ρ′iui−1 = λui, i = 1, . . . , L (3.17)

Andrea Demaria 16



CHAPTER 3. RELAXATION TO STATIONARY STATE

Figure 3.2: Comparison between the spectrum of the symmetrized problem (3.17)
with the real part of that of (3.7) in the HD phase with α = 0.8, β = 0.07, A =
2, L = 800. On the left there is the entire spectrum, whereas on the right is shown
the absolute difference between the two curves.

where

ui = vi

i−1∏
k=0

√
ρk
ρ′k+1

, i = 0, . . . , L+ 1 (3.18)

with u0 = uL+1 = 0. The spectrum of (3.17) is completely real and a good agree-
ment is found with the real part of the spectrum of (3.7) as shown in Figure 3.2.

In order to find the slowest relaxation rate in the infinite size limit we can find
suitable upper and lower bounds, which may coincide in the limit L→ +∞. The
following procedure is explained in detailed in Botto et al. (2020) for the case of
TASEP - LK with uniform hopping rates. In the following we will generalize the
same procedure in the presence of TASEP with non uniform hopping rates.

The equation (3.17) can be written by mapping the generic vector u = (u1, . . . , uL)
to Msymu whose components are

(Msymu)i = Mi,iui − qi

√
J̃iui+1 − qi−1

√
J̃i−1ui−1, i = 1, . . . , L (3.19)

where

J̃i = ρiρ
′
i+1 (3.20)

The slowest relaxation rate is the minimum eigenvalue of Msym ∈ RL×L that we

denote by λ
(L)
min. The goal is the analytical derivation of the asymptotic value λ

(∞)
min
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in the HD phase. Starting from (3.19) we will now determine the upper bounds
in the thermodynamic limit, which may coincide with the actual value.

3.1.1 First upper bound

According to Courant’s minimax principle

λ
(L)
min ≤ (u,Msymu) , ∀u ∈ RL :∥u∥= 1 (3.21)

where

(a, b) =
L∑
i=1

aibi (3.22)

is the standard scalar product. From now on we can always assume that u has
unitary norm leading to (3.21) satisfied. The right hand side of the inequality can
be explicitly written in our specific case as

(u,Msymu) =
L∑
i=1

ui (Msymu)i = (3.23a)

=
L∑
i=1

ui

(
Mi,iui − qi

√
J̃iui+1 − qi−1

√
J̃i−1ui−1

)
= (3.23b)

=
L∑
i=1

Mi,iu
2
i −

L∑
i=1

uiqi

√
J̃iui+1 −

L∑
i=1

uiqi−1

√
J̃i−1ui−1 = (3.23c)

=
L∑
i=1

Mi,iu
2
i − 2

L−1∑
i=1

uiqi

√
J̃iui+1 (3.23d)

where the last line follows from u0 = uL+1 = 0. Working a little bit on the diagonal
Mi,i, we can make use of (2.22b) in the discretized version

ρ
(HD)
i =

1

2

(
1 +

√
1− 4

qL
qi
β(1− β)

)
(3.24)

to define the detrended densities ri by subtracting from the local densities the non
uniform part of the bulk profile

ri = ρi −
(
ρ
(HD)
i − ρ

(HD)
0

)
, i = 0, . . . , L+ 1 (3.25)
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In this way, the diagonal Mi,i results

Mi,i = qi − qiρi+1 + qi−1ρi−1 = (3.26a)

= qi − qi

(
ri+1 + ρ

(HD)
i+1 − ρ

(HD)
0

)
+ qi−1

(
ri−1 + ρ

(HD)
i−1 − ρ

(HD)
0

)
= (3.26b)

= qi − (qiri+1 − qi−1ri−1)−
(
ρ
(HD)
i+1 qi − ρ

(HD)
i−1 qi−1

)
+ ρ

(HD)
0 (qi − qi−1) ≃

(3.26c)

≃ qi − (qiri+1 − qi−1ri−1) (3.26d)

where the last line follows from the sufficiently smooth behaviour of the hopping
rates and of the bulk density profile. This leads us to write

(u,Msymu) ≃
L∑
i=1

qiu
2
i −

L∑
i=1

(qiri+1 − qi−1ri−1)u
2
i − 2

L−1∑
i=1

uiqi

√
J̃iui+1 (3.27)

For a given C > 1 we can define the sequence

yi =

√
2

C
sin

(
πi

C

)
(3.28)

for which the following properties are satisfied

C−1∑
i=1

y2i = 1,
C−2∑
i=1

yiyi+1 = cos
( π
C

)
(3.29)

In particular, the first one allows us to choose a normalize vector u as

ui =

yi−m, i ∈ [m,m+ C]

0, otherwise
, i = 1, . . . , L (3.30)

for any C ∈ {2, . . . , L+1} where m denotes the site at which the minimum of the
hopping rate is achieved

m = argmin
i

qi (3.31)

At least numerically a posteriori, in the L→ +∞ limit, the difference ri+1 − ri−1

vanishes exponentially (see Botto et al. (2020) for the case of TASEP - LK) that
together with the smooth hopping rate function lead to

L∑
i=1

(qiri+1 − qi−1ri−1)u
2
i ≃ 0 (3.32)
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obtaining that

(u,Msymu) ≃
L∑
i=1

qiu
2
i − 2

L−1∑
i=1

uiqi

√
J̃iui+1 = (3.33a)

=
m+C∑
i=m

qiy
2
i−m − 2

m+C∑
i=m

qi

√
J̃iyi−myi−m+1 (3.33b)

where we take care of choosing C in such a way that for L → +∞ one has
C → +∞. Due to (3.20) and the current in the HD phase (2.21)

J̃i =
ββ′

qi
(3.34)

implying

(u,Msymu) =
m+C∑
i=m

qiy
2
i−m − 2

√
ββ′

m+C∑
i=m

√
qiyi−myi−m+1 (3.35)

Due to the smooth hopping rate function, in the interval [m,m + C] with C > 1
finite we can approximate each qi as qm = qmin

(u,Msymu) ≃ qmin

m+C∑
i=m

y2i−m − 2
√

qminββ′
m+C∑
i=m

yi−myi−m+1 = (3.36a)

= qmin

C∑
n=0

y2n − 2
√
qminββ′

C∑
n=0

ynyn+1 = (3.36b)

= qmin

C−1∑
n=1

y2n − 2
√
qminββ′

C−2∑
n=1

ynyn+1 = (3.36c)

= qmin − 2
√

qminββ′ cos
( π
C

)
(3.36d)

where we used previous properties and the definition of yi. Finally, taking the
infinite size limit (which coincides with the C → +∞ limit), the inequality (3.21)
acquire the following form

λ
(∞)
min ≤ qmin − 2

√
qminββ′ (3.37)

3.1.2 Second upper bound

Let us define the function

f(x) =
+∞∑
i=1

si+1 − si−1√
ββ′ vi(x)ζ

i(x) (3.38)
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where

ζ(x) = x−
√
x2 − 1 (3.39)

while the sequences si and vi(x) are defined in a recursive way ass0 = α

si+1 = 1− ββ′

si
, i = 0, 1, . . . L− 1

(3.40)

and
v0(x) = 0

v1(x) = 1

vi+1(x) =
(
2x− 2x0(si+1 − si−1)

)
vi(x)− vi−1(x), i = 1, 2, . . . , L− 1

(3.41)

where

x0 =
1

2
√
ββ′ (3.42)

Furthermore we denote by x∗ the point at which the function f is unitary

f(x∗) = 1 (3.43)

In order to obtain good bounds, the idea is that of choosing u as close as
possible to the actual eigenvector

ui =
vi(x∗)

AL(x∗)
(3.44)

where AL(x∗) is a normalization factor

AL(x∗) =

√√√√ L∑
i=1

v2i (x∗) (3.45)

Rewriting the recursive definition for vi(x∗) in terms of un we obtain

ui+1AL(x∗) =
(
2x∗ − 2x0(si+1 − si−1)

)
uiAL(x∗)− ui−1AL(x∗) (3.46)
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which implies

2x0(si+1 − si−1)ui = 2x∗ui − ui+1 − ui−1 (3.47)

Multiplying both sides by ui and summing over i (remembering that u0 = uL+1 =
0) we obtain

2x0

L∑
i=1

(si+1 − si−1)u
2
i = 2x∗

L∑
i=1

u2
i︸ ︷︷ ︸

1

−
L∑
i=1

ui+1ui −
L∑
i=1

ui−1ui = (3.48a)

= 2x∗ −

(
L−1∑
i=1

ui+1ui +
L∑
i=2

ui−1ui

)
= (3.48b)

= 2x∗ − 2
L−1∑
i=1

ui+1ui (3.48c)

implying

L∑
i=1

(si+1 − si−1)u
2
i =

x∗

x0

− 1

x0

L−1∑
i=1

ui+1ui (3.49)

At least numerically a posteriori, the detrended densities tend to the sequence si
for L→ +∞, hence the scalar product (3.27) can be written as

(u,Msymu) ≃
L∑
i=1

qiu
2
i −

L∑
i=1

(qisi+1 − qi−1si−1)u
2
i − 2

L−1∑
i=1

uiqi

√
J̃iui+1 ≃ (3.50)

≃
L∑
i=1

qiu
2
i −

L∑
i=1

qi(si+1 − si−1)u
2
i − 2

√
ββ′

L−1∑
i=1

√
qiuiui+1 (3.51)

where the last line follows from the definition of J̃ and the smooth behaviour of qi.
One can show that the sequence s converges in a fast way, hence we can assume
that in this interval of convergence the values assumed by qi are around q0 = 1.
This permits us to substitute (3.49) into (3.51) obtaining

(u,Msymu) ≃
L∑
i=1

qiu
2
i −

L∑
i=1

(si+1 − si−1)u
2
i − 2

√
ββ′

L−1∑
i=1

√
qiuiui+1 = (3.52a)

=
L∑
i=1

qiu
2
i −

x∗

x0

+
1

x0

L−1∑
i=1

ui+1ui − 2
√

ββ′︸ ︷︷ ︸
1
x0

L−1∑
i=1

√
qiuiui+1 = (3.52b)

=
L∑
i=1

qiu
2
i −

x∗

x0

+
1

x0

L−1∑
i=1

(1−√qi)ui+1ui (3.52c)
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Finally, in the infinite size limit L → +∞ the hopping rate function can be ap-
proximated to be the sum of the unity and a function that goes to zero as L−2

leading to

(u,Msymu) = 1− x∗

x0

(3.53)

which represents the second upper bound

λ
(∞)
min ≤ 1− x∗

x0

(3.54)

So far we have focused on two different upper bounds, therefore the minimum
eigenvalue (slowest relaxation rate) in the infinite size limit needs to satisfy the
tighter between the two, namely

λ
(∞)
min ≤ min

{
1− x∗

x0

, qmin − 2
√
qminββ′

}
(3.55)

In particular, the numerical analysis reported in Figure 3.3 shows that the
relation (3.55) is valid also as an equality; moreover, the absolute difference with
the numerical computation is decreasing by increasing the size of the system as
expected since approaching the thermodynamic limit. This implies that also a
lower bound coincident to (3.55) exists.

3.1.3 Dynamical transition

In addition to the transitions in the stationary state between one phase to another
of the homogeneous TASEP, there exists the so called dynamical transition as
explained in Pelizzola and Pretti (2017). The latter does not correspond to any
steady state transition and it is observed in the LD and HD phases. Considering
the HD one, the transition can be characterized as follows: for any β < βHD/MC,
the slowest relaxation rate of the system is independent of α for any α ≥ αc(β)
where in the homogeneous case

αc(β) =

[
1 +

(
β

1− β

) 1
3

]−1

(3.56)

while for α < αc(β) the relaxation rate depends on both α and β. This implies
that the HD phase is divided in a so called slow region for α < αc(β) and a fast one
for α ≥ αc(β) at a given β < βHD/MC. Due to the particle - hole symmetry of the
system, the dynamical transition is also present in the LD phase with a symmetry
with respect to the bisector α = β in the phase diagram. For this reason, it is
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Figure 3.3: Validity of the upper bound and in particular of equation (3.55). On
the left there is the behaviour of the slowest relaxation rate (both with numerical
analysis and analytical derivation) as a function of β till βHD/MC in order to in-
vestigate the HD phase with α = 1, L = 800 and A = 1. On the right there is the
absolute difference between the analytical and numerical version with increasing
size of the system at α = 1 and A = 1.

convenient to focus our attention only in one phase, the HD one, for which we will
characterize the dynamical transition.

We will see that the dynamical transition exists also in the inhomogeneous
TASEP. An example, at finite size, of the behaviour of the slowest relaxation rate
as a function of α is reported in Figure 3.4 where we can notice that from a certain
αc on the behaviour is independent on α, whereas below αc we have to take into
account the dependence on the entry rate. In particular, the curve for A = 0
shows a continuity in the first derivative at the critical point αc; instead for the
inhomogeneous case a discontinuity in the first derivative (corner point) at the
critical entry rate is observed. The relaxation rate curves in the slow phase for the
different values of A seem to collapse on a unique curve independently on A. Our
objective is now to determine numerically the curve αc(β) which characterizes the
dynamical transition for the inhomogeneous model in order to generalize (3.56).

The determination of the critical value of the entry rate, that separates the slow
and the fast region, is done in two different numerical ways. The first is based on
an argument which involves the relation between the slowest relaxation rate at
two different finite sizes with the one at infinite size; while the second involves the
function f(x) defined in (3.38).

• First method

Andrea Demaria 24



CHAPTER 3. RELAXATION TO STATIONARY STATE

Figure 3.4: Slowest relaxation rate in the HD phase at size L = 100 as a function
of the entry rate α with β = 0.07 at different values of A.

In the case of homogeneous TASEP and at a mean field level in the TASEP -
LK, we know that the difference between the slowest relaxation rate at finite
size λ

(L)
min and that at infinite size λ

(∞)
min is asymptotically a power law in L.

Assuming this behaviour also for the inhomogeneous TASEP,

λ
(L)
min = λ

(∞)
min + kL−γ (3.57)

where k is a constant and γ > 0 is a suitable exponent. Taking two different
sizes of the system L1 and L2 it is possible to solve the systemλ

(L1)
min = λ

(∞)
min + kL−γ

1

λ
(L2)
min = λ

(∞)
min + kL−γ

2

(3.58)

with respect to λ
(∞)
min which gives

λ
(∞)
min =

λ
(L2)
min L

−γ
1 − λ

(L1)
min L

−γ
2

L−γ
1 − L−γ

2

(3.59)

The determination of γ is crucial because it enters in the λ
(∞)
min expression and

it is retrieved by fitting the difference between the relaxation rate at finite
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Figure 3.5: Power law fitting with L of the difference between slowest relaxation
rates at finite and infinite size for different values of A in the HD phase with α = 1
and β = 0.07. On the top there is a lin - lin plot, instead at the bottom a log - log
plot is shown.

size and that at infinite size according to (3.55). The fitting is done in the
HD phase for A = 0, 1, 2 as shown in Figure 3.5 where in the legend we can
read the exponents γ.

In order to give an estimate of αc it is sufficient to intersect the line y = λ
(∞)
min

with the profile of λ
(L)
min at the largest possible value of L. In this way we

have a value of αc for each value of β < βHD/MC and a related curve αc(β).

We will denote the critical value determined with this method with α
(I)
c .

• Second method

It is possible to prove that the expression (3.55) acquires different behaviours
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Figure 3.6: Behaviour of αc in the HD phase which characterizes the dynamical
transition. From left to right, the curve refers to A = 0, 1, 2 with both methods
described before.

in the slow and fast regions. In particular

λ
(∞)
min =

1− x∗
x0
, α < αc

qmin − 2
√
qminββ′, α > αc

(3.60)

The critical value of the entry rate αc is retrieved when the two behaviours
meet at

x∗ = x0(1− qmin) + 2x0

√
qminββ′ (3.61)

and making use of (3.43), αc is retrieved by imposing

f(x∗;αc, β) = 1 (3.62)

which is solved numerically. We will denote the critical value determined
with this method with α

(II)
c .

The results from both methods for different values of A are reported in Fig-
ure 3.6 in which we can observe that for A ̸= 0 the two methods coincide, whereas
for the homogeneous case a little difference emerges. This happens because in the
case of the smooth transition for A = 0, where the corner point is not present,
the intersection between an horizontal line and an oblique one with small slope is
more affected by numerical errors. It is interesting to observe that the curve of the
critical entry rate, in the neighbourhood of βHD/MC becomes steeper and steeper
with a recess.
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3.2 Domain wall theory

The DWT describes the long term dynamics of driven systems in terms of two
characteristic velocities, the domain wall or shock velocity vs and the collective or
group velocity vg. In the case of the homogeneous TASEP model, DWT predicts
the exact result in the slow phase. Following Dudzinski and Schütz (2000), we will
generalize the domain wall description to the inhomogeneous TASEP. A domain
wall, or shock, is a sharp interface connecting two phases at the stationary state.
A shock separating two stationary phases of densities ρ

(−)
i (on the left) and ρ

(+)
i+1

(on the right) moves with velocity

vi,i+1 =
J
(+)
i+1 − J

(−)
i

ρ
(+)
i+1 − ρ

(−)
i

(3.63)

where the profiles ρ(±) are the discretization of bulk profiles (2.20b) and (2.22b)

ρ
(−)
i =

1

2

[
1−

√
1− 4α(1− α)

qi

]
, i = 1, . . . , L (3.64a)

ρ
(+)
i =

1

2

[
1 +

√
1− 4β(1− β)

qi

]
, i = 1, . . . , L (3.64b)

and the current J
(±)
i is instead the discretization of (2.16)

J
(±)
i = qiρ

(±)
i

(
1− ρ

(±)
i

)
, i = 1, . . . , L (3.65)

The DWT can also provide a quantitative description of the relaxation toward
the stationary state with the main assumption that the relaxation dynamics is de-
termined by the shock diffusion, a random walk with (rightward, leftward) hopping
rates given by 

D
(+)
i =

J
(+)
i

ρ
(+)
i −ρ

(−)
i−1

, i = 1, . . . , L− 1

D
(−)
i =

J
(−)
i

ρ
(+)
i+1−ρ

(−)
i

, i = 2, . . . , L
(3.66)

such that vi,i+1 = D
(+)
i+1 −D

(−)
i where

ρ
(−)
0 = α, ρ

(+)
L+1 = 1− β (3.67)

The behaviour of random walk hopping rates for different values of A is reported
in Figure 3.7 where we can notice that, as expected, in the homogeneous case the
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Figure 3.7: Random walk (rightward and leftward) hopping rates in the HD phase
with α = 0.07, β = 0.05 and L = 100 for different values of A = 0, 1, 2 from left to
right.

random walk hopping rates are constant; whereas for A ̸= 0 they depend on the
lattice site with a maximum achieved in i = L

2
.

Denoting by Pi(t) the probability that the shock is located at lattice site i at
time t, the corresponding master equation for the shock position will be


Ṗ1(t) = D

(−)
2 P2(t)−D

(+)
1 P1(t)

Ṗi(t) = D
(+)
i−1Pi−1(t) +D

(−)
i+1Pi+1(t)−

(
D

(−)
i +D

(+)
i

)
Pi(t), i = 2, 3, . . . , L− 1

ṖL(t) = D
(+)
L−1PL−1(t)−D

(−)
L PL(t)

(3.68)

or more compactly in matrix form

Ṗ(t) = −MP(t), P(t) =


P1(t)
...
Pi(t)
...

PL(t)

 (3.69)
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whereM∈ RL×L is tridiagonal with elements

Mi,i =


D

(+)
1 , i = 1

D
(−)
i +D

(+)
i , i = 2, 3, . . . , L− 1

D
(−)
L , i = L

Mi,i+1 = −D(−)
i+1, i = 1, . . . , L− 1

Mi,i−1 = −D(+)
i−1, i = 2, . . . , L

(3.70)

The latter is a quasi - Toeplitz matrix5 in the case of homogeneous TASEP.
We are interested in the minimum (non vanishing) eigenvalue of M in the

limit L→ +∞ for the inhomogeneous TASEP whereM in general is not a quasi -
Toeplitz matrix, therefore we have to proceed numerically. Following an approach
similar to section 3.1, we will use the QR decomposition (see Appendix A) of
M in order to compute its spectrum and since the matrix is not symmetric, we
will symmetrize it. The spectrum of M in the HD phase for A = 1 is shown in

5A matrix Ξ ∈ RL×L where each diagonal has a constant value except for the first and the
last element of the main diagonal is said to be a quasi - Toeplitz matrix

Ξ11 ≡ b

Ξi+k,i ≡ ak, k = 0, 1, 2, . . . , L− 1, i = 1, . . . , L− k ∧ (k, i) ̸= (0, 1), (0, L)

Ξi,i+κ ≡ a−κ, κ = 1, 2, . . . , L− 1, i = 1, . . . , L− κ

ΞLL ≡ c

(3.71)

where {a±j}L−1
j=0 ∈ R and b ̸= a0, c ̸= a0. Indeed, in the case of uniform hopping rates (A = 0),

the random walk hopping rates are constant (see Figure 3.7) D
(+)
i ≡ DR and D

(−)
i ≡ DL. The

matrixM is quasi - Toeplitz withb = DR, a0 = DL +DR, c = DL, a−1 = −DR, a1 = −DL

aj = 0, ∀j = ±2,±3, . . . ,±(L− 1)

(3.72)

and its minimum eigenvalue is given by

λ1 = DL +DR − 2
√
DRDL cos

π

L

L→+∞−→ DL +DR − 2
√
DRDL (3.73)
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Figure 3.8: Real and imaginary parts of the eigenvalues of M in HD phase com-
puted with QR algorithm. The entry and exit rates are α = 0.07, β = 0.05 and
increasing size of the system L = 500, 700, 900, 1000.

Figure 3.8 in which the real part of the eigenvalues is dominant with respect to
the imaginary part. The latter is indeed a consequence of a numeric effect during
the determination of the eigenvalues. We can symmetrize M in order to get rid
of the numeric effect of the imaginary parts of the eigenvalues by following the
same procedure as in the mean field case. In particular, we will obtain that the
symmetrized matrixMsym is tridiagonal with lower and upper diagonal

(Msym)i,i−1 = −
√

D
(+)
i−1D

(−)
i , i = 2, . . . , L

(Msym)i,i+1 = −
√
D

(+)
i D

(−)
i+1, i = 1, . . . , L− 1

(3.74)

The spectrum ofMsym is completely real and it is in good agreement with the real
part of the spectrum ofM as Figure 3.9 shows.

The minimum (non vanishing) eigenvalue of M represents the slowest relax-
ation rate towards the stationary state in the DWT. We expect that its behaviour
at a fixed β as function of α is qualitatively the one retrieved in the mean field
case characterizing the dynamical transition. The numerical results for different
values of A are illustrated in Figure 3.10 where the curve for A = 0 satisfies (3.73)
and for the inhomogeneous case we notice an interval of α which is not accessible.
This is due to the fact that ρ

(−)
i exists only if

4α(1− α) ≤ qi, i = 0, . . . , L (3.75)
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Figure 3.9: Comparison between the spectrum of the symmetrized matrix Msym

with the real part of that of M in the HD phase with α = 0.07, β = 0.05, A =
1, L = 800. On the left there is the entire spectrum, whereas on the right is shown
the absolute difference between the two curves.

Figure 3.10: Minimum (non vanishing) eigenvalue of Msym with β = 0.05, L =
1000 for different values of A.
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as suggested by (3.64a). That condition is verified if the minimum of qi is greater
than 4α(1− α)

1

1 + A
≥ 4α(1− α) (3.76)

which implies that the intervals of α in the HD phase which are acceptable are the
following

β ≤ α ≤ α− ∨ α ≥ α+, α± =
1

2

(
1±

√
A

1 + A

)
(3.77)

Clearly, for A = 0 we have α± = 1
2
and therefore the whole range of α in the HD

phase is covered. By increasing A we have that α− → 0 and α+ → 1 which implies
that the forbidden range of α is wider and wider as shown in Figure 3.10.

We have tried to overcome this difficulty by replacing the profile ρ
(−)
i with the

non stationary profile for α ≥ α−. The non stationary mean field density profiles
obey

ρ̇i(t) = qi−1ρi−1(t)
(
1− ρi(t)

)
− qiρi(t)

(
1− ρi+1(t)

)
, i = 1, . . . , L (3.78)

with {
ρ0(t) = α

ρL+1(t) = 1− β
,

{
q0 = 1

qL = 1
(3.79)

The idea is now to use the non stationary density profiles in the DWT instead of
the profile ρ

(−)
i for α ≥ α− maintaining β fixed. The numerical solution of (3.78)

is reported in Figure 3.11 at different times for the same β and α = α− + 0.1 in
order to be sure that we are above α−. We can observe that the stationary state
is already reached at t = 5200 for A = 0.1, 0.2, 0.3 and at t = 6000 for A = 0.4,
therefore we can choose any profile at t ≤ 5200 to put in the DWT analysis.
After some attempts, the best profile that gives the plateau like behaviour (as
retrieved in the MFT) of λmin (after a certain αc) characterizing the dynamical
transition is at t = 2850 from which the behaviour of the minimum eigenvalue
is shown in Figure 3.12. The critical value αc of the entry rate separating the
slow from the fast region in the HD phase coincides with α−. Unfortunately, the
DWT approach does not provide any suggestion for the slowest relaxation rate of
the inhomogeneous TASEP in infinite systems in terms of a closed form like the
MFT prediction (3.55). However, this analysis has highlighted the fact that in
the inhomogeneous TASEP there is a complex relaxation dynamics characterized
by two different shocks (see Figure 3.11), qualitatively different from that of the
homogeneous TASEP. Intuitively, this is explained by the fact that the dynamical
transition in the inhomogeneous TASEP is of a different nature respect to that in
the homogeneous model.
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Figure 3.11: Non stationary density profiles at different times with L = 1000, β =
0.05 and α = α− + 0.1 for different values of A = 0.1, 0.2, 0.3, 0.4 from top left
to bottom right. In each plot there is also shown the profile of the stationary MC
state.
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Figure 3.12: Minimum (non vanishing) eigenvalue ofMsym with the non stationary

density profile at t = 2850 instead of ρ
(−)
i for α ≥ α− with β = 0.05, L = 1000 and

different values of A.
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3.3 A quantum approach

The relaxation times of the inhomogeneous TASEP can be calculated by diagonal-
izing the time evolution operator H of the process for finite systems as suggested
in Dudzinski and Schütz (2000). We use the spin 1

2
Pauli matrices σ

(x,y,z)
k acting

on site k of the chain

σ
(x,y,z)
k =

k−1⊗
i=1

I2 ⊗ σ(x,y,z) ⊗
L−k⊗
j=1

I2 = (3.80a)

= I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
k−1 times

⊗σ(x,y,z) ⊗ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
L−k times

(3.80b)

where ⊗ denotes the tensor product6, I2 is the identity matrix 2 × 2 and σ(x,y,z)

are the Pauli matrices

σ(x) =

(
0 1
1 0

)
, σ(y) =

(
0 −i
i 0

)
, σ(z) =

(
1 0
0 −1

)
(3.83)

with dimension 2L× 2L. Let us define the particle annihilation/creation operators

s
(±)
k =

σ
(x)
k ± iσ

(y)
k

2
(3.84)

and the projectors

nk =
1− σ

(z)
k

2
(3.85)

on particles and

νk = 1− nk (3.86)

on vacancies. The generator H of the TASEP with non uniform hopping rates
is closely related to a non Hermitian quantum Hamiltonian (whose dimension is
2L × 2L) of an anisotropic ferromagnetic spin 1

2
Heisenberg chain

H =
L−1∑
k=1

qk

(
nkνk+1 − s

(+)
k s

(−)
k+1

)
+ α

(
ν1 − s

(−)
1

)
+ β

(
nL − s

(+)
L

)
(3.87)

6Given A = {aij} ∈ Rm×n and B = {bkl} ∈ Rp×q the tensor product ⊗ between A and B is

A⊗B ∈ Rmp×nq (3.81)

with elements

(A⊗B)(i,k),(j,l) = aijbkl (3.82)
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whose elements are the opposite with respect to the elements of the transition
matrix. Indeed, all the contributions which appears in H with a minus in front
correspond to the gain term in the master equation; whereas the contributions
with a positive sign in H are the loss terms. In particular, for what it regards bulk
process, the term −qks(+)

k s
(−)
k+1 is a gain contribution, instead qknkνk+1 is a loss one

(a similar argument can be applied for boundary terms too).
The goal is now determine the minimum (non vanishing) eigenvalue of the

time evolution operator H at fixed β as a function of α in order to investigate the
dynamical transition. The size of the matrix grows exponentially with L, hence
the numerical eigenvalue evaluation is possible up to approximately 20 lattice sites
which is too far from the condition L→ +∞. For this reason, we will now describe
a clever procedure to extract the minimum (non vanishing) eigenvalue of H for
finite size and finally we will implement the FLE algorithm in order to access the
thermodynamic limit.

Since the generator H is an asymmetric matrix, the numerical diagonalization
is more difficult than in the standard case of symmetric or Hermitian matrices.
Nevertheless there are methods which allow us to perform a numerically exact
calculation of the eigenvalues. In particular, we will make use of the Arnoldi algo-
rithm (see Appendix B) which is very efficient for large sparse matrices. Indeed, H
has a lot of vanishing components with the advantage that the memory occupied is
due only to the non zero entries. The peculiarity of the Arnoldi algorithm is that
it does not determine the full spectrum, but only the minimum (non vanishing)
eigenvalue.

The idea is to apply the Arnoldi algorithm to the evolution operator H for
different sizes (we considered sizes from L = 10 to L = 20) and then extrapolate
the smallest relaxation rate in the limit L → +∞. In Figure 3.13 we can see an
example of the behaviour of λmin at fixed β as a function of α where increasing the
size the expected plateau decreases. In order to collect enough data, the smallest
relaxation rate evaluation as function of α is done for β = 0.1, 0.15 and β = 0.2 for
each value of A = 0, 0.1, 0.2 and A = 0.3. In some of these cases, we have noticed
that, for specific sizes, the curve of the slowest relaxation rate shows spikes as
reported inFigure 3.14. The spikes appearing in the curves are due to numerical
effects and we will see how to treat them in the FLE algorithm.

3.3.1 Bulirsch and Stoer algorithm

Inspired by Henkel and Schutz (1988), we apply the Bulirsch and Stoer algorithm
in order to investigate the slowest relaxation rate in the thermodynamic limit as
function of α with the associated dynamical transition.

The Bulirsch and Stoer algorithm is a FLE algorithm useful to extrapolate
finite size data towards the thermodynamic limit L → +∞. In order to describe
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Figure 3.13: Behaviour of the minimum (non vanishing) eigenvalue of the evolution
operator H for different sizes as function of α for β = 0.1 and A = 0.1.

Figure 3.14: Behaviour of the minimum (non vanishing) eigenvalue of the evolution
operator H for different sizes as function of α for β = 0.2 and A = 0.1.

Andrea Demaria 38



CHAPTER 3. RELAXATION TO STATIONARY STATE

it, let us define

• L as the set of all possible finite sizes considered for which we have determined
the slowest relaxation rate with the Arnoldi algorithm. As explained before,
we have computed data from L = 10 to L = 20

L = {10, 11, . . . , 20} (3.88)

whose cardinality is denoted by N and its elements by li in such a way that
L = {li}Ni=1.

• ω as a free parameter whose choice is non trivial as we will see.

The desired thermodynamic limit λ
(∞)
min is obtained from the following table of

extrapolants

T
(l1)
0

T
(l1)
1

T
(l2)
0 T

(l1)
2

... T
(l2)
1

...
. . .

...
...

...

T
(lj)
0 T

(lk)
1 T

(lh)
2 . . . T

(l1)
N−1

...
...

...
...

... T
(lN−2)
2

. .
.

... T
(lN−1)
1

...

T
(lN )
0

(3.89)

where T
(li)
m are recursive quantities whose definition is

T
(l)
−1 = 0, l ∈ L

T
(l)
0 = λ

(l)
min, l ∈ L

T
(li)
m = T

(li+1)
m−1 +

T
(li+1)
m−1 − T

(li)
m−1(

li+m

li

)ω
·
(
1− T

(li+1)

m−1 −T
(li)
m−1

T
(li+1)

m−1 −T
(li+1)

m−2

)
− 1

, m = 1, . . . , N − 1 , i = 1, . . . , N −m

(3.90)
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with λ
(L)
min the slowest relaxation rate of the system with size L at a given α, β and

A whose finite size behaviour is assumed to be

λ
(L)
min = λ

(∞)
min +

a1
Lω

+
a2
L2ω

+ . . . (3.91)

The desired thermodynamic limit λ
(∞)
min at the same parameters is then obtained

by the rightmost cell of the table of extrapolants T
(l1)
N−1. This happens because the

entries in column i start to converge faster and faster, with respect to the entries
in column i− 1, to a unique value that is the extrapolated result T

(l1)
N−1. The table

of extrapolants needs to be constructed for each value of α (with β and A fixed)
where the first column, as dictated by the recursion (3.90), contains the slowest
relaxation rate at finite size for that particular α.

The extrapolated slowest relaxation rate in the thermodynamic limit λ
(∞)
min is

strongly dependent on the choice of the free parameter ω. An intrinsic criterion for
choosing it is that of minimizing the difference between two consecutive elements
of the column m in the table of extrapolants. In particular, we can define

ε(i)m = 2
(
T (i+1)
m − T (i)

m

)
(3.92)

a quantity which needs to be minimized. It is quite intuitive that, if we want to
ensure a good convergence of the algorithm, ε

(i)
m needs to be ideally zero, meaning

that two consecutive elements on the column m are exactly equal. However, this
criterion for choosing ω is not so reliable because ε

(i)
m is defined for all theN columns

of the table of extrapolants and for each couple of adjacent elements (except for
the last column where only the extrapolated value is present). The total number

of possible values of ε
(i)
m is

N−1∑
j=1

(N − j) =

(
N

2

)
(3.93)

for each table of extrapolants (hence, for each value of α). In our case where

N = 10, we have 45 values of ε
(i)
m that need to be minimized in order to choose

the best ω. For this reason it is not a well defined problem to solve and in our
analysis we have made only a minimization of ε

(i)
N−1 which is related to the second

last column (that is the most important one since it is the column before the

extrapolated value). In Figure 3.15 we show the behaviour of ε
(i)
N−1 as function of

ω. We can notice that the minimization is not so accurate because there are other
values of ω for which ε

(i)
N−1 is very close to the minimum found numerically. Doing

the minimization of ε
(i)
N−1 for all values of α we obtain a distribution of the best ω

reported in Figure 3.16. It is expected that the finite size scaling is characterized
by an exponent ω which is independent on A,α and β, therefore this is clearly
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Figure 3.15: Behaviour of ε
(i)
N−1 (solid line) as function of ω for β = 0.2, A = 0.1

and α = 0.072, 0.138, 0.205, 0.271 from top left to bottom right. The marker shows
the point for which ε

(i)
N−1 is minimum.

Figure 3.16: Distribution of the best ω minimizing ε
(i)
N−1 as function of α for β = 0.2

and A = 0.1.

41 Andrea Demaria



CHAPTER 3. RELAXATION TO STATIONARY STATE

Figure 3.17: Slowest extrapolated relaxation rate at infinite size as function of α
for β = 0.2, A = 0.1 and different free parameters ω.

β
A

0 0.1 0.2 0.3

0.1 1.5 3.4 4.4 4.7
0.15 1.45 3.4 4.4 4.7
0.2 1.4 3.4 2.7 2.9

Table 3.1: ω as a function of β and A in such a way to obtain the best plateau of
λ
(∞)
min by visual inspection in the Bulirsch and Stoer algorithm.

in contrast with our obtained result. This shows that the intrinsic criterion for
choosing ω in such a way to minimize ε

(i)
N−1 is not so accurate. One could think that

this happens because for β = 0.2 and A = 0.1 the finite size eigenvalue calculation
(see Figure 3.14) shows some spikes; however a similar non constant behaviour
of ω is obtained also for β = 0.1 and A = 0.1 where the eigenvalue behaviour
at finite size does not present any spikes (see Figure 3.13). Moreover the present
behaviour of ω with this intrinsic criterion is in common in all the analysed cases
for β = 0.1, 0.15, 0.2 and A = 0, 0.1, 0.2, 0.3.

In order to overcome this problem, we have tried to set a unique value of ω
in such a way to obtain the plateau like behaviour of λ

(∞)
min as in MFT and DWT.

In Figure 3.17 the profile of λ
(∞)
min is shown as a function of the entry rate α with

different values of ω. It can be noticed that varying ω changes slightly the plateau
level of the slowest relaxation rate at infinite size. In particular, the specific ω is
chosen to be the one that gives the best plateau by simple visual inspection: all
the retrieved values are reported in Table 3.1 depending on the choice of β and A.
We can observe that at fixed A, ω is almost constant with β except for A = 0.2
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Figure 3.18: Slowest extrapolated relaxation rate at infinite size as function of α
for β = 0.1 and different values of A.

and A = 0.3 where the values related to β = 0.2 are considerably different from
those at β = 0.1 and β = 0.15. The profile of the extrapolated slowest relaxation
rate at β = 0.1 as function of α with the related ω free parameter in Table 3.1
is reported in Figure 3.18. This result (a very similar behaviour is observed also
for β = 0.15 and β = 0.2) is in agreement with the profiles obtained in MFT and

DWT where for A ̸= 0 the λ
(∞)
min profile coincides with that of the homogeneous case

up to the critical value αc separating the slow from the fast region. Note that in
the homogeneous TASEP case the extrapolate slowest relaxation rate is very close
to the one predicted in the DWT by (3.73) as a confirmation of the Bulirsch and
Stoer algorithm (at least in the A = 0 case). The latter observation permits us to
determine the critical value αc by intersecting the plateau level λplateau (actually
we have taken a mean since there is still some variation as reported in Figure 3.18)
with the exact result (3.73) which, as a function of α (at fixed β), reads

λ1(α; β) =
α(1− α) + β(1− β)

1− β − α
− 2

1− β − α

√
α(1− α)β(1− β) (3.94)

Solving numerically the equation

λ1(αc; β) = λplateau (3.95)

for all the values of β and A analysed leads us to Figure 3.19 where we report the
curve separating the slow from the fast region in the α/β plane.

In order to have a confirmation of the Bulirsch and Stoer algorithm results, a
last (very intuitive) method was implemented. It is know that the slowest relax-
ation rate of the homogeneous TASEP at finite size has an expansion in powers of
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Figure 3.19: Critical entry rates in the HD phase describing the dynamical transi-
tion with the FLE technique for A = 0, 0.1, 0.2 and A = 0.3 from top left to bottom
right.

1
L

λ
(L)
min = λ

(∞)
min +

+∞∑
j=1

λj

Lj
(3.96)

with λ1 = 0 and {λj}∞j=2 a sequence of real numbers. The idea is to assume the
expansion to be valid also for the inhomogeneous model we are focused on and fit
the data that we have retrieved at finite size to (3.96). The fit was done truncating
(3.96) to fourth order (j = 4). In Figure 3.20 we show the results for β = 0.1.
Comparing Figure 3.20 with Figure 3.18, the former shows a more regular plateau
than the latter for different values of A. However, the obtained plateau level is
qualitatively comparable in both cases as Table 3.2 shows.
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Figure 3.20: Slowest relaxation rate at infinite size as function of α for β = 0.1
and different values of A retrieved by fitting the finite size data.

β
A

0 0.1 0.2 0.3

0.1 3.3× 10−3 5.7× 10−3 1.1× 10−2 1.2× 10−2

0.15 3.8× 10−3 5.6× 10−3 4.7× 10−3 5.4× 10−3

0.2 3.6× 10−3 5.3× 10−3 1.1× 10−3 2.6× 10−3

Table 3.2: Difference, in absolute value, between the plateau level retrieved within
the Bulirsch and Stoer algorithm and the one by fitting the finite size data.
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Conclusions

In the present work we have described in detail the relaxation process of the
inhomogeneous TASEP model towards the stationary state with the main interest
in the dynamical transition in the thermodynamic limit. After an analysis of the
stationary state itself, we have used three methods to obtain the behaviour of the
slowest relaxation rate as a function of the entry rate α and to locate the dynamical
transition, which separates the slow from the fast region in the HD phase

• MFT that leads us to obtain two analytical upper bounds of the slowest
relaxation rate in infinite system size. The latter has to satisfy the tightest
bound and moreover a numerical evaluation seems to indicate that the bound
is satisfied as an equality. This suggests that a lower bound coincident with
the upper bound exists as in the case of TASEP - LK with uniform hopping
rates (see Botto et al. (2020)).

• DWT that does not provide any analytical results (excepts for the homo-
geneous TASEP model). Considering a standard domain wall between two
different phases at stationarity, we observed that a region of α is inaccessible
in the behaviour of the slowest relaxation rate in the thermodynamic limit.
The latter issue was resolved by taking into account a domain wall descrip-
tion with a non stationary state for which the obtained result is qualitatively
in agreement with the behaviour suggested by MFT.

• FLE algorithm (Bulirsch and Stoer) applied to the quantum approach de-
scription of the model. In particular, the slowest relaxation rate of the in-
homogeneous TASEP model was calculated by diagonalizing a specific time
evolution operator whose size is exponential in the size of the system. For
this reason, in order to inspect the thermodynamic limit, we made use of the
Bulirsch and Stoer algorithm which extrapolates the slowest relaxation rate
at infinite size from finite size results computed with the help of the Arnoldi
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algorithm. This approach is numerically consistent with the result obtained
by fitting the finite size data as suggested by the homogeneous TASEP.

We can conclude that all the presented methods give the same qualitative
description of the slowest relaxation rate of the system as function of the entry rate
α in the thermodynamic limit. The dynamical transition in the HD phase is well
described with the corresponding curve separating the slow from the fast region.
Due to the particle - hole symmetry of the model, the transition is automatically
described also in the LD phase of the system where the curve separating the slow
from the fast region is symmetric with respect to the line α = β in the phase
diagram.

Especially the diagonalization of the evolution operator using the Bulirsch and
Stoer algorithm could be improved in future works in order to preserve the constant
finite size scaling of the slowest relaxation rate through a clever criterion than the
visual inspection used here. Actually, an intrinsic criterion was described, however
it is not well defined and leads to a non constant behaviour of the finite size scaling
as a function of α. In particular, since we expected it to be independent of α, we
have tried a set of values up to obtain qualitatively the plateau after a certain αc.
Despite the fact that the latter was used, the FLE algorithm shows good results,
which agree with those obtained by MFT and DWT.
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QR algorithm

Any square matrix A ∈ RL×L may be decomposed as

A = QR (A.1)

where Q is an orthogonal matrix7 and R is an upper triangular matrix.
In particular this decomposition is useful to retrieve the eigenvalues of a generic

matrix A. Let

A0 = A (A.2)

and at the k-th step (starting with k = 0) we compute the QR decomposition

Ak = QkRk (A.3)

We then form

Ak+1 = RkQk (A.4)

which can be written, thanks to A.3

Ak+1 = RkQk = (A.5a)

= Q−1
k AkQk = (A.5b)

= QT
kAkQk (A.5c)

due to the orthogonality of Q.
This means that all the Ak are similar and hence have the same eigenvalues.

Under certain conditions, the matrices Ak converge to a triangular matrix, the so

7There is also a generalization to a matrix A ∈ CL×L where Q is a unitary matrix satisfying
Q† = Q−1.
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called Schur form of A, whose eigenvalues are listed over the diagonal. The eigen-
value problem is therefore solved since at a certain k = κ we reach the Schur form
and the spectrum of Aκ coincides with that of A0 = A. Moreover, the algorithm is
numerically stable because it proceeds by orthogonal similarity transformations.

The algorithm can be applied to the relaxation matrix M ∈ RL×L and one of
the conditions that leads to a Schur form is the fact that M is tridiagonal with non
zero off diagonal entries (indeed M is irreducible). Thanks to this, κ is reached in
a finite time and the algorithm converges.
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Arnoldi algorithm

The Arnoldi algorithm is an iterative algorithm for eigenvalues and eigenvectors
of general (possibly non Hermitian) matrices consisting in Arnoldi iterations. It is
based on the construction of an orthonormal basis of the Krylov subspace8, which
makes it particularly useful when dealing with large sparse matrices.

The Arnoldi iteration produces a sequence of orthonormal vectors (Arnoldi
vectors) q1, q2, . . . , qn such that for every i, the vectors q1, . . . , qi span the Krylov
subspaceKi. The algorithm stops when qk is the zero vector as compactly described
in 1

Algorithm 1 Arnoldi algorithm

Require: arbitrary vector q1 with norm 1
while qk ̸= 0 do

qk ← A−1qk−1

for j = 1 : k − 1 do
hj,k−1 ← q∗j qk
qk ← qk − hj,k−1qj

end for
hk,k−1 ← ∥qk∥
qk ← qk

hk,k−1

end while

8The order r Krylov subspace generated by A ∈ Rn×n and b ∈ Rn×1 is the linear subspace
spanned by the images of b under the first r powers of A

Kr(A, b) = span
{
b, Ab,A2b, . . . , Ar−1b

}
(B.1)

The Arnoldi process needs b to get started which typically, for eigenvalue problems, it is assumed
to be random.
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In particular, let A ∈ Rm×m be the large sparse matrix whose eigenvalues we
want to determine and Qn ∈ Rm×n formed by the first n Arnoldi vectors q1, . . . , qn.
Define

Hn = Q∗
nA

−1Qn =


h11 h12 h13 . . . h1n

h21 h22 h23 . . . h2n

0 h32 h33 . . . h3n

...
. . .

. . .
. . .

...
0 . . . 0 hn,n−1 hnn

 (B.2)

the upper Hessenberg matrix with non vanishing elements hjl computed in the
algorithm. Since Hn ∈ Rn×n has a modest size, its eigenvalues (called Ritz eigen-
values) can be computed efficiently using the QR algorithm (see Appendix A). It
is observed that some of the eigenvalues of Hn (at most n in total) converge to the
smallest eigenvalues of A (at most m > n in total).

In our application, the algorithm is very useful since we have to compute the
second smallest eigenvalue (because the smallest one is known to be zero) of the
evolution operator H.
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