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1 Introduction
At the end of the 19th century, it seemed that the theoretical framework of physics was
already complete. Until then, Newtonian mechanics, in conjunction with Maxwell’s
theory of electromagnetism, appeared sufficient to explain all physical phenomena,
from the motion of planets to the properties of electric charges. With the exception
of a few anomalies, classical physics seemed sufficient to explain all known phenom-
ena. Most physicists believed these anomalies would eventually be resolved within a
classical framework. However, the experimental and theoretical investigation of these
unresolved issues finally brought down classical physics as a general theory and re-
duced it to a great but bounded model that only worked within the particular regimes.
Classical physics had developed for describing the macroscopic phenomena within the
human experience: the motion of falling objects, projectiles, orbital paths of planets,
and the sluggish flow of electric charges in electric circuits. It was formulated based
on large, slow-moving bodies, and in this domain, it remains an outstanding scientific
framework. Yet, at the same time, there was no warranty that the classical physics
might give an equally reliable description of reality under extreme conditions-like sys-
tems that involve speeds comparable to the speed of light or dimensions as small as
atoms and elementary particles. One of the prominent fields that originated the failure
of classical physics was the investigation on the propagation of light and their emission.
In the Michelson-Morley experiment, performed in 1881 [1], showed that the velocity
of light does not depend upon the observer frame. This was a conclusion contradicted
by the Galilean relativity or, correspondingly, by classical principle of a velocity com-
position. Besides, Maxwell’s equations seemed not to be consistent with the Galilean
transformations since their form was changing under the transformations between dif-
ferent inertial frames. These contradictions impelled Albert Einstein, in 1905, to return
to the principle of relativity again and to sacrifice on its behalf the classical concepts
about space and time; thus, special relativity was born.
Meanwhile, the studies of blackbody radiation presented another serious problem to
classical physics: in 1900, Max Planck suggested that atoms emit not continuous en-
ergy, but in discrete quanta, thereby laying the foundations for quantum mechanics [2].
The hypothesis put forward by Planck was a serious digression from the concepts of
classical physics, and in 1905 Einstein used this very quantum hypothesis in his expla-
nation of the photoelectric effect; another phenomenon which classical theories could
not explain.
Further acceleration of the rise of quantum mechanics was due to discoveries about
the structure of the atom. In 1897, with the discovery of the electron, J.J. Thomson
proved that the atom was not an indivisible fundamental unit but was actually com-
posed of subatomic particles. The further development of atomic and nuclear models
then showed that on this scale, classical physics was quite insufficient and required a
radically new approach.
The crisis of classical physics marked the beginning of a period of intense scientific de-
velopment. The emergence of new interpretative models allowed for the prediction of
previously unknown phenomena and paved the way for overcoming the wave-particle
duality. In classical physics, particle-like phenomena and wave-like phenomena are
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treated as distinct, with a clear separation between them. A given physical phenomenon
could be described either as corpuscular or wave-like, but never both simultaneously.
However, in the microscopic world, this strict distinction no longer holds: radiation
can exhibit particle-like behavior, while particles can display wave-like properties. The
behavior of matter waves required a new theoretical framework, leading to the develop-
ment of quantum mechanics (also known as wave mechanics) in 1925, independently
formulated by Erwin Schrödinger and Werner Heisenberg.
This was the origin of fundamental conceptual problems associated with wave-particle
duality: A wave is a field quantity oscillating in space and time, whereas until then,
one had attributed a particle to be a localized object following a well-defined trajec-
tory. In 1926 Erwin Schrödinger formulated a differential equation (now known as the
Schrödinger equation) describing the time evolution of a wave function Ψ for material
particles. In the same year, the German physicist Max Born proposed interpreting the
wave function Ψ (which is a function of a complex variable) as a probability wave.
In quantum mechanics, the wave associated with a particle should be understood as a
probability wave function oscillating in time and space, where a greater amplitude cor-
responds to a higher probability of finding the particle. The probability p that a matter
particle is located within a spatial region of volume dV during the time interval dt is
proportional to the square of the wave function.
Faced with this new theoretical framework, physicists have provided various explana-
tions that, broadly speaking, can be grouped into two schools of thought. The first,
to which the majority of physicists adhere, is associated with the Copenhagen inter-
pretation. According to this school of thought, the goal of a physical theory is not to
describe an objective reality independent of the observer but rather to predict the out-
comes of experiments. The second school of thought, on the other hand, prioritizes the
descriptive aspect of a theory over its predictive power. In other words, physicists be-
longing to this school argue that a theory should not only provide predictions about the
behavior of physical systems but also offer a clear picture of what actually happens. In
particular, supporters of this viewpoint long believed that quantum indeterminism was
a sign of the incompleteness of quantum mechanics, rejecting the idea that reality was
inherently non-deterministic. They argued that there must exist a deeper level of real-
ity, beyond what quantum mechanics describes, where the world would return to being
fully deterministic. According to this perspective, quantum indeterminism arises be-
cause quantum mechanics does not account for additional degrees of freedom, known
as hidden variables. If these hidden variables were known, the description of physical
phenomena would become completely deterministic.
It is in this context that the famous 1935 paper by Einstein, Podolsky, and Rosen (EPR)
was formulated [3]. Einstein and his collaborators can undoubtedly be placed within
this second school of thought. In their work, they demonstrated that if two fundamental
principles, referred to as the principle of reality and the principle of locality, are as-
sumed to be valid, then the formalism of quantum mechanics leads to a contradiction,
unless one admits the existence of hidden variables. To Einstein and his colleagues,
these two principles appeared so fundamental and self-evident that they considered
them indisputable. However, subsequent debates over the following decades suggested
that these principles might not be as natural as they initially seemed.
It was about thirty years after the EPR paper that, in 1964, John Bell published what
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was really a seminal work, still today the object of an intense activity of both studies
and experiments [4]. Bell demonstrated that if exists a fundamental theory that is both
realistic (meaning physical properties exist independently of measurement) and deter-
ministic, while also satisfying locality assumption (no information can travel faster than
light) then certain specific constraints must apply to the correlations between spatially
separated microscopic systems. These constraints, known as Bell inequalities, have set
bounds on how strongly two separated systems can be correlated under the assumption
of local hidden variable theories. However, Bell also showed that quantum mechanics
violates such limits. That is, any theory that tries to replace quantum mechanics with
a local hidden variable model will fail because it cannot reproduce predictions given
by quantum mechanics. Bell’s theorem thus showed a remarkable boundary between
the determinism in the classical case and quantum physics, making quantum physics
incompatible with any theory supporting the local realistic hypothesis. But these im-
plications of Bell’s theorem, were, for the time being, merely theoretical. An essential
question still had to be answered: Can these predictions be tested experimentally?
Through the following decades, physicists searched for an empirical determination of
whether nature indeed violated Bell inequalities and therefore could not support any
local hidden variable theory.
The first experimental tests took place in the 1970s and 1980s, most notably by Alain
Aspect and his collaborators. The experiments by Aspect provided the first strong ev-
idence that indeed quantum mechanics violates Bell inequalities and, therefore, that
quantum entanglement displays nonlocal correlations which no classical hidden vari-
able theory is able to explain. Later results were refined through even more precise
experiments that ruled out any conceivable loophole that might have allowed for alter-
native explanations of the violations. Today, the work of Bell is at the root of quantum
information science; it stimulates intensive works in the field of quantum cryptography,
quantum computing, and quantum teleportation. Experimental confirmation of Bell’s
inequalities has finally fixed not only the nonlocal character of quantum mechanics but
also opened the way for the technological revolution promoted by quantum mechanics
in the 21st century.
Although entanglement and non-locality are closely connected, it is very important to
treat them as different concepts. Entanglement is a quantum correlation of states of
particles, which does not depend on the distance between them. The property that
guarantees that upon the instant measurement of a state of one particle, the state of
the other is immediately determined, even when separated by light-years. However,
entanglement by itself does not necessarily contradict local realism and can exist with-
out violating any classical or hidden variable theories. Non-locality, on the other hand,
specifically refers to the violation of Bell’s inequalities, which demonstrates that no
local hidden variable theory can fully account for the behavior of quantum particles.
Unlike entanglement, non-locality directly challenges classical notions of causality and
space-time, revealing that quantum mechanics allows for correlations that defy any ex-
planation based on local interactions. While all non-local systems are entangled, the
reverse is not always true; there exist entangled states that do not exhibit non-locality.
And this is precisely where this work comes in. The aim of thesis is to provide an
analysis of the profound connection that exists between entanglement and non-locality,
with a focus on continuous variable systems.
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While discrete-variable quantum mechanics (e.g., qubits) has been widely studied in
quantum computing and cryptography [5, 6], continuous-variable systems offer alter-
native advantages. Gaussian states, for example, provide a powerful and experimen-
tally accessible framework for quantum communication and quantum metrology [7,
8, 9, 10]. Understanding how entanglement and non-locality manifest in continuous-
variable systems is essential for advancing these fields.
In Chapter 2, we begin by introducing the quantum theory of light, which provides a
foundation for understanding quantum states relevant to quantum optics. The chapter
covers the quantization of the electromagnetic field, leading to a discussion of different
types of quantum states such as Fock states, coherent states, and squeezed states. These
states play a crucial role in quantum information processing, metrology, and commu-
nication. The treatment of squeezed states, in particular, highlights their importance in
reducing quantum noise beyond the standard quantum limit, making them essential for
high-precision measurements.
The Chapter 3 introduces the key concepts of quantum information theory, starting with
fundamental elements such as qubits and qudits, the basic units of quantum informa-
tion. The discussion then expands to quantum measurements and their impact on quan-
tum states. The chapter also introduces entanglement in discrete systems, discussing
how quantum correlations emerge and how they can be quantified through Negativ-
ity measure. The Chapter 4 is the focused on continuous variable quantum systems,
including the phase-space formalism and the mathematical description of Gaussian
states. We describe in more details the entanglement in continuous-variable systems,
with a focus on two-mode Gaussian states. We explore the structure of entanglement
measures, including methods for characterizing maximal entanglement at fixed local
and global purities, as well as the role of generalized entropy in defining entanglement
properties. These results are crucial for understanding the different ways in which
quantum correlations can manifest in Gaussian states.
In Chapter 5, we shift our attention to non-locality, starting with a discussion of the
Einstein-Podolsky-Rosen (EPR) argument and the Bell inequalities, which provide a
fundamental limit for local theories, defining the maximum strength of correlations
that can be explained within a local hidden variable framework. The chapter presents
a mathematical characterization of non-local correlations, distinguishing no-signaling
correlations, quantum correlations, and the local polytope of Bell inequalities. The dis-
cussion also covers Gisin’s theorem, which establishes the link between entanglement
and non-locality in pure states, and extends to mixed states where this relationship
becomes more complex. The chapter also includes a brief overview of multipartite
non-locality and its interplay with entanglement. The chapter investigates a specific
measure of multipartite entanglement, the tangle, and considers scenarios where entan-
glement does not necessarily imply non-locality. In Chapter 6 we focus our attention
on non-locality in continuous-variable systems, where traditional Bell inequalities may
not directly apply. The chapter explores new forms of Bell-type inequalities that can be
tested using parity measurements, particularly in the context of the EPR state. The dis-
cussion also includes an analysis of phase-space representations and the role of Wigner
functions in detecting non-local correlations.
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2 Quantum theory of light
In this section we will introduce a series of quantum states which are optimal for the
characterization of optical fields. The first step is to carry out the process of quan-
tizing the electromagnetic field, confining it within a closed volume. We will use an
expansion of the vector potential for the electromagnetic field in terms of cavity modes.
This approach reduces the problem to the quantization of the harmonic oscillator cor-
responding to each individual cavity mode, as has been done in [11]. The first type
of state we will introduce during this process is the so-called Fock’s state (or number
state), which represents the number of excitations for each mode of the cavity even
if a more typical optical field involves the superposition of number states. One such
field is the coherent state, which has the minimum uncertainty in amplitude and phase
allowed by the uncertainty principle, making it the closest quantum mechanical state
possible to a classical field. A more exotic set of states of the electromagnetic field are
the squeezed states. These are also minimum-uncertainty states, but, unlike the coher-
ent states, the noise is not uniformly distributed in phase. Squeezed states may have
applications in measurements below the vacuum-noise limit. Consequently, the noise
in one quadrature component is reduced at the expense of increased noise in the or-
thogonal component. We introduce the basic properties of squeezed states and discuss
their properties

2.1 Field quantization
We approach to the derivation of quantized electromagnetic field starting from the free
field that obeys the source-free Maxwell equations:

∇ ·B = 0, (2.1)

∇×E =−∂B
∂ t

, (2.2)

∇ ·E = 0, (2.3)

∇×H =
∂D
∂ t

, (2.4)

where B = µ0H, D = ε0E, with µ0 and ε0 being the magnetic permeability and electric
permittivity of free space, and c = 1√

µ0ε0
. Maxwell’s equations are gauge-invariant

when no sources are present. A convenient choice of gauge for problems in quantum
optics is the Coulomb gauge. In the Coulomb gauge, both B and E can be determined
from a vector potential A(r, t) as follows:

B = ∇×A, (2.5)

E =−∂A
∂ t

, (2.6)
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with the Coulomb gauge condition

∇ ·A = 0. (2.7)

Substituting (2.5) and (2.6) into (2.4), we find that A(r, t) satisfies the wave equation

∇
2A− 1

c2
∂ 2A
∂ t2 = 0. (2.8)

We separate the vector potential into two complex terms:

A(r, t) = A(+)(r, t)+A(−)(r, t), (2.9)

where A(+)(r, t) contains all amplitudes that vary as e−iωt for ω > 0 and A(−)(r, t)
contains all amplitudes that vary as eiωt and A(−) =

(
A(+)

)∗
.

It is more convenient to deal with a discrete set of variables rather than the whole
continuum. We shall therefore describe the field restricted to a certain volume of space
and expand the vector potential in terms of a discrete set of orthogonal mode functions:

A+(r, t) = ∑
k

ckuk(r)e−iωkt (2.10)

where the Fourier coefficients ck are constant for a free field. The set of vector mode
functions uk(r) which correspond to the frequency ωk will satisfy the wave equation(

∇
2 +

ω2
k

c2

)
uk(r) = 0, (2.11)

provided the volume contains no refracting material. The mode functions are also
required to satisfy the transversality condition,

∇ ·uk(r) = 0. (2.12)

The mode functions form a complete orthonormal set∫
uk(r) ·uk′(r)d3r = δkk′ . (2.13)

And they depend on the boundary conditions of the physical volume under considera-
tion, e.g., periodic boundary conditions corresponding to traveling waves or conditions
appropriate for reflecting walls which lead to standing waves. For example, the plane
wave mode functions appropriate to a cubical volume of side L may be written as

uk(r) = L−3/2ê(λ )eik·r, (2.14)
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where ê(λ ) is the unit polarization vector. The mode index k describes several discrete
variables, the polarization index λ = (1,2), and the three Cartesian components of the
propagation vector k. Each component of the wave vector k takes the values

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx,ny,nz = 0,±1,±2, . . . . (2.15)

The polarization vector ê(λ ) is required to be orthogonal to k by the transversality
condition (2.12). The vector potential may now be written in the form

A(r, t) = ∑
k

(
ℏ

2ε0ωk

)1/2 [
uk(r)e−iωkt âk +u∗

k(r)e
iωkt â†

k

]
. (2.16)

The corresponding form for the electric field is

E(r, t) = i∑
k

(
ℏωk

2ε0

)1/2 [
uk(r)e−iωkt âk −u∗

k(r)e
iωkt â†

k

]
. (2.17)

The normalization factors have been chosen such that the amplitudes âk and â†
k are di-

mensionless.
In classical electromagnet theory, these Fourier amplitudes are complex numbers. Quan-
tization of the electromagnetic field is accomplished by changing âk and â†

k to be mutu-
ally adjoint operators. Since photons are bosons the appropriate commutation relations
to choose for the operators âk and â†

k are the boson commutation relations:

[âk, âk′ ] = 0, [âk, â
†
k′ ] = δkk′ . (2.18)

The dynamical behavior of the electric-field amplitudes may then be described by an
ensemble of independent harmonic oscillators obeying the above commutation rela-
tions. The quantum states of each mode may now be discussed independently of one
another. The state in each mode may be described by a state vector |Ψ⟩k of the Hilbert
space appropriate to that mode. The states of the entire field are then defined in the
tensor product space of the Hilbert spaces for all of the modes.
The Hamiltonian for the electromagnetic field is given by

H =
1
2

∫
V

(
ε0E2 +

1
µ0

B2
)

dV. (2.19)

Substituting (2.17) for E and the equivalent expression for H and making use of the
conditions (2.12) and (2.13), the Hamiltonian may be reduced to the form

H = ∑
k
ℏωk

(
â†

k âk +
1
2

)
. (2.20)
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This represents the sum of the number of photons in each mode multiplied by the
energy ℏωk of each photon. Hence, ℏωk/2 representing the energy of the vacuum state.
We shall now consider these properties for three different quantum states of light.

2.1.1 Fock states

The Hamiltonian (2.20) has the eigenvalues ℏωknk, where nk is an integer (nk = 0,1,2, . . . ,∞).
The eigenstates are written as |nk⟩ and are known as number or Fock states. They are
eigenstates of the number operator N̂k = â†

k âk,

â†
k âk|nk⟩= nk|nk⟩, (2.21)

moreover

⟨nk| â†
k âk |nk⟩= ∥âk |nk⟩∥2 ≥ 0 → nk ≥ 0. (2.22)

Furthermore, the action of â†
k (raising operator) and âk (lowering operator) is easily

deduced by assuming that [âk, â
†
k ] = I. We can start noticing that â†

k |nk⟩ and âk |nk⟩ are
eigenvectors of the number operator:

n̂kâk |nk⟩= â†
k âkâk |nk⟩= (âkâ†

k −1)âk |nk⟩= âkn̂k |nk⟩− âk |nk⟩= (nk −1)âk |nk⟩ ,

n̂kâ†
k |nk⟩= â†

k âkâ†
k |nk⟩= â†

k(â
†
k âk +1) |nk⟩= â†

k(n̂k +1) |nk⟩= (nk +1)â†
k |nk⟩ .

(2.23)

State âk |nk⟩ thus diagonalizes n̂k with eigenvalue (nk − 1) showing how necessarily
âk |nk⟩ = Ck |nk −1⟩ and similarly have to be â†

k |nk⟩ = Dk |nk +1⟩. To determine Ck
and Dk consider the two scalar products

⟨nk| â†
k âk |nk⟩= ⟨nk −1|C∗

kCk |nk −1⟩ → nk = |Ck|2 →Ck = eiαk
√

nk (2.24)

and

(⟨nk| âk)â
†
k |nk⟩= ⟨nk +1|D∗

kDk |nk +1⟩ → ⟨nk|(n̂k +1) |nk⟩= |Dk|2

→ ⟨nk| n̂k |nk⟩+1 = |Dk|2 → Dk = eiβk
√

nk +1.
(2.25)

If we now assume αk,βk = 0 it becomes evident action of âk and â†
k on Fock state:

âk |nk⟩=
√

nk |nk −1⟩ ,

â†
k |nk⟩=

√
nk +1 |nk +1⟩ .

(2.26)
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Therefore â†
k , âk represent the creation and the annihilation of a photon with wavevector

k⃗ and polarization êk. Since (2.26) the ground state of the oscillator (or vacuum state
of the field mode) is defined by

âk|0⟩= 0. (2.27)

The state vectors for the higher excited states may be obtained from the vacuum by
successive application of the creation operator.

|nk⟩=
(â†

k)
nk

(nk!)1/2 |0⟩, nk = 0,1,2, . . . (2.28)

The number states are orthogonal

⟨nk|mk⟩= δmn, (2.29)

and complete

∞

∑
nk=0

|nk⟩⟨nk|= 1. (2.30)

Since the norm of these eigenvectors is finite, they form a complete set of basis vectors
for a Hilbert space.

2.1.2 Coherent states

Coherent states are a fundamental concept in quantum mechanics, introduced to bridge
the gap between classical and quantum descriptions of physical systems. They were
first formulated by Erwin Schrödinger [12] in the early days of quantum mechanics
and have since been extensively studied and generalized for various applications in
quantum physics and beyond. Coherent states were initially introduced in response to
a critique that the wave functions defined by Schrödinger did not exhibit classical mo-
tion. He developed solutions that were Gaussian in nature, with the expectation values
of position and momentum oscillating in time similarly to classical harmonic oscilla-
tors [13]. Furthermore, the product of the uncertainty in position and momentum for a
coherent state is the minimum allowed by the uncertainty principle, and this is the rea-
son why they are the closest quantum mechanical states to a classical description of the
field. The introduction of coherent states, later developed extensively by Roy Glauber
in the 1960s [14, 15], was motivated by the necessity of factorizing to all orders the
electromagnetic field correlation function. According to Glauber [15], field coherent
states can be constructed using any of the following three mathematical definitions.
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Definition 1: The coherent states |α⟩ are quantum states that satisfy the minimum-
uncertainty relationship

(∆p)2(∆q)2 =
1
4
, (2.31)

with the position and momentum operators defined as

q̂ =
1√
2
(a+a†), p̂ =

1
i
√

2
(a−a†), (2.32)

and the generic variance and expectation value given by

(∆A)2 ≡ ⟨α|(Â−⟨Â⟩)2 |α⟩
⟨Â⟩= ⟨α| Â |α⟩ .

(2.33)

It is worth noticing that coherent states are not the only one that satisfy the condition
(2.31) as we will see later.

Definition 2: The coherent states |α⟩ are eigenstates of the harmonic-oscillator
annihilation operator a,

a |α⟩= α |α⟩ , (2.34)

where α is a complex number.

Definition 3: The coherent states |α⟩ can be obtained by applying a displacement
operator D(α) on the vacuum state of the harmonic oscillator,

|α⟩= D(α) |0⟩ , (2.35)

where the displacement operator D(α) is defined as

D(α) = exp
(
αa† −α

∗a
)
. (2.36)

where α is an arbitrary complex number. The following discussion was developed on
the basis of the work of V.Penna [16].

2.1.3.1 Minimum Uncertainty Coherent States
In quantum optics the simplest example from which the field coherent states are uniquely
defined is precisely the harmonic oscillator. In this respect its Hamiltonian

Ĥ =
p̂2

2m
+

mω2q̂2

2
. (2.37)

As is well known, the Heisenberg uncertainty principle (UP) states that
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(∆q)2(∆p)2 ≥ ℏ2

4
, (2.38)

where (∆q)2 = ⟨q2⟩−⟨q⟩2 and (∆p)2 = ⟨p2⟩−⟨p⟩2 represent the variance of q and p,
respectively. Our initial goal is to demonstrate that MUCS are the states that optimize
the Heisenberg UP, where inequality (2.38) reduces to

(∆q)2(∆p)2 =
ℏ2

4
. (2.39)

This can be shown by considering the general case of two operators Â and B̂ such that
[Â, B̂] = iĜ, where the operator Ĝ is not necessarily the identity cI (up to a constant
factor c ∈ R), as in the case of canonical coordinates q̂ and p̂.

Notation: We consider a pair of non-commutating Hermitian operators, Â and B̂:

[Â, B̂] = iĜ, (2.40)

where Ĝ is generally an operator. Note that since Â = Â† and B̂ = B̂†, the operator
Ĝ is also Hermitian ( Ĝ† = (−i[Â, B̂])† = i(ÂB̂− B̂Â)† = i(B̂Â− ÂB̂) =−i[Â, B̂] = Ĝ).
Denote by

⟨F⟩= ⟨ψ|F |ψ⟩ (2.41)

the expectation value of a generic operator F on some physical state |ψ⟩ of the system,
and by

(∆F)2 = ⟨F2⟩−⟨F⟩2 (2.42)

its uncertainty (or variance) on the same state. The general form of the Heisenberg UP
is thus

(∆A)2(∆B)2 ≥ |⟨G⟩|2

4
. (2.43)

Taking now into account the non-hermitian operator defined as Â+ iσ B̂, where σ =
⟨Ĝ⟩/2∆2

B (for simplicity, we will denote ∆B :=∆B), we are going to prove that Eq.(2.38)
is a strict equality:

(Â+ iσ B̂)|ψ⟩= λ |ψ⟩ → ∆A∆B =
⟨Ĝ⟩
2

(2.44)

where |ψ⟩ is an eigenstate of the non-Hermitian operator. This is immediately obtained
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noticing that the eigenvalue equation in (2.44) yields λ = ⟨Â⟩+ iσ⟨B̂⟩. Therefore we
can rewrite the eigenvalue equation as

(Â−⟨Â⟩)|ψ⟩=−iσ(B̂−⟨B̂⟩)|ψ⟩ (2.45)

and then if the term (Â−⟨Â⟩) acts on both sides, we find

(Â−⟨Â⟩)2|ψ⟩=−iσ(Â−⟨Â⟩)(B̂−⟨B̂⟩)|ψ⟩ (2.46)

with the product (Â−⟨Â⟩) that can be manipulated as

(Â−⟨Â⟩)(B̂−⟨B̂⟩) = [Â−⟨Â⟩, B̂−⟨B̂⟩]+ (B̂−⟨B̂⟩)(Â−⟨Â⟩)
= iĜ+(B̂−⟨B̂⟩)(Â−⟨Â⟩)

(2.47)

where we have used [Â−⟨Â⟩, B̂−⟨B̂⟩] = [Â, B̂] = iG. Our eigenvalue equation thus
becomes

(Â−⟨Â⟩)2|ψ⟩= σĜ|ψ⟩+(iσ)2(B̂−⟨B̂⟩)2|ψ⟩, (2.48)

and we just need to project |ψ⟩ on the latter equation to determine the variance

∆
2
A = ⟨ψ|(Â−⟨Â⟩)2|ψ⟩=−iσ⟨ψ|iG+(B̂−⟨B̂⟩)(Â−⟨Â⟩)|ψ⟩

= σ⟨ψ|G|ψ⟩−σ
2⟨ψ|(B̂−⟨B̂⟩)2|ψ⟩

=
⟨Ĝ⟩2

∆2
B

(2.49)

from which the direct equality is now proven

∆
2
A∆

2
B =

⟨G⟩2

4
■. (2.50)

2.1.3.2 Annihilation operator coherent states
In this section we want to construct coherent states as the eigenstates of the annihilation
operator â. We can start again from the definition of the Hamiltonian of harmonic oscil-
lator (2.37). The natural description of the HO Hamiltonian is in terms of Schrödinger
(canonical) algebra. Although in this text we use the name of Schrödinger to define
an algebra that is generated by position and momentum, this is not unique in literature,
since there are numerous texts among which [17] that identify this algebra with the
name of Weyl-Heisenberg algebra. Regardless the proper name we present its own
generators:

AS = [I, q̂, p̂], [q̂, p̂] = iℏ. (2.51)

The Schrödinger algebra is referred to be the Hamiltonian generating algebra for the
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harmonic oscillator (HO) because it can be expressed as a quadratic function of the
algebra generators q̂ and p̂. In this sense, AS is the Hamiltonian generating algebra for
any one-dimensional potential problem described by H = p2/2m+V (x) (where V (x)
is the potential energy) or, more generally, for any system whose Hamiltonian is such
that H = F(x, p). The introduction of the annihilation operator

â =

√
mω

2ℏ

(
q̂− ip̂

mω

)
(2.52)

allows one to write

q̂ =

√
ℏ

2mω
(â+ â†), (2.53)

p̂ = i

√
ℏmω

2
(â− â†), (2.54)

and

H = ℏω

(
n̂+

1
2

)
, (2.55)

where n̂ = â†â is the so-called number operator, and we use the commutation relation

[â, â†] = I. (2.56)

It is now clear why there is no agreement in defining the appropriate name for the
algebra associated with the HO Hamiltonian. The form (2.55) is obtained in term of
â, â†, that are the generators of the previously mentioned Weyl-Heisenberg algebra:

AWH = {I, â, â†}, (2.57)

that is equivalent to the Schrödinger one since â, â† are a linear combination of position
and momentum. It is also an Hamiltonian generating algebra for the HO, in that Ĥ can
be expressed in terms of quantities (I, â, â†) with well-defined commutators. On the
other hand, by observing that

[â, n̂] = [â, â†]â = â, (2.58)

[â†, n̂] = â†[â†, â] = â†, (2.59)

one recognizes that H can be written within a more general algebraic structure. If
an algebra is such that some Hamiltonian can be written as a linear combination of
its generators, then such an algebra is referred to as the dynamical algebra for the
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Hamiltonian under examination. Hence, since q̂2, p̂2 /∈ AS and n̂ /∈ AWH , neither the
Schrödinger algebra nor the Weyl-Heisenberg algebra is a dynamical algebra for the
HO. The so-called Weyl algebra, generated by

AW = {I, â, â†, n̂}, [â, â†] = I, [â, n̂] = â, [â†, n̂] = â†. (2.60)

Therefore, we can now take expression (2.52) and examine the eigenstates of the anni-
hilation operator:

â|α⟩= α|α⟩, (2.61)

expanding these states in the eigenfunction basis to get:

â|α⟩= â
∞

∑
n=0

fn|n⟩=
∞

∑
n=1

√
n fn|n−1⟩=

∞

∑
n=0

√
n+1 fn+1|n⟩= α

∞

∑
n=0

fn|n⟩, (2.62)

where the coefficients fn of the series are related by the recursive relation
√

n fn =
α fn−1. In this way, we end up with:

fn =
αn
√

n!
f0, (2.63)

which leads to:

|α⟩= f0

∞

∑
n=0

αn
√

n!
|n⟩, (2.64)

with f0 determined due to the normalization condition:

1 = ⟨α|α⟩= | f0|2
∞

∑
n=0

|α|2n

n!
= | f0|2e|α|2 , (2.65)

from which:

|α⟩= e−
|α|2

2

∞

∑
n=0

αn
√

n!
|n⟩. (2.66)

The last step now consists in evaluating the uncertainty relation of q and p over the
eigenstates (2.61):

⟨q⟩=
√

ℏ
2mω

(α +α
∗), (2.67)

⟨p⟩= i

√
ℏmω

2
(α −α

∗), (2.68)
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⟨q2⟩= ℏ
2mω

[(α +α
∗)2 +1], (2.69)

⟨p2⟩= ℏ
2mω

[1− (α −α
∗)2], (2.70)

from which finally:

∆
2
q = ⟨q2⟩−⟨q⟩2 =

ℏ
2mω

, (2.71)

∆
2
p = ⟨p2⟩−⟨p⟩2 =

ℏmω

2
, (2.72)

∆
2
q∆

2
p =

ℏ2

4
(2.73)

Equation (2.73) explicitly shows that the eigenstates |α⟩ of the annihilation operator are
minimum uncertainty states, i.e., they are annihilation operator coherent states (AOCS).
This means that AOCS → MUCS. Another relevant feature is that coherent states
contain an indefinite number of photons. This may be made apparent by considering
an expansion of the coherent states in the number states basis. Taking the scalar product
of both sides of (2.61) with ⟨n| we find the recursion relation

⟨n+1|α⟩= α√
n+1

⟨n|α⟩. (2.74)

It follows that

⟨n|α⟩= αn
√

n!
⟨0|α⟩. (2.75)

We may expand |α⟩ in terms of the number states |n⟩ with expansion coefficients ⟨n|α⟩
as follows:

|α⟩= ∑
n
|n⟩⟨n|α⟩= ⟨0|α⟩∑

n

αn
√

n!
|n⟩. (2.76)

The squared length of the vector |α⟩ is thus

⟨α|α⟩= |⟨0|α⟩|2 ∑
n

|α|2n

n!
. (2.77)

It is easily seen that

⟨0|α⟩= ⟨0|D(α)|0⟩= e−|α|2/2. (2.78)

Thus |α⟩ and the coherent states are normalized. The coherent state may then be ex-
panded in terms of the number states as
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|α⟩= e−|α|2/2
∑
n

αn
√

n!
|n⟩. (2.79)

We note that the probability distribution of photons in a coherent state is a Poisson
distribution

P(n) = |⟨n|α⟩|2 = |α|2ne−|α|2

n!
, (2.80)

where |α|2 is the mean number of photons ⟨α|a†a|α⟩ = |α|2. The product rule of
coherent states is

|⟨β |α⟩|2 = e−|α−β |2 . (2.81)

Thus the coherent states are not orthogonal although two states |α⟩ and |β ⟩ become
approximately orthogonal in the limit |α −β | → ∞. The coherent states form a two-
dimensional continuum of states and are, in fact, overcomplete. The completeness
relation ∫ d2α

π
|α⟩⟨α|= 1, (2.82)

may be proved as follows. We use the expansion (43) to give∫ d2α

π
|α⟩⟨α|=

∞

∑
n=0

∞

∑
m=0

|n⟩⟨m|
π
√

n!m!

∫
e−|α|2α∗

mαnd2
α (2.83)

Changing to polar coordinates this becomes

∫ d2α

π
|α⟩⟨α|=

∞

∑
n=0

∞

∑
m=0

|n⟩⟨m|
π
√

n!m!

∫
∞

0
rdre−r2

rn+m
∫ 2π

0
dθei(n−m)θ (2.84)

Using ∫ 2π

0
dθei(n−m)θ = 2πδm,n (2.85)

we have ∫
⟨α|Â|α⟩d2α

π
= ∑

n,m

δmn

n!
⟨n|Â|m⟩= ∑

n
⟨n|Â|n⟩. (2.86)

Thus we have
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∫ d2α

π
|α⟩⟨α|) =

∞

∑
n=0

|n⟩⟨n|
n!

∫
∞

0
dεe−ε

ε
n (2.87)

where ε = r2. Since the integral is equal to n! we obtain∫ d2α

π
|α⟩⟨α|) =

∞

∑
n=0

|n⟩⟨n|= 1 (2.88)

Following from the completeness relation for the number states.

2.1.3.3 Displaced Operator representation
The last step consists in proving the Definition 3. To prove the equivalence of this last
definition we need to consider a generic coherent state as a linear combination of Fock
states:

|α⟩=
∞

∑
n=1

cn |n⟩ , where cn = ⟨n|α⟩= e−
|α|2

2 . (2.89)

The terms are weighted by coefficients that are set by means the normalization con-
dition ⟨α|α⟩ = 1. We have already seen that is possible to define a Fock state as the
result of the iterative action of the creation operator on the vacuum state (2.28). So we
get:

|α⟩= e−
|α|2

2

∞

∑
n=1

αnâ†n
√

n!
|0⟩ ,

= e−
|α|2

2 eα â† |0⟩ ,

= e−
|α|2

2 eα â†
e−α∗â |0⟩ .

(2.90)

To go from the second line to the third we used e−α∗â |0⟩ = |0⟩. In order to derive the
displacement operator we need of the operator theorem [18]:

eA+B = eAeBe−
1
2 [A,B], (2.91)

which holds when [A, [A,B]] = [B, [A,B]] = 0. We can write D(α) (2.36) as

D(α) = e−|α|2/2eαa†
e−α∗a ■. (2.92)

The displacement operator D(α) has the following properties:

D†(α) = D−1(α) = D(−α), (2.93)

D†(α)aD(α) = a+α, (2.94)

D†(α)a†D(α) = a† +α
∗. (2.95)
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The coherent state |α⟩ is generated by operating with D(α) on the vacuum state:

|α⟩= D(α)|0⟩. (2.96)

The coherent states are eigenstates of the annihilation operator â. This may be proved
as follows:

D†(α)aD(α)|0⟩= (a+α)|0⟩= α|0⟩. (2.97)

Multiplying both sides by D(α) we arrive at the eigenvalue equation

a|α⟩= α|α⟩. (2.98)

Since a is a non-Hermitian operator, its eigenvalues α are complex.

2.1.3 Squeezed states

Coherent states, previously identified as states of minimum uncertainty, are not the
only quantum states that satisfy this condition. Another important class of states that
meet the minimum uncertainty requirement is known as squeezed states. These states
were first introduced in 1926 by Schrödinger [19] in the context of classical states of
quantum harmonic oscillators, although the term ”squeezed states” was later coined
by Hollenhorst in 1979 [20] . Unlike coherent states, squeezed states exhibit reduced
noise in one quadrature at the expense of increased noise in the conjugate quadrature,
in accordance with the Heisenberg uncertainty principle. Coherent states represent a
special case within this broader family of minimum-uncertainty states, characterized
by equal noise in both quadratures. We proceed to the description of these states by
what is derived from Milburn and Walls [11]. We shall begin our discussion by defining
a family of minimum-uncertainty states. Let us calculate the variances for the position
and momentum operators for the harmonic oscillator:

q̂ =

√
ℏ

2mω
(â+ â†), p̂ =−i

√
ℏmω

2
(â− â†). (2.99)

from which derive:

â =
1√

2ℏmω
(mω q̂+ ip̂), â† =

1√
2ℏmω

(mω q̂− ip̂). (2.100)

In Eq. (2.100), we see that up to normalization factors the position and the momentum
are the real and imaginary parts of the annihilation operator. Let us now define the
dimensionless pair of conjugate variables:

X̂1 =

√
2mω

ℏ
q̂, X̂2 =

√
2

ℏmω
p̂. (2.101)
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These operators represent the quadratures of a single mode, in classical terms corre-
sponding to the real and imaginary parts of the oscillator’s complex amplitude. We
may write the annihilation operator as a combination of two Hermitian operators:

â =
X̂1 + iX̂2

2
. (2.102)

X̂1 and X̂2, the real and imaginary parts of the complex amplitude, give dimension-
less amplitudes for the two quadrature phases of the modes. They obey the following
commutation relation

[X̂1, X̂2] = 2i. (2.103)

The corresponding uncertainty principle is

(∆X̂1)
2(∆X̂2)

2 ≥ 1. (2.104)

This relation with the equals sign defines a family of minimum-uncertainty states. The
coherent states are a particular minimum-uncertainty state with

(∆X1)
2 = (∆X2)

2 = 1. (2.105)

The coherent state |α⟩ has the mean complex amplitude α and it is a minimum-
uncertainty state for X̂1 and X̂2, with equal uncertainties in the two quadrature phases.
A coherent state may be represented by an ”error circle” in a complex amplitude
plane whose axes are X1 and X2 (Figure 1). The center of the error circle lies at
1
2 ⟨X1 + iX2⟩ = α and the radius ∆X1 = ∆X2 = 1 accounts for the uncertainties in X1
and X2. There is obviously a whole family of minimum-uncertainty states defined by
(2.105). If we plot ∆X1 against ∆X2, the minimum-uncertainty states lie on a hyperbola
(2.1.3). Only points lying to the right of this hyperbola correspond to physical states.
The coherent state with ∆X1 = ∆X2 is a special case of a more general class of states
which may have reduced uncertainty in one quadrature at the expense of increased un-
certainty in the other (∆X1 < 1,∆X2 > 1). These states correspond to the shaded region
in Figure 1. Such states we shall call squeezed states [21]. They may be generated by
using the unitary squeeze operator [22].

S(ε) = exp
(

1
2

ε
∗a2 − 1

2
εa†2

)
, (2.106)

where ε = reiθ . Note the squeeze operator obeys the relations

S†(ε) = S−1(ε) = S(−ε) (2.107)

and has the following useful transformation properties
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Figure 1: Phase space representation showing contours of constant uncertainty for (a)
coherent state and (b) squeezed state. [11]

S†(ε)aS(ε) = acoshr−a†eiθ sinhr (2.108)

S†(ε)a†S(ε) = a† coshr−ae−iθ sinhr (2.109)

S†(ε)(Y1 + iY2)S(ε) = Y1e−r + iY2er. (2.110)

where

Y1 + iY2 = (X1 + iX2)e−iθ . (2.111)

Is a rotated complex amplitude. The squeezing operator attenuates one component of
the (rotated) complex amplitude, and it amplifies the other component. The degree
of attenuation and amplification is determined by r = |ε|, that is called the squeezing
factor. The squeezed state |α,ε⟩ is given by first applying the squeezing operator on
the vacuum state and then displacing it

|α,ε⟩= D(α)S(ε) |0⟩ (2.112)

A squeezed state has the following expectation values and variances

⟨X1 + iX2⟩= (Y1 + iY2)e−iφ = 2α,

∆Y1 = e−r, ∆Y2 = er,

⟨N⟩= |α|2 + sinh2 r,

(∆N)2 = |α coshr−α
∗ei2θ sinhr|2 +2cosh2 r sinh2 r.

(2.113)

3 Elements of Quantum information Theory
In this chapter we introduce the fundamental elements of quantum information theory,
providing the basis for understanding key concepts and tools required in the broader
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discussion of quantum mechanics. The chapter begins with the definition of qubits, the
fundamental units of quantum information, and proceeds to explore their generaliza-
tion to qudits, providing insight into higher-dimensional quantum systems. Next, the
concept of quantum measurement is introduced, emphasizing the differences between
pure and mixed states, and the probabilistic nature of quantum systems. The discus-
sion then goes through the introduction of bipartite entanglement in discrete systems,
presenting its formal definition and methods of quantification, focusing our attention
on a specific one; The Negativity.

3.1 Qubit
In classical information theory, information is encoded in a binary variable that can
take the value 0 or 1. Modern computers typically encode this information in the form
of electrical voltage or current pulses that can assume two distinct values. Similarly to
the classical bit, a qubit in quantum information is defined as a system that resides in a
two-dimensional Hilbert space, denoted as H (2). Let |0⟩ and |1⟩ represent a basis for
this Hilbert space. Unlike a classical bit, a qubit can exist in a superposition of states
|0⟩ and |1⟩. Generally, the state of a qubit is expressed as:

|ψ⟩= a|0⟩+b|1⟩, (3.1)

where a and b must satisfy the normalization condition |a|2 + |b|2 = 1. The ability to
prepare qubits in arbitrary superpositions of two states leads to various phenomena.
When measuring qubits, or more generally quantum states, the outcome of measure-
ments is inherently random. This randomness might seem problematic and could make
quantum computation appear intractable; however, this is not the case. The ability to
prepare qubits in specific states deterministically makes quantum computation at least
as powerful as classical computation. Moreover, leveraging the capability to prepare
qubits in superpositions, a quantum computer can outperform a classical computer in
certain computational tasks. Qubits can be encoded in the polarization state of a photon
(e.g., horizontal and vertical polarization) or in two distinct energy levels of an atom,
ion, or molecule.

3.2 Qudit
The concept of qubits can be extended to higher-dimensional systems known as qudits.
A qudit is a system that resides in a d-dimensional Hilbert space H (d). Let {|0⟩, |1⟩, . . .
, |d −1⟩} denote a basis for this Hilbert space. Similarly to a qubit, a qudit can be in a
superposition of all basis states:

|ψ⟩=
d−1

∑
i=0

ai|i⟩, (3.2)

where the coefficients ai must satisfy the normalization condition ∑
d−1
i=0 |ai|2 = 1.
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3.3 Entanglement in discrete systems
Consider a state formed by two qubits, the first belonging to space HA with basis
{|0⟩A , |1⟩A}, and the second to the space HB with basis {|0⟩B , |1⟩B}. We can write,
for example, |00⟩ = |0⟩A ⊗ |0⟩B, with ⊗ being the tensor product, or briefly |00⟩ =
|0⟩A |0⟩B. The possible values that the qubits can take are:

|00⟩= |0⟩A |0⟩B , |01⟩= |0⟩A |1⟩B , |10⟩= |1⟩A |0⟩B , |11⟩= |1⟩A |1⟩B . (3.3)

Now consider a generic state of HA in normalized form:

|φ⟩A = λA |0⟩A +µA |1⟩A , |λA|2 + |µA|2 = 1 (3.4)

and a generic state of HB also in normalized form:

|φ⟩B = λB |0⟩B +µB |1⟩B , |λB|2 + |µB|2 = 1. (3.5)

The state obtained from the tensor product of the two is:

|φ⟩A ⊗|φ⟩B = λAλB |0A0B⟩+λAµB |0A1B⟩+µAλB |1A0B⟩+µAµB |1A1B⟩
= λAλB |00⟩+λAµB |01⟩+µAλB |10⟩+µAµB |11⟩ .

(3.6)

It is noted that the states |φ⟩A ⊗|φ⟩B represent only a small subset of the states in the
space HA ⊗HB. A generic state of this space has the following form:

|ψ⟩= α00 |0A0B⟩+α01 |0A1B⟩+α10 |1A0B⟩+α11 |1A1B⟩
= α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ .

(3.7)

For the state |ψ⟩ to be of the form |φ⟩A ⊗|φ⟩B, it must be α00α11 = α10α01.
Now consider the state:

|φ⟩= 1√
2
(|01⟩+ |10⟩). (3.8)

The state |φ⟩ belongs to the space HA ⊗HB but is not in the form |φ⟩A ⊗|φ⟩B, since:

α00 = α11 = 0, α01 = α10 =
1√
2
→ α00α11 ̸= α10α01. (3.9)

A state like this, which cannot be written in the form |φ⟩A⊗|φ⟩B, is called an entangled
state. An entangled state is one that cannot be separated, meaning it is not possible to
define a pair of states |φ⟩A , |φ⟩B such that their composition |φ⟩A⊗|φ⟩B = |φ⟩. We have
thus seen, in the simplest case possible, how it is possible to recognize an entangled
state by introducing the concept of inseparability of the state. It is now natural to
wonder how this concept could be applied to more complex pure states, i.e. with higher
dimensions Hilbert spaces, and mixed states.
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3.3.1 Pure States

In the previous section we have introduced the non-separability of a state as neces-
sary and sufficient condition to identify entanglement. We have already seen how easy
is to deal with a bipartite system composed by quibits. We want to extend the treat-
ment to bipartite systems whose individual components belong to Hilbert spaces of
greater dimension, or when the two arguments x1 and x2 of the bipartite wave function
Ψ(x1,x2) can take only finite numbers of discrete values x1 = x1,1,x1,2, . . . ,x1,d and
x2 = x2,1,x2,2, . . . ,x2,d̃ , where d and d̃ are the dimensionalities of the single-particle
Hilbert spaces for the particles 1 and 2 (in a general case d and d̃ can differ from each
other). A general bipartite wave function with discrete variables can be expanded in a
double sum of direct products of columns | j⟩ and |k⟩:

|ψ(1,2)⟩= ∑
j,k

C j,k | j⟩⊗ |k⟩ , (3.10)

where the arguments 1,2 of the bipartite wave function and the labels (1) and (2) refer
to particles 1 and 2 (often denoted as A and B). Clearly, the bipartite wave function
|ψ(1,2)⟩ is a column with d × d̃ lines. In this section we will consider just the case
in which d = d̃. To derive the Schmidt decomposition is necessary to introduce the
Singular-Value-Decomposition or SVD of the matrix C that contains all the coefficients
of the expansion. Specifically, the singular value decomposition of C is equal to:

C =UDV. (3.11)

Here D is a diagonal matrix with non-negative real numbers on the diagonal, while
U,V are complex unitary matrix. Thus we can write:

|ψ(1,2)⟩= ∑
i, j,k

u jidiivik | j⟩⊗ |k⟩ . (3.12)

If we now define |i1⟩ ≡ ∑ j u ji | j⟩, |i2⟩ ≡ ∑k vik |k⟩ and λi ≡ dii, we get:

|ψ(1,2)⟩= ∑
i

λi |i1⟩⊗ |i2⟩ . (3.13)

This result is very useful. As a taste of its power, consider the following consequence:
let |ψ⟩ be a pure state of a composite system, 1,2. Then by the Schmidt decomposition:

ρ1 = ∑
i

λ
2
i |i1⟩⟨i1| and ρ2 = ∑

i
λ

2
i |i2⟩⟨i2|, (3.14)

so the eigenvalues of ρ1 and ρ2 are identical, namely λ 2
i for both density opera-

tors. Many important properties of quantum systems are completely determined by
the eigenvalues of the reduced density operator of the system, so for a pure state of
a composite system such properties will be the same for both systems. A general
definition of entanglement for pure bipartite states is related to the assumption about
non-factorization of the corresponding bipartite wave function: the state is entangled if

25



|ψ(1,2)⟩ ̸= |φ1⟩⊗ |φ2⟩ (3.15)

The Schmidt decomposition (3.13) perfectly agree with this definition, and it provide
both a deeper understanding of conditions under which entanglement occurs and an
evaluation of its degree. Indeed, in terms of the Schmidt decomposition, factorization
occurs only if one of the parameters λi equals unity with all other λi equal to zero, e.g.,
λi = δi,1. In all other cases, with several non-zero values of λi, the Schmidt decompo-
sitions contain more than one term, the wave function (3.13) is unfactorable, and the
state is entangled. Actually, in these cases, the Schmidt decompositions show directly
how many products of Schmidt modes have to be summed to reproduce an unfactorable
bipartite wave function. The number of terms in the Schmidt decompositions charac-
terizes the amount of uncertainty in the localization of particles 1 and 2 in the pairs of
adjoint Schmidt modes and, hence, it characterizes the degree of entanglement.

3.3.2 Mixed States

A mixed quantum state ρ̂ can be written as a convex combination of pure states:

ρ̂ = ∑
k

pk|ψk⟩⟨ψk|. (3.16)

This expression reveals how a state described by the density matrix ρ is constructed.
Specifically, the pure state |ψ1⟩ is prepared with probability p1, |ψ2⟩ with probability
p2, and so on. In the work of Adesso and Illuminati [23] is pointed out how the key
challenge here lies in the fact that such a decomposition is not unique. Beyond the pure
states, there are infinitely many ways to decompose a given ρ , meaning the mixed state
can be prepared using countless different methods. This non-uniqueness has significant
implications when it comes to analyzing the entanglement properties of mixed states.
Imagine that we have prepared a system, consisting of two subsystems A and B, which
is divided between Alice and Bob. The two observers are located in distant laborato-
ries and have access to a set of possible measurements that can be made on their own
system. It is important to point out that the two parties make measurements at the same
time, so as to avoid any kind of mutual dependence. The latter condition implies that
the operation is local (’LO’). However, there is no reason to make the operations of
separated labs totally independent. Classical communication (’CC’) can essentially be
performed perfectly using standard technologies, and so we may also use such commu-
nication to coordinate the quantum actions of the different labs. The sequence of these
two procedures is called Local Operations and Classical Communication (LOCC). Al-
lowing classical communication in the set of LOCC operations means that they are
not completely local, this means that the results of coordinate measurements possibly
revealing some correlations between them. Due to the ambiguity in how the state is
prepared, it is impossible to determine upfront whether these correlations arise from
quantum interactions between the subsystems (indicating entanglement) or whether
they are due to classical processes such as local operations and classical communica-
tion (LOCC), suggesting classical correlations instead. As a result, a mixed state is
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called separable (or classically correlated) if it can be prepared through at least one
method that uses only LOCC. On the other hand, a mixed state is deemed entangled
(or quantumly correlated) if none of the infinite possible decompositions involve only
LOCC [24]. However, determining whether a mixed state is separable requires analyz-
ing all the possible decompositions to see if there is one that is a convex combination
of product states, which would imply the state is not entangled. This process, however,
is clearly impractical due to the infinite number of possible decompositions. We there-
fore generalize the definition of pure-state entanglement via the non-factorizability of
the total state vector to mixed states through non-separability or inseparability of the
total density operator. A general quantum state of two-party system is separable if its
total density operator is a mixture (a convex sum) of product states

ρAB = ∑
λ

pλ ρ
λ
A ⊗ρ

λ
B (3.17)

Otherwise is inseparable. In general, it is a nontrivial question whether a given den-
sity operator is separable or inseparable. Nonetheless, a very convenient method of
testing for inseparability is Peres’s [25] partial-transpose criterion (PPT). The deriva-
tion of this separability condition is best done by writing the density matrix elements
explicitly, with all their indices

ρmµ,nν = ∑
λ

pλ

(
ρ

λ
A

)
mn

⊗
(

ρ
λ
B

)
µν

(3.18)

Latin indices refer to the first subsystem, Greek indices to the second one (the subsys-
tems may have different dimensions). We aim for quantum density matrices to possess
eigenvalues that are non-negative rather than focusing solely on ensuring non-negative
elements. Achieving the former condition is notably more challenging. Let’s proceed
to introduce a new matrix definition.

σnµ,mν = ρmµ,nν (3.19)

The Latin indices of ρ have been transposed, but not the Greek ones. This is not a
unitary transformation but, nevertheless, the s matrix is Hermitian. When Eq. (3.17) is
valid, we have

σAB = ∑
λ

pλ

(
ρ

λ
A

)T
⊗ρ

λ
B (3.20)

Since the transposed matrices
(
ρλ

A

)T
=
(
ρλ

A

)∗
are nonnegative matrices with unit trace,

they can also serve as valid density matrices. Consequently, none of the eigenvalues of
σAB are negative, a prerequisite for Equation (3.17) to remain valid. Notably, the eigen-
values of σAB remain invariant under separate unitary transformations UA and UB of the
bases employed by the two observers. In such instances, ρ undergoes transformation
as follows:

ρAB −→ (UA ⊗UB)ρAB(UA ⊗UB)
† (3.21)
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and we then have

σAB −→ ((UA)
T ⊗UB)σAB((UA)

T ⊗UB)
† (3.22)

which also is unitary transformation, leaving the eigenvalues of σ invariant. Peres’ cri-
terion states that if a state ρ is separable, then its partial transpose ρT

1 (with respect, for
example, to subsystem S1) is a valid density matrix, specifically positive semidefinite,
ρT ≥ 0. Naturally, the same holds for ρT

2 with respect to subsystem S2. Positivity of
the partial transpose (PPT) is therefore a necessary condition for separability [25]. The
converse (i.e., ρT ≥ 0 implies separability) is generally false, but it has been proven true
for low-dimensional systems, specifically bipartite systems with Hilbert state space of
dimensionality 2 × 2 and 2 × 3. In these cases, the PPT property is equivalent to sepa-
rability [26].

3.4 Entanglement quantification
Entanglement quantification involves measuring the degree of entanglement present in
a quantum system. Different entanglement measures have been developed to capture
various aspects of entanglement, each suited to specific types of quantum states and
operational paradigms [27, 28]. For instance, measures like negativity, concurrence,
entanglement of formation, entropy of entanglement and robustness of entanglement
are widely used to quantify entanglement in different contexts [29, 30]. However, all
those different measures must fulfill the following properties to be considered a valid
one:

• Monotonicity under Local Operations and Classical Communication (LOCC):
An entanglement measure E(ρ) must not increase under LOCC operations. This
reflects the idea that entanglement cannot be created at a distance using only
local operations and classical communication.

E(ρ)≥ E(ΛLOCC(ρ)), (3.23)

where ΛLOCC represents a LOCC operation.

• Invariance under Local Unitary Transformations: Entanglement must remain
unchanged if local unitary operations are applied to the subsystems.

E(ρ) = E(UA ⊗UBρU†
A ⊗U†

B), (3.24)

where UA and UB are unitary operators acting locally on the subsystems.

• Non-negativity: A valid entanglement measure must be non-negative for all
quantum states, and it should be zero for separable (non-entangled) states.

E(ρ)≥ 0, E(ρ) = 0 if ρ is separable. (3.25)
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• Convexity (or Strong Monotonicity): An entanglement measure should be con-
vex, meaning that mixing entangled states cannot increase the overall entangle-
ment.

E

(
∑

i
piρi

)
≤ ∑

i
piE(ρi). (3.26)

• Asymptotic Behavior: For a large number of copies of a state ρ , the measure
of entanglement should be consistent with the von Neumann entropy asymptoti-
cally.

E(ρ⊗n)∼ nE(ρ) as n → ∞. (3.27)

• Normalization: The measure should be normalized such that maximally entan-
gled states (e.g., Bell states for two qubits) have a maximum fixed value. For
example, it is often normalized so that E(Bell state) = 1.

• Continuity: The measure should be continuous with respect to the quantum state
ρ , meaning that small changes in the state should not lead to large variations in
the entanglement measure.

• Optional: Asymmetry with Respect to Subsystems: For multipartite systems,
the measure might distinguish between different subsystems, though not all en-
tanglement measures require this property.

It is relevant, in pure bipartite quantum states, to consider the so-called von Neumann
entropy [31]. Given a pure state ρAB of two subsystems A and B, we define the states
ρA = TrB[ρAB] and ρB = TrA[ρAB], where the partial trace has been taken over one sub-
system, either A or B. Then, the von Neumann entropy of the reduced density operators
is given by

S(ρA) =−Tr(ρA lnρA) =−Tr(ρB lnρB). (3.28)

In the case of a separable pure joint state, S(ρA) is zero, and for maximally entangled
states, it gives ln2. With regard to mixed states, we analyze a very effective measure of
entanglement in its quantification, which will also be useful in the domain of continu-
ous variables and it is the Negativity [32].

3.4.1 Negativity

Previously we have defined , by means the positivity of the partial transpose density
matrix (PPT criterion), a way to distinguish inseparable from separable states. Nega-
tivity essentially measures the degree to which ρTA fails to be positive, and therefore
it can be regarded as a quantitative version of Peres’ criterion for separability [25]. In
this section we shell follow the review of G. Vidal and R.F. Werner [32] who from the
trace norm of ρTA , denoted by ∥ρTA∥1, they have constructed two useful quantities:
Negativity and Logarithmic negativity. Regardless the existence of negative eigenval-
ues ρTA , its trace sum to unit, while the trace norm of any Hermitian operator Â is
∥A∥1 ≡ tr

√
A†A, which is equal to the sum of the absolute values of the eigenvalues of

Â. From these conditions we can easily derive the negativity measure, since:
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Tr(ρTA) = 1 = ∑
i:λi>0

λi − ∑
i:λi<0

|λi|,

||ρTA ||= ∑
i:λi>0

λi + ∑
i:λi<0

|λi|.
(3.29)

The final result is:

N(ρ)≡ ∥ρTA∥1 −1
2

, (3.30)

which corresponds to the absolute value of the sum of negative eigenvalues of ρTA [33].
Notice that for any separable state ρs [24],

ρs = ∑
k

pk|ek, fk⟩⟨ek, fk|; pk ≥ 0, ∑
k

pk = 1, (3.31)

its partial transposition is also a separable state [25],

ρ
TA
s = ∑

k
pk|e∗k , fk⟩⟨e∗k , fk| ≥ 0, (3.32)

and therefore ∥ρ
TA
s ∥1 = 1 and N(ρs) = 0. As they proved, N(ρ) does not increase

under LOCC, i.e., it is an entanglement monotone [34], and as such it can be used to
quantify the degree of entanglement in composite systems. We will also consider the
logarithmic negativity:

EN(ρ)≡ log2 ∥ρ
TA∥1, (3.33)

which again exhibits some form of monotonicity under LOCC (it does not increase
during deterministic distillation protocols) and is, remarkably, an additive quantity. We
have seen in previous section what are the requirements that a proper entanglement
measure must satisfy. In this prospective it is necessary to prove convexity, monotonic-
ity [32, 28].

Proposition 1: N is a convex function, i.e.,

N

(
∑

i
piρi

)
≤ ∑

i
piN(ρi), (3.34)

whenever the ρi are Hermitian, and pi ≥ 0 with ∑i pi = 1. The convexity in this case
is given for free, since N(ρ) = ∥(ρTA∥1 − 1)/2 includes ∥ · ∥1, that satisfies like any
norm, the triangle inequality and is homogeneous of degree 1 for positive factors, hence
convex. However, What is not immediately clear is that the ∥ρ∥1, when it is defined in
terms of the eigenvalues. This is shown best by rewriting it as a variational expression.
The main reason for recalling this standard observation from the theory of the trace
norm is that the same variational expression will be crucial for showing monotonicity
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under LOCC operations. The variational expression is simply the representation of a
general Hermitian matrix A as a difference of positive operators: Since we are in finite
dimension we can always write

A = a+ρ
+−a−ρ

−, (3.35)

where ρ± ≥ 0 are density matrices (tr[ρ±] = 1) and a± ≥ 0 are positive numbers. Note
that by taking the trace of this equation we simply have tr[A] = a+−a−.

Lemma 1: For any Hermitian matrix A there is a decomposition of the form (3.35)
for which a++a− is minimal. For this decomposition, ∥A∥1 = a++a−, and a− is the
absolute sum of the negative eigenvalues of A.

Proof : Let P− be the projector onto the negative eigenvalued subspace of A, and
N = −tr[AP−] the absolute sum of the negative eigenvalues. We can reverse the de-
composition (3.35) to obtain that A+a−ρ− is positive semidefinite. This implies that

0 ≤ tr[(A+a−ρ
−)P−] =−N +a−tr[ρ−P−]. (3.36)

But tr[ρ−P−] ≤ 1, that is a− ≥ N. This bound can be saturated with the choice
a−ρ− ≡ −P−AP− (corresponding to the Jordan decomposition of A, where ρ− and
ρ+ have disjoint support) ■.

For the negativity we therefore get the formula

N(A) = inf{a− | A = a+ρ
+−a−ρ

−}, (3.37)

where the infimum is over all density matrices ρ± and a± ≥ 0. Another remarkable
property of N(ρ) is the easy way in which N(ρ1 ⊗ρ2) relates to the negativity of ρ1
and that of ρ2. For the entanglement measure treated, they get additivity for free [32].
As they showed, starting from the identity

∥ρ1 ⊗ρ2∥1 = ∥ρ1∥1∥ρ2∥1, (3.38)

which is best shown by using the definition of the trace norm via eigenvalues, and
observe that partial transposition commutes with taking tensor products. After taking
logarithms, we find for the logarithmic negativity:

EN(ρ1 ⊗ρ2) = EN(ρ1)+EN(ρ2). (3.39)

It might seem from this that EN is a candidate for the much sought for canonical mea-
sure of entanglement. However, it has other drawbacks. For instance, it is not convex,
as is already suggested by the combination of a convex functional (the trace norm) with
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the concave log function, which implies that it increases under some LOCC.

The last step is to prove that Negativity is an entanglement monotone. By def-
inition, a LOCC operation consists of a series of steps where each party performs a
local measurement and communicates the outcome to the others. The choice of local
measurement can depend on the results of previous steps, but for simplicity we will
consider a single-step procedure. For an initial state ρ , the measurement outcome is
represented by an index i, which occurs with probability pi, and the resulting state is
denoted as ρ ′

i . A valid entanglement monotone E(ρ) [34] must satisfy:

E(ρ)≥ ∑
i

piE(ρ ′
i ). (3.40)

This property can be proved by analyzing a single round of an LOCC protocol, involv-
ing only one local operation. Since the measure N does not distinguish between Alice
and Bob, it suffices to consider a local operation performed by Bob. The most general
local measurements can be represented by a set of completely positive linear maps Mi,
which act as:

Mi(ρ) = piρ
′
i , (3.41)

subject to the normalization condition:

∑
i

Tr[Mi(ρ)] = Tr(ρ). (3.42)

For a local measurement performed by Bob, we can write:

Mi(ρ) = (IA ⊗Mi)ρ(IA ⊗M†
i ), (3.43)

where the operators Mi are known as Kraus operators. They arise naturally in the
mathematical framework describing the evolution of open quantum systems and gen-
eral quantum operations. In quantum mechanics, unitary evolution fully describes an
isolated system via the transformation:

ρ
′ =UρU†. (3.44)

However, when a quantum system interacts with an external environment, the evolution
is no longer unitary, requiring a more general description. To model such processes,
consider a bipartite system composed of a system A and an environment B, initially in
a product state:

ρAB = ρA ⊗|0⟩B⟨0|. (3.45)

The total system evolves under a global unitary transformation UAB, leading to the final
state:
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ρ
′
AB =UAB(ρA ⊗|0⟩B⟨0|)U†

AB. (3.46)

Since the environment is not accessible, we obtain the reduced state of system A by
taking the partial trace:

ρ
′
A = TrB

[
UAB(ρA ⊗|0⟩B⟨0|)U†

AB

]
. (3.47)

Expanding in an orthonormal basis {| j⟩B} for system B, we obtain the operator-sum
representation, also known as the Kraus representation:

ρ
′
A = ∑

i
MiρAM†

i , (3.48)

where the Kraus operators are given by:

Mi = ⟨i|UAB|0⟩B. (3.49)

These operators satisfy the completeness relation:

∑
i

M†
i Mi = I, (3.50)

ensuring that the transformation is trace-preserving ■.
Now we can compute the right-hand side of the inequality (3.40), we observe that:

Mi(ρ)
TA = Mi(ρ

TA), (3.51)

which follows directly from (3.43) expressing ρ as a sum of (not necessarily positive)
tensor products. For Alice’s local operations, a similar formula holds, with the Kraus
operators replaced by their complex conjugates. The partial transpose of ρ can be
decomposed as:

ρ
TA = (1+N)ρ+−Nρ−, (3.52)

where ρ± are density operators and N = N(ρ) is the negativity of the state. The same
decomposition applies to the partially transposed output states:

pi(ρ
′
i )

TA = Mi(ρ)
TA = Mi(ρ

TA) = (1+N)Mi(ρ+)−NMi(ρ−). (3.53)

Dividing by pi, we obtain a decomposition consistent with the definition of N(ρ ′
i ). The

coefficient a− is given by N/pi, which must be greater than or equal to the infimum:

N(ρ ′
i )≤

N
pi
. (3.54)
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Multiplying by pi and summing over all i, we arrive at the desired inequality:

∑
i

piN(ρ ′
i )≤ N(ρ) ■. (3.55)

4 Continuous Variables
Expanding beyond the discrete framework, the chapter explores continuous-variable
(CV) systems, which play a fundamental role in the description of quantum optical
fields [5, 35]. It addresses key topics such as the quantum phase-space formalism,
and the mathematical characterization of Gaussian states, providing a foundation for
the analysis of entanglement and separability in continuous-variable quantum systems.
The chapter also introduces Simon’s separability criterion for Gaussian states, includ-
ing the its symplectic representation and the Duan bound, along with key measures like
negativity, to distinguish entangled states from separable ones. These tools will be es-
sential for exploring the intricate relationship between entanglement and non-locality
in quantum systems.
A natural extension of qudits can be obtained by taking the limit d → ∞, resulting in an
infinite-dimensional Hilbert space H . The orthonormal basis of this space is denoted
by {|n⟩,n ∈ N}, and a generic state can be expressed as:

|ψ⟩=
∞

∑
n=0

cn|n⟩, (4.1)

where the coefficients cn satisfy the normalization condition ∑
∞
n=0 |cn|2 = 1. This

Hilbert space, known as the Fock space, is used to describe systems with a variable
or indefinite number of identical particles and provides a convenient basis for systems
like harmonic oscillators, including the electromagnetic field. In the case of a harmonic
oscillator, the state of the system can be described in the Fock basis. While this basis is
highly useful, it is sometimes more convenient to represent the system’s state in terms
of position or momentum or, in the case of an electromagnetic field, in terms of its
quadratures. For this purpose, we consider a continuous basis composed of eigenstates
of the position operator q̂ and the momentum operator p̂, defined by the relations:

q̂|q⟩= q|q⟩, (4.2)

p̂|p⟩= p|p⟩. (4.3)

These are not strictly eigenstates in the sense that they are non-normalizable and do
not belong to the Hilbert space L2(R). However, they are orthogonal and satisfy the
normalization conditions:

⟨q|q′⟩= δ (q−q′), (4.4)
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⟨p|p′⟩= δ (p− p′), (4.5)

where δ represents the Dirac delta function. The states |q⟩ and |p⟩ are idealized states
corresponding to precise position or momentum measurements. Although physically
unrealistic, as they would require infinite energy to create, they are mathematically
useful and form a complete basis:∫

∞

−∞

dq |q⟩⟨q|=
∫

∞

−∞

d p |p⟩⟨p|= 1. (4.6)

Using this completeness relation, any state can be expressed in the position or momen-
tum basis:

|ψ⟩=
∫

∞

−∞

ψ(q)|q⟩dq =
∫

∞

−∞

φ(p)|p⟩d p, (4.7)

where the wavefunctions ψ(q) and φ(p) are square-integrable and have norm one.
The position operator q̂ and momentum operator p̂ do not commute and satisfy the
commutation relation [q̂, p̂] = iℏ, indicating that the descriptions in the position and
momentum basis are not independent. Using the commutation relation, ψ(q) and φ(p)
can be shown to be Fourier transforms of each other.

Proof: To prove this property we can express:∫
∞

−∞

∫
∞

−∞

d pdq |q⟩⟨q|p̂ |p⟩⟨p|=
∫

∞

−∞

∫
∞

−∞

d pdq p|q⟩⟨q| |p⟩⟨p|. (4.8)

Here, we have multiplied the momentum operator p̂ on both sides by the completeness
relations; on the left, expressed in the position basis, and on the right, expressed in the
momentum basis. Since the action of the momentum operator onto position basis is:

p̂ |q⟩=−iℏ
∂

∂q
|q⟩ , (4.9)

we can rewrite (4.8) in terms of ψp(q) = ⟨q|p⟩:

∫
∞

−∞

∫
∞

−∞

d pdq |q⟩
(
−iℏ

∂

∂q
ψp(q)

)
⟨p|=

∫
∞

−∞

∫
∞

−∞

d pdq |q⟩(pψp(q))⟨p|. (4.10)

The two integrals are equivalent when their integrands are identical, therefore, we can
obtain a first order differential equation for ψp(q):

−iℏ
∂

∂q
ψp(q) = pψp(q), (4.11)

whose solution is easily derived:
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ψp(q) = Aei pq
ℏ . (4.12)

We know that the momentum eiganstates are not normalizable, but we can use the
normalization condition of delta function to define the constant A. We can start from
its definition: ∫ +∞

−∞

ψ
∗
p′(q)ψp′′(q)dq = δ (p′− p′′). (4.13)

The integral becomes:

|A|2
∫ +∞

−∞

e−
i
ℏ (p′−p′′)qdq = 2πℏδ (p′− p′′)→ A =

1√
2πℏ

. (4.14)

We can finally use this result to highlight the link between the two wavefunctions:

ψ(q) = ⟨q|ψ⟩= ⟨q|
∫ +∞

−∞

φ(p) |p⟩d p=
∫ +∞

−∞

φ(p)⟨q|p⟩d p=
1√
2πℏ

∫ +∞

−∞

φ(p)e
ipq
ℏ d p.

(4.15)

Taking the inverse Fourier transform we get

φ(p) =
1√
2πℏ

∫
∞

−∞

ψ(q)e
−ipq
ℏ dq ■. (4.16)

This implies that it is impossible to know both position and momentum with arbitrary
precision, as expressed by the Heisenberg uncertainty principle. Mathematically, this
principle bounds the product of the root mean square deviations of position and mo-
mentum:

σqσp ≥
1
2
. (4.17)

An example of a continuous state can be given by considering ψ(q) as a Gaussian
function centered at the origin with a width σ :

ψ(q) =
1

(2πσ2)1/4 e−q2/(4σ2), (4.18)

φ(p) =
(2σ2)1/4

π1/4 e−p2σ2
. (4.19)

The mean square deviations for this state yield σq = σ and σp = 1/(2σ), showing

36



that it saturates the Heisenberg uncertainty relation. As σ decreases, reducing uncer-
tainty in position, the uncertainty in momentum increases. In the limit σ → 0, ψ(q)
converges to a Dirac delta distribution, indicating complete certainty in position and
infinite uncertainty in momentum. It is important to note that the Fock basis approach
and the position or momentum eigenstate approach are entirely equivalent. Indeed,
it is possible to construct a discrete basis for the Hilbert space L2(R), as in the case
of the eigenvectors of the harmonic oscillator Hamiltonian, which are proportional to
Hermite polynomials. This is because the Hilbert space L2(R) is separable.

4.1 Multimodes systems
The systems that will be discussed in this section are systems with N canonical de-
grees of freedom. These N modes could represent the modes of an Harmonic oscillator
(2.55) as we have already seen in Sec. (2.1). Each of them is identified by the number
operator n̂k, whose state |n⟩k belongs to the single mode Fock space Hk. The global
continuous-variable (CV) system [36],[37] of N canonical bosonic modes is then de-
scribed by a Hilbert space H =

⊗N
k=1 Hk, resulting from the tensor product structure

of infinite-dimensional Fock spaces Hk. Although the description in terms of operator
number is the most natural, it is not the most convenient. We have seen that because
of their similarity to classical states, coherent states are a much more powerful tool for
analysis of quantum systems. The coherent state for single mode is the eigenvator of
the annihilation operator âk, i.e, âk|α⟩k = α|α⟩k. This operator can be expressed in
terms of quadratures as expressed by (2.102), whose commutation relation is given by
(2.103).
Coherent states result from applying the single-mode Weyl displacement operator D̂k
to the vacuum |0⟩k,

|α⟩k = D̂k(α)|0⟩k. (4.20)

Since we are dealing with a system of independent bosonic modes, the overall coherent
state is obtained by applying the N-mode Weyl operators D̂ξ to the global vacuum |0⟩=
⊗|0⟩k. In order to give an explicit expression of D̂ξ is necessary to group together, in
a single vector R̂ ∈ R2N , all the modes:

R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)
T, (4.21)

which allows us to write the bosonic commutation relations between the quadrature
phase operators in a compact form:

[R̂k, R̂l ] = 2iΩkl , (4.22)

where Ω is the symplectic form given by:

Ω =
N⊕

k=1

ω, with ω =

(
0 1
−1 0

)
. (4.23)
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Finally we get:

D̂ξ = eiR̂T Ωξ , (4.24)

with ξ ∈ R2N . One then has

|ξ ⟩= D̂ξ |0⟩. (4.25)

4.2 Quantum phase-space formalism
In quantum mechanics, the density matrix formalism is widely used to describe the
quantum state of a system, particularly when dealing with mixed states or open systems
interacting with the environment. The density matrix encodes the full information of
the quantum state, including probabilities and coherences, and it is essential for evalu-
ating expectation values of observables. However, when dealing with continuous vari-
able systems, such as quantum states of light, it is often convenient to describe quantum
states in phase space, similar to classical mechanics. In the quantum phase space rep-
resentation, quantum states are mapped to quasi-probability distributions that describe
the state in terms of position and momentum (or other conjugate variables, such as the
quadratures of the electromagnetic field). These quasi-probability distributions pro-
vide a more intuitive picture of quantum phenomena and allow the use of classical-like
methods to analyze quantum states. Three primary functions are commonly used to
represent quantum states in phase space: the Glauber-Sudarshan P function [38, 39],
the Husimi Q function [19], and the Wigner function [40]. Each of these functions
offers a different perspective on the quantum state and has its unique applications. It is
particularly useful for visualizing and analyzing quantum states in continuous variable
systems because it connects the quantum description of the system with the classical
phase space, offering an intuitive picture of quantum properties like superposition and
entanglement. We want to give now a mathematical characterization of the mentioned
quasi-probabilities, following the work of C.Gerry and P.Knight [41]. Starting from
the most general definition for a mixture of quantum states

ρ̂ = pi ∑
i
|Ψi⟩⟨Ψi| (4.26)

we can always write the density matrix in terms of entries of the number state basis:

ρ̂ = Iρ̂I= ∑
m
|m⟩⟨m| ρ̂ ∑

n
|n⟩⟨n|= ∑

n
∑
m
|m⟩ρm,n ⟨n| . (4.27)

On the other hand, resolving unity with coherent states on both sides of ρ , results in:

∫∫ d2α
′
d2α

′′

π

〈
α

′
∣∣∣ ρ̂ ∣∣∣α ′′

〉∣∣∣α ′
〉〈

α
′′
∣∣∣ (4.28)

But there is yet another way to represent ρ̂ in terms of coherent states, namely
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ρ̂ =
∫

P(α)|α⟩⟨α|d2
α, (4.29)

where P(α) is a weight function often referred to as the Glauber–Sudarshan P function
[38]. This expression represents ρ̂ in terms of coherent states. The right-hand side is
the ”diagonal” form of the density operator, and P(α) serves a role similar to phase-
space distributions in statistical mechanics. In this context, the real and imaginary parts
of α are the phase space variables. Since ρ̂ is a Hermitian operator, P(α) must be a
real function and correctly normalized. But for some quantum states of the field, P(α)
can have properties quite unlike those of any true probability distribution where one
would expect to have P(α) ≥ 0. Although P(α) can be interpreted as a classical dis-
tribution, this is not always true for every quantum system. In certain cases, the P(α)
function may take on negative values in specific regions of phase space, thereby re-
flecting non-classical properties of physical reality. Before facing the main advantages
of this distribution, we need to give an explicit description of it, using the results of
Metha [42]:

P(α) =
e|α|2

π2

∫
e|u|

2⟨−u|ρ|u⟩eu∗α−uα∗
d2u. (4.30)

where |−u⟩ and |u⟩ are coherent vectors. At this point, we introduce the optical equiv-
alence theorem of Sudarshan [39]. Suppose we have a “normally ordered” function of
the operators â and â†, G(N)(â, â†), where the annihilation operators stand to the right
of the creation operators:

Ĝ(N)(â, â†) = ∑
n

∑
m

Cnm(â†)nâm. (4.31)

The average of this function is:

⟨G(N)(â, â†)⟩= Tr
(

Ĝ(N)(â, â†)ρ̂
)

= Tr
∫

P(α)∑
n,m

Cn,m(â†)nâm |α⟩⟨α|d2
α

=
∫

P(α)∑
n,m

Cn,m ⟨α|(â†)nâm |α⟩d2
α

=
∫

P(α)∑
n,m

Cn,m(α
∗)n

α
md2

α

=
∫

P(α)G(N)(α,α∗)d2
α.

(4.32)

This is the optical equivalence theorem: the expectation value of a normally ordered
operator is simply the P function weighted average of the function obtained from the
operator by replacing â → α and â† → α∗.
As mentioned above, the P-representation is not unique. Therefore, we can connect the
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density operator ρ̂ to another quasi-distribution function called the Q, or Husimi func-
tion [19]. It is possible to derive this new formulation representing a generic operator
B̂ in the “diagonal” coherent state form, sometimes referred to as the P-representation.
For an operator B̂, the P-representation is given by:

B̂ =
∫

Bp(α,α∗)|α⟩⟨α|d2
α. (4.33)

The average of B̂ is:

⟨B̂⟩= Tr(B̂ρ̂) = ∑
n
⟨n|
∫

Bp(α,α∗)|α⟩⟨α|ρ̂|n⟩d2
α, (4.34)

which simplifies to: ∫
Bp(α,α∗)⟨α|ρ̂|α⟩d2

α. (4.35)

Evidently, the expectation value of the density operator with respect to the coherent
state also plays the role of a phase-space probability distribution. This is usually called
the Q, or Husimi function [19]:

Q(α) =
⟨α|ρ̂|α⟩

π
. (4.36)

Unlike the P function, the Q function is positive for all quantum states and it is devoted
to the evaluation of antinormally ordered functions. The last, and the most usefull
quasi-distribution, is the so called Wigner function. It provides a way to describe the
quantum state in terms of position and momentum, similar to classical phase-space
distributions. For an arbitrary density operator ρ̂ , the Wigner function is defined as:

W (q, p)≡ 1
2πℏ

∫
∞

−∞

〈
q+

x
2

∣∣∣ ρ̂ ∣∣∣q− x
2

〉
eipx/ℏdx, (4.37)

where |q± x
2 ⟩ are the position eigenstates. This expression represents how the quantum

state is mapped into phase space in terms of the position q and momentum p.
For a pure state, where ρ̂ = |ψ⟩⟨ψ|, the Wigner function can be written as:

W (q, p)≡ 1
2πℏ

∫
∞

−∞

ψ
∗
(

q− x
2

)
ψ

(
q+

x
2

)
eipx/ℏdx, (4.38)

where ψ(q± x
2 ) are the wavefunctions in position space. When the Wigner function is

integrated over the momentum p, the result is the probability density in position space:∫
∞

−∞

W (q, p)d p = |ψ(q)|2, (4.39)

which corresponds to the usual probability density for finding the particle at position
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q. Similarly, integrating over the position q gives the probability density in momentum
space: ∫

∞

−∞

W (q, p)dq = |ϕ(p)|2, (4.40)

where ϕ(p) is the wavefunction in momentum space, related to the position wave-
function ψ(q) through a Fourier transform. Although the Wigner function resembles a
probability distribution, it is not a true probability function because it can take negative
values for certain non-classical quantum states. However, it is extremely useful for cal-
culating averages, provided that the operators involved are expressed in Weyl-ordered
(symmetrically ordered) form in terms of the position and momentum operators q̂ and
p̂. All these quasi-distributions can be grouped in a compact way by means the s-
parameterized function of Cahill and Glauber [43]:

χ(ξ ,s) = Tr
[
ρ̂ exp

(
ξ â† −ξ

∗â+ s|ξ |2/2
)]

= Tr
[
ρ̂D̂ξ

]
es|ξ |2/2 (4.41)

such that χ(ξ ,0) = χW (ξ ), χ(ξ ,1) = χP(ξ ), χ(ξ ,−1) = χQ(ξ ). The family of
characteristic functions is related, via complex Fourier transform, to the quasi-probability
distributions Ws, which provide another complete description of the quantum states:

Ws(α)≡ 1
π2

∫
exp(ξ ∗

α −ξ α
∗)χ(ξ ,s)d2

ξ . (4.42)

Finally, we have the ingredients to generalize to an N-modes bosonic system, described
by the Hamiltonian (2.55). As shown in [23], in this case the s-ordered characteristic
functions:

χ(ξ ,s) = Tr[ρD̂ξ ]e
s∥ξ∥2/2, (4.43)

with ξ ∈R2N , and ∥·∥ denoting the Euclidean norm in R2N . The vector ξ belongs to the
real 2N-dimensional space Γ = (R2N ,Ω), known as phase space, analogous to classical
Hamiltonian dynamics. From the definition of characteristic functions, we observe that
in the phase space picture, the tensor product structure is replaced by a direct sum
structure, such that the N-mode phase space Γ =

⊕
k Γk, where Γk = (R2,ω) is the

local phase space associated with mode k. At the end, the global quasi-distributions are
given by:

Ws(ξ ) =
1

π2

∫
R2N

χs(κ)eiκT Ωξ d2N
κ. (4.44)

The quasi-probability distributions of integer orders W−1, W0, and W1 are associated
with the antinormally ordered, symmetrically ordered, and normally ordered expres-
sions of operators, respectively. Specifically, if the operator Ô can be expressed as
Ô = f (âk, â

†
k) for k = 1, . . . ,N, where f is a symmetrically ordered function of the field

operators, then [43, 44]:
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Tr[ρÔ] =
∫
R2N

W0(κ) f̄ (κ)d2N
κ, (4.45)

where f̄ (κ) is the Weyl transform of the operator f . The function f (κ) is defined
as f (κk + iκk+1,κk − iκk+1), and f takes the same form as the operatorial function
previously introduced. The same relationship holds between W−1 and the antinormally
ordered expressions of the operators, and between W1 and the normal ordering. We also
recall that the normally ordered function of a given operator is provided by its Wigner
representation. This entails the following equalities for the trace:

1 = Tr(ρ) =
∫
R2N

W (κ)d2N
κ = χ(0), (4.46)

and for the purity µ [45] of a state ρ:

µ = Tr(ρ2) =
∫
R2N

W 2(κ)d2N
κ =

∫
R2N

|χ(ξ )|2 d2N
ξ . (4.47)

These expressions will be useful in the following.

4.3 Mathematical description of Gaussian states
In the light of what has been seen in the previous section, a Gaussian state is defined
when the characteristic function and the quasi-probability distributions are Gaussian
functions. Thus, a Gaussian state in quantum mechanics is uniquely determined by
its first and second statistical moments of the quadrature field operators [23]. These
quadrature operators describe the continuous variables, such as position and momen-
tum in quantum optics. Specifically, the first moments and the covariance matrix (CM)
contain all the relevant information required to fully describe the state. The first mo-
ments are defined by the vector

R = (⟨R̂1⟩,⟨R̂2⟩, . . . ,⟨R̂N⟩), (4.48)

where ⟨R̂i⟩ represents the expectation value of the i-th quadrature operator R̂i. The
second moments are captured by the covariance matrix σ , which is defined as:

σi j =
1
2
⟨R̂iR̂ j + R̂ jR̂i⟩−⟨R̂i⟩⟨R̂ j⟩. (4.49)

The covariance matrix contains essential information about the quantum state, such
as correlations between the quadrature operators. Importantly, it determines quantities
like entanglement, purity, and squeezing. While the first moments can provide informa-
tion about the displacement of the quantum state in phase space, they can be arbitrarily
adjusted by applying local unitary operations like displacement operators. Specifically,
single-mode displacements, often implemented via the Weyl operator, shift the state
in phase space without altering its fundamental properties, such as entropy or entan-
glement. As such, these first moments do not carry significant informational content,
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and for most analytical purposes, they are often set to zero. This assumption greatly
simplifies the analysis of Gaussian states.
When the first moments are set to zero, the Wigner function, which provides a quasi-
probability distribution in phase space, takes a particularly simple form. For an N-mode
Gaussian state, the Wigner function is given by:

W (R) =
e−

1
2 Rσ−1RT

πN
√

detσ
, (4.50)

where R is the phase-space vector (q1, p1, . . . ,qN , pN) ∈ R2N , representing the real
quadrature variables. The covariance matrix σ characterizes the shape and orienta-
tion of the Gaussian function in phase space. The Wigner function provides a complete
phase-space representation of the Gaussian state, capturing its quantum properties, in-
cluding possible non-classical behavior. Despite the infinite-dimensional nature of the
Hilbert space for continuous variable systems, the full description of a Gaussian state
(up to local unitary operations) is encoded in the 2N×2N covariance matrix σ . In prac-
tice, we often use σ interchangeably to refer to both the Gaussian state and the matrix
of second moments. This matrix reflects correlations between the canonical continuous
variables and is central to analyzing the state’s quantum features. From the perspec-
tive of statistical mechanics, the elements of the covariance matrix σ correspond to
two-point truncated correlation functions between the quadrature operators. Each en-
try can be thought of as encoding information about the correlations between specific
quadrature pairs. These elements can also be related to energies by multiplying them
by the mode’s energy level spacing ℏωk, where ωk is the frequency of the k-th mode.
In this way, Trσ gives a quantity proportional to the mean energy of the Gaussian state,
corresponding to the expectation value of the non-interacting Hamiltonian. In conclu-
sion, the covariance matrix contains all the information required to describe a system
composed of N independent modes. For this description to be fully equivalent, it is
necessary to include the Heisenberg uncertainty principle and a constraint that ensures
the positive semi-definiteness of the density matrix ρ . Those two requirements impose
a condition on σ known as the Robertson-Schrödinger uncertainty relation [46]. This
condition ensures that the quantum uncertainty relations are respected and is mathe-
matically expressed as:

σ + iΩ ≥ 0, (4.51)

The inequality σ + iΩ ≥ 0 is both necessary and sufficient for σ to represent a valid
physical state [47, 48]. It is a general condition applicable to both Gaussian and non-
Gaussian states and guarantees that the quantum state satisfies the uncertainty principle.
In this preliminary overview, an important example of a two-mode Gaussian state is
mentioned: the two-mode squeezed state |ψsq⟩i, j = Ûi, j(r)(|0⟩i ⊗|0⟩ j) with squeezing
factor r ∈ R. The (phase-free) two-mode squeezing operator is given by

Ûi, j(r) = exp
[
− r

2
(â†

i â†
j − âiâ j)

]
. (4.52)
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The significance of a two-mode squeezed state lies in its nature as an entangled state for
any non-zero value of the squeezing parameter (r > 0). This means that as the squeez-
ing parameter r increases, the noise in one quadrature grows while it is simultaneously
reduced in the complementary one. In the asymptotic regime, where r → ∞, this state
can simulate, with an arbitrarily high degree of accuracy, the ideal Einstein-Podolsky-
Rosen (EPR) state, which is represented by a non-normalizable and non-physical wave-
function. Therefore, two-mode squeezed states are crucial as entangled resources for
practical implementations of continuous-variable (CV) quantum information protocols
[36]. They play a central role in the study of the entanglement properties of Gaussian
states. Now we derive explicitly the covariance matrix for this relevant case. First of
all, we need to define the action of the squeezing operator on the quadratures:

Û†
i, j(r)q̂iÛi, j(r) = Û†

i, j(r)(âi + â†
i )Ûi, j(r)

=
(
(âi cosh(r)+ â j

† sinh(r))+(âi
† cosh(r)+ â j sinh(r))

)
=
(

âi cosh(r)+ â†
i cosh(r)+ â†

j sinh(r)+ â j sinh(r)
)

= cosh(r)(âi + â†
i )+ sinh(r)(â†

j + â j)

= q̂i cosh(r)+ q̂ j sinh(r).

(4.53)

and

Û†
i, j(r)p̂iÛi, j(r) = Û†

i, j(r)
1
i
(âi − â†

i )Ûi, j(r)

=
1
i

(
(âi cosh(r)+ â j

† sinh(r))− (âi
† cosh(r)+ â j sinh(r))

)
=

1
i

(
âi cosh(r)− â†

i cosh(r)+ â†
j sinh(r)− â j sinh(r)

)
=

i
i

cosh(r)(âi − â†
i )−

1
i

sinh(r)(â j − â†
j)

= p̂i cosh(r)− p̂ j sinh(r).

(4.54)

From these results we can construct the covariance matrix, starting from its general
definition:

σ
i, j
sq (r) =


⟨q̂2

i ⟩ ⟨p̂iq̂i⟩ ⟨q̂ jq̂i⟩ ⟨p̂ jq̂i⟩
⟨q̂i p̂i⟩ ⟨p̂2

i ⟩ ⟨q̂ j p̂i⟩ ⟨p̂ j p̂i⟩
⟨q̂iq̂ j⟩ ⟨p̂iq̂ j⟩ ⟨q̂2

j⟩ ⟨p̂ jq̂ j⟩
⟨q̂i p̂ j⟩ ⟨p̂i p̂ j⟩ ⟨q̂ j p̂ j⟩ ⟨p̂2

j⟩

 (4.55)

Where the average is on the squeezed vacuum state:
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⟨q̂2
i ⟩sq = ⟨0,0|Û†

i, j(r)q̂
2
i Ûi, j(r) |0,0⟩

= ⟨0,0|Û†
i, j(r)q̂iÛi, j(r)Û

†
i, j(r)q̂iÛi, j(r) |0,0⟩

= ⟨0,0|
(

Û†
i, j(r)q̂iÛi, j(r)

)2
|0,0⟩

= ⟨0,0|(q̂i cosh(r)+ q̂ j sinh(r))2 |0,0⟩
= cosh2(r)⟨0,0| q̂2

i |0,0⟩+ sinh2(r)⟨0,0| q̂2
j |0,0⟩

= cosh2(r)⟨0,0|(â2
i + â†2

i +2â†
i âi +1) |0,0⟩+

+ sinh2(r)⟨0,0|(â2
j + â†2

j +2â†
j â j +1 |0,0⟩

= cosh2(r)+ sinh2(r) = cosh(2r)

(4.56)

In the second line we have employed the unitary property of the squeezing operator,
i.e, Û†Û = I. Following the same procedure we find all the entries of the matrix:

⟨q̂2
i ⟩sq = cosh2(r)⟨q̂2

i ⟩0 + sinh2(r)⟨q̂2
j⟩0 = cosh(2r), (4.57)

⟨p̂2
i ⟩sq = cosh2(r)⟨p̂2

i ⟩0 + sinh2(r)⟨p̂2
j⟩0 = cosh(2r), (4.58)

⟨q̂iq̂ j⟩sq = 2sinh(r)cosh(r)(⟨q̂2
i ⟩0 + ⟨q̂2

j⟩0) = sinh(2r), (4.59)

⟨p̂i p̂ j⟩sq = 2sinh(r)cosh(r)(⟨p̂2
i ⟩0 + ⟨p̂2

j⟩0) =−sinh(2r). (4.60)

The two-mode squeezed state covariance matrix is finally derived:

σ
i, j
sq (r) =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 −sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 −sinh(2r) 0 cosh(2r)

 ■. (4.61)

4.3.1 Symplectic operations

When we describe the state of a system by its density matrix, we know that there are
unitary operations, associated with at most quadratic Hamiltonian in the modes, that
maintain unchanged the trace and positivity of the density operator, i.e. they leave the
state unchanged. This type of transformation results, in the space of phases, in the
existence of operations, so-called symplectic operations, i.e. linear transformation S
which preserves the symplectic form Ω:

ST
ΩS = Ω. (4.62)

Symplectic transformations on a 2N-dimensional phase space form the (real) sym-
plectic group Sp(2N,R). Such transformations act linearly on first moments and by
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congruence on covariance matrices, σ → SσST . Equation (4.62) implies Det(S) = 1,
∀S ∈ Sp(2N,R). For instance, the two-mode squeezing operator equation corresponds to
the symplectic transformation

Si, j(r) =


coshr 0 sinhr 0

0 coshr 0 −sinhr
sinhr 0 coshr 0

0 −sinhr 0 coshr

 , (4.63)

where the matrix is understood to act on the pair of modes i and j. In this way, the
two-mode squeezed state, equation (4.61), can be obtained as

σ
sq
i, j(r) = Si, j(r)I4ST

i, j(r), (4.64)

exploiting the fact that the CM of the two-mode vacuum state is the 4×4 identity ma-
trix. We note that local symplectic operations belong to the group Sp(2,R)⊕N . They
correspond, at the Hilbert space level, to tensor products of unitary transformations,
each acting on the state space of a single mode. It is useful to note that the determinants
of each 2×2 submatrix of an N-mode CM, are all invariants under local symplectic op-
erations S ∈ Sp(2,R)⊕N . This mathematical property reflects the physical requirement
that marginal informational properties and correlations between individual subsystems
cannot be altered by local operations alone.

4.3.2 Symplectic eigenvalues and invariants

If symplectic operations reflect the action of unitary transformations in phase space,
it is natural to ask which quantities, derived from σ , remain invariant under the ac-
tion of such operations. To define the first invariant, it is necessary to introduce the
symplectic transformation that diagonalizes a Gaussian state in the basis of normal
modes. Through this decomposition, thanks to Williamson’s theorem [49], the CM of
an N-mode Gaussian state can always be written in the so-called Williamson normal or
diagonal form

σ = ST
νS, (4.65)

where S ∈ Sp(2N,R) and ν is the CM

ν =
N⊕

k=1

(
νk 0
0 νk

)
. (4.66)

The physical interpretation of these symplectic eigenvalues becomes evident when
comparing the diagonalized Williamson form with the covariance matrix of a thermal
state. We can focus our attention on a generic single-mode system k (in the following
discussion, we will omit the subscript k, which will be implicitly understood), whose
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covariance matrix is a 2× 2 matrix and the first moment vector is a 2-dimensional
vector:

σ =

(
2⟨q̂2⟩ρ̂ −2⟨q̂⟩2

ρ̂
⟨q̂ p̂+ p̂q̂⟩ρ̂ −2⟨q̂⟩ρ̂⟨p̂⟩ρ̂

⟨p̂q̂+ q̂ p̂⟩ρ̂ −2⟨p̂⟩ρ̂⟨q̂⟩ρ̂ 2⟨p̂2⟩ρ̂ −2⟨p̂⟩2
ρ̂

)
, (4.67)

For a single harmonic oscillator, the thermal state covariance matrix is easy to compute.
Let us consider the thermal state at temperature T :

ρ̂ =
1
Z

e−β Ĥ =
1
Z

e−
ℏω

kBT â†â
, (4.68)

where

Z = Tr
(

e−
ℏω

kBT â†â
)
=

∞

∑
n=0

⟨n|e−
ℏω

kBT â†â|n⟩=
∞

∑
n=0

e−
ℏω

kBT n
=

e
ℏω

kBT

e
ℏω

kBT −1
=

1

1− e−
ℏω

kBT
.

(4.69)

The expectation values of q̂ and p̂ in a thermal state are zero, which can be quickly
verified by considering:

Tr
[
e−Câ†â(â± â†)

]
= ∑

n
⟨n|e−Câ†â(â± â†)|n⟩= ∑

n
e−Cn⟨n|(â± â†)|n⟩= 0. (4.70)

There are four covariances to compute. First, the diagonal ones:

⟨q̂2⟩ρ̂ =
1
Z

Tr
(

e−
ℏω

kBT â†â
(â† + â)2

)
=

1
Z

∞

∑
n=0

⟨n|e−
ℏω

kBT â†â
(â† + â)2|n⟩

=
1
Z

∞

∑
n=0

e−
ℏω

kBT n⟨n|
(
â†â† + ââ+ â†â+ ââ†) |n⟩

=
1
Z

∞

∑
n=0

e−
ℏω

kBT n
(2n+1)

=
1
Z

e
ℏω

kBT (1+ e
ℏω

kBT )

(e
ℏω

kBT −1)2

= coth
(

ℏω

2kBT

)
,

(4.71)

and
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⟨p̂2⟩ρ̂ =− 1
Z

Tr
(

e−
ℏω

kBT â†â
(â† − â)2

)
=− 1

Z

∞

∑
n=0

⟨n|e−
ℏω

kBT â†â
(â† − â)2|n⟩

=− 1
Z

∞

∑
n=0

e−
ℏω

kBT n⟨n|
(
â†â† + ââ− â†â− ââ†) |n⟩

=
1
Z

∞

∑
n=0

e−
ℏω

kBT n
(2n+1)

=
1
Z

e
ℏω

kBT (1+ e
ℏω

kBT )

(e
ℏω

kBT −1)2

= coth
(

ℏω

2kBT

)
.

(4.72)

The non-diagonal components can be easily proven to be zero since (â†± â)(â∓ â†) =
ââ+ â†â†, which have zero trace. Therefore, the covariance matrix for the thermal state
is:

σ =

(
ν 0
0 ν

)
, ν = coth

(
ℏω

2kBT

)
> 1, (4.73)

where ν → 1 in the limit T → 0 ■.
The conclusion is that the Williamson form of the covariance matrix corresponds to a
tensor product state with a diagonal density matrix ρ⊗ equal to:

ρ
⊗ =

⊗
k

2
νk +1

∞

∑
n=0

(
νk −1
νk +1

)n

|n⟩kk⟨n|, (4.74)

where |n⟩k denotes the number state of order n in the Fock space Hk. In the Williamson
form, each mode with frequency ωk is a Gaussian state in thermal equilibrium at a
temperature Tk, characterized by a Bose–Einstein statistical distribution of the thermal
photons nk, with average

n̄k =
νk −1

2
=

1

exp
(

ℏωk
kBTk

)
−1

. (4.75)

The N quantities νk form the symplectic spectrum of the CM σ and are invariant under
the action of global symplectic transformations on the matrix σ . The symplectic eigen-
values can be computed as the orthogonal eigenvalues of the matrix |iΩσ | [50] and are
thus determined by N invariants of the characteristic polynomial of such a matrix [51].
Since these symplectic operations are the counterpart in phase-space of unitary trans-
formations in the Hilbert space, we expect them to maintain the global properties of
the system, encoded in CM matrix, unchanged. One of this global symplectic invariant
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is simply the determinant of CM, that follows from the condition Det(S) = 1. in fact
we have that:

Detσ = Det
(
ST

νS
)
= Detν =

N

∏
k=1

ν
2
k . (4.76)

The second global invariant is called seralian [52] ∆(σ), that is defined as:

∆(σ) = ∑
k

v2
k . (4.77)

The proof of this result is derived in Serafini et all paper [52], in which the two-mode
Gaussian state is treated, but a further genralization was given by [53]. This specific
case is useful to underling, in the next chapter, some features of entanglement as a
consequence of marginal and global purity. We can now proceed to the analysis by
introducing the block form of the covariance matrix:

σ =

(
α γ

γT β

)
(4.78)

In which each block is a 2x2 matrix. This CM matrix can be always recast into another,
different from the fully diagonal one (4.65), named standard form [54] by means of a
proper symplectic transformation. In two-mode gaussian state it’s easy to decompose
these operations in terms of local transformations and local one [51]:

S ∈ Sp(4,R) = Sloc(r1,r2)R(ξ )Stm(r)R(η)Sl . (4.79)

Transformation S is made up by a local operation Sl , two rotations R(φ), with

R(φ) =


cosφ 0 −sinφ 0

0 cosφ 0 −sinφ

sinφ 0 cosφ 0
0 sinφ 0 cosφ

 , (4.80)

a global squeezing Stm(r) = diag(er,e−r,e−r,er) and a local squeezing Sloc(r1,r2) =
Ssm(r1,0)⊕Ssm(0,r2), resulting from the direct product of two single-mode squeezing
operators with null phase. It is very important noticing that even if Stm(r) acts on both
modes at the same time it does not introduce mixing of them, in other words it does not
introduce non-local effect. The consequence of this is that Stm(r) = Sloc(r,−r), so that
the only global (non-local) operations in the decomposition of Eq. (4.79) are the two
rotations. We note that an equivalent decomposition has been recently demonstrated
for generic multimode pure Gaussian states [55]. For any covariance matrix σ there
exists a local canonical operation Ss f = S1 ⊕S2 which brings σ to the “standard form”
σs f [54]:
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ST
s f σSs f = σs f ≡


a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

 , (4.81)

where a, b, c+, c− are determined by the four local symplectic invariants:

detσ = (ab−c2
+)(ab−c2

−), detα = a2, detβ = b2, and detγ = c+c−. (4.82)

while the seralian is equal to:

∆(σ) = detα +detβ +2detγ. (4.83)

The invariance of ∆(σ) is easy to prove. it is clearly invariant under local transforma-
tion, i.e, Sloc(r1,r2),Stm(r) and Sl . As for the non-local rotations which enter in the
definition of S, let us notice that they act on covariance matrices of the following form:

σ̃ =


u 0 j 0
0 v 0 k
j 0 w 0
0 k 0 z

 , (4.84)

and if we define two others submatrices of σ :

δ =

(
σ11 σ13
σ31 σ33

)
, ε =

(
σ22 σ24
σ42 σ44

)
. (4.85)

for which one has ∆(σ̃) = Tr(δε). Such an expression is manifestly invariant under the
action of identical rotations R(φ) on the submatrices δ and γ , proving the statement.
We can now use these invariant forms to derive the eigenvalues in the case of two-mode
Gaussian states, since we know:

Detσ = ν
2
−ν

2
+,

∆(σ) = ν
2
−+ν

2
+

(4.86)

and inverting the relations we end up with the definition of eigenvalues in term of the
invariants:

ν
2
± =

∆(σ)±
√

∆(σ)2 −4Det(σ)

2
. (4.87)

Now is evident how the uncertainty principle (4.51) can be recast, in the two-mode
Gaussian states, in terms of its invariant. For the standard form of the covariance matrix
(4.81) the condition (4.51) implies that the determinant of the entire matrix is greater or
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equal to zero. If we impose this requirement we discover a key relation between ∆(σ)
and Det(σ):

∆(σ)≤ 1+Det(σ). (4.88)

In the Chapter 6 will be clear the physical meaning of these two quantities.

4.3.3 Symplectic representation of uncertainty principle

We have seen that is always possible to bring a generic covariance matrix to its Williamson
form, i.e, a fully diagonal matrix. In this picture, the uncertainty principle (4.51) can
be recast in a simplified form. If we apply the symplectic operation to (4.51):

S (σ + iΩ)ST ≥ 0 → SσST + iΩ ≥ 0. (4.89)

The first term of the inequality is the Williamson form of the matrix σ . The statement
means that the sum of the two matrices has to be a semi positive definite matrix, i.e, its
eigenvalues must be greater or equal than zero. Since we are not interested in the actual
values it is sufficient, to satisfy the uncertainty principle, that the determinant must be
greater or equal than zero. This condition impose a lower bound on the eigenvalues νk:

νk ≥ 1. (4.90)

Without loss of generality, one can rearrange the modes of an N-mode state such that
the corresponding symplectic eigenvalues are sorted in ascending order:

ν− ≡ ν1 ≤ ν2 ≤ ·· · ≤ νN−1 ≤ νN ≡ ν+. (4.91)

With this notation, the uncertainty relation reduces to

ν1 ≥ 1. (4.92)

We remark that the full saturation of the uncertainty principle can only be achieved
by pure N-mode Gaussian states, for which νi = 1 ∀i = 1, . . . ,N, meaning that the
Williamson normal form of any pure Gaussian state is the vacuum |0⟩ of the N-mode
Hilbert space H .

4.3.4 Degree of information in Gaussian states

When talking about the degree of information contained in a system it is natural to
refer to the results obtained within the information theory from Shannon, in a classical
framework. He wondered whether it was possible to define a measure for quantifying
the degree of information of a discrete source, or equivalently the degree of ignorance
of the system itself, understood as the capability to predict the output of a test prior the
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measurement. A quantitative measure for the average amount of information that we
expect to gain in this kind of test can be defined as follows. Let p1, ..., pN be the known
probabilities of the various outcomes of the test that we intend to perform. Namely, if
we imagine the same test applied to n identically prepared systems, and if n is a large
number, we expect about n j = np j outcomes of type j. In a test of a quantum system
it is only possible to give a prediction of its possible results, based on {p1, ...pN},
therefore we cannot say with certainty in which order the results will be found. The
number of different possibilities to arrange these n outcomes is equal to n!/n1!...nN!
and if n → ∞ we can express this ratio by means the Stirling’s approximation:

log
(

n
n1!...nN!

)
≈ nlog(n)−n−∑

j
n jlog(n j)−n j =−n∑

j
p jlog(p j). (4.93)

The expression

S :=−∑
j

p jlog(p j) (4.94)

is called Shannon entropy. It is a measure of the disorder in the system and the pre-
dictability of its results. To fully understand the meaning of this measure, we can
imagine to deal with a quantum test, knowing the probabilities of each possible out-
come. It is convenient to discuss two two extreme cases; that are the pure state and the
completely mixed state. In the first case, the ideal one, the system will be described by
a density matrix given by:

ρ̂ = |ψ⟩⟨ψ| . (4.95)

Therefore, if you perform the measurement associated with the eigenstate that de-
scribes the system, you get a distribution that focuses on a single value, there will
be a coefficient pk = 1 and all others equal to zero. The Shannon entropy in this case
will be zero, which indicates that we will have full predictability of results before mak-
ing the measurement itself. However, in an experimental setup it is not realistically
possible to construct a completely pure state, since there will always be some degree
of correlation between the system and the environment (measuring instruments etc.),
therefore when making the partial trace, by removing the degrees of freedom from the
environment, we obtain a density matrix that describes a mixed state, then a diagonal
matrix. If for every test we have maximal ignorance, namely pk = 1/N, the preparation
is called a random mixture, and it is represented by the density matrix of the following
form:

ρ̂ = I/N. (4.96)

The coefficients that define the mixture vary between 0 and 1. The case of maximum
disorder is such that each state is equally likely and consequently all coefficients shall
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be uniformly distributed. This is the case when the Shannon entropy is at its maximum,
so we have complete uncertainty about the predictability of the results before making
the measurement. We have seen how the Shannon entropy applies to classical variables
with known probability distributions. Assuming we have a quantum system, identified
by its density matrix, we are interested in quantifying the degree of information con-
tained in it. To do this we can introduce the quantum equivalent of Shannon’s entropy,
so-called Von Neumann’s entropy:

S(ρA) =−Tr(ρA lnρA) =−Tr(ρB lnρB). (4.97)

When we diagonalize ρ , its eigenvalues represent the probabilities {pi} associated
with the pure states in the mixed-state decomposition. The von Neumann entropy then
reduces to the Shannon entropy calculated over the eigenvalues:

S(ρ) =−∑
i

pi log pi. (4.98)

In the first part we have seen how important it is to know the purity of the system under
consideration since this coincides with the degree of information that the state carries
with it [56]. For a quantum state represented by the density matrix ρ , the purity µ(ρ)
is given by:

µ(ρ) = Tr(ρ2). (4.99)

This measure of purity, a key concept in quantum information, indicates the extent to
which a state is mixed or pure. For states within a Hilbert space H of dimension N,
purity ranges from 1

N ≤ µ ≤ 1, where the lower bound corresponds to a completely
mixed state, or random ensemble, and the upper bound is reached only by pure states.
In continuous-variable (CV) systems where N → ∞, the minimum purity approaches
zero asymptotically, reflecting a state of maximal mixedness or randomness. The com-
plement of purity, often referred to as impurity or the degree of mixedness, represents
the extent of our uncertainty regarding the quantum state prior to measurement. Impu-
rity can be effectively captured by the linear entropy SL(ρ), which is defined by:

SL(ρ) =
N

N −1
(1−µ) =

N
N −1

(
1−Tr(ρ2)

)
, (4.100)

where SL ranges between 0 for pure states and 1 for maximally mixed states. This met-
ric is widely used in quantum information theory for its direct relationship with purity
and computational ease. Additionally, the linear entropy serves as a straightforward
measure of a state’s mixedness, offering insights into the “noise” or uncertainty inher-
ent in the quantum state. More generally, the mixedness of a quantum state can be fully
described by evaluating its Schatten p-norms [57]:

∥ρ∥p = (Tr |ρ|p)1/p = (Tr(ρ p))1/p , p ≥ 1. (4.101)
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These norms offer a family of metrics that measure various aspects of a state’s mixed-
ness. For p = 2, the Schatten norm is directly tied to purity µ , connecting it to the
linear entropy. The p-norms are particularly useful as they are multiplicative under
tensor products, making them essential in constructing generalized entropies [58, 59].
The generalized entropy Sp(ρ) for a given p is defined as:

Sp(ρ) =
1−Tr(ρ p)

p−1
, p > 1. (4.102)

This measure scales from 0, representing pure states, up to 1
p−1 for fully mixed states

with completely degenerate spectra. Generalized entropies provide an adaptable frame-
work for studying mixedness across different quantum systems, as they highlight how
much a state deviates from purity and help characterize the information-theoretic prop-
erties of quantum states with complex eigenstructures. This generalized entropy has
a very powerful definition in terms of symplectic eigenvalues as it has been proved in
[60]. We have already seen how each covariance matrix can be related to a diagonal
form (4.65) by means symplectic operations, corresponding to a tensor product of ther-
mal states is given by (4.74). where νk are the symplectic eigenvalues, and |n⟩k is the
occupation number states of the k-th mode. The single mode density matrix is given
by:

ρ
⊗
ν̃k
=

2
νk +1

∞

∑
n=0

(
νk −1
νk +1

)n

|n⟩⟨n|, (4.103)

and consequently ρ p will be equal to:

(ρ⊗
ν̃k
)p =

(
2

νk +1

)p ∞

∑
n=0

(
νk −1
νk +1

)np

|n⟩⟨n|. (4.104)

The eingenvalues νk are greater or equal than one, as imposed by uncertainty condition,
so we are dealing with a geometric sum. Accordingly to this observation it is now easy
to derive the trace of single mode density matrix:

λ
p
k =

(
2

νk +1

)p 1

1−
(

νk−1
νk+1

)p =
2p

(νk +1)p − (νk −1)p . (4.105)

Generalizing to the N-mode systems we get:

Tr(ρ p) =
N

∏
k=1

gp(νk), gp(x) =
2p

(x+1)p − (x−1)p ■. (4.106)

From this definition it is possible to derive the purity in terms of simplectic eigenvalues,
since for p = 2:

Tr(ρ2) = µ =
1

∏
N
i=1 νi

=
1√

Det(σ)
. (4.107)
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We have now all the ingredients for evaluating the extreme values of the generalized
entropy at fixed purity. Unlike the single mode case, in which all the entropies S′ps (and
Von Newmann entropy as well) are just increasing functions of Det(σ), the multi-mode
states show a very different behavior. In particular we can distinguish two opposite
trend depending on which kind of exponent we are considering. Indeed, without going
deeply into the mathematics, it is worth mentioning which are the extreme values of the
entropy function when changing p. In particular when p < 2 the generalized entropy
is a concave function for each si:

(p−1)Sp = 1−

(
n−1

∏
i=1

gp(si)

)
gp

(
1

µ ∏
n−1
i=1 si

)
, 1 ≤ si ≤

1
µ ∏i ̸= j s j

, (4.108)

and it is minimum when, at given purity, the symplectic spectrum is partially degen-
erate, with ν1 = · · · = νn−1 = 1,νn = 1

µ
. For p < 2, the mixedness of the states with

minimal generalized entropies at given purity is therefore concentrated in one quadra-
ture:

Smin
p (µ) =

1−gp

(
1
µ

)
p−1

. (4.109)

The maximum value Smax
p (µ) is achieved by states with a completely degenerate sym-

plectic spectrum: ν1 = · · ·= νn = µ−1/n, yielding:

Smax
p (µ) =

1−gp
(
µ−1/n

)n

p−1
. (4.110)

The instance p > can be treated in the same way, with the major difference that the
function Sp of Eq.(4.108) is convex with respect to any si for any value of the si’s.
This leads to a complete reversal of the results that were previously found; For p > 2,
the states with minimal Smin

p (µ) at given purity µ are those with a fully distributed
symplectic spectrum, with:

Smin
p (µ) =

1−gp
(
µ−1/n

)n

p−1
. (4.111)

On the other hand, the states with maximal Smax
p at given purity µ are those with a

spectrum of the kind ν1 = · · ·= νn−1 = 1,νn =
1
µ

. Therefore:

Smax
p (µ) =

1−gp

(
1
µ

)
p−1

. (4.112)

As final remark we notice that the distance |Smax
p − Smin

p | decreases with increasing p.
This is due to the fact that the quantity Sp carries less information with increasing p,
and the knowledge of µ provides a more precise bound on the value of Sp.
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4.3.5 Pure states: phase-space Schmidt decomposition

We address the decomposition of a multimode pure Gaussian state with respect to a bi-
partite division of the modes, following the derivation of A. Botero and B.Reznik [55],
who proved that for any such division the state can always be expressed as a prod-
uct state involving entangled two-mode squeezed states and single-mode local states at
each side. The character of entanglement of the state can therefore be understood mod-
ewise; that is, a given mode on one side is entangled with only one corresponding mode
of the other, and therefore the total bipartite entanglement is the sum of the modewise
entanglement. To begin with, suppose a collection of N canonical systems or “modes”
is partitioned into two sets, i.e., Alice’s A = {A1, . . . ,Am} and Bob’s B = {B1, . . . ,Bn},
of sizes m and n, respectively. If the quantum state of the modes is a pure Gaussian
state |ψ⟩AB, the following theorem characterizes the entanglement between Alice and
Bob.

Theorem 1. A Gaussian pure state |ψ⟩AB for m+n modes A and B may always be
written as

|ψ⟩AB = |ψ̃1⟩Ã1B̃1
⊗|ψ̃2⟩Ã2B̃2

⊗·· ·⊗ |ψ̃s⟩ÃsB̃s
⊗|0⟩AF ⊗|0⟩BF (4.113)

for some s ≤ min(m,n), where Ã = {Ã1, . . . , Ãm} and B̃ = {B̃1, . . . , B̃n} are new sets of
modes obtained from A and B, respectively, through local linear canonical transforma-
tions. The states |ψ̃k⟩ are two-mode squeezed states [61] of the form

|ψ̃k⟩ÃkB̃k
=

1√
Zk

∑
n

e−βkn/2|n⟩Ãk
|n⟩B̃k

, (4.114)

entangling the modes Ãk and B̃k for k ≤ s, and |0⟩AF and |0⟩BF are products of oscil-
lator ground states for the remaining modes in Ã and B̃, respectively. Each pairwise
entangled state of the form (4.114) is expressed in terms of an appropriate Fock state
basis for the mode pair subspace and yields a two-mode density matrix:

ρ̂ÃkB̃k
=

1
Zk

∑
m

∑
n

e−
βk
2 (n−m) |n⟩Ãk

|n⟩B̃k
⟨m|B̃k

⟨m|Ãk
. (4.115)

From this we can derive the reduced density matrix:

ρ̂Ãk
= TrB̃k

(ρ̂ÃkB̃k
) =

e−βk ñk

Tr(e−βk ñk)
=

1
Zk

∑
n

e−βkn|n⟩kk⟨n|, (4.116)

where ρÃk
is an oscillator thermal state for the k-th mode. We notice that this formula-

tion is completely equivalent to (4.74), by assuming that:

βk = ln
(

νk +1
νk −1

)
, ⟨ñk⟩=

νk −1
2

. (4.117)

Note that as a consequence of the uncertainty principle, admissible Gaussian states
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satisfy the condition ∀k,νk ≥ 1, with pure Gaussian states when ∀k,νk = 1. For νk = 1,
ρk = |0⟩k⟨0| is obtained as the limit of Eq. (4.116) as bi → ∞. Finally we have that
reduced density matrix for either set takes the form of tensor product:

ρ̂A =
s⊗

k=1

ρ̂Ãk
. (4.118)

We now proceed with the proof of Theorem 1:

Proof: When we perform the Schmidt decomposition (3.13) automatically we get
the diagonal form of the partial density matrices for A and B:

ρA = ∑
a

λa|φa⟩⟨φa|, ρB = ∑
a

λa|χa⟩⟨χa|, (4.119)

which are, by construction, of equal rank and spectrum, thus showing that the λa’s
are unique. The basis states |φa⟩A and |χa⟩B are also unique (up to phase factors) for
nondegenerate λa, and otherwise may be chosen to be elements of any orthonormal
basis spanning the degenerate subspace. Now, if |ψ⟩AB is Gaussian, then the reduced
density matrices, ρA and ρB, are also Gaussian. We have seen that a Gaussian state
is fully characterized by its own covariance matrix. This matrix has an equivalent
completely diagonal representation, known as the Williamson form (4.65), which is
obtained through the action of appropriate symplectic operations. The density matrix
associated with this diagonal form is expressed as the tensor product of single-mode
density matrices (4.74). Thus, ρA and ρB can be recast into the form (4.74). Suppose
that there are s modes in A and t modes in B with symplectic eigenvalue v= 1. Since the
remaining modes factor out from the respective density matrices as projection operators
onto their ground states, we may factor |ψ⟩AB as

|ψ⟩AB = |ψ̃⟩AB ⊗|0⟩ÃF
⊗|0⟩B̃F

, (4.120)

where |0⟩ÃF
and |0⟩B̃F

are collective ground states of the modes with v = 1 and |ψ̃⟩AB

is the generally entangled state for the remaining modes Ã1, . . . , Ãs and B̃1, . . . , B̃t . Con-
centrate then on |ψ̃⟩AB, the partial density matrices of which may be written as

ρ̃A = ∑
n⃗A

e−β⃗A ·⃗nA

Z(A)
|⃗nA⟩ ⟨⃗nA| , ρ̃B = ∑

n⃗B

e−β⃗B ·⃗nB

Z(B)
|⃗nB⟩ ⟨⃗nB| , (4.121)

where n⃗A = {nA1 , . . . ,nAs}T and n⃗B = {nB1 , . . . ,nBt}T are s- and t-dimensional vectors
representing occupation number distributions on each side and β⃗A = {βÃ1

, . . . ,βÃs
}T

and β⃗B = {βB̃1
, . . . ,βB̃t

}T represent the distributions of thermal parameters on each
side. Now, from our previous discussion, both density matrices have the same rank and
the same eigenvalues. This means that there must exist a one-to-one pairing between
the occupation number distributions n⃗A and n⃗B, such that
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β⃗A · n⃗A = β⃗B · n⃗B (4.122)

We now observe that the pairing n⃗A ⇔ n⃗B is a homogeneous linear map, since n⃗A = 0
and n⃗B = 0 are paired (all β ’s ̸= 0) and (⃗nA + n⃗′A, n⃗B + n⃗′B) satisfies Eq. (4.122) if
(⃗nA, n⃗B) and (⃗n′A, n⃗

′
B) satisfy Eq. (4.122). However, if a linear map is one-to-one then

the domain and range have the same dimensions. Thus we see that s = t; in other
words, the number of modes in A and B with symplectic eigenvalues different from
1/2 is the same. Now, label the modes on each side in ascending order of β , so that
0 < βÃ1

≤ βÃ2
≤ ·· · ≤ βÃs

and 0 < βB̃1
≤ βB̃2

≤ ·· · ≤ βB̃s
. Consider first the case

n⃗A = {1,0, . . . ,0}T , yielding the smallest nonzero value of β⃗A · n⃗A. By construction,
this distribution must be paired with the smallest nonzero value of β⃗B · n⃗B, which is
(or can be taken to be in the case of degenerate βB̃1

) n⃗B = {1,0, . . . ,0}T . We thus
find that Eq. (4.122) has a solution provided that βÃ1

= βB̃1
(hence vA1 = vB1 ), and

by the linearity property we find for any n⃗A the map nÃ1
→ nB̃1

= nÃ1
. At this point,

we can repeat the procedure but applied to the subspace of the remaining modes, in
other words, solve for a map between n⃗′A = {0,nA2 , . . . ,nAs} and n⃗′B = {0,nB2 , . . . ,nBs}
such that β⃗A · n⃗′A = β⃗B · n⃗′B. By a similar argument, we find that βÃ2

= βB̃2
and nÃ2

=
nB̃2

. Iterating the procedure until all the components are exhausted, we find that the
admissible solutions to Eq. (4.122) are n⃗A = n⃗B (with a freedom of reordering the
labels of degenerate modes), provided that β⃗A = β⃗B.
Reconstructing the Schmidt decomposition of |ψ̃⟩AB from ρA and ρB, we see that

|ψ̃⟩AB =
1√
Z ∑

n⃗
e−β⃗ ·⃗n/2 |⃗n⟩|⃗n⟩=

s⊗
i=1

(
∑
n

e−βin/2
√

Zi
|n⟩Ãi

|n⟩B̃i

)
. ■ (4.123)

Thus, |ψ⟩AB = |ψ̃⟩AB ⊗|0⟩AF ⊗|0⟩BF is of the form (4.113). As can be expected, the
most complete understanding of the behaviour of Gaussian states under Gaussian op-
erations has been reached for pure states. Indeed, necessary and sufficient conditions
for the possible state transformations under local Gaussian operations (GLOCC) can
be given [37]. Local means here that the applied Gaussian quantum operations are ap-
plied locally, accompanied by classical communication. This result crucially depends
on a normal form that can be obtained for any bipartite system of continuous variables
[62, 63, 55]. For any pure Gaussian state with covariance matrix σ of an n× n-mode
system, there exist local symplectic transformations SA, SB such that

(SA ⊕SB)σ
sq(SA ⊕SB)

T =
s⊕

k=1


cosh(2rk) 0 sinh(2rk) 0

0 cosh(2rk) 0 −sinh(2rk)
sinh(2rk) 0 cosh(2rk) 0

0 −sinh(2rk) 0 cosh(2rk)


(4.124)

with rk ∈ [0,∞). In other words, by means of local unitary Gaussian operations the pure
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Gaussian state described by σ sq can be transformed into a tensor product of two-mode
squeezed states, characterized by squeezing parameter rk (see Figure 2).

Figure 2: Schmidt decomposition of pure bi-partite Gaussian states.

We will now show that for (generally mixed) Gaussian states with some local sym-
metry constraints, a similar phase-space reduction is available, such that multimode
properties (like entanglement) can be unitarily reduced to two-mode ones.

4.3.6 Symmetric and bisymmetric states

As mentioned in the previous section, we will analyze a class of extremely interesting
states, namely symmetric and bisymmetric states, which have unique characteristics in
the study of entanglement. In fact, following the work of Adesso, Serafini and Illu-
minati [64], we discover that the entanglement between the m-mode and the n-mode
blocks can then be completely concentrated on a single pair of modes by means of
local unitary operations alone, emphasizing the importance of studying entanglement
between two modes. To identify these operations we will start from the description of
the two separate sets, identified by the corresponding covariance matrices, thus finding
their eigenvalues. This first step is essential because the joint system has the same spec-
trum of the two covariance matrices. Identifying the eigenvalues is a necessary step,
because through the associated eigenvectors we can obtain the TTT matrix that diagonal-
izes the covariance matrix. Finally we will find what is the relation between TTT and the
symplectic operation that brings the covariance matrix in Williamson form [49]. We
shall say that a multimode Gaussian state is fully symmetric if it is invariant under the
exchange of any two modes. In the following, we will consider the fully symmetric
m-mode and n-mode Gaussian states ραm and ρβ n , with CMs σαm and σβ n . Due to
symmetry, we have that

σσσαm =


α ε · · · ε

ε α · · · ε

...
...

. . .
...

ε ε · · · α

 , σσσβ n =


β ζ · · · ζ

ζ β · · · ζ

...
...

. . .
...

ζ ζ · · · β

 , (4.125)

where ααα , εεε , βββ , and ζζζ are 2× 2 real symmetric submatrices (the symmetry of εεε and
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ζζζ stems again from the symmetry under the exchange of any two modes). All the
properties related to correlations and entropic measures of multimode Gaussian states
are invariant under local, single-mode symplectic operations. A first preliminary fact,
analogous to the standard form reduction of two-mode states, is that is always possible,
by means single-mode symplectic operations, to bring the submatrices into a diagonal
form β = diag(b,b) and ζ = diag(z1,z2) as is proven in [64]. The same results hold
for α and ε . A second aspect that will be useful later on is related to the spectrum of
the two covariance matrices, which is represented by two eigenvalues ν

−
β

and ν
+
β n :

ν
−
β
=
√
(b− z1)(b− z2), ν

+
β n =

√
[b+(n−1)z1][b+(n−1)z2], (4.126)

where ν
−
β

is the (n− 1)-times degenerate eigenvalue and they are related to (n− 1)
eigenvetors constructed in the following way:

{vi}, for i = 1, . . . ,n−1, (4.127)

such that

vi = (0, · · · ,0, vT︸︷︷︸
mode i

, −vT︸︷︷︸
mode i+1

,0, · · · ,0) (4.128)

where, for convenience, we have introduced the two-dimensional vector

v =

(
i
b− z2

ν
−
β

,1

)T

. (4.129)

The vi are (n−1) linearly independent vectors that satisfy the relation:

iΩΩΩσσσβ nvi = ν
−
β

vi, (4.130)

thus proving that the symplectic eigenvalue ν
−
β

of σσσβ n is (n−1)-times degenerate ■.
The entire derivation is left to [64]. The remaining linear independent eigenvector of
iΩΩΩσσσβ n is the vector.

wT = (wT , · · · ,wT )T (4.131)

with

wT = (
√

i(b+(n−1)z1),
√

i(b+(n−1)z2))
T . (4.132)

It is immediate to verify that such a vector is associated with the eigenvalue ν
+
β n . The

analysis on the individual symmetric state contains relevant information related to the
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joint system which results from a correlated combination of the fully symmetric blocks
σσσαm and σσσβ n ,

σσσ =

(
σσσαm ΓΓΓ

ΓΓΓ
T

σσσβ n

)
, (4.133)

where ΓΓΓ is a 2m× 2n real matrix formed by identical 2× 2 blocks γγγ . Clearly, ΓΓΓ is
responsible for the correlations existing between the m-mode and the n-mode parties.
Once again, the identity of the submatrices γγγ is a consequence of the local invariance
under mode exchange, internal to the m-mode and n-mode parties. States of the form
of Eq. (4.133) will be henceforth referred to as bisymmetric. We recall that our goal
is to derive the symplectic operation that focus all the correlation on a single pair of
modes. To do that we have to go trough the analysis of the spectrum of σσσ . The main
result, proven by A. Serafini, G. Adesso, and F. Illuminati [64], is that the spectrum
of the bysimmetric matrix includes two degenerate eigenvalues. The first one is ν−

α of
the reduced matrix σσσαm ,with multiplicity (m− 1) , and the second one is ν

−
β

of the
reduced matrix σσσβ n , with multiplicity (n−1).

Proof : Let us consider the standard forms of the blocks σσσαm and σσσβ n , while keep-
ing the 2× 2 submatrices γγγ in arbitrary, generally nonsymmetric, form. Let us next
focus on the block σσσβ n and define the vectors vi by

vi = (0, . . . ,0,vT
i )

T . (4.134)

They are the vectors obtained from the vectors vi’s of Eq. (4.128) by appending to them
2m null entries on the left. Because of the identity of the blocks γγγ , their contributions
to the secular equation cancel out and it is straightforward to verify that the vectors vi’s
are n−1 eigenvectors of iΩΩΩσσσ with eigenvalue v−

β
. The same argument holds consider-

ing the submatrix σσσαm , thus completing the proof ■.

With these results, it is now possible to assess the bipartite entanglement of bisym-
metric multimode Gaussian states and demonstrate that it can consistently be localized
or concentrated through unitary operations.

Proof: The vectors vi of Eq. (4.134), with the first 2m entries equal to 0, are, by
construction, simultaneous eigenvectors of iΩΩΩσσσβ n and iΩΩΩσσσ , with the same (degener-
ated) eigenvalue. This fact suggests that the phase-space modes corresponding to such
eigenvectors are the same for σσσ and for σσσβ n . Then, bringing by means of a local sym-
plectic operation the CM σσσβ n in Williamson form, any (2n−2)× (2n−2) submatrix
of σσσ will be diagonalized because the normal modes are common to the global and lo-
cal CMs. In other words, no correlations between the m-mode party with reduced CM
σσσαm and such modes will be left: all the correlations between the m-mode and n-mode
parties will be concentrated in the two conjugate quadratures of a single mode of the
n-mode block. Going through the same argument for the m-mode block with CM σσσαm

would prove the proposition and show that the whole entanglement between the two
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multimode blocks can always be concentrated in only two modes, one for each of the
two multimode parties ■.

The last part of the statement consist in finding a suitable unitary operation. We
need to find a link between the symplectic operation that bring σσσ in Williamson form
ννν and the trasformation that diagonalize iΩΩΩσσσ . This connection is not obvious since the
normal form associated with σσσ is invariant under local rotations (this local freedom is
always present in the selection of normal modes) and, due to degeneracy, also under
global symplectic rotations of the modes associated with the degenerate eigenvalue
ν
−
β

. Thus there is an ambiguity in selecting the eigenvectors of iΩΩΩσσσ and therefore
in determining the transformation that diagonalizes it. Before proceeding with the
mathematical details it is necessary to compare the spectrum of these two matrices.
Regarding iΩΩΩσσσ we have that the spectrum is given by the set {±νk} where |νk| are
the symplectic eigenvalues of σσσ and at the same time of ννν . We can now assume the
complete knowledge of the 2(m+n) column-vectors normalized eigenvectors of iΩΩΩσσσ ,
given by {wi}, and it os possible to construct with them the matrix TTT that diagonalize
it:

T = (ξ1w1, . . . ,ξkwk).→ T−1(iΩΩΩσσσ)T = D, (4.135)

where DDD is a diagonal matrix of the form:

DDD = diag(ν+
α ,−ν

+
α ,ν−

α ,−ν
−
α . . . ,ν+

β
,−ν

+
β
,ν−

β
,−ν

−
β
. . .). (4.136)

At this point it is sufficient to find a unitary operation that brings iΩΩΩννν into DDD and
compare the two results. We can proceed by observing that the 2× 2 matrix iωωω is
diagonalized by the unitary transformation U, with

U =
1√
2

(
i −i
1 1

)
, (4.137)

so that U†iaωωωU = diag(a,−a) (where a is any complex number). We can then define
the matrix U = U⊕(m+n), which is local in the sense that it is block diagonal and acts
on each mode separately, such that for any normal form ννν ,

U−1iΩΩΩνννU = D. (4.138)

Let us next denote by S one of the symplectic transformations that bring σσσ in normal
form: STσσσS = ννν . It is then easy to see that

D = T−1(iΩΩΩσσσ)T = U−1(iΩΩΩννν)U = U−1(iΩΩΩST
σσσS)U = U−1S−1(iΩΩΩσσσ)SU, (4.139)

and therefore
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S = TU−1 = TU†, (4.140)

where in the last equation (4.139) we have exploited the fundamental property of sym-
plectic transformations: S−1T ΩΩΩS−1 = ΩΩΩ. Equation (4.140) shows that there must exist
some symplectic transformation that diagonalizes iΩΩΩσσσ and satisfies the further condi-
tion given by Eq. (4.140). In fact, it is obvious that not every T diagonalizing iΩΩΩσσσ

is a symplectic transformation when multiplied on the right by U†. Vice versa, if this
last condition holds, the symplectic operation that brings σσσ in normal form is given by
Eq. (4.140). The modes that diagonalize the quadratic form σσσ in phase space can be
reconstructed in terms of S: since they are linear combinations of the original modes
and STσσσS is diagonal, they can be expressed by real column vectors identified by the
columns of S.
We can now go back to our original problem: leaving aside the involved task of exactly
determining which choice of the eigenvectors of iΩΩΩσσσ leads to a symplectic transfor-
mation of the form Eq. (4.140), we are anyway assured that in the subspace associated
with the eigenvalues ±ν

−
β

, such eigenvectors must be linear combinations of the vi’s
defined in Eq. (4.134) (with their first 2m entries, related to the m-mode party, set equal
to 0). Therefore, the transformation T reads, in general,

T =



T1,1 · · · T1,m 0 · · · 0
...

. . .
...

...
. . .

...
Tm,1 · · · Tm,m 0 · · · 0

Tm+1,1 · · · Tm+1,m Tm+1,m+1 · · · Tm+1,m+n
...

. . .
...

...
. . .

...
Tm+n,1 · · · Tm+n,m Tm+n,m+1 · · · Tm+n,m+n


, (4.141)

where 0 stands for 2× 2 null matrices and Ti, j are 2× 2 blocks, whose exact form is
unessential to our aims. Exploiting Eq. (4.140), for the last 2(n−1) columns of S we
obtain, in terms of 2×2 matrices,

( 000, · · · ,000︸ ︷︷ ︸
first m modes

,U∗TTT T
2,i, · · · ,U∗TTT T

n,i)
T (4.142)

Due to the presence of the first m null entries, the n− 1 modes determined by Eq.
(4.142) are normal modes of both the global CM σσσ and the local CM σσσβ n . An analo-
gous proof, going along the same lines of reasoning, holds for the reduced CM σσσαm : it
can be reduced to a local normal form that shares m−1 normal modes with the global
CM σσσ . These results imply that the form in which all the correlations between the two
parties are shared only by a single mode of the n-mode party and by a single mode
of the m-mode party can be obtained by means of local symplectic (unitary) opera-
tions, namely by the symplectic operations bringing the block σσσβ n and the block σσσαm

in Williamson form [49].
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4.3.7 Separability for Gaussian states

In this section, we aim to define the concept of separability in the context of con-
tinuous variables, following the approach outlined by Simon [65], which generalizes
the Peres-Horodecki criterion presented earlier (3.19). Simon observed that, in the
continuous-variable case, the partial transpose operation can be interpreted geometri-
cally as a mirror reflection in phase space. A key insight of his work is the realization
that this geometric interpretation extends naturally to the Wigner phase space, offering
a visually intuitive framework. In this context, separability imposes a stricter constraint
on the second moments (uncertainties) than the traditional uncertainty principle; even
commuting variables are subject to this additional condition. This restriction is cen-
tral to proving that the Peres-Horodecki criterion serves as a necessary and sufficient
condition for separability in all bipartite Gaussian states. To illustrate this, we con-
sider a bipartite system comprising two modes, one associated with Alice and the other
with Bob. To analyze the partial transpose operation in the Wigner representation, it
is helpful to arrange the phase-space variables and Hermitian canonical operators into
four-dimensional column vectors:

ξ = (q1, p1,q2, p2)
T

ξ̂ = (q̂1, p̂1, q̂2, p̂2)
T (4.143)

It follows from this definition that the partial transpose operation on the bipartite den-
sity operator transcribes faithfully into the following transformation on the Wigner
distribution, since the relations between the two (4.37):

PT : W (q1, p1,q2, p2)→W (q1, p1,q2,−p2). (4.144)

This corresponds to a mirror reflection or ”local time reversal” which inverts only the
p2 coordinate:

PT : ξ → Λξ , Λ = diag(1,1,1,−1). (4.145)

The Peres-Horodecki separability criterion reads as follows: if ρ̂ is separable, then its
Wigner distribution necessarily transforms into another Wigner distribution under the
phase space mirror reflection Λ. The distribution W (Λξ ), like W (ξ ), should possess
the ”Wigner quality” for any separable bipartite state. Roughly speaking, local time
reversal, defined by Λ as above, is a symmetry in the subspace of separable states. The
Peres-Horodecki criterion has important implications for the uncertainties or second
moments. We recall the compact statement for the uncertainty principle:

σσσ + iΩ ≥ 0 (4.146)

The uncertainty principle, as given in equation (4.146), is a direct consequence of the
commutation relation (4.22) and the non-negativity of ρ̂ . In order to manipulate (4.146)
it is convenient to write it in equivalent way, introducing an operator Q̂ = ĥĥ†, with
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ĥ = c1ξ̂1 + c2ξ̂2 + c3ξ̂3 + c4ξ̂4 = cT ξ̂ . The uncertainty principle is equivalent to the
condition ⟨Q̂⟩= tr(Q̂ρ̂)≥ 0.

Proof: Starting from the definition of the operator Q̂ we notice that its average
value is given by:

⟨Q̂⟩= ⟨ĥĥ†⟩ρ = ⟨(cT
ξ̂ )(cT

ξ̂ )†⟩ρ = cT ⟨ξ̂ ξ̂
T ⟩ρ c∗ = c†⟨ξ̂ ξ̂

T ⟩ρ c, (4.147)

where we have used the property ⟨Q̂⟩= ⟨Q̂⟩∗. We can now exploit the connection with
the covariance matrix whose entries are defined in the following way:

σi j =
1
2
⟨{ξiξ j}⟩ρ −⟨ξi⟩⟨ξ j⟩ → ⟨ξiξ j⟩= σi j + ⟨ξi⟩⟨ξ j⟩. (4.148)

Arbitrarily imposing the first moment equal to zero we have that ⟨Q̂⟩= c†σσσc ≥ 0, since
σσσ is semi-positive definite, ending the proof ■.

Viewed somewhat differently, it is equivalent to the statement that for every pair
of real four-vectors d and d′, the Hermitian operators X̂(d) = dT ξ̂ξξ = d1q̂1 + d2 p̂1 +

d3q̂2 +d4 p̂2 and X̂(d′) = d′T ξ̂ξξ = d′
1q̂1 +d′

2 p̂1 +d′
3q̂2 +d′

4 p̂2 obey

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d′))2⟩ ≥ |d′T
Ωd|=

∣∣(d1d′
2 −d2d′

1 +d3d′
4 −d4d′

3)
∣∣ (4.149)

where Ω =

(
ωωω 0
0 ωωω

)
and ωωω =

(
0 1
−1 0

)
.

Proof. Starting from the uncertainty principle we remember that, for two non-
commuting Hermitian operators, it holds:

[Â, B̂] = iĜ → (∆A)2(∆B)2 ≥ |⟨G⟩|2

4
. (4.150)

In our case

[X̂(d), X̂(d′)] = i(d1d′
2 −d2d′

1 +d3d′
4 −d4d′

3) (4.151)

Now we can derive the (4.149) from:
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⟨
(
∆X̂(d)−∆X̂(d′)

)2⟩= ⟨(∆X̂(d))2 +(∆X̂(d′))2 −2∆X̂(d)∆X̂(d′)⟩ ≥
≥ ⟨(∆X̂(d))2 +(∆X̂(d′))2

−
∣∣(d1d′

2 −d2d′
1 +d3d′

4 −d4d′
3)
∣∣⟩ ≥ 0

so

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d))2⟩ ≥
≥
∣∣(d1d′

2 −d2d′
1 +d3d′

4 −d4d′
3)
∣∣ ■.

(4.152)

Under the Peres-Horodecki partial transpose, the Wigner distribution undergoes mirror
reflection, and it follows from equation (4.149) that the variances change to σ̃σσ = ΛσσσΛ.
Since W (Λξ ) must be a Wigner distribution if the state under consideration is separa-
ble, we have

σ̃σσ + iΩ ≥ 0 (4.153)

as a necessary condition for separability. We may write it also in the equivalent form:

σσσ + iΩ̃ ≥ 0, Ω̃ = ΛΩΛ =

(
ωωω 0
0 −ωωω

)
, (4.154)

so that the separability of ρ̂ implies an additional restriction that has the same form as
equation (4.149), with d′T ΩΩΩd on the right-hand side replaced by d′T Ω̃d. Combined
with equation (4.149), this restriction reads:

⟨∆X̂(d)2⟩+ ⟨∆X̂(d′)2⟩ ≥ |d1d′
2 −d2d′

1|+ |d3d′
4 −d4d′

3|, (4.155)

for all d,d′.

Proof. We begin from the uncertainty principle (4.149) and the partial reflection
form of it (4.154)

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d′))2⟩ ≥ |d′T
Ωd|= A

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d′))2⟩ ≥ |d′T
Ω̃d|= B.

(4.156)

Where A = |C+D| and B = |C−D|, with D = d1d′
2 − d2d′

1 and C = d3d′
4 − d4d′

3. It
follows that

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d′))2⟩ ≥max(A,B) =
= max(|C+D|, |C−D|) = |C|+ |D| ■.

(4.157)

This restriction, to be obeyed by all separable states, is generically stronger than the
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usual uncertainty principle (4.149). For instance, let X̂(d) commute with X̂(d′); i.e.,
let d′T Ωd = 0. If the state is separable, then X̂(d) and X̂(d′) cannot both have arbi-
trarily small uncertainties unless d′T Ω̃d = 0 as well, i.e., unless d1d′

2 − d2d′
1 = 0 and

d3d′
4 − d4d′

3 = 0. As an example, X̂ = x̂1 + p̂1 + x̂2 + p̂2 and Ŷ = x̂1 − p̂1 − x̂2 + p̂2
commute, but the sum of their uncertainties in any separable state is ≥ 4. The Peres-
Horodecki condition (4.155) can be simplified. Real linear canonical transformations
of a two-mode system constitute the ten-parameter real symplectic group Sp(4,R). For
every real 4× 4 matrix S ∈ Sp(4,R), the irreducible canonical Hermitian operators ξ̂ξξ

transform among themselves, leaving the fundamental commutation relation (4.146)
invariant:

S ∈ Sp(4,R) : SΩΩΩST = ΩΩΩ, ξ̂ξξ → ξ̂ξξ
′
= Sξ̂ξξ , [ξ̂ ′

a, ξ̂
′
b] = iΩab. (4.158)

The symplectic group acts unitarily and irreducibly on the two-mode Hilbert space.
Let U(S) represent the (infinite-dimensional) unitary operator corresponding to S ∈
Sp(4,R). It transforms the bipartite state vector |ψ⟩ to |ψ ′⟩ = U(S)|ψ⟩, and hence
the density operator ρ̂ to ρ̂ ′ = U(S)ρ̂U(S)†. This transformation takes a strikingly
simple form in the Wigner description, and this is one reason for the effectiveness of
the Wigner picture in handling canonical transformations:

S : ρ̂ →U(S)ρ̂U(S)† ⇔ W (ξξξ )→W (S−1
ξξξ ) (4.159)

The bipartite Wigner distribution simply transforms as a scalar field under Sp(4,R).
The variance matrix transforms in the following manner:

S ∈ Sp(4,R) : σσσ → σσσ
′ = SσσσST . (4.160)

The uncertainty relation (4.146) has an Sp(4,R)-invariant form (recall SΩST =Ω). But
separable states have to respect not just (4.146), but also the restriction (4.154), and this
requirement is preserved only under the six-parameter Sp(2,R)× Sp(2,R) subgroup
of Sp(4,R) corresponding to independent local linear canonical transformations on the
subsystems of Alice and Bob:

Slocal ∈ Sp(2,R)×Sp(2,R) : Slocal =

(
S1 0
0 S2

)
, S1ωωωST

1 = ωωω, S2ωωωST
2 = ωωω.

(4.161)

It is desirable to cast the Peres-Horodecki condition (4.155) in an Sp(2,R)×Sp(2,R)-
invariant form. To this end, let us write the variance matrix σσσ in the block form:

σσσ =

(
ααα γγγ

γγγT βββ

)
. (4.162)
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The physical condition (4.146) implies ααα ≥ I and βββ ≥ I. As can be seen from (4.160),
the local group changes the blocks of σσσ in the following manner:

ααα → S1αααST
1 , βββ → S2βββST

2 , γγγ → S1γγγST
2 . (4.163)

Thus, the Sp(2,R)×Sp(2,R) invariants associated with σσσ are:

I1 = detααα, I2 = detβββ , I3 = detγγγ, I4 = tr(αααωωωγγγωωωβββωωωγγγ
T

ωωω), (4.164)

and the determinant of σσσ is an obvious invariant, but it is a function of the Ik’s, namely,

detσσσ = I1I2 + I2
3 − I4. (4.165)

We claim that the uncertainty principle (4.146) is equivalent to the Sp(2,R)×Sp(2,R)-
invariant statement:

detααα detβββ +(1−detγγγ)2 − tr(αααωωωγγγωωωβββωωωγγγ
T

ωωω)≥ (detααα +detβββ ). (4.166)

Under the Peres-Horodecki partial transpose or mirror reflection, the variance matrix σσσ

transforms to σ̃σσ = ΛσσσΛ. Specifically, γγγ transforms to γγγσ3 and βββ transforms to σ3βββσ3,
while ααα remains unchanged (σ3 is the diagonal Pauli matrix: σ3 = diag(1,−1)). As a
result, I3 = detγγγ changes sign, while I1, I2, and I4 remain unchanged. Consequently,
condition (4.154) for σ̃σσ takes a form identical to equation (4.166) with only the sign in
front of detγγγ in the second term on the left-hand side reversed. Thus, the requirement
that the variance matrix of a separable state has to obey (4.154), in addition to the
fundamental uncertainty principle (4.146), takes the form:

detααα detβββ +(1−|detγγγ|)2 − tr(αααωωωγγγωωωβββωωωγγγ
T

ωωω)≥ (detααα +detβββ ). (4.167)

This is the final form of our necessary condition on the variance matrix of a separable
bipartite state. This condition is invariant not only under Sp(2,R)×Sp(2,R) but also
under mirror reflection, as it should be. It constitutes a complete description of the
implication the Peres-Horodecki criterion has for the second moments. The Peres-
Horodecki criterion (4.167) is a necessary and sufficient condition for separability, for
all bipartite Gaussian states, but the proof of this statement is left to [65].

4.3.7.1 Symplectic form of separability criterion
The PPT (Positive Partial Transpose) criterion has an elegant symplectic representation.
The partially transposed matrix σ̃ of any N-mode Gaussian covariance matrix (CM) is
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still a positive and symmetric matrix. As such, it admits a Williamson normal-mode
decomposition [49], given by

σ̃ = ST
ν̃S, (4.168)

where S ∈ Sp(2N,R) and ν̃ is the CM

ν̃ =
N⊕

k=1

(
ν̃k 0
0 ν̃k

)
. (4.169)

The N quantities ν̃k are the symplectic eigenvalues of the partially transposed CM σ̃ .
The symplectic spectrum {νk} of σ encodes the structural and informational proper-
ties of a Gaussian state. The partially transposed spectrum {ν̃k} encodes the qualitative
characterization of entanglement in the state. The PPT condition (4.153), i.e., the un-
certainty relation for σ̃ , can be equivalently recast in terms of the parameters ν̃k as

ν̃k ≥ 1. (4.170)

We can, without loss of generality, rearrange the modes of an N-mode state such that
the corresponding symplectic eigenvalues of the partial transpose σ̃ are sorted in as-
cending order,

ν̃− ≡ ν̃1 ≤ ν̃2 ≤ ·· · ≤ ν̃N−1 ≤ ν̃N ≡ ν̃+, (4.171)

in analogy to what is the previous section for the spectrum of σ . With this notation, the
PPT criterion across an arbitrary bipartition reduces to

ν̃1 ≥ 1 for all separable Gaussian states. (4.172)

If ν̃1 < 1, the corresponding Gaussian state σ is entangled.

4.3.7.2 Another criterion for separability: Duan Bound
Another inseparability criterion, applicable to two mode continuous-variable systems
and expressed in terms of an inequality for certain variances involving position and
momentum operators, was derived by Duan, et al. [54] using a strategy independent of
the partial transpose. Interestingly, they find that for any separable state, there exists a
lower bound to the total variance. To be more general, they consider the following type
of EPR-like operators:

û = |a|x̂1 +
1
a

x̂2

v̂ = |a|p̂1 −
1
a

p̂2

(4.173)
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where a is a real (non zero) coefficient, and x̂i and p̂i are position and momentum op-
erators for the respective subsystems. For any separable state, the total variance of any
pair of EPR-like operators in the form of Eqs. (4.173) should satisfy a lower bound
indicated by the following theorem:

Theorem 2: Sufficient criterion for inseparability: For any separable quantum
state ρ̂ , the total variance of a pair of EPR-like operators defined by Eqs. (4.173) with
the commutators [x̂ j, p̂ j′ ] = iδ j j′ ( j, j′ = 1,2) satisfies the inequality

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥ a2 +
1
a2 (4.174)

where (∆û)2 and (∆v̂)2 denote the variances of the EPR-like operators û and v̂, respec-
tively. This result is easily proved by considering that

Tr{ρ (∆û)2}=Tr{

(
∑

i
ciρi1 ⊗ρi2

)
(∆û)2}

∑
i

ciTr{(ρi1 ⊗ρi2)(∆û)2}= ∑
i

ci⟨(∆û)2⟩i

(4.175)

Same result for (∆û)2. At this point we can explicitly proceed through the calculation:

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ =∑
i

ci
(
⟨û2⟩i + ⟨v̂2⟩i

)
−⟨û⟩2

ρ −⟨v̂⟩2
ρ

=∑
i

ci

(
a2⟨x̂1

2⟩i +
1
a2 ⟨x̂2

2⟩i +a2⟨p̂1
2⟩i +

1
a2 ⟨p̂2

2⟩i

)

+2
a
|a|

(
∑

i
ci⟨x̂1⟩i⟨x̂2⟩i −∑

i
ci⟨p̂1⟩⟨p̂2⟩i

)
−⟨û⟩2

p −⟨v̂⟩2
p

= ∑
i

ci

(
a2⟨
(
∆x̂1

2〉
i +

1
a2 ⟨
(
∆x̂2

2)⟩i +a2⟨
(
∆p̂1

2)⟩i +
1
a2 ⟨
(
∆p̂2

2)⟩i

)

+∑
i

ci⟨û⟩2
i +

(
∑

i
ci⟨û⟩i

)2

+∑
i

ci⟨v̂⟩2
i +

(
∑

i
ci⟨v̂⟩i

)2

.

(4.176)

In Eq. (4.176), the symbol ⟨· · · ⟩i denotes the average over the product density operator
ρi1 ⊗ρi2. It follows from the uncertainty relation that

⟨(∆x̂ j)
2⟩i + ⟨(∆p̂ j)

2⟩i ≥ |[x̂ j, p̂ j]|= 1 for j = 1,2, (4.177)

and, moreover, by applying the Cauchy-Schwarz inequality
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(
∑

i
pi⟨piû⟩i

)2

≤

(
∑

i
pi

)(
∑

i
pi⟨û⟩2

i

)
, (4.178)

we know that the last line of Eq. (4.176) is bounded from below by zero. Hence,
the total variance of the two EPR-like operators û and v̂ is bounded from below by
a2 + 1

a2 for any separable state. This completes the proof of the theorem. Note that this
theorem in fact gives a set of inequalities for separable states. The operators x̂ j, p̂ j ( j =
1,2) in the definition (4.173) can be any local operators satisfying the commutators
[x̂ j, p̂ j′ ] = iδ j j′ . In particular, if we apply an arbitrary local unitary operation U1⊗U2 to
the operators û and v̂, the inequality (4.174) remains unchanged. Note also that without
loss of generality we have taken the operators x j and p j dimensionless. For inseparable
states, the total variance of the û and v̂ operators is required by the uncertainty relation
to be larger than or equal to

∣∣∣a2 − 1
a2

∣∣∣, which reduces to zero for a = 1. For separable
states, the much stronger bound given by Eq. (4.174) must be satisfied.
As final remark is worth mentioning the link between the Simon and Duan criteria,
and to do that we can consider again the Hermitian operators X̂(d) = dT ξ̂ξξ = d1q̂1 +

d2 p̂1+d3q̂2+d4 p̂2 and X̂(d′) = d′T ξ̂ξξ = d′
1q̂1+d′

2 p̂1+d′
3q̂2+d′

4 p̂2. The vectors d and
d′ are required to be real without any other constraint. Since this freedom of choice
we can reconstruct the two EPR-like operators û and v̂ (when a = 1). Therefore, if
d = (1,0,1,0) and d′ = (0,1,0,−1) we have that:

X̂(d) = q̂1 + q̂2,

X̂(d′) = p̂1 − p̂2.
(4.179)

and the Simon separability condition (4.155) coincides with the Duan bound:

⟨(∆X̂(d))2⟩+ ⟨(∆X̂(d))2⟩ ≥ 2 ■. (4.180)

4.3.7.3 Negativity in symplectic representation
Previously we have introduced Negativity as an entanglement measure that has the
clear interpretation as the sum of absolute values of negative eigenvalues of the par-
tial transpose density matrix. We want to apply the general definition of sec.(3.2.2.1)
to Gaussian states, highlighting the link between this entanglement measure and sym-
plectic eigenvalues. The first step consists in representing the norm of density matrix in
terms of those eigenvalues. It is useful to recall the single-mode density matrix, as the
N-mode generalization follows directly from this analysis, given that the global density
matrix is expressed as the tensor product of the single-mode ones:

ρ
⊗
ν̃k
=

2
ν̃k +1

∞

∑
n=0

(
ν̃k −1
ν̃k +1

)n

|n⟩⟨n|, (4.181)

where ν̃k are the eigenvalues of σ̃ , i.e, the covariance matrix related to the partial
transpose of the density matrix ρ . If we consider the norm of this expression, we
obtain different results depending on the value of each ν̃k. The norm is:
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||ρ⊗
ν̃k
||1 =

2
ν̃k +1

∞

∑
n=0

∣∣∣∣( ν̃k −1
ν̃k +1

)∣∣∣∣n. (4.182)

When ν̃k ≥ 1, so the state is separable, the sum converges to one and the negativity is
zero as expected. Otherwise, when ν̃k < 1 the norm converges to:

||ρ⊗
ν̃k
||1 =

2
ν̃k +1

1

1−
∣∣∣ ν̃k−1

ν̃k+1

∣∣∣ = 2
ν̃k +1

1

1− 1−ν̃k
ν̃k+1

=
1
ν̃k

. (4.183)

The negativity is now given by :

N(ρ⊗
ν̃k
) =

1
2

(
1
ν̃k

−1
)

■. (4.184)

We can now generalize which have been studied for a single mode to N-mode system
by following [50, 60]. The negativity of a Gaussian state with CM σ is given by

N(σ) =

{
1
2

(
∏k ν̃

−1
k −1

)
, for k : ν̃k < 1,

0 if ν̃i ≥ 1∀i,
(4.185)

where the set {ν̃k} consists of the symplectic eigenvalues of the partially transposed
CM σ̃ . Accordingly, the logarithmic negativity reads

EN(σ) =

{
−∑k log ν̃k, for k : ν̃k < 1,
0 if ν̃i ≥ 1∀i.

(4.186)

For ν̃− ≥ 1, the state is separable, otherwise it is entangled; the smaller the ν̃−, the
more entangled is the corresponding Gaussian state.

4.3.8 Characterizing Two-Mode Entanglement by Information Measures

We have seen that entanglement or more precisely bipartite quantum correlations in
pure states are defined in terms of the amount of local/marginal entropy . This identifi-
cation disappears when it comes to mixed states, due to the information loss on a global
scale about their state since it’s impossible to distinguish between quantum correlation
from classical one. In this chapter we review the results of G. Adesso, A. Serafini, and
F. Illuminati [66] who demonstrate that the combined information of both, global and
marginal degrees provides a perfect measure for entanglement in terms of purities or
more generally speaking by generalized p-entropy (3.1.3.4). It has been proved [66]
the existence of strict upper and lower bounds on the entanglement and the existence
of extremally (maximally and minimally) entangled states at fixed global and marginal
degrees of information. The study of a two-mode system is more efficient by means
another structure of the CM, the so called standard form [54].
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ST
σS = σsf ≡


a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

 . (4.187)

States whose standard form fulfills a = b are said to be symmetric. Let us recall that
any pure state is symmetric and fulfills c+ = −c− =

√
a2 −1. The standard form co-

variances a, b, c+, and c− can be determined in terms of the two local symplectic
invariants

µ1 = (detα)−1/2 =
1
a
, µ2 = (detβ )−1/2 =

1
b
, (4.188)

which are the marginal purities of the reduced single-mode states, and of the two global
symplectic invariants

µ = (detσ)−1/2 =
[
(ab− c2

+)(ab− c2
−)
]−1/2

, ∆ = a2 +b2 +2c+c−, (4.189)

which are the global purity and the seralian, respectively. Eqs. (4.188), (4.189) can be
inverted to provide the following physical parametrization of two-mode states in terms
of the four independent parameters µ1, µ2, µ , and ∆ [66]:

a =
1
µ1

, b =
1
µ2

, c± =

√
µ1µ2

4
(ε+± ε−), (4.190)

with

ε∓ ≡

√[
∆− (µ1 ∓µ2)2

µ2
1 µ2

2

]2

− 4
µ2 . (4.191)

The uncertainty principle and the existence of the radicals appearing in (4.191) impose
the following constraints on the four invariants in order to describe a physical state:

0 ≤ µ1,2 ≤ 1, (4.192)

µ1µ2 ≤ µ ≤ µ1µ2

µ1µ2 + |µ1 −µ2|
, (4.193)

2
µ
+

(µ1 −µ2)
2

µ2
1 µ2

2
≤ ∆ ≤ 1+

1
µ2 . (4.194)

We can now provide the separability condition for the two-mode state, recalling that the
PPT criterion, in the continuous variables environment, coincides with a time reflection
in the phase space [65], translates in a change of sign of det(γ). So we end up with
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∆̃ = detα +detβ −2detγ = ∆−4detγ . The symplectic eigenvalues of the CM σσσ and of
its partial transpose σ̃σσ are promptly determined in terms of symplectic invariants:

2ν
2
∓ = ∆∓

√
∆2 − 4

µ2 , 2ν̃
2
∓ = ∆̃∓

√
∆̃2 − 4

µ2 . (4.195)

The PPT criterion yields a state σ separable if and only if ν̃− ≥ 1. At the end, Nega-
tivity provides an efficient measure of entanglement:

EN = max(0,− log ν̃−). (4.196)

4.3.8.1 Maximal entanglement at fixed local purities
As mentioned earlier, the purpose of this discussion is to understand how entanglement
is defined for mixed Gaussian states. Once the key variables have been identified, it
is only necessary to understand how they are related to entanglement. A first relevant
analysis consists in identifying the relationship between entanglement and global purity
when µ1,µ2 and the seralian ∆ are fixed. We have seen see that the inseparability of a
state lies completely within the sign of the smallest eigenvalue of the covariance matrix,
as determined by Simon [65]. This eigenvalue is a monotonic function of global purity
(4.195), so when it increases it will also increase ν̃− and consequently the logarithmic
negativity increases (4.196). Clearly, when µ1,µ2 and ∆ are fixed, the global purity
cannot vary freely but must satisfy very precise bounds which depend on these constant
quantities (4.193). It becomes interesting to understand the effects on the entanglement
when we are at the extremes of this domain. By imposing the saturation of the upper
bound in (4.195), µ = µmax(µ1,µ2)≡ µ1µ2

µ1µ2+|µ1−µ2|
, we can identify the states with the

highest purity for given marginals. Furthermore, selecting µ = µmax(µ1,µ2) ensures
that the upper and lower bounds of ∆ in (4.194) coincide, making ∆ uniquely defined
in terms of µ1 and µ2. This indicates that the two-mode states with maximal purity for
fixed marginals are indeed the Gaussian maximally entangled states for fixed marginal
mixednesses (GMEMMS).
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Figure 3: Plot of the maximal entanglement achievable by quantum systems with given
marginal linear entropies: logarithmic negativity of continuous variable GMEMMS
[66]

In Fig. 3, the logarithmic negativity of GMEMMS is depicted as a function of the
marginal linear entropies, SL1,2 ≡ 1− µ1,2. This description shows, for mixed Gaus-
sian states, that the maximum entangled state coincides with the maximum degree of
marginal disorder. This is a behavior absolutely analogous to that which happens for
pure states. For the latter, in fact, the more the global system is entangled the greater the
entropy of the individual components. This is a clear effect of the inherent correlations
between the two subsystems, which distribute information in pairs and not in individual
components. As an example we can think about the Bell state that is a pure maximal en-
tangled state (µ = 1), with marginal purities µ1,2 = 1/2. Conversely, the entanglement
decreases when the difference between the marginal mixednesses increases. This result
aligns with the intuition that subsystems sharing quantum correlations should exhibit
comparable amounts of quantum information. Additionally, it is worth highlighting
that the ”minimally” entangled states for fixed marginals, which reach the lower bound
in (4.194) (i.e., µ = µ1µ2), correspond to tensor product states. These are states where
no correlations (quantum or classical) exist between the subsystems.

4.3.8.2 Extremal entanglement at fixed global and local purities
What has been demonstrated so far, using simple analytical bounds, reveals a general
trend: entanglement increases with higher global purity, and with lower marginal pu-
rities and smaller differences between them. The next step of the work [66] is now to
employ the joint information about global and marginal purities to provide a meaning-
ful characterization of entanglement, both qualitatively and quantitatively. It is possible
to give a physical meaning of the seralian ∆ in characterizing the properties of Gaussian
states. In fact, to this end, they analyze the dependence of the symplectic eigenvalue
ν̃− on ∆, for fixed µ1, µ2, and µ:

∂ ν̃2
−

∂∆

∣∣∣
µ1,µ2,µ

=
1
2

 ∆̃√
∆̃2 − 1

4µ2

−1

> 0. (4.197)
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The smallest symplectic eigenvalue of the partially transposed state is strictly mono-
tonic in ∆. Consequently, the entanglement of a generic Gaussian state σ with a given
global purity µ and marginal purities µ1, µ2 increases strictly as ∆ decreases. The
seralian ∆ thus acquires a clear physical interpretation: for given global and marginal
purities, it determines the amount of entanglement in the state. The ∆ bounds (4.194)
elucidates the link between global and marginal purities, since they define the upper
and lower bounds to the only free parameter ∆. The focus of this analysis is on charac-
terizing Gaussian states with extreme entanglement properties, specifically those that
are maximally and minimally entangled for a given set of global and marginal purities.
Attention is first directed toward states that reach the lower bound presented in equa-
tion (4.194), which corresponds to maximally entangled configurations. These states
define a particular class known as Gaussian Most Entangled Mixed States (GMEMS)
for specified global and local purities. Notably, this class is shown to include asymmet-
ric two-mode squeezed thermal states as described by equation (aggiungere citazione
su 2 mode squeezed state). For these states, the squeezing parameter and symplectic
spectrum are defined as follows:

tanh(2r) =
2

µ1 +µ2

√
µ1µ2 −

µ2
1 µ2

2
µ

, (4.198)

ν
2
± =

1
µ
+

(µ1 −µ2)
2

2µ2
1 µ2

2
± |µ1 −µ2|

2µ1µ2

√
(µ1 −µ2)2

µ2
1 µ2

2
+

4
µ
. (4.199)

It is observed that nonsymmetric two-mode squeezed thermal states become separable
when the condition

µ ≤ µ1µ2

µ1 +µ2 −µ1µ2
(4.200)

is satisfied. This result implies that Gaussian states with purities in the separable region,
as defined by this inequality, do not exhibit entanglement. The authors next consider
the states that saturate the upper bound in equation (4.194). These states determine the
class of Gaussian Least Entangled Mixed States (GLEMS) for given global and local
purities. Outside the separable region (where every Gaussian state can be considered a
GLEMS with zero entanglement), they satisfy the relation

∆ = 1+
1

µ2 . (4.201)

This condition implies that the symplectic spectrum of these states takes the form ν− =
1, ν+ = 1/µ . Therefore, GLEMS are identified as mixed Gaussian states with partial
minimum uncertainty, aligning with their property of minimal entanglement, making
them, in some sense, the most classical Gaussian states. According to the PPT criterion
outlined in the study, GLEMS are separable only if
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µ ≤ µ1µ2√
µ2

1 +µ2
2 −µ2

1 µ2
2

. (4.202)

In the range

µ1µ2

µ1 +µ2 −µ1µ2
< µ ≤ µ1µ2√

µ2
1 +µ2

2 −µ2
1 µ2

2

, (4.203)

both separable and entangled states are found. Conversely, the region

µ >
µ1µ2√

µ2
1 +µ2

2 −µ2
1 µ2

2

(4.204)

only accommodates entangled states. The narrow region defined by inequality (4.203)
is therefore identified as the only region where both entangled and separable Gaus-
sian mixed states coexist (coexistence region). The study emphasizes that knowledge
of µ1, µ2, and µ provides a precise characterization of Gaussian state entanglement.
Quantitative knowledge of the local and global purities enables reliable entanglement
quantification as well. Outside the separable region, GMEMS achieve maximum loga-
rithmic negativity Emax

N (µ1,µ2,µ), while in the entangled region, GLEMS attain mini-
mum logarithmic negativity Emin

N (µ1,µ2,µ), where

Emax
N =−1

2
log

− 1
µ
+

(
µ1 +µ2

2µ2
1 µ2

2

)µ1 +µ2 −

√
(µ1 +µ2)2 −

4µ2
1 µ2

2
µ

 ,
(4.205)

Emin
N =−1

2
log

 1
µ2

1
+

1
µ2

2
− 1

2µ2 − 1
2
−

√(
1

µ2
1
+

1
µ2

2
− 1

2µ2 − 1
2

)2

− 1
µ2

 .
(4.206)

The entanglement of Gaussian states with given global and marginal purities is quanti-
fied by the “average logarithmic negativity” [60]

EN(µ1,µ2,µ)≡
Emax

N (µ1,µ2,µ)+Emin
N (µ1,µ2,µ)

2
. (4.207)

It is important to note that the entanglement measure, for fixed global and marginal
purities, is a ‘privileged’ measure of mixedness in continuous variable systems, be-
cause it is possible to give an explicit expression to quantify extramally entangled
states (4.206),(4.207). Specifically, SL can be measured using feasible direct meth-
ods, provided some prior knowledge about the state, such as its Gaussian nature. These
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methods, including single-photon detection schemes [67] and emerging quantum net-
work architectures [68], eliminate the need for complete homodyne reconstruction of
the density matrix. Recently, a significant and promising advancement in this area has
been achieved: an experimental demonstration of direct photon detection for measur-
ing the squeezing and purity of a single-mode squeezed vacuum. This setup required
only a tunable beam splitter and a single-photon detector [69].

4.3.8.3 Extremal entanglement at fixed global and local generalized entropies
The linear entropy SL is not the only possible measure of mixedness of a state. The aim
of this section is to characterize entanglement of two-mode (mixed) Gaussian state,
reviewing [66], by exploiting the explicit behavior of the global invariant ∆ at fixed
global and marginal entropies (for p ̸= 2), and its relation with the logarithmic nega-
tivity EN . In the paragraph (3.1.3.4) we have pointed out that the generalized entropy
is bounded by the lower and upper limits which identify, as in the previous case, two
extremal classes of states still identified as the nonsymmetric squeezed thermal states
(GMEMS) and the mixed states with partial minimum uncertainty (GLEMS). However,
it is important to note that the seralian ∆ no longer maintains a monotonic relationship
with the entanglement of the state when the generalized entropies are fixed. In order to
compare the results we will obtain with those of the previous section, where the pro-
tagonists were global and marginal purities, we proceed with a description that follows
the same steps but for a general p, distinguishing cases in which p < 2 and p > 2.
First of all we need of another parametrization of the covariance matrix σ in terms of
local purities µ1,2 (or any other marginal Sp1,p2 because all the local, single mode en-
tropies are equivalent for any value of the integer p), global entropy Sp, and the global
symplectic invariant ∆. From Eqs.(4.102),(4.106),(4.87) we notice that Sp ≡ Sp(∆,R),
where R = 2/µ . Since our analysis focuses on the study of the entanglement proper-
ties for fixed p-entropy, it is useful to highlight the relationship between ∆ and µ . Our
interest lies in how these two realities change so that the entropy remains constant. To
this end we analyze:

∂ µ

∂∆

∣∣∣∣
Sp

=− 2
R2

∂R
∂∆

∣∣∣∣
Sp

. (4.208)

We can exploit the invariance of the entropy to rewrite this derivative, since:

dSp = 0 =
∂Sp

∂∆

∣∣∣∣
R

d∆+
∂Sp

∂R

∣∣∣∣
R

dR,→ ∂R
∂∆

∣∣∣∣
Sp

=−
∂Sp/∂∆|R
∂Sp/∂R|∆

, (4.209)

obtaining

∂ µ

∂∆

∣∣∣∣
Sp

=
2

R2
∂Sp/∂∆|R
∂Sp/∂R|∆

=
2

R2
Np(∆,R)
Dp(∆,R)

. (4.210)

At the end, all the information is encoded inside the ratio Np(∆,R)/Dp(∆,R). This is
an increasing function of p, with a zero when p = 2. In particular for p < 2 is nega-
tive with absolute minimum at (−1), in the asymptotic regime (∆ → 2,R → 2, p → 1).
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This means that in this regime ∆ and µ are inversely proportional, in fact, when ∆ is
minimum (maximum), the purity µ is maximum (minimum). For p > 2 the ratio is
positive; therefore, ∆ and µ are in this case proportional. The analysis of this trend al-
lows us to easily identify which states correspond to the extreme values of ∆, since for
fixed values of marginal and global entropy, the negativity depends exclusively on ∆,
so that to extreme values of ∆ correspond extreme values of entanglement. We there-
fore conclude that all Gaussian states with maximal ∆ for any fixed triple of values of
global and marginal entropies are GLEMS. Vice versa, one can show that all Gaussian
states with minimal ∆ for any fixed triple of values of global and marginal entropies
are Gaussian maximally entangled mixed states (GMEMS) . In summary, we have
demonstrated that GMEMS and GLEMS consistently always represent the extremally
entangled Gaussian states, regardless of the specific choice of generalized global and
marginal entropic measures used. This indicates that maximally and minimally entan-
gled states in continuous variable (CV) systems are remarkably resilient to variations in
the chosen measures of mixedness. This behavior contrasts sharply with discrete vari-
able systems, where selecting different measures of mixedness leads to distinct classes
of maximally entangled states [70].
Thus, this dependence between ∆ and µ from the parameter p, or the type of entropy
measure considered, is clearly reflected on the dependence which has the smallest
eigenvalue from the serialism ∆. For a given p, the smallest symplectic eigenvalue
of the partially transposed covariance matrix, used to quantify entanglement, is not
always a monotonic function of the symplectic invariant ∆ when global and marginal
p-entropies are fixed. This leads to unexpected outcomes in the relationship between
extremal ∆ values and the entanglement of states. For p < 2: The surfaces representing
GMEMS (Gaussian states with minimal ∆) and GLEMS (Gaussian states with maximal
∆ become more distinct as p decreases. For p > 2: The distinction between GMEMS
and GLEMS diminishes as p increases. In a specific range of global and marginal
entropies, these two classes of states swap their roles. GMEMS (typically associated
with minimal ∆) now represent minimally entangled states, while GLEMS (typically
associated with maximal ∆) now represent maximally entangled states. This inversion
of roles is a general phenomenon that always occurs for all p > 2, reflecting the non-
trivial connection between ∆, entanglement, and the generalized p-entropies. In the
following we will provide the general idea to understand how this inversion comes out.
To explore this intriguing behavior, we examine how the symplectic eigenvalue ν̃− de-
pends on the global invariant ∆, while keeping the marginals and the p-entropy Sp fixed
for a generic p. Using Maxwell’s relations, the derivative can be expressed as:

κp ≡
∂ (2ν̃2

−)

∂∆

∣∣∣∣
Sp

=
∂ (2ν̃2

−)

∂∆

∣∣∣∣
R
−

∂ (2ν̃2
−)

∂R

∣∣∣∣
∆

·
∂Sp
∂∆

∣∣
R

∂Sp
∂R

∣∣
∆

. (4.211)

When κp > 0, GMEMS and GLEMS maintain their conventional roles, with GLEMS
representing minimally entangled states and GMEMS representing maximally entan-
gled states. Conversely, for κp < 0, their roles are reversed. At the critical node where
κp = 0, GMEMS and GLEMS exhibit the same level of entanglement; this implies that
the entanglement of all Gaussian states is completely determined by local purities and
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Sp, being independent of ∆. Without going into mathematical details, described in [60],
we show the key idea to determine this nodal surface in p > 2 regime. To do this, we
look for a non-trivial solution of the equation κp = 0, for any ∆ value (being the en-
tanglement independent from it on the nodal surface). If we choose ∆ = 1+R2/4 (that
saturates the Heisenberg uncertainty relation and is satisfied by GLEMS) the nodal
surface has the following form:

Sp = Sκ
p(µ1,µ2)≡

1−gp

[(
µκ

p (µ1,µ2)
)−1
]

p−1
. (4.212)

The entanglement of all Gaussian states whose entropies lie on the surface Sκ
p(µ1,µ2)

is completely determined by the knowledge of µ1, µ2, and Sp. The explicit expression
of the function µκ

p (µ1,µ2) depends on p, but, being the global purity of physical states,
is constrained by the inequality:

µ1µ2 ≤ µ
κ
p (µ1,µ2)≤

µ1µ2

µ1µ2 + |µ1 −µ2|
. (4.213)

After verifying the existence of extremally entangled Gaussian states, it is necessary
to provide only a quantitative measure of these. We can formally define the maxi-
mal entanglement Emax

N (Sp1,2,Sp) as the logarithmic negativity attained by GMEMS
(or GLEMS, below the inversion nodal surface for p > 2). In a similar way, in the
entangled region, GLEMS (or GMEMS, below the inversion nodal surface for p > 2)
achieve the minimal logarithmic negativity Emin

N (Sp1,2,Sp). The explicit analytical ex-
pressions of these quantities are unavailable for any p ̸= 2 due to the transcendence of
the conditions relating Sp to the symplectic eigenvalues.
In summary, we have identified the presence of both maximally and minimally entan-
gled two-mode Gaussian states at fixed local and global generalized p-entropies. The
analytical properties of these states have been thoroughly examined for all values of
p. Notably, for p ≤ 2, the minimally entangled states are minimum uncertainty states
that saturate the Heisenberg principle, whereas the maximally entangled states are non-
symmetric two-mode squeezed thermal states. Interestingly, for p > 2 and within spe-
cific ranges of the entropic measures, the roles of these states are reversed. In this case,
two-mode squeezed thermal states, often considered the continuous variable analogs of
maximally entangled states, instead become minimally entangled.

5 Non-Locality
In classical physics, it is assumed that the physical properties of an object exist in-
dependently of observation. For example, the position and velocity of a particle are
considered real attributes that are merely revealed by measurements. This view aligns
with everyday intuition: objects possess inherent properties regardless of whether they
are being observed. However, the development of quantum mechanics in the 1920s
and 1930s introduced a revolutionary shift. Quantum mechanics suggests that an un-
observed particle does not possess definite physical properties. Instead, such proper-
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ties arise as a result of measurements performed on the system. For instance, a qubit
does not simultaneously possess well-defined values for ‘spin in the z-direction (σz)’
and ‘spin in the x-direction (σx).’ Quantum mechanics provides probabilistic rules,
based on the state vector |ψ⟩, for predicting the possible outcomes of these measure-
ments. The counterintuitive nature of quantum mechanics led to strong objections
from many physicists, including Albert Einstein. In the famous ‘EPR paper’ (1935)[3],
co-authored with Nathan Rosen and Boris Podolsky, Einstein argued that quantum me-
chanics is incomplete. The EPR paradox centered on the notion of ‘elements of reality.’
Einstein and his colleagues proposed that if one could predict the value of a property
with certainty, without disturbing the system, then this property must correspond to an
element of physical reality. The EPR thought experiment highlighted the peculiar phe-
nomenon of entanglement, where measurements on one particle instantaneously affect
another, regardless of the distance between them. Einstein referred to this phenomenon
as “spooky action at a distance”. They proved that it is possible to simultaneously
determine, with completely certainty, both the relative position and momentum of a
pair of spinless particles, in contrast to what is predicted by quantum mechanics, thus
concluding that quantum mechanics was an incomplete theory. Thanks to this result
the EPR paper aimed to force a return to a classical worldview where properties ex-
ist independently of measurement. Nearly three decades later, physicist John Bell [4]
formulated a theoretical framework to test the validity of the EPR argument. Bell’s
argument include locality (the measurement on a subsystem does not influence the
observation of the other one) and realism (the physical properties of a system exist
independently from the observation or measurement) as the keys hypothesis to derive
the famous inequality. It is important to stress that Bell’s inequality is not a result of
quantum mechanics, and it consists in a upper limit for all local physical theories. The
violation of Bell’s inequality is equivalent to say that there is not any local theory that
properly describe the system, suggesting non-local features as expected from quantum
mechanics. This does not say anything about the completeness of quantum mechanics,
therefore there is no contradiction between the results of Bell and what said by Ein-
stein, but it validates the hypothesis that the reality is non-local. Experimental tests of
Bell’s inequality, beginning with those conducted by Alain Aspect in the 1980s [71],
conclusively demonstrated that Nature does not conform to the classical worldview en-
visioned by Einstein and the EPR paper. Instead, the experimental results align with
the predictions of quantum mechanics, confirming the non-local correlations inherent
in entangled states. In the following we will describe in more details the EPR idea and
the consecutive Bell response.

5.1 EPR argument
In a 1935 paper [3], Einstein,Podolsky and Rosen introduced a thought experiment
to argue that quantum mechanics was not a complete physical theory. Known today
as the “EPR paradox,” the thought experiment was meant to demonstrate the innate
conceptual difficulties of quantum theory. The key aspects on which the discussion is
developed are two: (1) ”every element of the physical reality must have a counter-part
in the physical theory; (2) ”If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical quantity,
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the there exist an element of physical reality corresponding to this physical quantity.
To prove incomplitness of quantum mechanics we can introduce the following thought
experiment. Let’s suppose we have two systems, I and II, that exist in an entangled
state, such that :

|Ψ⟩= ∑
n

pn |an⟩1 ⊗|bn⟩2 (5.1)

That is, the tensor product between the state of particle I and II, weighed by the coef-
ficients pn where |an⟩1 and |bn⟩2 are the eigenvectors of an operator Â and B̂ respec-
tively. Suppose we perform a measure, for system I, the physical quantity associated
with operator Â. Due to the collapse of the wave function, we know the state of particle
II instantly and with absolute certainty. This implies, that the quantity related to the
operator B̂ has an element of physical reality. It is important to stress that the EPR argu-
ment considered measurement as a local process. In their reasoning, they assumed that
the act of measurement on one part of an entangled system could not instantaneously
influence the other part, in accordance with the principle of local realism. Suppose,
however, that instead of measuring B on particle II we measured some other observ-
able, call it D̂, with eigenstates |dn⟩2, for which it holds that

[
B̂, D̂

]
̸= 0. We then have

to rewrite the state as

|Ψ⟩= ∑
n

fn |cn⟩1 ⊗|dn⟩2 (5.2)

where now |cn⟩1 is an eigenstate of some other operator Ĉ for particle I. With the same
procedure we can predict with probability one the value of the quantity D̂ for the sec-
ond system, after measuring the first. It results that also D̂ has an element of physical
reality. Assuming that the wave function does contain a complete description of the
two-particle system it would seem that the argument of EPR establishes that it is possi-
ble to assign two different states (|bn⟩2 and |cn⟩2) to the same reality. Nevertheless, two
physical quantities represented by operators which do not commute cannot have simul-
taneous reality. The EPR paradox concluded that the quantum mechanical description
of physical reality given by the wave function is not complete.

5.2 Bell’ inequalities : An experimental approach
In 1964, Bell proved that the predictions of quantum theory are incompatible with
those of any physical theory satisfying a natural notion of locality [4]. He showed that
in a Gedankenexperiment of Bohm’ (a variant of that of EPR) no local hidden-variable
theory can reproduce all of the statistical predictions of quantum mechanics. In order
to carry out Bell’s idea we introduce the main aspects of Alain Aspect work [71]. In
the following a picture of the experimental setup :
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Figure 4: Einstein-Podolsky-Rosen-Bohm Gedankenexperiment with photons [71].

In which we have a source (S) emitting pairs of photons with frequencies v1 and
v2, counterpropagating along Oz. We perform linear polarization measurements on the
two photons, with analysers I and II. The analyser I, in orientation a, is followed by two
detectors, giving results + or − , corresponding to a linear polarization found parallel
or perpendicular to a. The analyser II, in orientation b, acts similarly. Suppose that the
polarization part of the state vector describing the pair is:

|Ψ(v1,v2)⟩=
1√
2
(|x⟩⊗ |x⟩+ |y⟩⊗ |y⟩) (5.3)

It is crucial to note that the joint state is not factorizable, therefore this can only be
thought of globally, as an entangled state. It is easy to derive the quantum mechanical
predictions for these measurements of polarization. The probability to measure the
polarization of a single photon, given the orientation of the detectors a,b, is equal to:

P+(a) = P−(a) =
1
2

(5.4)

P+(b) = P−(b) =
1
2
, (5.5)

while the joint probabilities are:

P++(a,b) = P−−(a,b) =
1
2

cos2 (a,b) (5.6)

P+−(a,b) = P−+(a,b) =
1
2

sin2 (a,b) (5.7)

A convenient way to measure the amount of correlations between random quantities is
to calculate the correlation coefficient. For the polarization measurements considered
above, it is equal to :

EQM(a,b) = P++(a,b)+P−−(a,b)−P+−(a,b)−P−+(a,b) = cos2(a,b) (5.8)

We note that in case of parallel polarizers (a,b) = 0 we have perfect correlations, i.e.
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EQM = 1, so, even if the individual measurement gives random results, these random
results are correlated, as expressed by equation (5.8). For parallel (or perpendicular)
orientations of the polarizers, the correlation is total (|EQM|= 1).

5.2.1 A counterintuitive example

From the previous paragraphs, we have seen that quantum correlations show properties
that challenge intuition. Further evidence of this unusual behavior is illustrated by a
two-step experiment. First of all, we assume that we have measured only the state of
the first photon along the direction a, obtaining as a result + with probability 1

2 . Of
course, for the collapse of the wave function, we know that the first particle is in the
state |a⟩1, while the second one is still undefined. We have to project the initial state
on a new base {|a,x⟩ , |a,y⟩}. We get:∣∣Ψ′(ν1,ν2)

〉
=

1
C
(⟨a|1 ⊗ I2) |Ψ(ν1,ν2)⟩ (5.9)

where a = α |x⟩1 +β |y⟩1 and I is the identity matrix for system II. Writing explicitly
we have:

1
C
(⟨a|1 ⊗ I2) |Ψ(ν1,ν2)⟩=

1√
2C

(⟨a|1 ⊗ I2)(|x1,x2⟩+ |y1,y2⟩) =

=
1√
2C

(α ⟨x|1 |x⟩1 |x⟩2 +β ⟨y|1 |y⟩1 |y⟩2)

=
1√
2C

(α |x⟩2 +β |y⟩2)

(5.10)

By means normalization condition we obtain C =

√
(α2+β 2)

2 with α2 + β 2 = 1. We
notice that the coefficients are the same for both the particles states. So finally:∣∣Ψ′(ν1,ν2)

〉
= |a⟩1 ⊗|a⟩2 (5.11)

Immediately after the first measurement, photon ν1 takes on the polarization a. This
is straightforward, as the photon has passed through a polarizer aligned along a, and
the outcome + was observed. What is more surprising, however, is that the distant
photon ν2, which has not interacted with any polarizer yet, is projected into the same
polarization state a, having a polarization parallel to that of photon ν1. While this con-
clusion seems counterintuitive, it leads to the correct final result. Using Malus’ law,
a subsequent measurement performed on the photon ν2 along a direction b yields the
probability P++(a,b), which is the probability of finding the photon ν2 with polariza-
tion + along b, since the photon ν1 was measured with polarization + along a. This
probability is given by:

P++(a,b) =
1
2

cos2(θ), (5.12)
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where θ is the angle between the polarization directions a and b. The calculation in
two steps yields the same result as a direct computation. Additionally, this process
suggests a physical interpretation of the two-step measurement: the first measurement
on photon ν1 immediately influences the polarization state of photon ν2, even though
photon ν2 has not yet encountered a polarizer. This is a hallmark of quantum entangle-
ment, where the measurement of one particle instantaneously determines the state of
the other, regardless of the distance separating them.

5.2.2 Supplemetary parameters

The scenario presented above seems in contradiction with relativity. According to
Einstein, what happens in a given region of space-time cannot be influenced by an
event happening in a region of space-time that is separated by a space like interval. It
therefore not unreasonable to try to find more acceptable pictures for understanding
the EPR correlations. Following the intuition of Einstein-Podolski-Rosen these cor-
relations could be explained by a local theory, assuming that the pairs emitted by the
source share hidden properties that predetermine the measurement result. It is then suf-
ficient to admit that half the pairs are emitted with the property ++, and half with the
property −−, to reproduce all the results of measurement in this configuration. Note
however that such properties, differing from one pair to another one, are not taken into
account by the quantum mechanical state vector |Ψ(v1,v2)⟩ which is the same for all
pairs. Therefore, we don’t know the actual state of the source, that in principle could
contain supplementary information that allows us to determine with certainty the re-
sult of a measurement. This is why Einstein concludes that quantum mechanics is not
complete. And this is why such additional properties are referred to as supplementary
parameters or hidden variables. It can be hoped to recover the statistical quantum
mechanical predictions when averaging over the supplementary parameters. We for-
malized the idea of a local theory more precisely. The assumption of locality implies
that we should be able to identify a set of past factors, described by some variables
λ , having a joint causal influence on both outcomes, and which fully account for the
dependence between a and b. Once all such factors have been taken into account,
the residual indeterminacies about the outcomes must now be decoupled; that is, the
probabilities for a and b should factorize:

P(A,B|ab,λ ) = P(A|a,λ )P(B|b,λ ) (5.13)

Where A(λ ,a),B(λ ,b) ∈ (+1,−1) are the possible outcomes at the two polarizers.
This factorability condition simply expresses the fact that we have found an explana-
tion according to which the probability for a depends only on the past variables λ and
on the local measurement A(λ ,a), but not on the distant measurement and outcome,
and analogously for the probability to obtain B(λ ,b). The variable λ will not necessar-
ily be constant for all runs of the experiment, even if the procedure which prepares the
particles to be measured is held fixed, because λ may involve physical quantities that
are not fully controllable. The different values of λ across the runs should thus be char-

85



acterized by a probability distribution ρ(λ ). Combined with the above factorizability
condition, we can thus write

P(A,B|ab) =
∫

dλρ(λ )P(A|a,λ )P(B|b,λ ). (5.14)

A particular Supplementary Parameter Theory is completely defined by the explicit
form of the function ρ(λ ), A(λ ,a) and B(λ ,b). It is then easy to express the proba-
bilities of the various results of measurements. For instance, noting that the function
1
2 (A(λ ,a)+ 1) assumes the value +1 for the + result, and 0 otherwise (and similarly
1
2 (1−B(λ ,b)) assumes the value +1 for the − result, and 0 otherwise, we can write

P(+,−|ab) =
∫

dλρ(λ )
1
2
(A(λ ,a)+1)

1
2
(1−B(λ ,b))

Similarly, the correlation function assumes the simple form

E(a,b) =
∫

ρ(λ )A(λ ,a)B(λ ,b)

Now let’s suppose we have two possible orientation for each polarizer and we choose
randomly one of those. In this situation we have four possible configurations:
(a,b),(a,b’),(a’,b),(a’,b’). To derive the Bell’inequality it is necessary to introduce a
linear combination of the correlation coefficients, one for each possible configuration:

S(a,a’;b,b’) = E(a,b)−E(a,b’)+E(a’,b)+E(a’,b’) (5.15)

introducing the explicit form of the correlations we get

S(a,a’;b,b’) =
∫

dλρ(λ )s(a,a’;b,b’;λ )

where

|s(a,a’;b,b’;λ )|= |A(λ ,a)(B(λ ,b)−B(λ ,b’))+A(λ ,a’)(B(λ ,b)+B(λ ,b’))| ≤ 2

and finally CHSH formulation is derived

|E(a,b)−E(a,b’)+E(a’,b)+E(a’,b’)| ≤ 2 (5.16)

In conclusion we can assert that, if a local theory exist, it must fullfil this inequality.
Note that no assumptions of determinism or of a “classical behavior” are being involved
in Eq.(5.16) : we assumed that A (and similarly B) is only probabilistically determined
by the orientation of the polaryzer a and the variable λ , with no restrictions on the
physical laws governing this causal relation.
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5.2.3 Comparison between Classical and Quantum predictions

We now want to compare quantum predictions with newly derived inequalities and for
this purpose we recall:

SQM = cos2(a,b)− cos2(a,b′)+ cos2(a′,b)+ cos2(a′,b′) (5.17)

If we assume that the angle (θ = 2|a−b|) between the two polarizers is the only rel-
evante quantity, and (a,b′) = (a,b)+ (a′,b)+ (a′,b′), then the maximum will accour
for:

(a,b) = (a′,b) = (a′,b′) = θ (5.18)

and
sinθ = sin3θ (5.19)

than we get the maximum violation of Bell’inequalities, since:

SQM = 2
√

2 f or θ =±π

8
(5.20)

SQM =−2
√

2 f or θ =±3π

8
(5.21)

The cornerstone of Bell’s arguments, as emphasized in all his works, is the assumption
of locality in the formalism. Specifically, it is assumed that the result A(λ ,a), repre-
senting the outcome of the measurement at polarizer I, is independent of the orienta-
tion b of the distant polarizer II, and vice versa. Similarly, the probability distribution
ρλ (λ ), which describes how particle pairs are emitted, is also presumed to be inde-
pendent of the orientations a and b. This locality assumption is critical because Bell’s
inequalities would not hold without it. If the measurement outcomes or the probability
distribution were allowed to depend on both polarizer settings, A(λ ,a,b) or ρλ (λ ,a,b),
the derivation of Bell’s inequalities would fail. To summarize, two key hypotheses are
necessary for Bell’s inequalities to arise, and consequently, for the conflict between
quantum and classical mechanics to emerge:

1. Distant correlations can be explained by introducing supplementary parameters,
or hidden variables, carried by the particles, consistent with Einstein’s notion
that spatially separated objects possess distinct physical realities.

2. The quantities A(λ ), B(λ ), and ρ(λ ) adhere to the locality condition, meaning
they are unaffected by the orientations of distant polarizers.

This underlines the common assertion that quantum mechanics challenges Local Real-
ism.
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5.3 Mathematical characterization of non local correlations
The previous paragraph served as an introduction to the Bell inequalities, introduced
by a simple experiment carried out by two distant observers who had two possible
configurations of the experimental setup and two possible outcomes for each of them.
The aim of this section is to generalize what has been seen above, introducing a wider
range of possible configurations and results. We are always dealing with two remote
observers, Alice and Bob, who conduct measurements on a common physical system,
such as a pair of entangled particles, therefore each observer can select from a set of m
distinct measurements to perform on their respective system. These measurements can
each result in ∆ possible outcomes. To abstractly depict this scenario, we refer to Alice
and Bob’s setup as a ”black box”. Here, each observer independently selects an input
(a measurement setting), and the black box generates an output (a measurement out-
come) accordingly. This scenario is commonly known as a Bell scenario. Let p(ab|xy)
denote the joint probability of obtaining output pair (a,b) given input pair (x,y). In
the context of a Bell scenario, these joint probabilities, totaling ∆2m2, offer a compre-
hensive characterization of the scenario.We label the set p = {p(ab|xy)} as a behavior.
Casually, we dub them the correlations dictating the operation of the shared black box
between Alice and Bob. Conceptually, a behavior maps to a point p within the proba-
bility space P⊂R∆2m2

, subject to positivity constraints p(ab|xy)≥ 0 and normalization
constraints ∑a,b p(ab|xy) = 1. Due to these constraints, P forms a subspace of R∆2m2

with a dimension of dim P = (∆2 −1)m2, but the presence of a specific physical model
underlying the observed correlations in a Bell scenario imposes further constraints on
the behaviors p, allowing us to identify three primary types of correlation. To address
this issue, we will rely on the review of Brunner et all [72], which contains an exten-
sive analysis of the concept of non-locality. One of those constrain has been already
presented in the previous paragraph, where we have employed the locality condition,
which is equivalent to factorizability of the joint probability as it is shown in (5.14).
All the elements of P that satisfy this condition belong to the set of local behaviors L .
Clearly, this is not the only existing constraint, and below we will define two additional
sets and how they relate to each other.

5.3.1 No-signaling correlations

The more general constraints on the behaviour p that can be considered are the no
signaling constrains. [73, 74]. They are formalized in the following way:

∆

∑
b=1

p(ab|xy) =
∆

∑
b=1

p(ab|xy′), f or all a,x,y,y′ (5.22)

∆

∑
a=1

p(ab|xy) =
∆

∑
a=1

p(ab|x′y), f or all b,y,x,x′ (5.23)

The physical interpretation of these constraints is that Alice’s local marginal probabili-
ties are independent of Bob’s measurement setting y, so Bob cannot communicate with
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her based on his input (and vice versa). Let N S denote the set of behaviors satisfy-
ing the no-signaling constraints (5.22). It ha been proved in [75] that N S is an affine
subspace of R∆2m2

of dimension:

dimN S = 2(∆−1)m+(∆−1)2m2 =: t. (5.24)

While every local behavior adheres to the no-signaling constraint, the opposite isn’t
always true. Some no-signaling behaviors exist that don’t meet the criteria for locality.
Consequently, the collection of local correlations is definitively less extensive than that
of no-signaling correlations; that is, L ⊂ N S . Correlations that cannot be written in
the form (5.14) are said to be non local.

5.3.2 Quantum correlations

The last type of correlations to be defined is that of quantum correlations, in the set Q,
which corresponds to a subset of P that can be written as

p(ab|xy) = tr(ρABMa|x ⊗Mb|y) (5.25)

Where ρAB is the density matrix related to the joint quantum state in HA ⊗HB of
aribitrary dimension, while Ma|x and Mb|y are the measurment operators on Alice and
Bob setup respectively. It is important to note that, without loss of generality, we
can always assume the quantum state to be pure and the measurement operators to be
orthogonal projectors. If necessary, this can be achieved by extending the dimension
of the Hilbert space. Thus, a quantum behavior can equivalently be written as

p(ab|xy) = ⟨ψ|Ma|x ⊗Mb|y|ψ⟩, (5.26)

where Ma|xMa′|x = δaa′Ma|x and ∑a Ma|x = IA, with a similar definition for the operators
Mb|y. Another way of defining quantum behaviors is by relaxing the requirement of
a tensor product structure between Alice’s and Bob’s systems. Instead, we simply
require that their local operators commute [76]. The corresponding set is denoted by
Q0, meaning that a behavior p belongs to Q0 if

p(ab|xy) = ⟨ψ|Ma|xMb|y|ψ⟩, (5.27)

where |ψ⟩ is a state in a Hilbert space H , and Ma|x and Mb|y are orthogonal pro-
jectors on H that define valid measurements and satisfy the commutation relation
[Ma|x,Mb|y] = 0. In the following sections, we discuss the properties of L , Q, and
N S in more detail. In particular, we see how it is possible to decide if a given be-
havior belongs or not to one of these sets. We show how each set can be characterized
in terms of Bell-type inequalities and discuss how to compute bounds for Bell-type
expression for behaviors in L , Q, and N S .
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Figure 5: Depiction of the no-signaling (N S ), quantum (Q), and local (L ) sets. It’s
noteworthy that there are strict inclusions L ⊂ Q ⊂ N S . Furthermore, N S and
L are polytopes, meaning they can be defined as the convex combination of a finite
number of extremal points. On the other hand, the set Q is convex but not a polytope.
The hyperplanes defining the set L correspond to Bell inequalities [72].

5.3.3 The local polytope and Bell inequalities

The next step is to investigate how Bell inequalities, i.e., the hyperplanes characterizing
the set L , can be found. For this goal we rely on the review of V.Scarani [77] in which
an example is introduced explaining the mechanisms underlying classical correlations.
Suppose that because of an extraordinary committee, employees of an investment firm
start simultaneously to sell and buy shares. This simultaneous operation is not sur-
prising, since we expect them to act according to precise directives or even to have
organized themselves in advance before any operation. This example illustrates the
only two classical mechanisms that explain correlations between distant parties: com-
munication (a.k.a. signaling) and pre-established agreement. We focus now on the
second aspect avoiding signaling for the moment. The default agreements require the
parties to plan their behavior for each input pair in advance, so that each party can
produce the result alone, rather than from the other side. This means that exist some
parameter λ , such that:

p(λ |x,y) = p(λ ). (5.28)

A condition defined as measurement independence, which allow to factorize the prob-
ability as in (5.13). Integrating over λ , we get (5.14). In this example, we naturally
assumed that the agents know exactly what to do once they learn the result of the com-
mittee. However, no such restriction was imposed on the mathematics: the proba-
bilities p(a|x,λ ) and p(b|y,λ ) are only required to be valid probability distributions.
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Deterministic local variables (DLVs) are a special case where, for any given input, the
outcome is fully determined by λ . In this case, we have:

p(a|x,λ ) =

{
1 if exists λ that determines a given x,
0 otherwise.

(5.29)

and

p(b|y,λ ) =

{
1 if exists λ that determines b given y,
0 otherwise.

(5.30)

Another way to describe deterministic local variables is by listing the outcomes for all
possible inputs:

λDL ≡ {a1,a2, . . . ,am;b1,b2, . . . ,bm} ∈ A|X |×B|Y |, (5.31)

From this, it’s clear that the number of deterministic local points is ∆m ×∆m.
The significance of deterministic local variables is demonstrated by the following re-
sult, first proved by Fine in 1982 [78]:

Proposition: A family of probability distributions pX ,Y can be explained by pre-
established agreement if and only if it can be explained by deterministic local variables.

Proof. The ”if” direction is straightforward. The inverse is not so obvious because
we need to prove that, for each fixed λ , a deterministic model has the same statistics of
the initial stochastic model. To simplify things, let’s label all the possible outcomes for
Alice (the same holds for Bob) and group together in a set : A = {1,2, . . . ,m}. From
this we can introduce the cumulative distribution Σ(a) = ∑α≤a p(α|x,λ ), where a ∈ A.
It can clearly be computed in the local variable (LV) model. Now, we introduce a new
local parameter µA, belonging to uniform distribution, and then output a according to
the following deterministic rule:

pd(a|x,λ ,µ) =

{
1 if Σ(a−1)≤ µA < Σ(a),
0 otherwise.

(5.32)

If µA is drawn from a uniform distribution, the original stochastic distribution is recov-
ered: ∫ 1

0
dµ pd(a|x,λ ,µA) =

∫
Σ(a)

Σ(a−1)
dµA = p(a|x,λ ). (5.33)

Thus, equation (5.14) can be rewritten as:

pLV(a,b|x,y) =
∫

dλ ρ(λ )
∫ 1

0
dµA

∫ 1

0
dµB pd(a|x,λ ,µA)pd(b|y,λ ,µB), (5.34)
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which is the desired convex sum of deterministic local variables (LVs) for the extended
variable λ ′ ≡ (λ ,µA,µB) with distribution ρ ′(λ ′)dλ ′ = ρ(λ )dλdµAdµB. It immedi-
ately follows that the finite set of λ ’s, defined by the ∆2m deterministic local points, is
sufficient to describe any LV statistics. Each pd(a|x,λ ,µ), given by equation (5.32), is
one of the ∆m deterministic points for A, and similarly for B ■.
What has been just tested is valid for any pair a and b and any pair of outcomes, there-
fore it is possible to define the behavior p in terms of:

dλ (a,b|x,y) =

{
1 if exist λ that determines a,b
0 otherwise

(5.35)

Since dλ ∈ L we finally have:

p = ∑
λ

ρλ dλ ■. (5.36)

Bell inequalities are a consequence of properties of the set L as shown in [72]. The
latter is a compact, closed and convex set (the same holds for Q and N S [79]). That
is, if p1 and p2 belong to the local set, the the mixture µp1 +(1− µ)p2 is also in the
set. According to the hyperplane separation theorem, for each behavior p̂ ∈ Rt (where
t = dimL ) that does not belong to the set, there exists a hyperplane that separates p̂
from the corresponding set. In other words, if p̂ /∈ L , then there is an inequality of the
form:

s·p = ∑
abxy

sxy
ab p(ab|xy)≤ SL. (5.37)

The coefficients sxy
ab depend on the specific Bell expression and they can be +1 or −1.

The inequality is satisfied by all p ∈ L , but violated by p̂ because s · p̂ > SL. In the
case of the local set L , these inequalities are simply the Bell inequalities. Since the
set L is the convex hull of a finite number of points, it forms a polytope. The local
deterministic behaviors dλ represent the vertices, or extreme points, of this polytope.
According to Minkowski’s theorem [80], a fundamental result in polyhedral theory, a
polytope can be described in two ways: either as the convex hull of its vertices or as
the intersection of a finite number of half-spaces. Therefore, we can express:

p ∈ L if and only if si ·p ≤ SL
i ∀i ∈ I, (5.38)

where I represents a finite set of linear inequalities. Conversely, if p is non-local, it will
violate at least one of these inequalities in Eq. (5.38). Therefore, the local set L can
be fully characterized by a finite set of Bell inequalities.

5.3.4 Quantum bound: The Tsirelson bound

Before delving into the detailed computation of the quantum bound Sq associated with
a Bell expression, we provide a brief overview of the structure of the quantum set Q
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[72]. Recall that a behavior p is considered quantum if, as defined in Eq. (5.25), it can
be expressed as p(ab|xy)= ⟨ψ|Ma|x|Mb|y|ψ⟩, where |ψ⟩ is a state in a Hilbert space H ,
and Ma|x and Mb|y are orthogonal projectors on H representing proper measurements,
satisfying

[
Ma|x,Mb|y

]
= 0. (For the characterization of the quantum set, it is convenient

to assume commutation relations rather than a tensor product structure, and we adopt
this approach throughout the remainder of this section.) As previously mentioned, the
local set L is strictly contained within the quantum set Q, implying the existence of
quantum behaviors that exhibit nonlocality; hence, in general, Sq > Sl . Any quantum
behavior must satisfy two fundamental requirements to be nonlocal: firstly, the mea-
surements performed by Alice and Bob must be non-commuting [78], and secondly,
the state ρ must be entangled. Let’s now narrow our attention to the specific task of
calculating the quantum bound for a Bell expression. Remember that the quantum set
Q, like any convex and compact set, can be characterized by an infinite system of lin-
ear inequalities, known as quantum Bell inequalities. For any arbitrary Bell expression
s, its corresponding quantum bound is defined as follows:

Sq = max
p∈Q

s ·p = max
S

∥Ŝ∥, (5.39)

where

Ŝ = ∑
abxy

sxy
abMa|xMb|y (5.40)

The Bell operator associated with s, denoted as ∥Ŝ∥, represents the spectral norm
(largest eigenvalue) of Ŝ, and the optimization described above is performed over all
possible Bell operators S associated with s. This optimization encompasses all con-
ceivable measurements Ma|x and Mb|y, where the coefficients sxy

ab are determined by the
choice of s. In the specific case of the CHSH expression, the Bell operator is defined as
Ŝ = Â1 ⊗ B̂1 + Â1 ⊗ B̂2 + Â2 ⊗ B̂1 − Â2 ⊗ B̂2, where Âx and B̂y represent arbitrary ±1-
eigenvalued observables. In particular, a quantum state ρ violates the CHSH inequality
if and only if there exist measurements such that Tr(ρ Ŝ)> 2. Before introducing spe-
cific states that violate the CHSH inequality, let us present a generic result, known as
Tsirelson’s bound [81] and derived in V.Scarani work [77]:

Theorem 3.1 : Measurements on quantum systems can violate the CHSH inequal-
ity at most up to S ≤ 2

√
2.

Proof : To prove this result, we need to find an upper bound for the largest eigen-
value of Ŝ, denoted as ||Ŝ||∞. By construction, we have ||Âx||∞ = ||B̂y||∞ = I, Â2

x = IdA ,
and B̂2

y = IdB , where dA and dB represent the dimensions of Hilbert spaces, which can
be left unspecified and may even be infinite. To obtain the bound, we work with the
square of the CHSH operator:

Ŝ2 = 4I⊗ I− [Â1, Â2]⊗ [B̂1, B̂2] (5.41)
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Indeed, ||[Â1, Â2]||∞ = ||Â1Â2− Â1Â2||∞ ≤ ||Â1Â2||∞+ ||Â2Â1||∞ ≤ 2||Â1||∞||Â2||∞ = 2,
where the last inequality follows from the general property |xy| ≤ |x||y|.
Similarly, we find ||[B̂0, B̂1]||∞ ≤ 2. Therefore, we have:

||Ŝ2||∞ ≤ 8 ■. (5.42)

which proves the claim.

3.4.5.1 Entanglement and non-locality for two quibit state
In Section (5.2), we derived Bell’s inequalities starting from a maximally entangled
state, observing that, with appropriate orientations of the polarizers, it is possible to
achieve the maximum violation of the inequalities, consistent with the Tsirelson’s
bound (5.42). It is therefore important to explore the relationship between entangle-
ment and non-locality in a generic two-qubit state:

|Ψ(θ)⟩= cosθ |0⟩⊗ |0⟩+ sinθ |1⟩⊗ |1⟩, (5.43)

characterized by the following density matrix :

ρ =
1
4

(
I⊗ I+ rρ ·σσσ ⊗ I+ I⊗ sρ ·σσσ + ∑

i, j=x,y,z
T i j

ρ σi ⊗σ j

)
. (5.44)

The first term I⊗ I represents the identity operator for both qubits, indicating the ”un-
polarized” or maximally mixed part of the density matrix. The second rρ · σσσ ⊗ I:
Here, rρ is the Bloch vector representing the local polarization of the first qubit, and
σσσ = (σx,σy,σz) are the Pauli matrices. This term describes the effect of the first qubit’s
polarization while leaving the second qubit unchanged. I⊗ sρ ·σσσ : Similarly, sρ is the
Bloch vector for the second qubit. This term describes the second qubit’s local polar-
ization, while the first qubit remains unchanged.
∑i, j=x,y,z T i j

ρ σi ⊗σ j: This term accounts for the correlations between the two qubits.
The elements T i j

ρ form a 3× 3 matrix that describes how measurements on the first
qubit along the axis i (where i = x,y,z) are correlated with measurements on the sec-
ond qubit along the axis j.

Theorem 3.2: The maximum value of the CHSH inequality, achievable using von
Neumann measurements on any two-qubit state ρ , is given by:

⟨Ŝ⟩= 2
√

λ1 +λ2 (5.45)

where λ1 and λ2 are the two largest eigenvalues of the symmetric matrix T t
ρ Tρ , and T t

ρ

is the transpose of Tρ . The proof also outlines how to choose measurement settings that
reach this maximum [26].
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Proof : To find the maximum value of ⟨Ŝ⟩ = Tr(ρ Ŝ), we begin with the following
expression:

⟨Ŝ⟩= a1 ·
(
Tρ(b1 +b2)

)
+a2 ·

(
Tρ(b1 −b2)

)
(5.46)

Here, we take advantage of the fact that the sum and difference of two vectors are
always orthogonal. The vectors b1 and b2 are chosen such that (b1 ·b2) = cos2χ , and
a1 and a2 are unit vectors.We can use this information for simplify the previous average
value, since:

|b1 +b2|2 = |b1|2 + |b2|2 +2b1 ·b2 (5.47)

we recall that b1 and b2 are unit vectors so we get

|b1 +b2|2 = 2+2cos(2χ) (5.48)

And the magnitude of the sum is:

|b1 +b2|=
√

2+2cos(2χ) (5.49)

We can simplify cos(2χ) using the trigonometric identity cos(2χ) = 2cos2(χ)− 1.
Substituting this into the previous expression, we obtain:

|b1 +b2|=
√

2+2(2cos2(χ)−1) =
√

4cos2(χ) = 2cos(χ). (5.50)

Since the magnitude of b1 +b2 is 2cos(θ) and the vector b1 + b2 are orthogonal to
b1 − b2, it must be parallel to a unit vector c, while b1 − b2 must be parallel to c⊥.
Therefore, we can write:

b1 +b2 = 2cos(χ)c

b1 −b2 = 2cos(χ)c⊥
(5.51)

Looking for the maximum is equivalent to find the four directions such that:

max
a1,a2,b1,b2

⟨Ŝ⟩= max
b1,b2

2
(

cos χ||Tρ c||+ sin χ||Tρ c⊥||
)

(5.52)

Next, using the well-known optimization formula maxχ xcos χ + ysin χ =
√

x2 + y2,
achievable when cos(χ) = x/

√
x2 + y2. The expression becomes:

2max
c,c⊥

√
||Tρ c||2 + ||Tρ c⊥||2 (5.53)

Finally, the norm ||Tρ c||2 is given by the expression (c ·T t
ρ Tρ c), where T t

ρ Tρ is a sym-
metric and positive matrix. This ensures that the optimization is achieved by choosing
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c and c⊥ as the two eigenvectors corresponding to the two largest eigenvalues of T t
ρ Tρ .

Thus, the maximum violation of the CHSH inequality is achieved with these specific
measurement settings, proving the bound ⟨Ŝ⟩max = 2

√
λ1 +λ2, where λ1 and λ2 are the

two largest eigenvalues of T t
ρ Tρ ■.

This proof also provides the method to reconstruct the optimal measurement settings
that lead to the maximal quantum violation of the CHSH inequality. The correlation
matrix TΨ(θ) matrix related to (5.43) is given by:

TΨ(θ) =

sin2θ 0 0
0 −sin2θ 0
0 0 1

 (5.54)

The maximum value of the CHSH expression for this state can be calculated as:

⟨Ŝ⟩max = max
a1,a2,b1,b2

⟨Ψ(θ)|Ŝ|Ψ(θ)⟩= 2
√

1+ sin2 2θ (5.55)

This value is always greater than 2 unless sin2θ = 0, which corresponds to the un-
entangled (product) states. Thus, all pure entangled states of two qubits violate the
CHSH inequality for appropriately chosen measurement settings. Furthermore, only
maximally entangled states can reach the maximal violation S = 2

√
2.

To determine the corresponding measurement settings, consider that the eigenvector
associated with the largest eigenvalue of T t

ρ Tρ is c = ẑ. The orthogonal subspace, being
degenerate, allows for the choice of any vector; for instance, we can take c⊥ = x̂. With
this choice, we have:

b1 = cos(χ)ẑ+ sin χ x̂, b2 = cos χ ẑ− sin χ x̂ (5.56)

where cos χ = 1√
1+sin2 2θ

. Moreover, a1 must be the unit vector aligned with Tρ c, and

a2 aligned with Tρ c⊥, which gives:

a1 = ẑ, a2 = x̂ (5.57)

With this, we now have a complete understanding of how the CHSH inequality is vio-
lated by two-qubit states. In the next section, we will explore how the CHSH inequality
can be adapted to demonstrate that all pure entangled states violate a Bell inequality.

5.3.5 Gisin’s Theorem

The fact that all pure entangled states violate a Bell inequality is usually referred to as
Gisin’s theorem, since Nicolas Gisin was the first to ask the question and to answer it
for bipartite states [82]. Popescu and Rohrlich extended the proof to the general case
shortly after [83]. Here, I follow this procedure.

Lemma 3.1: Any bipartite entangled pure state (i.e., of any dimensionality) vio-
lates a Bell inequality.
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Proof : We start with the Schmidt decomposition of a pure bipartite state |Ψ⟩:

|Ψ⟩=
d−1

∑
k=0

ck|k⟩⊗ |k⟩ (5.58)

where we can define the bases such that c0 ≥ c1 ≥ ...≥ cd−1 ≥ 0. The state is entangled
if and only if c1 ̸= 0.
We can now rewrite this state by separating out the two largest Schmidt coefficients, c0
and c1, as follows:

|Ψ⟩=
√

c2
0 + c2

1

 c0√
c2

0 + c2
1

|0⟩⊗ |0⟩+ c1√
c2

0 + c2
1

|1⟩⊗ |1⟩

+
√

1− c2
0 − c2

1|Ψ
′⟩

(5.59)

where |Ψ′⟩ is the normalized projection of |Ψ⟩ onto the subspace orthogonal to the
span of |0⟩⊗ |0⟩ and |1⟩⊗ |1⟩. The state |Ψ′⟩ is given by:

|Ψ′⟩= 1√
1− c2

0 − c2
1

d−1

∑
k=2

ck|k⟩⊗ |k⟩ (5.60)

Thus, we can express the full state as:

|Ψ⟩=
√

c2
0 + c2

1 (cosθ |0⟩⊗ |0⟩+ sinθ |1⟩⊗ |1⟩)+
√

1− c2
0 − c2

1|Ψ
′⟩ (5.61)

where

cosθ =
c0√

c2
0 + c2

1

, sinθ =
c1√

c2
0 + c2

1

(5.62)

Now consider the operators

Ax = ax ·σσσ ⊕ I′, By = by ·σσσ ⊕ I′ (5.63)

where Pauli matrices σσσ act in the subspace Span(|0⟩, |1⟩), and

I′ = |2⟩⟨2|+ · · ·+ |d −1⟩⟨d −1| (5.64)

is the identity on the orthogonal complement of that subspace. By choosing the mea-
surement vectors that lead to the optimal violation (5.56),( 5.57), one can reach the
value of the CHSH parameter S given by:
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S = (c2
0 + c2

1)2
√

1+ sin2 2θ +(1− c2
0 − c2

1)2 (5.65)

which is larger than 2 as soon as c1 > 0, as claimed.

5.4 New features testing Non-locality
Although Bell’s theorem is conceptually clear, the experimental verification of Bell
inequalities has historically encountered a variety of challenges, both technical and
conceptual in nature. This section examines the obstacles that have arisen in the execu-
tion of these tests and outlines the historical development of such experiments. Bell’s
introduction of his inequalities was initially perceived as a theoretical instrument for
investigating the principles of local realism. However, despite the clarity of the mathe-
matical framework, the transition to experimental implementation presented significant
difficulties. When Bell introduced his inequalities in 1964, no experimental design had
yet been conceived that could practically test them. The challenge was twofold: first,
a conceptual gap in translating Bell’s theoretical framework into a testable experimen-
tal setup; and second, the experimental obstacles of the time, such as the difficulty in
reliably generating and measuring entangled particles. Additionally, ensuring the spa-
tial separation of measurement stations, which is essential to confirm that no signal
could influence both measurements in accordance with relativity, required highly pre-
cise timing and detection capabilities that were beyond the technological capabilities
of the era. These challenges were gradually overcome, and with the reformulation of
Bell’s inequality into the more experimentally accessible Clauser-Horne-Shimony-Holt
(CHSH) inequality in 1969 [84], the first significant test was conducted in 1972. John
Clauser and Stuart Freedman were among the first to conduct tests using photon pairs
generated from atomic cascades [85] in which they provided evidence of a violation of
Bell’s inequality, suggesting that quantum mechanics could indeed predict correlations
that local hidden variable theories could not elucidate. However, several critical limi-
tations diminished the conclusiveness of their results, since a significant issue was the
efficiency of the detectors utilized in the experiment, which could only detect a small
fraction of the emitted photons, leaving open the possibility that the undetected photons
might conform to local hidden variable theories. This concern, known as the detection
loophole, remained a pivotal limitation in Bell tests for many years. Additionally, the
experiment did not involve rapid changes in measurement settings, which raised the
possibility that a hidden signal could affect both measurement stations. This intro-
duced the locality loophole, which questioned whether the observed violations were
genuinely indicative of quantum nonlocality or merely the result of some communi-
cation between the particles. The early 1980s marked a pivotal moment in the testing
of Bell’s inequalities, largely attributed to the experiments conducted by Alain Aspect
and his team in France [71]. These investigations rectified several deficiencies found in
prior tests and introduced critical innovations that significantly advanced the discipline.
A key aspect of Aspect’s work was the use of rapid-switching measurement settings.
In these experiments, the settings of the measurement devices were modified while the
entangled photons were already in motion, ensuring that the decision regarding mea-
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surement settings was made after the photons had been emitted. This approach was
vital in addressing the locality loophole, as it made it highly unlikely for any hidden
signal to influence both measurements. Additionally, Aspect’s experiments increased
the distance between the detectors, further minimizing the potential for local commu-
nication between the particles. These innovations provided robust evidence supporting
quantum mechanics, although the detection loophole continued to be a concern due
to the limited efficiency of the photon detectors utilized at that time. The detection
loophole has emerged as a particularly persistent challenge in the context of Bell tests.
When detectors fail to capture all emitted particles from a source, it creates an oppor-
tunity for local hidden variable theories to account for the observed correlations by
utilizing the undetected particles. To definitively eliminate the possibility of local hid-
den variable theories, it became essential to enhance the efficiency of the detectors to a
point where the majority of emitted particles were successfully detected. This require-
ment presented a considerable obstacle, particularly in experiments involving photons.
A first attempt for build up a free loopholes experiment was given by Philippe H. Eber-
hard in 1992 [86], by means an alternative inequality, equivalent to CHSH one. This
new inequality does not require the fair sampling assumption (it counts for undetected
events) and can be tested by detectors with lower efficiency (η ≈ 66.7%). A signifi-
cant breakthrough that effectively tackled these issues emerged in 2013 , when various
independent teams conducted loophole-free Bell tests. These experiments success-
fully closed both the detection and locality loopholes. For instance, Ronald Hanson’s
research group at Delft University employed entangled electrons in diamond, which
were separated by distances greater than one kilometer, for their study [87]. Simul-
taneously, Anton Zeilinger’s team carried out similar experiments utilizing entangled
photons [88]. These investigations represented a critical milestone in the field, as they
provided the first definitive tests of Bell’s inequalities.

5.4.1 Escaping detection loophole

Gisin’s theorem for pure states clarified the relationship between entangled pure states
and non-locality. The maximum violation of Bell inequalities is observed for maxi-
mally entangled states. However, in experimental tests, we are often constrained by
instrumentation with less-than-perfect efficiency. As we will see, this highlights an
unexpected relationship between entanglement and non-locality. In this section we ex-
ploit the results of Méthot and Scarani [89]. They analyze the same physical setup as
described in the previous section, where two binary measurements are performed on
each qubit of an entangled pair. Ideally, each measurement yields one of two possible
outcomes: + or −. However, in a real experiment, a third possible outcome, denoted
⊥, can occur. This corresponds to the case where the detector fails to register the
particle, i.e., it does not fire. Physicists often assume fair sampling, meaning that the
particles detected are a representative sample of the total particle set. In other words,
the likelihood of a detector not firing is assumed to be completely uncorrelated with
the two-qubit state being measured. To investigate the detection loophole, the CHSH
inequality is rewritten in a form first derived by Clauser and Horne [90]. The inequality
takes the following form:
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PrA1B1 [++]+PrA1B2 [++]+PrA2B1 [++]−PrA2B2 [++]−PrA1 [+]−PrB1 [+]≤ 0.
(5.66)

We want to evaluate those probabilities related to a generic pure entangled state |ψ(θ)⟩
given by

|ψ(θ)⟩= cos(θ) |0,0⟩+ sin(θ) |1,1⟩ (5.67)

where θ ∈ [0, π

4 ]. When describing qubits, we follow the convention that |0⟩ and |1⟩
are the eigenstates of the Pauli matrix σz, corresponding to the eigenvalues +1 and −1,
respectively. Any projective measurement on a qubit can be represented by a projection
onto the eigenstates of a Pauli matrix n ·σσσ , where n is a normalized unit vector. Quan-
tum mechanics indicates that when we perform measurements on the state |ψ(θ)⟩ with
detectors of efficiency η , the measurement outcomes are influenced by the detector’s
efficiency. Specifically, the probability of detecting a particle is directly proportional to
η , and thus the measurement statistics will reflect this detector efficiency. The results
can be described by the following relations:

PrAi [+] = η ⟨ψ(θ)|
(

1
2
(I +a ·σσσ)

)
⊗ I2 |ψ(θ⟩= η

2
(
1+ai

z cos(2θ)
)

PrBi [+] = η ⟨ψ(θ)|
(

1
2
(I +b ·σσσ)

)
⊗ I2 |ψ(θ⟩= η

2
(
1+bi

z cos(2θ)
) (5.68)

for single counting. While for joint probabilities:

PrAi,B j [++] = ⟨ψ(θ)|
(

η

2
(I +a ·σσσ)

)
⊗
(

η

2
(I +b ·σσσ)

)
|ψ(θ)⟩

= η
2
(

1
4
+

1
4

b j
z cos(2θ)+

1
4

ai
z cos(2θ)+E(ai,b j)

) (5.69)

In which we used the correlation function

E(ai,b j) = ⟨ψ(θ)|(ai ·σσσ)⊗ (b j ·σσσ) |ψ(θ)⟩
= ai

zb
j
z + sin(2θ)

(
ai

xb j
x −ai

yb j
y
)
.

(5.70)

Inserting those relations inside (5.66) one finds that the inequality can be violated if
and only if the efficiency of the detector is high enough, namely

η > ηc(θ) = min
ai,b j

[
4+2cos(2θ)(a1

z +b1
z )

2+2cos(2θ)(a1
z +b1

z )+ ⟨Ŝ⟩max

]
, (5.71)

If we now recall the settings that maximized the expectation value of the Bell’ operator
from the Sec. (5.3.4) , we have:
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⟨Ŝ⟩max = 2
√

1+ sin2(2θ). (5.72)

The criterion (5.71) can be seen as a measure of non-locality, since (intuitively) the
more non-local a state is, the easier its non-locality is to be revealed in an imperfect
measurement. It is then easy to verify that, as θ increases, ηc(θ) decreases, with the
minimum obtained at θ = π

4 . It thus seems that everything is as it should be. However,
maximizing the function ⟨Ŝ⟩max is not equivalent to directly minimizing ηc(θ). In fact,
if we assume to consider non-maximally entangled states (θ < π

4 ), ηc(θ) is minimized
by settings which are not those that maximize the violation of the CHSH inequality
(even though they still give a violation), and moreover, with the optimized settings,
ηc(θ) decreases as θ decreases. In particular, one has

ηc(θ → 0)→ 2
3
. (5.73)

It could be argued that this peculiar behavior arises not from an intrinsic anomaly in
non-locality or entanglement, but rather from the specific choice of the inequality under
consideration. However, it has been proved in [91] that for a maximally entangled state
and detectors with an efficiency η ≤ 3

4 , there exists an explicit local model which
recovers the quantum predictions. This means that for 2

3 < η ≤ 3
4 , the maximally

entangled state can in no way close the detection loophole, while some non-maximally
entangled states can.

5.5 Werner states
It’s now evident that the relationship between non-locality and entanglement is not
so obvious. We know that entanglement is a necessary condition for the violation of
Bell’inequalities, and we wonder if it is also sufficient. This section is meant to be a
proof that this condition does not hold in general, so there could exist entangled states
that can be described using an LHV model. Thanks to [77] we introduce this relevant
result:

Theorem 3.3: There exist mixed states that are entangled, but nevertheless cannot
violate any Bell inequality.

The states of interest are called Werner states and are mixed states that combine a
pure maximal entangled state with a fully mixed one [24]. The general expression is
the following:

ρw = p
∣∣Ψ−〉〈

Ψ
−∣∣+(1− p)

I
4
, p ∈ [0,1] (5.74)

The joint probability of obtaining results a and b when Alice measures along a and Bob
measures along b is given by a convex combination of two contributions, weighted by
the parameter p:
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Pw(a,b | a,b) = pPΨ−(a,b | a,b)+(1− p)Pmixed(a,b) (5.75)

where
PΨ−(a,b | a,b) =

1
4
〈
Ψ

−∣∣(I+a(a ·σ))⊗ ((I+b(b ·σ))
∣∣Ψ−〉

=
1
4
(1−ab(a ·b)) ,

Pmixed(a,b) =
1
4
.

(5.76)

Using the criterion of the negative partial transposition, it can be proved that Werner
states are separable for p ≤ 1/3 and entangled otherwise. The statistics of von Neu-
mann measurements on Werner states are given by:

Pw(p) =
{

P(a,b | a,b) =
1
4
(1−ab(a ·b)p) , a,b ∈ {−1,+1}, a,b ∈ S2

}
(5.77)

Lemma 3.2: The set Pw(p) can be reproduced by a local hidden variable (LHV) model
if p ≤ 1

2 .

Proof: It is sufficient to prove the case for p = 1
2 , as any state ρw with p < 1

2 can
be generated by mixing ρ1/2 with white noise. In each run of the experiment, the pre-
shared local variable is a vector λ , which is uniformly drawn from the unit sphere S2

with the distribution ρ(λ )dλ = 1
4π

sinθdθdφ in spherical coordinates. Alice’s box
simulates the measurement of a single spin prepared in the direction λ , giving the
probability:

Pλ
A (a | a) =

1
2
(1+aa ·λ ) (5.78)

Bob’s box outputs b=−sign(b ·λ ), meaning b=+1 if b ·λ ≤ 0 and b=−1 if b ·λ > 0.
Therefore, the joint probability is:

P(a,+1 | a,b) =
∫

S2
dλ ρ(λ )Pλ

A (a | a)δb·λ≤0 =
1
4
+

1
2

a
∫

b·λ≤0
dλ ρ(λ )a ·λ (5.79)

To compute the integral, we use spherical coordinates such that b is aligned with ẑ (i.e.,
θ = 0). The integral becomes:

∫
b·λ≤0

dλ ρ(λ )a ·λ =
1

4π

∫
π

π/2
dθ sinθ

∫ 2π

0
dφ [(ax cosφ +ay sinφ)sinθ +az cosθ ]

(5.80)
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Evaluating the integral:

=
1
2

az

∫
π

π/2
dθ sinθ cosθ =−1

4
az (5.81)

Substituting this result into the expression for P(a,+1 | a,b) and recalling that az =
a ·b, we recover the desired result for b =+1. The calculation for b =−1 changes only
in the bounds of the last integral and yields the correct result as well. This concludes
the proof of the lemma. Since all Werner states with 1

3 < p ≤ 1
2 are entangled, this also

proves Theorem 3.3 ■.

5.6 Non-Locality in Multipartite Quantum Systems: An Overview
The study of bipartite systems has provided significant insights into the intricate rela-
tionship between entanglement and non-locality. However, this profound connection
becomes even more complex as the number of parties sharing quantum information
increases. The first distinction becomes evident when the inseparability of a state is
analyzed. Unlike the bipartite case, where a state can be either separable or entangled,
the multipartite scenario presents a variety of possibilities, as shown in [92]. In the
following, we outline the five relevant classes of interest. Let us consider three qubits
A, B, and C. We classify their possible states according to whether they are separable
or not with respect to the different qubits. In particular, according to whether they can
be written in one or more of the following forms:

ρ = ∑
i
|ai⟩A⟨ai|⊗ |bi⟩B⟨bi|⊗ |ci⟩C⟨ci|, (5.82)

ρ = ∑
i
|ai⟩A⟨ai|⊗ |φi⟩BC⟨φi|, (5.83)

ρ = ∑
i
|bi⟩B⟨bi|⊗ |φi⟩AC⟨φi|, (5.84)

ρ = ∑
i
|ci⟩C⟨ci|⊗ |φi⟩AB⟨φi|. (5.85)

Here, |ai⟩, |bi⟩, and |ci⟩ are (unnormalized) states of systems A, B, and C, respectively,
and |φi⟩ are states of two systems. From these definitions, we can construct five disjoint
classes of states:

Class 1: Fully inseparable states
These are states that cannot be written in any of the forms (5.82),(5.83),(5.84),(5.85).
An example of a fully inseparable state is the GHZ state:

|GHZ⟩= |000⟩+ |111⟩√
2

, (5.86)

which is a maximally entangled state of the three qubits [93].
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Class 2: 1-qubit biseparable states
Biseparable states with respect to qubit A are states that are separable with respect to
the first qubit but non-separable with respect to the other two qubits. These states can
be written in the form (5.83) but not in the forms (5.84) or (5.85). A trivial example of
such a state is:

|0⟩A ⊗|Φ+⟩BC, (5.87)

where |Φ+⟩= |00⟩+|11⟩√
2

is a maximally entangled state of two qubits.

Class 3: 2-qubit biseparable states
Biseparable states with respect to qubits A and B are states that are separable with re-
spect to the first and second qubits but non-separable with respect to the third qubit.
These states can be written in the forms (5.83) and (5.84) but not in the form (5.85).

Class 4: 3-qubit biseparable states
These are states that can be written in the forms (5.83), (5.84), and (5.85), but not in
the form (5.82).

Class 5: Fully separable states
These are states that can be written in the form (1a). A trivial example of such a state
is:

|0⟩A ⊗|0⟩B ⊗|0⟩C. (5.88)

In summary, for a generic N-multimode system, we see that if ρ
TAk
N ≥ 0, then it can be

written in the form:

ρN = ∑
i
|ai⟩Ak⟨ai|⊗ |φi⟩rest⟨φi|, (5.89)

and therefore ρN is separable with respect to particle Ak. On the other hand, if con-
sidering all possible partitions of the qubits into two sets it turns out that, for each
partition, the partial transpose with respect to one of the sets is positive, then ρN is
fully separable.

5.6.1 multimode entanglement measure: Tangle

The tangle is a fundamental measure of entanglement, particularly for bipartite qubit
systems [94]. To define it, consider two qubits, A and B, whose joint state is described
by the density matrix ρAB, which may be either pure or mixed. The spin-flipped density
matrix is introduced as:

ρ̃AB = (σy ⊗σy)ρ
∗
AB(σy ⊗σy), (5.90)
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where the asterisk denotes complex conjugation in the standard computational basis
{|00⟩, |01⟩, |10⟩, |11⟩}. The matrix σy, expressed in this basis, is given by:

σy =

[
0 −i
i 0

]
. (5.91)

This spin-flip operation plays a crucial role in capturing entanglement properties be-
cause it effectively acts as a time-reversal transformation on the spin degrees of free-
dom. It ensures that the mathematical structure of entanglement correlations is cor-
rectly preserved, which is essential for defining the Concurrence [95], a key interme-
diate quantity in the calculation of the tangle. Both ρAB and ρ̃AB are positive operators,
implying that their product ρABρ̃AB, although generally non-Hermitian, has only real
and non-negative eigenvalues. Denoting the square roots of these eigenvalues, arranged
in descending order, as λ1,λ2,λ3,λ4, we define the concurrence of ρAB as:

CAB = max{λ1 −λ2 −λ3 −λ4,0}. (5.92)

The tangle is then given by the squared concurrence:

τAB =C2
AB = [max{λ1 −λ2 −λ3 −λ4,0}]2 . (5.93)

Thus, the spin-flipped density matrix is a necessary tool for computing the concurrence,
which quantifies the degree of quantum correlations between the two qubits. A value
of τAB = 0 corresponds to an unentangled state, while τAB = 1 represents a maximally
entangled state. The physical significance of this measure arises from the inherently
quantum nature of correlations. Unlike classical correlations, quantum entanglement
cannot be freely distributed among multiple subsystems.
To illustrate this concept, consider two spin- 1

2 particles, A and B, prepared in a singlet
state, which is a maximally entangled state. One might ask whether A (or B) can
simultaneously be entangled with a third particle, C. However, this is not possible
because if A were entangled with C, then the pair AB would also be entangled with C,
leading to a mixed-state density matrix. This contradicts the fact that the singlet state
is a pure state. More generally, a less extreme version of this restriction must hold: if A
is partially entangled with B, then A can only be partially entangled with C as well. In
summary, the goal is to quantify how the entanglement between two subsystems limits
their capability to be entangled with other subsystems. Mathematically, this is captured
by the monogamy of entanglement inequality:

τAB + τAC ≤ τA(BC). (5.94)

This inequality expresses that a qubit A has a fixed amount of entanglement with the
bipartite system BC. This total entanglement serves as an upper bound for A’s indi-
vidual entanglement with qubits B and C. Furthermore, the portion of entanglement
allocated to qubit B (as measured by the tangle) is not available for entanglement with
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qubit C. This fundamental constraint on quantum correlations reflects the intrinsic lim-
its on how quantum entanglement can be distributed within a multipartite system.
As the final step in this description, we introduce the concept of residual tangle, which
plays a crucial role in characterizing the distribution of entanglement in multipartite
systems. The residual tangle is defined as the portion of entanglement that cannot be
attributed to bipartite correlations alone, effectively capturing the genuinely multipar-
tite nature of entanglement:

τres,A = τA(BC)− τAB − τAC (5.95)

If the residual tangle is nonzero, this indicates that some entanglement is genuinely
shared among all three qubits and is not reducible to simple bipartite correlations. This
concept will be essential in the subsequent discussion, where we analyze the connection
between entanglement and nonlocality in multipartite systems. The study of residual
tangle allows us to explore whether systems exhibiting strong multipartite entangle-
ment necessarily display stronger violations of Bell-type inequalities, thereby shedding
light on the fundamental relationship between these two key quantum properties.

5.6.2 Multipartite non locality

After defining the criteria to distinguish the various classes of entangled states, we
can explore the relationship between entanglement and the concept of multimode non-
locality. As expected, understanding the connection between entanglement and non-
locality becomes even more challenging in this context. To begin, we extend the con-
cepts already discussed for the bipartite case by introducing an additional observer,
Charlie (C), to the configuration previously referred to as the Bell scenario, where Al-
ice and Bob are two independent operators communicating via classical channels. The
experiment is thus characterized by the joint probability distribution:

p(abc|xyz) =
∫

dλ q(λ ) pλ (a|x) pλ (b|y) pλ (c|z), (5.96)

where λ is a shared local random variable and
∫

dλ q(λ ) = 1. Correlations are said to
be local if they can be written in this form and non-local otherwise. In the multipartite
case, the notion of non-locality can be refined in several ways. For example, consider
a joint distribution of the form:

p(abc|xyz) = p(ab|xy) · p(c|z), (5.97)

where Charles is uncorrelated with Alice and Bob. These correlations can violate the
locality condition (5.96) if p(ab|xy) is non-local, even though there is no non-locality
between Alice, Bob, and Charles as a whole. In other words, such correlations exhibit
only bipartite non-locality. In contrast, one can consider a scenario where all three
parties are nonlocally correlated. This is referred to as genuine multipartite nonlocality,
which represents the strongest form of multipartite nonlocality.
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5.6.3 Genuine multipartite non locality

The concept of genuine multipartite nonlocality was first introduced by Svetlichny in
1987 [96]. This notion extends the idea of nonlocality to include correlations that
cannot be decomposed into any form of bipartite nonlocality combined with local cor-
relations. To illustrate, consider a joint probability distribution p(abc|xyz). Genuine
multipartite nonlocality implies that p(abc|xyz) cannot be expressed in the following
form:

p(abc|xyz) =
∫

dλ q(λ ) pλ (ab|xy) pλ (c|z)+
∫

dµ q(µ) pµ(bc|yz) pµ(a|x)

+
∫

dν q(ν) pν(ac|xz) pν(b|y),
(5.98)

where λ , µ , and ν are hidden variables, and the terms pλ (ab|xy), pµ(bc|yz), and
pν(ac|xz) represent bipartite nonlocal correlations, while pλ (c|z), pµ(a|x), and pν(b|y)
represent how the remaining observer is locally correlated to the others. This decom-
position accounts for all possible bipartite splits of the system, and if p(abc|xyz) cannot
be written in this form, the system exhibits genuine multipartite nonlocality.

5.6.2.1 Alternative Definitions

The main issue with the definition of genuine multipartite nonlocality proposed by
Svetlichny is that it allows correlations that violate the no-signaling condition. Ac-
cording to this definition, the correlations among three parties, Alice, Bob, and Charles,
can be expressed as a convex combination of three terms, each representing a scenario
where two of the three parties share a nonlocal resource while the third party remains
locally correlated with them. However, Svetlichny does not impose any restriction
on the bipartite correlations within this decomposition, allowing them to violate the
no-signaling condition (5.22). This means that, in certain configurations, Alice could
instantly influence Bob’s outcome, or vice versa, merely by choosing her measurement.
This creates a logical and causal inconsistency, as the choice of measurement by one
observer could have an immediate impact on the other result, regardless of the spa-
tial separation. In a setup where the order of measurements is not predetermined, this
leads to a causal paradox similar to the classical grandfather paradox. The grandfa-
ther paradox, well known in the literature on time travel, arises when an event in the
present influences the past in such a way that it prevents its own existence. Applied
to the context of multipartite nonlocality, this paradox occurs when two observers can
mutually influence each other through physically meaningful correlations. If Alice and
Bob can communicate instantaneously and the measurement protocol does not follow
a predetermined order, then two contradictory scenarios emerge: if Alice measures be-
fore Bob, her result can instantly influence Bob’s, but if Bob measures first, then his
result can instantly influence Alice’s. If the order of measurements is not predefined,
there could be a step in which Alice influences Bob, followed by another step where
Bob influences Alice. This implies that the two observers influence each other in a
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circular way, making it impossible to determine who decided their outcome first. This
is equivalent to saying that the future influences the past, just like in the grandfather
paradox, where a future decision (Bob’s result) can influence a past choice (Alice’s
result) and vice versa.
To solve this issue, alternatives to Svetlichny’s definition have been proposed. One
of the most immediate solutions is to impose the no-signaling constraint on all bipar-
tite correlations appearing in the decomposition. This approach has been explored by
Almeida,et al. [97] and Barrett, et al. [98], who introduced the set of correlations de-
noted as S2|1

ns , which includes only those decompositions that respect the no-signaling
condition. In this way, it is ensured that two parties can share nonlocal correlations
without being able to communicate instantaneously, thus preserving the causal con-
sistency of the theory. The last definition is based on time-ordering requirement of
all bipartite correlations. We denote pTAB

A (ab|xy) as the probability distribution that is
time-order dependent: when Alice influences Bob we have pTAB

A (ab|xy)= pA<B
A (ab|xy),

and vice-versa pTAB
A (ab|xy)= pB<A

A (ab|xy) when Bob influences Alice. It is not allowed
a mutual influence to avoid the problem discussed above. We define a new set S2|1

to of
two-way time ordered correlations that contains all distributions that can be written in
the form:

p(abc|xyz) =
∫

dλ q(λ ) pλ (ab|xy)TAB pλ (c|z)+
∫

dµ q(µ) pTAC
µ (bc|yz) pµ(a|x)

+
∫

dν q(ν) pTBC
ν (ac|xz) pν(b|y).

(5.99)

It is important to emphasize that the three definitions of multipartite nonlocality are not
equivalent. Moreover, the relationship between the different sets is as follows:

L ⊂ S2|1
ns ⊂ S2|1

to ⊂ S2|1
Svet . (5.100)

5.6.4 Entanglement vs Non locality in multipartite systems

The aim of this section is to give an overview of the non trivial connection between en-
tanglement and non-locality in multipartite systems. Despite the additional complexi-
ties, significant progress has been made over time. One of the first relevant results was
demonstrated by Popescu [83], who showed that all pure N-partite states exhibit non-
locality, generalizing the result previously established by Gisin in the bipartite case. To
provide a generalized inequality we can start from a tripartite system of quibits: A,B
and C. In the following we include the same assumptions on which Bell’ inequality has
been derived: locality and realism. The first condition ensures the factorizability of the
joint probability distribution:

P(ai,b j,ck,λ ) = P(ai,λ )P(b j,λ )P(ck,λ ) (5.101)

where ai,b j and ck are possible outcomes for the three observer A,B and C. Now as-
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sume that C measures its system and the output is give by ck, and this result is classi-
cally communicated to A and B. We want to evaluate the correlation between the two,
conditional the result of C:

E(A,B,ck) =
∑i, j aib j

∫
dλP(ai,b j,ck,λ )p(λ )

∑i, j
∫

dλP(ai,b j,ck,λ )p(λ )
(5.102)

Since the denominator is normalized we get:∫
dλE(A,λ )E(B,λ )P(ck)p(λ ), E(X ,λ )≡ ∑

i
xiP(xi,λ ). (5.103)

Now

−2 ≤ E(A,λ )
[
E(B,λ )+E(B′,λ )

]
+E(A′,λ )

[
E(B,λ )−E(B′,λ )

]
≤ 2. (5.104)

The sum is linear in each expectation value and each of takes one of the two extreme
values ±1, therefore, we can multiply for p(λ )P(ck,λ )/P(ck) and integrate, we obtain
a CHSH inequality for bipartite system A, B, conditional on the measurement of C:

−2 ≤ E(A,B,ck)+E(A,B′,ck)+E(A′,B,ck)−E(A,B,ck)≤ 2. (5.105)

Ultimately, the problem of identifying non-local aspects reduces to the bipartite case,
which has already been analyzed. Consequently, the results obtained by Gisin apply,
implying that if the bipartite state is entangled, it will necessarily violate Bell inequal-
ities. The generalization to an N-parties system is straightforward, because it is suffi-
cient to repeat the same derivation, taking into account the N − 2 outcomes, reducing
the problem to a CHSH conditional on all the N − 2 measurements. We can now test
quantum predictions against this inequality to determine the non-local nature of the
correlations. The correlation terms are obtained by taking the expectation values over
a state derived from the original one through projection onto the N−2 known states. It
remains to check that the projection of N −mode system |Φ⟩ onto product of states of
the other N −2, leaves the remaining two systems in an entangled state.

Proof : The proof proceeds by assuming the opposite, assuming that the entangled
state |Φ⟩, projected onto the state associated with the N −2 systems, is factorized:〈

ei3
∣∣
3

〈
ei4
∣∣
4 · · ·

〈
eiN
∣∣
N |Φ⟩= |ψ⟩1

∣∣ψ ′〉
2 , (5.106)

where
∣∣ei j
〉

j is an element of a given basis of the jth system, while |ψ⟩1 and |ψ ′⟩2 are
the states of the two remaining systems. Regardless the choice of indices i3, · · · , iN they
are, by assumption, in a product states. Despite this, they could in principle depend on
the indices:
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|ψ⟩1 = |ψ(i3, · · · , iN)⟩1∣∣ψ ′〉
2 =

∣∣ψ ′(i3, · · · , iN)
〉

2 .
(5.107)

If we take a different element belonging to the same basis of jth system,
∣∣∣ei′j
〉

j
either

|ψ⟩1 or |ψ ′⟩2 must remain unchanged (up to a phase factor). Let suppose that they both

change. If we know replace
∣∣ei j
〉

j with a linear combination of
∣∣∣ei′j
〉

j
and

∣∣ei j
〉

j in di-

rect product basis (5.106), we introduce correlations between |ψ⟩1 and |ψ ′⟩2, contrary
to the original assumption. We conclude that the two single states can not have the
dependence on the same index. We can write, without loss of generality:

|ψ⟩1 = |ψ(i3, · · · , ik)⟩1∣∣ψ ′〉
2 =

∣∣ψ ′(ik+1, · · · , iN)
〉

2 .
(5.108)

Now the identity operator can be resolved into a complete sum over orthogonal projec-
tions:

|Φ⟩= ∑
i3,···iN

∣∣eiN
〉

N · · ·
∣∣ei3
〉

3

〈
ei3
∣∣
3 · · ·

〈
eiN
∣∣
N |Φ⟩=

= ∑
i3···ik

|ψ(i3, · · · , ik)⟩1

∣∣ei3
〉

3 · · ·
∣∣eik
〉

k ∑
ik+1···iN

∣∣ψ ′(ik+1, · · · , iN)
〉

1

∣∣eik+1
〉

k+1 · · ·
∣∣eiN
〉

N ,

(5.109)

showing that |Φ⟩ factorize into a product, contradicting the assumption that it was an
entangled state ■.
It is important to note that Popescu’s solution is limited to systems that preserve entan-
glement between pairs. Consequently, it cannot be applied to states belonging to the
GHZ equivalence class, as the partial trace over N −2 subsystems defines a separable
bipartite state. As a result, no violation of Popescu inequality is ever observed for gen-
uine multipartite entanglement. We can easily verify this statement for a system with
N = 3, by computing the partial trace over a single qubit. The global state is:

|GHZ⟩= 1√
2
(|000⟩+ |111⟩) . (5.110)

The density matrix will be:

ρGHZ =
1
2
( |000⟩⟨000|+ |000⟩⟨111|+ |111⟩⟨000|+ |111⟩⟨111|) . (5.111)

We can trace out one of the three quibits, the first for example, and study the separabil-
ity of the bipartite density matrix:

ρ
GHZ
23 = Tr1(ρGHZ) =

1
2
(|00⟩⟨00|+ |11⟩⟨11|) , (5.112)
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Showing that it is separable, so, no quantum behaviors can be observed just consider-
ing a pair of system. This consideration highlights the need to define inequalities that
are specifically suited for testing genuinely entangled states.
The first criterion for identifying genuine multipartite nonlocality was formulated by
Svetlichny in 1987 [96]. Specifically addressing a three-party system, he derived a
Bell-type inequality that remains valid for any probability distribution satisfying Eq.
(5.99). Consequently, any violation of this inequality serves as conclusive evidence for
the existence of genuine tripartite nonlocality. Furthermore, such a violation inherently
implies the presence of genuine tripartite entanglement.
We now focus on the scenario where each party j performs one of two possible mea-
surements, denoted x j and x′j. All measurements are dichotomic, meaning their out-
comes are given by a j =±1 and a′j =±1. Svetlichny demonstrated that the following
inequality:

S3 = a1a2a′3 +a1a′2a3 +a′1a2a3 −a′1a′2a′3 +a′1a′2a3 +a′1a2a′3 +a1a′2a′3 −a1a2a3 ≤ 4
(5.113)

holds for any probability distribution satisfying Eq. (5.99). Here, the terms should be
interpreted as expectation values, where, for instance, a1a2a′3 represents the expectation
value of the product of measurement outcomes when the measurements performed are
x1,x2, and x′3. To gain further insight into Svetlichny’s inequality and to establish that
its violation implies genuine multipartite nonlocality, we adopt the approach of Bancal,
Brunner et al. [99]. We first rewrite the inequality as:

S3 = Sa′3 +S′a3 ≤ 4, (5.114)

where S = a1a2 +a1a′2 +a′1a2 −a′1a′2 is the CHSH expression, and S′ = a′1a′2 +a′1a2 +
a1a′2 −a1a2 is an equivalent form obtained by permuting primed and non-primed mea-
surements. Observing the structure of the inequality, we note that Charlie’s input set-
ting determines which version of the CHSH game Alice and Bob are playing. When
Charlie receives input x′3, Alice and Bob play the standard CHSH game; when Char-
lie receives x3, they play its symmetric counterpart. Thus, for any bipartite model of
Eq. (5.99), the bound S3 ≤ 4 holds. Considering the bipartition A|BC, Bob is aware
of the CHSH game version to be played with Alice, as he is in the same partition as
Charlie. However, since the CHSH game is inherently nonlocal, Alice and Bob can-
not overcome the local bound S = 2 or S′ = 2, given that they are spatially separated.
Consequently, the inequality S3 ≤ 4 remains valid for the bipartition A|BC. The same
argument applies to the bipartition B|AC. Since the polynomial is symmetric under the
permutation of parties, it follows that S3 ≤ 4 for all bipartitions. The inequality (5.113)
serves as a powerful tool for detecting genuine multipartite nonlocality in significant
classes of quantum states, including the GHZ state. Svetlichny’s inequality has been
extended to accommodate an arbitrary number of parties, n, as demonstrated by Collins
[100] and Seevinck and Svetlichny [101]. Following a similar approach used to derive
Svetlichny’s inequality from CHSH , it is possible to obtain the generalized form:
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Sn = Sn−1a′n +S′n−1an ≤ 2n−1, (5.115)

where S′n−1 is derived from Sn−1 by exchanging a1 with a′1 and vice versa [99].
At this stage, it is natural to ask whether entanglement and nonlocality in multipartite
systems are equivalent concepts. In the case of pure bipartite states, Gisin’s theorem
provides an affirmative answer to this question, a result that is also emphasized in
Popescu’s work. In these cases, entanglement and nonlocality are indeed synonymous.
However, this equivalence no longer holds for genuinely multipartite entangled states,
as demonstrated in [102]. In the cited work, the violation of Svetlichny inequalities
is analyzed for two specific states belonging to the GHZ class: the generalized GHZ
(GGHZ) states and the maximal slice (MS) states, defined as follow:

|ψGGHZ⟩= cosθ1 |000⟩+ sinθ1 |111⟩ , (5.116)

|ψMS⟩=
1√
2
(|000⟩+ |11⟩(cosθ3 |0⟩+ sinθ3 |1⟩)) . (5.117)

For instance, the well-known GHZ state, which belongs to both subsets, corresponds
to the specific values θ1 = π/4 and θ3 = π/2.
Like other Bell-type inequalities, the Svetlichny inequality is expressed in terms of the
expectation value of a Bell-type operator Ŝ, which satisfies the bound:

|⟨Ŝ⟩| ≤ 4. (5.118)

However, it has been shown that the maximum expectation values of Ŝ for the GGHZ
and MS states are given by:

Ŝmax(ψGGHZ) =

{
4
√

1− τ(ψGGHZ) if τ(ψGGHZ)≤ 1
3 ,

4
√

2τ(ψGGHZ) if τ(ψGGHZ)≥ 1
3 ,

(5.119)

Ŝmax(ψMS) = 4
√

1+ τ(ψMS). (5.120)

Here τ(ψ) is the residual tangle (5.95) and quantifies tripartite entanglement, with:

τ(ψGGHZ) = sin2 2θ1, τ(ψMS) = sin2
θ3. (5.121)

These results indicate that the relationship between entanglement and nonlocality is
non-trivial in the multipartite case. While nonlocality can be inferred from entangle-
ment in bipartite pure states, multipartite entanglement does not necessarily imply the
violation of Bell-type inequalities such as the Svetlichny bound. Although both states
belong to the same class, they exhibit completely different behaviors. The most intrigu-
ing case is the GGHZ state, as the violation of Svetlichny inequalities is not always
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guaranteed. Specifically, for values of three-tangle τ(ψGGHZ) ≤ 1
3 , the expectation

value of the Bell operator Ŝ is a monotonically decreasing function of τ . In the limiting
case where τ → 0 , the expectation value approaches to:

⟨Ŝ⟩max → 4, (5.122)

which implies that no violation is possible in this regime. Conversely, for τ ≥ 1
3 , the

behavior of ⟨Ŝ⟩max is reversed, as the maximum violation is now proportional to τ .
To ensure that the Svetlichny inequality is violated, we impose the condition that the
argument of the square root in Ŝmax must be greater than 1. From this, we obtain the
necessary and sufficient condition for the violation of Svetlichny inequalities:

τ >
1
2
. (5.123)

This result highlights that, despite being a multipartite entangled state, the GGHZ state
does not always exhibit nonlocal correlations, reinforcing the fundamental distinction
between entanglement and nonlocality in multipartite quantum systems. On the other
side all Maximal Slice (MS) states consistently violate the Svetlichny inequality, indi-
cating that these states always exhibit some form of genuine multipartite nonlocality.
Equation (5.120) is directly analogous to the well-known result for two-qubit systems,
where bipartite entanglement determines the maximum violation of the CHSH inequal-
ity (5.55).
As anticipated in the previous paragraph, however, the definition of multimode nonlo-
cality is not unique. This lack of a unified definition leads to inconsistencies in deter-
mining the relationship between entanglement and nonlocality. It has been shown by
Almeida, et al.[97] that all connected graph states are fully genuinely nonlocal within
the no-signaling approach discussed in Sec.(5.6.2.1), while using the definition based
on time ordering (5.99), numerical evidence suggests that all pure genuine tripartite
entangled qubit states are genuine tripartite nonlocal [98]. Below, we present a table
summarizing the results obtained for both the bipartite and multipartite cases.
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State Type Bipartite Entanglement Multipartite Entanglement

Pure States
A pure bipartite state is given

by:

|ψ⟩= ∑
i

ci|i⟩1|i⟩2.

If at least two coefficients
ci ̸= 0, the state is entangled,

leading to the violation of Bell
inequalities → Gisin’ theorem.

entanglement ⇔ nonlocality

Genuinely Entangled: Not de-
composable as biseparable mixtures:

|GHZ⟩= 1√
2
(|000⟩+ |111⟩) .

Nonlocality depends on the specific
state. For |ψGGHZ⟩, entanglement ⇔
nonlocality if and only if τ(ψGGHZ) >
1
2 . For |ψMS⟩, entanglement ⇔ nonlo-
cality ∀τ(ψMS).

Biseparable: Separable in some bi-
partition but entangled in others.

|Φ⟩=⊗N
i=3 |φ⟩i ⊗|ψ⟩1,2

where |ψ⟩1,2 is an entangled bipartite
state. In this case,

entanglement ⇔ nonlocality

Mixed States if:

ρAB ̸= ∑
i

ciρ
A
i ⊗ρ

B
i ,

then the state is entangled.
However, in this case:

entanglement ̸⇒ nonlocality,
but entanglement ⇐ nonlocality

Example: Werner states

ρw = p
∣∣Ψ−〉〈

Ψ
−∣∣+(1− p)

I
4
,

1
3
< p ≤ 1

2
.

Can be a mixture of separable,
biseparable, or genuinely entan-
gled states.

Table 1: Comparison of Bipartite and Multipartite Non-locality in Pure and Mixed
States.

6 Non-Locality in continuous variable systems
We have seen, for the discrete case, how the non-local behavior of the correlations be-
tween two particles is revealed by the violation of Bell’s inequalities. In the context
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of continuous variable systems (position and momentum), the description takes place
in phase space by means quasi-distributions. The most relevant of these is the Wigner
function, which has the unique property of being negative in certain regions of phase
space. When this occurs, it implies non-local properties of the described system. This
naturally raises the question of whether the sign of the Wigner function is a necessary
and sufficient condition to predict non-local aspects. One of the first to attempt to an-
swer this question was Bell, who showed that an EPR state, whose non-local properties
were experimentally proved by Bhom, can be described in phase space by a always
positive Wigner function [103]. This implies that the EPR state allows a description
by means of a local model. We briefly report the simple derivation that Bell proposed.
The idea is to measure the positions of two spinless particles. In the EPR’ paper [3]
they measured also the momenta, but the easiest way to measure the momenta of free
particles is just to wait a long time and measure their positions. We can imagine to
measure at two different times t1, t2 the positions of the two particles and evaluating:

q̂1 + t1
p̂1

m1
; q̂2 + t2

p̂2

m2
. (6.1)

The time t1 and t2 plays the role of the two polarizer settings in the Bohm experimental
setup. The QM probability of finding, at times t1 and t2 respectively, the particles at
positions q1 and q2 respectively, is

ρ(q1,q2, t1, t2) (6.2)

with

ρ = |ψ(q1,q2, t1, t2)|2. (6.3)

The two-time wave function ψ satisfies the two Schrödinger equations

iℏ
∂ψ

∂ t1
= H1ψ =

(
p̂2

1
2m1

)
ψ (6.4)

iℏ
∂ψ

∂ t2
= H2ψ =

(
p̂2

2
2m2

)
ψ (6.5)

with

ip̂1 = ℏ
∂

∂q1
, ip̂2 = ℏ

∂

∂q2
. (6.6)

For simplicity, we will consider the case of equal masses, and take units such that

m1 = m2 = ℏ= 1. (6.7)
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The same ρ , (6.2), can be obtained from the corresponding two-time Wigner distribu-
tion:

ρ =
∫∫ d p1d p2

2π
W (q1,q2, p1, p2, t1, t2) (6.8)

where

W =
∫∫

dy1dy2 e−i(p1y1+p2y2)/ℏψ

(
q1 +

y1

2
,q2 +

y2

2
, t1, t2

)
ψ

∗
(

q1 −
y1

2
,q2 −

y2

2
, t1, t2

)
(6.9)

From (6.4), (
∂

∂ t1
+ p1

∂

∂q1

)
W =

(
∂

∂ t2
+ p2

∂

∂q2

)
W = 0. (6.10)

That is, W evolves exactly as does a probability distribution for a pair of freely-moving
classical particles:

W (q1,q2, p1, p2, t1, t2) =W (q1 − p1t1,q2 − p2t2, p1, p2, t1, t2) (6.11)

When W happens to be initially nowhere negative, the classical evolution (6.11) pre-
serves the non-negativity. The original EPR wave function

δ

(
(q1 +

1
2

q0)− (q2 −
1
2

q0)

)
, (6.12)

assumed to hold at t1 = t2 = 0, gives

W (q1,q2, p1, p2,0,0) = δ (q1 −q2 +q0)2πℏδ (p1 + p2). (6.13)

Since the initial Wigner function is non-negative, the time evolution will preserve this
condition. Thus in this case thr EPR correlations are precisely those between two clas-
sical particles in indipendent free motion. The question posed then by Bell was whether
the negativity of the Wigner function was a sufficient condition for violating local re-
alism. To answer to this question we have to wait until 1998, when Konrad Banaszek
and Krzysztof Wòdkiewicz [104, 105] made an essential contribution in understanding
the connections between non-locality and quasi-distributions in phase space. Below
we present the main results of their research.
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6.1 A Bell inequality from parity measurement
In the systems we are considering, states live in infinite-dimensional Hilbert spaces,
so it is complicated to define a measure equivalent to the discrete case of non-locality.
One would have to use a continuous Bell inequality for two parties. However, to the
best of our knowledge, there is no continuous variable Bell inequality for setups with
two parties with quantum violations. Another approach involves directly measuring a
binary quantity to test the CHSH inequality. As suggested in [106] a natural choice for
such a binary measurement is the parity operator, defined as

P̂ = eiπ n̂, (6.14)

where n̂ = â†â is the number operator. The parity operator has two eigenvalues, +1
and −1 (like the two possible outputs of the detectors in Sec.(5.2)), corresponding to
the subspaces spanned by Fock states with an even and odd number of photons, respec-
tively. To test the CHSH inequality, we must define different measurement settings for
Alice and Bob. This is done using the displaced parity operator:

Π̂(α) = D̂(α)P̂D̂†(α), (6.15)

where D̂(α) = D̂(ν ,µ) = exp
(
αa† −α∗a

)
is the phase-space displacement operator,

with α = (ν + iµ)/
√

2. Since the displacement operator D̂(α) is unitary, it does not
alter the spectrum of the parity operator, meaning Π̂(α) retains its binary nature. It
follows that any local realistic theory should satisfy the following bound on the CHSH
inequality

B = ⟨Π̂(α)⊗ Π̂(β )⟩+ ⟨Π̂(α)⊗ Π̂(β ′)⟩+ ⟨Π̂(α ′)⊗ Π̂(β )⟩−⟨Π̂(α ′)⊗ Π̂(β ′)⟩ ≤ 2.
(6.16)

Interestingly, it has been demonstrated that using displaced parity measurements, one
can reveal the non-locality of quantum states even when their Wigner function is strictly
positive [104, 105]. It is also noteworthy that the expectation value of the displaced
parity operator is directly related to the Wigner function W (α) of the state as follows:

⟨Π̂(α)⟩= π

2
W (α). (6.17)

Similarly, the expectation value of the tensor product of two displaced parity operators
corresponds to the two-mode Wigner function of the state. This will play an essential
role in the experimental setup discussed, where the Wigner function can be directly
measured.

6.1.1 Non-locality of the Einstein-Podolsky-Rosen state

As seen earlier, Bell’s attempt to reveal non-local properties of the EPR state high-
lighted the absence of a clear link between the negativity of Wigner function and
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non-locality. The relation between the EPR correlations and the Wigner distribution
function has been treated in several works [107, 108, 109, 110, 111, 112, 113], how-
ever, none of them presented results that contradicted those obtained by Bell. The only
aspect that was improved concerned the problem of normalization of the EPR state,
which was addressed through the proposal of a normalizable state that simulates the
EPR correlations. This problem has been solved by a ”smoothing” procedure of the
original wave function (6.12). An example of this procedure, with a clear application
to quantum optics, was the use of a two-mode squeezed vacuum state produced in a
process of non-degenerate optical parametric amplification (NOPA). As mentioned in
the previous paragraph, it was not until the works of Banaszek and Wódkiewicz that
the relationship between the Wigner function and non-locality was clarified [104, 105].
In fact, they demonstrated that, despite the Wigner function of the EPR state being pos-
itive definite, it still provides direct evidence of the nonlocal correlations exhibited by
this state. They showed that the positivity or the negativity of the quasi-distribution has
a rather weak relation to the non-locality of quantum correlations. In fact, the NOPA
wave function violates the Bell inequality and that the original EPR wave function
(6.12) exhibits strong non-locality, but one should be careful with the singular limit of
strong squeezing (in this limit, the NOPA state reduces to the EPR state). The NOPA
phase space will be parametrized by two complex coherent state amplitudes α and β

corresponding, respectively, to (x1, p1) and (x2, p2). The starting point of their proof is
an observation that the two-mode Wigner function W (α;β ) can be expressed as

W (α;β ) =
4

π2 ⟨Π̂(α;β )⟩, (6.18)

where Π(α,β ) is a quantum expectation value of a product of displaced parity opera-
tors:

Π̂(α;β ) = D̂1(α)(−1)n̂1 D̂†
1(α)⊗ D̂2(β )(−1)n̂2D̂†

2(b). (6.19)

As the measurement of the parity operator yields only one of two values, +1 or −1,
there exists an apparent analogy between the measurement of the parity operator and of
the spin- 1

2 projectors. The solid angle defining the direction of the spin measurement
is now replaced by the coherent displacement describing the shift in phase. As Eq.
(6.19) clearly demonstrates, the correlation functions measured in such experiments
are given, up to a multiplicative constant, by the joint Wigner function of the system.
Consequently, we have the fundamental relation

E(α;β )≡ Π(α;β ). (6.20)

The original EPR state is an unnormalizable delta function. In order to avoid problems
arising from this singularity, we will consider a normalizable state that can be generated
in a NOPA. Such a state is characterized by the dimensionless effective interaction time
r (the squeezing parameter). The Wigner function of this NOPA state is well known
and is given by
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Π(α;β ) = exp
[
−2cosh(2r)(|α|2 + |β |2)+2sinh(2r)(αβ +α

∗
β
∗)
]
. (6.21)

The Wigner function of the original EPR state is obtained in the limit r → ∞.
The correlation function is measured for any of four combinations of α = 0,

√
J and

β = 0,−
√

J, where J is a positive constant characterizing the magnitude of the dis-
placement. From these quantities, we construct the combination

B = Π(0;0)+Π(
√

J;0)+Π(0;−
√

J)−Π(
√

J;−
√

J), (6.22)

which evaluates to

B = 1+2exp(−2J cosh(2r))− exp
(
−4Je−2r). (6.23)

For local theories, B satisfies the inequality −2 ≤ B ≤ 2. One of the components
of the above combination describes perfect correlations: Π(0,0) = 1, obtained for a
direct measurement of the parity operator with no displacements applied. This is a
manifestation of the fact that in the parametric process, photons are always generated
in pairs. With increased r, the violation of Bell’s inequality is observed for smaller J.
In the asymptotic regime ( r → ∞ and J ≪ 0) we may approximate cosh2r, appearing
in the argument of the first exponent in Eq. (6.23), by e2r

2 . Then a straightforward
calculation shows that the maximum value of B (for this particular selection of coherent
displacements) is obtained for

Je2r =
1
3

ln2, (6.24)

and equals

B = 11−3 ·24/3 ≈ 2.19. (6.25)

Thus, in the limit r → ∞, when the original EPR state is recovered, a significant vi-
olation of Bell’s inequality takes place. The current discussion shows that although
the original EPR wave function (6.12) display strong non-locality. It class of states
violate the Bell inequality for a positive Wigner function. This example refutes var-
ious conjectures that linked the positivity or negativity of the Wigner function to the
violation of local realism. The authors have shown that in quantum mechanics, the
correlations can indeed be expressed by the Wigner function itself. This is because
the Wigner function can be directly associated with the parity operator, which can be
measured in a photon-photon coincidence experiment. The Wigner representations of
quantum observables cannot be in general interpreted as phase-space distributions of
possible experimental outcomes. In particular, the Wigner representation of the parity
operator is not a bounded reality corresponding to the dichotomic result of the measure-
ment. This enables violation of Bell’s inequalities even for quantum states described
by positive-definite Wigner functions.
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Figure 6: The optical setup proposed to demonstrate quantum nonlocality in phase
space. The exemplary source of nonclassical correlated radiation is a single photon in-
cident on a 50:50 beam splitter, which generates a quantum singletlike state. The mea-
suring devices are photon counting detectors preceded by beam splitters. The beam
splitters have the transmission coefficient close to one and strong coherent states in-
jected into the auxiliary ports. In this limit, they effectively perform coherent displace-
ments D̂(α) and D̂(β ) on the two modes of the input field. [105].

6.1.2 Testing Quantum Non-locality in Phase Space

The other important result obtained by Banaszek and Wòdkiewicz [105] it is the proof
that the Wigner function and Q function, which are phase-space quasi-distribution
functions, can directly represent non-local correlations in quantum mechanics. Specif-
ically, the authors propose an experimental setup to test quantum non-locality using
photon counting experiments that can be linked to these quasi-distributions. The setup
to demonstrate quantum non-locality in the phase space is presented in Fig.6. For con-
creteness, we will assume that the source of the correlated state of light is a single
photon impinging on a 50:50 beam splitter. The outgoing modes are labeled a and b.
From the following discussion, it will be clear that the same scheme can be employed
to test the non-local character of any correlated state of modes a and b, and that the cor-
responding Wigner and Q functions will serve as indicators of non-local correlations.
The quantum state of our exemplary source, written in terms of the outgoing modes,
takes a form analogous to the singlet state of two spin- 1

2 particles:

|Ψ⟩= 1√
2
(|1⟩a|0⟩b −|0⟩a|1⟩b). (6.26)

They have demonstrated how the non-locality of this state is revealed by the Wigner
and Q functions. Each measuring apparatus in the setup consists of a photon counting
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detector, preceded by a beam splitter with power transmission T . The second input
port of the beam splitter is fed with a highly excited coherent state |γ⟩. As is well-
known [114, 115, 116], in the limit T → 1 and γ → ∞, the effect of the beam splitter
is described by the displacement operator D̂(

√
1−T γ), with the parameter equal to

the amplitude of the reflected part of the coherent state. In contrast to the standard
approach, They were interested in events when no photons were registered. Let us
assign 1 to no-count event and 0 otherwise. This establishes a strict analogy with
two-particle coincidence experiments, where each of the spatially separated analyzers
provides a binary outcome. The role of adjustable parameters of the analyzers is now
played by coherent displacements a and b. Consequently, all Bell inequalities derived
for a measurement of local realities bounded by 0 and 1 can be applied to test the
nonlocal character of correlations obtained in our setup. This type of measurement is
described by a pair of two orthogonal projection operators depending on the coherent
displacement α =

√
1−T γ:

Q̂(α) = D̂(α)|0⟩⟨0|D̂†(α), (6.27)

and

P̂(α) = D̂(α)
∞

∑
n=1

|n⟩⟨n|D̂†(α), (6.28)

which satisfy the completeness relation:

Q̂(α)+ P̂(α) = I. (6.29)

The joint probability for no photon detections at both detectors is expressed as:

Qab(α,β ) = ⟨Ψ|Q̂a(α)⊗ Q̂b(β )|Ψ⟩= 1
2
|α −β |2e−|α|2−|β |2 . (6.30)

Meanwhile, the probability of no detection at one detector, say detector a, is given by:

Qa(α) = ⟨Ψ|Q̂a(α)⊗ Ib|Ψ⟩= 1
2
(
|α|2 +1

)
e−|α|2 , (6.31)

and similarly, for detector b, we have:

Qb(β ) = ⟨Ψ|Ia ⊗ Q̂b(β )|Ψ⟩= 1
2
(
|β |2 +1

)
e−|β |2 . (6.32)

To test nonlocality, measurements are carried out for two settings of coherent displace-
ments: one with zero displacement and another with either α for mode a or β for mode
b. Using these four measurement outcomes, we can form the Clauser-Horne combina-
tion [90] as:
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CH = Qab(0,0)+Qab(α,0)+Qab(0,β )−Qab(α,β )−Qa(0)−Qb(0), (6.33)

which must satisfy the inequality −1 ≤ CH ≤ 0 in any local hidden variable theory.
Next, assume the coherent displacements α and β have the same magnitude, i.e., |α|2 =
|β |2 = J, and differ only by a phase factor β = e2iω α . Substituting these values, the
Clauser-Horne expression simplifies to:

CH =−1+ Je−J −2Je−2J sin2
ω. (6.34)

The largest violation occurs when the phase difference ω is such that the term involving
sin2

ω is minimized, which happens when the coherent displacements have opposite
phases, i.e., β = −α . Finally the great result is now evident, since with a single-type
measurement, they obtain the violation of CH inequalities of correlations described by
Qab(α,β ). This one is equal, up to a multiplicative constant 1/π2 , to Q function of the
initial state |Ψ⟩. This definition has an obvious operational meaning, as we have dis-
cussed an experiment in which the non-local character of the Q function can be tested.
To provide an operational interpretation of the Wigner function, they examined next
the case where the detectors are able to distinguish the number of photons absorbed.
We assign the outcome +1 or −1 to each event, depending on whether an even or odd
number of photons is detected. This type of measurement can be described using two
projection operators:

Π̂+1(α) = D̂(α)
∞

∑
k=0

|2k⟩⟨2k|D̂†(α), (6.35)

and

Π̂−1(α) = D̂(α)
∞

∑
k=0

|2k+1⟩⟨2k+1|D̂†(α). (6.36)

The correlation function measured in our setup is determined by the expectation value
of the following operator:

Π̂ab(α,β ) =
(
Π̂+1(α)− Π̂−1(α)

)
⊗
(
Π̂+1(β )− Π̂−1(β )

)
. (6.37)

The link with the Wigner function ,of the state |Ψ⟩, is immediately clear if we rewrite
this operator in terms of the parity operator −1n̂a+n̂b :

Π̂ab(α,β ) = D̂(α)D̂(β )(−1)n̂a+n̂bD̂†(α)D̂†(β ), (6.38)

which is one of equivalent definitions of the Wigner function [117, 118]. An easy
calculation provides the expectation value of the operator Π̂ab(α,β ) for the state |Ψ⟩:
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Πab(α,β ) = ⟨Ψ|Π̂ab(α,β )|Ψ⟩= (2|α −β |2 −1)e−2|α|2−2|β |2 . (6.39)

We now introduce the average of the Bell operator:

B = Πab(0,0)+Πab(α,0)+Πab(0,β )−Πab(α,β ), (6.40)

where local hidden variable theories impose the constraint −2 ≤ B ≤ 2. For simplicity,
we assume the magnitudes of the coherent displacements to be equal, i.e., |α|2 = |β |2 =
J, with a certain phase difference between them, β = e2iω α . Under these assumptions,
the combination B takes the form

B =−1+(4J−2)e−2J −8J sin2(ω)e−4J . (6.41)

This result violates the lower bound imposed by local hidden variable theories. The
strongest violation occurs when ω = π

2 , that is, when the coherent displacements have
opposite phases. Therefore, its equivalence to the correlation function that violates the
CHSH inequality was also derived for the Wigner function. It is interesting at this
point to understand whether the non-locality just demonstrated is in any way related
to the non-positivity of the Wigner function. The Wigner function of the state |Ψ⟩,
which contains only a single photon, is not positive definite and demonstrates the non-
local nature of quantum correlations. This non-local characteristic of the phase-space
Wigner function can be directly observed in an experiment involving a detector capable
of resolving the number of absorbed photons. However, it is important to note that if
one performs the same measurement for an incoherent mixture of the two components
that make up the state |Ψ⟩, the joint correlation is given by

(2|α|2 +2|β |2 −1)e−2|α|2−2|β |2 . (6.42)

This joint correlation corresponds to the Wigner function of the incoherent mixture.
While this function is also not positive definite, it does not display quantum interfer-
ence effects. As a result, in this case, the Bell inequality is not violated. This highlights
that the non-positivity of the Wigner function alone does not guarantee the violation
of local realism. In conclusion, we have shown that phase-space quasi-distribution
functions, specifically the Wigner function and the Q function, encode explicit infor-
mation regarding the non-locality of entangled quantum states. This stems from the
fact that these two quasi-probability distributions are directly linked to non-local corre-
lation functions, which can be experimentally measured in a class of photon-counting
experiments involving the application of coherent displacements.

7 Conclusions
As anticipated in the introduction, the central objective of this work has been to provide
a detailed analysis of entanglement and its non-trivial relationship with non-locality,
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with a particular emphasis on continuous-variable systems. In the first part of this the-
sis, we focused on the quantization of the electromagnetic field, which serves as the
foundation for defining the quantum states used in quantum optics. We introduced key
quantum states such as Fock states, coherent states, and squeezed states, which are par-
ticularly relevant for quantum communication. Among these, Gaussian states play a
fundamental role due to their analytical tractability and direct applicability in quantum
information processing [119, 7, 10, 9].
The subsequent section was dedicated to introducing fundamental concepts in quan-
tum information theory, including the definition of qubits and qutrits, as well as the
characterization of entanglement in discrete-variable systems. Once the basic concepts
were established, we aimed to develop a systematic methodology to distinguish entan-
gled states from separable ones. This led us to introduce the Positive Partial Transpose
(PPT) criterion, which provides a clear entanglement measure: Negativity.
The study of discrete systems was later extended to cases where the Hilbert space is
infinite-dimensional, specifically to continuous-variable (CV) systems described by po-
sition and momentum operators. These systems are often analyzed using semi-classical
representations of the density matrix, employing quasi-probability distributions. While
these distributions mimic classical behavior, they also retain purely quantum features
that cannot be described classically. One of the most important tools in this context is
the Wigner function, which allows for a phase-space representation of quantum states.
A particular class of states examined within this framework is the Gaussian state class,
characterized by a Gaussian Wigner function. This property implies that the entire in-
formation defining the state, including its entanglement properties, is fully contained
in the covariance matrix σ . In fact, the subsequent analysis exploits this covariance
matrix, along with its physically equivalent representations, which can be obtained
through appropriate symplectic transformations.
The next step was to precisely define entanglement in continuous-variable systems, and
one of the most elegant approaches to this was provided by Simon’s criterion. Simon
reformulated the PPT criterion in terms of mirror reflection in phase space, offering
a fundamental tool for determining the separability of Gaussian states in continuous-
variable systems. Then we have extended the Negativity measure to CV systems by
exploiting it as a function of the eigenvalues of the covariance matrix.
The next section focuses on the analysis of entanglement for mixed Gaussian states,
examining its dependence on both marginal and global mixedness, quantified through
the generalized p-entropy. The discussion highlights the existence of two classes of ex-
tremal entangled states: Gaussian Least Entangled Mixed States (GLEMS) and Gaus-
sian Maximally Entangled Mixed States (GMEMS). The GLEMS can be regarded as
semi-classical states, as their symplectic spectrum partially saturates the Heisenberg
minimum uncertainty condition (ν− = 1,ν+ > 1). Conversely, GMEMS belong to
the class of asymmetric two-mode squeezed thermal states, which exhibit stronger en-
tanglement properties. A key result of this analysis is that, although the existence of
extremal states is robust across different entropic measures, their role is reversed for
entropy measures with p > 2 for specific values of global and marginal purities. In this
regime, GLEMS become the Gaussian maximally entangled states, while GMEMS
transform into the Gaussian least entangled states.
The second half of this work focuses on defining the concept of non-locality and its
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relationship with entanglement. This concept is introduced through the study of Bell’s
work and the inequalities he formulated. As discussed, these inequalities can be vio-
lated by entangled states, demonstrating the impossibility of simulating quantum cor-
relations using a local hidden variable model. The Gisin theorem is presented, showing
that all entangled pure states violate Bell’s inequalities, thereby exhibiting non-locality.
However, when extending this result to mixed states, this double implication no longer
holds. In fact, there exist entangled states that do not violate Bell’s inequalities. A
paradigmatic example of such mixed states is given by Werner states.
The complexity of the entanglement-nonlocality relationship increases significantly in
multipartite systems, where multiple parties share quantum correlations. Unlike the
bipartite case, multipartite non-locality manifests in different forms, including:

• Genuine Multipartite Non-Locality: Systems where all subsystems share non-
local correlations that cannot be reduced to bipartite interactions.

• Bipartite Non-Locality in Multipartite Systems: Cases where non-local cor-
relations exist only between specific pairs of subsystems.

Gisin’s results have been generalized to the multipartite case by Popescu, who demon-
strated that multipartite states preserving pairwise entanglement always violate Bell
inequalities. Consequently, in this scenario, entanglement and non-locality become
equivalent concepts. For what concern the Genuine multipartite non-locality a funda-
mental result is Svetlichny’s theorem, which extends Bell inequalities to three or more
parties. If violated, it implies that the observed correlations cannot be decomposed
into a combination of bipartite non-locality and local correlations. However, unlike
in bipartite pure states where entanglement always implies non-locality multipartite
entanglement does not always lead to multipartite non-locality. This distinction un-
derscores the increasing complexity of non-local correlations in multi-party quantum
systems.
In the case of continuous-variable (CV) systems, the concept of non-locality extends
beyond the traditional Bell inequalities formulated for discrete systems. Given that all
the information about a quantum state is contained in its Wigner function, it is natural to
ask whether non-local properties can also be inferred from it. A common assumption
in early studies of non-locality was that a negative Wigner function was a necessary
condition for the violation of Bell inequalities. However, several studies, including
Bell’s own work, have demonstrated that this is not necessarily the case. A striking
example is provided by the Einstein-Podolsky-Rosen (EPR) state, which, despite being
highly non-local, is described by a positive Wigner function. This result refuses the
conjecture that Wigner negativity is a strict prerequisite for non-locality. Instead, it has
been shown that non-locality can be directly analyzed through the expectation values of
displaced parity operators, that is inherently non-Gaussian operator, which are closely
related to the Wigner function. The key advantage of the parity operator is that, despite
acting in an infinite-dimensional Hilbert space, its two eigenvalues (+1 or -1) allow it
to simulate the binary nature of spin measurements in traditional Bell tests. This prop-
erty enables the derivation of a CHSH-type Bell inequality in phase space, which can
be used to test non-locality in continuous-variable systems without requiring spin-like
observables. This leads to the remarkable conclusion that an EPR state can violate
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Bell inequalities based on parity measurements, despite its Wigner function remaining
entirely positive. These results have significant implications for the development of
continuous-variable quantum technologies, including quantum cryptography, quantum
networks, and high-precision quantum sensing. The distinction between entanglement
and non-locality in CV systems suggests that Gaussian quantum information proto-
cols may require additional non-Gaussian resources to fully exploit the advantages of
non-local correlations.
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