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Abstract

In the last few decades, Machine Learning has experienced rapid growth thanks
to the development of hardware technologies, and the improvement of optimiza-
tion algorithms, and computational capabilities. It found space in a variety
of businesses, such as in the engineering field, where several neural network
architectures can be employed, enabling the processing of a huge amount of data
and solving complex problems, such as solving partial differential equations.
That is noteworthy since the partial differential equations constitute the gov-
erning laws to model the physics behind most engineering problems. Their
solution is crucial for understanding the behavior of the systems, but usually is
complex and requires advanced computational techniques.
In this context is located fracture mechanics, the field of study that examines
and predicts how cracks propagate through the structures, to understand how
and when failure occurs.
The current work aims to simulate fracture in two bi-dimensional plates by
exploiting the potential of neural networks. The study is carried out using Vari-
ational Physics-Informed Neural Networks. This type of structure includes the
governing equations directly into its architecture, guaranteeing their fulfillment
and proving their suitability to investigate the phenomenon.
To study the fracture behavior, the phase-field model is adopted, which is
based on a global energy approach. Therefore, the Deep Energy Method is em-
ployed to approximate the solution of the differential equations characterizing
the phase field model. In this innovative approach the loss function that get
minimized is the overall energy of the system.
The results so obtained are compared with the FEM simulation ones, conducted
using COMSOL Multiphysics software and adopting the phase-field method.
Consequently, the capabilities and the criticalities of the neural network model
are highlighted.
The first study investigated a mode I fracture and revealed a good level of accu-
racy in the results predicted by the neural network. Indeed, both the damage
and displacement fields are well approximated once the model parameters have
been tuned. However, this level of accuracy significantly affects computational
times. It was therefore shown that it is possible to obtain reasonable results in
a shorter computational time by sacrificing some accuracy.
The second study highlighted the capability of the neural network to track a
mixed mode I-II fracture.
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The crack path is outlined, but some differences come out in the field dis-
tribution. However, the computational time is extremely short, making this
approach convenient.

This study shows that neural networks have great potential in fracture mechan-
ics, as they can provide a fairly accurate estimate of fracture propagation. The
results of this project are promises for further developments in the future.
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Introduction

Materials’ behavior and structure failure over time play a primary role in
mechanical design. Without their understanding, sudden collapses may occur
causing safety problems. Moreover, lacking proper knowledge, technical re-
quirements and safety standards cannot be satisfied.
It is clear that understanding crack nucleation, propagation, and their effect
on the resistance of the material is essential. Indeed, cracks are responsible for
major structural collapses, which can happen without a warning.
Experimental tests are often impractical and expensive and, consequently, they
cannot be performed in every situation. Furthermore, the majority of physical
phenomena are typically described by partial differential equations (PDEs).
Their analytical solution is not always available, and, due to their complexity,
a numerical resolution is the only alternative.
All these needs, over the years, led to the development of several numerical
approaches that allowed the resolution of the PDEs and made the material
response available in different scenarios without conducting physical tests.
Nowadays, many methods are available for simulating cracking and, within
these, the phase-field method is particularly suitable since the crack geometry
doesn’t need to be explicitly tracked. Instead, it is described by a continuous
phase variable, enabling the description of both nucleation and damage propa-
gation.
At the same time, thanks to the constant evolution of machine learning, inno-
vative methods are emerging. In particular, adopting neural networks to model
fracture behavior has recently become widespread.
Physics-Informed Neural Networks (PINNs) and Variational Physics-Informed
Neural Networks (VPINNs) are capable of solving the PDEs, supplying a
numerical solution. In light of that, they appear as a promising alternative to
more traditional methods.
In this work, the study of bi-dimensional plates is conducted, under the as-
sumptions of linear elastic fracture mechanics, using the phase-field method in
COMSOL Multiphysics and then through neural networks.
The main purpose is to evaluate the ability of neural networks to predict
fracture propagation, to assess if they can be a suitable approach.

In the first chapter, an overview of the main numerical methods used to
study fracture propagation is presented, including the phase-field method,
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which is the one adopted in this work.
Next, the topic of artificial neural networks is introduced describing their archi-
tecture, the training process, and the most common optimization algorithms
that enable it.

The second chapter describes two classes of neural networks: PINNs and
VPINNs. They are especially suitable to be applied in the engineering field,
such as in fracture mechanics, since they allow the fulfillment of the PDEs by
integrating them into their structure. Next, a description of the Deep Energy
Method (DEM) is provided. This approach optimizes network parameters
minimizing the global energy of a system.
The Kolmogorov-Arnold Neural Network (KAN) architecture is then briefly
introduced as an alternative to classical PINNs.

In the third chapter, it is explained how DEM and the phase-field equa-
tions are integrated to study fracture propagation and solve the damage and
displacement fields. Then, an in-depth analysis of the types of discretization
and the integration methods used to solve the variational problem is presented.

In the fourth chapter, the implementation of the phase-field method within the
software COMSOL Multiphysics is shown.
Initially, it describes how to use the built-in model already present within the
software. In the second part, it is deeply explained the procedure to manually
implement the governing equations characterizing this method.

Finally, two bi-dimensional plates are analyzed in the fifth chapter. Here,
crack nucleation and propagation are investigated through the two explored
approaches: phase-field in COMSOL Multiphysics and neural network-based
predictions.
The presented results are analyzed and a comparison is made to validate the
accuracy of the neural network approximation.

In the last chapter, a conclusive summary of the work is conducted.
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Chapter 1

Theoretical Foundations

During their life, structures are subjected to several stresses that can lead to
crack nucleation and propagation, causing their structural collapse.
The topic of fracture plays a fundamental role in the engineering field, as failure
prevention is one of the primary constraints in mechanical design.
Since carrying out experimental tests at each design stage is impossible, differ-
ent numerical models and techniques have been developed to model fracture
phenomena [1].
The first part of this chapter is dedicated to the description of some numerical
models used to predict fracture evolution. Following this order, it includes the
Linear Elastic Fracture Mechanics, the J-Integral, and the Phase-field Model.
This last method is deeply discussed as it is the one adopted in the present
work.
The second part presents the basic architecture and functioning of neural
networks: there are described the forward and the backward propagation and
the most common activation functions, with a final digression on regularization
techniques.

1.1 Fracture Mechanics

1.1.1 Linear Elastic Fracture Mechanics
Linear Elastic Fracture Mechanics (LEFM) describes fracture in materials
under the hypothesis of linear elasticity, through a discrete approach.
It allows the rating of the extension and the direction of crack growth before
the component fails, as well as the determination of the minimum load required
to initiate crack propagation, which can occur in two modes: stable or unstable.
In stable propagation, an increasing external load is required to allow further
crack growth. Conversely, in unstable propagation, the crack continues to grow
without an increasing external load [2].
This theory is valid only if the plastic zone at the crack tip is negligible com-
pared to the total crack dimensions. In other words, the material’s behavior
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1.1. FRACTURE MECHANICS

must be linear elastic up to fracture and the plastic deformation must remain
confined to a small zone around the crack tip [2].
The stress state at the crack tip can be described using either a global energetic
approach or an approach based on the determination of the stress intensity
factor [3].
The energetic approach, initially developed by Griffith for ideally brittle mate-
rials, is based on a total energy balance of the entire system.
Considering a cracked elastic plate and its loading system [4], the corresponding
total energy U is expressed as

U = Uo + Ua + Uγ − F (1.1)

where

• Uo is the elastic potential energy of the plate before the introduction of
the crack;

• Ua takes into account the change in elastic potential energy resulting from
the introduction of the crack;

• Uγ is the surface energy contribution due to the creation of new surfaces;

• F represents the work done by external forces.

Since U is a function of the half crack length a, the equilibrium condition
concerning the crack extension can be derived by imposing

dU

da
= 0 (1.2)
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1.1. FRACTURE MECHANICS

Figure 1.1: Variation of U as a function of a [4].

As illustrated in Fig.1.1, the equilibrium position marks the transition from
stable to unstable crack growth. The unstable regime occurs when U decreases
with the crack length, which happens after U reaches its maximum value.
Mathematically, this can be expressed as

dU

da
< 0 (1.3)

or,since U0 is independent of a

d(Ua + Uγ − F )
da

< 0 (1.4)

Rearranging Eq.(1.4)
d(F − Ua)

da
>
dUγ

da
(1.5)

−dUp

da
>
dUγ

da
(1.6)

The extension of the crack by a quantity equal to da causes a decrease in
potential energy and, at the same time, an increase in surface energy.
According to Eq.(1.6), for crack growth to occur, the energy available for crack

5



1.1. FRACTURE MECHANICS

extension must be greater than the energy required.
The energy available for an increment of crack extension d(2a) was defined by
Irwin as the energy release rate G, while the energy required for that increment
is defined as the crack resistance R, which is a material property [4].
In light of this distinction, Eq.(1.6) can be expressed in a simpler form as

G = d(F − Ua)
d(2a) > R = dUγ

d(2a) (1.7)

If the crack size is small relative to the dimensions of the plate and the load
conditions are fixed - meaning no external work is performed - the energy Ua

of a finite plate approximates that of an infinite plate

G = d(−Ua)
d(2a) ≈ d

d(2a)(πσ
2a2

E
) = πσ2a

E
(1.8)

The surface energy Uγ is given by the product of the material’s surface tension
and the crack’s surface area, which consists of two surfaces, each having a
length of 2a.

Uγ = 2(2aγe) (1.9)
Finally, for a small central crack in a large plate loaded under fixed grip
conditions, Eq.(1.7) becomes

G = πσ2a

E
> Gc = R = 2γe (1.10)

This criterion is effective for brittle materials, where plastic deformation can
be entirely neglected.
Later, a modification was proposed by Irwin and Orowan to extend Griffith’s
criterion to both brittle materials and metals that exhibit plastic deformation
[4]. The condition for crack propagation is thus modified as:

G = πσ2a

E
> Gc = 2(γe + γp) = R (1.11)

where γp is the plastic strain work.
The second approach is based on the evaluation of the stress intensity factor
K, which depends on the applied nominal stress σ, the length of the crack a,
the geometry of the specimen, and the crack location through the geometric
factor Y .
It is generally expressed in the form

K = Y σ
√
a (1.12)

According to Irwin’s theory [2], the stress field at the crack tip is given by the
equation

σij = K√
2πrc

fij(θ) (1.13)

where
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1.1. FRACTURE MECHANICS

• K is the stress intensity factor;

• σij represents the components of the stress tensor;

• rc and θ are the polar coordinates with the origin at the crack tip;

• fij(θ) is a dimensionless shape function.

K and fij(θ) vary depending on the type of crack propagation.
There are three cracking modes [5]:

• Mode I or opening mode: the load is perpendicular to the crack plane
and tends to open the crack;

• Mode II or sliding mode: the shear load is parallel to the crack’s plane
and tends to slide one crack face with respect to another;

• Mode III or tearing mode: the fracture is identified by the lateral shear
movement of the two crack surfaces relative to each other. The shear load
is perpendicular to the crack direction and it generates an out-of-plane
deformation.

The stress fields due to each mode are expressed by the following set of equations
[2] 

σxx = KI√
2πrc

cos( θ
2)[1 − sin( θ

2)sin(3θ
2 )]

σyy = KI√
2πrc

cos( θ
2)[1 + sin( θ

2)sin(3θ
2 )]

τxy = KI√
2πrc

sin( θ
2)cos( θ

2)cos(3θ
2 )]

σzz = ν(σxx + σyy)

τxz = τyz = 0

(1.14)



σxx = KII√
2πrc

sin( θ
2)[2 + cos( θ

2)cos(3θ
2 )]

σyy = KII√
2πrc

sin( θ
2)cos( θ

2)cos(3θ
2 )]

τxy = KII√
2πrc

cos( θ
2)[1 − sin( θ

2)sin(3θ
2 )]

σzz = ν(σxx + σyy)

τxz = τyz = 0

(1.15)



σxx = σyy = σzz = τxy = 0

τxz = KIII√
2πrc

τyz = KIII√
2πrc

cos( θ
2)

(1.16)
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1.1. FRACTURE MECHANICS

The mode I takes place most frequently; however, depending on the type of
load, a mixed mode can also occur.
As can be seen from the set of equations above, the stress tends to infinity as
rc approaches zero, indicating that the stress at the crack tip is infinite [4].
This result describes a stress singularity which, from a physical point of view,
is an inconsistency. In reality, there is a small plastic region around the crack
tip that limits the stress value.
However, if the plastic region has negligible dimensions and does not alter
the stress distribution in the vicinity of the crack tip, the hypothesis of linear
elasticity is valid, and LEFM can be applied.
Due to the use of K to characterize the stress field, a threshold parameter can
be identified to formulate a fracture criterion.
If the component is subjected to a single cracking mode, this limit is identified
as Ki,cr and it is called fracture toughness [2].
Unstable crack propagation occurs when the material is unable to withstand
the stresses at the crack tip. This can be expressed through the following
formulation

Ki ≥ Ki,cr (1.17)
The mixed-mode case requires a more general formulation of the type [1]

f(KI , KII , KIII) = 0 (1.18)

There is a direct relationship between the stress intensity factor K and the
energy release rate G. For a given mode i, the expressions are as follows [2, 4]

GI =


K2

I

E
, for plane stress

(1−ν2)K2
I

E
, for plane strain

(1.19)

GII = (1 − ν2)K2
II

E
(1.20)

GIII = K2
III

2µL

(1.21)

where E is the Young’s modulus, ν is the Poisson ratio and µL is the shear
modulus.

Crack propagation can also occur due to fatigue under the application of a
cyclic loading characterized by a stress range ∆σ = σmax − σmin.
The stress at the crack tip can be evaluated as the difference between the
maximum and the minimum intensity factors associated with the loading cycle,
as expressed by Eq.(1.22) [4].

∆K = KI,max −KI,min = Y (σmax − σmin)
√
a = Y∆σ

√
a (1.22)

Thanks to experimental studies, it was possible to correlate ∆K with the
fatigue crack propagation rate, which is the differential ratio between the crack
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1.1. FRACTURE MECHANICS

extension da and the number of cycles dN .
Plotting this relation on a logarithmic scale, it is possible to observe that the
process of crack growth can be divided into three different stages, according to
Fig.1.2 [2, 4].

Figure 1.2: Crack growth rate curve (da/dN) as a function of the stress
intensity factor range (∆K) [6].

• Stage I: nucleation of small cracks. It is characterized by a threshold
parameter ∆Kth below which there isn’t an appreciable crack growth, so
until the following relation is valid

∆K < ∆Kth (1.23)

• Stage II: stable propagation of cracks

• Stage III: the crack growth rate rises rapidly, causing unstable propagation.
Kmax reaches the critical stress intensity factor leading to component
failure.

The stable propagation is usually described by Paris’ law, which establishes a
linear relationship between log da

dN
and log ∆K and is defined as

da

dN
= C(∆K)m (1.24)

where C and m are materials constants determined experimentally [2].
While this law is applicable for mode I loading [7], many failures occur due to
cracks subjected to mixed-mode loading. It is possible to extend Paris’ law by
evaluating ∆Keq, which is a combination of KI and KII , and substituting it
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1.1. FRACTURE MECHANICS

in Eq.(1.24). In Table 1.1 are reported the most common expressions used for
∆Keq.

Source ∆Keq models

Tanaka1 ∆Keq = (∆K2
I + 2∆K2

II)1/2

Tanaka2 ∆Keq = (∆K4
I + 8∆K4

II)1/4

Irwin ∆Keq =
ñ

∆K2
I + ∆K2

II

Yan, et al ∆Keq = 1
2 cos θ

2 [∆KI(1 + cos θ) − 3∆KII sin θ]

Hussain, et al ∆Keq =

öõõõõõô
4

(3 + cos2 θ)2

31 − θ/π

1 + θ/π

4θ/π è
(1 + 3 cos2 θ)∆K2

I

+4 sin 2θ ∆KI∆KII + (9 − 5 cos2 θ)∆K2
II

é
Richard, et al ∆Keq = ∆KI

2 + 1
2

ñ
∆K2

I + 4(1.155∆KII)2

Table 1.1: Models for ∆Keq from [7].

By integrating Eq.(1.24), the increment in the number of cycles ∆Ni associated
with a specific crack growth can be determined. In this manner, it becomes
possible to determine the total number of cycles that the component can stand
before experiencing failure. Indeed, the fatigue life cycle is determined by
summing ∆Ni for each step [6], following the equation

Nt =
nØ

i=1
∆Ni (1.25)

It should be noted that the main drawback of LEFM theory is its inability to
model the crack nucleation stage: fracture can be predicted only in bodies with
pre-existing cracks, so a priori presence of a crack is assumed [2].

1.1.2 J integral
A method widely employed to characterize fracture behavior at the crack tip in
elasto-plastic materials is the J contour integral, a path-independent parameter
introduced by Rice in 1968 [3].
The main assumption behind this theory is idealizing elastic-plastic deformation
as nonlinear elastic. In this latter case, even if the material’s behavior is
nonlinear, there is a unique relationship between stress and strain. The two
models are essentially equivalent as long as stresses increase monotonically.
Thus, this approximation is valid until unloading or cyclic loading occurs, since
elastic-plastic materials exhibit irreversible plasticity and hysteresis.
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1.1. FRACTURE MECHANICS

The J integral [3] for a two-dimensional fracture problem, considering any
counterclockwise path Γ surrounding the crack tip, is defined as

J =
j

Γ

A
w dy − Ti

dui

dx
ds

B
(1.26)

where

• w is the strain energy density;

• Ti are the components of the traction vector acting on the path, defined as
Ti = σijnj, where nj represents the components of the unit vector normal
to Γ;

• ui are the displacement vector components;

• ds is a length increment along the contour Γ.

Rice demonstrated two key properties of the J integral: its value is independent
of the integration path and it is equivalent to the energy release rate when
LEFM is valid [2].
This implies that, for the linear elastic case, the following relationship holds [8]

G = J = 1
Ē

(K2
I +K2

II) + 1 + ν

E
K2

III (1.27)

where

Ē =


E

1−ν2 for plane strain,

E for plane stress.
(1.28)

The J integral [3] can be regarded not only as an energetic parameter but also
as a stress intensity factor, as described by the HRR theory, from Hutchinson,
Rice and Rosengren.
Assuming a power-law hardening material of the form

ϵ

ϵ0
= σ

σ0
+ α( σ

σ0
)n (1.29)

the stresses and strains ahead of the crack tip can be expressed using the
following formulation

σij = k1(
J

r
)

1
n+1 (1.30)

ϵij = k2(
J

r
)

n
n+1 (1.31)

where σ0 is a reference stress value usually equal to the yield strength, ϵ0 = σ0
E

,
α is a dimensionless constant, k1 and k2 are proportionality constants and n is
the strain hardening exponent.
A similarity with the LEFM theory can be observed: when r approaches

11



1.1. FRACTURE MECHANICS

zero, the stress approaches infinite values, showing a singularity called HRR
singularity [3]. In reality, plastic deformations cause the blunting of the crack
tip and the reduction of the stress intensities. This region is called large
deformation area, and the HRR theory is not valid due to significant plasticity.
As initially described, the approximation underlying this theory assumes the
behavior of an elastic-plastic material to be nonlinear.
This approach has some limitations in the fracture studies of ductile materials,
where some unloading processes occur due to crack propagation. In these cases,
the J integral is no longer path-independent and the use of this approximation
is not adequate. Instead, a flow theory of plasticity is required to accurately
describe the material’s behavior [8].
Moreover, the J integral method can evaluate the stability of pre-existing crack-
like but cannot predict crack initiation and propagation from stress raisers or
notches and it is not applicable to arbitrarily complex geometries [9].

1.1.3 Phase-field model
Phase-field modeling provides a viable method for representing fracture phe-
nomena. It can effectively simulate complex processes, such as crack initiation,
propagation, merging, and branching assuming that the discontinuities intro-
duced by the crack are not sharp, but can be approximated as diffuse damage
using a scalar field parameter, known as phase-field variable (d). This parameter
d varies continuously across the space assuming values that go from 0 to 1,
distinguishes the intact from the cracked material, in accordance with Eq.(1.32)

d(x) =
0, unbroken material

1, completed broken material.
(1.32)

The evolution of d due to external loading conditions models the fracture
process and the propagation of cracks is automatically tracked.
As a result, the representation of fractures is no longer dependent on geometry
or mesh [1, 2, 9].
The phase-field model is derived from the pioneering work of Francfort and
Marigo [10], who developed a variational theory of fracture grounded in energy
minimization principles.
Later, Bourdin et al.[11] introduced a regularized formulation to facilitate
efficient numerical implementation by introducing a length scale parameter (l0),
which governs the width of the diffusive crack zone and determines the region
over which the variable d evolves. The phase-field model converges to Griffith’s
theory for brittle fracture as l0 tends to zero [2].
The determination of the correct value for the length scale parameter is still
challenging, as it significantly affects the accuracy of the results and must
account for both the material properties and the numerical discretization. A
poorly chosen l0 can lead to inaccurate simulations, as it influences the width
of the damage transition zone, which, in turn, impacts fracture propagation.
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1.1. FRACTURE MECHANICS

Additionally, it needs to be compatible with the mesh resolution, as an im-
proper scale may either require an excessively fine mesh or lead to numerical
instabilities.
Borden et al. in [12] defined an empirical formulation for an initial estimation
of l0, which is directly linked to material properties as it is expressed by the
following formulation

l0 = 27EGc

256 σ2
cr

(1.33)

where Gc is the critical release rate, E is the Young modulus, σcr is the critical
stress and they can be determined through experimental tests [13].
The rate-independent dynamic phase-field model [9, 14] was introduced by
Borden et al. as an extension of the quasi-static model of Bourdin et al..
Consider an arbitrarily shaped domain Ω ⊂ Rd, with d as the spatial dimension,
having boundary ∂Ω, as shown in Fig.1.3. The body contains a crack denoted
by Γ. Let u(x, t) ∈ Rd be the displacement of a point x ∈ Ω at time t which
satisfies the Dirichlet and Neumann boundary conditions on ∂ΩD and ∂ΩN ,
with ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩN ∩ ∂ΩD = ∅.

Figure 1.3: Schematic of a solid with (a) a sharp and (b) a regularized diffuse
crack [15].

According to Griffith’s theory, when cracks propagate, a part of the strain
energy density is dissipated and stored as fracture energy. The governing
equation of the problem [2, 15] can be derived from the total potential energy
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1.1. FRACTURE MECHANICS

of the cracked body, given by

Ψpot(u,Γ) = Ψe + Ψfrac + Ψext

=
Ú

Ω
Ψe(ε(u)) dΩ +

Ú
Γ
Gc dΓ

−
Ú

Ω
b · u dΩ −

Ú
∂ΩN

T · u dΓ (1.34)

where

• Ψe is the elastic strain energy density function;

• ε(x, t) is the second-order strain tensor defined as the symmetric part of
the displacement gradient;

• Gc is the fracture toughness of the material;

• T is the external traction vector;

• b represents the body force.

The kinetic energy of the body, instead, is defined as

Ψkin(u̇) = 1
2

Ú
Ω
ρ u̇ · u̇ dx (1.35)

where

• ρ is the mass density of the material;

• u̇ = ∂u
∂t

is the velocity.

The Lagrangian for the discrete fracture problem is defined as

L(u, u̇,Γ) = Ψkin(u̇) − Ψpot(u,Γ)

=
Ú

Ω

51
2ρ u̇ · u̇− Ψe(ε(u))

6
dΩ −

Ú
Γ
Gc dΓ

+
Ú

Ω
b · u dΩ +

Ú
∂ΩN

T · u dΓ

(1.36)

The fracture surface integral [2] can be approximated, introducing the regu-
larized formulation to enable a numerically efficient implementation, with a
volume integral defined over the entire domain Ω, according to Eq. (1.37)

Ψfrac =
Ú

Γ
Gc dΓ ≈

Ú
Ω
Gc γ(d,∇d) dΩ =

Ú
Ω
Gc

A
1
2ℓd

2 + ℓ

2 |∇d|2
B

dΩ (1.37)

where γ(d,∇d) is the crack surface density function.
From this equation, it is clear that a crack is represented by regions where d
approaches one.
Crack propagation results in a gradual degradation of the material’s stiffness,
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1.1. FRACTURE MECHANICS

which is accounted for by coupling the elastic strain energy density with the
phase-field variable d through the degradation function g(d).
Different expressions of the degradation function can be found in the literature,
as shown in Fig.1.4. One of the most commonly used formulations is the one
proposed by Bourdin et al.[2].

Figure 1.4: Frequently used degradation functions [16].

The function g(d) monotonically decreases as d increases and satisfies the two
conditions g(d = 0) = 1 and g(d = 1) = 0.
To prevent crack growth under compression, which would lead to non-physically
crack evolution paths, and to distinguish between tension and compression
fracture behavior, only the tensile part of the elastic strain energy is affected
by the degradation function, while the compressive part remains undegraded.
This formulation is expressed in accordance with Eq.(1.38)

Ψe(ϵ, d) = g(d)Ψ+
e (ϵ) + Ψ−

e (ϵ) (1.38)

where Ψ+
e (ϵ) and Ψ−

e (ϵ) are respectively the tensile and compressive contribu-
tions of the elastic strain energy density [2, 9].
There are two main approaches in the literature for decomposing the elastic
energy density [15].
According to the first formulation, the elastic energy is divided into volumetric
and deviatoric contributions, as shown in the following expressions:

Ψ+
e (ϵ) = 1

2Kn ⟨tr(ϵ)⟩2
+ + µ(ϵdev : ϵdev) (1.39)

Ψ−
e (ϵ) = 1

2Kn ⟨tr(ϵ)⟩2
− (1.40)

Kn = λ+ 2µ
3 , ⟨a⟩± = 1

2
1
a± |a|

2
, ϵdev = ϵ− 1

3tr(ϵ)I (1.41)
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1.1. FRACTURE MECHANICS

where λ and µ are the Lamè coefficients.
The second formulation, instead, provides a spectral decomposition of the strain
tensor ε = q3

I=1⟨εI⟩ nI ⊗nI , where {εI}3
I=1 and {nI}3

I=1 are the principal strains
and principal strain directions, respectively.
Thus, considering that ε± = q3

I=1 εI ± nI ⊗ nI , the positive and the negative
parts of the elastic strain energy density are given by

Ψ±
e (ε) = 1

2λ ⟨tr(ε)⟩2
± + µ tr(ε2

±). (1.42)

By substituting what is stated in Eq.(1.36), it is obtained that

L(u, u̇, d) =
Ú

Ω

51
2ρu̇ · u̇− g(d)Ψ+

e (ϵ) − Ψ−
e (ϵ)

6
dΩ

−
Ú

Ω
Gc

A
1
2ℓd

2 + ℓ

2 |∇d|2
B
dΩ

+
Ú

Ω
b · u dΩ +

Ú
∂ΩN

T · u dΓ

(1.43)

Then, assuming a quasi-static condition, the Euler-Lagrange equations of
displacement u and phase-field variable d are obtained by finding a stationary
point of the Lagrangian imposing ∂L = 0, corresponding to its minimization
[2]. The strong form of the problem and the boundary conditions are reported
below [15]. ∇σ + b = 0 in Ω,

Gc

1
d
l0

− l0∆d
2

− 2(1 − d)Ψ+
e (ϵ) = 0 in Ω.

(1.44)


u = uD on ∂ΩD,

σ · n− T = 0 on ∂ΩN ,

∇d · n = 0 on ∂Ω.
(1.45)

where σ is the Cauchy stress tensor and it is expressed by

σ = ∂Ψe

∂ϵ
= g(d)∂Ψ+

e

∂ϵ
+ ∂Ψ−

e

∂ϵ

A local history field variable H is introduced to ensure the irreversibility of
the phase-field evolution, preventing the reduction of the crack length as the
tensile energy decreases [2].
H is defined as the maximum tensile contribution of the elastic energy density
function, as outlined in Eq.(1.46), and must comply with the Kuhn-Tucker
conditions [12] for both loading and unloading, as expressed in Eq.(1.47).

H(x, t) = max
d∈[0,t]

Ψ+
e (1.46)

Ψ+
e −H ≤ 0, Ḣ ≥ 0, Ḣ(Ψ+

e −H) = 0 (1.47)
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Replacing Ψ+
e by H(x, t) in Eq.(1.44), the strong form is obtained by∇σ + b = 0 in Ω,

Gc

1
d
l0

− l0∆d
2

− 2(1 − d)H = 0 in Ω.
(1.48)

In addition, the equations of motion are supplemented with initial conditions
u(x,0) = u0(x)
u̇(x,0) = v0(x)
d(x,0) = d0(x)

(1.49)

where the initial phase-field d0 can be used to model pre-existing cracks by
setting its value equal to 1[2, 12].
Summarizing, the major advantages of this method are [16]:

• It is based on the energy minimization principle and doesn’t require
the modeling of pre-existing cracks, so crack nucleation, growth, and
coalescence can be automatically determined;

• Crack interfaces are described using a continuous variable, allowing for a
smooth transition between different areas;

• It can deal with merging and branching of multiple cracks without a
greater effort;

• It can deal with multi-physics problems.

However, the main drawback is the high computational cost, as a sufficiently
refined mesh in the damaged zone is required to accurately study fracture
behavior.

1.2 Artificial Neural Networks
Artificial neural networks are computational models, that have their roots in
the structure and operation of the human brain, capable of identifying complex
relationships between input and output data [17, 18].
Their suitability for a wide range of applications is linked to their ability to make
predictions, as outlined by the universal approximation theorem formulated by
Hornik [19, 20].
A deep neural network [21, 22] is a computational system comprising multiple
layers, each having several processing units, called neurons. Its main goal is to
approximate a continuous function mapping inputs to corresponding outputs.
The basic architecture of a network, illustrated in Fig.1.5, is organized as
follows:

• Input layer: the first layer, also called the 0-th layer, where the initial
data are fed;
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1.2. ARTIFICIAL NEURAL NETWORKS

• Hidden layers: one or more intermediate layers, that process data;

• Output layer: the last layer, also called the L-th layer (where L is the
total number of layers), which provides the network’s outputs.

Fig.1.5 schematically shows the structure of a deep neural network, highlighting
the different layers and the connections between neurons.

Figure 1.5: Structure of a deep neural network with layers and connections
(adapted from [20]).

One of the most common types of architectures is the feed-forward fully
connected neural network.
In this network, all neurons in one layer are connected to every other neuron
in the following layer and the information flows through the network in one
direction only: from the input layer, through the hidden layers, to the output
layer. This unidirectional flow gives the name "feed-forward" to the network
[18].
The input of the i-th neuron in the l-th layer is expressed as [22]:

zl = σl−1(
ml−1Ø
j=1

W l
i,jz

l−1
j + bl

i) (1.50)

where

• bl
i and W l

i,j are, respectively, the adaptive bias vector and the weight
matrix, determined through a training process. Weight stands for the
contribution of the previous neurons to the current one, while the bias
shifts the activation function to better fit data;
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• zl−1
j is the output from the (l − 1)-th layer;

• ml − 1 denotes the number of neurons in the (l − 1)-th layer;

• σl−1(·) stands for the activation function of the (l − 1)-th layer.

This process is repeated sequentially layer by layer: the outcome of a previous
layer becomes the input for the next one until the output layer produces the
final results.
The activation function [22] performs a nonlinear transformation on the input
data. Without an activation function, a network would not be able to approxi-
mate complex relationships or capture nonlinearities in data.
Typically, the same activation function is applied to all neurons in a layer. In
most cases, the output layer is a linear function of the last hidden layer so that
the set of outcomes is unrestricted. This means that no activation function
is applied to the output layer. The most common activation functions are
analyzed in section 1.2.1.
The number of hidden layers determines the depth of the network while the
number of neurons in each layer determines its width.
To set up a deep neural network, the following parameters must be designed
[22]:

• The number of hidden layers;

• The number of neurons per layer;

• The activation function;

• The optimizer algorithm, including the learning rate and the number
of epochs. The learning rate determines the step size at each iteration
moving toward a minimum of the loss function. The number of epochs,
instead, corresponds to the number of complete training cycles on the
entire dataset.

All these parameters are called hyperparameters and can be user-defined or
chosen by an outer optimization strategy [20].
To ensure that the outputs of the network give the closest approximation to the
solution currently under investigation, the optimal parameters of the network,
represented by weights and biases of all layers, should be determined [21].
Most of the optimization algorithms, during training, solve an optimization
problem that minimizes a cost function, called loss function (L(θ)), which
represents the quality of the approximated solution.

θ∗ = arg min
θ

L(θ) (1.51)

The above minimization requires the computation of the gradient of the loss
function with respect to the weights and biases. A well-known technique to
accomplish this is backpropagation [21], which is better described in section
1.2.2.
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1.2.1 Activation functions
A non-linear activation function allows the representation of any non-linearity in
the data [18]. The most common activation functions are the sigmoid function,
the hyperbolic tangent, and the rectified linear unit (ReLU)[18, 23].
The sigmoid function is defined as

σ(z) = 1
1 + e−z

(1.52)

in which z ∈ (−∞,+∞) and σ(z) ∈ (0,1).
The hyperbolic tangent function is defined as the ratio between sine and cosine
functions:

σ(z) = tanh(z) = sinh(z)
cosh(z) = ez − e−z

ez + e−z
(1.53)

This function is symmetric with respect to the origin and its output ranges
between -1 and 1. Due to its properties, neural networks that use this activation
function tend to converge faster than those that use the sigmoid function.
However, as the weights increase, these two functions tend to saturate. This
means that their derivatives will reduce to zero in the saturation regions, which
can hinder proper learning and training of the network. This situation is called
vanishing gradient.
The ReLU function is defined as

σ(z) = max(0, z) =
z if z ≥ 0

0 if z < 0
(1.54)

Since the function grows linearly for positive inputs, it helps reduce saturation
and the vanishing gradient problem. Notice that it is not differentiable at x = 0,
but is usually set to zero.
However, this activation function presents a main disadvantage: it is left hard
saturating, meaning its derivative is equal to 0 when x < 0, leading to a possible
deactivation of some neurons. This can negatively affect convergence.
A graphical representation of the mentioned activation functions is shown in
Fig.1.6.
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Figure 1.6: Graphical representation of common activation functions [24].

A primary characteristic of all the mentioned activation functions is differentia-
bility, as it is essential for ensuring backpropagation works correctly. Indeed, if
this property is not satisfied, the gradients cannot be properly evaluated [22].

1.2.2 Backpropagation
Backpropagation is an efficient technique, part of automatic differentiation,
that enables the training of neural networks [18]. It allows the calculation of
the gradient of the loss function with respect to network parameters, permitting
the minimization of the loss function and the reduction of the error.
The process starts from the output layer and proceeds backward through the
network to the input layers, computing at each step the loss function gradient.
These gradients are then used by an optimization algorithm to modify the
weights and biases, according to an update rule [18, 21].
The name ’backpropagation’ refers to the fact that the calculations and updates
are done in reverse order, from output to input layer.
While backpropagation is the way to provide gradients, optimization algorithms
are responsible for minimizing the loss function and the way learning proceeds.
They iteratively generate a series of approximate solutions until a stopping
criterion is verified. In each iteration, the algorithm finds a direction and moves
from the current point to a new iterate with a lower loss function value [25].
The step size between two consecutive iterations can be a constant value or
evaluated based on a line search method.
Although several options are available, two of the most popular gradient-based
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optimization algorithms are Adam and L-BFGS [22].
Adam [26], whose name derives from adaptive moment estimation, is a method
for efficient stochastic optimization that evaluates individual adaptive learning
rates for different parameters.
It is based on the estimation and updating of the first and second moments
of the gradients, respectively corresponding to the mean and the uncentered
variance.
The first moment estimate is given by (mt), which corresponds to the exponen-
tial moving averages of the gradients, while the second moment is expressed
by (vt), which corresponds to the exponential moving averages of the squared
gradients.
At the beginning of training, m0 and v0 are initialized as vectors of zero.
At any given step of iteration, moments are updated according to the following
rules

mt+1 = β1mt + (1 − β1)gt (1.55)

vt+1 = β2vt + (1 − β2)g2
t (1.56)

where

• t is the time step;

• g is the vector of partial derivatives of the loss function with respect to
the model parameters (θt);

• β1 and β2 control the exponential decay rate of the moments and are
within the range [0,1). By default, β1 = 0.9 and β2 = 0.999.

Then, the estimates are bias-corrected to take into account the previous initial-
ization to zero.

m̂t = mt

1 − βt
1

(1.57)

v̂t = vt

1 − βt
2

(1.58)

At last, the parameters θt are updated

θt+1 = θt − α · m̂t√
v̂t + ϵ

(1.59)

where α is the learning rate and ϵ is a constant for numerical stabilization to
prevent division by zero, by default set to 10−8.
This algorithm [26] is straightforward to implement and computationally effi-
cient. It is suitable for problems with a large amount of data or parameters,
thanks to the adaptive learning rate. The hyper-parameters usually need a
little tuning, since they generally perform well with the default values.
However, although Adam converges quickly in the early stages of training and
gets a rough estimate of the optimal value, sometimes it is unable to reach the
local optimum accurately.
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The Limited-memory Broyden Fletcher Goldfarb Shanno algorithm [25], com-
monly referred to as L-BFGS, is a second-order quasi-Newton method.
Instead of inverting the Hessian matrix of the loss function at each iteration,
as Newton’s methods do, it iteratively refines an approximation of the inverse
Hessian matrix to determine the direction of descent.
Additionally, instead of storing a fully dense n x n approximated matrix, it only
saves a limited number of m vector pairs, with m«n. These vectors collect the
differences in parameters (sk = θk+1 −θk) and in gradients (yk = gk+1 −gk) over
the last m iterations. This information is used to update the inverse Hessian
approximation.
When m iterations have already been saved, the oldest vector pair is deleted so
that there is space to store information about the newest iteration.
The key mechanism of this algorithm is the two-loop recursion, in which the
direction of descent is evaluated using only the stored vector pairs, without
explicitly computing the inverse Hessian matrix.
The model parameter update is defined as

θt+1 = θt + αtHtgt (1.60)

where

• Ht is the approximation of the inverse Hessian matrix.

• gt is the gradient of the loss function;

• αt is the step size, determined automatically using a line search.

This optimizer is particularly suitable for large problems, since it avoids the
computational costs of inverting the Hessian matrix, which can be expensive
for high-dimensional data. Moreover, it requires a limited amount of memory,
unlike Newton’s methods, since only a few pairs of vectors are stored [25].

1.2.3 Regularization
The capacity of a machine learning model is its ability to fit different functions.
Indeed, one primary property of a neural network is the ability to generalize
on unseen data [18].
However, the model can face two problems during training: under-fitting and
over-fitting. Under-fitting occurs when the network is too simple, for instance,
too few neurons, that it is unable to detect signals in a complicated data set.
This corresponds to a model with a very low capacity. Over-fitting, instead,
is linked to a loss in the generalization ability. The model fits training data
perfectly, but it is not able to generate good predictions for unseen data [18,
22].
To mitigate that issue and increase the generalization capability of neural
networks on unseen data, a possible approach is to adopt a control mechanism.
Regularization [18] includes all strategies aiming to diminish the test error
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without increasing the training error.
The most common regularization techniques include:

• Early stopping: it interrupts the training process as soon as the model
risks losing its generalization capability. This can be done by monitoring
the training and validation errors. During the training, if the training error
steadily decreases while the test error starts to increase, this indicates that
the model is entering the over-fitting regime.
The process terminates when the validation error does not improve for a
predefined number of consecutive iterations;

• Dropout: at each training iteration half of the hidden neurons are randomly
and temporarily dropped, forcing the network to learn parameters with
only a subset of its neuron units.
Deactivating some units is similar to training different neural networks,
since at each iteration a different network configuration is used.

• L1 and L2 regularization: belonging to the parameter norm penalty class,
they prevent over-fitting by penalizing network parameters thanks to a
penalty term Ω added to the loss function L.

L̃ = L + λΩ (1.61)

where λ is a hyperparameter that determines the weight of the penalty
term. Even if its value can be different for each layer, it is usually set
equally for the entire network for simplicity.
Regularization L1 adds a penalty term proportional to the sum of the
absolute values of the weights (λq |w|) emphasizing the selection of few
high-importance connections and forcing other weights toward zero.
L2 adds a penalty term proportional to the sum of the square of weights
(λqw2). In this second case, instead, the magnitude of weights is reduced
proportionally to w, so for small weights it is of less entity compared to L1

regularization. This can help to stabilize the model, since larger weights
modify drastically the outputs even for a small input variation;

• Dataset augmentation: it is a widely used technique in image classification
and involves the creation of "fake" data to train the model on a larger
dataset. In this context, some variations to the input images are performed,
such as translation, rotation, or inclusion of small amounts of random
noise.
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Chapter 2

State of Science

The current chapter provides a description of some machine learning methods
that can be used for the resolution of the governing equations of the engineering
problems.
Initially, Physics-Informed Neural Networks and Variational Physics-Informed
Neural Networks are described, as they minimize the residual losses of PDEs.
Then, the Deep Energy Method is introduced, which considers the total energy
of the system as a loss function.
Finally, a brief description of the KAN network is provided as a promising
alternative to traditional neural networks.

2.1 Physics-Informed Neural Networks
Physics-informed neural networks are a class of neural networks designed to
solve problems involving partial differential equations.
Physical laws governing the problem are directly integrated into the network’s
structure and loss function so that the response of the system satisfies the
physics of the context. Essentially, solutions are obtained by transforming
the problem of directly solving the governing equations into an optimization
problem [27].
A key advantage behind PINNs is that they can be employed in the absence of
labeled data, such as previous simulations or experiments.
Additionally, they can be adopted for both forward and inverse problems. In
the former case, the solution is computed based on PDE parameters, initial
and boundary conditions; in the latter, the coefficients of the PDEs must be
identified from observed data [18, 27].
PINNs are a family of collocation methods, which can optionally be mesh-free.
The primary inputs to the network are the coordinates of the sample points in
the reference configuration, while the output is trained to be the solution field
of the PDEs evaluated at the collocation points [18].
As described in Section 1.2, the network is trained to find the optimal network
parameters by minimizing a loss function. In this context, the loss function
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is based on the PDE residuals, which quantify the error between the approxi-
mated solution and the exact solution that satisfies the governing equations.
Specifically, the loss function is built by summing the residuals of the PDEs
evaluated at the collocation points and the objective is to minimize the error
point by point, locally approximating the exact solution [18, 27].
Derivatives required in the loss function are commonly calculated using the
autograd functionality. This technique enables precise and fast calculation of
gradients, even in more complex cases.

2.1.1 Treatment of boundary conditions
Dealing with a forward problem, there are two different methods to enforce
boundary and initial conditions: a "soft" enforcement and a "strong" one [18].
The weak enforcement [28] requires the addition of penalty terms to the loss
function, which has the role of pointing up deviations from the prescribed
boundary and initial conditions.
The loss function to be minimized, in the most general case, is made up of
three terms, as outlined by the following expression:

L = Lg + λ1LBC + λ2LIC (2.1)

where

• Lg represents the residual loss coming from the resolution of the governing
equations;

• LBC represents the boundary value losses. They are defined as the sum
of the mean square error of the deviation on the Dirichlet and Neumann
boundaries, as outlined by

LBC = ∥u−BD∥2
∂ΩD×[0,T ] + ∥n · σ −BN∥2

∂ΩN ×[0,T ] (2.2)

where u and σ come from the neural network’s approximated solution;

• LIC represents the initial value losses, which are defined as

LIC = ∥u− I0∥2
Ω×{t=0} + ∥ut − I1∥2

Ω×{t=0} (2.3)

• λ1, λ2 are positive weighting coefficients. Usually, they are determined
following a trial-and-error procedure to guarantee correct enforcement,
which is not always so accurate due to pathology issues of the gradient.
From here, the attribute "soft".

In Fig.2.1 a schematic representation of soft enforcement is provided.
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Figure 2.1: Schematic representation of PINNs soft enforcement.

The strong enforcement method [18] requires the imposition of the conditions
in a "strong" form, which provides the predicted solution automatically satisfies
the requirements thanks to an adaptation of the network’s outputs.
In this last case, specific functions are designed and used to modify the network’s
outputs, allowing compliance with the imposed conditions.
In Fig.2.2 a schematic representation of strong enforcement is provided.

Figure 2.2: Schematic representation of PINNs strong enforcement.

As already described, the loss function is given by the strong form of the PDE
residual, but in some problems, PINNs fail to predict the correct solution. In
these cases, such as problems with low regularity of data, the solution has sense
only in a variational form [29].

2.2 Variational Physics-Informed Neural Net-
works

Variational Physics-Informed Neural Net- works extend the concept of classical
PINNs by combining machine learning techniques with the variational approach
[30].
Unlike PINNs, where PDEs are included in the architecture of neural networks
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in a strong form, this version incorporates the variational formulation of the
PDEs in the loss function.
To obtain the variational form, known as the weak form, terms of the governing
equations are multiplied by properly selected test functions and then are
integrated over the whole domain.
The test functions are represented by a set of known functions and quadrature
points are used to compute the integrals involved [31]. To evaluate them,
some numerical integration techniques can be employed, such as the Gauss
quadrature, as described in Section 3.3.
Instead of computing the residual loss at specific points of the domain given as
input to the network, the loss function is defined by the integral of the residual
over the entire domain.
This difference provides some advantages [30, 31]:

• The domain can be decomposed into many sub-domains, each of them
characterized by a separate number of test functions, leading to a more
elemental flexible learning approach;

• The integration involved in the weak form requires less regularity of the
approximate solution;

• The number of quadrature points is smaller than the number of collocation
points required by PINNs.

The loss function takes into account both the weak residual and terms for the
boundary/initial conditions. During training, the loss function is minimized to
satisfy the variational formulation, reducing the global error and allowing the
model parameters to be updated.

2.3 Deep Energy Method
The deep energy method is an innovative approach to approximate the solution
of partial differential equations [18].
It can be seen as an extension of classical PINNs, since instead of shutting
down the residual losses coming from the resolution of PDEs, this method
minimizes the potential energy of the system, which is taken as a loss function.
Notice that this approach, due to its intrinsic definition, is only applicable
to physical systems that fulfill the principle of minimum energy, such as in
mechanics problems and other physical applications where potential energy is
a natural quantity to be minimized.
The boundary conditions can be imposed both by adding penalty terms to
the loss functions or through strong enforcement [18]. However, the second
approach leads to an unconstrained optimization problem, since the researched
solution already satisfies the boundary conditions and no other restrictions are
needed [20]. This implies that solely the potential energy has to be minimized
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and, consequently, it’s easier to estimate the solution.
The process of DEM is depicted in Fig.2.3.

Figure 2.3: Overall process of Deep Energy Method (adapted from [20]).

The initial points [18, 21] are given as input to a neural network, usually a
feed-forward fully connected neural network, whose number of neurons and
layers depends on the specific application.
After data is processed by all the layers, an approximate solution zL(X; θ) is
obtained.
At this stage, the Dirichlet boundary conditions are imposed in a strong way,
modifying the output zL(X; θ) so that

ẑL(X; θ) = A(X) +B(X) · zL(X; θ) (2.4)

where A(x) and B(X) are, respectively, a particular solution and a distance
function.
The distance function B(X) is designed to be 0 on the Dirichlet boundary,
whereas the particular solution A(X) satisfies the Dirichlet boundary conditions.
Notice that Neumann boundary conditions do not have to be directly enforced,
as they are already accounted for in the potential energy through the external
work.
The total potential energy of the system is expressed, indeed, as the sum of
the internal and external energy [18]

Π = Πi + Πe (2.5)

and it is used as the loss function to be minimized

L = Π (2.6)

Calculation of both energy components requires solving an integral, which
depends on the approximate solution ẑL(X; θ). Since the latter is known only
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at the points passed as input, a numerical integration scheme has to be applied.
This will be better analyzed in section 3.3.
Finally, the unconstrained optimization problem [21] is defined, in accordance
with Eq.(1.51), as

θ∗ = arg min
θ

L(θ) (2.7)

The optimization process leads to identifying the optimal network parameters
θ and it is performed using numerical techniques such as the optimizers Adam
or L-BFGS.
When this occurs, the process reaches convergence and the neural network can
provide the approximate solution to the problem governed by the PDEs.

2.4 Kolmogorov-Arnold Neural Networks
The Kolmogorov-Arnold Neural Network (KAN) is a promising alternative to
the conventional neural network, first proposed by Liu et al. in [32].
It is inspired by the Kolmogorov-Arnold representation theorem, which estab-
lishes that any multivariate continuous function f(x) can be decomposed into
sums of univariate continuous functions ϕp,q and ϕp.
Formally, it is expressed as

f(x) = f(x1, x2, . . . , xn) =
2n+1Ø
q=0

Φq

 nØ
p=1

ϕp,q(xp)
 (2.8)

Like fully connected feed-forward neural networks, also KANs have a fully
connected structure, but a key difference exists between these two classes:
instead of having fixed activation functions on neurons, learnable activations
functions are applied on edges [32].
This difference provides greater flexibility to the network, as activation functions
are not defined in advance as hyperparameters.
Thanks to that, predictions can closely align with exact solutions, capturing
better the behavior described by governing equations.
Unlike traditional deep neural networks, nodes simply sum incoming signals
without introducing any non-linear transformations. Instead, edges incorporate
learnable activation functions, which are a combination of a basis function and
a B-spline [33].

30



2.4. KOLMOGOROV-ARNOLD NEURAL NETWORKS

Figure 2.4: Schematic representation of the KAN architecture (adapted from
[32]).

During the training process, these spline-based activation functions are opti-
mized to match the target solutions .
Thanks to its structure, fewer parameters and a smaller network size are suffi-
cient to get acceptable results.
It is possible to apply this architecture to solve partial differential equations
similarly to PINNs/V-PINNs, just replacing the traditional artificial neural
network with a KAN architecture [33]. By making the physics loss as small as
possible, the neural network solution adheres to the physical laws represented
by the governing equations.
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Chapter 3

Methodology

The first part of this chapter describes the methodology for coupling the phase-
field model with the deep energy method, as both methods are linked to the
total energy balance of the system. For this reason, this approach seems to
be well-suited for performing fracture studies using neural networks. Then,
two possible typologies of domain discretization are discussed: the first option
consists of using collocation points, while the second one adopts elements and
nodes. Finally, since solving the governing equations requires the computation
of some integrals, the main integration techniques are introduced, including
the Newton-Cotes methods and Gauss quadrature.

3.1 DEM for Phase-Field Simulations
As described in Section 1.1.3, in the phase-field method, crack evolution is
described by a set of coupled governing equations involving the damage variable
and the displacement field.
These equations are based on the energy balance approach that considers elastic
energy, fracture energy, and the external work[13].
Since DEM is a physics-informed approach that assumes the potential energy
associated with a system as a loss function, it can be applied to solve the phase-
field model by integrating the governing equation into the network architecture
and minimizing the total energy of the system, as done by Goswami et al. in
[22].
To describe crack propagation, it is necessary to incrementally apply an imposed
displacement (or load) for n time steps until failure occurs.
At each step, the neural network is trained for a predefined number of epochs
to approximate the displacement and damage fields. Treating each time step
as a quasi-static condition, the network parameters are optimized using an op-
timization algorithm. Then, the crack evolution is determined by updating the
loading condition, and the training for the new loading condition is performed.
Resuming the equations of the phase-field approach previously described, the
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problem statement can be written as

θ∗ = arg min
θ

L(θ) (3.1)

where

L(θ) = Ψe + Ψfrac + Ψext,

Ψfrac =
Ú

Ω

C
Gc

2

A
d2

ℓ
+ ℓ|∇d|2

B
+ g(d)H(x, t)

D
dΩ,

Ψe =
Ú

Ω

è
g(d)Ψ+

e (ϵ) + Ψ−
e (ϵ)

é
dΩ,

Ψext = −
Ú

Ω
b · u dΩ −

Ú
∂ΩN

T · u dS

(3.2)

The strain history variable H(x, t) can be used to model preexisting cracks in
the system or to initialize crack propagation. In particular, considering l as a
line representing the discrete crack, the initial value H(x, 0) could be defined
as a function of the closest distance from any point x to the line l [12].
This is expressed by

H(x,0) =


BGc

2l0

1
1 − 2 dist(x,l)

l0

2
, if dist(x, l) ≤ l0

2 ,

0, if dist(x, l) > l0
2 .

(3.3)

where B [22] is a scalar parameter that controls the magnitude of the scalar
history field and is defined as

B = 1
1 − d

, for d < 1 (3.4)

By tuning it, it is possible to control the intensity of the initial damage field.
Through this initialization, initial cracks can be located anywhere in the domain.
After the generation of the training points, the neural network architecture is
set up as follows:

• The number of input neurons is equal to the dimension of the spatial
coordinates of the training points;

• The number of hidden layers and the corresponding number of neurons is
tuned according to the problem;

• The number of output neurons coincides with the components of the
displacement field, plus one to take into account the damage variable d.

Giving the training point as input, the network provides an approximate solution
for the displacement and damage fields. In this work, the neural network outputs
are modified to correctly impose the Dirichlet boundary conditions, employing
strong enforcement.
To obtain the energy density terms to compute the correct network parameters,
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as stated in Eq.(3.2), the gradients of the displacement and the damage field
are evaluated.
The strains are computed as follows

εxx = ∂u

∂x
(3.5)

εyy = ∂v

∂y
(3.6)

εxy = 1
2

A
∂u

∂y
+ ∂v

∂x

B
(3.7)

To get the most general form, the elastic strain energy density is decomposed
into tensile and compressive parts, through the eigenvalues of the strain tensor
[22].

Ψ+
e = λ

8 (λs + |λs|)2 + µ

4

nØ
i=1

(λi + |λi|)2 (3.8)

Ψ−
e = λ

8 (λs − |λs|)2 + µ

4

nØ
i=1

(λi − |λi|)2 (3.9)

where λs = qd
i=1 λi and n corresponds to the problem’s dimension. λ and µ

are respectively the Lamé constants, defined as

λ = νE

(1 + ν)(1 − 2ν) , (3.10)

µ = E

2(1 + ν) (3.11)

At the same time, H(x, i) is obtained as the maximum value between its value
at the previous step and the current value of Ψ+

e just calculated

H(x, i) = max[Ψ+
e , H(x, i− 1)] (3.12)

To ensure crack irreversibility, H(x, i) is updated at each step and used as the
initial value for training the neural network at the next load step [22].
Then, finally, the fracture energy density is computed.
Since the values calculated so far refer to the input points and not to the overall
system, the integration over the whole domain has to be carried out.
Several options exist to approximate the integrals, depending on the type of
inputs and the problem’s purposes.
The most common numerical integration techniques are analyzed in Section
3.3.
Once the global energy is known, the optimizer minimizes the loss function
and performs the training through backpropagation.
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3.2 Discretization
Depending on the complexity of the geometry of the problem being treated
and the study’s purpose, either mesh-free discretization or the generation of
elements consisting of nodes and edges can be adopted.
In the context of mesh-free methods, DEM uses collocation points as input for
the neural network [18].
Collocation points are a set of spatial and/or temporal coordinates where, in
the context of PINNs and VPINNs, it is imposed that the governing equations
characterizing the physics of the problem must be satisfied [28].
Since in the present study, the solution must describe fracture propagation
according to a quasi-stationary approach, only spatial discretization is necessary.
In general, it is possible to divide the collocation points into two categories:

• Interior points: they are distributed within the domain where the solution
is to be evaluated;

• Boundary points: they are located along the edges of the domain and allow
the imposition and compliance with Dirichlet and Neumann boundary
conditions.

Collocation points can be randomly placed or uniformly distributed in space,
following a regular and equispaced pattern.
An example of discretization with uniform collocation points and boundary
conditions is given in Fig.3.1.

Figure 3.1: Discretization with uniformly distributed collocation points and
boundary conditions.

A second possibility is to discretize the model by generating a mesh consisting
of elements that are as regular as possible, as is done in the Finite Element
Method (FEM).
The neural network receives as input the nodes where the solution is calculated.
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Then, through shape functions, the displacement and damage fields are evalu-
ated at Gauss points. Gauss points are specific nodes internal to the element
that allow easier integration of energy quantities over the entire domain [34],
as clarified in the Section 3.3.
The shape functions are polynomials that allow the interpolation of the solution
at points inside the element, as expressed by the formula

uθ
g(x) =

nØ
i=1

Ni(x)uθ, (3.13)

dθ
g(x) =

nØ
i=1

Ni(x)dθ. (3.14)

The coefficients of the shape functions are expressed in natural coordinates,
which simplifies the integration [35].
Depending on the complexity and the degree of accuracy to be achieved,
either first- or second-order elements can be used. First-order elements are
characterized by linear shape functions (first-degree polynomials); second-
order elements are characterized by quadratic shape functions. Considering
bi-dimensional quadrilateral elements, which are the ones used in one of the
studies, the element’s complexity can gradually increase as follows [36]:

• First-order elements: characterized by 4 nodes placed at the vertices of
the square;

• Second-order elements of Serendipity type: characterized by 8 nodes. The
first 4 nodes correspond to the vertices of the square, the other 4 are
placed in the middle of each side

• Second-order elements of Lagrange type: characterized by 9 nodes. The
first 8 are arranged like those in Serendipity type elements, the ninth is at
the center of the square.

Figure 3.2: Bi-dimensional quadrilateral element types.

Although first-order elements are easy to implement and require less compu-
tational cost, they provide less flexibility and have a restricted capacity to
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represent nonlinear variations.
Second-order elements allow for more accurate results with fewer elements.
However, the computational times are longer due to the higher number of
degrees of freedom associated with elements and the increased complexity of
calculations involving shape functions [35].

3.3 Numerical Integration
The described energy-potential-based method requires the computation of in-
tegrals to estimate the overall energy of the system, as the solution is known
only at the training points.
Due to its complexity, an analytical solution is not possible. To overcome this
issue, numerical integration can be used allowing the resolution of PDEs.
However, since it provides an approximation of the exact values, errors are
introduced and their magnitude depends on the chosen numerical method and
its accuracy, as well as the number of integration points [34].
The most commonly used integration schemes are: the midpoint rule, trape-
zoidal rule, Simpson’s rule, and Gaussian quadrature. The first three methods
are part of the most generic category of the Newton-Cotes method, which can
be applied to equally spaced sampling points.
Each technique is described below.

Midpoint rule The midpoint rule [18] is the simplest integration scheme
and involves dividing the domain into rectangles.
Given a continuous function f(x) on the interval [a, b], the integral can be
approximated as Ú b

a
f(x) dx ≈ (b− a)f

A
b+ a

2

B
(3.15)

in the case of a single-point approximation, or as
Ú b

a
f(x) dx ≈

nØ
i=1

f
3
xi + xi−1

2

4
∆x (3.16)

when subdividing the domain into small subintervals, where ∆x = b−a
n

is the
distance between two consecutive integration points xi = a+ i∆x. This tech-
nique implies the evaluation of the function only at the midpoints, excluding
the boundaries. For this reason, it is part of the Newton-Cotes open rules.

Trapezoidal rule The Trapezoidal rule [18, 34] splits the domain into trape-
zoids, approximating the area below the integral asÚ b

a
f(x)dx ≈ b− a

2 (f(a) + f(b)) (3.17)
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when using two integration points, or as
Ú b

a
f(x) dx ≈ ∆x

2

A
f(x0) + 2

n−1Ø
i=1

f(xi) + f(xn)
B

(3.18)

in the most generic case, where ∆x and xi are calculated as before. Unlike the
midpoint rule, this method evaluates the function also at the endpoints of the
interval, making it a closed Newton-Cotes formula.

Simpson’s rule Simpson’s rule [18, 34], as the trapezoidal rule, falls within
Newton-Cotes closed formulas for numerical integration. The integral is ap-
proximated as

Ú b

a
f(x) dx ≈ b− a

6

A
f(a) + 4f

A
a+ b

2

B
+ f(b)

B
(3.19)

adopting three integration points. In the more general case, it can be written
as
Ú b

a
f(x) dx ≈ ∆x

3

f(x0) + 4
n−1Ø

i=1, odd
f(xi) + 2

n−2Ø
i=2, even

f(xi) + f(xn)
 (3.20)

where ∆x and xi are computed as before. This numerical method produces
more accurate results since the approximation is made with quadratic polyno-
mials, but it adds complexity.

All three formulas can be applied in two dimensions by performing the in-
tegration sequentially: first in one dimension and then in the other, applying
the same formula for both steps [34].

Gauss - Legendre quadrature This numerical procedure approximates
the integral by a weighted sum of function values evaluated at specific interior
points, combined with their corresponding weights [34]. The integration points,
called Gauss points, are optimally chosen so that the greatest accuracy is
achieved. In particular, they correspond to the roots of Legendre polynomials,
which are equal to zero at the optimal points of the integration interval [35].
The choice of weights depends on the roots xi to ensure the best possible
approximation.
The generic formulation is expressed as

Ú 1

−1
f(x) dx ≈

NØ
i=1

wif(xi) (3.21)

where N is the number of Gauss points and [−1,1] is the standard integration
interval.
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If the limits of integration differ from [−1,1], a linear transformation can be
used to map them to the standard integral [34].

x = a+ b

2 + b− a

2 ξ (3.22)

where ξ is a point in the standard interval. Gauss quadrature is particularly
efficient since it can exactly integrate a function f(x) of degree up to 2N − 1.
Gauss quadrature can be used to compute integrals over elements that discretize
the domain.
Considering the same quadrilateral elements from Section 3.2, given the number
of Gauss points N, their positions and their corresponding weights are reported
in Table 3.1 [35].

N Gauss points natural coordinates (ξ, η) Weights wi

1 (0,0) 2

2

(- 1√
3 , - 1√

3) 1

( 1√
3 , - 1√

3) 1

( 1√
3 , 1√

3) 1

(- 1√
3 , 1√

3) 1

3

(-
ñ

3
5 , -

ñ
3
5) 5

9 × 5
9

(
ñ

3
5 , -

ñ
3
5) 5

9 × 5
9

(
ñ

3
5 ,
ñ

3
5) 5

9 × 5
9

(-
ñ

3
5 ,
ñ

3
5) 5

9 × 5
9

(0, -
ñ

3
5) 8

9 × 5
9

(
ñ

3
5 , 0) 5

9 × 8
9

(0,
ñ

3
5) 8

9 × 5
9

(-
ñ

3
5 , 0) 5

9 × 8
9

(0, 0) 8
9 × 8

9

Table 3.1: Gauss points and weights for bi-dimensional quadrilateral elements.

Since the integration takes place in the natural domain, a transformation of
the variables must be made to map it to the physical domain or vice versa. To
convert areas to the physical domain, the determinant of the Jacobian is used,
as it represents the scaling factor.
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In the 2D domain, the integral over an element can be approximated asÚ
Ωe

f(x, y) dΩ =
Ú 1

−1

Ú 1

−1
f(x(ξ, η), y(ξ, η)) |J(ξ, η)| dξ dη (3.23)

≈
NØ

i=1

NØ
j=1

wiwjf(x(ξi, ηj), y(ξi, ηj)) · |J(ξi, ηj)| (3.24)

where |J(ξi, ηj)| is the Jacobian determinant [35].
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Chapter 4

Phase-Field Modeling in
COMSOL Multiphysics

The following chapter explains the two approaches adopted to obtain the FEM
results for the subsequent validation of the neural network solutions.
First, the existing setup in COMSOL Multiphysics is described, which allows
the representation of the crack through a phase-field damage attribute. Then,
the methodology to manually implement the governing equations of the multi-
field problem is discussed, with particular attention to the three necessary
modules.

4.1 Built-in Phase-Field Setup
In COMSOL Multiphysics, it is possible to simulate fracture through a damage
model that regularizes the sharp geometry of cracks by the phase-field approxi-
mation.
The Solid Mechanics interface makes it possible to analyze the response of
materials, simulating their mechanical behavior under different types of loading.
Through the solution of this module, the equations of motion together with a
constitutive material model are solved. Thanks to this, it is possible to compute
deformations, stresses, and displacements.
General structural analysis can be performed in 1D, 2D, and 3D domains, but
in this discussion, the focus will be on 2D studies.
In the interface, for a 2D model, it must be defined:

• the type of 2D approximation: plane stress, plane strain, or out-of-plane
stress;

• the thickness of the component;

• the structural transient behavior: quasi-static behavior or including inertial
terms. The former is used to describe slow or steady loading conditions,
while the latter considers time-dependent or dynamic loading.
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There are several material model options available, such as linear elasticity,
nonlinear elasticity, superelasticity, and others.
For this study, the linear elastic material is selected, assuming small deforma-
tions and isotropic behavior.
The characteristic material properties required for this model include Young’s
modulus, Poisson’s ratio, and density. To simulate crack behavior, a damage
attribute can be assigned to the linear elastic material model by selecting the
damage option.
This attribute governs and describes the transition of the material from the
undamaged to the broken state.
Three options are available: Scalar damage, Mazars damage for concrete,
and Phase-field damage. By choosing the last alternative, several additional
parameters must be defined:

• Crack driving force: the two possible alternatives are strain energy density
and principal stress criterion. The first one requires the critical energy
release rate and the strain energy threshold, while the second one requires
the critical fracture stress and the post-peak slope parameter;

• The length scale parameter l0;

• Damage evolution function;

• Strain energy split: the first distinction is whether to split the elastic
energy between tensile and compressive parts or not. If splitting is chosen,
which allows for a more faithful modeling of reality, further options include
volumetric-deviatoric split, stress spectral decomposition, or strain spectral
decomposition.
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Figure 4.1: Phase-field damage attribute: required parameters.

Inside the Solid Mechanics interface, it is also required to define the boundary
conditions, specifying the applied loads and constraints through appropriate
attributes.
The accuracy of the results and the fracture path depends strongly on the
discretization and the characteristic length l0.
For these reasons, the mesh has to be refined in the area of assumed propagation
to allow better approximation of the results.
In the areas of least interest, on the other hand, a larger mesh size can be
adopted to decrease the computational costs associated with the calculation.
To solve the coupled system of equations, a segregated approach is selected,
which splits the solution process into substeps.
The explanation of its functioning is better described in Section 4.2.2.

4.2 Phase-Field Model: Custom Approach
As previously described, the phase-field fracture model is a multi-field coupling
problem.
To implement the governing equations in COMSOL Multiphysics, three main
modules need to be defined [13]: the Solid Mechanics Module, the History
Strain Module, and the Phase-Field Module. These modules allow for solving
the corresponding fields, namely displacement (u), history strain variable (H),
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and damage fields (d).
Then, the problem requires the solution of the coupled system of equations.
This can be performed using a segregated solution approach or a fully coupled
approach.
In this work, a segregated approach is adopted to obtain the solution and the
quantities of interest.

4.2.1 Modules configuration and implementation
Each of the previously mentioned modules characterizes a key aspect of material
behavior during the fracture process: the displacement field illustrates the me-
chanical response, the history strain variable guarantees the crack irreversibility
condition by preventing any possible length reduction as elastic strain energy
decreases, and the phase-field variable captures the degradation of the material.
Details of their characterization and implementation are provided below.

Solid Mechanics As described in Section 4.1, this module enables the solu-
tion of stress and strain fields.
Since fracture problems of quasi-brittle materials are considered, the linear
elastic material model is selected for this study [37].
As in the previous case, Young’s modulus, Poisson’s ratio, and density have to
be defined, as well as the boundary conditions and whether there is a depen-
dence or not on inertial forces.

Figure 4.2: Setup linear elastic material model.
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When crack propagation occurs, areas around the crack are affected by increas-
ing damage and the material does not have anymore the same capacity to
withstand external loading as an intact material.
This apparent reduction in the elastic modulus can be modeled by multiplying
it by a degradation function g(d), where d is the damage variable (equal to 0 for
an undamaged material and 1 for a completely broken material), as reported
in Eq.(4.1)

Ered = E ∗ g(d) (4.1)

The function g(d) must be specified as a local variable within the appropriate
space, since it varies at each iteration step with the progression of the damage.
In this way, at each iteration step, the stiffness of the material is updated based
on the evolution of the damage field.
This reflects the corresponding reduction in stored elastic energy in the damaged
material, as described in Section 1.1.3.

Phase-field Module The damage field [37] can be represented by a coefficient
type PDE, which has the form

ea
∂2u

∂t2
+ da

∂u

∂t
+ ∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f (4.2)

where u is the dependent variable and ea, da, a, c, α, β, γ are custom coefficients.
These coefficients have to be defined based on the physics of the problem.
The phase-field governing equation is expressed as

[2l0(1 − κ)H
Gc

+ 1]d− l20
∂2d

∂x2
i

= 2l0(1 − κ)H
Gc

(4.3)

To achieve a correct representation of the damage field, Eq.(4.3) should be
expressed in the same form as Eq.(4.2). This requires the following correspon-
dences: 

ea = 0, da = 0, α = 0, β = 0, γ = 0,

u = d,

c = l20,

a = 1 + 2l0(1−κ)H
Gc

,

f = 2l0(1−κ)H
Gc

.

(4.4)

where k is a numerical constant necessary for a proper conditioning of the
problem. In COMSOL, this can be implemented using the Helmholtz equation

∇ · (−c∇d) + ad = f (4.5)

where the coefficients c, a, f are the ones defined in Eq.(4.4).
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Figure 4.3: Phase-field module: governing equations and implementation.

History Strain Module The history strain variable H, as described in
Section 1.1.3, is defined as the maximum tensile contribution of the elastic
energy density function H(x, t) = maxd∈[0,t] Ψ+

e .
As outlined by its expression, its value is not constant but changes at each
iteration and must be updated to reflect the evolving state of the system. The
model needed to solve the history state variable is represented by the domain
Ordinary Differential Equation and Differential-Algebraic Equation Module
[37].
The governing equation is given by

ea
∂2u

∂t2
+ da

∂u

∂t
= f (4.6)

where u is the dependent variable and ea, da, f are custom coefficients.
As in the previous case, these coefficients have to be defined as follows

ea = 0, da = 0,

u = H,

f =


Hn+1 − ψ+

n+1(ϵ), if ψ+
n+1(ϵ) > Hn,

Hn+1 −Hn, if ψ+
n+1(ϵ) ≤ Hn.

(4.7)

46



4.2. PHASE-FIELD MODEL: CUSTOM APPROACH

Figure 4.4: History strain module: governing equations and implementation.

The positive strain energy density has to be predefined as a local variable in
the proper space, as illustrated in Fig.4.5.
Notice that its calculation requires the knowledge of the strain tensor since it
is obtained as ψ+

ϵ (ϵ) = λ
2 (tr(ϵ))2 + µ tr(ϵ2

+). This implies that it is evaluated
after the solution of the displacement field.

Figure 4.5: Definition of the positive strain energy density as a local variable.

The condition applied to f provides a comparison of the current value of the
positive elastic strain energy with the historical maximum to guarantee the
irreversibility condition for the propagation of the crack and ensure that the
historical variable H will never decrease.
The nojac function is used to exclude its argument from the Jacobian matrix
computation. More precisely, its argument will not be involved in the partial
derivatives evaluation of the governing equations and variables [36].
In this way, the size of the computational model is reduced.
Merging the three modules, it is possible to represent and solve the coupled
problem.
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4.2.2 Solution scheme
The numerical solution of the model is obtained by solving the nonlinear system
of equations previously described. This can be performed using two alternative
approaches: a direct solution scheme and a staggered solution scheme [36].
The direct solution scheme, also known as the fully coupled approach in
COMSOL Multiphysics, considers all the equations, such as the governing
equation for the displacement field and the phase-field damage, as part of the
same global system.
As a consequence, it solves simultaneously all the unknowns of the coupled
problem within a single iteration.
Although the coupling between variables is rigorously solved, the nonlinearity
of the governing equation can lead to convergence problems, and a large amount
of memory is needed for each iteration.
The staggered solution scheme, instead, allows the interaction between fields
without solving a global coupled system. It decouples the displacement field
and the phase-field variable, subdividing the problem into different segregated
steps. The equations are then solved as independent systems, using the updated
solution of one field as input for the others. The solution process, considering
a generic step ti, can be summarized as follows [13]:

1. Initialize the variables uj
i , ϕ

j
i , and Hj

i , in order to satisfy the initial
conditions, where j denotes the current iteration.

2. Using the results from the previous iteration uj
i , ϕ

j
i , and Hj

i , solve the
displacement field evaluating uj+1

i .

3. Substitute uj+1
i into the governing equation for the history strain to

evaluate Hj+1
i .

4. Finally, compute ϕj+1
i based on the updated values uj+1

i and Hj+1
i .

5. Evaluate the relative error between the j and j + 1 solutions. If it is less
than an imposed tolerance, the calculation for the i step is concluded,
otherwise, another iteration is performed until convergence is achieved.

6. When convergence is reached, the system moves to the next time step
i+ 1.

7. The updated solutions ui, ϕi, and Hi are used as initial values for iteration
i+ 1.

The process just described is graphically represented in Fig.4.6.
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Figure 4.6: Flowchart of the segregated solution process.

As described, this approach follows an iterative scheme in which each segregated
step solves only one field at a time.
The iterative convergence is slower and requires more iterations to be achieved;
however, since the equations are solved separately, each iteration requires less
memory [13, 36].
In this work, this latter approach is chosen as a resolution scheme.
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Chapter 5

Case Studies

5.1 Single-Edge Notched Plate
The first case study consists of a single-edge notched rectangular plate subjected
to tension. The initial notch extends in a vertical direction from the midpoint
of the top side to the center of the plate.
The left side is clamped in both directions, while on the right side of the plate,
a constant incremental displacement is applied in the positive x-direction to
study crack propagation.
The final displacement is equal to u = 0.01 mm.
The characteristic geometric dimensions are summarized in Table 5.1, while a
schematic representation of the problem is depicted in Fig.5.1.

Variable Symbol Value

Width Lx 2 mm

Height Ly 1 mm

Thickness s 1 mm

Initial crack length a0 0.5 mm

Length scale parameter l0 0.01 mm

Table 5.1: Geometric parameters of the single-edge notched plate.
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Figure 5.1: Schematic representation of the single-edge notched plate problem.

A plane strain condition is assumed since the thickness has the same order of
magnitude as the other characteristic dimensions.
Moreover, LEFM assumptions are adopted, so plastic deformation at the tip of
the defect is neglected.
Material properties, instead, are summarized in Table 5.2 [22].

Property Symbol Value

Young’s modulus E 210000 MPa

Poisson’s ratio ν 0.3

Critical release energy rate Gc 2.7 N/mm

Table 5.2: Material properties of the single-edge notched plate.

5.1.1 FEM validation setup
For this case study, the phase-field model already implemented in COMSOL
Multiphysics is adopted. A general reference for this setup can be found in
Section 4.1.
The following assumptions are considered upon selecting the Solid Mechanics
module for 2D models.
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5.1. SINGLE-EDGE NOTCHED PLATE

Figure 5.2: Solid Mechanics module assumptions for the single-edge notched
plate.

Next, after selecting the linear elastic material model, Young’s modulus and
Poisson’s ratio given in Table 5.2, are assigned and the phase-field damage
attribute is introduced.
For this specific case, the strain energy density is used as the crack driving
force.
The chosen degradation function g(d) follows the formulation proposed by
Bourdin et al., leading to the selection of a damage evolution power law. The
needed exponent is the standard one, equal to 2, resulting in

f(d) = 1 − (1 − d)m = 1 − (1 − d)2 (5.1)

where g(d) = (1 − d)2 is the degradation function formulated by Bourdin et al.
[11].
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Figure 5.3: Damage attribute applied to the single-edge notched plate.

To be in line with the method used in the neural network setup for the
decomposition of the elastic strain energy density, spectral decomposition of
the strain tensor is applied.
Once the geometry is modeled, the boundary conditions are applied using

• Prescribed displacement: imposed on the right side of the plate. In the y
direction, the displacement is set equal to zero, while in the x direction, it
is applied as a function of the variable p. The displacement is updated at
each iterative step through the auxiliary sweep, which allows for progressive
loading by varying p from an initial value of 0 to a final value of 0.01 mm
with a series of n intermediate steps.

Figure 5.4: Auxiliary sweep.

• Fixed constraint: applied at the left side of the plate, whose displacement
is prevented in both directions.
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To properly resolve the phase-field and achieve a stable material behavior, a
high mesh density is required in the proximity of the propagating crack. Since
the expected crack trajectory is known in advance, the mesh is locally refined.

Figure 5.5: Domain discretization for the single-edge notched plate.

To achieve this, the area of interest is delimited and a mapped mesh is created
to discretize it with quadrilaterals in an ordered structure. The size of these
elements is chosen equal to l0

4 , and is progressively increased up to 4l0 in the
farthest regions, which are not influenced by the fracture process.
To solve the coupled problem, the segregated strategy is adopted, splitting
the evolution of the crack phase-field and the displacement field into two groups.

5.1.2 NN setup
To model the plate’s geometry, a grid of collocation points is generated by
dividing the domain into three vertical regions to employ different sampling
densities. This approach is useful since more collocation points in the fracture
area help track the crack path more accurately.
The subdivision is performed as follows:

• Left region: it is located on the left side of the pre-cracked zone and is
defined in the range [0, 0.5 · Lx − offset];

• Central region: it is the area where the crack is expected to propagate, in
the interval [0.5 · Lx − offset, 0.5 · Lx + offset];

• Right region: it is the region located on the right side of the pre-cracked
zone and is defined in the range [0.5 · Lx + offset, Lx]

where offset = 2 · l0 is a distance parameter acting as a threshold for the
refinement region.
Each area is initially discretized using 80 × 45 collocation points.
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The existing crack is simulated by imposing the initial value of the strain history
variable H(x, t), following Eq.(3.3), using B = 100.
The initial setup is illustrated in Fig.5.6.

Figure 5.6: Initial grid points for discretizing the plate’s geometry: three
regions with different sampling densities are created.

To obtain the failure path, a fully connected neural network is employed. Its
characteristics and the optimizers adopted are described below.

• 7 hidden layers;

• 50 neurons in each hidden layer;

• Tanh is used as an activation function for all the layers, except for the
last one, which employs a linear activation;

• The Adam optimizer is adopted for the training of the first 6000 epochs,
followed by L-BGFS for additional 500 epochs.

The boundary conditions that must be satisfied include
u(x = 0) = 0,
v(x = 0) = 0,
u(x = Lx) = ∆u.

(5.2)

To ensure these conditions, strong enforcement is preferred. The outputs of
the neural network are modified as follows:

u = uNN ·
3
x

Lx

4
·
3
x

Lx

− 1
4

+ ∆u ·
3
x

Lx

4
(5.3)

v = vNN ·
3
x

Lx

4
(5.4)
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where uNN and vNN are obtained from the neural network, x is the first nodal
coordinate of each collocation point and ∆u is the applied displacement.
The evaluation of fracture and elastic strain energy densities is performed by
applying the formulation reported in Section 3.1.
To compute the integrals of the energy densities, the numerical trapezoidal rule
is used, since it provides a good approximation without increasing computa-
tional cost as much as Simpson’s rule does.
An incremental displacement is applied to simulate and describe crack propa-
gation, dividing the final value into N steps.
For each step, a training process is performed to minimize the loss function and
optimize the network parameters. At the end of each step, the displacement and
damage fields are solved and the solution for that load condition is determined.
The variable H(x, t) is updated, as it is used as the initial value for the next
step. The prescribed displacement is updated following the rule

∆ui+1 = ni+1 · δu (5.5)

where ni+1 is the current iteration steps and δu = ufinal

N
, and a new training

process starts.
A schematic representation of the process described is depicted in Fig.5.7.

Figure 5.7: Flow chart of the computational procedure for crack propagation.

5.1.3 Results and comparisons
The accuracy and the reliability of the neural network outputs are validated
through a comparison with the FEM simulation results, which served as a
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reference.
Regarding crack development, the neural network successfully predicts its prop-
agation, perfectly tracing the fracture path, as highlighted by the comparison
in Fig.5.8.

Figure 5.8: Crack path comparison - NN vs FEM results.

From the figure, it can be observed that the crack propagates perfectly in the
vertical direction, from the center to the lower side of the plate.
Figures at various instants of load ∆u are provided below to highlight how the
neural network can effectively predict crack evolution.
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(a) d(∆u = 0.006 mm)

(b) d(∆u = 0.0075 mm)

(c) d(∆u = 0.008 mm)

(d) d(∆u = 0.01 mm)

Figure 5.9: Evolution of crack propagation in the single-edge notched plate.
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The results relating to the displacement field also show good accuracy com-
pared to those obtained with the FEM method. In particular, the shape of
the displacement fields, both in the x and y direction, is consistent with that
predicted by the FEM, confirming the validity of the adopted model.

Figure 5.10: Comparison of u and v between NN and FEM for (∆u = 0.006
mm): a) u(NN). b) v(NN). c) u(FEM) d) v(FEM).
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Figure 5.11: Comparison of u and v between NN and FEM for (∆u = 0.008
mm): a) u(NN). b) v(NN). c) u(FEM) d) v(FEM).

However, it is possible to highlight some discrepancies between the two models.
The crack propagation predicted by the neural network occurs at a slower rate,
leading to complete failure at a higher value of ∆u compared to the FEM case.
In particular, the complete fracture, instead of occurring at ∆u = 8.52 · 10−3

mm, happens at ∆u = 9 · 10−3 mm. This difference can be pointed out by
analyzing, for example, the elastic strain energy as a function of the prescribed
displacement in both simulations, as shown in Fig.5.12.
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Figure 5.12: Elastic energy vs. prescribed displacement for the single-edge
notched plate.

As can be seen from the graph, at the beginning the two curves match perfectly.
The point of maximum elastic energy coincides with the beginning of fracture
propagation. After this point, the stored elastic energy is released and, conse-
quently, by the graph, the curve exhibits a negative slope.
Although there is a slight difference in the value assumed by the elastic energy
at the moment of fracture, it can be observed that the abscissa, corresponding
to the applied displacement, is the same in both simulations. Indeed, the
maximum value of the elastic energy is at ∆u = 0.0075 mm in both curves.
After ∆u = 0.008 mm, the greatest discrepancy between the curves occurs
and it can be observed that the prescribed displacement corresponding to the
breaking point obtained using NN is higher than that obtained with FEM
simulation.
Trying to better fit the FEM curve, a larger number of steps δu is used from
∆u = 0.007 mm (which corresponds to the applied displacement value before
fracture propagation in the NN model) up to ∆u = 0.01 mm. In particular,
instead of using δu = 5 · 10−4 mm, a refined step size of δu = 2.5 · 10−4 mm is
employed in that range.
Figure 5.13 shows the elastic energy as a function of displacement for the three
mentioned cases.
The FEM and NN1 curves are the ones previously illustrated, while the NN2
curve is generated by maintaining the same setup as NN1 but increasing the
iteration steps as described.
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Figure 5.13: Effect of additional iteration steps on elastic energy vs. prescribed
displacement in the single-edge notched plate.

As shown in the graph, the NN2 curve better approximates the FEM behavior,
both in terms of the maximum value of elastic energy and after the onset of
propagation.
Even the moment of complete failure of the material is closer to the FEM case,
although not perfectly coincident. Indeed, in this case, the complete fracture
occurs at ∆u = 8.75 · 10−3 mm, reducing the error from 5.64% to 2.46%.
The starting point remains unchanged, but the maximum value of the elastic
energy passes from 1.64 · 10−3 J to 1.77 · 10−3 J.
Furthermore, post-fracture behavior is also better modeled, since the horizontal
line is more accurately represented.
All the comparisons are summarized in Table 5.3.

FEM NN1 NN2

Starting fracture point [mm] 7.5 · 10−3 7.5 · 10−3 7.5 · 10−3

Ending fracture point [mm] 8.52 · 10−3 9.00 · 10−3 8.75 · 10−3

Maximum elastic energy [J] 1.99 · 10−3 1.64 · 10−3 1.77 · 10−3

Table 5.3: Comparison of the fracture points and elastic energy values between
the FEM and neural network models.

However, it is important to underline that to achieve sufficiently accurate results
with the neural network, the required computational times are significantly
higher than those needed for FEM simulation.
For that reason, the focus is placed on obtaining a solution that is qualitatively
comparable rather than precisely accurate in terms of numerical values.
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Thus, the number of collocation points was reduced to 40 × 35 in the lateral
areas and to 60 × 35 in the central area, increasing the parameter offset to 3 · l0.
Additionally, the number of hidden layers was reduced from 7 to 5 and training
epochs were decreased to 1200 for Adams (except for the first iteration which
uses 10000 epochs) and 100 for L-BFGS.
In this way, computational times were exponentially reduced, going from 2.21
hours to 10 minutes. In this case, the characteristic shape of the curve is still
captured, even if some differences are present. The starting breaking point
occurs earlier than expected, as shown in Fig.5.14, as it happens at ∆u = 7·10−3

mm. The peak value of the elastic energy is 1.67 · 10−3 J.

Figure 5.14: Elastic energy vs. prescribed displacement with a coarser grid.

Nonetheless, the fracture path is well identified and the shape of the displace-
ment fields remains consistent, as shown in Fig.5.15 and Fig.5.16.

Figure 5.15: Crack path evolution using a coarser grid.
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Figure 5.16: Displacement components u and v for ∆u = 0.006 mm using a
coarser grid.

5.2 Mixed Mode I-II Fracture in a Plate with
Holes

The second case study considers a bi-dimensional plate characterized by three
holes: two of the same size and placed symmetrically on the left side at the
top and bottom; the third one is smaller and more centrally located, which is
responsible for the propagation of fracture according to the mixed mode I-II.
The lower hole is constrained in both directions, while a prescribed displacement
is applied in the positive y-direction at the upper hole, as shown in Fig. 5.17.
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Figure 5.17: Schematic representation of the plate with holes.

The geometric dimensions are shown in Table 5.4, while material properties
are reported in Table 5.5 [38].

Variable Symbol Value

Width Lx 62.5 mm

Height Ly 62.5 mm

Thickness s 4 mm

Diameter of big holes d1 12.5 mm

Diameter of small hole d2 8 mm

Table 5.4: Geometric parameters of the plate with holes.

Since the thickness is smaller than the other characteristic dimensions, a plane
stress approximation can be adopted.
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Property Symbol Value

Young’s modulus E 72000 MPa

Poisson’s ratio ν 0.3

Yield strength σs 469 MPa

Fracture toughness KIC 29 MPa
√
m

Table 5.5: Material properties of Aluminum 7075-T6.

As shown in Table 5.5 not all the quantities required for the study through the
phase-field method are known among the material properties. Therefore, it is
necessary to determine them analytically as follows

• Critical energy release rate Gc: assuming plane stress condition and LEFM
hypothesis, it can be determined using the expression reported in Eq.(1.19)

Gc = K2
IC

E
= 15000 J

m2

• Length scale parameter l0: an initial estimation of its value can be made
using the Eq.(1.33)

l0 = 27EGc

256σ2
c

= 5.18 · 10−4m

This value, by affecting the width of the transition band from broken
to intact material, can lead to unrealistic fracture paths if not properly
chosen. For this reason, having the experimental test and knowing the
correct fracture path, it is chosen equal to l0 = 0.15 mm.

5.2.1 FEM validation setup
For this case study, the phase-field governing equations are implemented manu-
ally as described in 4.2.1.
Selecting the Solid Mechanics module, the following approximations are adopted.
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Figure 5.18: Solid Mechanics module assumptions for the plate with holes.

The degradation function is set equal to

g(d) = (1 − d)2 · (1 − k)

and it is defined as a local variable. k is chosen equal to 10−9 to avoid numerical
problems.
The boundary conditions are applied using

• Prescribed displacement: imposed to the lower hole with ux = uy = 0

• Prescribed displacement: applied to the upper hole imposing ux = 0 and a
vertical displacement uy variable at each iterative step with the parameter
p, which varies between 0 and the final displacement through the auxiliary
sweep.

For each of the three implemented modules, the initial values of the variables
should be given.
Since no preexisting cracks are present, both the damage field and the history
strain variable are initialized to zero, as well as the initial displacement.
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Figure 5.19: Initial displacement condition.

Figure 5.20: Initial phase-field condition.

Figure 5.21: Initial history field condition.

In the area where the crack is expected to propagate, a more regular and smaller
mesh should be adopted to ensure more accurate results. For that reason, as
in the previous case study, some areas have been demarcated as depicted in
Fig.5.22.
Inside the highlighted areas, a quadrilateral mapped mesh is created with a
maximum size of l0, while outside a triangular mesh is chosen.
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Figure 5.22: Domain discretization for the plate with holes for FEM simula-
tion.

In FEM analyses, triangular elements do not represent the best choice as their
shape functions are linear polynomials, and consequently, the deformations are
constant within each element.
However, due to the presence of holes and the need to delimit the areas of
potential fracture, a quadrangular mesh would be significantly distorted near
the central hole.
For this reason, since the main focus is on crack propagation, a triangular mesh
is adopted in the areas around the central hole. Moreover, a triangular mesh is
also used in the regions of least interest, as depicted in Fig.5.22.
The staggered solution scheme described in Section 4.2.2 is adopted, solving
the three modules as independent systems and using the updated solution of
one field as input for the others.

5.2.2 NN setup
Due to the complexity of the geometry and to track the shape of the holes, a
mesh is used to discretize the domain. In particular, first-order quadrilateral
elements are chosen.
To correctly study crack propagation, a finer and more uniform mesh is gen-
erated in the region where the fracture is expected to appear. In this area,
the element size is set to l0, while in the farthest regions, it is progressively
incremented to limit computational costs.
A representation of the discretized domain is given in Fig.5.23.
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Figure 5.23: Discretization of the plate with holes using quadrilateral elements
for NN simulation.

To obtain the failure path, a fully connected neural network is employed. Its
characteristics and the optimizers adopted are described below.

• 7 hidden layers;

• 40 neurons in each hidden layer;

• Tanh is used as an activation function for all the layers, except for the last
one, which employs a linear activation;

• The Adam optimizer is adopted with 10000 epochs for the first step and
2000 epochs for all subsequent steps.

The boundary conditions that must be satisfied include
u(d = rlh) = 0,
v(d = rlh) = 0,
u(d = ruh) = ∆u
v(d = ruh) = 0.

(5.6)

where d is the Euclidean distance and rlh and ruh refer respectively to the lower
hole radius and the upper hole radius. To enforce these conditions, strong
enforcement is adopted. The outputs of the neural network are modified as
follows:

u = uNN · f1 · f2, (5.7)

v = vNN · f1 · f2 + ∆v · z. (5.8)

where
f1 = ( distlh − rlh

distlh − rlh + γ
)2 (5.9)
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f2 = ( distuh − ruh

distuh − ruh + γ
)2 (5.10)

z = f1

f1 + f2
(5.11)

distlh is the Euclidean distance from the lower hole center, distuh is the Eu-
clidean distance from the upper hole center, and γ is a parameter introduced
to avoid division by zero and to control the size of the transition zone.
The nodal coordinates are passed as input to the neural network but, due to
geometry dimensions which are much larger than the normalized interval [0,1],
a pre-scaling of the inputs is performed.
Then, through the shape functions, the neural output values are interpolated
at the Gauss points to evaluate the energy and perform the integration of the
energetic quantities, using the Gauss quadrature described in Section 3.3
An incremental displacement is applied to simulate and describe crack propa-
gation, as in the previous case, and the updating rule for the displacement is
expressed by

∆vi+1 = ni+1 · δv (5.12)

The iteration process remains unchanged.
To test the potentiality of a KAN architecture, the same problem is analyzed
by employing the fast-KAN network. The procedure remains unchanged, just
the setup of the neural network changes as follows:

• 3 hidden layers;

• 18 neurons for each hidden layer;

• The Adam optimizer is employed using 10000 epochs for the first step and
2000 epochs for all subsequent steps.

5.2.3 Results and comparisons
The presence of the centered hole influenced the crack propagation, inducing a
mixed mode I-II fracture.
The crack path is represented in Fig.5.24.
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Figure 5.24: Crack path in the plate with holes from FEM results.

Despite the potential of the fast-KAN architecture, which has learnable activa-
tion functions, it is not able to accurately track the crack path in this study.
As outlined in Fig.5.25a, the fracture initially starts following a horizontal
propagation. However, instead of deviating towards the hole, the fracture
proceeds as described in Fig.5.25b.

(a) Initial crack propagation. (b) Deviation in crack propagation.

Figure 5.25: Crack propagation using fast-KAN architecture.

From the distribution, a singularity in correspondence of x = y is visible.
Moreover, instead of exhibiting a continuous propagation of the crack, the area
surrounding the hole is damaged first, as described in Fig.5.26.
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Figure 5.26: Damage distribution with an highlighting the singularity and
the initiation of damage around the centered hole.

This architecture has not proven to be suitable for investigating this type of
problem.
The classical fully connected neural network, instead, has shown promising
results. Different tests have been carried out by varying the length scale
parameter l0 since it influences the fracture prediction. Using l0 = 1.5 ·10−4mm,
as in the FEM simulation, the crack path appears as in Fig.5.27.

Figure 5.27: Crack path in the plate with hole using l0 = 0.15 mm.

The fracture propagation is correctly tracked and the starting and final points
are consistent with what is shown in Fig.5.24, even if the trajectory appears
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straighter. On the other hand, choosing l0 = 0.1 mm, the curvature of the
fracture is better captured, as depicted in Fig.5.28.

Figure 5.28: Crack path in the plate with hole using l0 = 0.1 mm.

From here, it can be outlined that the phase-field method is strongly influenced
by the choice of l0: the accuracy of the solution of the resulting fracture and
the shape strongly depend on that. For this reason, the selected value for the
FEM simulation may not be the best one for the network’s prediction.
However, the choice of l0 doesn’t only influence the shape of the crack trajectory,
but also the moment in which the fracture starts.
To outline this, it is possible to check elastic energy again.

Figure 5.29: Elastic energy vs. prescribed displacement for the plate with
holes.
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As shown, the curves are quite different.
Using l0 = 0.15 mm, the final point coincides with the FEM one, which is at
v = 0.50 mm, while the beginning of the propagation is at v = 0.45 mm instead
of v = 0.40 mm.
Instead, crack propagation is shifted to the interval v = [0.7, 0.75] mm when
adopting l0 = 0.1 mm.
If the purpose is obtaining the best path approximation, this second case
matches the FEM simulation better, since it captures more precisely the
characteristic curvature of the I-II mixed mode.
On the other hand, to analyze the numerical values and the displacement
distribution, the first case is more suitable, since it appears more similar. For
this reason, only the solution with l0 = 0.15 mm is analyzed from now on.
The elastic energy presents the characteristic shape: the curve starts from
zero and rises with a positive slope until the starting fracture point, then it
decreases with a negative slope until during the fracture propagation. When
the crack reaches the central hole, the elastic energy starts to increase again as
a new crack will propagate from the right side of the hole.
However, numerically some differences are evident and it is clear from the
initial shape that the energy solution doesn’t converge. This can be explained
by the displacement fields: the calculation of the elastic energy is based on
strain decomposition, which in turn depends on displacement, as the strains
are obtained by calculating the gradients.
The vertical component of the displacement is more faithful to the FEM results,
as shown in Fig.5.30, where a comparison of the two simulations at various ∆v
values is provided.
As depicted, there is an analogy in the distribution of the vertical displacement
and also in the numerical values.
As described before, the fracture starts later in the NN simulation, and for this
reason, in Fig.5.30b it is not yet present. Instead, the behavior at ∆v = 0.5
mm is well captured, as shown in Fig.5.30c.
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(a) ∆v = 0.2 mm

(b) ∆v = 0.4 mm

(c) ∆v = 0.5 mm

Figure 5.30: Comparison of v displacement at various ∆v values between NN
and FEM.

Instead, a higher gap is present for what concerns the horizontal component of
the displacement, as depicted in Fig.5.31.
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(a) ∆v = 0.2 mm

(b) ∆v = 0.4 mm

(c) ∆v = 0.5 mm

Figure 5.31: Comparison of u displacement at various ∆v values between NN
and FEM.

In particular, the area subject to positive displacement is restricted to a small
central region instead of the entire upper and lower edges of the plate.
The areas surrounding the holes are correctly subjected to zero displacement
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through the enforcement of the boundary conditions. At the same time, at the
notch, a completely different behavior is observed compared to that predicted
by FEM simulation. Indeed, this area turns out to be subjected to a positive
displacement instead of a negative one.
The central area, on the other hand, exhibits higher values of compression.
Such differences are particularly evident before the fracture.
In Fig.5.31c, after fracture propagation, there is greater affinity along the
boundary edges, while the region surrounding the notch still exhibits the criti-
cality explained previously.
One possible influencing factor could be the choice of enforcement. Indeed, to
impose the boundary conditions, analytical functions have been chosen, which
affect the distribution of the displacement based on the Euclidean distance.
Another possibility could be the activation function: tanh has been adopted for
this study, as it is a "smooth" function. However, this choice has a significant
impact on the network results and could lead to inaccurate solutions or even
to a failure of the training process.
Regardless of the highlighted differences, it must be considered that the simu-
lation runs just in 4 minutes, which is a sufficiently short time to balance the
presence of the discrepancies.

5.2.4 Mesh size influence
One of the main drawbacks of the phase-field method is that, to accurately
study fracture behavior, a sufficiently refined mesh in the damaged zone is
required. Moreover, the element size should be of a dimension comparable to
or smaller than the scale parameter l0, usually less than 0.5 · l0 to obtain a
precise crack topology [16, 13]. This impacts computational costs.
Below, some figures are provided, representing the discretization and the fracture
path predicted by the neural network as the element size in the expected crack
region varies. In particular, in Fig.5.32 the adopted element size is l0; in Fig.5.33
it is equal to 2 · l0; while in Fig.5.34 an element size equal to 5 · l0 is used.
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Figure 5.32: Crack propagation with element size l0 in the finer mesh region.

Figure 5.33: Crack propagation with element size 2 · l0 in the finer mesh
region.
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Figure 5.34: Crack propagation with element size 5 · l0 in the finer mesh
region.

As it can be seen, as the element size increases, the fracture path undergoes a
slight deviation. In particular, the characteristic curvature of the I-II mixed
mode is lost and the final fracture point moves from the upper point of the
hole towards the left.
However, the discretization in Fig.5.34 is much less refined and the fracture path,
although less precise, provides a good approximation of the real propagation.
Despite the fracture path, some problems exist concerning the energy associated
with crack propagation. The elastic energy curves associated with the different
element sizes are shown in Fig.5.35. It can be noticed that the energy doesn’t
converge to FEM results.

Figure 5.35: Elastic energy vs. prescribed displacement varying the element
size in the refined region.
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Chapter 6

Conclusions

Fracture studies are a fundamental aspect of mechanical design and require
numerical methods to solve partial differential equations.
In this work, the phase-field method is implemented together with the deep
energy method to simulate crack propagation in two bi-dimensional plates using
deep neural networks. Their application in this kind of analysis has shown
promising results, demonstrating the capability of neural networks in fracture
mechanics simulations.

The crack path is correctly identified in both cases, which was the primary
goal.
The results demonstrate that the neural network is suitable for predicting
I-mode fracture and the more complex I-II mixed-mode fracture.
The displacement field also shows good accuracy, even if there are some differ-
ences in the u component for the plate with holes.

A key factor is the computation time. In the first example, it has been
proven that it is possible to reduce significantly the computational time by
decreasing the number of the sampling points and conducting hyperparameters
tuning.
The second plate, instead, shows excellent computation time compared to the
first one. This could be associated with the change in the integration method.
Indeed, while in the first case, a trapezoidal integration is performed, in this
second example Gauss integration is employed. Thus, despite the more complex
geometry, this allows for a proportional decrease in the number of nodes, even
if the second domain is more than ten times larger. In addition, the intrinsic
parallelization capabilities of numerical methods can be used to distribute the
calculation among multiple units, speeding up the simulation.

Another aspect to focus attention on is the second plate’s size: unlike many
case studies that can be found in the literature on this topic, its dimensions are
not in the range of the normalized interval [0,1] but are one order of magnitude
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higher. This is particularly promising since it proves the possibility of extending
this approach to larger-scale and real engineering problems.

Finally, a key advantage lies in DEM, which allows a unified multiphysics
modeling based on the energy principle. Incorporating the energy approach
in its definition, it can be applied to model and integrate different physical
phenomena.

Despite the positive results, some limitations are still present. Indeed, a
trade-off between the computational effort and the accuracy is still necessary:
depending on the type of problem, if a high accuracy is required, computational
times could be prohibitive. Moreover, a systematic approach for calibrating
and tuning the neural network still doesn’t exist: usually, a trial-and-error
strategy is adopted for each problem. Indeed, the same setup can be used,
but optimization and adaptation are needed. Additionally, strong enforcement
requires the definition of analytical boundary functions, which aren’t always
easy to determine.

The results of this project are promising for further developments in the
future. A more precise hyperparameter tuning, different network architectures,
together with alternative activation functions and boundary conditions enforce-
ment, could reduce the current discrepancies leading to more accurate results.
Moreover, the current framework can be extended to include more material
behaviors, such as plasticity, hyperelasticity, and load cases, such as fatigue.
A wide range of applications could enhance the robustness of this method,
allowing a growing space of neural networks in fracture mechanics.
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