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Abstract

This study performs a direct numerical simulation (DNS) of a turbulent boundary layer
that develops spatially on a flat plate under a zero pressure gradient. The investigation
focuses on the influence of Prandtl numbers on passive scalar transport. The Navier-
Stokes equations and scalar transport equations are solved using a spectral element
method (SEM). Various molecular Prandtl numbers are analyzed, mainly in the liquid
metals range, to observe their impact on scalar behavior, particularly in the outer
region of the boundary layer. The results reveal significant insights into the statistical
behavior of scalars, highlighting differences in near-wall streak spacing and coherence
between velocity and scalar fields based on Prandtl number variations. Probabilistic
methods further identify intermittency near the wall and in the outer region, providing
a comprehensive view of the scalar-field dynamics influenced by Prandtl numbers.
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Chapter 1

Introduction

1.1 Accelerator Driven Systems (ADS)

Accelerator Driven Systems (ADS) represent a cutting-edge approach in nuclear tech-
nology, combining a subcritical nuclear reactor with a high-power particle accelerator.
This innovative design aims to enhance the safety and efficiency of nuclear reactors
while addressing some of the key challenges associated with traditional nuclear power.

In an ADS, a particle accelerator generates a high-energy proton beam that is
directed at a heavy metal target, typically lead or lead-bismuth eutectic (LBE). This
interaction produces a large number of neutrons through a process called spallation.
These neutrons then sustain the nuclear fission reactions within the subcritical reactor
core. Unlike conventional reactors, which rely on a critical mass of fissile material to
maintain a self-sustaining chain reaction, an ADS operates in a subcritical state. This
means that the reactor cannot sustain the fission process without the continuous input
of neutrons from the accelerator. As a result, the reactor can be easily and safely shut
down by simply turning off the accelerator. For detailed explanation, see Appendix A.

1.2 Overview of the MYRRHA Reactor

The MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications)
project is a groundbreaking initiative in nuclear technology. It is the world’s first
large-scale Accelerator Driven System (ADS), integrating a subcritical nuclear reactor
with a high-power linear accelerator. Located at the SCK CEN site in Mol, Belgium,
MYRRHA aims to tackle several critical challenges in nuclear research and waste
management.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: 3-D Schematic view of the MYRRHA sub-critical reactor(Ait Abderrahim
[1])

MYRRHA’s primary objective is to demonstrate the feasibility of ADS technology
for transmuting long-lived radioactive waste into shorter-lived isotopes, thereby re-
ducing the long-term radiotoxicity and volume of nuclear waste. The reactor is cooled
by lead-bismuth eutectic (LBE) and operates with a maximum thermal power output
of 100MWth. The project is being implemented in three phases, with the first phase
focusing on the construction of the initial section of the linear accelerator and the
Proton Target Facility (see Baeten et al. [2]).

In addition to waste transmutation, MYRRHA offers significant research opportu-
nities in fundamental and applied physics, and materials science. The reactor will also
support fusion reactor research through its dedicated fusion neutron channel.

Overall, MYRRHA represents a significant step forward in the development of
sustainable and safe nuclear technologies.

1.2.1 Liquid Metal Coolants

A significant aspect of Gen IV fast nuclear reactors, such as the MYRRHA reactor, is
the use of liquid metal coolants. These coolants are chosen for their excellent thermal
conductivity, high boiling points at normal pressure, and low neutron absorption cross-
sections. These properties make them ideal for maintaining efficient heat transfer and
ensuring the reactor operates safely under both normal and emergency conditions.

Applications

Liquid metal coolants, such as LBE, offer high thermal conductivity for efficient heat
transfer and serve as excellent radiation shields. They are used in various nuclear
reactor systems, including fast breeder reactors and accelerator-driven systems, due to

2
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their wide operating temperature range and ability to block gamma radiation while
being transparent to neutrons.
However, LBE is not the only or main coolant used. Other metals like sodium, lithium,
and NaK alloy are also employed in various nuclear reactor systems. For further
explanation, see Appendix B.

Prandlt Number Range

Liquid metals are characterized by high thermal conductivity and low viscosity, which
results in a low Prandtl number. The Prandtl number (Pr) is a dimensionless num-
ber that characterizes the relative thickness of the momentum and thermal boundary
layers in a fluid. It is defined as the ratio of momentum diffusivity (kinematic viscosity)
to thermal diffusivity, and is given by the formula:

Pr =
ν

α

where:

• ν is the kinematic viscosity

• α is the thermal diffusivity

For liquid metals, the Prandtl number is typically very low, resulting in a thicker
thermal boundary layer relative to the momentum boundary layer, indicating that
thermal diffusivity is much greater than momentum diffusivity, which is beneficial for
efficient heat transfer. The high thermal conductivity of liquid metals ensures rapid
heat dissipation, reducing the risk of overheating, and improving the overall safety and
performance of systems.

To achieve a comprehensive range of Prandtl numbers applicable to liquid metals,
30 temperature fields were introduced and treated as passive scalars. These fields were
duplicated for two separate boundary conditions at the wall, isothermal and isoflux.
Some of the scalars were introduced to compare the results with literature and in this
way validate the results, while some are introduced due to lack of data in the literature.
Some Prandtl numbers were added to complete the range while a dense set of scalar
values was chosen within the range Pr = 0.25− 0.35 to closely examine and verify the
expected change in behavior within this range (see 1.1).

*Note: Data are taken from Gnanasekaran [3]
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Scalar Prandtl Number Reason

S0 2.0 Comparison

S1 1.0 Range completion

S2 0.71 Comparison

S3 0.50 Range completion

S4 0.35 Range completion

S5 0.30 Range completion

S6 0.25 Range completion

S7 0.20 Comparison

S8 0.10 Range completion

S9 0.0413 Lithium

S10 0.0237 Lead (at M.P.)

S11 0.0232 LBE Alloy

S12 0.0210 Galinstan

S13 0.0107 Mercury

S14 0.0085 Na-K Alloy

S15 0.0058 Sodium

Table 1.1: Passive scalars and respective Prandlt numbers in the simulation

Liquid Metal Thermal conductivity
[W/mK]

Melting point
[°C]

Boiling point
[°C]

Lithium 48.6 180.5 1342
Mercury 11.69 -38.9 629.7
Sodium 77.1 97.8 883

Na-K Alloy 25.5 / 784
Lead 15.83 327.4 1749

LBE alloy 12.7 125.5 1638
Galinstan 16.5 -19 1300

Table 1.2: Thermal properties of liquid metals
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1.3 Supporting the design and certification process

through numerical modeling

The certification process for nuclear reactors is rigorous and multifaceted, ensuring that
all safety and operational standards are met before a reactor can be commissioned.
This process typically involves several stages, each designed to verify and validate the
reactor’s performance under various conditions. A critical aspect of this verification is
the application of fluid dynamics principles to optimize coolant flow within the reactor.

Experimental Validation: Initial tests are conducted on small-scale models and pro-
totypes to gather empirical data on the reactor’s behavior. These experiments use
techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Anemome-
try (LDA) to measure flow velocities and turbulence characteristics (see Richard W.
Johnson et al. [4]). These methods provide detailed insights into the flow patterns and
heat transfer mechanisms within the reactor, helping to identify potential issues and
validate theoretical models.

Computational Fluid Dynamics (CFD) Simulations: Advanced simulations are per-
formed to analyze fluid flow and heat transfer within the reactor. Techniques such as
Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and Direct
Numerical Simulation (DNS) are crucial for modeling complex physical phenomena
and predicting the reactor’s performance under different scenarios. RANS is used
for its computational efficiency in modeling turbulent flows by averaging the effects
of turbulence. LES provides a more detailed approach by resolving larger turbulent
structures while modeling smaller scales. DNS offers the highest fidelity by resolving
all scales of turbulence, providing detailed insights into fluid dynamics and heat trans-
fer, albeit at a high computational cost. Sensitivity studies are conducted to assess the
impact of key assumptions, such as turbulence models and grid size, on the predictions.
Validation involves using properly instrumented experiments to determine whether the
model selections are appropriate for the problem under consideration (seeBoyd [5]).
Additionally, practices and procedures are established to ensure accurate simulations,
including code verification, reduction of numerical error, and quantification of numer-
ical uncertainty (see Richard W. Johnson et al. [4]).

This simulation aims to improve the design and certification process by using DNS
to generate data for refining velocity and thermal turbulence models. These models
will then be applied in RANS simulations to aid in reactor design and the licensing
process. Due to high computational requirements, DNS itself is unlikely to be applied
to a full reactor or a particular subsystem directly.
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Chapter 2

Literature Review

Turbulence, a cornerstone of fluid dynamics, remains one of the most challenging phe-
nomena within classical physics problems. Despite its ubiquitous presence in systems
ranging from planetary boundary layers to the swirling currents in rivers, it contin-
ues to elude complete understanding. The transition from laminar to turbulent flow,
marked by chaotic and irregular motion, is not just a theoretical curiosity but a critical
aspect of many engineering and natural systems. This intricate interplay of scales and
forces drives ongoing research and innovation in the field.

2.1 Historical milestones in Turbulence Research

2.1.1 Visualization of Laminar to Turbulent Flow Transition:
Osborne Reynolds

One of the most iconic experiments in fluid dynamics is Osborne Reynolds’ 1883 study
on the transition from laminar to turbulent flow. Reynolds used a glass tube filled
with water and injected a stream of dye to visualize the flow. At low flow rates, the
dye moved in a straight line, indicating laminar flow. As the flow rate increased, the
dye began to mix with the water, signifying the onset of turbulence. This experiment
led Reynolds to introduce the dimensionless Reynolds number, defined as

Re =
UL

ν

where U is the velocity scale, L is the characteristic length, and ν is the kinematic
viscosity. The Reynolds number quantifies the ratio of inertial forces to viscous forces
and predicts the transition to turbulence when it exceeds a critical value (see Reynolds
[6]).

Figure 2.1: Original sketch from Reynolds [6] where the mass of colour resolved itself
into a mass of more or less distinct curls, showing eddies.
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2.1.2 Boundary layer theory

Prandtl introduced the concept of the boundary layer, a thin region near a solid
surface where viscous forces are prominent. This theory addressed the shortcomings
of potential flow theory, which could not accurately predict drag on objects. Prandtl’s
boundary layer theory (see Prandtl [7]) separates the flow into two distinct regions: an
outer region where viscous effects are minimal and potential flow is assumed, and an
inner boundary layer where viscous forces are significant. This differentiation enabled
more precise predictions of drag and flow separation, as Prandtl stated ”The physical
processes in the boundary layer between fluid and solid body can be calculated in a
sufficiently satisfactory way” 1.

Figure 2.2: Original sketch from Prandtl [7] that shows flow separation in a boundary
layer.

2.1.3 The Meandering of Cigarette Smoke

A passive scalar is a scalar quantity that does not actively influence the flow dynamics
but is carried along by the fluid motion. These scalars, such as smoke or pollutants, are
present in low concentrations and have a negligible effect on the fluid’s thermophysical
properties. They are used to model the propagation of substances like smoke within
a fluid flow. One classic experiment that visualizes both turbulence and the behavior
of passive scalars is the meandering of cigarette smoke (2.3), where cigarette smoke
is released into the air, initially forming a smooth, laminar stream. As it rises, the
smoke transitions into chaotic, turbulent motion, demonstrating how passive scalars
are dispersed and mixed within turbulent flows. This visualization provides valuable
insights into the complex dynamics of scalar transport and helps to understand the
intricate behavior of passive scalars in turbulent environments (see Libby [8]).

1L. Prandlt, 1904 ”Die physikalischen Vorgänge in der Grenzschicht zwischen Flüssigkeit und
festem Körper können in genügend befriedigender Weise berechnet werden”
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Figure 2.3: Original Photo from Libby [8] Free convection from a cigarette.

2.1.4 Experimental Approach in Turbulence Research

Wind tunnel experiments are the starting point of study of passive scalar dispersion
in turbulent flows. Early research on heat transfer was conducted by Tavoularis and
Corrsin [9] and Warhaft and Lumley [10]. Later on Hishida and Nagano [11] explored
turbulence transport mechanisms in fully developed pipe flow. Zhu and Antonia [12]
examined temperature dissipation in turbulent channel flow, while Mosyak, Pogreb-
nyak, and Hetsroni [13] studied wall temperature fluctuations and thermal coherent
structures.
For turbulent boundary layers, Hoffmann and Perry [14] investigated the similarity
between Reynolds shear stress (u′v′) and scalar flux (v′θ′). Iritani, Kasagi, and Hirata
[15] analyzed the relationship between coherent structures and temperature fluctu-
ations near the wall. Anselmet, Djeridi, and Fulachier [16] studied the statistical
relationship between a passive scalar and its dissipation.
Experimental data still play a crucial role in validating DNS results and turbulence
models.

2.1.5 Computational Approach in Turbulence Research

Direct Numerical Simulation (DNS) has become a pivotal method in turbulence re-
search, providing detailed insights into fluid dynamics without relying on turbulence
models. This technique captures all scales of turbulence by solving the Navier-Stokes
equations directly. With the advancement in computational power, DNS is no longer
limited by large Reynolds numbers. However, resolving the Kolmogorov viscous scales,
which encompass all relevant flow structures, still requires computational resources
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proportional to R9/4 (Tiselj, Flageul, and Oder [17]).
Along with the limitations imposed by the Reynolds number, there is also a constraint
based on the Prandtl number (Pr). As Pr increases, the smallest scales in scalar fluc-
tuations decrease, making DNS more challenging. This smallest scale, known as the
Obukhov-Corrsin scale, is given by ηthermal = η · Pr−3/4, where η is the Kolmogorov
length scale (see 5.1.1). Consequently, higher Pr values result in smaller ηthermal, re-
quiring finer resolution in simulations to accurately capture these fluctuations(Sagaut
[18]).
Most simulations are conducted with Pr ≤ 2. Exceptions are Kawamura et al. [19]
performing DNS in periodic channel flow for Pr ranging from 0.025 to 5.0 and Na and
Hanratty [20] conducting a channel flow DNS reaching Pr = 10.
Early DNS studies laid the groundwork for understanding turbulent flows. Rogers,
Moin, and Reynolds [21] conducted one of the first DNS in homogeneous shear flow,
while Kim and Moin [22] explored channel flows with various Prandtl numbers. Lyons
and Hanratty [23] and Kasagi, Tomita, and Kuroda [24] extended these studies to
different Reynolds and Prandtl numbers, revealing critical insights into turbulence be-
havior.
In more complex scenarios, keeping Pr values of 0.71 and 0.025, for instance, Abe,
Kawamura, and Matsuo [25] performed DNS at higher Reynolds numbers, up to
Reτ = 1024, Chung and Sung [26] investigated turbulent concentric annular pipe
flow at ReDh = 8900 , highlighting the challenges of simulating high Prandtl number
flows.
Most DNS studies have focused on fully developed turbulent channel flows due to their
simple geometry and ability to reveal convective heat transfer mechanisms. However,
fewer studies have addressed thermal turbulent boundary layers. Bell and Ferziger
were pioneers in this area, and later, Kong, Choi, and Lee [27] conducted DNS of
thermal boundary layers at Reθ = 300 with Pr = 0.71.
Recent Direct Numerical Simulations (DNS) have explored a variety of complex ge-
ometries and conditions, leveraging increased computational power. Li et al. [28]
conducted DNS of passive scalars in a spatially developing turbulent boundary layer,
examining the effects of different Prandtl numbers and wall boundary conditions. Abe
[29] performed DNS at high Reynolds numbers, focusing on the interaction between
turbulence and scalar transport. Studies have also investigated buoyancy effects, such
as in unstably stratified turbulent boundary layers, revealing significant impacts on
flow dynamics Appelbaum, Kloker, and Wenzel [30]. Additionally, DNS of adverse
pressure gradient turbulent boundary layers have provided insights into the effects of
pressure gradients on turbulence structure and behavior Parthasarathy and Saxton-Fox
[31] and Pargal et al. [32]. In particular Araya and Castillo [33] have shown enhanced
wall-normal turbulent heat fluxes as the APG increases. Pirozzoli et al. [34] studied
passive scalars in turbulent pipe flow, highlighting the influence of Prandtl numbers on
scalar transport. Alcántara-Ávila and Pérez-Quiles [35] conducted large-scale channel
flow DNS with passive scalars, focusing on Pr = 0.71.

The combination of numerical simulations and experimental measurements contin-
ues to drive progress in this challenging field.
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2.2 DNS of a Turbulent Boundary Layer

2.2.1 Main Challenges

Direct Numerical Simulation (DNS) of a developing turbulent boundary layer presents
unique challenges compared to channel flow geometry.

Transition to Turbulence

One of the primary challenges is initiating or accelerating the transition to turbulence.
Various methods have been employed to address this issue, such as the force method
used by Spalart and Watmuff [36], which used one-step random force near the wall to
quickly introduce turbulence without affecting the free stream, or Bertolotti, Herbert,
and Spalart [37] , which used a body force analogue of a vibrating ribbon, or one kind
that mimic sand paper effect implemented by Chevalier et al. [38], described in details
by Schlatter and Örlü [39] and later used by Li et al. [28] and also in this simulation
(described in details in 4.4.2). This method involves applying a periodic force within
a short region to generate waves in the flow, similar to the effect of a vibrating ribbon
or sandpaper. This approach is more convenient than adding perturbations at the
inflow, as it results in smoother transitions and shorter transient regions. Studies have
shown that distributed three-dimensional roughness elements may be more effective in
inducing transition compared to simple cylindrical wires.
Another approach is the rescaling-recycling method implemented by Lund, Wu, and
Squires [40] , which was used in multiple simulations by Abe, Mizobuchi, and Matsuo
[41] and Abe [29] and has been further explored by Garai, Murman, and Ekelschot
[42]. Their work highlights the challenge of imposing experimentally observed turbu-
lent inflow profiles, which often do not exhibit self-similar behavior, and proposes an
optimization-based technique for generating these profiles. Additionally, Araya and
Castillo [33] refined Lund’s method by incorporating a multi-scale approach, which
uses distinct scaling laws for the inner and outer regions of the boundary layer, thereby
improving the precision of thermal boundary layer representations.

Outflow Condition

Another significant challenge in DNS of turbulent boundary layers is the finite size of
the computational domain. Proper boundary conditions must be chosen, especially at
the outlet, to prevent backflows. Various methods have been investigated to address
this issue.
The fringe region method aims to achieve a base flow profile at the outlet but intro-
duces nonphysical elements into the domain, reducing the available analysis area. The
key assumption is that the non-physical phenomena occurring in the fringe do not
invalidate the solution in the useful region. This method is particularly useful because
it allows the use of periodic boundary conditions required by fully spectral numerical
methods, eliminating the need to provide turbulent inflow conditions. Periodic condi-
tions are the easiest and most often used boundary conditions, leading to accurate and
efficient Fourier series expansions, and consequently numerical advantages and good
inflow quality. The method was first implemented by Spalart [43] and has been vastly
investigated by Bertolotti, Herbert, and Spalart [37] and used in various simulations.
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Another approach involves accelerating the flow at the outlet by imposing a positive
velocity gradient to avoid backflows and is vastly used.
The convective outflow method is another technique used to manage boundary condi-
tions at the outlet. This method involves applying a convective boundary condition
that allows disturbances to exit the computational domain without reflecting back into
the flow field. It effectively simulates an open boundary by assuming that the flow
convects disturbances out of the domain at a specified speed, thus minimizing artifi-
cial reflections and maintaining the physical realism of the simulation. This method
is implemented in Abe, Mizobuchi, and Matsuo [41].
Lastly, another method involves imposing a pressure condition at the outlet, as de-
scribed by Dong, Karniadakis, and Chryssostomidis [44]. This approach sets a specific
pressure value at the outlet, ensuring that the flow remains stable and preventing
backflow into the computational domain. It is used in the present case and explained
in details in 4.2.1.

Present Case

Turbulent pressure-gradient flows introduce additional complexities, such as non-trivial
boundary conditions, along with the usual challenges of high memory and computa-
tional time requirements. In contrast, the boundary layer without a pressure gradient
has been extensively studied, confirming its fundamental scaling laws over a wide range
of parameters. This thesis aims to simulate a zero pressure gradient turbulent bound-
ary layer using direct numerical simulation (DNS) to expand our understanding of
scalar turbulent boundary layer flows across a broader range of Prandlt numbers (see
1.1), including liquid metal Prandtl numbers, specifically down to the value of Prandlt
number for Sodium. Enhancing the available turbulent and thermal statistics, sup-
porting the development of thermal turbulence models, and creating a comprehensive
database for the research community are the primary objectives.
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Chapter 3

Theoretical Formulation

3.1 Governing Equations

The Navier-Stokes (N-S) equations, which describe the motion of Newtonian fluids,
were developed in the 19th century by Claude-Louis Navier and George Gabriel Stokes.
Despite the varying nature of turbulent flows, these fundamental equations remain
consistent. When combined with the continuity equation and the scalar transport
equation, they create a system of five equations. These equations account for five
variables: three velocity components, pressure, and scalar concentration.

3.1.1 Velocity Field

To accurately describe the instantaneous velocity field of a fluid, we rely on the con-
tinuity equation and the Navier-Stokes equations, which express the conservation of
mass and momentum for an infinitesimal control volume. In conservative form are
given by:

Dρ

Dt
+ ρ∇ · v = 0

ρ
Dv

Dt
= −∇p+ µ∇2v + F

where ρ is the density, p is the pressure, v is the velocity vector (u, v, w), D
Dt

represents the ”material derivative” operator, µ is the dynamic viscosity of the fluid
and F is the body force vector per unit volume.

For incompressible flow without applied forces in tensor notation, the equations
reduce to:

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

(3.2)

where ui are the velocity components, xi are the spatial coordinates and ν is the
kinematic viscosity.
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Reynolds-Averaged Navier-Stokes Equations (RANS)

In many practical scenarios, the focus is on the mean flow rather than the rapid
fluctuations. To achieve this, the Reynolds decomposition is employed, which separates
the instantaneous flow variables into their mean and fluctuating parts.

The RANS method involves averaging over a sufficient time period to establish a
clear mean value, making it suitable primarily for stationary flows. The time-averaged
value of a quantity ϕ is defined as:

⟨ϕ⟩(xi) = lim
τ→∞

1

τ

∫ τ

0

ϕ(xi, t) dt

This averaging process ensures that the mean of the fluctuating component is zero:

⟨ϕ′⟩ = lim
τ→∞

1

τ

∫ τ

0

ϕ′(xi, t) dt = 0

Thus, for stationary turbulence, the decomposition can be expressed as:

ϕ(xi, t) = ⟨ϕ⟩(xi) + ϕ′(xi, t)

For the specific case of velocity and pressure:

ui = ⟨ui⟩+ u′i

p = ⟨p⟩+ p′

where ⟨ui⟩ and ⟨p⟩ represent the mean components, and u′i and p′ represent the
fluctuating components.

By applying the Reynolds decomposition to the Navier-Stokes and continuity equa-
tions and averaging, we derive the Reynolds-averaged Navier-Stokes equations:

∂⟨ui⟩
∂xi

= 0 (3.3)

⟨uj⟩
∂⟨ui⟩
∂xj

= −1

ρ

∂⟨p⟩
∂xi

+ ν
∂2⟨ui⟩
∂x2j

−
∂⟨u′iu′j⟩
∂xj

(3.4)

These equations, known as the Reynolds equations, differ from those for laminar
flow due to the presence of the term involving averaged products of fluctuating veloci-
ties. This term, ⟨u′iu′j⟩, is the Reynolds stress tensor, which arises from the non-linear
convection term in the Navier-Stokes equations. It represents the additional momen-
tum transfer due to turbulent fluctuations and is interpreted as a turbulent stress. This
tensor is symmetric and generally has six independent components. These components
are unknowns in the averaged equations of motion, and modeling them is crucial to
close the Reynolds equations, leading to the closure problem.
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Reynolds Stress transport equation

To further understand the behavior of turbulent flows, we derive the transport equation
for the kinematic Reynolds stress ⟨uiuj⟩. By subtracting the averaged momentum
equation 3.4 from the instantaneous momentum equation 3.2, multiplying by uj, and
averaging,where the indices i and j are interchanged, we obtain the Reynolds stress
transport equation:

D
〈
u′iu

′
j

〉
Dt

=
∂
〈
u′iu

′
j

〉
∂t

+ ⟨uk⟩
∂
〈
u′iu

′
j

〉
∂xk

= Pij +Πij − εij +Dij

(3.5)

Pij = −
(
⟨u′iu′k⟩

∂ ⟨uj⟩
∂xk

+
〈
u′ju

′
k

〉 ∂ ⟨ui⟩
∂xk

)

Πij = −1

ρ

(〈
u′i
∂p′

∂xj

〉
+

〈
u′j
∂p′

∂xi

〉)

εij = 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉

Dij = Dν
ij +Dt

ij = ν
∂2

〈
u′iu

′
j

〉
∂x2k

−
∂
〈
u′iu

′
ju

′
k

〉
∂xk

The production term, Pij, represents the rate of creation of the turbulent stress due
to the mean strain. It involves the Reynolds stresses, ⟨u′iu′k⟩, and the gradients of

the mean velocity,
∂⟨uj⟩
∂xk

, indicating the interaction between turbulent fluctuations and
the mean flow, leading to the production of turbulent kinetic energy. The pressure-
strain term, Πij, accounts for the redistribution of turbulent kinetic energy among
different components of the stress tensor. This term involves the correlation between
the fluctuating velocity, u′i, and the gradient of the fluctuating pressure, ∂p′

∂xj
. It can be

decomposed into the divergence of the pressure-velocity product, Dp
ij, which represents

the spatial transport of turbulent stress by pressure fluctuations, and the traceless part,
Φij, which redistributes energy among the normal-stress components:

−1

ρ

(〈
u′i
∂p′

∂xj

〉
+

〈
u′j
∂p′

∂xi

〉)
= − ∂

∂xk

(
1

ρ

〈
p′(u′iδjk + u′jδik)

〉)
+
1

ρ

〈
p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
The dissipation term, εij, represents the rate at which turbulent kinetic energy is

converted into thermal energy due to viscous action. It involves the viscosity, ν, and

the gradients of the fluctuating velocity,
∂u′

i

∂xk
, and is significant in the smallest scales

of motion where turbulent velocity derivatives are large. The diffusion term, Dij,
represents the transport of turbulent stress by molecular and turbulent diffusion. It
can be divided into viscous diffusion, Dν

ij, which is usually negligible except near solid
boundaries, and turbulent diffusion, Dt

ij, which represents the transport of turbulent
stress by the fluctuating velocity and pressure. Each of these terms represents a
physical process contributing to the stress budget at a point in space, and identifying
their physical character is crucial for modeling and closing the equation.
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Kinetic Energy transport equation

To understand the dynamics of turbulent flows, we derive the transport equation for
the turbulent kinetic energy, k ≡ 1

2
⟨u′iu′i⟩. The transport equation is given by:

∂k

∂t
+ uj

∂k

∂xj
= −

〈
u′iu

′
j

〉 ∂ ⟨ui⟩
∂xj

− 1

ρ

∂
〈
u′jp

′〉
∂xj

− 1

2

∂
〈
u′iu

′
iu

′
j

〉
∂xj

+ 2ν

〈
u′i

∂2u′i
∂xj∂xj

〉
(3.6)

The last term on the right-hand side, can be split into a molecular diffusion term
and a true dissipation term as follows:

2ν

〈
u′i

∂2u′i
∂xj∂xj

〉
= 2ν

∂
〈
u′is

′
ij

〉
∂xj

− 2ν
〈
s′ijs

′
ij

〉
where s′ij is the fluctuating strain rate tensor defined by

s′ij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
The different terms on the right-hand side of equation (3.6) are defined as follows:

Pk ≡ −
〈
u′iu

′
j

〉 ∂ ⟨ui⟩
∂xj

Πk ≡ −1

ρ

∂
〈
u′jp

′〉
∂xj

εk ≡ 2ν
〈
s′ijs

′
ij

〉
Dk = Dν

k +Dt
k ≡ 2ν

∂
〈
u′is

′
ij

〉
∂xj

− 1

2

∂
〈
u′iu

′
iu

′
j

〉
∂xj

where Pk is the turbulent energy production, εk is the true viscous dissipation, Πk

is the pressure diffusion, Dt
k is the turbulent diffusion, and Dν

k is the viscous diffusion.
Note that there is also a pseudo-dissipation term, but it is almost identical to the true
dissipation term, so we will focus on the true dissipation in this formulation.

This section is based on the formulations presented in Hanjalić and Launder [45]
and Pope [46].

3.1.2 Scalar Field

The transport of an instantaneous scalar property by turbulent motion can be de-
scribed using the scalar conservation equation. This equation, in its general form, is
expressed as:

∂(ρθ)

∂t
+
∂(ρθui)

∂xi
= S +

∂

∂xi

(
γ
∂θ

∂xi

)
where θ is the scalar property, ρ is the density, ui is the velocity component, γ is

the thermal diffusivity, and S is the source term representing the rate of creation of
the property per unit volume.
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For many flows, the turbulent fluctuations of density and molecular diffusivity can
be neglected.

In the case of a passive scalar, such as temperature or pollutant concentration, the
transport equation simplifies to:

∂θ

∂t
+ ui

∂θ

∂xi
= α

∂2θ

∂xi∂xi
(3.7)

where θ is the passive scalar and α is the molecular diffusivity of the scalar, that
is related to γ by:

α ≡ γ

ρ
=

λ

ρCp

, where λ is the thermal conductivity and Cp is the specific heat at constant pressure.
Analogous to the Reynolds decomposition of the velocity field, the instantaneous scalar
can be split into a mean and a fluctuating part:

θ = ⟨θ⟩+ θ′

By inserting this decomposition into the transport equation and taking the average,
we obtain the averaged transport equation for the scalar:

∂⟨θ⟩
∂t

+ ui
∂⟨θ⟩
∂xi

=
∂

∂xi

(
α
∂⟨θ⟩
∂xi

)
− ∂⟨u′iθ′⟩

∂xi
(3.8)

where ⟨θ⟩ is the mean scalar and ⟨u′iθ′⟩ represents the turbulent flux of the scalar.

Turbulent Scalar Flux transport equation

By summing up the multiplied scalar conservation 3.7 with ui and the multiplied
momentum equation 3.2 by θ , and averaging, we obtain the transport equation for
turbulent scalar flux:

D ⟨θ′u′i⟩
Dt

=
∂ ⟨θ′u′i⟩
∂t

+ ⟨uk⟩
∂ ⟨θ′u′i⟩
∂xk

= Pθi +Πθi − εθi +Dθi

(3.9)

Pθi = −
(
⟨u′iu′k⟩

∂ ⟨θ⟩
∂xk

+ ⟨θ′u′k⟩
∂ ⟨ui⟩
∂xk

)

Πθi = −1

ρ

〈
θ′
∂p′

∂xi

〉

εθi = (α + ν)

〈
∂θ′

∂xk

∂u′i
∂xk

〉

Dθi = Dα
θi +Dν

θi +Dt
θi =

∂

∂xk

(
α
∂ ⟨uiuk⟩
∂xk

+ ν
∂ ⟨uiuk⟩
∂xk

− ⟨θuiuk⟩
)

The generation terms, denoted as Pθi, involve products of second-moment correlations
and mean-field gradients, and do not require approximation. The diffusive transport
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term, Dθi, arises from velocity and pressure fluctuations as well as molecular transport,
which includes contributions from scalar conductivity/diffusivity and fluid viscosity.
The term Πθi represents the non-dispersive role of pressure fluctuations, which is crucial
for the ’scrambling’ of turbulent eddies, thereby reducing the magnitude and differ-
ences between components of the scalar flux.It is decomposed into a divergence part
representing the turbulent diffusion of the scalar by pressure fluctuations, Dθi, and a
term Φθi interpreted as ’pressure scrambling’ of the fluctuating scalar field:

−1

ρ

〈
θ′
∂p′

∂xi

〉
= − ∂

∂xk

(
1

ρ
⟨p′u′i⟩ δik

)
+

1

ρ

〈
p′
∂θ′

∂xi

〉
The dissipation term, εθi, accounts for the effects of molecular viscosity and scalar
diffusivity on the turbulent scalar flux.

This section is based on the formulation presented in Hanjalić and Launder [45]
and Bejan [47].
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3.2 Turbulent Boundary Layer

Turbulent boundary layers are characterized by a complex hierarchy of eddy struc-
tures, ranging from large-scale motions to the smallest dissipative scales, known as
the Kolmogorov length scale (see 5.1.1). This multiscale nature is governed by the en-
ergy cascade process, where kinetic energy is transferred from larger to smaller eddies
until it is dissipated by viscous forces. Understanding the mechanism by which turbu-
lent flows transport energy between a stream and a solid wall is crucial for predicting
friction and heat transfer.

3.3 Equations

In a statistically stationary and two-dimensional boundary layer with the standard
boundary layer approximations, namely negligible streamwise diffusion (∂/∂x≪ ∂/∂y)
and constant pressure throughout the boundary layer (p = p(x)), the mean flow equa-
tions reduce to:

∂ ⟨u⟩
∂x

+
∂ ⟨v⟩
∂y

= 0

⟨u⟩ ∂ ⟨u⟩
∂x

+ ⟨v⟩ ∂ ⟨v⟩
∂y

= −1

ρ

d ⟨p⟩
dx

+
∂

∂y

(
ν
∂ ⟨u⟩
∂y

)
− ⟨u′v′⟩ (3.10)

⟨u⟩ ∂ ⟨θ⟩
∂x

+ ⟨v⟩ ∂ ⟨θ⟩
∂y

=
∂

∂y

(
α
∂ ⟨θ⟩
∂y

)
− ⟨v′θ′⟩ (3.11)

Note that in equation 3.10, we use d⟨p⟩
dx

instead of ∂⟨p⟩
∂x

due to the boundary layer
approximation for pressure, i.e., ⟨p⟩ is constant through the boundary layer and is a
function of x only. The closure problem appears again in the two-dimensional turbulent
boundary layer due to the two additional unknown terms, ⟨u′v′⟩ and ⟨v′θ′⟩, in equations
3.10 and 3.11, respectively.

A form of 3.10 and 3.11 that resembles the laminar ones can be introduce, since
the size of the u and T fluctuations with which the flow responds to the postulated v
depends on the steepness of the average u and T profiles:

−ρu′v′ = ρϵM
∂u

∂y
(eddy shear stress),

−ρcpv′θ′ = ρcpϵH
∂θ

∂y
(eddy heat flux),

where ϵM and ϵH are two empirical functions known as momentum eddy diffusivity
and thermal eddy diffusivity, respectively.

Substituting these notations into the boundary layer equations, we get:

⟨u⟩ ∂ ⟨u⟩
∂x

+ ⟨v⟩ ∂ ⟨v⟩
∂y

= −1

ρ

d ⟨p⟩
dx

+
∂

∂y

[
(ν + ϵM)

∂ ⟨u⟩
∂y

]
⟨u⟩ ∂ ⟨θ⟩

∂x
+ ⟨v⟩ ∂ ⟨θ⟩

∂y
=

∂

∂y

[
(α + ϵH)

∂ ⟨θ⟩
∂y

]
These equations are used for turbulence modeling, where ϵM and ϵH are determined

empirically (see Bejan [47]). However, for Direct Numerical Simulation (DNS), there is
no need for turbulence modeling, and the original form of the boundary layer equations
3.10 and 3.11 is used.
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3.3.1 Scalings

An important concept in boundary layer problems is self-similarity, which implies that
the velocity profiles at different streamwise positions x appear similar, and the same
applies to the scalar profile. By applying appropriate scaling, all profiles at various
downstream positions can collapse onto a single curve.

For turbulent boundary layer flows, similarity solutions for the mean velocity and
mean scalar profiles are sought separately in the inner and outer regions of the bound-
ary layer. These regions exhibit different characteristics. The individual terms in
equations 3.10 and 3.11 have varying importance in these regions; for instance, con-
vection terms are significant in the outer region, while viscous and scalar flux terms
are more critical in the inner region.

Inner Region Scaling

The behavior of the flow near the wall is crucial because many engineering-relevant
features are determined in the inner layer. Ludwig Prandtl first addressed the inner
layer. The boundary layer equation for the flow field in the inner part, simplified from
equation 3.10, reads:

0 = ν
∂2⟨u⟩
∂y2

− ∂

∂y
⟨u′v′⟩ (3.12)

Integrating this equation in y, we obtain:

ν
∂⟨u⟩
∂y

− ⟨u′v′⟩
∣∣∣∣
y=0

= constant ≡ τ/ρ

Note that the Reynolds stress ⟨u′v′⟩ vanishes at the wall due to the no-slip boundary
condition:

ν
∂⟨u⟩
∂y

∣∣∣∣
y=0

≡ τw/ρ (3.13)

, where τ is the total mean shear stress and τw is the total mean shear stress at
the wall.

The characteristic length scale in the inner region can be defined as:

l∗ ≡ ν/uτ (3.14)

where uτ is the friction velocity, defined as:

uτ ≡
√
τw/ρ =

√
ν
∂⟨u⟩
∂y

∣∣∣∣
y=0

(3.15)

The wall-normal distance expressed in viscous scaling, also known as inner scaling or
wall units, becomes:

y+ ≡ y/l∗ = yuτ/ν (3.16)

Using viscous scaling, the mean streamwise velocity can be written as:

u+ ≡ ⟨u⟩/uτ = Φ1(y
+) (3.17)
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This equation is known as the law of the wall. It assumes that outer geometrical
constraints, such as the outer length scale, have a negligible effect when sufficiently
close to the wall. Consequently, the velocity and Reynolds shear stress profiles depend
solely on y+, rather than both y+ and Re. Here, Re is defined as Re = UL

ν
, where

U represents the velocity scale, L the length scale, and ν the kinematic viscosity.
Therefore, the law of the wall is universal, meaning the function Φ1 remains the same
for all flows at sufficiently high Reynolds numbers. Under these conditions, the law of
the wall aligns well with measurements and simulations for y < 0.3δ, where δ is the
boundary layer thickness. Typically, the boundary layer thickness is defined as the
point where the streamwise velocity ⟨u⟩ reaches 99% of the free-stream velocity U∞.

⟨u⟩(y = δ99%) = 0.99U∞ (3.18)

Similarly, as the mean velocity, the Reynolds shear stress using viscous scaling can be
written as:

⟨u′v′⟩+ ≡ −⟨u′v′⟩/u2τ = Φ2(y
+) (3.19)

which is found to hold for y < 0.1δ when the Reynolds number of the flow is very high.
Using viscous scaling, equation 3.13 can be written as:

τ+ ≡ du+

dy+
− ⟨u′v′⟩+ = 1 (3.20)

or
Φ′

1(y
+) + Φ2(y

+) = 1 (3.21)

In the region very close to the wall, viscous forces are predominant, making the viscous
stress significantly higher than the Reynolds shear stress. This area is known as the
viscous sub-layer. By neglecting the Reynolds shear stress term, equation 3.12 can be
integrated within this layer to obtain:

u+ = y+ (3.22)

This relation indicates that the velocity profile is a linear function of a single variable,
which is influenced by both x and y. This linear relationship is observed to hold true
for y+ < 5.

For the scalar field, we expect similar behavior as for the velocity field. By the
same reasoning as above, the boundary layer equation for the scalar field in the inner
part, simplified from equation 3.11, reads:

0 = α
∂2⟨θ⟩
∂y2

− ∂⟨v′θ′⟩
∂y

(3.23)

Similarly, the law of the wall for the scalar field reads:

θ+ ≡ θw − ⟨θ⟩
θτ

= Φθ(y
+, P r) (3.24)

Here, the function Φθ is a universal function that depends on y+ and the molecular
Prandtl number Pr, defined as Pr = ν

α
, where ν is the kinematic viscosity and α is the

scalar molecular diffusivity. The scalar concentration at the wall is denoted by θw. The
term θτ is referred to as the friction scalar or friction temperature when θ represents
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temperature. According to Cebeci and Bradshaw [48], the friction temperature is
analogous to the friction velocity uτ and is defined by:

θτ ≡ qw
ρcpuτ

(3.25)

where ρ is the density of the fluid, cp is the heat capacity of the fluid, uτ is the friction
velocity, and qw is the rate of heat transfer from the wall to the flow, which is defined
by:

qw = −λd⟨θ⟩
dy

∣∣∣∣
y=0

, (3.26)

where λ is the thermal conductivity. This equation is known as the heat conduction
law or Fourier’s law. Similarly, very close to the wall, there exists a conductive sub-
layer for the scalar field, analogous to the viscous sub-layer for the velocity field. From
the heat conduction law, we can derive the equation for the conductive sub-layer:

θ+ = Pr · y+. (3.27)

Notably, this inner scaling equation highlights the dependency on the Prandtl number
Pr, compared with the velocity field’s scaling that does not involve Pr. This linear
relationship is valid for Pr · y+ < 3 (Cebeci and Bradshaw [48]).

Outer Region Scaling

In the outer region of the turbulent boundary layer, the effect of viscosity ν is minimal,
making the viscous stress negligible. As a result, equation 3.10 simplifies to:

⟨u⟩∂⟨u⟩
∂x

+ ⟨v⟩∂⟨u⟩
∂y

= −∂⟨u
′v′⟩
∂y

(3.28)

The pressure term is omitted due to the zero pressure gradient condition, meaning
dp
dx

= 0. The characteristic length scale in this outer region is defined as:

∆ ≡ δ∗ (3.29)

where δ∗ represents the displacement thickness, given by:

δ∗ =

∫ ∞

0

(
1− ⟨u⟩

U∞

)
dy (3.30)

The wall-normal distance in the outer region is scaled as:

η ≡ y

∆
=

y

δ∗
(3.31)

In the outer part of the turbulent boundary layer, the turbulence is primarily inviscid.
The Reynolds shear stress in this region induces a drag on the flow, creating a velocity
defect (⟨u⟩−U∞), which is expected to be proportional to the wall friction characterized
by uτ . Thus, the mean velocity is scaled as:

⟨u⟩ − U∞

uτ
= Ψ1(η) (3.32)

21



CHAPTER 3. THEORETICAL FORMULATION

known as the velocity defect law. The Reynolds shear stress is scaled as:

−⟨u′v′⟩
u2τ

= Ψ2(η) (3.33)

For consistency, if a different velocity scale is used for the Reynolds shear stress, the
ratio uτ

U∞
must approach a constant at infinitely high Reynolds numbers. The scalar

field equation in the outer region, simplified from equation 3.11, becomes:

⟨u⟩∂⟨θ⟩
∂x

+ ⟨v⟩∂⟨θ⟩
∂y

= −∂⟨v
′θ′⟩
∂y

(3.34)

This leads to the defect law for the scalar field:

⟨θ⟩ − θ∞
θτ

= Ψθ(η) (3.35)

where θ∞ is the scalar concentration in the free-stream, and θτ is the friction scalar.

Buffer Region

From the previous analysis, we understand that the velocity and scalar fields follow
distinct laws in the inner and outer regions of the boundary layer. However, at suf-
ficiently high Reynolds numbers, the outer boundary of the inner layer can overlap
with the inner boundary of the outer layer. This implies that the behavior described
by equations 3.17, 3.19, and 3.24 as y+ → ∞ should match the behavior given by
equations 3.32, 3.33, and 3.35 as η → 0. Consequently, in the overlap region where
l∗ ≪ y ≪ δ∗, all these equations are valid simultaneously. The classical approach
involves matching the equations from both the inner and outer regions. Following the
derivation by Hunt [49], we obtain:

Φ1(y
+) =

⟨u⟩
uτ

=
1

κ
ln(y+) + A (3.36)

Ψ1(η) =
⟨u⟩ − U∞

uτ
=

1

κ
ln(η) +B (3.37)

where κ is the Kármán constant. Experimental data suggest that κ ≈ 0.41, A ≈ 5.2,
and B ≈ 1. Equations 3.36 and 3.37 describe the velocity distribution in the overlap
region and are commonly referred to as the logarithmic law or log-law. In this thesis,
the Kármán constant κ is set to 0.41.

The log-law for the scalar field has a similar form to that of the velocity field:

Φθ(y
+, P r) =

θw − ⟨θ⟩
θτ

=
1

κθ
ln(y+) + Aθ(Pr) (3.38)

Ψθ(η) =
θ∞ − ⟨θ⟩

θτ
=

1

κθ
ln(η) +Bθ(Pr) (3.39)

where the Kármán constant for the scalar field, κθ, is 0.33. Both Aθ and Bθ are
functions of the Prandtl number Pr. It may be more logical to express the argument
of the logarithm as Pr · y+, incorporating the scalar conductivity rather than the
viscosity, but this would only alter the constant Aθ without eliminating it.
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In equation 3.24, it is evident that there is a dependence on the Prandtl number
Pr, which is not present in equation 3.17 for the velocity field. The Prandtl number,
Pr, can vary significantly depending on the fluid, ranging from very low values for
liquid metals (as low as 0.001) to very high values for viscous fluids like oils (exceeding
100). In this thesis, we focus on the lower bound of the Prandtl number range, as
described in 1.2.1.

It is important to note that we assume the term α∂⟨θ⟩
∂y

is dominant in the inner

region, while the term ⟨v′θ′⟩ is dominant in the outer region. However, this assumption

may not always hold true, as α∂⟨θ⟩
∂y

can vary greatly with the Prandtl number. The
neglected terms in the inner and outer regions are not zero; they are simply small com-
pared to the dominant terms. By selecting a different Prandtl number, the dominance
of these terms may be reversed.

For the purposes of this thesis, we neglect ⟨v′θ′⟩ in the inner region and α∂⟨θ⟩
∂y

in

the outer region, restricting our analysis to O(Pr) = 1. The function Φθ in equation
3.24, which depends on both y+ and Pr, helps to account for this effect.
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Chapter 4

Direct Numerical Simulation

4.1 Non-Dimensional Form of the Navier-Stokes and

Scalar Transport Equations

Non-dimensionalizing the Navier-Stokes and scalar transport equations simplifies the
analysis and generalization of fluid dynamics problems. By converting variables into
non-dimensional forms, the equations become independent of specific flow conditions,
fluid properties, or scales, making them universally applicable.

The non-dimensional governing equations are:

∂u∗i
∂x∗i

= 0

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗j∂x

∗
j

∂θ∗

∂t∗
+ u∗i

∂θ∗

∂x∗i
=

1

RePr

∂2θ∗

∂x∗i∂x
∗
i

The non-dimensional variables are defined as follows:

u∗i =
ui
U∞

, x∗i =
xi
δ∗0
, θ∗ =

θ − θ∞
θw − θ∞

, p∗ =
p

ρU2
∞
, t∗ =

tU∞

δ∗0

For the isothermal boundary condition:

θ∗ =
λ(θ − θ∞)

qwδ∗0

For the isoflux boundary condition:

θ∗ =
θ − θ∞
θw − θ∞

Here, ∗ denotes a non-dimensional variable, xi are the coordinates, U∞ is the
undisturbed laminar streamwise free-stream velocity at x = 0 and t = 0, and δ∗0 is the
displacement thickness of the undisturbed streamwise velocity at x = 0 and t = 0. ρ
is the fluid density, θw and θ∞ are the scalar concentrations at the wall and in the
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free-stream, respectively. qw is the rate of scalar transfer from the wall to the flow,
and λ is the scalar conductivity.

In these equations, the Reynolds number Re is based on the free-stream velocity
U∞ and the inlet displacement thickness δ∗0, while Pr is the molecular Prandtl number.
The product of Re and Pr is the Péclet number (Pe), which represents the ratio of
convective transport of the scalar to its molecular diffusion. By using non-dimensional
equations, we can easily simulate different passive scalars by varying the Prandtl num-
ber, thus changing the Péclet number, without needing to specify the properties of
each fluid.
Note: for simplicity, the superscript ∗ will be dropped from the non-dimensional vari-
ables unless specified otherwise.

4.2 Boundary Conditions

To fully define the governing equations, it is essential to specify appropriate boundary
conditions. These conditions are critical as they determine the fluid’s behavior at the
domain boundaries, ensuring the problem is well-posed.

4.2.1 Boundary Conditions for Flow Field

Wall Boundary Condition

At the wall, the no-slip boundary conditions apply, meaning the velocity of the fluid
at a solid surface must be equal to the velocity of the surface:

u|y=0 = 0, v|y=0 = 0, w|y=0 = 0

Additionally,
∂v

∂y

∣∣∣∣
y=0

= 0

This condition is derived from the continuity equation and ensures that there is no
slip between the fluid and the wall.

Upper Boundary Condition

At the upper boundary of the domain in the wall-normal direction, Dirichlet and Neu-
mann boundary conditions are typically more appropriate for simulations. However,
since the full stress formulation, which assigns the components of the stress tensor, is
required to impose the Neumann condition, and given that the domain height yL is
sufficiently large for the velocity field, a slip condition (also called symmetry) has been
chosen:

v = 0,
∂u

∂x
= 0,

∂w

∂z
= 0
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Inlet Boundary Condition

At the inlet in the stream direction, a Dirichlet condition is imposed with the velocity
specified as the Blasius velocity profile. The Blasius profile is a similarity solution for
the laminar boundary layer over a flat plate, derived from the more general Falkner-
Skan equation. The Falkner-Skan equation describes the steady two-dimensional lam-
inar boundary layer that forms on a wedge and is given by:

f ′′′ +
m+ 1

2
ff ′′ +m(1− (f ′)2) = 0

where f is the dimensionless stream function, η = y
δ
is the similarity variable, and m

is a parameter related to the pressure gradient along the plate, defined as:

m =
x

U∞

dU∞

dx
(4.1)

For the Blasius solution, which corresponds to a flat plate with zero pressure gra-
dient, m = 0. This simplifies the Falkner-Skan equation to:

f ′′′ + ff ′′ = 0

The boundary conditions for this equation are:

f(0) = 0, f ′(0) = 0, f ′(∞) = 1

where f ′(η) = u
U∞

. Here, U∞ is the free-stream velocity, and δ is the boundary layer
thickness. The Blasius solution provides a self-similar velocity profile that serves as
the inlet profile for the simulation (see Cebeci and Bradshaw [48]).

Outlet Boundary Condition

At the outlet in the stream-wise direction, a standard outlet condition with ∇u = 0
is typically specified. However, to better handle the outflow and ensure stability, the
outflow condition from Dong, Karniadakis, and Chryssostomidis [44] is applied. This
condition is designed to manage vortices and backflows at the outflow boundary. The
condition over the pressure is given by:

p = ν(n · ∇u) · n− 1

2
|u|2S0(n · u)

where

S0(n · u) = 1

2

(
1− tanh

(
n · u
U0δ

))
Here, ν is the kinematic viscosity, n is the unit normal vector at the outflow boundary,
u is the velocity vector, U0 is a reference velocity taken in this case equal to the
free-stream velocity, and δ is a small parameter to control the smoothness of the
transition. This formulation helps to mitigate the artificial reflections and numerical
instabilities that can occur at the outflow boundary, ensuring a more accurate and
stable simulation.
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Span-wise Boundary Conditions

In the span-wise direction, periodicity is imposed:

p(z) = p(z + δz), u(z) = u(z + δz)

Note: The pressure boundary conditions are not explicitly specified in the sections
above because they are inherently determined by the velocity boundary conditions.
In general, the boundary condition for pressure must satisfy the following equation,
unless explicitly stated otherwise:

∇ ·
(
1

ρ
∇p

)
= −∇ ·

(
Du

Dt

)
+∇ ·

(
1

ρ
(∇ · τ )

)
+∇ · f

where the stress tensor τ is given by:

τ = µ
[
∇u+ (∇u)T

]
In the case of a zero pressure gradient, this implies that the pressure value can be
specified on only one boundary. On all other boundaries, the condition ∂p

∂n
= 0 must

be satisfied to ensure the problem is well-posed and not over-constrained.

4.2.2 Boundary Conditions for Scalar Field

Wall Boundary Condition

In the present implementation for the scalar field, we use two types of wall boundary
conditions: isothermal and isoflux. These boundary conditions are defined as follows:

θ|y=0 = 1 for the isothermal boundary condition

∂θ

∂y

∣∣∣∣
y=0

= −1 for the isoflux boundary condition

These boundary conditions represent extreme cases of physical scenarios. When θ
represents temperature, the isothermal boundary condition models a situation where
the fluid, characterized by low density ρ, specific heat cp, and thermal conductivity λ,
is in contact with a thick wall that has high density ρw, specific heat cpw, and thermal
conductivity λw. In this scenario, the thermal activity ratio K is given by:

K =
ρcpλ

ρwcpwλw

and approaches zero. On the other hand, the isoflux boundary condition models a
thin wall with low density, specific heat, and thermal conductivity, while the fluid
properties are relatively large, resulting in a thermal activity ratio K that approaches
infinity (Tiselj et al. [50]).

For more general cases, the conjugate heat transfer problem must be solved, which
involves solving the coupled equations for both the fluid and the solid. This approach
accounts for the unsteady heat conduction in the solid wall and the turbulent heat
transfer in the fluid.
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Upper Boundary Condition

At the upper boundary of the domain in the wall-normal direction, an isothermal
boundary condition is applied:

θ|y=yL = 0

This condition ensures that the scalar field reaches a specified value at the upper
boundary, simulating an environment where the scalar concentration is maintained at
a constant level far from the wall.

Inlet Boundary Condition

At the inlet in the stream direction, a Dirichlet condition is imposed with the temper-
ature being zero for all the scalars:

θ = 0

Outlet Boundary Condition

At the outlet in the streamwise direction, a standard outlet condition is applied:

∂θ

∂n
= 0

Span-wise Boundary Condition

In the span-wise direction, periodicity is imposed:

θ(z) = θ(z + δz)

4.3 Computational Domain

In this thesis, we examine the development of a turbulent boundary layer flow over
a flat plate with passive scalars, under zero pressure gradient (ZPG) conditions. The
simulation begins with a laminar Blasius boundary layer at the inlet, characterized
by a Reynolds number Rex = 68385, where Rex is the Reynolds number based on
the streamwise position x and the free-stream velocity U∞, as described in 4.2.1. The
laminar flow is then tripped by a random volume force (see 4.4.2) strip to transition
and eventually becomes turbulent. The trip forcing in this case is located at the wall
at a streamwise position of x = 10, corresponding to Rex = 72885. The computational
domain is a three-dimensional cuboid bounded at the lower edge by a flat plate with
a no-slip boundary condition. The boundary layer grows in the domain, starting with
an initial boundary layer thickness δ∗0. At the end of the computational domain in the
streamwise direction, the pressure is imposed as described in 4.2.1.

All relevant flow quantities are scaled with the inlet boundary layer displacement
thickness δ∗0, the free-stream velocity U∞, and the viscosity ν. The Reynolds number
based on the inlet displacement thickness and free-stream velocity is set to 450 in the
simulation. The distance from the leading edge x0 can then be computed from

x0
δ∗0

=
Reδ∗0
1.722

= 154
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which corresponds to Rex = 68385 or Reθ = 174. The values of the various Reynolds
numbers are listed in Table 4.1 with respect to the downstream locations. The trends,
along with the plots and averages, are presented in 5. The simulation is carried out
in a computational box with the length xL, height yL, and width zL being 350δ∗0,
30δ∗0, and 34δ∗0, respectively. The vertical extent of the box must include the entire
boundary layer. Depending on the choice of free-stream boundary condition, the box
may include only the boundary layer or a few times more. The sufficiency of the box
height may be investigated through numerical simulations.

A grid of 210× 14× 24 elements is used in the streamwise, wall-normal, and span-
wise directions, respectively. The element distribution is uniform in the streamwise
and spanwise directions and is characterized a ratio r = 1.28 in the wall-normal di-
rection. The grid spacing inside each element is based on Gauss-Lobatto-Legendre
collocation points. The collocation points are the roots of the derivative of the Leg-
endre polynomial P ′

N(x), where PN(x) is the Legendre polynomial of degree N , along
with the endpoints −1 and 1. These points ensure optimal placement for numerical
integration and differentiation. The number of points is set to 9, corresponding to an
8th-order polynomial, which improves the computational efficiency of the simulation
(see C).

An adaptive time-stepping method, using the third-order backward differentiation
formula (bdf3), is employed for this Direct Numerical Simulation until the statistical
steady-state is reached, where the time step is adjusted to maintain the Courant-
Friederichs-Lewy (CFL) number below CFL = 0.3 (maximum value). For the aver-
aging part a constant time step is set, equal to the average time step size, ∆t that is
approximately 0.0074. The code is compiled for 2048 processors, which are parallel
vector processors with distributed memory and the statistics are averaged over 1100
time units,

δ∗0
U∞

.

x Reδ∗ Reθ Rex
0 450 174 68385
10 446 203 72885
100 548 339 113385
150 628 396 135886
175 665 422 147136
200 704 448 158386
225 742 476 169636
250 784 504 180886
275 823 531 192136
300 857 554 203386
325 887 575 214636
350 921 598 225886

Table 4.1: Reynolds numbers with respect to the downstream location x
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4.4 Numerical Method

The numerical code Nek5000 is used for calculations presented in this thesis. It is
written in FORTRAN77 and developed by Argonne National Laboratory (ANL). The
code solves weakly compressible Navier-Stokes equations. The code utilizes the Mes-
sage Passing Interface (MPI) protocol to solve the equations in parallel. Parts of the
code implementing the particular case are taken from the KTH toolbox, which is part
of the KTH Framework for Nek5000 simulations KTH-Nek5000 [51]. The toolbox has
been successfully applied in various studies and simulations on different workstations
and supercomputers Massaro et al. [52].

4.4.1 Numerical scheme

The numerical code used in Nek5000 1 for solving the incompressible Navier-Stokes
equations is based on the spectral element method (SEM). This method combines the
geometric flexibility of finite elements with the high accuracy of spectral methods. The
domain is divided into smaller subdomains (elements), and within each element, the
solution is approximated using high-order polynomials.

The time advancement in Nek5000 is performed using a semi-implicit method.
The non-linear terms are treated explicitly using Adams-Bashforth schemes, while
the linear terms are treated implicitly using backward differentiation formulas (BDF).
This approach ensures stability and accuracy in the numerical solution. The spatial
discretization involves using Lagrange interpolation polynomials at Gauss-Lobatto-
Legendre (GLL) points within each element, ensuring spectral accuracy (see Perez
et al. [53]).

The Karniadakis scheme is used for the time integration of the Navier-Stokes equa-
tions. This scheme splits the computation into three substeps. First, the non-linear
terms are computed explicitly using Adams-Bashforth schemes. Then, the pressure is
computed by solving a Poisson equation. Finally, the velocity is updated by solving
a Helmholtz equation. This splitting of the pressure and velocity computations is at
the core of the Karniadakis scheme.

The pressure Poisson equation is derived by taking the divergence of the momentum
equation and using the incompressibility condition. The boundary conditions for the
pressure are derived from the semi-discrete formulation and are approximated using a
high-order extrapolation scheme. The velocity field is decomposed into its irrotational
and solenoidal components, and the pressure equation is solved using the rotational
form of the Laplacian.

There are two common approaches for solving the incompressible Navier-Stokes
equations using SEM: the Pn − Pn formulation, in which both the velocity and pres-
sure fields are approximated using the same polynomial order Pn and the Pn − Pn−2

formulation, that approximates the velocity field using a polynomial order Pn, while
the pressure field is approximated using a polynomial order Pn−2. The first one ensures
that the velocity and pressure fields are represented with the same level of accuracy,
on the other hand, the second approach reduces the computational cost by using a

1P. F. Fischer, J. W. Lottes, S. G. Kerkemeier, and B. Smith, ”Nek5000 v19.0,” Argonne National
Laboratory, 2008. Available: https://nek5000.mcs.anl.gov
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lower polynomial order for the pressure field, but it can introduce splitting errors (see
Joshi and Abedi [54] and Krantz, Gholamisheeri, and Karp [55]).

Overall, the numerical scheme in Nek5000 leverages the strengths of the spectral el-
ement method to solve the incompressible Navier-Stokes equations effectively, ensuring
high-order accuracy and stability.

4.4.2 Random Volumetric Force

In transient simulations, the choice of initial disturbances plays a crucial role. Unlike
controlled experimental setups where specific disturbances are introduced, real-world
scenarios often involve random disturbances. These can include surface waviness, de-
fects in screens and free-stream noise, which are inherently random in nature. By
incorporating random disturbances, simulations can more accurately reflect the con-
tinuous spectrum of real flow conditions, providing a more realistic approximation of
the natural instability mechanisms (see Spalart and Yang [56]).

To simulate these random disturbances, a random volume force is implemented,
acting in the wall-normal direction. This tripping force is designed to mimic the effects
of physical tripping devices, such as sandpaper, by introducing low amplitude random
noise into the flow. The force is applied along a line defined by its starting and ending
points, and can be either finite or infinite in length and applied within an elliptical
region along the line, defined by the smoothing lengths lx and ly, and rotated by an
angle ζ. The force direction is always normal to the line, with its magnitude fluctuating
randomly.

Figure 4.1: Illustration of the time-dependent components of the tripping function. The
resulting function has a continuous time derivative Massaro et al. [52]

The tripping force is composed of both steady and unsteady components, with
amplitudes A and At, respectively. The unsteady component is implemented using
third-order Lagrange interpolants with a time scale ts, ensuring continuity in the zeroth
and first-order derivatives. The force is described by the following equations and shown
in Figure 4.1:
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F = fsmth(r) · f(z, t)

with F = (fx, fy, fz)

fsmth(r) is the smoothing function, defined as:

fsmth(r) =

{
exp (−r2) · (1− r2)

2
if r ≤ 1.0

0 if r > 1.0

with r =
(

xloc

lx

)2

+
(

yloc
ly

)2

, where xloc and yloc are the coordinates obtained by rotating

the GLL point coordinates clockwise by the angle ζ relative to the tripping line.

f(z, t) = A · g(z) + At ·
[
(1− b(t))hi(z) + b(t)hi+1(z)

]
,

with

i = int(t/ts)

b(t) = 3p2 − 2p3

p = t/ts − i

and g(z), h(z) being Fourier series of unit amplitude with random coefficients. This
formulation ensures that the tripping force generates noise uniformly distributed over
all frequencies lower than the cutoff frequency corresponding to 2π/ts, where ts is the
time interval between changes in the time-dependent part of the trip. This approach
provides a realistic representation of random disturbances in the flow.

Force Parameter Value Description
N 48 Number of Fourier modes
ζ 0.123 Rotation angle [rad]
A 0.015 Time independent amplitude
At 0.025 Time dependent amplitude
lx 8 Smoothing length x
ly 1 Smoothing length y
zs 0 Spanwise scale
ts 4 Temporal scale

Table 4.2: Parameters set in the simulation

The force used in the simulation is part of the Nek5000 toolboxes developed at
KTH Royal Institute of Technology, which is based on the implementation of the same
volumetric force in SIMSON by Chevalier et al. [38], and it is described in detail by
Schlatter and Örlü [39]. The parameters of the force used in the simulation are given
in Table 4.2. For a detailed explanation of the forcing terms and how they influence
the flow, see Schlatter and Örlü [39].
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Results

Two direct numerical simulations (DNS) were conducted, yielding extensive statistics
on both the mean flow and the scalar distributions, along with their corresponding
fluctuations. This chapter presents these results and compares them with other simu-
lations, especially the one by Li et al. [28]. The first simulation ran for a total of 5000

time units
δ∗0
U∞

, with averages computed over the last 3000 time units
δ∗0
U∞

to ensure
convergence, using a smaller domain corresponding to 150δ∗ × 20δ∗ × 32δ∗. A second
simulation, whose results are mainly presented in this thesis, was carried out for a
total of 1800 time units

δ∗0
U∞

, with averages computed over the last 1100 time units
δ∗0
U∞

with the setup presented in Chapter 4. A larger domain was analyzed to better
compare the results with the results of Li et al. [28] at higher Reθ, and although the
simulation ran for a shorter duration, the results achieved comparable level of accuracy
for almost all the averaged quantities. The code was executed on 1024 CPUs for the
first simulation and on 2048 CPUs for the second, utilizing parallel processors and
distributed memory.

Before collecting averaged statistical data, it is essential to verify that the simula-
tion has reached a statistical steady state. This is done by plotting the velocity field
components, integrated over the entire domain, against time, as shown in Figure 5.1.
The streamwise component remains constant, as the imposed tolerance on the velocity
field matches the magnitude of the oscillations around the mean value, indicating nu-
merical stability. The wall-normal and spanwise components show an initial transient,
followed by sustained oscillations.

In addition, the dissipation rate of the turbulent kinetic energy, converted into
thermal internal energy, is monitored to confirm a statistical steady state, as shown in
Figure 5.2. After the initial transient, the dissipation rate oscillates around the mean
value, consistent with the expected behavior in turbulent flows.

The chapter is divided in three sections: Section 5.1 discusses the flow field results,
Section 5.2 focuses on scalar transfer results and Section 5.3 compares the flow and
scalar fields.
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Figure 5.1: Mean velocity components over time, where each component is integrated
over the entire volume and normalized by the volume itself.

Figure 5.2: Dissipation rate of turbulent kinetic energy
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5.1 Flow Field

This section presents the resolution of the computational domain and the hydrody-
namic results obtained from the DNS, which are compared at the same Reynolds
numbers rather than at the same downstream positions, as different experiments and
simulations have different flow conditions. The Reynolds numbers used in this study
are summarized in Table 4.1. Before analyzing the simulation data, it is essential to
verify the correctness of the setup. According to the definition of the boundary layer,
the free-stream velocity should be constant along the domain, and the case analyzed
should exhibit a zero pressure gradient. As shown in Figure 5.3, the free-stream veloc-
ity is not constant along the streamwise coordinate. This variation occurs due to the
slip boundary condition imposed at the upper boundary, which accelerates the flow,
resulting in a 3% difference along the domain. Regarding the pressure, a coefficient is
defined as:

β =
δ∗

τw

dp

dx

which accounts for the pressure gradient. It is shown that this coefficient is not equal
to zero, especially in the region where the force is applied. The influence of the force
diminishes along x, but the influence of the upper boundary condition and of the con-
dition imposed over the pressure at the outlet can be seen.
The discrepancies from the theoretical trend, primarily due to the imposed bound-
ary conditions, are the main reasons for the differences observed in comparison with
other experimental and computational results. These comparisons are presented in
the following sections.

Figure 5.3: Variation of the free-stream velocity U∞ and β with downstream positions.

5.1.1 Kolmogorov Length Scale

The Kolmogorov length scale, denoted as η, represents the smallest scale in turbulent
flow where viscosity dominates and the turbulence kinetic energy is dissipated into
thermal energy. This scale is crucial in understanding the dissipation of energy in
turbulent flows and is given by the formula:

η =

(
ν3

εk

)1/4
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where:

• ν is the kinematic viscosity of the fluid.

• εk is the average rate of dissipation of turbulence kinetic energy per unit mass
(3.1.1).

In Direct Numerical Simulation (DNS), the mesh size ∆ must be fine enough to
capture the smallest eddies, which means it should be comparable to the Kolmogorov
length scale η. This ensures that the simulation can resolve the smallest scales of
turbulence and accurately model the dissipation of energy.
In the present simulation, as shown in Figure 5.4, the value of ∆

η
is less than 2.2

throughout the entire domain, except in the forcing region, where the dissipation rate
is slightly higher due to the tripping mechanism, and in the buffer region, where the
energy dissipation rate is higher, leading to a smaller Kolmogorov length scale. This
trend is also evident in Figure 5.5, where the wall-normal variation reflects the GLL
distribution within the elements (see 4.3). Although the wall-normal values exceed
the Kolmogorov length scale, they remain within acceptable limits, indicating that a
sufficient number of grid points have been used.

Figure 5.4: Kolmogorov length scale divided by the mesh size in the entire domain.
Note: the value is above η only in the region where the influence of the tripping force
is high and within the boundary layer.
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Figure 5.5: Resolution check: Wall-normal resolution ∆y+, Kolmogorov lenght scale
η+ in the simulation and from Li et al. [28]. Note: ∆y and η are divided by uτ

ν
to

make the variables dimensionless

5.1.2 Boundary Layer Thickness

In this section, we present the results of the simulation concerning boundary layer
thickness, specifically focusing on displacement thickness and momentum thickness
along the streamwise coordinate as shown in Figure 5.6. The displacement thickness
δ∗ represents the distance by which the external flow is displaced due to the boundary
layer and reads as: ∫ ∞

0

(
1− ⟨u⟩

U∞

)
dy

The momentum thickness represents the thickness of a hypothetical layer with
uniform velocity that has the same momentum deficit as the actual boundary layer
and is defined as: ∫ ∞

0

⟨u⟩
U∞

(
1− ⟨u⟩

U∞

)
dy

The two can be considered as representative length of the problem, that means
specific Reynolds number can be defined: the Reynolds number based on displacement
thickness Reδ∗ and the Reynolds number based on momentum thickness Reθ. The two
values are plotted against the Reynolds number based on streamwise position Rex, as
shown in Figures 5.7.

The results are compared with those of Li et al. [28], and the agreement is partial.
Figures 5.7 illustrate that Reδ∗ follows the same trend as the reference case, although
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the Reynolds numbers differ at the same positions. The two Reynolds numbers, Reδ∗
and Rex, exhibit opposite influences due to the free stream velocity increasing in the
streamwise direction. Despite this, the overall trend remains consistent.

To validate the results of simulations and compare with the results in literature,
a coefficient based on both thicknesses of the boundary layer can be constructed. A
factor, called shape factor can be defined as:

H =
δ∗

θ

that also accounts for the flatness of the mean velocity as seen in Figure 5.12, since in a
turbulent boundary layer, the velocity profile near the wall is more uniform, exhibiting
a steeper gradient and indicating that the momentum thickness grows more quickly
than the displacement thickness. A smaller shape factor indicates that the mixing and
momentum transfer within the turbulent boundary layer are increased, resulting in a
flatter velocity profile close to the wall. Normally for the Blasius laminar profile its
value is H = 2.59 and it goes to H = 1.38 for a fully turbulent flow with high Reynolds
number. The trend of the shape factor is shown in Figure 5.8 and is compared with
the data from Li et al. [28] and the experimental data from Roach and Brierley [57].
The shape factor value is slightly higher than that of Li et al. [28], indicating that the
flow is less turbulent. Additionally, the domain length in the streamwise direction is
not sufficiently large to allow the flow to develop properly. The agreement with the
experimental data is getting closer as the flow reaches the fully turbulent region.

Figure 5.6: Displacement thickness and momentum thickness, measures of the bound-
ary layer thickness versus the downstream positions.
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Figure 5.7: Reynolds number based on displacement Reδ∗ and momentum thickness
Reθ versus Reynolds number based on downstream positions Rex.

Figure 5.8: Variation of the shape factor with the downstream positions.

5.1.3 Outer Layer

As described in Chapter 3, the outer layer is the upper part of the boundary layer. In
Figure 5.9, the mean streamwise velocity profiles at several downstream positions are
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plotted in outer scaling. For outer scaling, the mean streamwise velocity u is scaled
by the free-stream velocity U∞, and the wall-normal distance y is scaled by the local
displacement thickness δ∗. It is shown that the profile does not change significantly
with the Reynolds number, and all three curves collapse within each other.

The root-mean-square (RMS) values of the velocity and pressure fluctuations, as
well as the Reynolds shear stress normalized by the free-stream velocity U∞, are shown
in Figure 5.10. The wall-normal distance y is normalized by the outer scale δ∗. The
agreement with the results from Li et al. [28] is quite good for the streamwise velocity,
and there is almost no Reynolds effect. However, for the spanwise component, the
wall-normal component, the pressure fluctuations and the shear stress the peak values
of the RMS values decrease with a higher Reynolds number, and the peak positions
move towards the wall. For the pressure fluctuations, it can be clearly seen that the
influence of the upper boundary is more significant than in the simulation of Li et
al. [28], because the height of the domain is not sufficient for the imposed boundary
condition. As the flow moves further downstream from the inlet, the velocity profiles
at different Reynolds numbers tend to collapse onto a single curve. This indicates that
the flow is becoming fully developed, meaning that the effects of the initial conditions
and transient behaviors diminish, and the flow reaches a statistically steady state
where the profiles are self-similar.

Figure 5.9: Mean streamwise velocity profile at different downstream positions in outer
scaling.
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Figure 5.10: RMS values of the velocity, pressure fluctuations and Reynolds shear
stress versus downstream positions in outer scaling.

5.1.4 Inner Layer

As described in Chapter 3, the inner layer is the region close to the wall. In Figure
5.11, the mean streamwise velocity profiles at several downstream positions are plotted
in inner scaling. In this scaling, the mean streamwise velocity u is normalized by the
friction velocity uτ , and the wall-normal distance y is normalized by ν/uτ , where ν is
the kinematic viscosity and uτ is the friction velocity.
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Figure 5.11: Mean streamwise velocity profile at different downstream positions in
outer scaling.

Figure 5.12: Mean streamwise velocity profile at different downstream positions in
outer scaling.

Within the viscous sub-layer, the calculated mean velocity profile follows closely
the linear relationship:

u+ = y+

Additionally, the profile at the final position aligns well with the classical logarith-
mic law:

u+ =
1

κ
ln y+ + A,
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where κ = 0.41 and A = 5.2, as illustrated in Figure 5.12. The wake region is also
evident in this profile.

Figure 5.13: RMS values of the velocity, pressure fluctuations and Reynolds shear
stress versus downstream positions in inner scaling.

Figure 5.13 presents the RMS values of the velocity and pressure fluctuations, as
well as the Reynolds shear stress, all normalized by the friction velocity uτ . The wall-
normal distance y is normalized by the viscous scale ν/uτ . The peak RMS values for
all three velocity components, pressure fluctuations, and Reynolds shear stress increase
with higher Reynolds numbers. Notably, the wall-normal and spanwise components,
vrms and wrms, show more significant increases compared to the streamwise component
urms. The peak value of the Reynolds shear stress −u′v′ also rises, with the peak
position moving further from the wall as the Reynolds number increases. The influence
of the averaging time is evident in this case, as the curve with the highest Reynolds
number does not follow the expected trend. This discrepancy occurs because the
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averaging period was insufficient for the flow to fully develop till the end. The RMS
values of the velocity fluctuations are more sensitive to Reynolds effect than the mean
velocity profiles, as can be seen clearly in the case of prms in Figure 5.13.

5.1.5 Skin Friction

Skin friction is a measure of the drag force exerted by the fluid on the surface due to
the viscosity of the fluid. It is quantified by the skin friction coefficient cf , which is
defined as:

cf =
τw

1
2
ρU2

∞

where τw is the wall shear stress, ρ is the fluid density, and U∞ is the free stream
velocity.

The evolution of the skin friction coefficient cf is shown in Figure 5.14. The upper
dashed line represents the turbulent solution provided by Kays and Crawford [58],
given by:

cf = 0.025Re
− 1

4
θ

For comparison, empirical formulas from Schoenherr [59] are also included:

cf = 0.31(ln2(2Reθ) + 2 ln(2Reθ))
−1

A steep increase in the skin friction coefficient can be observed in the forcing region
due to the introduced high-frequency perturbation. In the simulation by Li et al. [28],
a similar bump is present but appears smoother because the forcing region is extended
over a larger length and the applied force is weaker than in the present case.

The computed skin friction initially exhibits laminar behavior, as the Blasius profile
is present at the inlet. This is followed by a transient phase that leads to weakly
turbulent behavior.

Figure 5.14: Skin friction coefficient cf versus the Reynolds number based on the
momentum thickness Reθ
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5.1.6 Probability Density Function

Stochastic methods use distribution functions to describe fluctuating scalars in a tur-
bulent field. The probability density function (PDF) is defined as:

P (Φ) =
dFϕ(Φ)

dΦ
(5.1)

In this study, the PDF was computed for the velocity component fluctuations u′, v′,
and w′. The velocity fluctuations are normalized by their corresponding RMS values,
and the probability density distributions are normalized such that the area under each
curve is unity. A Gaussian distribution with zero mean and matching variance is used
as a reference.

For u′, the PDF shows (Figure 5.15) that close to the wall, the distribution is posi-
tively skewed, indicating that the fluctuations are more intense in the positive direction
due to sweep motions. Around y+ ≈ 10, the distribution becomes nearly Gaussian,
reflecting a balance between positive and negative fluctuations. Further away from the
wall, the distribution becomes negatively skewed, indicating stronger negative fluctua-
tions, possibly due to ejection motions. These observations are expected because near
the wall, the shear forces create coherent structures such as streamwise vortices and
streaks, leading to intense sweep and ejection motions.

For the v′ component, the PDF (Figure 5.16) is slightly negatively skewed in the
near-wall region, suggesting that downward fluctuations are more intense. As we move
away from the wall, the distribution becomes positively skewed, indicating stronger
upward fluctuations. This behavior is expected because near the wall, the interaction
with the wall restricts upward motions, making downward fluctuations more intense.
As the distance from the wall increases, this restriction diminishes, allowing upward
fluctuations to dominate.

For the w′ component, the PDF (Figure 5.17) is slightly negatively skewed near the
wall and alternates between positive and negative skewness further away. The distri-
bution is almost Gaussian but with a pronounced peak at the mean (zero), indicating
that the fluctuations are centered around the mean value with occasional deviations.

The behavior of these components is consistent with the dynamics of turbulent
boundary layers and the interaction of coherent structures with the wall.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: PDF of u′ at different y+ position: (a) y+ = 1.57 S(u′) = 1.01, (b)
y+ = 4.86 S(u′) = 0.58, (c) y+ = 9.72 S(u′) = 0.15, (d) y+ = 30.2 S(u′) = −0.50, (e)
y+ = 48.5 S(u′) = −0.86, (f) y+ = 95.3 S(u′) = −1.98.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: PDF of v′ at different y+ position: (a) y+ = 1.57 S(v′) = −0.25, (b)
y+ = 4.86 S(v′) = −0.32, (c) y+ = 9.72 S(v′) = −0.34, (d) y+ = 30.2 S(v′) = 0.31,
(e) y+ = 48.5 S(v′) = 0.62, (f) y+ = 95.3 S(v′) = 0.43.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: PDF of w′ at different y+ position: (a) y+ = 1.57 S(w′) = −0.16,
(b) y+ = 4.86 S(w′) = −0.077, (c) y+ = 9.72 S(w′) = −0.071, (d) y+ = 30.2
S(w′) = −0.03, (e) y+ = 48.5 S(w′) = 0.17, (f) y+ = 95.3 S(w′) = −0.08.
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5.1.7 Energy Spectrum of Turbulence

Turbulent flow is characterized by chaotic and irregular fluid motion, occurring over
a wide range of length scales. The energy spectrum, E(k), is a fundamental tool used
to analyze the distribution of kinetic energy across different scales in turbulent flow.
It represents the contribution to turbulence kinetic energy by wavenumbers from k to
k+ dk. The largest eddies have low wavenumbers, while the smallest eddies have high
wavenumbers.

In this study, the energy spectrum is examined at a specific Reynolds number,
Reθ = 319, and at three different wall-normal distances, y+, corresponding to the
viscous sublayer (y+ = 2.5), buffer layer (y+ = 22.8), and log region (y+ = 154.5).
These regions are crucial for understanding the behavior of turbulent flow near a wall.

The energy spectrum is calculated using the Fourier transform of the velocity field.
The formula for the energy spectrum E(k) is given by:

E(k) =
∑
i

|ûi(k)|2

where ûi(k) are the Fourier coefficients of the velocity components.
To ensure the consistency of the energy spectrum along the spanwise direction,

spectra at fixed y+ for two different z positions are compared in Figure 5.18. This com-
parison demonstrates that the energy spectrum remains unchanged along the spanwise
direction, indicating homogeneity in this direction.

(a) (b)

Figure 5.18: Energy spectra for two spanwise positions at Reθ = 396 and (a) y+ = 2.5
(b) y+ = 154.5

Subsequently, spectra at the same y+ but at different streamwise positions, corre-
sponding to different Reynolds numbers, are compared, to observe the Reynolds effect
(Figure 5.19). As the Reynolds number increases, the flow becomes more turbulent,
which is evident from the different energy levels and the slight rightward shift of the
curve. However, the differences are not highly noticeable because the range of Reθ is
small, making the variations barely visible.
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Figure 5.19: Comparison of energy spectra for at Reθ = 308, Reθ = 351 and Reθ = 396
for y+ = 154.5

5.1.8 Reynolds Stress Anisotropy

Understanding the departure from isotropy is essential, when modeling the Reynolds
stress tensor and that is the main reason anisotropy invariant maps (AIMs) are valu-
able tools able to quantify the degree of anisotropy in turbulent flows. These maps
represent a domain within which all realizable Reynolds stress invariants must lie. The
AIM, proposed by Lumley and Newman [60], helps in characterizing different states
of turbulence by plotting invariants IIa and IIIa.

The Reynolds stress anisotropy is defined by the anisotropy tensor aij, derived from
the Reynolds stress tensor Rij, the turbulent kinetic energy k, and the Kronecker delta
δij:

aij =
Rij

k
− 2

3
δij

The anisotropy tensor has zero trace, meaning aii = 0, and the two non-zero
invariants, IIa and IIIa, are defined as:

IIa = aijaji

IIIa = aijajkaki

The AIM can also be described using variables η and ζ, where:

6η2 = 2IIa

6ζ3 = 3IIIa

Characteristic states of turbulence are represented by specific points and lines on
the AIM, such as isotropic turbulence at the origin (0, 0), isotropic two-component tur-
bulence in the right corner, and one-component turbulence in the left one. The upper
boundary line of the AIM represents two-component turbulence, typically observed
near solid walls where the wall-normal component of the fluctuations diminishes faster
than the other components (see Djordje Novkovic and Radojkovic [61]).
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Figure 5.20: Anisotropy invariant map at Reθ = 596 against wall normal position y+.

The AIM of this simulation at Reθ = 596 is shown in Figure 5.20. Close to the wall,
at y+ = 2, the turbulence is very near the two-component limit. As we move away from
the wall, at y+ = 6, the turbulence approaches the one-component limit near the edge
of the viscous sub-layer. This indicates that one of the diagonal components of the
Reynolds stress tensor becomes significantly larger than the other two, which are nearly
zero. Further from the wall, at y+ = 25, the turbulence is closer to the isotropic state
and lies within the axisymmetric expansion line and the two-component turbulence
line. This suggests that at this wall-normal position, the flow is in an intermediate
state, such as the buffer layer. At y+ = 151, in the log region, the turbulence is close
to the bottom curve corresponding to axisymmetric expansion, where one diagonal
component of the Reynolds stress tensor is larger than the other two. These results
align with the ones of Li et al. [28], including the agglomeration of points close to
y+ = 150.
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5.2 Scalar Field

In this chapter, the transport of 30 different scalars is simulated, each with either
a distinct Prandtl number or wall-boundary condition and the results presented are
averaged in the spanwise direction. All the scalars are summarized in Table 1.1.
Special attention is given to the comparison between scalars with Prandtl numbers
close to unity and those with values typical of liquid metals. Additionally, the range
of Prandtl numbers from 0.1 to 0.3 is of particular interest, as a change in behavior is
expected within this range, which will be demonstrated in the results. Furthermore,
comparisons between isothermal and isoflux wall boundary condition cases are also
presented. All the scalars are transformed from θ to 1− θ to simulate a cooling wall.

5.2.1 Boundary Layer Thickness

The scalar displacement thickness, denoted as δ∗θ , quantifies the effective displacement
of the external scalar concentration profile due to the presence of the boundary layer.
Mathematically, it is expressed as:

δ∗θ =

∫ ∞

0

(
1− θ − θw

θ∞ − θw

)
dy

where θ represents the scalar concentration, θw is the scalar concentration at the wall,
and θ∞ is the scalar concentration in the freestream.

The scalar momentum thickness, denoted as θθ, represents the thickness of a hypo-
thetical layer with uniform scalar concentration that would produce the same scalar
momentum deficit as the actual boundary layer. This is defined by the integral:

θθ =

∫ ∞

0

θ − θw
θ∞ − θw

(
1− θ − θw

θ∞ − θw

)
dy

The two measures of the thermal boundary layer thickness are shown in Figures 5.22
and 5.23 for various Prandtl numbers, ranging from Pr = 1 to Pr = 0.0232 (LBE).
It is evident that the thickness is governed by the Prandtl number, resulting in a
thermal boundary layer that is thicker than the velocity boundary layer for Pr ≪ 1
and thinner for Pr > 1, as shown in Figure 5.21. From the Figure, it is clear that as
the Prandtl number decreases, the boundary layer becomes more uniform. This effect
is due to the increased thermal diffusivity relative to momentum diffusivity, allowing
heat to spread more evenly through the fluid.
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(a) (b)

Figure 5.21: Comparison of boundary layer thickness for different scalars at Reθ = 596
(a) Displacement thickness δ∗θ (b) Momentum thickness θθ

Additionally, there is a significant difference between the cases with isothermal and
isoflux wall boundary conditions. The boundary layer thickness profile appears less
uniform for the isoflux case. This phenomenon can be explained by the nature of the
boundary conditions: in the isothermal case, the wall temperature is constant, leading
to a more consistent temperature distribution and a more regular boundary layer
profile. In contrast, the isoflux condition involves a constant heat flux at the wall, which
results in temperature fluctuations and a less consistent temperature distribution,
thereby causing a less regular boundary layer profile and also a slightly thinner one
(see Figure 5.21).

These observations highlight how both the Prandtl number and the boundary con-
ditions influence the thermal boundary layer thickness profiles.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Different measures of the scalar boundary layer thickness versus the
downstream positions for (a) Pr = 1, (b) Pr = 0.71, (c) Pr = 0.30, (d) Pr = 0.20, (e)
Pr = 0.0237, (f) Pr = 0.0232 with isothermal boundary conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: Different measures of the scalar boundary layer thickness versus the
downstream positions for (a) Pr = 1, (b) Pr = 0.71, (c) Pr = 0.30, (d) Pr = 0.20, (e)
Pr = 0.0237, (f) Pr = 0.0232 with isoflux boundary conditions.
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5.2.2 Inner Layer

Mean scalar

The results of θ+ against y+ for different Prandtl numbers (Pr) at various downstream
positions (Reθ) provide insightful comparisons with the velocity field. Here, θ+ rep-
resents the dimensionless mean scalar, normalized by the friction scalar θτ , and y

+ is
the dimensionless wall-normal distance, scaled by the viscous length scale.

The mean scalar profiles for higher Pr numbers exhibit a clear logarithmic region,
similar to the streamwise velocity profiles. However, as Pr decreases, the logarithmic
region becomes less distinct due to the thickening of the conductive sub-layer, as
shown in Figure 5.25, where the logarithmic region can be clearly observed only for
Pr =1.The comparison of the mean scalar profiles in Figure 5.24 clearly illustrates
at which Prandtl number the logarithmic region disappears. This thickening effect
is more pronounced at lower Pr values, leading to a broader scalar boundary layer.
Consequently, the mean scalar value increases with decreasing Pr, indicating a thicker
boundary layer, in complete accordance with Figure 5.21.

Figure 5.24: Comparison of mean scalar profile for various Prandtl numbers at Reθ =
596

For Pr = 1 (Figure 5.25a), it is observed that as the Reynolds number increases,
the profiles of θ+ become higher, indicating an increase in the mean scalar value. This
trend is consistent across other Prandtl numbers, suggesting that higher Reynolds
numbers lead to more efficient scalar transport due to increased turbulence.

However, an interesting behavior is noted for Pr = 0.2, where the departure from
the lowest values starts earlier in the buffer region as Reynolds number increases. This
early departure indicates that the scalar transport mechanisms are more active at lower
y+ values, leading to a more pronounced effect in the buffer region. This behavior is
not observed for the lowest Pr corresponding to liquid metal Lead-Bismuth Eutectic
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(LBE), but within the range of Pr 0.2-0.3, the behavior changes significantly. This
suggests that within this Pr range, the interaction between molecular diffusion and
turbulent transport is altered, affecting the scalar distribution earlier in the boundary
layer.

(a) (b)

(c) (d)

Figure 5.25: Mean scalar profiles at different downstream positions for (a) Pr = 1, (b)
Pr = 0.30, (c) Pr = 0.20, (d) Pr = 0.0232 with isothermal wall-boundary conditions.

Turbulent statistics

The root-mean-square (RMS) values of the scalar fluctuations, normalized by the
friction scalar θτ , are shown in Figures 5.27 and 5.28. The wall-normal distance is
normalized by ν/uτ . A first straightaway consideration is over the boundary condition:
the RMS values at the wall are non-zero for the isoflux boundary condition, while they
are zero for the isothermal boundary condition. This difference is due to the nature of
the boundary conditions: the isothermal condition imposes a constant temperature at
the wall, leading to zero fluctuations, whereas the isoflux condition allows temperature
fluctuations at the wall.

The RMS values of θ are plotted at different streamwise positions to highlight
the Reynolds effect. It can be seen that the effect becomes more significant as the
Prandtl number decreases. For the isothermal boundary condition, the RMS values of
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Figure 5.26: Comparison of scalars with different wall-boundary conditions, highlight-
ing the behavior at the wall.

the scalar fluctuations with different Reynolds numbers collapse with each other for
y+ ≈ 10. The peak values increase with an increase in the Reynolds number. In the
outer region, the profiles of the RMS scalar fluctuations differ due to the Reynolds
number effect, similar to the RMS values of the streamwise velocity. The maximum
RMS values of the scalar fluctuation increase as the Prandtl number increases, as
shown in Figure 5.26. The comparison of the RMS values at Reθ = 596 for various
Prandtl numbers shows that the value is very high for Pr = 1 close to the wall and
then rapidly decreases to zero. As the Prandtl number decreases, the maximum RMS
value decreases, and the values approach zero more gradually. This behavior can be
explained by the increased thermal diffusivity at lower Prandtl numbers, which leads
to more uniform temperature distributions and less pronounced fluctuations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.27: RMS values of the scalar fluctuation at different downstream positions
for (a) Pr = 1, (b) 0.71, (c) Pr = 0.30, (d) Pr = 0.20, (e) Pr = 0.0237, (f) Pr = 0.0232
with isothermal wall-boundary conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.28: RMS values of the scalar fluctuation at different downstream positions
for (a) Pr = 1, (b) 0.71, (c) Pr = 0.30, (d) Pr = 0.20, (e) Pr = 0.0237, (f) Pr = 0.0232
with isoflux wall-boundary conditions.

The streamwise scalar flux, denoted as u′θ′, represents the transport of heat in the
direction of the main flow. As shown in Figures 5.30 and 5.32, the trend indicates
that with increasing Reynolds number, the peak value of the streamwise heat flux
increases, demonstrating a consistent Reynolds effect. For the highest Prandtl number
with isothermal boundary conditions, this trend is evident. However, at Pr = 0.2,
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the trend changes drastically (see Figure 5.29), with the peak value for the highest
Reynolds number being almost twice that of the highest Pr in the range at the same
Reynolds. Decreasing the Prandtl number below Pr = 0.2 leads to a decrease in
the peak value again. This abrupt change in behavior within this range suggests a
significant shift in the heat transfer mechanism, warranting further investigation (see
Figure 5.36).

For the isoflux boundary condition, the peak values are very high for the highest
Reynolds number at Pr = 1. In this case, the peak values are within the range, indi-
cating that the Reynolds effect is still present. The behavior of the streamwise scalar
flux highlights the importance of considering both Reynolds and Prandtl numbers in
heat transfer analysis.

The wall-normal scalar flux, denoted as v′θ′, represents the transport of heat per-
pendicular to the main flow direction. The trends for the wall-normal heat flux better
resemble those of the RMS values, with an increase in the peak value as the Reynolds
number increases. As the Prandtl number decreases, the curve shifts the peak towards
the right, and the curve becomes thicker. This behavior indicates that at lower Prandtl
numbers, the thermal diffusivity is higher, leading to more uniform temperature dis-
tributions and less pronounced fluctuations (Figures 5.31 and 5.33).

Figure 5.29: Comparison of streamwise scalar flux at Reθ = 596 for various Prandtl
numbers.
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(a) (b)

(c) (d)

Figure 5.30: Streamwise scalar flux fluctuations at different downstream positions for
(a) Pr = 1, (b) 0.71, (c) Pr = 0.30, (d) Pr = 0.20, with isothermal wall-boundary
conditions.
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(a) (b)

(c) (d)

Figure 5.31: Wall-normal scalar flux fluctuations at different downstream positions for
(a) Pr = 1, (b) 0.30, (c) Pr = 0.20, (d) Pr = 0.0237, with isothermal wall-boundary
conditions.

(a) (b)

Figure 5.32: Streamwise scalar flux fluctuations at different downstream positions for
(a) Pr = 1, (b) 0.20 with isoflux wall-boundary conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.33: Wall-normal scalar flux fluctuations at different downstream positions for
(a) Pr = 1, (b) 0.71, (c) Pr = 0.30, (d) Pr = 0.20, (e) Pr = 0.0237, (f) Pr = 0.0232
with isoflux wall-boundary conditions.

5.2.3 Turbulent Prandtl Number

Another important parameter in scalar transfer is the turbulent Prandtl number (Prt).
The turbulent Prandtl number plays a crucial role in predicting near-wall scalar trans-
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fer using turbulence models and is defined as the ratio of the turbulent eddy viscosity
νt to the eddy diffusivity αt:

Prt =
νt
αt

(5.2)

where νt and αt are defined by (strictly only for parallel flows):

νt = − u′v′

∂u/∂y
(5.3)

αt = − v′θ′

∂θ/∂y
(5.4)

The Reynolds analogy is the simplest model for the turbulent Prandtl number since
it leads to the equivalence of the eddy viscosity for momentum transfer and the eddy
diffusivity of scalar transfer, such that Prt = 1. To analyze the near-wall asymptotic
behavior of the turbulent scalar statistics, Monin and Yaglom [62] proposed expanding
the velocity and scalar distributions in Taylor series. However, in this study, the direct
application of the formula valid for flow with one main component was preferred due
to its simplicity and accuracy within the boundary layer.

The turbulent Prandtl number was computed up to the thickness of the boundary
layer, as outside of it in the free stream a turbulent Prandtl number cannot be defined.
This approach was preferable because using a Taylor expansion would lead to an
approximate solution even inside the boundary layer.

In Figure 5.34, the trend of the turbulent Prandtl number is shown for Pr = 1
and Pr = 0.71 to better understand the influence of the wall-boundary condition on it
(without the low Pr effect being present). It is clear that for the isothermal boundary
condition, the turbulent Prandtl number is almost constant along y+, close to one as
a value, and does not depend on the Prandtl number (at least in this short range). In
contrast, for the isoflux boundary condition, the turbulent Prandtl number approaches
zero close to the wall, reaches one at y+ ≈ 10, increases, and then decreases. In this
case, the curves for the two Prandtl numbers are distinguished, indicating that the
turbulent Prandtl number changes with Pr.

In Figure 5.34b, the same comparison is made with Pr = 1 and Pr = 0.0232
(LBE). For the isoflux boundary condition, the trend is similar even though the Pr
range is wider. However, for the isothermal wall-boundary condition, the behavior of
the liquid metal Prandtl number departs from the Pr = 1 case and resembles more the
isoflux case. A third figure shows the comparison within an even smaller range of Pr
for two liquid metals, lead and LBE. It can be seen that for the isothermal boundary
condition, the curve is not influenced by the Prandtl number, while it is for the isoflux
boundary condition. This indicates that the influence of the Prandtl number appears
abruptly in the form of the low Pr effect.

To further investigate the behavior between this range from Pr = 1 and Pr =
0.0232, various Prandtl numbers were considered, as shown in Figure 5.36. It is evident
that the abrupt change occurs within Pr = 0.2−0.3. This change can be attributed to
the significant alteration in the interaction between molecular diffusion and turbulent
transport mechanisms within this Prandtl number range. As the Prandtl number
decreases, the thermal diffusivity increases, leading to more pronounced effects of
molecular diffusion close to the wall, which affects the turbulent Prandtl number.
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(a) (b)

Figure 5.34: Comparison of turbulent Pr with different wall-boundary conditions at
Reθ = 596 for (a) Pr = 1 and Pr = 0.71, (b) Pr = 1 and Pr = 0.0232 (LBE).

Figure 5.35: Low Pr effect at Reθ = 596 depending on the wall-boundary conditions.

(a) (b)

Figure 5.36: Turbulent Pr with different wall-boundary conditions at Reθ = 596 for a
wide range of Prandtl number.
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5.2.4 Stanton Number

The Stanton number (St) is a dimensionless number that measures the ratio of heat
transferred into a fluid to the thermal capacity of the fluid. It is defined as:

St =
h

ρU∞cp
(5.5)

where:

• h is the convection heat transfer coefficient,

• ρ is the density of the fluid,

• U∞ is the free stream velocity,

• cp is the specific heat of the fluid.

It is significant in characterizing heat transfer in forced convection flows, since
provides a measure of the efficiency of heat transfer relative to the fluid’s capacity to
store thermal energy.

For a fluid with a Prandtl number of 1, the momentum diffusivity is equal to the
thermal diffusivity. This results in the boundary layer governing equations for mean
velocity and mean scalar becoming identical, leading to equivalent solutions for both
velocity and scalar fields. This concept, under the name of Reynolds Analogy, relates
the turbulent momentum transfer to the heat transfer in a fluid flow and expressed in
non-dimensional form, states as:

St =
cf
2

(5.6)

where cf is the skin friction coefficient. This relationship shows that the Stanton
number is half of the skin friction coefficient for a fluid with Pr = 1.

Figure 5.37: Reynolds Analogy: Stanton number for both isothermal and isoflux wall-
boundary conditions at Pr = 1 and friction coefficient Cf.
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For fluids with Prandtl numbers different from 1, the relationship between the Stan-
ton number and the skin friction coefficient changes. Specifically, for lower Prandtl
numbers (Pr < 1), the thermal diffusivity is higher relative to the momentum diffu-
sivity. This results in more efficient heat transfer, leading to a higher Stanton number.
The Reynolds analogy can be modified to account for different Prandtl numbers.

(a) (b)

Figure 5.38: Comparison with the data from Li et al. [28] of Stanton number for (a)
Pr = 0.71 (b) Pr = 0.2.

Figure 5.37 shows the comparison of the Stanton number for isothermal and isoflux
cases with the skin friction coefficient cf for a scalar with Pr = 1. The similarity
in trends is due to the Reynolds analogy, which equates the scalar transfer to the
momentum transfer. The overshoot observed in the Stanton number profiles is similar
to that of the skin friction coefficient, indicating that the heat transfer behavior closely
follows the momentum transfer behavior.

Figure 5.38 compares the data with the results from Li et al. [28] for scalars with
Pr = 0.71 and Pr = 0.2. The trends align with Li’s data for Reθ > 400 because
the initial conditions influence the results at lower Reynolds numbers. The Stanton
number increases significantly at the beginning due to the inflow condition, where the
scalar is set to zero. Also the forcing region increases the Stanton number, leading
to a peak around Reθ ≈ 200. This peak is due to strong and random fluctuations
in scalar concentration in this region. As verified by Li et al. [28], the isoflux case is
smoother than the isothermal one, as evidenced by a smaller peak. This is because an
isoflux boundary condition provides a more uniform scalar transfer rate compared to
an isothermal boundary condition.

Figure 5.39 shows comparisons within different Prandtl numbers. As Prandtl num-
ber decreases, general trends of Stanton number shift to higher values. This occurs be-
cause lower Prandtl numbers indicate higher thermal diffusivity relative to momentum
diffusivity, resulting in more efficient heat transfer and thus higher Stanton numbers.
At Reθ ≈ 600, Stanton number for Pr = 1 is one-fifth of value for Pr = 0.0232 (LBE).
The initial peak is attenuated as the value increases, becoming part of the main trend.
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Figure 5.39: Stanton Number at different downstream position for pr = 0.0232 (LBE).

5.2.5 Probability Density Function

The probability density function (PDF) distributions of the scalar fluctuations are
shown in Figures 5.43, 5.42, 5.40 and 5.41. A Gaussian distribution with zero mean
and matching variance is also shown as a reference, denoted by the orange line. Similar
to the velocity and pressure fluctuations, the scalar fluctuations are normalized by the
corresponding RMS values, and the probability density distributions are normalized
such that the area under each curve is unity.

In this study, the PDF was computed for a wide range of Prandtl numbers (Pr)
with both isothermal and isoflux wall-boundary conditions at the same y+ close to the
wall. For the isothermal case, it is observed that as the Prandtl number decreases,
the PDF becomes less positively skewed, reaching the smallest value for Sodium (Pr
= 0.0058). This behavior can be explained by the fact that at lower Prandtl numbers,
the thermal diffusivity is higher, leading to more uniform temperature distributions
and less pronounced positive fluctuations near the wall.

Conversely, for the isoflux case, the behavior is different. As the Prandtl number
decreases, the PDF becomes more negatively skewed until it reaches the liquid metal
range, where it becomes slightly positively skewed. This can be attributed to the
constant heat flux boundary condition, which maintains a nonzero temperature gradi-
ent at the wall. At lower Prandtl numbers, the higher thermal diffusivity causes the
temperature fluctuations to be more influenced by the imposed heat flux, leading to
stronger negative fluctuations. However, in the liquid metal range, the extremely high
thermal diffusivity results in a more balanced distribution of temperature fluctuations,
causing the skewness to become slightly positive again.
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(a) (b)

(c) (d)

Figure 5.40: PDF of θ′ at y+ ≈ 1.57 with isoflux wall-boundary condition of the
following Prandtl numbers and respective skewness of the distribution: (a) Pr = 1,
(b) Pr = 0.71, (c) Pr = 0.5, (d) Pr = 0.3.
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(a) (b)

(c) (d)

Figure 5.41: PDF of θ′ at y+ ≈ 1.57 with isoflux wall-boundary condition of the
following Prandtl numbers and respective skewness of the distribution: (a) Pr = 0.2,
(b) Pr = 0.0237, (c) Pr = 0.0232, (d) Pr = 0.0058.

(a) (b)

Figure 5.42: PDF of θ′ at y+ ≈ 1.57 with isoscalar wall-boundary condition of the
following Prandtl numbers and respective skewness of the distribution: (a) Pr = 0.0232,
(b) Pr = 0.0058.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.43: PDF of θ′ at y+ ≈ 1.57 with isoscalar wall-boundary condition of the
following Prandtl numbers and respective skewness of the distribution: (a) Pr = 1,
(b) Pr = 0.71, (c) Pr = 0.5, (d) Pr = 0.3, (e) Pr = 0.2, (f) Pr = 0.0237.
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5.3 Comparative Analysis of Velocity and Scalar

Fields

The comparative analysis of the velocity field and scalar field aims to understand the
intricate interactions between these fields in a turbulent boundary layer, considering
different wall-boundary conditions and various Prandtl numbers. This comparison is
conducted using various methods, including energy spectra, joint probability density
functions (JPDF) and visualization of contour plots, to provide a comprehensive view
of the flow dynamics and scalar transport mechanisms.

5.3.1 Energy Spectrum

In the present analysis, the energy spectra within velocity and scalar fields are com-
pared at different Prandtl numbers (Pr = 1, Pr = 0.2, and Pr = 0.0232) across three
y+ positions corresponding to the viscous sublayer, buffer layer, and log layer for the
velocity field, as shown in Figures 5.44 and 5.45. For Pr = 1, the similarity between
thermal diffusivity and momentum diffusivity results in boundary layers of nearly iden-
tical thickness, demonstrating the Reynolds analogy. In the case of Pr = 0.0232, at
y+ = 22.8, the velocity field is in the buffer layer, but the scalar field remains laminar
due to the significantly higher thermal diffusivity compared to momentum diffusivity.

(a) (b)

(c)

Figure 5.44: Comparison of energy spectra of flow and scalar fields at y+ ≈ 2.5 with
isotehrmal wall-boundary condition of the following Prandtl numbers: (a) Pr = 1, (b)
Pr = 0.2, (c) Pr = 0.0232.
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This difference in diffusivity levels causes the scalar field to lag behind in its tran-
sition to turbulence. Additionally, at y+ = 154.5, the velocity field is already in the
log-region, while the scalar field has not yet reached the buffer layer, highlighting the
disparity in their respective diffusivities. For the intermediate case of Pr = 0.2, the
behavior of the scalar field is quite similar to the velocity field, but with slightly lower
energy levels due to the moderate thermal diffusivity.

(a) (b)

(c) (d)

(e) (f)

Figure 5.45: Comparison of energy spectra of flow and scalar fields with isotehrmal
wall-boundary condition of the following Prandtl numbers and wall normal position:
(a) Pr = 1 y+ = 22.8, (b) Pr = 0.2 y+ = 22.8, (c) Pr = 0.0232 y+ = 22.8 (d) Pr = 1
y+ = 154.5, (e) Pr = 0.2 y+ = 154.5, (f) Pr = 0.0232 y+ = 154.5.
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5.3.2 Joint Probability Density Function

Stochastic methods use distribution functions to describe fluctuating scalars in a tur-
bulent field. For two variables ϕ and ψ, the joint-PDF (JPDF) is defined as:

P (Φ,Ψ) (5.7)

The correlation between the two variables is given by:

ϕ′ψ′ =

∫
(ϕ− ϕ)(ψ − ψ)P (Φ,Ψ) dΦ dΨ (5.8)

In this study, the JPDF of P (u′, θ′) for different scalars at y+ ≈ 1.57 is analyzed.
For Pr = 1, the correlation between the velocity and scalar fields is very strong, as
perfect correlation is represented by a straight line. For Pr = 0.71, the line becomes
thicker, and for both Pr = 2 and Pr = 0.5, the thickness is similar, indicating a
departure from the Reynolds analogy and a weakening of the correlation between u′

and θ′. As the Prandtl number decreases further, the shape becomes rounded and no
longer resembles a line, indicating no correlation between the fields.

(a) (b)

Figure 5.46: JPDF of (u′, θ′) with isoflux wall-boundary conditions of the following
Prandtl numbers: (a) Pr = 1, (b) Pr = 0.0232.

A comparison between isoscalar (Figure 5.47) and isoflux wall-boundary conditions
(Figure 5.46) shows that for the isoflux condition, the flow and scalar fields are less
correlated, even for Pr = 1, which is highly correlated in the isothermal case.

In summary, the JPDF analysis demonstrates that the correlation between velocity
and scalar fields is highly dependent on the Prandtl number and boundary conditions.
At Prandtl numbers close to unity, the correlation is strong, whereas it diminishes at
lower Prandtl numbers. Additionally, the isoflux boundary condition tends to weaken
the correlation further compared to the isoscalar condition, showing clearly the signif-
icant influence of thermal boundary conditions on scalar transport mechanisms.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.47: JPDF of (u′, θ′) with isoscalar wall/boundary condition of the following
Prandtl numbers: (a) Pr = 2, (b) Pr = 1, (c) Pr = 0.71, (d) Pr = 0.5, (e) Pr = 0.2,
(f) Pr = 0.0232.
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5.4 Visualization of Instantaneous Fields

The instantaneous fields of both velocity and thermal scalars in a turbulent boundary
layer are presented. The analysis focuses on the development of passive scalars starting
from Prandtl unity to the range of very small Prandtl numbers, to confirm the previous
results and trends. Visualizations are shown in both the x-z and x-y planes to provide
a comprehensive view of the flow and scalar fields. All the contour plots are obtained
at the same time instant and the visualized box is the entire computational domain.

5.4.1 Plane x-z

Figures 5.49, 5.48 and 5.50 show the instantaneous streamwise velocity and scalar
fluctuations in the x-y plane ,at y+ ≈ 1.57, for both isoscalar and isoflux wall-boundary
condition. For all the contour plots at Reθ = 175, a laminar region can be observed
without streaks because the Blasius laminar profile is imposed at the inlet 4.2.1. At Reθ
= 203, a high alternate region of low and high gradients can be observed, corresponding
to the forcing region where the flow is tripped to turbulence 4.4.2. The velocity field
reveals streaky structures, with regions of high and low-speed fluid aligned in the
streamwise direction. These streaks are a common feature of turbulent boundary layers
and are associated with the near-wall cycle of turbulence production. The scalar field
also exhibits streaky structures, with regions of high and low scalar concentrations
elongated in the streamwise direction, especially the contour plots for Pr = 1 5.48a
and Pr = 0.71 5.48b exhibit this structures quite well, indicating a strong coupling
between the velocity and scalar fields. The streaks are elongated in the streamwise
direction, reflecting the dominant direction of turbulent transport.

In the range of Pr = 0.3 to Pr = 0.2 (5.48c, 5.48d), the structures are less elongated
due to the increased dominance of thermal diffusion over momentum diffusion, show-
ing a lower coupling between flow and scalar fields, similar to what was observed in
5.47. For Pr = 0.0232 5.48e, corresponding to the liquid metal LBE, almost no struc-
tures can be seen, and for Sodium (Pr = 0.0058) 5.48f, the structures are not present
anymore. This is because at very low Prandtl numbers, thermal diffusivity is much
higher, leading to a more uniform temperature distribution and the disappearance of
streaky structures.

In Figures 5.48 and 5.50 the comparison between isothermal and isoflux boundary
conditions shows that for the isoflux condition, the structures are less elongated. The
spanwise spacing of the scalar streaks is similar to that of the velocity streaks for the
isothermal boundary condition but becomes larger for the isoflux boundary condition.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.48: Instantaneous contour plot of the fluctuating scalar fields, with isothermal
boundary condition at the wall, in the x—z plane at y+ = 1.57, starting fromReθ = 175
to Reθ = 596. The plots are in order of the following Prandtl numbers: (a) Pr = 1,
(b) Pr = 0.71, (c) Pr = 0.3, (d) Pr = 0.2, (e) Pr = 0.0232, (f) Pr = 0.0058.
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Figure 5.49: Instantaneous contour plot of the flow fields in the x—z plane for y+ =
1.57 , starting from Reθ = 175 to Reθ = 596.

This difference is attributed to the constant heat flux in the isoflux condition, which
affects the scalar transport mechanisms as discussed in the previous section and shown
in Figure 5.46

5.4.2 Plane x-y

Figures 5.52, 5.51 and 5.53 show the instantaneous streamwise velocity and scalar
fluctuations in the x-y plane ,in the middle of the computational domain, for both
isoscalar and isoflux wall-boundary condition. In this plane, the boundary layer thick-
ness is clearly visible, increasing as the Prandtl number decreases and reaching a
maximum for Sodium (Pr = 0.0058 5.51f). The boundary layer itself smoothens out
while its thickness increases. this happens because at very low Prandtl numbers, ther-
mal diffusivity dominates over momentum diffusivity, causing heat to spread more
quickly through the fluid than momentum, resulting in a thicker and smoother ther-
mal boundary layer because the temperature gradients are less steep. In particular is
the reduced influence of viscous forces that leads to a smoother boundary layer profile,
as the irregularities caused by viscous effects are less pronounced. A more uniform
temperature distribution across the boundary layer can be seen in 5.51f, contributing
to a linear-like profile rather than the irregular structures observed at higher Prandtl
numbers. The Reynolds analogy is evident when comparing the contour plot of the
flow field with that of the scalar field at Pr = 1 5.51a, highlighting the similarity in the
transport mechanisms of momentum and heat. Also a comparison within isothermal
wall-boundary condition 5.51 and isoflux one 5.53 can be done, since for isothermal
boundary conditions, the wall temperature remains constant, leading to zero tempera-
ture fluctuations at the wall, instead isoflux boundary conditions maintain a constant
heat flux, resulting in nonzero temperature fluctuations at the wall.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.50: Instantaneous contour plot of the fluctuating scalar fields, with isoflux
boundary condition at the wall, in the x—z plane at y+ = 1.57, starting fromReθ = 175
to Reθ = 596. The plots are in order of the following Prandtl numbers: (a) Pr = 1,
(b) Pr = 0.71, (c) Pr = 0.3, (d) Pr = 0.2, (e) Pr = 0.0232, (f) Pr = 0.0058.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.51: Instantaneous contour plot of the fluctuating scalar fields, with isothermal
boundary condition at the wall, in a x—y plane, starting from Reθ = 175 to Reθ = 596.
The plots are in order of the following Prandtl numbers: (a) Pr = 1, (b) Pr = 0.71,
(c) Pr = 0.3, (d) Pr = 0.2, (e) Pr = 0.0232, (f) Pr = 0.0058.
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Figure 5.52: Instantaneous contour plot of the flow field in a x—y plane, starting from
Reθ = 175 to Reθ = 596
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.53: Instantaneous contour plot of the fluctuating scalar fields, with isoflux
boundary condition at the wall, in a x—y plane, starting from Reθ = 175 to Reθ = 596.
The plots are in order of the following Prandtl numbers: (a) Pr = 1, (b) Pr = 0.71,
(c) Pr = 0.3, (d) Pr = 0.2, (e) Pr = 0.0232, (f) Pr = 0.0058.
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Chapter 6

Conclusion

This thesis presents results of a Direct Numerical Simulation of a heated turbulent
boundary layer under forced convection, carried out for 30 scalar fields with varying
Prandtl numbers and wall-boundary conditions to better investigate the heat transfer
mechanisms, especially as the Prandtl number decreases. As explained in 3.3, the
dominance of α∂⟨θ⟩

∂y
in the inner region and ⟨v′θ′⟩ in the outer region can vary sig-

nificantly with the molecular Prandtl number, which depends on the particular fluid.
This variation is crucial for understanding the behavior of scalar transport in turbulent
flows.

The statistics and averaged results obtained from the simulation provide valuable
insights into the behavior of scalars. Notably, there is a clear change in behavior
within the range of Pr = 0.2-0.3. This significant change can be observed through
the turbulent Prandtl number, which, as shown in Figures 6.1, is often chosen to be
close to unity. However, the figure indicates that as the Prandtl number decreases, the
turbulent Prandtl number has a drastically lower value near the wall, and the trend
towards this change is not continuous but rather abrupt after Pr = 0.25. Specifically,
for Pr < 0.25, the turbulent Prandtl number close to the wall approaches zero and then
increases above unity. This behavior is observed only for the isothermal wall-boundary
case, as discussed in Chapter 5. Throughout the discussion, particular attention was
paid to the range of Pr = 0.2-0.3 also in the turbulent statistics, as the mean scalar
profiles within this range exhibit a transition where the logarithmic region diminishes.

This abrupt change in behavior suggests that the interaction between molecular
diffusion and turbulent transport is significantly altered within this Prandtl number
range, affecting the scalar distribution earlier in the boundary layer. The decrease in
the turbulent Prandtl number near the wall indicates a shift in the dominant transport
mechanism from turbulent to molecular diffusion, which is more pronounced at lower
Prandtl numbers.
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(a) (b)

Figure 6.1: Turbulent Pr with isothermal wall-boundary conditions at Reθ = 596
across a wide range of Prandtl numbers: (a) logarithmic scale, (b) linear scale

Future work on this topic should focus on further exploring the effects of varying
Prandtl numbers within this critical range on scalar transport mechanisms. Investiga-
tions could include a detailed analysis of the transition behavior and the underlying
physical processes driving the change in the turbulent Prandtl number and detailed
studies of interactions between molecular diffusion and turbulent transport in both in-
ner and outer regions of the boundary layer. Understanding these interactions will be
crucial for developing more accurate models and improving heat transfer predictions.
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Appendix A

Accelerator Driven System

The appendix provides an in-depth overview of advantages of ADS. Accelerator Driven
Systems (ADS) are innovative nuclear reactors that utilize a particle accelerator to
produce a high-energy proton beam, that strikes a heavy metal target, such as lead or
bismuth, generating neutrons through a process called spallation.

A.1 Main Process

The main process of an Accelerator Driven System (ADS) begins with the acceleration
of protons using a linear accelerator (linac) to achieve high energies, typically in the
range of 1-2 GeV. These high-energy protons are then directed towards a heavy metal
target, such as lead or bismuth, where they induce a spallation reaction, producing a
large number of neutrons. The number of neutrons produced can be estimated using
the spallation yield formula:

Y =
Nn

Np

where Y is the neutron yield, Nn is the number of neutrons produced, and Np is the
number of protons incident on the target (see Pitcher et al. [63]).

These neutrons subsequently enter the sub-critical reactor core, which contains
nuclear fuel like thorium or uranium, meaning the multiplication factor k is less than
1. The neutron population in the reactor, a simplified form, can be described by the
neutron multiplication equation:

N(t) = N0e
(k−1)t/Λ

where N(t) is the neutron population at time t, N0 is the initial neutron population,
k is the multiplication factor, and Λ is the neutron generation time. Within the
core, the neutrons induce fission reactions in the fuel, generating heat. This heat is
transferred to a coolant, which could be a liquid metal or molten salt, and is then used
to produce electricity through conventional steam turbines. This process ensures that
the reactor remains sub-critical, relying on the external neutron source to sustain the
fission reactions, thereby enhancing the safety and control of the system.
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Figure A.1: Schematics of a two-stage spallation reaction from Gnanasekaran [3]

A.1.1 Advantages of ADS

- Enhanced Safety: The subcritical operation of ADS significantly reduces the risk of
runaway reactions. The reactor can be quickly and safely shut down by stopping the
proton beam.
- Waste Management: ADS can transmute long-lived radioactive waste into shorter-
lived isotopes, reducing the long-term radiotoxicity and volume of nuclear waste.

Nuclear Waste Management

To sustainably exploit nuclear energy, managing radioactive waste from the fuel cycle
is crucial. High-level nuclear waste (HLW) contains long-lived radioactive nuclides like
minor actinides (Np, Am, Cm) and fission products (Cs-135, I-129, Tc-99). Current
technology embeds these wastes in glass or ceramic matrices and stores them in mon-
itored underground repositories. Typically, such waste requires over 10,000 years to
reach safe radioactivity levels. However, if these nuclides are separated and treated
individually, the monitoring period can be reduced to a few hundred years.

Transmutation in ADS

Transmuting minor actinides (MAs) into benign nuclides using high-energy neutrons
in Accelerator-Driven Systems (ADS) is being explored. MAs can also be burned in
Fast Breeder Reactors (FBRs). ADS is more versatile, capable of transmuting long-
lived fission products. When high-energy particles (protons, deuterons, neutrons)
with kinetic energies above 100 MeV hit a heavy metal target, spallation reactions
occur. These particles, with very short de Broglie wavelengths, interact with individual
nucleons in the target nucleus, causing intranuclear cascades that eject nucleons. If
particle energy reaches GeV levels, the target nucleus may fragment. The excited
nucleus then relaxes by ”evaporating” nucleons, mainly neutrons, and may undergo
fission in some heavy metal nuclides (see Gnanasekaran [3] and Pitcher et al. [63]).
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A.1.2 Materials and Configurations

Candidate targets for Accelerator-Driven Systems (ADS) include mercury, liquid lead,
lead-bismuth eutectic (LBE), tungsten, uranium, and tantalum. Liquid metals are
preferred for high-power conditions due to their excellent heat transfer and reduced
mechanical constraints. Mercury’s low boiling point and high volatility pose challenges
for confinement and use as a coolant. Lead’s high melting point (327.5°C) is a disad-
vantage compared to LBE (125.5°C), which allows for a larger temperature difference
across the core and target zone. However, LBE produces Po-210, a migratory alpha-
emitter, which can form volatile polonium hydride upon exposure to moist air, raising
safety concerns. Both liquid lead and LBE are highly corrosive to structural materials.

Two configurations for separating the proton beam and the heavy liquid metal
target are considered: a metallic window and a windowless setup. The window con-
figuration faces issues with cooling, thermal loading, radiation damage, and corrosion,
necessitating frequent replacement. The windowless configuration must ensure com-
patibility between the heavy liquid metal and the beam transport vacuum to prevent
degradation and migration of radioactive spallation products. LBE is currently the
reference target material for ADS applications (see Gnanasekaran [3]).

Accelerator Driven Systems represent a promising technology for the future of nu-
clear energy, offering enhanced safety and waste management capabilities.
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Appendix B

Liquid Metals in Nuclear Reactors

The appendix provides an in-depth overview of the liquid metals used in the simulation,
detailing their key roles, nuclear reactions, and natural occurrence. At the end, it
includes the relevant thermal and nuclear properties for the liquid metals.

B.1 Lithium

Lithium is found in various minerals, such as spodumene, lepidolite, and petalite, as
well as in brine deposits. It has two stable isotopes, Li-6 and Li-7, with Li-6. Lithium-6
is used in nuclear reactors for radiation shielding and tritium production. It absorbs
neutrons to form tritium, which is essential for fusion reactions. When Li-6 absorbs a
neutron, it undergoes the following nuclear reaction:

6Li + n→ α +3 H (B.1)

This reaction produces tritium (3H), which then react with deuterium (2D) in a
fusion reaction to release a significant amount of energy:

2D+3 T →4 He + n+ 17.6MeV (B.2)

Lithium-7 is used as a coolant in high-temperature nuclear reactors due to its
excellent thermodynamic properties, including a high boiling point (see Table 1.2) and
low neutron absorption cross-section. Lithium-7 is involved in the following nuclear
reaction for thermal neutron detection:

10B + n→ α +7 Li (B.3)

(see Oliviera [64]). An example of a reactor using lithium is the Princeton Plasma
Physics Laboratory’s fusion reactor.

B.2 Mercury

Mercury is found in the mineral cinnabar (HgS) and is a single-element liquid metal
with the chemical symbol Hg. Due to its high thermal nuclear cross-section, mercury
has limited potential as a primary coolant in thermal reactors. However, it was suc-
cessfully used in the fast reactor Clementine (fueled by plutonium-239), where liquid
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mercury was used to cool the reactor core. Mercury remains liquid at room tempera-
ture and does not react with water, making it a viable option as a secondary coolant
(see Fleitman and Weeks [65]). Despite its historical use, mercury’s disadvantages,
including high vapor pressure and toxicity, limit its current applications in nuclear
reactors.

B.3 Sodium

Sodium is abundant in nature, primarily found in the form of sodium chloride (NaCl) in
seawater. Sodium is widely used as a coolant in fast breeder reactors due to its excellent
thermal conductivity, high boiling point (see Table 1.2) and low neutron absorption
cross-section. These properties make sodium an ideal coolant for maintaining high
temperatures and efficient heat transfer in nuclear reactors. In fast breeder reactors
23Na is the primary isotope used and it absorbs a neutron, it undergoes the following
reaction:

23Na + n→24 Na (B.4)

Sodium-24 24Na is produced, which is radioactive and decays back to stable magnesium-
24 24Mg. An example of a reactor using sodium is the BN-600 reactor in Russia.

B.4 Sodium-Potassium Alloy (Na-K)

Na-K is an alloy of sodium (Na) and potassium (K), typically in a eutectic mixture
of 77% potassium and 23% sodium by weight. The sodium-potassium (Na-K) alloy
is preferred over pure sodium in certain nuclear reactor applications due to its lower
melting point (see Table 1.2), which simplifies the startup and operation of the reactor.
However, the Na-K alloy also presents challenges, such as higher vapor pressure and
significant chemical activity, which can lead to spontaneous ignition in air at moder-
ate temperatures. Additionally, the formation of peroxide compounds of potassium in
low-temperature zones can pose explosive risks. The presence of potassium in the alloy
does not significantly alter the primary neutron capture reaction involving sodium, so
it undergoes the same reaction as described previously. An example of a reactor using
Na-K is the Experimental Breeder Reactor II (EBR-II) in the United States.

B.5 Lead

Lead is found in minerals such as galena (PbS) and is a single-element metal with the
chemical symbol Pb. Lead is used as a coolant in some advanced nuclear reactors,
particularly lead-cooled fast reactors (LFRs). Lead’s high boiling point (see Table
1.2), excellent gamma radiation shielding properties and low reactivity, unlike Sodium,
make it ideal for use in nuclear reactors. However, it is highly corrosive to structural
materials, requiring careful management of oxygen levels and the use of protective
coatings. In addition lead also serves as a neutron reflector, reducing neutron leakage
and increasing the reactor’s efficiency (see Sofu [66]). An example of a reactor using
lead is the BREST-OD-300 reactor in Russia.
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B.6 Lead-Bismuth Eutectic (LBE)

Lead-Bismuth Eutectic (LBE) is an alloy composed of 44.5% lead and 55.5% bismuth
by weight, and it shares many properties with pure lead, such as a high boiling point
and low neutron absorption. However, the presence of bismuth significantly enhances
the alloy’s performance as a nuclear reactor coolant. Bismuth lowers the melting
point of the alloy (see Table 1.2), which simplifies reactor startup and operation by
allowing the coolant to remain liquid at lower temperatures. LBE is used as a coolant
and spallation target in accelerator-driven systems (ADS) and other advanced nuclear
reactors. An example of a reactor using LBE is the MYRRHA reactor in Belgium.

B.7 Galinstan

Galinstan is a eutectic alloy composed of 68.5% gallium, 21.5% indium, and 10.0%
tin by weight. It offers high thermal conductivity and low vapor pressure, similar to
mercury, but is non-toxic and less reactive, enhancing safety. However, its use as a
coolant in fission-based nuclear reactors is limited due to the high neutron absorp-
tion cross-section of indium, which effectively captures thermal neutrons and inhibits
the fission process. Conversely, its potential as a coolant for fusion reactors is being
explored, because of its low melting point and high thermal conductivity (see Table
1.2). An example of its use is in experimental setups at the Princeton Plasma Physics
Laboratory.
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Appendix C

Additional Proofs and
Demonstrations

In this appendix, supplementary demonstrations are presented that provide further
insights and detailed proofs not included in the main chapters. These additional
materials are intended to support the understanding of the concepts and enhance the
validity of the results.

C.1 Efficiency of Power-of-Two Polynomials in SEM

The spectral element method (SEM) leverages high-degree polynomials to achieve high
accuracy and computational efficiency. When using Gauss-Lobatto-Legendre (GLL)
points, the integration and differentiation operations become particularly efficient with
polynomials of degree 2n. This efficiency can be attributed to several factors. First,
higher-order polynomials generally provide better approximations with fewer elements,
leading to faster simulations. Modern computer architectures are optimized for oper-
ations involving powers of two, which results in more efficient memory access patterns
and faster computations. This is particularly beneficial when performing matrix oper-
ations, such as the construction and inversion of mass and stiffness matrices. The GLL
quadrature rule is well-suited for polynomials of degree 2n, as the integration over an
element is accomplished using the GLL points, resulting in a diagonal mass matrix.
This diagonalization simplifies the algorithm and reduces computational cost because
it allows the use of explicit time integration schemes without the need to invert a linear
system.

The mass matrix M and stiffness matrix K in SEM can be expressed as:

Mij =

∫
Ω

ϕi(x)ϕj(x) dΩ (C.1)

Kij =

∫
Ω

∇ϕi(x) · ∇ϕj(x) dΩ (C.2)

where ϕi(x) are the Lagrange interpolants at the GLL points. For polynomials
of degree 2n, the matrices M and K exhibit sparsity patterns that simplify their
construction and inversion. Additionally, the error in SEM decreases exponentially
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with the polynomial degree p. For a polynomial of degree 2n, the error ϵ can be
approximated as:

ϵ ≈ C

(
1

2n

)p

(C.3)

where C is a constant. This exponential convergence allows for high accuracy with
fewer elements, leading to faster simulations. In addition, SEM demonstrates spectral
accuracy with an increasing number of grid points, making it an attractive method for
simulating large-scale problems and particularly suitable for Direct Numerical Simu-
lation (see Cheng et al. [67]).
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