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Abstract

An aerodynamic engineer must develop solutions to reduce drag, create more efficient
aerodynamic devices and decrease fuel consumption to achieve a sustainable project.

A CFD solver can break down aerodynamic drag into two main phenomena. It
computes the pressure field and shear stresses at the walls, then integrates these values
over the body. However, the engineer must understand the specific sources of these
phenomena.

In addition to drag computation at the wall, known as the near-field method, far-field
methods have been studied since the early 20th century to capture more phenomenolog-
ical information, such as drag due to viscosity, shock waves and induced effects.

This study will analyze a specific unsteady far-field method developed by Toubin,
implemented in StarCCM+. It is a momentum-based approach with a thermodynamic
formulation for far-field drag decomposition in unsteady flows, focusing also on the defi-
nitions of domains where the sources of drag occur. Several test cases are conducted to
assess each drag contribution individually and then examine their interactions.
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Chapter 1

Far-field methods and
thermodynamic formulations for
drag decomposition

1.1 Context

The aerospace industry is increasingly committed to finding solutions to reduce fuel con-
sumption, driven by regulatory pressures and growing environmental awareness. These
goals are translating into studies of lighter materials, more efficient engines and reduced
drag to improve aircraft efficiency.

In this context, the aerodynamic engineer plays a fundamental role by analyzing and
optimizing external surfaces. Analyses can be carried out experimentally or numerically.
Experimental techniques have been used for a long time and are reliable, but they require
significant economic and time resources, especially when multiple designs need to be
studied. With the ever-growing availability of computational power, CFD methods are
increasingly used, appropriately validated by wind tunnel measurements.

CFD simulation is a numerical technique that allows the analysis of fluid behavior
by solving the governing equations. Drag estimation can be performed in two ways. The
simplest method is the near-field method. The pressure field and wall shear stresses are
evaluated, integrated, and the component parallel to the freestream flow is extracted.

In the early 20th century, another type of drag calculation was developed, known as
the far-field method. The underlying idea of far-field methods is to apply conservation
laws on control volumes that enclose the body. With regard to drag calculation, these
methods allow the drag to be calculated by integrating far from the body, rather than
on its surface.

This idea has another fundamental advantage. If the integration domains enclose the
sources of drag, such as a shock wave, the boundary layer, and the wake, it is possi-
ble to break down the aerodynamic drag into the various contributions of each physical
phenomenon. This makes far-field methods particularly interesting from a research per-
spective.
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With this idea, the total drag is decomposed by phenomenon. In particular, the
splitting of the total drag involves the definition of three types of drag:

Viscous drag is the portion of drag generated by the viscous friction produced in the
boundary layer and in the wake.

Wave drag is the portion of drag due to the formation of a shock wave.

Induced drag is the portion of drag due to the local variation of the angle of attack
caused by the spatial and temporal variation of lift (wingtip vortex and vortex
shedding).

The far-field methods initially studied were based on steady flows. The first formula-
tion for unsteady flows only appeared in 2013, with the studies conducted by Gariépy [4].
In that work, an in-depth study was carried out on the formulation proposed by Toubin
[12], where Gariépy’s theory is improved and two other sources of drag are taken into
account. After an in-depth analysis of Toubin’s proposed theory, another decomposition
was studied and compared with Toubin’s in the different cases analyzed.

1.2 Far-field methods

Several drag breakdown methods have been studied to date. This thesis will analyze a
decomposition based on a thermodynamic formulation, where quantities such as entropy,
total enthalpy, and pressure are used for the calculation and breakdown of aerodynamic
drag. There are other methods based on a purely energetic formulation, and others based
on velocity and vorticity vectors [13].

Sd

Se

n

n

V
Sa

Figure 1.1: Definition of far-field domain and normal direction. The normal on surface
Sa point inside the wing.
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1.3 Steady formulations

The first far-field methods were developed for steady flows only. The first method was
proposed by Betz in 1925. Several formulations followed, but drag decomposition was
still incomplete as a formulation for induced drag was missing. It was not until 1972 that
the first formulation for induced drag was developed.

1.3.1 Betz formulation

Betz introduced the first method of far-field drag decomposition [1]. Through experi-
mental measurements carried out on the wake, on a plane downstream of the airfoil, it
is possible to evaluate the profile drag. However, the induced drag was still calculated
using the approximation for a finite wing with an elliptical planform. The profile drag
was obtained by subtracting the induced drag from the total calculated drag.

In a wake plane Sd sufficiently far from the body, it can be assumed that the flow
is aligned with the free stream and that the variation in total temperature is negligible.
Therefore, the assumptions in the wake plane are

v = w = 0 T ◦ = T ◦
∞ .

The formulation found by Betz is

DBetz
vw =

∫
Sd

(p◦∞ − p◦) dS − ρ

2

∫
Sd

(u′ − u)(2u∞ − u′ − u) dS

where u′ is the axial velocity that a potential flow would have in the same study case.
His formulation is valid only for incompressible flows, so p◦ = p+ 1/2ρu2. In his study,
Betz states that the second integral is negligible compared to the first.

1.3.2 Jones formulation

Jones’ formulation [6] uses more restrictive assumptions to eliminate the second integral
term present in Betz’s formulation. He assumes that in the wake plane, the pressure is
homogeneous and equal to the free-stream pressure, and that the velocity is aligned with
the freestream velocity, so that in Sd the following hold:

v = w = 0 p = p∞ .

With these assumptions, Jones’ formulation is

DJones
vw = pd∞

∫
Sd

2
√
p∗d − p∗(1−

√
p∗d) dS

where
pd = p◦ − p =

1

2
ρu2

is the dynamic pressure and p∗d and p∗ are the dimensionless dynamic and static pressures,
normalized by the dynamic pressure of the free stream pd∞. Again, this formulation is
valid only for incompressible flows.

9



1.3.3 Oswatitsch formulation

Oswatitsch developed the first formulation based on thermodynamic considerations [9].
He starts from a momentum balance on the wake plane for the drag component and
neglects the friction forces, thus

D =

∫
Sd

u∞ ρ∞ (u− u∞) + (p− p∞) (i · n) dS

With the assumption that the mechanical work on the fluid is zero and that there are
two thermodynamic states that differ slightly from the initial state, we have

δQ = δE ⇒ T∞ ρ (s− s∞) = ρ e = ρ (h− h∞)− (p− p∞) .

Substituting this relation into the first and neglecting friction work and heat conduc-
tion on the control surface Sd, we get the following.

DOswatitsch
vw =

T∞
u∞

∫
Sd

ρu∆s dS =
T∞
u∞

∫
Sd

ρ u s dS

1.3.4 Maskell formulation

Maskell was the first to propose an expression for induced drag [7]. Using the total
pressure, he obtained an expression for the total drag. His expression for profile drag is
very similar to Betz’s, except for a correction term ub to account for the blocking effect
in the wind tunnel facility.

DMaskell
vw =

∫
Sd

(p◦∞ − p◦) dS +
ρ

2

∫
Sd

(u′ − u)(u′ + u− 2(u∞ + ub)) dS

In terms of induced drag, the stream function ψ, the potential velocity ϕ, the axial
vorticity ζ = ∂w/∂y − ∂v/∂z and the source term σ = ∂v/∂y − ∂w/∂z are used.

DMaskell
i = ρ

∫
Sd

(v2 + w2) dS = ρ

∫
Sd

(ψζ − ϕσ) dS

1.3.5 Van der Vooren and Desterac formulation

In this formulation, both assumptions on the wake plane and the thermodynamic ex-
pression for the axial velocity are applied. If the mass and momentum balance in the
freestream flow direction are applied in the volume V from figure 1.1, we get∫
SA

((p− p∞)(i · n)− (τx · n)) dS = −
∫
SF∪SD

(ρ(u− u∞)(q · n) + (p− p∞)(i · n)− (τx · n)) dS

On the left-hand side, the near-field drag is present, while the far-field drag is defined
on the right-hand side. In particular, if the lateral faces and the upstream plane are
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Figure 1.2: Definition of control volumes, boundaries and normal vectors in Van der
Vooren and Desterac formulation [3].

sufficiently far from the source of drag, the integral can be extended only on the plane
Sd.

The axial velocity can be expressed as a function of termodynamic variables [12]

u = u∞

√√√√1 +
2∆H

u2∞
− 2

(γ − 1)M2
∞

(
e

γ−1
γ

∆s
R

(
p

p∞

) γ−1
γ

− 1

)
− v2 + w2

u2∞
(1.1)

where ∆H is the variation of stagnation enthalpy and ∆s is the variation of entropy.
The Van der Vooren and Desterac idea is to break down the integral related to the

far-field drag. If it is assumed that only the profile drag is exerted on the body, which
means that the flow is free of vortices [12], the following assumptions can be made in the
wake plane.

τx = 0 v = w = 0 p = p∞

Under these assumptions, the axial velocity defect can be expressed as

∆ū = u− u∞ = u∞

√
1 +

2∆H

u2∞
− 2

(γ − 1)M2
∞

(
e

γ−1
γ

∆s
R − 1

)
− u∞

The authors define the profile drag as the total far-field drag

D = Dvw = −
∫
SD

ρ∆ū(q · n) dS
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With the definition of the shock and viscous domain, as in figure 1.2, and using the
divergence theorem, the profile drag can be broken down into the contributions

Dw = −
∫
VW

∇ · (ρ∆ūq) dV

Dv = −
∫
VV

∇ · (ρ∆ūq) dV

The induced drag is finally defined by the authors as the complementary part, that
is

Di = −
∫
VW∪VV

∇ · (ρ(u− u∞ −∆ū)q+ (p− p∞)i− τx) dV −Dp −Df

where the property of the vector f has been used.

∇ · f = ∇ · (−ρ(u− u∞)q− (p− p∞)i+ τ x) = 0 .

1.4 Unsteady formulations

Generalizing the far-field breakdown to unsteady flows is not as straightforward as it
might seem. The first formulation for unsteady flows was proposed by Gariépy in 2013.
In his formulation, he adds a term due to the unsteadiness of the flow and includes it in
a new term, the unsteady drag Duns.

However, the definition of this term is not related to any specific phenomenology.
This is where Toubin’s work begins, aiming to eliminate this term by accounting for the
unsteadiness of the flow in each drag component.

1.4.1 Gariépy formulation

This formulation is written for a non-inertial reference frame [4]. In fact, Gariépy starts
from the far-field equation.

∂

∂t

∫
V
ρ(u−u∞) dV+

∫
∂V

(ρ(u− u∞)(qr · n) + (p− p∞)(i · n)− (τ x · n)) dS+
∫
V
ax dm = 0

where qr denotes the relative velocity and ax the relative acceleration in the x direction
of the control volume.

Gariépy applies the same assumptions as Van der Vooren and Desterac to define the
irreversible axial velocity defect ∆ū, which, however, is undefined in certain regions of
the domain, particularly in unsteady cases. This creates the need for a new expression
for the axial velocity defect using the reversible axial velocity u∗.

∆ū∗ = u− u∗ = u∞

√√√√1 +
2∆H

u2∞
− 2

(γ − 1)M2
∞

((
p

p∞

) γ−1
γ

− 1

)
− v2 + w2

u2∞
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Analogous to the work of Van der Vooren, Gariépy divides the control volume into
regions enclosing the source of drag and applies the divergence theorem to obtain

Dw = −
∫
Vw

∇ · (ρ∆ū∗qr) dV

Dv = −
∫
Vv

∇ · (ρ∆ū∗qr) dV

Gariépy also chooses to assign the neglected part to a new drag component, the
spurious drag

Dsp = −
∫
V \(Vw∪Vv)

∇ · (ρ∆ū∗qr) dV

To define the component Duns, he assumes that the variation of stagnation enthalpy
is only due to reversible processes and linked to a time derivative. So, he defines a
reversible axial velocity.

u∗,s = u∞

√√√√1− 2

(γ − 1)M2
∞

((
p

p∞

) γ−1
γ

− 1

)
− v2 + w2

u2∞

He then defined the unsteady drag term with u∗,u = u∗−∗,s

Duns = −
∫
V
∇ · (ρu∗,uqr) dV − ∂

∂t

∫
V
ρ(u− u∞) dV −

∫
V
ax dm

and the induced drag component, defined as the complementary part in the total drag.

Di = −
∫
V
∇ · (ρu∗,sqr + (p− p∞)i− τ x) dV −Dp −Df

Finally, the entire formulation can be summarized as

Dnf = Dp +Df = Dw +Dv +Di +Duns +Dsp .

1.5 In-depth analysis of Toubin’s formulation

Since this formulation is central to the work presented in this document, a section has
been dedicated solely to this formulation to provide greater clarity.

Toubin begins by writing the mass and momentum balance in the control volume
[12], obtaining∫

V

∂ρ(q− q∞)

∂t
dV = −

∫
∂V
ρ(q− q∞)(q · n) dS −

∫
∂V

(p− p∞)n dS +

∫
∂V

(τ · n) dS
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The drag component is obtained by taking only the component parallel to the freestream
velocity. By dividing the control volume boundary as in figure 1.1 and rearranging the
terms, she obtains∫
Sa

((p− p∞)(i · n)− (τ x · n)) dS =

∫
Se

(−ρ(u− u∞)(q · n)− (p− p∞)(i · n) + (τ x · n)) dS

−
∫
Sa

ρ(u− u∞)(q · n) dS −
∫
V

∂ρ(u− u∞)

∂t
dV

The term on the left-hand side is the definition of the near-field

Dnf (t) =

∫
Sa

((p− p∞)(i · n)− (τ x · n)) dS

while the term on the right-hand side is the far-field drag, which, with the notation used
by Van der Vooren, can be written as

Dff (t) =

∫
Se

(f · n) dS −
∫
Sa

ρ(u− u∞)(q · n) dS −
∫
V

∂ρ(u− u∞)

∂t
dV (1.2)

The first surface term corresponds to the momentum flux through the outer surface and
the forces applied on Se, similar to the steady-state scenario. The second surface term
reflects the change in longitudinal momentum caused by the body’s motion. The volume
term captures the time dependence and the temporal evolution of momentum.

From equation (1.2), we can write the property of the vector f in the unsteady case

∇ · f = ∂ρ(u− u∞)

∂t
(1.3)

Toubin also uses the thermodynamic expression for the axial velocity (1.1). It is then
decomposed into an irreversible part and a reversible part.

Toubin defines the irreversible velocity as the axial velocity in a wake plane, placed
sufficiently far to apply the condition of flow free of vortices, so

p = p∞ v = w = 0

From equation (1.1) we obtain

uirr = u∞

√
1 +

2∆H

u2∞
− 2

(γ − 1)M2
∞

(
e

γ−1
γ

∆s
R − 1

)
(1.4)

It should be noted, however, that the irreversible axial velocity is undefined in regions
where

p◦ < p∞

Afterward, she introduces these assumptions into f to obtain

firr = −ρ (uirr − u∞)q+ τx

frev = f − firr = −ρ (u− uirr)q− (p− p∞) i

The last assumption made is that the profile drag is due to the irreversible part of
the vector f , while the induced drag comes from the complementary part.
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Figure 1.3: Definition of streamtubes for volume splitting. Image taken from [12].

1.5.1 Use of streamtubes like volume control

The drag breakdown is achieved by splitting the control volume into several smaller
volumes, each containing a source of drag. In the following treatment, it is assumed that
only one shock is present.

Toubin, in her treatment, creates the shock domain and the viscous domain using
the concept of streamtubes, as shown in figure 1.3. This allows the integral on the wake
plane to be transformed into an integral over the entire surface of the streamtube, since
on the lateral faces the velocity is perpendicular to the normal, and on the upstream
plane the irreversible velocity is equal to the freestream velocity.

1.5.2 Unsteady wave drag

Figure 1.4: Definition of streamtubes for for shock volume. Image taken from [12].

Toubin analyzes the wave drag of an isolated normal shock moving in a perfect fluid [12].
As before, we focus on the streamtube enclosing the shock, that is Vw ∪ Vwd, as shown

15



in figure 1.4. For the downstream boundary Swd, we set the conditions such that

p = p∞ v = w = 0

If the flow is supersonic, there is no information propagating upstream of the shock wave,
so that the integration can be reduced to the downstream part of the streamtube. If we
assume that the effect of τx is negligible, the wave drag:

D = Dw =

∫
Swd

−ρ (uirr − u∞) (q · n) dS −
∫
Vw∪Vwd

∂ρ(u− u∞)

∂t
dV

Toubin attempts to move the downstream plane closer to the shock wave, so as to
measure the entropy due solely to the shock. Using the divergence theorem and the
mathematical relations valid in Vwd

Ds

Dt
= 0

DH

Dt
=

1

ρ

∂p

∂t
+∇ · (τ · q)

The unsteady wave drag [12] can be rewritten as

Dw =

∫
Sw

−ρ (uirr − u∞) (q · n) dS −
∫
Vw

∂ρ(u− u∞)

∂t
dV

−
∫
Vwd

(
∂ρ(u− uirr)

∂t
+

1

uirr

∂p

∂t

)
dV

(1.5)

The first term is the momentum flux across the shock wave, and the second one is the
rate of change in time. The last term accounts for the evolution of the entropy produced
by the shock wave. The assumptions made to arrive at formulation (1.5) are two: the
flow is isentropic in Vwd and the lateral face is a streamline, so that q · n = 0.

1.5.3 Unsteady viscous drag

To create a formulation for the viscous drag, Toubin considers a profile isolated in a flow,
without shock waves and reversible processes [12]. She works again with a streamtube
that encloses the boundary layer and the wake. Neglecting the contribution from the
upstream part, she obtains

Dv =

∫
Sv

(−ρ (uirr − u∞)q+ τx) · n dS −
∫
Vv

∂ (ρ(u− u∞))

∂t
dV (1.6)

The distance from the body can be tuned, in order to reduce numerical errors.
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1.5.4 Unsteady induced drag

The induced drag is defined by Toubin as the complementary part of the drag [12]. The
complementary volume is defined as Vc = V/(Vv ∪ Vw ∪ Vwd) and the complementary
downstream surface as Scd = Sd/(Svd ∪ Swd), as shown in figure 1.5.

Figure 1.5: Complementary volumes and surfaces. Image taken from [12].

Toubin again neglects the contribution of the shear stress tensor for the irreversible
part. The unsteady induced drag is

Dui =

∫
Sd

(−ρ (u− uirr)q− (p− p∞)i) · n dS

+

∫
Scd

−ρ (uirr − u∞) (q · n) dS −
∫
Vc

∂

∂t
(ρ (u− u∞)) dV

(1.7)

As done for the unsteady wave drag expression, the integral on Scd can be moved into
the volume integral and the downstream plane can be moved up to the upstream plane,
thus obtaining

Dui =

∫
Se

(−ρ (u− uirr)q− (p− p∞)i) · n dS −
∫
Vc

(
∂

∂t
(ρ (u− uirr)) +

1

uirr

∂p

∂t

)
dV

where Se is the entire external surface of the domain.
In search of a further decomposition of the unsteady induced drag, Toubin isolates

another term and links it to acoustic effects [12]. A further decomposition is then per-
formed

Dpa =

∫
Vc

ρ(uirr − u)

a

∂R+

∂t
dV

Di =

∫
Se

(−ρ(u− uirr)q− (p− p∞)i) · n dS −
∫
Vc

ρ(u− uirr)

(
1

a
+

1

uirr

)
∂u

∂t
dV

where R+ = u+ 2a/(γ − 1) is the Riemann invariant.
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1.5.5 Final Toubin formulation

Dw =

∫
Sw

−ρ(uirr−u∞)(q·n) dS−
∫
Vw

∂ρ(u− u∞)

∂t
dV−

∫
Vwd

(
∂ρ(u− uirr)

∂t
+

1

uirr

∂p

∂t

)
dV

Dv =

∫
Sv

(−ρ(uirr − u∞)q+ τx) · n dS −
∫
Vv

∂ρ(u− u∞)

∂t
dV

Di =

∫
Se

(−ρ(u− uirr)q− (p− p∞)i) · n dS −
∫
Vc

ρ(u− uirr)

(
1

a
− 1

uirr

)
∂u

∂t
dV

Dpa =

∫
Vc

ρ(uirr − u)

a

∂R+

∂t
dV

Dm =

∫
Sa

−ρ(u− u∞)(q · n) dS

Dff = Dw +Dv +Di +Dpa +Dm

Dsp = Dnf −Dff

1.5.6 Assumptions made for the formulation

Since the whole volume is here taken into account, the spurious drag should come from
both the numerical errors and the assumptions made during the demonstration. There
are four [12]

• The flow was assumed isentropic in the complementary volume and in the wake of
the shock.

• The viscous contribution in the equation for the stagnation enthalpy variation was
neglected in the complementary volume and in the wake of the shock.

• The assumption of domains defined by streamtubes results in a zero contribution
from the lateral faces. However, the domains defined by sensors are not stream-
tubes, which leads to an intrinsic error in the formulation.

• The longitudinal viscous stress vector was neglected outside the viscous volume.

A spurious drag can thus be defined, due to the physics we are neglecting

Dphy
sp =−

∫
Vc∪Vwd

(
ρ
∂uirr
∂∆s

d∆s

dt
+
∂uirr
∂∆H

∇ · (τ · q)
)
dV +

∫
Se\Svd

(τx · n)dS−

−
∫
Slat

firr · n dS
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1.6 Implemented formulation

To reduce the error inherent in Toubin’s formulation, a different formulation is imple-
mented for all cases in this study.The objective is to achieve a decomposition starting
from equation (1.2). In fact, it represents a momentum balance in the direction parallel
to the freestream flow and is an exact equation.

The idea is to create the same domains that Toubin uses in her study to calculate
the viscous drag and the wave drag. From these, the induced drag is determined as the
complementary component.

In this formulation, there in not anymore the acoustic drag of the unsteady induced
drag Dui in the (1.7). However, the expression for the acoustic drag was found with the
assumption that there is no temporal change in entropy in the complementary volume.
In theory this is a valid assumption, but in practice the definition of the viscous and
wave domains is not perfect, and in the complementary volume Vc = V \(Vv ∪Vw ∪ Vwd)
there may be unsteady phenomena with entropy creation.

The only assumption made, which distinguishes the formulation from the balance
equation (1.2), is to assume that the flow is isentropic and the viscous effects are neglected
in Vwd.

With reference to Figure 1.6, the following formulation is implemented for this study.

Dw =

∫
Sw

(−ρ(uirr − u∞)q + τx) · n dS −
∫
Vw

∂ρ(u− u∞)

∂t
dV

−
∫
Vwd

(
∂ρ(u− uirr)

∂t
+

1

uirr

∂p

∂t

)
dV

Dv =

∫
Sv

(−ρ(uirr − u∞)q + τx) · n dS −
∫
Vv

∂ρ(u− u∞)

∂t
dV

Di =

∫
Se

(−ρ(u− uirr)q − (p− p∞)i) · n dS +

∫
∂(Vc∪Vwd)

(−ρ(uirr − u∞)q + τx) · n dS

−
∫
Vc

∂ρ(u− u∞)

∂t
dV

Dm =

∫
Sa

−ρ(u− u∞)(q · n) dS

Dff = Dw +Dv +Di +Dm

Dsp = Dnf −Dff
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The streamtube hypothesis is no longer required for the definition of domains to
achieve a correct formulation. However, it remains important for accurate drag decom-
position. Indeed, the closer the domain is to a streamtube, the more the surface integral
approaches the sole contribution given by the wake plane, which is the fundamental
assumption of the formulation.

In this case, the error we commit regarding the system’s physics is

Dphy
sp = −

∫
Vwd

(
ρ
∂uirr
∂∆s

d∆s

dt
+
∂uirr
∂∆H

∇ · (τ · q)
)
dV

Se

Vc

∂(Vc ∪ Vwd)

Vw

Sw

Vwd

Sv

Vv

Figure 1.6: Definition of domains used in the implemented formulation. Downstream
extension is parametric to have the most downstream surface of Sv and Sw in the wake’s
refinement region.
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Chapter 2

Implementation in StarCCM+

The goal is to carry out the post-processing phase without using third-party software,
without compromising accuracy. This approach eliminates the need for an external post-
processor, accelerating the process and avoiding the storage of a large volume of data,
which is particularly significant in unsteady three-dimensional simulations.

Various native solutions of StarCCM+ were studied, each with its pros and cons. The
study focused on the accuracy of the integral calculations, particularly surface integrals.

Computational resources were provided by HPC@POLITO (http://hpc.polito.
it).

2.1 Surface integral computation

Three methods were studied to calculate the surface integrals.

Isosurface The first method analyzed consists of computing the integral on an isosurface
defined by the relative sensor. The sensor is a binary field function that is active
when the cell belongs to a specific domain. The isosurface is set at a value of 0.5.

Although this method is easy to implement in both two-dimensional and three-
dimensional cases, two main drawbacks arise.

The first is topological in nature and stems from the fact that the isosurface does
not coincide with the cell faces. This leads to a discrepancy between the integration
domain for the volume integral and that for the surface integral, as shown in figure
2.1. While this error is inevitable, it can be reduced if the cells are sufficiently small
at the boundary of the integration domain.

The second error is numerical in nature. The software calculates the surface inte-
gral by projecting the cell-center value onto the isosurface. To reduce this error,
one should avoid computing the surface integral in regions where there are high
gradients of the quantities of interest. This error can be eliminated by using a
first-order discretization scheme, albeit at the expense of solution accuracy.
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Figure 2.1: Isosurface to compute surface integrals. A discrepancy between the integra-
tion domains is evident. In this two-dimensional case, the red line denotes the isosurface,
while the blue cells indicate the regions activated by the sensor.

Threshold It is a native function of the software, useful for defining an isolated group
of cells through the use of the sensor. In this case, the error due to the integration
surface is eliminated, as it now coincides with the cell faces.

However, even in this case the numerical error due to the integrand measured at
the cell center persists. It is possible to compute the integral using node values, by
employing an inverse distance weight method to interpolate the data stored at cell
centers to vertices. The function at the cell node is calculated as

φv =
∑
i

1

di
φi

where φi is the value of the function at the cell centroid (to which the node belongs)
and di is the distance from the cell center to the node.

Nevertheless, this interpolation yields mismatched results when a cell face coincides
with an external face of the computational domain, where a boundary condition is
applied.

Furthermore, this function can only be activated for three-dimensional cases. There-
fore, another drawback is that in two-dimensional cases, mesh extrusion is required
along with the solution of an additional momentum equation.
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Figure 2.2: Cell groups defined via sensors. Note the mesh extrusion along the perpen-
dicular direction.

Interface They are created by partitioning the computational domain based on sensors.
Various subdomains are generated and connected through interfaces. None of the
previously discussed errors is present. However, automating the creation of these
interfaces is complicated, and the post-processing phase would become overly de-
manding, especially in highly unsteady cases where the domain changes shape over
time.

2.2 Volume integral computation

A sensor δi is defined as a generic binary function that is active only in the regions of
interest. In the case of using an isosurface, the volume integrals are calculated as∫

V
g δi dV

However, if a group of cells Vi is defined for each domain using the native threshold
function, the volume integral can be computed directly over that cell group, with the
expression ∫

Vi

g dV

The two results are equivalent. The choice between them depends solely on the
method selected for the surface integral calculations.

2.3 Final model

For the reasons mentioned above, it was decided to use the domains defined by the
thresholds, which in turn are based on the sensors. When referring to a two-dimensional
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simulation, it will be understood that the computational domain consists of an extruded
two-dimensional grid, with a cell one meter long. A symmetry condition is applied to
each extruded face.

The computation of the surface integrals for the viscous and wave drags is performed
on the surface of the threshold parts. Similarly, the surface integral of firr is computed
for the induced drag. For the computation of frev for the induced drag, the entire
computational domain has been considered, and the surface integrals are calculated along
the domain boundaries.

The domain used for the two-dimensional cases is shown in Figure 2.3. The outlet
of the domain has a downstream extension of 500 meters. The inlet, on the other hand,
is composed of two splines, which form an angle of β = 82.5 degrees with the outlet. In
the three-dimensional cases, the domain was generated by revolving it about the x-axis.
The airfoil (or wing) studied in all cases has a chord length of c = 1 m.

Figure 2.3: 2D sketch of the domain. Starting from the point with the highest y coor-
dinate and proceeding in a counterclockwise direction, the coordinates in meters of the
points are respectively (500,500), (-500,0), (500,-500).

The boundary condition for the inflow region is a stagnation inlet. The flow direc-
tion, total pressure, total temperature, and turbulent quantities are imposed. The total
quantities are enforced using the isentropic relation.

The boundary condition applied to the outflow region is a pressure outlet. Pressure,
temperature, and the freestream turbulent quantities are imposed.

The choice of the variable values to be applied at the domain boundaries is based
on the Reynolds number and the Mach number at the fixed temperature T∞ = 300 K.
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The set air properties are the dynamic viscosity µ = 1.8550 · 10−5 Pa · s, the molar mass
M = 29.966 kg/kmol, and the specific heat at constant pressure cp = 1003.6 J/(kg,K).
The other quantities are then obtained as

V∞ =Ma
√
γRT∞

ρ∞ =
Reµ

V∞ c

p∞ = ρ∞RT∞ .

For the study of inviscid flows, p∞ = 101325 Pa is set and the density is derived from
the ideal gas law.

Given that M∞ < 1 is always maintained and the temperature field is limited, no
variational law was applied for the dynamic viscosity and the specific heat at constant
pressure, which therefore remain constant throughout the domain.

Regarding the temporal derivatives, a second-order accurate backward discretization
is used. In particular, the last three solutions of the quantities to be differentiated are
temporarily stored, and the temporal derivative in cell n at time step k is computed as(

∂φ

∂t

)k

n

=
φk−2
n − 4φk−1

n + 3φk
n

2∆t
.

All post-processing for the drag decomposition is performed at each time step.

2.3.1 Sensors for the definition of domains

Various sensors have been tested for decomposing the different sources of drag, with
particular attention given to those described by Toubin [12].

Several sensors for detecting the shock wave are available in the literature. The one
used for these studies is the one defined by Toubin

δw = 1 ⇐⇒

{
v · ∇p ≥ kw1 a |∇p|
|∇p| > kw2

(2.1)

where kw1 has a value slightly below unity.
Regarding the definition of the viscous domain, there is a generation of entropy and

vorticity due to the dissipative effects at the wall. These two quantities are subsequently
transported along the wake by the convective flow. The sensor definition is therefore

δv = 1 ⇐⇒


∆s > ks,v s∞

||Ω|| > kω,v

δw = 0

(2.2)

The viscous sensor described above has a general validity, but care must be taken not
to consider cells that are activated due to numerical errors. A more accurate sensor can
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be adopted for turbulent flows. It is based on the turbulent viscosity ratio µr = µt/µ
and the strain rate tensor S and it’s defined as

δv = 1 ⇐⇒


µr > 1

||S|| > kτ τw

δw = 0

(2.3)

where τw is the average skin friction at the wall and kτ = 0.1 is a coefficient. In both
viscous sensors, the prism layers cells are added to ensure that uirr is defined on the
boundary of the viscous domain.

Across the shock wave, there is an increase in entropy that is subsequently transported
by convective phenomena along the wake. Moreover, a low vorticity value is present
downstream of the shock. The sensor for the shock wake can be expressed as

δwd = 1 ⇐⇒


∆s > ks,w s∞

||Ω|| < kω,w

δw = 0

δv = 0

(2.4)
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Chapter 3

Steady cases with unsteady methods

Several steady cases have been studied to evaluate the far-field decomposition and the
study of the domains, particularly their downstream extension. A steady solution is first
found until convergence is reached, and then an unsteady simulation is performed to
validate the implemented model.

These cases are important to evaluate the individual drag contributions and their
interaction, as well as to compare them with values found in the literature.

3.1 Assessment of viscous drag

The study cases are related to a two-dimensional turbulent flow over a NACA0012 airfoil
with angle of attack α = 0◦. The Tognaccini case [10] was carried out with M∞ = 0.7
and Re = 9 · 109. We use them to evaluate the viscous drag and induced drag for the
zero incidence case. All the drag coefficients are presented as drag count. All cases were
simulated using a second-order accurate discretization scheme and Roe’s flux scheme.

Four different meshes were used. Three of these are structured and are specifically
designed for the NACA0012 at zero incidence [8], while the other is an unstructured mesh
with polygonal cells.

Figure 3.1: Mach number field. Figure 3.2: Viscous domain definition.
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Figure 3.3: Grid with 449x129 resolu-
tion (57344 cells)

Figure 3.4: Grid with 897x257 resolu-
tion (229376 cells)

Figure 3.5: Grid with 1793x513 resolu-
tion (917504 cells)

Figure 3.6: Polyhedral mesh (199350
cells) with sensor based refinement.

3.1.1 Results

The results are all presented in Table 3.1 and Figure 3.7. Excluding the coarsest mesh
from this discussion, the far-field drag coefficient is very close to the near-field one.

For the structured meshes, the error increases the further away from the body you
get. This could be due to the high aspect ratio of the cells in areas further from the
profile. The behavior of the unstructured mesh is different, where a minimum is present
between 10 and 12 chord lengths from the trailing edge.

Overall, differences remain small, on the order of a few drag counts—and are similar
across structured and unstructured grids, though unstructured meshes may show slightly
larger oscillations. So, extending the domain to 10 chord lengths seems to be sufficient
to achieve accurate far-field drag estimates.

In the drag decomposition, there is also a small component of induced drag. Although
this component is small, it should be zero. Its presence can be associated with a definition
of the viscous domain that does not cover all the irreversible phenomena present, which
are accounted for in the complementary volume Vc = V \Vv.

28



Table 3.1: Results compared to Tognaccini studies [10]. All values were taken at a
downstream extension of 10 chord lengths.

CL CD CDff CDw CDv CDi

Tognaccini 0 79 78.6 0 78.6 0
Nasa (coarse) 0 77.1 77.5 0 78.3 -0.72

Nasa (medium) 0 78.5 78.8 0 78.8 -0.05
Nasa (fine) 0 79.1 79.2 0 79.1 0.14

Unstructured 0 75.8 76.3 0 76.0 0.31
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Figure 3.7: Far field drag coefficient with different downstream extension
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3.2 Assessment of wave drag

In order to predict the accuracy of the wave drag calculation, a two-dimensional sim-
ulation with an inviscid and transonic flow was carried out. The objective is to study
the effectiveness of the wave sensor. For this reason, a comparison is made between the
sensor and a box in which the sensor is contained.

The airfoil is a NACA-0012 placed at an incidence of α = 2◦ and is exposed to a flow
with a Mach number of M = 0.8. The discretization scheme is second-order accurate,
and the advection upstream splitting method (AUSM) is used for the flux calculation at
the interface. In figure 3.8, the Mach number field near the airfoil is shown.

The computational grid consists of 170590 polyhedral cells. An adaptive refinement
is applied in the region where the shock wave is present. A coarser refinement is also
performed in the vicinity of the shock, where the integration box is located. The mesh
is depicted in Figure 3.9. The imposed refinement allows the inviscid shock wave to be
resolved and captured in 2 cells.

3.2.1 Results

Figure 3.8: Mach number field. Figure 3.9: Computational grid.

From the solution, the minimum and maximum coordinates of the shock sensor were
extracted for each Cartesian axis. Using these values, a box was created that encloses
the drag source, although it is somewhat removed from the strong gradients present at
the shock. Moreover, along the axis parallel to the freestream velocity vector, the box
can be extended to study its effects on the drag decomposition. In Figure 3.10, the boxes
described above are shown.
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Figure 3.11: Wave drag computation in the volume control defined by the box.

Figure 3.10: Box in which the shock wave is enclosed. The downstream extension is
variable and can be adjusted by the user via a parameter.

Various values of downstream extension are compared to analyze the obtained wave
drag, along with that relative to the volume defined solely by the shock sensor. In Figure
3.11, the trend of the wave drag is presented as a function of the box’s downstream
extension, expressed in chord lengths.

What is observed is that the integration method is not affected by the downstream
extension of the box that encloses the shock. The trend is practically constant and is
within one drag count of the wave drag value calculated with the surface integral over
the viscous domain defined by (2.1).

After this study, it was decided to adopt the box that encloses the shock rather than
the shock sensor itself, in order to achieve a more accurate solution. No further extension
of the downstream face of the new volume is applied, as it does not affect the final result.
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3.3 Interaction between viscous and wave drag

In their studies, Tognaccini et al. performed a drag decomposition on a NACA0012
airfoil in transonic flow and shared the results only graphically, as shown in Figure
3.12. The Tognaccini case [10] was conducted with M∞ = 0.7 and Re = 9 · 106. The
discretization scheme is second-order accurate, and Roe’s scheme and k-ω SST turbulence
model are used. We use these results to evaluate the viscous drag and wave drag. All
drag coefficients are presented in drag counts.

Figure 3.12: Drag decomposition in a transonic flow over a Naca0012 airfoil, with a Mach
numebr M = 0.7 and a Reynolds number Re = 9 · 106. [10]

To estimate the angle of attack of the airfoil, the studies by C. D. Harris [5] are
useful. Several wind tunnel studies were conducted on a NACA0012 airfoil at different
Mach numbers and Reynolds numbers. To assess the angle of attack, figure 3.13 is used,
showing the normal force coefficient CN as a function of the angle of attack. Since the
angles of incidence are small, the following assumption is made:

CN = CL ∗ cos(α) ∼ CL .

By interpolating the data using pixel analysis of both images, an incidence angle of
α = 2.73◦ is obtained. The interpolated results are presented in the table 3.2.

The computational grid consists of 188,726 polyhedral cells. Two local refinements
were adopted, based on the sensors. A finer refinement was performed near the shock,
while a coarser refinement was applied near the airfoil wall and along the wake, as shown
in figure 3.15.
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Figure 3.13: Normal force coefficient of NACA0012 airfoil with M = 0.7 and Re = 9 ·106.
Dash line indicates angle of attack correction for wall interfence. [5]

3.3.1 Results

The values of the drag decomposition and the comparison with the results found by
Tognaccini et al. are shown in table 3.2. Although the lift coefficient matches the one
obtained in [10], there is a slight discrepancy regarding the drag coefficient. This devia-
tion is relatively small, and it is reasonable to assume that the percentage of decomposed
drag components remains similar for these small variations. Therefore, in figure 3.17, the
values of viscous drag and wave drag are compared to the total drag.

Figure 3.14: Mach number field. Figure 3.15: Computational grid.

34



Figure 3.16: Viscous and wave domains, defined by sensors (2.3) and (2.1).

Given the reproducibility challenges encountered in the studies, the results can be
considered reliable and fully comparable to the literature. When discussing percentages
relative to total drag, the results differ by less than 2%.

Another potential discrepancy may arise. When the shock occurs in a viscous flow, an
interaction between the shock and the boundary layer forms what is known as a lambda
shock, depicted in figures 3.18 and 3.19. This small interaction region is included in the
wave domain in this study, as it exhibits characteristics associated with shock waves,
such as strong gradients and regions where the fluid remains supersonic. However, no
mention of this interaction is found in Tognaccini’s studies.

Table 3.2: Results compared to Tognaccini studies [10].

CL CD CDff CDw CDv CDi

Tognaccini 0.46 137 136 34 102 0
This study 0.462 127 127 29.6 97.7 -0.85

CDw

CD

CDv

CD

CDi

CD

CDff

CD

Tognaccini 0.248 0.752 0 0.993
This study 0.233 0.770 -0.00670 0.999
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Figure 3.17: Viscous and wave drag values normalized by the total drag value.

Figure 3.18: Detail of wave sensor near
the lambda region.

Figure 3.19: Detail of box enclosing the
lambda shock wave.
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3.4 Interaction between viscous, wave and induced drag

A three-dimensional case is analyzed in which all drag sources are present. The study
is conducted on a rectangular planform wing, with a transonic flow at M = 0.8, Re =
2.7 ·106, and an angle of attack α = 2.5◦. The wing section is a NACA0012 airfoil with a
unit chord c, extruded to a length of b/2 = 4, c. The domain is generated exploiting the
case symmetry, and a symmetry boundary condition is applied on the symmetry plane.
The discretization scheme is second-order accurate, and the AUSM scheme and k-ω SST
turbulence model are used

This is an interesting case to compare with the decomposition results obtained in the
studies by Toubin [12] and Raffa [11].

The mesh is created using the trimmed mesher and consists of over 20 million cells.
An adaptive refinement was employed using the same criteria as in the previous cases.
The only difference is in the extension of the refinement along the wake, which stops
at five chords downstream from the wing’s trailing edge. Two snapshots of the mesh
configuration are shown in figure 3.20.

Figure 3.20: Mesh adopted in the three-dimensional case. The symmetry plane and the
cross-section perpendicular to the freestream flow, positioned at a distance x1 = 0.41 c
from the leading edge, are depicted.

3.4.1 Results

A preliminary steady simulation was carried out. Once convergence was reached, the
steady solver was activated. In figure 3.21, the Mach number is shown on a plane whose
normal is parallel to the freestream direction and positioned at a distance x0 = 0.5 c
from the wing’s trailing edge. The streamlines highlight the effect of the wingtip vortices,
colored with the pressure coefficient.

In figure 3.22, the three domains based on the sensors (2.3), (2.1) and (2.4) are
displayed. An additional domain was included for completeness, but its presence is
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practically inconsequential to the final result, contributing less than 0.1%.
Table 3.3 presents the results of the decomposition, compared with those of Toubin

and Raffa. The results are very close, although not exactly identical. However, the best
correlation between near-field drag and far-field drag observed in this study indicates that
the method and its implementation are working well. It is important to pay attention
to the definition of the domains, as this is the only element that seems to make a real
difference in the decomposition values and cannot be directly compared with the studies
by Toubin and Raffa.

Figure 3.21: Mach number field in a downstream plane respect to wing. Streamline are
shcwn to enhance the tip vortex effect.

Figure 3.22: Definition of domain in the three-dimensional case.
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Table 3.3: Results compared to Toubin and Raffa studies.

CD CDff CDw CDv CDi

Toubin 283 285 154 104 27.0
Raffa [11] 279.0 280.85 165 92 27
This study 281.4 281.6 162.3 89.23 30.04

In this simulation, the definition field of the axial irreversible velocity uirr can also
be appreciated. In fact, it is not defined in regions where the following relation holds

p◦ < p∞ .

The total pressure is an indicator of the energy possessed by the fluid element, in terms of
both static and dynamic pressure. In this case, uirr is not defined in regions very close to
the wall and in the tip vortex area. The former is not problematic since the prism layer
cells are automatically added to the viscous domain to enhance the robustness of the
method. Particular attention must be given to the wingtip region. Here, to ensure that
uirr is always defined on the surface of the viscous domain, it was decided to assign not
only the prism layers but all cells within a certain distance from the wing. In figure 3.23,
the zones where the axial irreversible velocity is not analytically defined are highlighted.

The imbalance between viscous and wave drag compared to the case analyzed by
Toubin may be due to the definition of wave volume. The position of the shock wave
along the chord changes along the span, and the box enclosing the shock wave occupies
a larger region of the viscous domain.

The comparison of the results with the analyzed data is satisfactory, considering the
difference in the turbulence model, numerical scheme and mesh. In particular, Toubin
uses the Spalart-Allmaras turbulence model and Jameson’s scheme.
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Figure 3.23: Regions of no definition of uirr.
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Chapter 4

Unsteady cases

Previous steady simulations have allowed us to better understand how to set up the
various parameters for the model implementation. It is useful to summarize the results
found in the previous chapter. In particular:

1. The extension of the viscous domain must include a sufficient portion of the wake
to capture all irreversible phenomena, yet it should not be too distant from the
body to avoid loss of accuracy in regions where low-quality cells are present. A
compromise was found with an extension of 10 chords from the trailing edge.

2. The definition of the wave domain using the sensor (2.1) is a good choice. However,
a slight gain in accuracy is possible by using the box that encloses the shock.

3. No study was conducted on Vwd since its contribution is negligible in steady cases.

4. Usually, the regions where the axial irreversible velocity is not defined are located
near the wall. If these are not included in the prism layer cells, an appropriate
tuning of the distance from the wall can ensure their inclusion in the viscous domain.

It is worth noting that the cases considered here involve phenomena that are relatively
simple to capture with a fluid dynamics simulation. Therefore, the methodology applied
in these cases might not be suitable for unsteady scenarios, where structures of different
sizes form and interact with each other.

The computational grid for unsteady cases must be chosen appropriately to capture
the phenomena of interest at every time instant. In all the simulations described in this
chapter, the URANS equations are solved and a periodic pattern is observed in every
case. For this reason, a local mesh refinement was performed after several periods of sim-
ulation to improve efficiency and reduce computational cost. However, an adaptive mesh
refinement is required if LES simulations are to be performed, which are not addressed
in this study.
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4.1 Wake instability in a laminar flow

The first unsteady case concerns the unsteady instability formed in the wake of a two-
dimensional profile in low Reynodls number flow. The airfoil is a NACA0012 with an
angle of attack α = 6◦ to the freestream direction, with M = 0.2 and Re = 5000. The
numerical scheme is a third order of accuracy and it use Roe’s scheme to compute the
flux at the interfaces.

Several periods were analyzed over time, and the results shown refer to the last period
calculated. The vortex shedding develops periodically, with a period T = 9.6 · 10−3 s.
The time step used is ∆t = 5 · 10−5 s.

During the first 20 periods, the viscous sensor was monitored, and all cells in which
the viscous sensor was activated at least once were recorded. Based on this history of
the viscous domain, a mesh refinement was performed on the domain to improve the
efficiency of the solution in terms of computational resources. A polyhedral mesh was
used, with 118565 cells, as shown in figure 4.1.

Figure 4.1: Mesh of laminar vortex shedding case.

Figure 4.2: Z-component of vorticity. Figure 4.3: Viscous domain definition.
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4.2 Results

Several periods were completed before analyzing the drag decomposition. As shown in
figure 4.11, the vortex due to wake instability is periodic and is subsequently transported
by convective phenomena. The total drag coefficient reaches almost 710 drag counts as
a maximum and 810 drag counts as a minimum.

The regions where uirr is not defined are located near the airfoil, as shown in Figure
4.4. These regions have always been enclosed within the viscous domain.

Figure 4.4: Regions where uirr is not defined.

In addition to the viscous sensor defined by condition (2.2) the drag decomposition
was also applied using a new sensor. Essentially, the viscous sensor is recorded at every
time step throughout the entire period. Then, every cell that has been activated at least
once by the viscous domain remains active for every subsequent time step k. Therefore

δ∗v = 1 ⇐⇒
T/∆t∑
k=1

δkv ≥ 1

The result is shown in Figure 4.5.

Figure 4.5: Viscous sensor δ∗v .
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Figures 4.7 and 4.8 display the results of the decomposition performed by varying
the sensor and the downstream extension. The use of the sensor δv leads to an induced
drag of the same order of magnitude as the viscous drag. Moreover, the various drag
components exhibit very pronounced spikes. The most satisfactory result is obtained
with the sensor δ∗v and a downstream extension of 20 chords from the trailing edge.
Therefore, all the results related to the drag decomposition and the comparison with the
results derived from Toubin’s formulation are based on the sensor described above.

Figure 4.6 shows the trends of the induced drag and the viscous drag.

Figure 4.6: Drag decomposition.
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Figure 4.7: Viscous drag with different viscous sensors.

Figure 4.8: Induced drag with different viscous sensors.
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4.2.1 Comparison with Toubin formulation

Over the same period, the decomposition is also performed using the formulation pro-
posed by Toubin. The results are presented in figure 4.6. Bearing in mind that the
definition of viscous drag is identical in both formulations, the only contributions to be
compared are those of induced drag and acoustic drag.

In Toubin’s formulation, the induced drag takes on negative values for almost the
entire period analyzed, resulting in a discrepancy between the far-field drag and the
near-field drag. The acoustic drag remains completely negligible, contributing less than
0.1% to the total drag. In figure 4.9, the induced drag and the square of the lift coefficient
are compared between the formulation described in this work and Toubin’s formulation.

The phase difference found in Toubin’s induced drag may be due to the fact that
there is a not negligible component of uirr exiting the lateral surface of the viscous
domain. This component is neglected in Toubin’s formulation because of the assumption
of streamtubes in the surface integral, but it is taken into account in the volume integral,
which is fundamental to the phase.

Figure 4.9: Induced drag compared to the square of lift coefficient in both formulations
studied.
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4.3 Turbulent vortex shedding

This two-dimensional simulation refers to a NACA0012 airfoil in stall conditions. The
airfoil is set at an angle of attack α = 20◦ to the freestream direction, with M = 0.2 and
Re = 2 · 106. The numerical scheme is a third order of accuracy and it use Roe’s scheme
to compute the flux at the interfaces. The turbulence model for closure is the k-ω SST,
with the standard value for realizability coefficient and the a1 blending function [8].

Several periods were analyzed over time, and the results shown refer to the last period
calculated. The vortex shedding develops periodically, with a period T = 2.62 · 10−2 s.
The time step used is ∆t = 5 · 10−5 s.

During the first 20 periods, the viscous sensor was monitored, and all cells in which
the viscous sensor was activated at least once were recorded. Based on this history of
the viscous domain, a mesh refinement was performed on the domain to improve the
efficiency of the solution in terms of computational resources. A polyhedral mesh was
used, with 245522 cells, as shown in figure 4.10.

Figure 4.10: Mesh of vortex shedding case.

4.3.1 Results

Several periods were completed before analyzing the drag decomposition. As shown in
figure 4.11, the vortex shedding is periodic and is subsequently transported by convective
phenomena. The total drag coefficient reaches almost 5200 drag counts as a maximum
and 3700 drag counts as a minimum.
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Figure 4.11: Z-component of vorticity. Figure 4.12: Viscous domain definition.

Regarding the implementation of the drag decomposition method, there are extensive
regions where the axial irreversible velocity uirr is not defined. Nonetheless, it is possible
to discern a pattern, since the separation bubble and the cores of the shed vortices are
areas of low total pressure, as shown in figure 4.13. However, these regions are always
included in the viscous domain and do not cause issues with the drag decomposition
method.

Figure 4.13: Regions where uirr is not defined. However, these regions are included in
the viscous domain.
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Figure 4.14: Viscous drag with different viscous sensors.

Figure 4.15: Induced drag with different viscous sensors.
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Several viscous sensors were studied since the sensor (2.3) did not produce satisfactory
results. The sensor used is based on the specific dissipation rate rather than the turbulent
viscosity ratio and is

δv = 1 ⇐⇒


ωt > kωt

||S|| > kτ τw

δw = 0

(4.1)

Another study was conducted on the downstream extension of the viscous domain.
Initially tuned to 10 chords from the trailing edge (as indicated by the steady cases
studies), it was extended to 15 and 20 chords, achieving a clear improvement in the
decomposition and reaching a sort of convergence.

In figures 4.14 and 4.14, the trends of the viscous drag coefficient and the induced
drag coefficient with the different sensors analyzed are shown. The chosen sensor was
that defined by (4.1) and limited to 20 chords downstream of the trailing edge. The
results of the drag decomposition are presented in figure 4.16.

Figure 4.16: Results from drag decomposition. The biggest contribution is given by
viscous drag, but there is an important induced drag.

In figure 4.17, the trend of the induced drag coefficient is shown alongside the square
of the lift coefficient. The two trends do not seem to exhibit the same pattern. The
induced drag appears to follow the drag coefficient more closely than the lift coefficient.
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This may indicate that even the new sensor is not entirely capable of capturing the
complete viscous phenomenon satisfactorily, resulting in a portion of it remaining in the
complementary volume and being attributed to the induced drag.

Figure 4.17: Comparison beetwen induced drag and the square of lift coefficient.

4.3.2 Comparison with Toubin formulation

In figures 4.18 and 4.19 the results obtained with Toubin’s formulation are shown. The
expression for the viscous drag is the same in both formulations, so it is interesting to
compare only the induced drag.

It is immediately noticeable that the far-field drag does not perfectly match the near-
field drag, with an error exceeding 9% at the maximum total drag point. The induced
drag is limited to a maximum value of 190 drag counts, compared to a maximum value
of 640 in the formulation used in this study.

The acoustic drag is very small, contributing less than 1% to the total drag and
reaching a maximum value of -6 drag counts and a minimum of -40 drag counts.

However, a better correlation seems to exist when comparing the induced drag with
the lift coefficient. In the analyzed period, the two peaks of the induced drag are better
correlated with the lift coefficient than with the drag coefficient (with the first peak being
greater than the second).
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Figure 4.18: Results from drag decomposition with Toubin’s formulation.

Figure 4.19: Comparison beetwen induced drag and the square of lift coefficient with
Toubin’s formulation.
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4.4 Buffet case

In this simulation, the conditions analyzed by Brunet in [2] and recreated by Toubin [12].
The airfoil is a OAT15A model, a supercritical airfoil at an angle of attack α = 4.5 deg to
the freestream direction in transonic flow, with M = 0.73 e Re = 3 · 106. The numerical
scheme is a second order of accuracy and it use AUSM+ FVS scheme to compute the flux
at the interfaces. The turbulence model for closure is the k-ω STT, with the standard
value for realizability coefficient and the a1 blending function [8].

The chord is 1 m and the mesh has 620753 cells. A polyhedral mesh was used, with
two different refinements: the first one based on the viscous sensor and the second one
based on the shock sensor over several periods, to cover all positions of shock wave, as
shown in figure 4.20.

The period of the oscillations is T = 5.2·10−2 s and the time-step used is ∆t = 7·10−6

s. Several periods were analyzed over time, and the results shown refer to the last period
calculated.

Figure 4.20: Mesh.

4.4.1 Results

Contrary to Toubin’s studies in this specific case, the time evolution of the coefficients
appears to be damped and seems to reach a steady solution. Other numerical schemes
were tested, but none produced results similar to Toubin’s. One possible reason could be
the different preconditioner used in the unsteady solver. Further studies should be carried
out. However, it is important to remember that our primary interest is in validating the
drag decomposition rather than the accuracy of the simulations themselves.

The correlation between the near-field drag coefficient and the far-field drag coefficient
is once again excellent, with the maximum error being less than 1%. The peak of the
total drag does not coincide with the peaks of the individual drag components, which
occur at different times, as shown in figure 4.24.

This case was interesting because, for the first time, it was possible to appreciate
the contribution arising from the volume integral that encloses the wake of the shock
wave. In particular, it can be observed that its contribution is very small compared to
the others, but it is almost exactly out of phase, as shown in figure 4.25. As described by
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Figure 4.21: Mach number field.

Figure 4.22: Viscous and wave domains definition.

Figure 4.23: Regions where uirr is not defined. However, these regions are included in
the viscous domain, as shown with the black line.
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Figure 4.24: Drag decomposition result for buffet case.
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Table 4.1: Values from drag decomposition for the most forward and backward position
of the shock. Toubin’s data were interpolated from his plots.

CL CD CD,ff CD,v CD,w CD,i

Highest CD (this study) 1.04 716 718 440 173 103
Lower CD (this study) 0.830 492 497 343 178 -31
Highest CD (Toubin) / 780 760 430 220 100
Lower CD (Toubin) / 490 470 320 230 -70

Figure 4.25: Contribution of wave integral terms.

Toubin herself, this contribution serves to eliminate the delay in the signal, created by
performing the surface integral closer to the shock (where refinement is already in place)
and to reduce numerical integration errors.

Another key aspect is that a non-negligible induced drag component was found in a
two-dimensional simulation. This contribution is due both to the part of firr that was
not included in the viscous or shock domain and to a component arising from frev in the
entire complementary domain. In figure 4.26, the trend of the induced drag coefficient
with respect to the square of the lift coefficient is shown. The sinusoidal and damped
behavior is present in both cases, although there is a small delay between the two trends.

This delay is also observed in Toubin’s studies, but it may not be coincidental. In
fact, the time interval between the peak of CD,i and that of C2

L is ∆t ∼ 3.5 · 10−3 s,
which is comparable to the characteristic time tc = c/V∞ ∼ 4 · 10−3 s.
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Figure 4.26: Induced drag coefficient and the square of the lift coefficient in time.

The main contribution to the induced drag in this case study is, however, due to the
firr component in Vc. It is reasonable to raise some doubts regarding the definition of
the integration domains, which should be evaluated in future studies.

4.4.2 Comparison with Toubin formulation

In figure 4.27, the trends of the viscous, wave, and induced drag obtained using Toubin’s
formulation are shown. The induced drag has an amplitude not very different from that
obtained with the formulation used in this study. However, it exhibits a significant phase
shift, resulting in a far-field drag that is out of phase with the near-field drag. Moreover,
the acoustic component is very low, contrary to Toubin’s study [12], where the acoustic
component contributes more than 20%.

In figure 4.28, the trend of the induced drag and the square of the lift coefficient is
shown, which changes due to the movement of the shock wave and the resulting separation
point. The two trends are almost in quadrature, highlighting a poor handling of the
temporal derivatives, whose role is to cancel out the delay between the far-field drag and
the near-field drag.
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Figure 4.27: Drag decomposition with Toubin’s formulation.

Figure 4.28: Comparison between induced drag and the square of the lift coefficient with
Toubin’s formulation.
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4.5 Inviscid flow over an airfoil with heaving motion

The last case study concerns a two-dimensional airfoil immersed in an inviscid, subsonic
flow, which undergoes a heaving motion in the direction perpendicular to the freestream
flow. The airfoil is a NACA0012 positioned at an angle of attack α = 0◦ and is subjected
to a flow with Mach number M∞ = 0.2. A heaving motion is applied throughout the
domain, following the law

v(t) = Asin(2π f t)

and where it was set A = 0.144M∞ e f = 20 Hz.
Now, there is an additional velocity component due to the motion of the domain, and

it must be taken into account in the balance (1.2). Since there are no accelerations along
the direction parallel to the flow, the balance equation becomes [4]

Dff (t) =

∫
Se

(fr · n) dS −
∫
Sa

ρ(u− u∞)(qr · n) dS −
∫
V

∂ρ(u− u∞)

∂t
dV (4.2)

where
fr = −ρ(u− u∞)(qr · n)− (p− p∞)(i · n) + (τ x · n) .

Developing the decomposition of the relative velocity

qr = q− qgrid

and comparing the two balance equations (1.2) and (4.2), an additional term is found
that must be present in the balance equation, and it is∫
Se

ρ(u− u∞)qgrid · n dS +

∫
Sa

ρ(u− u∞)(qgrid · n) dS =

∫
V
∇ · [ρ(u− u∞)qgrid] dV .

This term accounts for the axial momentum flux over the entire domain that varies
because the domain itself is moving. It should be noted that this term is identically equal
to Dm. For this initial analysis, this contribution was assigned to the volume integrals
related to the induced drag.

In addition, it was necessary to modify the boundary condition in the inflow region
of the domain. The stagnation inlet boundary condition requires a velocity field that
aims inside the domain. When the heaving velocity was at its maximum this does not
happen. So, it was decided to apply the freestream boundary condition, rather than a
stagnation inlet and pressure outlet.

4.5.1 Results

This case is interesting for two reasons. The first is the opportunity to analyze the drag
component due to the motion of a body, which is already implemented in Toubin’s model.
The second is that the only other drag component is due to induced drag, since there are
no viscous effects and no shock waves are formed.
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In the period T = 1/f = 0.05 s, the near-field drag coefficient exhibits two negative
peaks and two nearly zero minima, while the lift coefficient shows one positive maximum
and one negative maximum. The mesh used for the analysis consists of 382528 polyhedral
cells. Since no sensor is defined in this case study, the refinement along the wake is
uniform and is defined by a rectangular box with a downstream extension of 20 chords
from the trailing edge. A layer of prism cells was added to ensure good orthogonality
near the wall.

Furthermore, a second, finer refinement is created around the airfoil using a surface
offset, as shown in figure 4.30.

Figure 4.29: Computational grid.

Figure 4.30: Mach number field in the motion case.

The results of the drag decomposition are shown in figure 4.31. It can be observed
that this is the only case study in which the momentum balance is not perfect. In fact,
the far-field drag coefficient does not follow the drag coefficient curve near its minimum
points, which correspond to the minimum velocity points of the airfoil.

The induced drag and the motion drag are slightly out of phase with the far-field
drag. In figure 4.31, the trends of the induced drag and the square of the lift coefficient
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during the period are also presented. As in all the other cases analyzed previously, the
two behaviors are consistent and a phase difference is present between the two quantities.

Figure 4.31: Drag decomposition result and comparison between induced drag and the
square of lift coefficient.
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4.5.2 Comparison with Toubin formulation

The volume term arising from the use of the relative velocity qr has been included in the
expression for the induced drag in Toubin’s formulation. In Figure 4.32, the results of
the drag decomposition are shown. It is immediately noticeable that the induced drag
behaves completely incorrectly compared to the other drag components, even though it
follows the trend of the square of the lift coefficient.

One of the reasons for this lies in the assumption made by Toubin in her study [12],
where he assumes that there is no temporal variation of entropy in the entire complemen-
tary volume Vc ≡ V . This assumption turns out to be incorrect in this case, as shown in
figure 4.33.

Figure 4.32: Drag decomposition result and comparison between induced drag and the
square of lift coefficient with Toubin’s formulation.
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Figure 4.33: Time derivative of entropy along the contact surfaces.
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Chapter 5

Conclusion

In all the case studies conducted in this work, a formulation based on the division of the
control surfaces and volumes defined in the balance equation (1.2) has been used. With
this formulation, a very strong correlation was achieved between the near-field drag and
the far-field drag, compared to the formulation adopted by Toubin in her studies [12].

However, one note must be made. Although the viscous and wave drag are calculated
in the same way as adopted by Toubin, the induced drag is computed as the comple-
mentary part resulting from the balance equation (1.2). This solution does not allow a
physical definition of the induced drag, in which spurious contributions could be present
due to an imperfect definition of the wave and viscous domains. In fact, while the def-
inition of the wave and viscous domains does not affect the induced drag as defined by
Toubin, it remains an important element in the formulation used in this work. In par-
ticular, the induced drag defined in (1.7) contains a surface integral over the boundary
of the complementary volume, which is in turn defined by the wave and viscous sensors.

Nevertheless, the case of a moving airfoil in an inviscid flow remains unaffected by
this discussion. In this case, the error committed by Toubin’s formulation is not due to
the definition of the domains, since the complementary volume coincides with the entire
computational domain. The assumption that Ds/Dt = 0 in Vc is not satisfied, and the
decomposition of the unsteady induced drag (1.7) into induced and acoustic drag is not
valid.

The steady cases performed were useful for gaining a better understanding of the
definition of the domains using sensors. In particular, the most important results were:

• The viscous domain is strongly influenced by the downstream extension and the
cell quality. In the case of an unstructured mesh, the viscous domain must fall
within the refined area, at least extending 10 chords from the airfoil.

• The use of a sensor to detect the shock wave is reasonable. However, the definition
of a box that encloses the sensor improves the accuracy of the surface integral cal-
culation, by avoiding integration in proximity to the shock, where strong gradients
are present.

The unsteady cases give a very different result. In particular:
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• The sensors defined by Toubin [12] did not lead to satisfactory results in the studied
cases where large-scale turbulent structures are developed along the wake.

• New sensors were defined, yielding satisfactory results only when their downstream
extension was increased to more than 15–20 chords.

In summary, the formulation adopted in this study yields excellent results regarding
far-field drag. However, the induced drag is defined as the complementary part of the far-
field drag calculated via the balance equation (1.2). In contrast, Toubin’s approach aims
for a dedicated definition of induced drag and its further decomposition into additional
phenomena. Nevertheless, applying Toubin’s formulation requires further research on
the sensors used to define the integration volumes, since using domains that are not
streamtubes introduces an intrinsic error into the formulation. In fact, the use of Toubin’s
formulation with domains that are not streamtubes creates a mismatch between surface
and volume integrals; the flux on the lateral surfaces is neglected, but the time variation
is accounted for in the volume integral.
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