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Chapter 1

Context of the study

The basic principle of helicopter flight sustenance relies on the rotation of the rotor,
powered by the engine. These two essential components must be reliable, efficient,
robust and lightweight, as their performance is intrinsically linked to the potential
propagation of cracks within the material used. Wear, defined as the progressive de-
terioration of a solid surface due to mechanical contact, affects both the turboshaft
and the rotor blades, altering their sections and leading to power loss. This wear can
significantly reduce helicopter flight time by necessitating earlier and more stringent
maintenance inspections. This thesis focuses on developing an optimized numerical
model to study the behavior of erosion in composite components caused by multi-
ple particle impingement, specifically focusing on the interaction between sand and
blades. The initial phase of the study aims to create an accurate simulation of
sand, which forms the foundation for constructing the finite element model. Finally
validation of the model is initiated through experimental tests.

1.1 Experimental approach
The experimental purpose is to quantify the erosion rate on samples made of an
orthotropic composite structured in 26 layers each one is composed by [0,90] carbon
2x2 twill fibers plunged in a resin expoxy M49. A sample, presented in picture 5.8,
measure 140x50 mm with a depth of 5 mm. All samples are polished before the
sand blasting is performed.

4



Figure 1.1: Sample

Several tests were performed by changing: the angle between the erosive material
and the plate, impingment angle, and the duration of wear exposure. As erosive
material it is used sand that has a density equal to 2.33 g/mL and a particle size
distribution presented in figure 1.2. An in-depth discussion of this part can be found
in the dedicated chapter.
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Figure 1.2: Particle size distribution

1.2 Numerical simulation approach
It is intended to simulate the behavior of a composite plate made of the material
described above, subjected to erosion caused by the impact of sand particles. For
this purpose, a script was initially developed in MATLAB to extract a 3D model
of the sand particles to be used in the simulation, in order to reproduce the actual
erosion rate as closely as possible. The entire simulation was conducted using Abaqus
Explicit software. An in-depth discussion of this part can be found in the dedicated
chapter.
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Chapter 2

State of art

2.1 Fiber reinforced composite materials
The target of the composite materials is to improve the materials properties us-
ing the combination of different constituent. In engineering it is a well-established
principle that the combination of two or more materials can result in a composite
with more advantageous characteristics, maximizing the positive properties of the
components. This principle applies to all types of properties – physical, chemical,
and mechanical – while also offering the additional benefit of reduced density and,
in some cases, lower costs, factors that are important to engineers utilizing these
materials.
Composite materials are categorized based on the type of reinforcement and matrix
they contain. In particular, one classification can be obtained looking to the struc-
ture of the reinforcement, figure 2.1, where it can be obtaine: particulate composite,
flake composite and fiber reinforced [1].
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(a) Particulate composite (b) Flake composite

(c) Fiber reinforced composite

Figure 2.1: Types of reinforcement

Fiber-reinforced composites (FRC) consist of fibers embedded in a matrix that holds
them in the desired positions and shields them from external environmental factors.
When the fibers are all aligned parallel to each other, the resulting composite is
referred to as unidirectional (UD). This type of composite is designed in order to
achieve that most of the load is applied in the direction of the fibers as they go
to absorb it. On the other hand, if the composite material is formed by stacking
multiple layers, with orientations designed to account for the directional forces it
will experience, the result is a laminate, figure 2.2. The properties of the laminate
depends on the direction of the fibers.

Figure 2.2: Laminate

An important aspect in fiber-reinforced composites is how the fibers are arranged
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within the material. The fiber arrangement or weave pattern significantly influences
the mechanical properties, flexibility, and manufacturability of the composite. Com-
mon fiber weave types include, figure 2.3 [1]:

• Plain weave: fibers are woven in a simple above-below pattern. It is usually
used for nonstructural components in aerospace industry;

• Twill weave: obtained by passing fibers over two or more fibers before passing
over the others. In fact there are different options, like 2x2 twill means that
the tow passes over two tows and then under two tows. This types are used
for structural part in aerospace industry;

• Harness stin waves: this type is obtained by passing the fibers over and then
under a higher number of fibers than in the previous category; there are several
types which are classified according to their flexibility, 4HS, 5HS, 8HS, where
the number indicates how many fibers are crossed before the weft passes under
another fiber obtaining that higher the number is, the more flexible they turn
out to be.

(a) Plain weave (b) 2x2 twill weave (c) 4HS wave

Figure 2.3: Fiber wear types

Another classification of composite materials can be made on the basis of the matrix
used, which has significantly lower mechanical properties than fibers, but plays a key
role since, in addition to the aforementioned functions of acting as an adhesive and
protection for the fibers, it has the function of sending stresses from the structure to
the fibers. The most common matrix are ceramic matrix, metal matrix and organic
matrix.
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Figure 2.4: Common matrix types[2]

The polymer matrix, that is part of the organic matrix family, is the one that finds
the most application in aerospace due to its low weight. This type of matrix can be
divide in two groups: thermosets and thermoplastics.
Thermosetting resins occur in a very dense liquid state at room temperature, it ir-
reversibly assumes a solid state the moment it is brought to the curing temperature.
It consists of: a saturated base monomer, a crosslinking agent, a diluent, a catalyst
and a stabilizer. The action performed by the catalyst, after a certain amount of
energy has been administered (thermal, irradiation, etc...), leads to the origin of
polymer chains in the three directions, connected by cross-links, thus reaching the
solid state. This process leads the matrix to have viscoelastic behavior. The most
widely used thermosetting resins are: epoxy, polyimide, polyester, phenolic and sil-
icone. The most popular for the production of high-performance composites turn
out to be epoxy resins.
Thermoplastic resins, unlike their predecessors, are in a solid state at room temper-
ature. When they are heated, once they exceed a certain temperature threshold,
called the glass transition temperature, they begin to assume a rubbery state that
promotes their formability; once cooled they regain their original resistance. This
behavior is given by the fact that their micro molecular structure consists of Van
der Waals bonds that are brought to rupture with increasing temperature. Ther-
moplastic resins include polypropylenes, polyamides and polycarbonates [1].

2.2 Orthotropic Material Mechanics
Hooke’s law, which describes the elastic behavior of a material, in three dimensions
is expressed by the equation 2.1 [3].

σij = Cijklεkl (2.1)
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Since the stress and strain tensors are symmetric, the stiffness tensor C, which has
36 independent elements, can be represented as a 6x6 matrix. It can be express
using the Voigt notation, equation 2.2, that is for an anisotropic material.

σ11

σ22

σ33

σ12

σ13

σ23


=


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε11
ε22
ε33
γ12
γ13
γ23


(2.2)

An orthotropic material has three planes of symmetry that coincide with the co-
ordinate planes. With this type of material the stiffness matrix contains only nine
elements, equation 2.3.

σ11

σ22

σ33

σ12

σ13

σ23


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11
ε22
ε33
γ12
γ13
γ23


(2.3)

Where Cij = Cji.
This equation is used to study unidirectional fiber-reinforced composite materials
(UD), where the elastic behavior varies along the principal directions due to the fiber
orientation. Substituting with the properties of the ply is obtained the equation 2.4.

σ11

σ22

σ33

σ12

σ13

σ23


=



1−ν23ν32
E2E3∆

ν21+ν31ν23
E2E3∆

ν31+ν21ν32
E2E3∆

0 0 0
ν12+ν13ν32
E1E3∆

1−ν31ν13
E1E3∆

ν32+ν31ν12
E1E3∆

0 0 0
ν13+ν12ν23
E1E2∆

ν23+ν13ν21
E1E2∆

1−ν12ν21
E1E2∆

0 0 0

0 0 0 G12 0 0
0 0 0 0 G13 0
0 0 0 0 0 G23





ε11
ε22
ε33
γ12
γ13
γ23


(2.4)

∆ =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31

E1E2E3

(2.5)

Where:

• Ei and Gij are the Young and shear moduli;

• νij are the Poisson ratios.

Due to the symmetry of the stiffness matrix, the following relations can be made.

ν21 + ν31ν23
E2E3∆

=
ν12 + ν13ν32
E3E1∆

(2.6)

ν31 + ν21ν32
E2E3∆

=
ν13 + ν12ν23
E1E2∆

(2.7)

ν32 + ν31ν12
E3E1∆

=
ν23 + ν13ν21
E1E2∆

(2.8)
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Inverting the stiffness matrix yields the compliance matrix that describes how much a
material deforms under the action of a stress. For a orthotropic material is espressed
in equation 2.9 [3].

ε11
ε22
ε33
γ12
γ13
γ23


=



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23





σ11

σ22

σ33

σ12

σ13

σ23


(2.9)

Where
νij
Ei

=
νji
Ej

(2.10)

2.3 Laminated plate theory
For the study of laminated composite materials, laminated plate theory is used,
which is based on Kirchoff-Love hypothesis, which assume that the plate cross sec-
tions, normal to the mean surface before deformation, remain linear, normal to the
mean surface and do not experience elongation after deformation;
These assumptions imply that the transverse normal strain εzz and transverse shear
strains, γxz γyz, are equal to zero; also, transverse normal displacement is indepen-
dent of the transverse (or thickness) coordinate.
The displacements trend is reported in equation 2.11 [4].

ux(x, y, z) = u0
x(x, y) + zΦx(x, y)

uy(x, y, z) = u0
y(x, y) + zΦy(x, y)

uz(x, y, z) = u0
z(x, y)

(2.11)

Where the peak 0 denotes the value in the middle plane of the plate.
From the assumption that εzz is zero, it follows that:

εzz =
∂uz

∂z
= 0 ⇒ u0

z(x, y) = const. (2.12)

this implies that the transverse displacement uz is constant along z and the normal
does not shorten. In the analysis of problems involving thin plates and shells, plane
stress assumptions are often used, since these problems are typically related to thin
surfaces. However, plane strain is more common in beam theory, where some out-of-
plane deformation is assumed to be zero. In many equivalent single-layer theories,
a contradiction is introduced by inconsistently applying both assumptions about
strain fields. This leads to a phenomenon known as locking mechanism, which can
make the plate or shell model not applicable in some cases. In particular, thickness
locking (or Poisson locking) occurs, which hinders proper deformation through the
thickness of the structure. Thickness locking (TL) prevents that, in single equivalent
layer analysis, normal displacement through thickness (constant or linear) leads to a
three-dimensional solution in thin plate problems. This implies that the transverse
normal strain is zero or constant.
A well-known technique to counteract thickness locking is to change the elastic
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stiffness coefficients. This is done by imposing the “contradictory” condition in
which the transverse normal stress σzz is zero. This modification helps to reduce
the blocking effect and allows for a more accurate solution.

From the assumption (γxz = 0) ensues

∂u

∂z
+

∂w

∂x
= 0 ⇒ u,z + w,x = 0 (2.13)

By substituting the expressions of u and v is obtained:

∂ (u0(x, y) + zΦx(x, y))

∂z
+

∂w0(x, y)

∂x
= 0 (2.14)

∂u0(x, y)

∂z
+ Φx(x, y) +

∂w0(x, y)

∂x
= 0 (2.15)

Φx(x, y) + w0
,x(x, y) = 0 ⇒ Φx(x, y) = −w0

,x(x, y) (2.16)

It is the same process imposing the other ipothesis γyz = 0:

v,z + w,y = 0 ⇒ Φy(x, y) = −w0
,y(x, y) (2.17)

The displacement field of Kirchoff’s theory is reported in Eq. 2.18.
u(x, y, z) = u0(x, y)− zw0

,x(x, y)

v(x, y, z) = v0(x, y)− zw0
,y(x, y)

w(x, y, z) = w0(x, y)

(2.18)

Reporting non-zero deformations 2.19


εxx = ∂u

∂x
= u,x = (u0 − zw0

,x),x = u0
,x − zw0

,xx

εyy =
∂v
∂y

= v,y = (v0 − zw0
,y),y = v0,y − zw0

,yy

γxy =
∂u
∂y

+ ∂v
∂x

= u,y + v,x = (u0 − zw0
,x),y + (v0 − zw0

,y),x = u0
,y + v0,x − 2zw0

,xy

(2.19)
They can be rewrite in Eq.2.20

εxx = ε0xx + zkxx

εyy = ε0yy + zkyy

γyx = γ0
yx + zkxy

(2.20)

Where the apex 0 indicates the membranal deformations in the middle plane of the
plate, and the curves are kij:

kxx = −w,xx ; kyy = −w,yy ; kxy = −2w,xy (2.21)

In particular, kxy represents the torsional component.
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The stresses and moments per unit length, associated with the stresses σxx, σyy and
τxy, are determined by integrating them along the thickness of the plate [4].

Nxx(x, y) =

h/2∫
−h/2

σxx dz; Nyy(x, y) =

h/2∫
−h/2

σyy dz; Nxy(x, y) =

h/2∫
−h/2

τxy dz (2.22)

Mxx(x, y) =

h/2∫
−h/2

σxx z dz; Myy(x, y) =

h/2∫
−h/2

σyy z dz; Mxy(x, y) =

h/2∫
−h/2

τxy z dz

(2.23)

Rewriting Hooke’s law in the context of classical lamination theory (CLT) and con-
sidering an orthotropic material, equation 2.2 becomes:

σxx

σyy

σxy

 =

C̄11 C̄12 0
C̄12 C̄22 0
0 0 C̄66


εxx
εyy
εxy

 (2.24)

Where:

C̄11 = C11 −
C2

13

C33

C̄12 = C12 −
C13C23

C33

C̄22 = C22 −
C2

23

C33

C̄66 = C66 (2.25)

Substituting equation 2.24 into equations 2.22 and 2.23, is obtained:

Nx

Ny

Nxy

Mx

My

Mxy


=


A11 A12 A14 B11 B12 B14

A21 A22 A24 B12 B22 B24

A14 C24 C44 B14 B24 B44

B11 B12 B14 D11 D12 D14

B12 B22 B24 D12 D22 D24

B14 B24 B44 D14 D24 D44





ε0xx
ε0yy
ε0xy
κx

κy

κxy


(2.26)

In which Aij, Bij and Cij are calculated with the equations:

(Aij, Bij, Dij) =

h/2∫
−h/2

C̄ij(1, z, z
2) dz =

N∑
k=1

zk+1∫
zk

C̄
(k)
ij (1, z, z2) dz (2.27)

where N represents the number of layers forming the composite and k denotes the
considered layer. A, B, and D matrices are the stiffness matrices that relate the
membrane forces and bending moments to the strains and curvatures in laminate
theory:

• Aij is the extensional stiffness;

• Bij is the bending-extensional coupling stiffness. If Bij ̸= 0, it means that a
state of stress also generates curvature and vice versa, which occurs in asym-
metric laminates;

• Dij is the bending stiffness.
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2.4 Damage mechanisms
Damage refers to a set of irreversible changes in a material caused by physical or
chemical processes resulting from the application of thermomechanical loads [5]. In
this section are reported the principal damage mechanisms observed in composite
materials.

2.5 Fiber breakage
When a unidirectional composite is subjected to tensile loading along the fiber di-
rection, the fibers bear the majority of the load. As the load increases, fibers begin
to fail at their weakest points, leading to stress redistribution between the fibers and
the matrix, figure 2.5. The fiber breakage process is inherently statistical, as fiber
strength varies along the length of the fibers and between individual fibers. Conse-
quently, the longitudinal tensile strength of the composite is challenging to predict
and depends on both the matrix properties and the effectiveness of the fiber-matrix
interface bonding[5].

Figure 2.5: Increasing stress during fiber breakage[5]

2.5.1 Matrix micro-cracking

Matrix microcracking, also known as intralaminar cracking, refers to the formation
of cracks parallel to the fiber direction within the ply. These cracks typically occur
when the material is subjected to transverse loading or as a result of fatigue and
thermal stresses, figure 2.6. They often originate from fiber-matrix debonding or
manufacturing defects. This type of damage is usually the first to appear in such
materials. This is because the mechanical properties of the composite in the direction
transverse to the fibers primarily depend on the matrix, which generally exhibits
lower strength and stiffness compared to the fibers. Matrix microcracking leads to
a reduction in material stiffness and can trigger other damage mechanisms, such as
delamination or fiber breakage[6].
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Figure 2.6: Schematic representation of matrix micro-cracking

2.5.2 Interfacial debonding

Interfacial debonding, also known as fiber-matrix debonding, refers to the separation
of fibers from the surrounding matrix. The properties of the fiber-matrix interface
significantly influence the overall performance of the composite, playing a crucial
role in stress transfer[5].
As the load on the composite increases, the fibers and the matrix deform differently.
When the deformation reaches a critical level, the resulting stresses lead to the
separation of the fibers from the matrix along the interface, figure 2.7.

Figure 2.7: Fiber-matrix debond[7]
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2.5.3 Delamination

Delamination, also known as interlaminar cracking, refers to the separation of two
adjacent plies in a laminate. This type of damage is a critical issue for fiber-
reinforced composite materials due to their low interlaminar strength. Delamination
is the main failure mode observed when a compressive load is applied [8].
Delamination can occur near a through-the-thickness exposed surface, such as a cut
edge. When the material is loaded in this region, through-the-thickness normal and
shear stresses develop, leading to the separation of the plies. Additionally, delami-
nation can result from impacts on the laminate, a phenomenon commonly observed
in thermoset composites.
Moreover, interlaminar cracks can arise as a consequence of previous intralaminar
cracking. The growth of interlaminar cracks is influenced by the interlaminar frac-
ture toughness of the matrix, which plays a crucial role in determining the material’s
resistance to delamination[5].

Figure 2.8: Separation of compressed face layer from web and subsequent delami-
nation in face layer of FRP bridge deck [9]

2.5.4 Microbuckling

The phenomenon of microbuckling can occur when a composite is subjected to
compression. It consists of the decohesion of the fibres of the face subjected to
compression. These decohesions are uniformly distributed across the surface and
propagate in a stable manner. Their wavelengths are initially on the order of half
the thickness. This phenomenon is noted only in the case of unidirectional specimens
and [0/90/0/90/0]s laminates[5].

2.6 Erosion mechanisms
Erosion is a wear mechanism caused by the high-speed collision of small particles
with the target surface, leading to material removal.
The interaction forces are the primary factors contributing to material failure during
the erosion process.
Based on the momentum theorem, the contact forces between the erodent and the
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target material can be expressed as follows:

Ft =
d(m · v · cos(α))

dt
(2.28)

Fn =
d(m · v · sin(α))

dt
(2.29)

where Ft is the tangential contact force, Fn is the normal contact force, m is the
mass of the erodent, v is the impact velocity and α is the impact angle.
Two basic mechanisms for erosion, namely shear erosion and deformation erosion
(ploughing erosion).
In shear erosion, which occurs at low impact angles, the particle cuts away a portion
of material, forming raised edges along the sides of the shear zone. This behavior is
due to the fact that, at low impact angles, both the tangential and normal contact
forces exhibit multiple peaks and valleys during the dynamic erosion process. This
implies that the main erosion mechanisms are plastic deformation and cutting caused
by tangential shear.
In deformation erosion, which occurs at high impact angles, material detachment
happens through fragmentation with each individual impact. During the dynamic
erosion process, the normal force rapidly increases over time and then decreases to
zero. Vertical cracking and surface fatigue are the primary erosion mechanisms due
to repetitive solid particle collisions [10].

2.6.1 Metallic materials erosion mechanism

In metallic materials, the deformation pattern of the target material due to particle
collisions changes dramatically during dynamic erosion. This behavior is due to two
important parameters: plastic strain and strain rate.
Numerical approaches offer valuable insights for both the design and performance
prediction of structures that absorb significant amounts of energy in a short time
frame, such as vehicles and aircraft under impact conditions. However, these ap-
proaches rely on a constitutive description of the material’s nonlinear dynamic me-
chanical behavior, typically expressed through constant parameters within suitable
analytical models, such as the Cowper–Symonds material model [11], that is used
to represent the mechanical behavior of several materials at high strain rates, or
Johnson-Cook plasticity model.
In order to define the parameters there are several experimental techniques: quasi-
static tensile tests (from 10−4 to 1 s−1), split Hopkinson pressure bar (from 102 to
104 s−1), Taylor test (from 104 to 106 s−1) and inverse flyer plate (from 106 to 109

s−1).
The Cowper-Symonds equation [12], is an elasto-plastic model that incorporates
both strain hardening and strain rate hardening, where materials increase in strength
under plastic deformation. This phenomenon is referred to as work hardening or
strain hardening [11]. The Cowper-Symonds equation scales the yield stress (σy) by
two factors: a strain factor and a strain rate factor as shown in Eq. (2.30).

σy = [1 + (
ε̇

C
)

1
P · (σ0 + βEpε

eff
p )] (2.30)

Where:
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• σ0 is the initial yield stress;

• ε̇ is the strain rate;

• C and P are the Cowper–Symonds strain rate parameters;

• β is the strain hardening parameter, which adjust the contribution of isotropic
and kinematic hardening;

• εeffp is the effective plastic strain;

• Ep is the plastic hardening modulus which is given in terms of the elastic
modulus E and the tangent elastic modulus Etan

Ep =
EtanE

E − Etan

(2.31)

A model, that consider the Cowper-Symonds equation to modify the yeld stress
value, is presented in Eq.(2.32) [10].

σ

σ0

= 1 +

(
ε̇

Dy

) 1
q

(2.32)

where:

• σ is the dynamic flow stresses;

• σ0 is the static flow stresses;

• ε̇ is the strain rate;

• Dy and q are constants of target material.

If a multi-axial stress condition is considered σ and ε correspond to the equivalent
dynamic flow stress and the associated equivalent strain rate, respectively.
In an uniaxial stress condition it is considered a modified equation

σ = σ0 ·

[
1 +

(
(εu − εy)ε̇

(ε− εy)Du + (εu − ε)Dy

) 1
q

]
(2.33)

Where:

• εy is the yield strain;

• εu is the ultimate strain;

• Dy and Du are the coefficients associated with εy and εu, respectively;

• Du is a coefficient evaluated from the strain rate sensitivity properties at the
ultimate tensile strength of a material.
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Another widely used model is the Johnson-Cook model, which includes strain rate
and temperature dependence. The model is described by the equation (2.34) [13].

σ = [A+B · εnp ][1 + C · ln( ϵ̇p
ε̇0
)][1− (T ∗)m] (2.34)

Where:

• σ is the equivalent stress response;

• εp and ε̇p are the equivalent plastic strain and strain rate, respectively;

• ε̇0 is a normalizing reference strain rate;

• A and B are the strain hardening parameters;

• C is a dimensionless strain rate hardening coefficient;

• n and m are power exponents of the strain hardening and thermal softening
terms.

T ∗ is a normalized temperature defined as:

T ∗ =


0; if T < Ttransition
T−Ttransition

Tmelt−Ttransition
; if Ttransition ≤ T ≤ Tmelt

1; if T > Tmelt

(2.35)

where Tmelt is the melting temperature above which the material is fluid and the
hardening effect should totally vanish. Ttransition is a transition temperature at or
below which the response is not temperature dependent.

The phenomenon under study involves multiple particle impacts on a specimen,
making it necessary to use the tools of fracture mechanics. Additionally, the dy-
namic nature associated with erosion must be considered. This is summarized in
the incubation time fracture criterion, a model that has proven to be effective for
dynamic fracture analysis [14], the fracture at time t occurs if the inequality (2.36)
holds.

1

τ

t∫
t−τ

σ(s) ds ≥ σc (2.36)

σ(t) is a time-dependent tensile stress, σc is the ultimate static tensile stress and τ is
microstructural time of brittle fracture or incubation time. The parameter τ defines
the material’s response to a dynamically applied load and should be considered as
independent material constant.
To define the criteria to removal of material it can be considered the combined use
of incubation time criterion and Hertz contact theory [14], obtained Eq. (2.37)

1− 2ν

2π

k

R

√
h0max

t

t∫
t−τ

√
sin

(
πs

t0

)
ds = τσc (2.37)
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k =
4
√
RE

3(1− ν2)
h0 =

(
5

4k
mV 2

) 1
5

t0 = 2.94
h0

V
(2.38)

Where:

• σc maximum stress before rupture;

• τ micro-structural rupture time;

• ν Poisson ratio;

• h0 maximum approach between the two solids, with: m mass of the particle,
V velocity of the particle;

• R radius of the particle.

To study the phenomenon of erosion on ductile material Professor I. Finnie [15]
found an equation (2.39) to express the volume removed from a surface that is hit
by particles.

V =
cMU2

4p
(
1 + mr2

I

) [cos2 α−
(
ẋi

U

)2
]

(2.39)

where:

• V volume removed from surface

• M mass of eroding particles;

• m mass of an individual particle;

• I moment of inertia of particle about its center of gravity;

• r average particle radius

• α angle of impact;

• U particle velocity;

• p horizontal component of flow pressure;

• c fraction of particles cutting in idealized manner;

• ẋt horizontal velocity of tip of particle when cutting ceases.

In this study were used different assumptions:

• The displaced volume is the volume removed by the idealized particle;

• The particle is rigid and doesn’t fracture;

• No initial rotation of the particles;

• Rotation of the particle is small during the cutting period;
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• The configuration of the particle and of the deformed material is assumed to
be geometrically similar during the cutting process;

• Since large strains will be reached even at the beginning of the cutting process,
the plastic flow pressure between particle and metal will be constant;

• The area over which the metal contacts the particle is about twice that given
by the depth of cut, represented with l in figure 2.9.

Figure 2.9: Idealized picture of an abrasive particle striking a surface and removing
material [15]

2.6.2 Composite materials erosion mechanism

Polymer composite materials have lower erosion resistance compared to metallic
materials [16], and the erosion wear of polymer composites is usually higher than that
of the unreinforced polymer matrix [17]. In particular, polymer matrix composites
with a thermosetting matrix consistently showed the highest erosion rate at high
impact angles, indicating a brittle erosion behavior (generation and propagation of
surface lateral cracks). In contrast, thermoplastic exhibited a peak erosion rate at
intermediate impact angles, typically between 40° and 50°, suggesting a semi-ductile
erosive wear (plastic deformation, ploughing, and ductile tearing)[16][18]. However,
this failure classification is not absolute, as the erosion behavior of composites is
highly influenced by experimental conditions[18].
The dimensionless erosion rate (E) is defined as the ratio between the mass loss of
the eroded surface and the mass of the eroding particle responsible for the material
removal. The Eq. 2.40 predict the erosion rate of a target surface [19]. It must be
noted that this equation was obtained by studying the behaviour of the materials
in table 2.1, i.e. thermoplastic polymers.
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Sr. no. Thermoplastic polymers Density of composite (kg/m3) Vicker’s hardness (Hv)

1 Polyetherimide (PEI) 1270 40.0
2 Polyetheretherketone (PEEK) 1300 28.0
3 Polyetherketone (PEK) 1300 34.4
4 Polyphenylene sulphide (PPS) 1400 26.5
5 Polyethersulfone (PES) 1370 24.2
6 Polysulfone (PSU) 1240 21.4

Table 2.1: Properties of Thermoplastic Polymers Composites

Er =
1

6Hν

· η · ρ · V 2 ·
(
2a sinα cos θ + 3h cosα

a sinα cos θ + h cosα

)
(2.40)

where:

• α is the impact angle;

• HV is the hardness;

• η is the erosion efficiency;

• V is the impact velocity;

• a and h are geometrical parameter of the erodent particle, defined in picture
2.10;

• ρ is the density of target material;

• Er is the theoretical erosion wear rate.

In particular, erosion efficiency [20] is the ratio of fraction of volume that is removed
to the crater volume formed by the erodent particle defined in Eq. (2.41).

Efficiency(η) =
V olume removed

Crater volume
(2.41)

The assumptions for this model are:

• Erodent particle is rigid and does not deform during impact;

• The problem can be treated to be quasi-static, i.e. the dynamic affects such
as wave propagation is neglected;

• Strain rate sensitivity is neglected;

• The only force assumed to be contact force exerted by the surface.
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Figure 2.10: Erodent particle [19]

The study conducted by Anderson et al. [21] focuses on non-metallic materials,
listed in table 2.2, which were part of a private research project at the Erosion/-
Corrosion Research Center (E/CRC) and for confidentiality reasons, these materials
were assigned alphabetical designations. They found a new equation to describe the
erosion behaviour for non-metallic materials, reported in Eq.(2.42).

Material Name Material Type Density (g/cm3) Shore D Value

A PEEK 1.30 88
R PEEK 1.63 80
W FRP 1.63 98
F Elastomer 1.10 39

Table 2.2: Non-metallic material properties.

ER = k Fs Fdp V
n Norm[F (θ)] (2.42)

with:

Fdp =

(
dp

300µm

)np

(2.43)

Norm[F (θ)] =
1

f
(sin θ)n1

(
1 +

(
SD

75

)n3

(1− sin θ)

)n2

(2.44)

where:

• ER is the erosion ratio of eroded material;

• Fs and V are sand sharpness factor and particle impact velocity;

• Fdp and F (θ) are function to relate particle size and impact angle respectively;

• f is the maximum value of F (θ) to normalize the function
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Empirical constants include the velocity exponent n with a standard value range of
2 to 3 based on material, and np is an empirical constant for particle size relation.
Finally, n1, n2, and n3 are empirical constants with SD being the material hardness
in Shore D value[21].

2.7 Influence factors in erosion mechanism
Multiple factors play a role in the erosion mechanism [15] [22] [23]:

• Material hardness and impact angle;

• Particle velocity at impingement;

• Particle size;

• Shape of particle and strength;

• Surface properties;

• Particle concentration in fluid system;

• Particle rotation at impingement;

• Fiber orientation (for composite material);

Material hardness and impact angle

Material hardness is defined as the measure of a material’s resistance to indenta-
tion and abrasion. This parameter influences the erosion rate. Hardness determines
whether a material is ductile or brittle: ductile materials have low hardness, whereas
brittle materials have high hardness. These two types of materials respond differ-
ently to the flow of erodent particles, figure 2.11.

Figure 2.11: Erosion of ductile and brittle material[24]

The impact angle is defined as the angle beetween the eroded surface and the trajec-
tory of the particle immediately before impact, and it is one of the most important
parameters in erosive behavior. Considering the erosion rate as a function of the
impingement angle, a significant difference was found between ductile and brittle
materials. Ductile materials exhibit a maximum erosion rate at low impingement
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angles 15-30o. In contrast, brittle materials show the highest erosion rate at an
impingement angle of 90o, figure 2.12. Meanwhile, reinforced composites display a
semi-ductile behavior, with maximum erosion occurring at angles within the range
of 45-60o. [25].

Figure 2.12: Schematic representation of brittle and ductile type of erosive wear

As mentioned above, ductile materials have a peak erosion rate of around 30o.
Miyazaki and Hamao [26], report the peak erosion for an unreinforced epoxy resin
around 30o.
Using carbon or glass fiber reinforced epoxy matrix composites [25]: RIGIDITE
5212 and 5217 epoxy prepreg system (BASF) reinforced with unidirectional celion
G 30-500 carbon fibers and glass fibres with panels of 14 and 20 plies, was found
that the erosion behavior of the above-mentioned composites is that the glass and
carbon fibers used as reinforcement of the epoxy matrix are fragile materials, so
erosion is due to damage mechanisms such as micro-cracking or plastic deformation.
These mechanisms increase with the loss of kinetic energy, this is maximum for val-
ues of angles of impingement equal to 90o, where the rate of erosion is maximum for
fragile materials. It is concluded that the erosion rate peak shifts to higher values
of impingement angle due to the brittle behavior of the fibers used[25].
In figure 2.13 can be seen that the weight loss is maximum at 60o impingement angle
for all fibre orientations for both materials.
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Figure 2.13: Influence of impingement angle, fibre orientations on the erosive wear
of (a) CF/EP (b) GF/EP composites[25]

Particle velocity at impingement

An increase of particle velocity is an higher kinetic energy which results in higher
erosion wear rate. This parameter strongly affects the erosion wear. In figure there
is a comparison of erosion wear rate at impact velocity of 66 m/s and 25 m/s [19].

Figure 2.14: Comparison of erosion wear rate at impact velocity of 25 m/s and 66
m/s of Polyetherimide (PEI) polymer. [19]

Fiber orientation

Further research by Barkoula et al.[27] confirmed the theory that fiber orientation
plays a significant role in determining the erosion behavior of composite materials
during laboratory testing. They revealed that materials impacted parallel to the
fiber orientation experienced greater matrix damage compared to those impacted
perpendicularly.
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However, adding complexity to the understanding of erosion mechanisms in compos-
ites, Pei et al.[28] reported opposite findings. In their study, materials with fibers
oriented perpendicularly to the impact direction exhibited the most severe damage.
SEM observations showed extensive matrix damage and removal, with the newly
exposed fibers suffering greater damage than those aligned parallel to the impact
direction[21].
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Chapter 3

Material model

One of the objectives of this work is to develop a constitutive model for the damage
focused on carbon fiber-reinforced thermoset composites. This goal is pursued with
the use of the VUMAT subroutine, logical scheme in figure 3.1, developed at the
ISAE Supaero by the department of mechanics, structures and materials. The pur-
pose of this work is also to lay the foundation for validation of this VUMAT model
for the study of the erosion phenomenon.
The main features of the model are discussed in the following chapters, for a com-
plete understanding, reference should be made to the previous work, L.L. Pérez
[3].

Figure 3.1: VUMAT logical scheme

3.1 In-situ Effect
When a multi-layered composite with different orientations is studied, the in-situ
effect must be considered. Due to this response, when a ply is constrained be-
tween plies with different orientations, it exhibits higher transverse tensile and shear
strengths than its equivalent in a unidirectional laminate. This effect also depends
on the number of plies and their orientation [29]. To calculate the in-situ strengths
three possible configurations are considered.
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Thick ply

Figure 3.2: Thick ply [29]

In this configuration, figure 3.2, the transverse cracks in the matrix are shorter than
ply thickness, in-situ transverse tensile strength is calculated with Eq. (3.1).

Y is
T =

√
2GIc(T )

πa0Λ0
22

(3.1)

Where GIc(T ) is the intralaminar critical energy release rate or fracture toughness
for mode I crack growth in the direction of the thickness, and Λ0

22 is calculated with
the Eq.(3.2)

Λ0
22 = 2

(
1

E2

− ν2
21

E1

)
(3.2)

The in-situ in-plane shear strength is calculated with Eq.(3.3).

Sis
L =

√
(1 + βϕG12)

1
2 − 1

3βG12

(3.3)

where β is a parameter that defines the non-linearity of the shear stress-shear strain
relationship and ϕ is calculated with Eq.(3.4)

ϕ =
12S2

L

G12

+ 18βS4
L (3.4)

Thin ply

Figure 3.3: Thin ply [3]
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In this configuration, the length of the transverse cracks in the matrix is equal to the
thickness of the ply. With this configuration the in-situ tensile transverse strength
is calculated with Eq.(3.5).

Y is
T =

√
8GIc(L)

πtΛ0
22

(3.5)

where t is the ply thickness and GIc(L) is the intralaminar critical energy release
rate or fracture toughness for mode I crack growth in the 1 direction.
The in-situ in-plane shear strength is calculated with the Eq.(3.3) but with the ϕ
definition in Eq.(3.6).

ϕ =
48GIIc(L)

πt
(3.6)

Thin outer ply

Figure 3.4: Thin outer ply[3]

This configuration is applied to the first or last ply of a laminate. The in-situ tensile
transverse strength is calculated with Eq. where ϕ is (3.7).

Y ts
T =

√
4GIc(L)

πtΛ0
22

(3.7)

Even in this case the in-situ in-plane shear strength is calculated with Eq.(3.3),
where ϕ is calculated with Eq.(3.8)

ϕ =
24GIIc(L)

πt
(3.8)

For the calculation of the in-situ compressive transverse strength (Y is
C and the in-situ

through the thickness strength (Sis
T ) are used the Eq.(3.9) and Eq.(3.10) respectively,

that were proposed by Catalanotti et al.[30].

Y is
C = −Sis

L (2 cos
2(α0)− 1)

ηL cos2(α0)
(3.9)

Sis
T =

Sis
L (2 sin

2(α0)− 1)

2ηL
√

1− sin2(α0) sin(α0)
(3.10)
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where α0 = 53± 2◦ is the fracture angle under pure transverse compression [31] and
ηL is the longitudinal friction coefficient, that can be calculated using Eq.(3.11) and
Eq.(3.12)[3].

ηT = − 1

tan(2α0)
(3.11)

ηL
SL

=
ηT
ST

(3.12)

3.2 Fiber rotation
When a load is applied to a composite material the fibers tend to rotate in the
direction of application of the load, this can lead to a rotation of the fibers by
about 10◦ [32]. To consider this phenomenon in VUMAT, the equation of J.Fuller
& M.Wisnom[3] is using. The rotation of the fibers respect to original fiber position
is calculated with equation (3.13).

θ = arctan

(
tan(θ0) + εyy

1 + εxx

)
(3.13)

Where θ0 is the fiber orientation in the undeformed material. Since Abaqus computes
stress and strain increments in the "material" coordinate system, which corresponds
to the lamina coordinate system of the undamaged material, fiber rotation must be
determined at the start of each iteration, and strains should be evaluated in the
"rotated" coordinate system.

3.3 Diffuse damage
In the VUMAT diffuse damage model [3], two damage variables are defined,d22
and d12, which are respectively associated with transverse matrix micro-cracking
and fiber-matrix debonding. In VUMAT subroutine there are three possible diffuse
damage model: Ladeveze model, Wang model and expanded model.
The Wang model works with just two diffuse damage variables and to take into
account crack closure. The expanded model uses the same damage variables and
damage evolution laws as the Ladeveze model, but expands the definition of the
Helmholtz free energy density to include terms related to a three dimensional case.
The model proposed by P. Ladeveze and E. Le Dantec in 1992 [33] defines the
Helmholtz free energy density as shown in Eq.(3.14).

Ψ =
1

2ρ

[
σ2
11

E1

+
⟨σ22⟩2+

E2(1− d′)
+

⟨σ22⟩2−
E2

− 2
ν12σ11σ22

E1

+
σ2
12

G12(1− d)

]
(3.14)

Where ⟨x⟩ are the Macaulay brackets:

⟨x⟩+ =

0, x < 0

x, x ≥ 0
(3.15)

⟨x⟩− =

x, x ≤ 0

0, x > 0
(3.16)
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The Macaulay brackets are employed to account for crack closure under compression.
d and d′ are the scalar damage variables, defined in Eq.(3.17) and (3.18) ; this model
considers two distinct degradation mechanisms. The first mechanism, associated
with the damage variable d, corresponds to fiber-matrix debonding. The second
mechanism, linked to the damage variable d′, represents matrix microcracking.

d =


⟨Y−Y0⟩+

Yc
, d < 1 and Y ′ < Y ′

s

1, otherwise
(3.17)

d′ =


⟨Y−Y ′

0⟩+
Y ′
c

, d′ < 1 and Y ′ < Y ′
s

1, otherwise
(3.18)

Where:
Y (t) = sup

τ≤t

(√
Yd(τ) + bYd′(τ)

)
(3.19)

Y ′(t) = sup
τ≤t

(√
Yd′(τ)

)
(3.20)

The parameters Yc, Y ′
c , Y0, Y ′

c and b depend on material characteristics, while Y ′
s

indicates the brittle damage threshold of the fiber-matrix interface under transverse
tension[3]. In particular, Yd and Yd′ are the associated thermodynamic forces, that
are analogous to energy-release rates, and regulate damage evolution similarly to
how energy release rates control crack propagation[33]. They are calculated with
Eq. (3.21) and (3.22).

Yd = −ρ
∂Ψ

∂d
=

σ2
12

2G12(1− d)2
(3.21)

Yd′ = −ρ
∂Ψ

∂d′
=

⟨σ22⟩2+
2E12(1− d′)2

(3.22)

In the Wang model is used the Helmoholtz free energy density as defined in Eq.(3.23)
[3].

Ψ =
1

2ρ

[
σ2
11

E1

+
σ2
22

E2(1− d22)
+

σ2
33

E3

+

− 2
ν12σ11σ22

E1

− 2
ν13σ11σ33

E1

− 2
ν23σ22σ33

E2

+

+
σ2
12

G12(1− d12)
+

σ2
13

G13

+
σ2
23

G23

]
(3.23)

To control how the values of diffuse damage variables change are used Eq.(3.24) and
Eq.(3.25)[3].

d22 =

{
adYd22 , Y 0

d22
≤ Yd22 < Y c

d22

0, otherwise
(3.24)

d12 =


bdYd12 + cd, Y 0

d12
≤ Yd12 < Y trans

d12

ddY
ed
d12

+ fd, Y trans
d12

≤ Yd12 < Y c
d12

0, otherwise
(3.25)
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Where ad, bd, cd , dd, ed, fd, Y o
d22, Y o

d12 and Y trans
d12 are experimentl data; Yd22 and

Yd12 are calculated like in the Ladeveze model, with Eq.(3.26) and Eq.(3.27).

Yd22(t) = sup
τ≤t

(√
Yd22(τ)

)
(3.26)

Y d12(t) = sup
τ≤t

(√
Yd12(τ) + bY d22(τ)

)
(3.27)

Where b is a material characteristic[33].

In the custom model the definition of Helmholtz free energy density is given by
Eq.(3.28)

Ψ =
1

2ρ

[
σ2
11

E1

+
⟨σ22⟩2+

E2(1− d22)
+

⟨σ22⟩2−
E2

+
⟨σ33⟩2+

E3(1− d22)

+
⟨σ33⟩2−
E3

− 2
ν12σ11σ22

E1

− 2
ν13σ11σ33

E1

− 2
ν23σ22σ33

E2

+
σ2
12

G12(1− d12)
+

σ2
13

G13(1− d12)

+
σ2
23

G23(1− d12)

]
(3.28)

3.4 Plasticity effect
To simulate the plastic behavior of the material, it is necessary to define a plastic
potential function, a hardening law and an algorithm that calculates plastic defor-
mation. In plasticity theory, the material only experiences elastic deformation until
the yield surface is reached. This is expressed with the yield function:

Fp(σ̃, p) = fp(σ̃)− σy(p) ≤ 0 (3.29)

where fp(σ̃) is the plastic potential function and σy(p) is the yield stress, whose
definition depends on the hardening law[3].

For the VUMAT subroutine, the Hill-type plastic potential function [34], indepen-
dent of longitudinal effective stresses, is chosen.

fp(σ̃) =
√

σ̃2
12 + σ̃2

13 + σ̃2
23 + a2(σ̃2

22 + σ̃2
33) (3.30)

where the parameter a describes the relationship between plastic deformation in-
duced by transverse loads and that caused by shear loads, determined experimentally
and defined by the Equation 3.31.

a2 =
ε̇p22(1− d22)

2σ12

2ε̇p12(1− d12)2σ22

(3.31)

The use of σij effective stress components in the plastic potential arises from the
concept that the internal stress generated under loading is carried by the undamaged
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portion of the material.
The hardening law used was derived from experimental data obtained from tensile
tests on AS4/PEEK coupons with a stacking sequence of [±45◦]2S, reported in
Equation 3.32 [3].

σy(p) = K(p+ βp)
αp (3.32)

where K, αp and βp are parameters obtained from experimental data.
p, defined in Equation 3.33 , also accounts for the effect of damage in the measured
plastic strain, ensuring the effective accumulated plastic strain is obtained.

p = s(1− d12)ε
p
12 (3.33)

In this case the most appropriate algorithm is a cutting plane algorithm (CPA) that
convergence within a reasonable and consistently stable number of iterations, Figure
3.5.

Figure 3.5: Stress returns CPA

The way plastic strain is calculated at any time step is here presented:

Step 1: Trial stress

If the strain increment during the time step were purely elastic the effective stress,
also called effective proof stress, would be obtained with Equation 3.34[Luis la ].

σ̃trial = C : (εn+1 − εpn) (3.34)

dove

35



• εpn is the plastic strain tensor at the beginning of the current time step, which
is known since it corresponds to that at the end of the previous time step;

• εn+1 is the total strain tensor at the end of the current time step, known
because Abaqus calculates the total strain increments at each time step;

• C is the stiffness tensor.

Step 2: Initial check of the Yield condition

Using the trial effective stress and the accumulated plastic strain value at the be-
ginning of the time step, the yield function is evaluated Equation 3.35.

Fp(σ̃trial, pn) = fp(σ̃trial)− σy(pn) (3.35)

If Fp(σ̃trial, pn) ≤ 0 only elastic deformation occurred since the yield surface was not
exceeded. In this case elastic strain in calculated as εen+1 = εn+1 − εpn, plastic strain
as εn+1 and acculated plastic strain pn+1 are the same as in the previous step.
If Fp(σ̃trial, pn) > 0, plastic deformation has occurred, as the yield surface has been
exceeded. In this case, the condition Fp(σ̃n+1, pn+1) = 0 is obtained, derived from
the Kuhn-Tucker conditions. Therefore, the value of the plastic strain rate λ̇ must be
determined such that Fp = 0. However, this process would be too time-consuming,
so the condition |Fp| ≤ TOL is accepted instead.

Step 3: Initialization

Before applying the iterative CPA algorithm, some initial values must be defined.

F 0
p = Fp(σ̃trial, pn), εp0n+1 = εpn, p0n+1 = pn (3.36)

The initial value for the gradient of the yield function with respect to stresses of
plastic flow is defined in Equation 3.37.

a0 =
∂Fp

∂σ̃

∣∣∣∣
σ̃trial,pn

=
1

fp(σ̃trial)



0
c2σ̃22trial

c2σ̃33trial

σ̃12trial

σ̃13trial

σ̃23trial


(3.37)

Step 4: Plastic strain rate

This marks the initial step of the CPA algorithm, where the plastic strain rate is
computed with Equation 3.38.

λ̇i+1 =
F i
p

aiT : C : ai +H i
(3.38)

where H i is calculated with Equation 3.39.

H i =
∂σy

∂p

∣∣∣∣
pin+1

= Kαp

(
pin+1 + βp

)(αp−1) (3.39)
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Step 5: Plastic strain

Plastic strain is calculated with Equation 3.40.

εpi+1
n+1 = εpin+1 + δεpi+1

n+1 = εpin+1 + λ̇i+1ai (3.40)

Step 6: Effective strain

Then effective stress increment if found with Equation 3.41.

σ̃i+1 = σ̃i + δσ̃i+1 = σ̃i − λ̇i+1C : ai (3.41)

Step 7: Accumulated plastic strain

The accumulated plastic strain is updated with Equation 3.42.

pi+1
n+1 = pin+1 + λ̇i+1 (3.42)

Step 8: Plastic flow

Using the effective stress computed in Step 6, the plastic flow is reported in Equation
3.43

ai+1 =
∂Fp

∂σ̃

∣∣∣∣
σ̃i+1,pi+1

n+1

=
1

fp(σ̃i+1)



0
c2σ̃i+1

22

c2σ̃i+1
33

σ̃i+1
12

σ̃i+1
13

σ̃i+1
23


(3.43)

Step 9: Yield condition

The final step of the CPA algorithm is to verify whether the yield condition satisfies
the tolerance requirement using the values computed in the last iteration. The yield
function is calculated with Equation 3.44.

F i+1
p = Fp(σ̃

i+1, pi+1
n+1) = fp(σ̃

i+1)− σy(p
i+1
n+1) (3.44)

If |F i+1
p | ≤ TOL, then a solution has been found. The last calculated values in steps

4 to 9 can be saved as correct values.
If |F i+1

p | > TOL, then a solution has not been found. In this case, i = i + 1 and
start again the process from Step 4.

3.5 Failure criterion
The failiure criterion that is implemented in VUMAT is the interactive Catalotti
criterion with the addition of a further failure index[30]. This criterion distinguishes
different failure modes related to fiber or matrix failure under tension or compression
and incorporates in-situ effects in its formulation.
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For the computation for the tensile matrix failure this model used the failure index
in Eq.(3.45) [3].

.Φmt =

0, σn < 0(
σn

Sis
T

)2
+
(

τL
Sis
L

)2
+
(

τT
Sis
T

)2
+ λ

(
σn

Sis
T

)(
τL
Sis
L

)2
+ κ

(
σn

Sis
T

)
, σn ≥ 0

(3.45)

Where the parameters κ and λ can be calculated with the Eq.(3.46).

κ =
(Sis

T )
2 − (Y is

T )2

Sis
T Y

is
T

λ = 2ηL
Sis
T

Sis
L

− κ (3.46)

There are the loading cases for which the failure index is negative; in particular,
when κ is negative that depending on the in-situ strengths of the material.
Stress components on the fracture plane are calculated with Eq.(3.47)

σn =
σ̃22 + σ̃33

2
+

σ̃22 − σ̃33

2
cos(2α) + σ̃23 sin(2α)

τL = − σ̃22 − σ̃33

2
sin(2α) + σ̃23 cos(2α)

τT = σ̃12 cos(α) + σ̃13 sin(α)

(3.47)

To determine the fracture plane angle α, the failure index for tensile matrix failure
is evaluated for all possible fracture plane angles between 0o and 90o degrees. The
correct fracture plane angle is identified as the one corresponding to the maximum
value of either the tensile or compressive matrix failure index, whichever is greater.

To evaluate the compressive matrix failure index it is used a modified version of the
failure criterion proposed by A.Puck & H.Schürmann [31], reported in Eq.(3.48).

Φmc =


(

τT
Sis
T −ηT σn

)2
+
(

τL
Sis
L −ηLσn

)2
, σn < 0

0, σn ≥ 0
(3.48)

The stressed on the fracture plane are, even in compression, evaluate with Eq.(3.47).
To evaluate tensile fiber failure and compressive fiber failure a non-interacting max-
imum strain criterions are used[30], respectively Eq.(3.49) and Eq.(3.50).

Φft =

{
0, ε11 < 0
ε11
εT11

, ε11 ≥ 0
(3.49)

ΦfC =

{
ε11
εC11

, ε11 < 0

0, ε11 ≥ 0
(3.50)

Where εfT11 is the tensile failure strain in the direction of the fiber and εfC11 is the
compressive failure strain in fiber direction.

38



3.5.1 Fiber kinking

The formation of kink bands results from the rotation of initially misaligned fibers,
causing shear deformation in the matrix. Two failure indexes, associated to this
phenomenon, were proposed by Catalanotti et al. [30], Eq.(3.51) and Eq.(3.52).

ΦfkT =


0, σ

(m)
n < 0(

σ
(m)
n

Sis
T

)2
+

(
τ
(m)
L

Sis
L

)2

+

(
τ
(m)
T

Sis
T

)2

+ λ
(

σ
(m)
n

Sis
T

)(
τ
(m)
L
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L

)2

+ κ
(

σ
(m)
n

Sis
T

)
, σ

(m)
n ≥ 0

(3.51)

ΦfkC =


(

τ
(m)
T

Sis
T −ηT σ

(m)
n

)2

+

(
τ
(m)
L

Sis
L −ηLσ

(m)
n

)2

, σ
(m)
n < 0

0, σ
(m)
n ≥ 0

(3.52)

Where the chosen one depends on the value of the resulting stresses on fracture
plane, if is under tension or compression.
The normal and shear stresses on the fracture plane can be evaluated with Eq.(3.53)
and Eq.(3.54)(3.55), respectively.

σ(m)
n = σ̃α

22 =
σ̃θ
22 + σ̃θ

33

2
+

σ̃α
22 − σ̃θ

33

2
cos(2α) + σ̃α

23 sin(2α) (3.53)

τ
(m)
T = σ̃

(α)
23 = − σ̃

(φ)
22 − σ̃

(θ)
33

2
sin(2α) + σ̃

(φ)
23 cos(2α) (3.54)

τ
(m)
L = σ̃

(α)
12 = σ̃

(φ)
12 cos(α) + σ̃

(φ)
13 sin(α) (3.55)

where σ̃
(α)
22 , σ̃(α)

23 and σ̃
(α)
12 are effective stress components on the third of the three

coordinate systems associated with fiber kinking, σ̃(φ)
22 , σ̃(φ)

12 , and σ̃
(φ)
13 are effective

stress components on the second of the three coordinate systems associated with
fiber kinking, and σ̃

(θ)
33 is an effective stress component on the first of the three

coordinate systems associated with fiber kinking[3].
To obtain the effective stress tensors in these coordinate systems, the following
coordinate transformations must be performed.

σ̃(θ) = R()→(θ) → σ̃ RT
()→(θ)

σ̃(φ) = R(θ)→(φ) → σ̃ RT
(θ)→(φ)

σ̃(α) = R(φ)→(α) → σ̃ RT
(φ)→(α)

(3.56)

where:

R()→(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 (3.57)

R(θ)→(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 (3.58)

R(φ)→(α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 (3.59)
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Tha angles θ ang φ are calculated with Equation 3.60 and 3.61.

θ =
1

2
arctan

(
2σ̃23

σ̃22 − σ̃33

)
(3.60)

φ =

{
−γm σ̃12 < 0

γm σ̃12 ≥ 0
(3.61)

The parameter γm is computed numerically using the Newton-Raphson method.
Convergence is achieved by comparing the relative error of γm between successive
iterations with a predefined tolerance threshold.
The angle α is determined similarly to the fracture angle in tensile and compressive
failure cases. Both ΦfkT and ΦfkC are evaluated for all possible values of α within
the range of 0◦ to 90◦. The angle corresponding to the maximum index is selected
as the correct α value.

3.6 Failure damage
After the material has failed, its post-failure behavior is governed by the failure
damage model. In the VUMAT as failure damage model is based on the Linde
model [35]. Proposed by P. Linde et al. in 2004 to simulate the behavior of fiber-
metal laminates, this model introduces an exponential law governed by the fracture
energies of both the fibers and the matrix. The failure damage model employs two
distinct damage variables: one representing fiber failure and the other representing
matrix failure. The failure damage evolution are Eq.(3.62) and Eq.(3.63)

dff = 1− 1

Φf

exp

(
(1− Φf )C11Lc(ε

f
11)

2

Gfc

)
(3.62)

dfm = 1− 1

Φm

exp

(
(1− Φm)C22Lc(ε

f
22)

2

Gmc

)
(3.63)

Where dff is the failure damage variable for fiber failure, dfm is the failure damage
variable for matrix failure, Lc is the characteristic element length, Gfc is the fracture
energy of the fibers, Gmc is the fracture energy of the matrix and εfii are the failure
strains in the i direction.
A modified model is used in the VUMAT to be compatible with the Catalanotti
failure criterion.

Matrix Failure Damage

The Catalanotti failure criterion contains four failure indices related to matrix fail-
ure. The impact of the different failure modes on the material’s behavior must be
represented by a single matrix failure damage variable. To achieve this, the matrix
failure damage variable is calculated separately for each failure mode and then com-
bined into a single value that characterizes the overall matrix damage.
In particular, the matrix failure damage variable is computed separately for tensile
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and compressive loading conditions to accurately represent the material behavior
under different stress states, reported in Eq.(3.64) and Eq.(3.65) respectively.

dfmt = 1− 1

Φmt

exp

(1− Φmt)C22Lc

(
ε
fT (α)
eq

)2
GT

mc

 (3.64)

dfmc = 1− 1

Φmc

exp

(1− Φmc)C22Lc

(
ε
fC(α)
eq

)2
GC

mc

 (3.65)

where GT
mc and GC

mc are the intralaminar fracture toughnesses of the matrix under
tension and compression respectively.
If longitudinal compression occurs (σ̃11 < 0), fiber kinking must also be considered,
Eq.(3.66) and Eq.(3.67). Where dffkT and dffkC are the matrix failure damage vari-
ables associated with fiber kinking damage in tension and compression, respectively.

dffkT = 1− 1
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 (3.66)

dffkC = 1− 1
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 (3.67)

To perform these calculations, the equivalent failure strain must be computed on
the fracture plane. In the subroutine, this equivalent failure strain is stored for
each failure mode when the corresponding failure index reaches a value of one. This
equivalent failure strain is calculated with Eq.(3.68).
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(3.68)

The value of the matrix failure damage is obtained with Eq.(3.69)

d′fm =


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(
dfmc, d

f
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dfmt + dfmc, εe22 ≥ 0 and σ̃11 ≥ 0 and dfmt + dfmc < 1

dfmc, εe22 < 0 and σ̃11 ≥ 0 and dfmc < 1

1, otherwise
(3.69)

To guarantee the irreversibility of the damage is used Eq.(3.70).

dfm = sup
τ≤t

(
df

′

m

)
(3.70)
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Fiber Failure Damage

Catalanotti failure criterion utilises two different indices for fiber failure, previously
reported in Eq. (3.49) and (3.50). Since both correspond to the same damage
mechanism of fiber breakage, the failure damage variable is calculated for both and
the maximum value is taken, Eq. (3.71), (3.72) and (3.73)[3].

dfft = 1− 1

Φft

exp

(1− Φft)C11Lc

(
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)2
GT
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 (3.71)
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f
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f
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(
dfft, d

f
fc
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(3.73)

Where GT
fc and GC

fc are the fracture toughnesses of the fiber under tension and
compression respectively.

3.7 Material properties
In this study, the composite used is M49/42%/200T2X2/CHS-3K, which incorpo-
rates M49 epoxy resin with a 42% content in the composite material and CHS-3K
carbon fibers arranged in a 0/90 orientation with a 2x2 twill weave. The composite
is characterized by 26 layers, each with a thickness of 0.19 mm, and a density of 1.47
g/cm3. The initial properties used to model this material with VUMAT are listed
in table 3.1
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Property Value Unit Source

E1 68000 MPa Datasheet
E2 68000 MPa Datasheet
E3 10000 MPa Assumed from report[36]
G12 5000 MPa Assumed from report[36]
G13 3500 MPa Assumed from report[36]
G23 3500 MPa Assumed from report[36]
ν12 0.03 Assumed from report[36]
ν13 0.4 Assumed from report[36]
ν23 0.4 Assumed from report[36]
εfT11 0.015441176 Datasheet
εfT22 0.015441176 Datasheet
εfT33 0.02 Assumed from experimental data
|εfC11 | 0.015441176 Datasheet
|εfC22 | 0.015441176 Datasheet
|εfC33 | 0.05 Assumed from experimental data
γf12 0.075 Assumed from experimental data
γf13 0.05 Assumed from experimental data
γf23 0.05 Assumed from experimental data
XT 1050 MPa Datasheet
XC 730 MPa Datasheet
YT 1050 MPa Datasheet
YC 730 MPa Datasheet
SL 95 MPa Assumed from experimental data
ST 65 MPa Assumed from experimental data
α0 50 deg Assumed from experimental data
β 1.000000E-05 Assumed from experimental data
GT

fc 100 N/mm Assumed from experimental data
GC

fc 50 N/mm Assumed from experimental data
GT

mc = GIc 0.5 N/mm Assumed from experimental data
GC

mc 1.5 N/mm Assumed from experimental data
GC

mc = GIIc 2.5 N/mm Assumed from experimental data
η 0.0001 Assumed from experimental data
In-situ configuration 0 Assumed
t 0.19 mm Datasheet
ηT 0 Assumed from experimental data
ηL 0 Assumed from experimental data
Θ0 0 deg Test dependent
χ = EC

1 /E1 1 Assumed
Diffuse damage model Test dependent
Strain fail 0.3 Assumed

Table 3.1: Material properties VUMAT
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Chapter 4

Experimental analysis

4.1 Experimental test
The experimental part of this study aims to determine the erosion rate of the ex-
amined plate by varying the angle of impingement and the test duration. The
duration of the tests was initially defined by conducting an experiment on a speci-
men inclined at 60◦, an angle known from the literature to be associated with the
maximum erosion rate. The specimen was subjected to erosion until a complete
perforation occurred, which was observed after 3 minutes. Based on this result,
test durations of 30, 75, and 120 seconds were selected. The conducted tests are
summarized in table 4.1.

Case Angle of Impingement Period (s)

1 30◦ 30

2 30◦ 75

3 30◦ 120

4 60◦ 30

5 60◦ 75

6 60◦ 120

7 90◦ 30

8 90◦ 75

9 90◦ 120

Table 4.1: Erosion test cases

The test bench used to perform the tests is shown in the figure 4.1. It consists of a
funnel to contain the sand, a strain sensor attached to it to measure the mass of sand
ejected over the considered time period, a blasting gun connected to a compressor
ensuring a pressure of 6 bar and a calibrated knob attached to the specimen holder,
that allows measuring the angle between the sample and the sand jet.
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Figure 4.1: Test bench

In order to calculate the mass eroded by the sand particles, each specimen was
weighed before and after the test using an electronic balance with a sensitivity of
0.01 mg, Figure 4.2. Each specimen was weighed five times, and the average value
was considered.

Figure 4.2: Precision balance

Each test was carried out by first starting the recording of the mass variation,
performed using a computer connected to the sensor. The compressed air jet was
then activated through the nozzle simultaneously with the start of the timing, which
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was simply monitored using a mobile phone stopwatch. At the end of the predefined
time, the specimen was disassembled, rinsed with water, and dried using compressed
air and absorbent paper. As previously described, the specimen was then weighed.
This procedure was repeated for each test.
The specimen masses, measured before and after each test, are reported in the
Figures 4.3 and 4.4. The results obtained and their discussion are presented in the
dedicated chapter.

Figure 4.3: Specimen mass measurements before the tests

Figure 4.4: Specimen mass measurements after the tests
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Chapter 5

Numerical model

5.1 Sand modeling
As discussed in the chapter on the state of the art, an important factor influencing
erosion is the shape of the erosive particles. For this reason, a characterization of
the particles was carried out.
The granulometry has been measured by a laser granulometry process to measure
the diameter of the particles. This sand used for the erosion of the composite plate
has a particle size distribution shown in the figure 1.2, where "particle diameter"
refers to the largest dimension of the particle. This study was conducted by the
Clément Ader Institute.
The need to obtain a realistic particle model arises not only because erosion itself
is influenced by particle shape but also to ensure that the erosion pattern of the
surface reflects the realistic trend observed in the experimental tests.
For this scope were taken photographs of 25 sand grains using the scanning electron
microscope shown in figure 5.1.
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Figure 5.1: Electron microscope

This allowed for the measurement of the width and length of each individual particle.
The height could only be determined for five particles, as it was not possible to find
a stable resting point for the remaining ones to obtain a proper microscope image.
For these five particles, the ratio of the height to their shortest side provided a set
of values, the average of which was calculated. This average value, equal to 0.72,
was then used to estimate the height of the remaining particles by multiplying it
by their shorter side. Thus, the height, width and depth of each individual particle
have been defined, Table 5.1.
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Particle Length [mm] Width [mm] Height [mm]

1 731 368 264

2 1162 607 416

3 670 488 351

4 761 488 351

5 738 535 384

6 589 444 319

7 670 394 284

8 710 508 553

9 794 570 356

10 714 650 437

11 620 423 315

12 608 433 349

13 462 406 292

14 688 625 375

15 603 414 299

16 498 398 286

17 733 594 500

18 713 637 465

19 326 306 220

20 647 413 297

21 569 489 293

22 905 639 365

23 638 382 275

24 488 439 296

25 535 346 328

Table 5.1: Particle measurements

The graph 5.2 shows the size distribution of the large garnet particles in terms
of percentage proportion to their diameter, showing a distribution similar to that
obtained through the laser particle size process. Therefore, it can be concluded that
the randomly selected particles are representative and can be used for the desired
simulation.
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Figure 5.2: Particle diameter distribution

An image of a selected particle is provided, which will be used as an example in the
following section, figure 5.3.
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(a) Particle width and length

(b) Particle height

Figure 5.3: Measure of particle

The obtained images are processed using a MATLAB program to generate a three-
dimensional representation of the particle that is as realistic as possible. Since image
processing involves a conversion to grayscale and then to a binary scale, particle
images with poorly defined edges due to their light color could not be used. As a
result, 23 particles were successfully modeled. From these binary images the costum
MATLAB script extracts the contour of the loaded particle. If it is not extracted
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optimally, it is possible to manually intervene by specifying the points that do not
belong to the contour so that MATLAB forms the contour without using them,
Figure 5.5.

(a) Selection of excessive points

(b) Process obtaining optimal edge

Figure 5.4: Process obtaining optimal edge
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(c) Edge updated

Figure 5.5: Process obtaining optimal edge

By providing the particle’s height and the desired number of layers as input, the
program automatically divides the height by the specified number of layers.
For each layer, the user is asked to manually draw the contour, which is then used
for the 3D modeling process from the initial images of the particles. These were
interpolated using the same number of points as those used to interpolate the base
edge, the edge extracted by MATLAB, to generate the .stl file, which is explained
later. Using the previously represented particle, the figure 5.6 illustrates how the
contours for each selected layer were obtained. The red contour represents the one
extracted by MATLAB, while the blue contours are manually drawn by the user.
These were then mirrored respect the base plane.
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Figure 5.6: Edges particle

The obtained contours were located in a matrix, pairing each with its successive
contour. From these matrices, the geometric representation of the surfaces between
two consecutive contours was extracted using a face-vertex representation. This
representation was then processed to generate a triangular mesh of the particle’s
surface. This process resulted in a 3D representation of the particle, which was
saved in an .stl file.
This type of file is not readable by Abaqus. Therefore, it was processed using
SolidWorks to generate a .step file. Using this software, the moments of inertia
and the volume of the particles were also calculated. Their masses were determined
by assigning them a density of 1000 kg/m3, different from that previously reported
because it must take into account the space occupied by air in calculating volumetric
density.
The obtained 3D model of the sample particle is shown in figure 5.7. By comparing
it with the reference image, it can be observed that the particle’s edges and measures
have been accurately preserved, resulting in a high-quality three-dimensional model.
This process was repeated for each particle photographed, resulting in a total of 23
3D models.
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Figure 5.7: 3D particle on Abaqus

5.2 FEM model
The objective of this project is to simulate the erosion behavior of a composite plate
subjected to the impact of sand particles. The plate consists of 26 layers, each
0.19mm thick. Each layer consists of 2x2 twill carbon fibers immersed in an M49
epoxy resin. Mechanical characteristics provided by the datasheet, are shown in
Table 5.2.

Property Details/Methods Value Units
General Material Properties

Fibre HS Carbon - -
Tow 3K - -
Weave Twill 2x2 - -
Mass - 200 g/m2

Nominal Cured Ply Thickness - 0.235 mm
Nominal Fibre Volume - 47.8 %
Nominal Laminate Density - 1.47 g/cm3

Mechanical Properties
Tensile Strength Carbon EN2561 1050 MPa
Tensile Modulus Glass EN2747 68 GPa
Flexural Strength Carbon EN2562 1000 MPa
Flexural Modulus Glass EN2746 60 GPa
ILSS (Interlaminar Shear Strength) Carbon EN2563 / Glass EN2377 60 MPa
Compression Strength EN2850 B 730 MPa

Table 5.2: Properties of composite material
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5.2.1 Parts modelling

Each modeled particle was imported into Abaqus via the .step file as a Discrete
Rigid 3D Body. To simplify the model and reduce computational time, the internal
parts of the particles were removed. This operation was also performed considering
the rigidity assumption assigned to the particles, as their deformations were deemed
negligible for the analysis. As previously mentioned, each particle was assigned
a mass and moments of inertia, using a density of 1000 kg/m3. Additionally, each
particle was given a velocity of 150 m/s, a value obtained through high-speed camera
measurements.
To further reduce computational time, only a portion of the specimen was modeled.
The specimen was created from a sketch 15 x 15mm with a depth of 4.94 mm,
defined as a 3D deformable body.
Since the model is analyzed using the VUMAT subroutine, it was necessary to
partition the plate for each individual layer. The material was then assigned to
the plate using the 40 constants required for its definition, as previously shown in
figure 5.2. To simulate the real-world clamping conditions of the plate, all degrees
of freedom were constrained at the final layer. The sample obtained is shown in
Figure 5.8.

Figure 5.8: Sample

5.2.2 Assembling

In reality, the distance between the nozzle of the compressed air gun and the speci-
men is 25 mm. However, since the interaction between air and particles is not con-
sidered in this study, this parameter does not affect the results obtained in Abaqus.
Therefore, the complete model was created without including this parameter, and
the assembly was designed by minimizing the distance between the particles and the
sample to reduce computational time. Given the high-quality particle modeling, a
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repetition of the same particles was used in the simulations.
The interaction between the particles and the plate was simulated, while the inter-
action between the particles themselves was not considered, again to reduce compu-
tational time. This interaction was modeled using a general contact approach, with
the assigned property defined as IntProp-1, which has the following characteristics:

• In the normal direction, a Hard contact behavior was assigned to prevent in-
terpenetration. Additionally, the option allowing for surface separation at the
particle-plate interface was enabled to ensure the correct detachment behavior
after contact;

• A tangential behavior with a friction coefficient of 0.33 and isotropic direc-
tionality.

5.2.3 Mesh

For the particle mesh, elements of type R3D4 or R3D4 were used, where the ab-
breviation is as follows: R because they are rigid elements, 3D three dimensional
analysis and the last number is the number of nodes. For the sample, elements of
type C3D8 that is an 8-node linear brick element were used, with a finer mesh at
the center of the plate, where elements of 50 micrometers were placed, gradually
expanding towards its edges, Figure 5.9.

Figure 5.9: Mesh sample

The model has been defined in its entirety and is shown in Figure 5.10
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Figure 5.10: complete model

5.2.4 Hypothesis

From the Table 4.1, it can be observed that the minimum duration of the experimen-
tal tests is 30 seconds. From the calculation of the mass of the analyzed particles,
an average value of 63.2 · 10−6 g is obtained. Furthermore, from the graphs of the
variation in the weight of the sand contained within the funnel, measured using the
sensor, Figure 5.11, an average flow rate of 7.6 g/s is found. This results in a flow
of 120 particles per millisecond, not considering their interaction.

Figure 5.11: Particle mass flow

This makes impossible to simulate the entire duration of the tests through numeri-
cal analysis. The fundamental assumption is therefore to simulate the same particle
flow per second but using a scaling factor for the simulated time. This factor was
calculated by comparing the impact area obtained in the experimental tests with
that of the numerical simulations.
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In particular, the circular impact area was calculated assuming that the beam open-
ing angle was equal to 15◦, obtained through the analysis of image 5.12, captured
using a high-speed camera, from a previous study by Ph.D. Candidate Adrien Sapet
[37] using a nozzle with a diameter of 4 mm.

Figure 5.12: Tracked sand flow

The test bench used is equipped with a nozzle with a diameter of 7 mm.
Based on these data, the real impact surface was calculated to be 326.77 mm2,
which was then compared to the simulated impact surface of 115 mm2, which was
calculated by considering the frontal area of the impacting particles, figure 5.13,
resulting in a time scaling factor of 110.

Figure 5.13: Impact surface Abaqus model
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Chapter 6

Analysis and results

6.1 Sperimental tests
The photographs of the specimen morphology after being subjected to tests of the
same duration, namely 2 minutes, but with increasing impact angles of 30°, 60°, and
90°, are reported in Figures 6.1 and 6.2. The observed behaviors align with those
reported in the literature.
In particular, as the impact angle increases, there is a transition from a higher
presence of cuts on the matrix to its removal, along with an increasing occurrence
of random fiber fracturing at high impact angles, which leads to the loss of their
original orientation.
At low impact angles, since the tangential force plays a significant role, the damage
occurs primarily through micro-cutting and micro-ploughing. Conversely, at high
impact angles, the tangential force becomes negligible and ultimately vanishes at
90°, while the normal force becomes dominant, leading to micro-cracking of both
the matrix and the fibers.
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(a) Case E3: impact angle 30◦ time 120s

(b) Case E6: impact angle 60◦ time 120s

Figure 6.1: Samples morphology after test
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(c) Case E9: impact angle 90◦ time 120s

Figure 6.2: Sample morphology after test

From the performed tests, the values of eroded mass reported in the Table 6.1 were
obtained.

Case Eroded mass [g]

E1 30 deg 30 sec 0.04976

E2 30 deg 75 sec 0.12206

E3 30 deg 120 sec 0.2362

E4 60 deg 30 sec 0.0922

E5 60 deg 75 sec 0.21716

E6 60 deg 120 sec 0.35358

E7 90 deg 30 sec 0.08988

E8 90 deg 75 sec 0.2017

E9 90 deg 120 sec 0.30642

Table 6.1: Eroded mass for different test cases

These values were then plotted on the graph 6.3, which shows the eroded mass of the
specimen as a function of the test duration, fixing the angle of impact for the single
curve, it can be observed that the experimentally obtained results are perfectly in
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line with those reported in the literature. The highest eroded mass is obtained in
the case of a 60◦ impact angle, followed by the case where the flow is perpendicular
to the plate, and lastly, the case with a 30◦ impact angle.

Figure 6.3: Time-dependent eroded mass

Different erosion rate values were thus obtained, as reported in Table 6.2. These
values will be compared with the erosion rates obtained from the simulation.

Impact angle [deg.] Erosion rate [g/s] Erosion rate [g/s] Mean [g/s]
30 0.001606667 0.002536444 0.002071556
60 0.002776889 0.003031556 0.002904222
90 0.002484889 0.002327111 0.002406000

Table 6.2: Erosion rate for different impact angles

6.2 Numerical Analyses
Analyses were conducted to examine how the selected diffuse damage model, chosen
between Wang’s model and the Expanded model could influence the analysis.
The images 6.4 show the study of the influence of the adopted diffuse damage model.
The use of the Wang’s model results in a lower maximum stress within the plate
compared to the expanded model. The expanded model was chosen for this study
as it provides a more detailed representation of the coupling between the principal
stress directions.
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(a) Wang’s diffuse damage model

(b) Expanded diffuse damage model

Figure 6.4: Influence of the adopted diffuse damage model

After defining all the parameters on the VUMAT, simulations were performed for
three different impingement angles: 90◦, 60◦, and 30◦, reported in the following
figures.
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Figure 6.5: 90◦ perspective model

Figure 6.6: 60◦ perspective model

Figure 6.7: 30◦ perspective model

The simulated time reaches a value of 0.22 s, using the previously mentioned scaling
factor.
From the results obtained, Table 6.3, where the erosion rate values for each individ-
ual step and their average are reported, and Figure 6.8, can be observed that the
model successfully simulates the erosion rate value, especially in the case where the
specimen is positioned at 90◦. However, it does not perfectly replicate the trend
of the composite material under study, which exhibits greater erosion at an impact
angle of 60◦.
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Figure 6.8: Time-dependent eroded mass model

Impact angle
[deg.]

Erosion rate
[g/s]

Mean
[g/s]

90
0.00227
0.00227
0.00181

0.00212

60
0.00090
0.00181
0.00181

0.00151

30
0.00090
0.00045
0.00090

0.00076

Table 6.3: Erosion rates from numerical simulations at different impact angles.

On the other hand, if we observe the trend of the eroded mass in the experimental
tests as a function of the impact angle, while keeping the test duration fixed for each
curve, Figure 6.9, it becomes evident that as the test duration decreases, the peak
value at 60◦ also decreases.
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Figure 6.9: Effect of impact angle on eroded mass at different exposure times

This suggests that as the test duration shortens, the eroded mass at an impact
angle of 60◦ decreases compared to that at 90◦. Consequently, this would make the
numerical model perfectly consistent with the experimental results.
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Chapter 7

Conclusions and future developments

Helicopters often operate in extreme environments where a two-phase flow, air mixed
with solid particles like sand, is present. These particles interact with moving compo-
nents, causing erosion that shortens operational lifespan and increases maintenance
needs.
This study begins with an analysis of erosion phenomena and the factors influencing
them. In accordance with definitions found in the state of the art, the erosion rate
is defined as the ratio between the mass loss of the eroded material and the mass of
the impacting particles.
The erosion rate of the material depends on several factors, such as the impact angle
and the shape of the particles. The impact angle, the angle between the trajectory
of the particle and the surface, is a key parameter. At low angles (15◦−30◦), ductile
materials exhibit higher erosion due to micro-cutting and ploughing. In contrast,
brittle materials show maximum erosion at 90◦ due to fibers and matrix micro-
cracking. Notably, in composites with brittle fibers like carbon or glass in an epoxy
matrix, the erosion peak shifts to 60◦.
In the second part of the study, a sand particle model was developed to create a
numerical simulation capable of replicating, as accurately as possible, the real be-
havior of the specimen. The specimen is made of composite material structured in
26 layers, each composed of [0,90] carbon 2x2 twill fibers embedded in M49 epoxy
resin. It was subjected to tests at impact angles of 30◦, 60◦, and 90◦, with durations
of 30 s, 75 s, and 120 s.
Sand characterization was based on a sample with a bulk density of 2330 kg/m3.For
the simulations, a reduced density of 1000 kg/m³ was assumed. This value was
lowered to account for the voids occupied by air within the material. Electron
microscope images of 23 particles were processed, and their size distribution was
compared with laser granulometry results, showing good agreement. The 3D shapes
were reconstructed using MATLAB, allowing users to outline cross-sectional layers.
The models were finalized in SolidWorks for integration into Abaqus. In particular,
the model developed in Abaqus uses the VUMAT subroutine created by Professor
Lachaud at ISAE-SUPAERO, with the aim of laying the groundwork for its valida-
tion in the study of the erosion phenomenon.

Results from experimental tests at 30◦,60◦, and 90◦ confirmed literature trends: low
angles result in micro-ploughing and micro-cutting of matrix, while higher angles
lead to matrix removal and fiber cracking. The highest erosion was observed at 60◦,
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consistent with previous studies on composite materials.
The erosion rate values obtained from the numerical simulations for impact angles of
30◦, 60◦, and 90◦ are similar to those measured in the experimental tests. However,
the maximum erosion rate is observed at 90◦, unlike in the experiments where it
occurs at 60◦, this discrepancy may result from the test duration: shorter tests tend
to reduce the peak at 60◦, aligning better with the simulation results.
It is necessary to determine if the previous conclusion is correct by conducting ex-
perimental tests of shorter duration, on the order of seconds, and measuring the
eroded mass of the material. However, this would require a balance with sensitivity
even higher than the used in this study. Thus, an alternative approach is suggested:
seeking a simplification of the model to enable longer-duration tests that may bet-
ter correspond to real conditions. This could be achieved by using particles with
a simplified shape, such as ellipsoidal ones, figure 7.1, thereby sacrificing a more
detailed simulation but ensuring that they maintain the same erosion capacity as
those simulated in this study.

Figure 7.1: Elipsoidal particle
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