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Abstract

This master’s thesis investigates the impact of the inlet boundary conditions on the
spatial evolution of the turbulence injected using a library-based method. The free-
stream turbulence inflow data has been generated with a precursor approach through
the Direct Numerical Simulation (DNS) of a Decaying Homogeneous Isotropic Tur-
bulence (DHIT). Numerical studies have been carried out using the solver Ar-
goDG, developed at Cenaero, which is based on a high-order discontinuous Galerkin
method.

Firstly, a parametric study was conducted in a free domain to assess the influence
of various simulation parameters (i.e. Reynolds number, Mach number, injection an-
gle, type of boundary conditions and mesh) on the properties of a freely decaying
turbulence. The results show that imposing total conditions at the inlet leads the
injected turbulence to become anisotropic. Moreover, a non-zero injection angle
amplifies the discrepancy between the turbulent kinetic energy associated with the
three spatial directions. On the other hand, static inlet conditions result in isotropic
injected turbulence, even though the mesh is anisotropic and the injection angle is
not zero.

Subsequently, static boundary conditions at the inlet were applied to simulate
a high-speed low-pressure turbine cascade with high free-stream turbulence. The
results were compared with a simulation of the same case but using total inlet con-
ditions. A detailed evaluation of the impact on the flow physics will be presented,
including blade loading, boundary layer stability and wake behavior. Overall, the
turbulence upstream of the blade exhibits characteristics consistent with those ob-
served in the free domain. Furthermore, the simulation with static inlet conditions
shows better agreement with experimental data.
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Liège, for welcoming me and making me feel at home during my stay at the institute,
as well as for their invaluable help and guidance. I also extend my gratitude to the
von Karman Institute for Fluid Dynamics for providing the experimental results, a
precious contribution to this work.

Finally, I warmly thank my friends and family for being present throughout my
journey. In particular, to my parents, for their unwavering support in every moment
over these years, especially the difficult ones. A special thank you to my girlfriend,
for believing in me and encouraging me every day.

III



Contents

1 Introduction 1

2 Flow physics 4
2.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Statistical description . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Scales of turbulence . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Other parameters of turbulence and Taylor’s hypothesis . . . . 11

2.3 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Laminar-turbulent transition . . . . . . . . . . . . . . . . . . . 14
2.3.2 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Universal law of the wall . . . . . . . . . . . . . . . . . . . . . 18

2.4 Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Low pressure turbine features 22
3.1 Geometrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Operating conditions parameters . . . . . . . . . . . . . . . . . . . . 24
3.3 Performance parameters . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Sources of losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Separation and transition . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 SPLEEN cascade experimental background 31
4.1 Experimental environment . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Free-stream turbulence generation . . . . . . . . . . . . . . . . . . . . 33

5 Numerical methods and tools 35
5.1 HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 NIC5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Lucia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 DGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 ArgoDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Turbulence injection 40
6.1 Review of existing turbulence injection methods . . . . . . . . . . . . 40

6.1.1 Transition-inducting methods . . . . . . . . . . . . . . . . . . 40
6.1.2 Turbulence library-based methods . . . . . . . . . . . . . . . . 41
6.1.3 Recycling-rescaling methods . . . . . . . . . . . . . . . . . . . 41
6.1.4 Synthetic inflow generators . . . . . . . . . . . . . . . . . . . . 42
6.1.5 Machine learning and deep learning techniques . . . . . . . . . 42

IV



Master’s thesis

6.2 Turbulence injection procedure . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Setup and execution of the precursor simulation . . . . . . . . 43
6.2.2 Duplication, transformation, concatenation and blending of

the precursor solution field . . . . . . . . . . . . . . . . . . . . 44

7 Free domain simulations 45
7.1 Computational setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Computational domain and meshing . . . . . . . . . . . . . . 46
7.1.2 Solver settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.1.3 Boundary and initial conditions . . . . . . . . . . . . . . . . . 48
7.1.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.5 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.1 Baseline case . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.2 Reynolds and mach numbers effect . . . . . . . . . . . . . . . 55
7.2.3 Boundary condition type effect . . . . . . . . . . . . . . . . . 60
7.2.4 Injection angle effect . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.5 Mesh isotropy effect . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.6 Mesh isotropy effect with non-zero injection angle . . . . . . . 75

8 Turbine simulations 77
8.1 Computational setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.1.1 Computational domain and meshing . . . . . . . . . . . . . . 77
8.1.2 Boundary conditions, initial conditions and convergence . . . . 80
8.1.3 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.1 Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2.3 Blade loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2.4 Skin friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.5 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.6 Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9 Conclusion 102

Chapter 0 Carlo Di Cintio V



List of Figures

2.1 Typical energy spectrum for homogeneous isotropic turbulence . . . . 12
2.2 Boundary layer developing on a flat plate at zero incidence . . . . . . 13
2.3 Sketch of transition in the boundary layer on a flat plate at zero

incidence (reproduced from [17]) . . . . . . . . . . . . . . . . . . . . . 15
2.4 Time averaged velocity profiles for laminar and turbulent remise . . . 16
2.5 Boundary layer separation on a curved surface . . . . . . . . . . . . . 17
2.6 Velocity distribution in the wall layer . . . . . . . . . . . . . . . . . . 19
2.7 Sketch of a typical von Karman vortex street for a circular cylinder

in a flow with 80 < Re < 200 (reproduced from [18]) . . . . . . . . . 20

3.1 Schematic of the geometrical parameters for LPT cascade with SPLEEN
blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Different modes of boundary layer transition related to Tu, K and
Reθ (reproduced from [21]) . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Time-averaged representation of different flow-separated transitional
modes (reproduced from [23]): transitional separation mode (top),
laminar separation/short bubble mode (center) and laminar separa-
tion/long bubble mode (bottom) . . . . . . . . . . . . . . . . . . . . 29

3.4 Qualitative effect of Re on the performance of a LPT cascade (repro-
duced from [24]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 VKI S1/C wind tunnel (taken from [27]) . . . . . . . . . . . . . . . . 31
4.2 VKI S1/C wind tunnel (taken from [27]) . . . . . . . . . . . . . . . . 32

5.1 A visual comparison of the fundamental properties of different CFD
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Example of the discontinuous trial space of the DGM (taken from [36]) 38

6.1 Precursor domain mesh, 3-dimensional view . . . . . . . . . . . . . . 43

7.1 Free domain, 3-dimensional view . . . . . . . . . . . . . . . . . . . . . 47
7.2 Free domain isotropic mesh, 3-dimensional view . . . . . . . . . . . . 47
7.3 Isotropic mesh (left) and anisotropic mesh (right), 2-dimensional

inlet view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Free domain with inlet shown in green (left) and outlet shown in red

(right), 2-dimensional view . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 Convective density flux (Φρ [kg m−2 s−1]) during the numerical tran-

sient of the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6 Convective density flux (Φρ [kg m−2 s−1]) of the converged simulation 51
7.7 Free domain probe set shown in red, 2-dimensional side-view . . . . . 52

VI



Master’s thesis

7.8 High density probe set shown in red (on the left) and low density
probe set shown in green (on the right), 2-dimensional inlet view . . . 52

7.9 Streamwise evolution of diagonal terms of the Reynolds stress tensor
for the base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.10 Streamwise evolution of the Turbulent Kinetic Energy (left) and Tur-
bulent Intensity (right) for the base case . . . . . . . . . . . . . . . . 54

7.11 Streamwise evolution of velocity integral length scale for the base case 54

7.12 Streamwise evolution of diagonal terms of Reynolds stress tensor for
different Re and M cases . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.13 Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different Re and M cases . . . . . . . . . . . . . . . . . 56

7.14 Streamwise evolution of the Turbulent Kinetic Energy for different
Re and M cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.15 Streamwise evolution of velocity integral length scale for different Re
and M cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.16 Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different Re and M cases . . . . . . . . . . . . . . . . . 59

7.17 Streamwise evolution of diagonal terms of Reynolds stress tensor for
different inlet boundary conditions type . . . . . . . . . . . . . . . . . 60

7.18 Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different inlet boundary conditions type . . . . . . . . . 61

7.19 Streamwise evolution of the Turbulent Kinetic Energy for different
inlet boundary conditions type . . . . . . . . . . . . . . . . . . . . . . 62

7.20 Streamwise evolution of velocity integral length scale for different inlet
boundary conditions type . . . . . . . . . . . . . . . . . . . . . . . . 62

7.21 Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different inlet boundary conditions type . . . . . . . . . 63

7.22 Streamwise evolution of diagonal terms of Reynolds stress tensor for
different αin, using Mach total boundary conditions . . . . . . . . . . 64

7.23 Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different αin, using Mach total boundary conditions . . 65

7.24 Streamwise evolution of the Turbulent Kinetic Energy for different
αin, using Mach total boundary conditions . . . . . . . . . . . . . . . 66

7.25 Streamwise evolution of velocity integral length scale for different αin,
using Mach total boundary conditions . . . . . . . . . . . . . . . . . . 66

7.26 Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different αin, using Mach total boundary conditions . . 67

7.27 Streamwise evolution of diagonal terms of Reynolds stress tensor for
different αin, using Free stream boundary conditions . . . . . . . . . . 68

7.28 Streamwise evolution of velocity integral length scale for different αin,
using Free stream boundary conditions . . . . . . . . . . . . . . . . . 68

7.29 Streamwise evolution of LXX for different αin, using Free stream
boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.30 Streamwise evolution of u′u′ for different meshes, using Mach total
boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.31 Streamwise evolution of LXX for different meshes, using Mach total
boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 0 Carlo Di Cintio VII



Master’s thesis

7.32 Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different meshes, using Free stream boundary conditions 72

7.33 Streamwise evolution of diagonal terms of Reynolds stress tensor for
different meshes, using Free stream boundary conditions . . . . . . . 72

7.34 Streamwise evolution of the Turbulent Kinetic Energy for different
meshes, using Free stream boundary conditions . . . . . . . . . . . . 73

7.35 Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different different meshes, using Free stream boundary
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.36 Streamwise evolution of velocity integral length scale for different
meshes, using Free stream boundary conditions . . . . . . . . . . . . 74

7.37 Streamwise evolution of u′u′ for different meshes, using Mach total
boundary conditions and with αin ̸= 0◦ . . . . . . . . . . . . . . . . . 75

7.38 Streamwise evolution of the Turbulent Kinetic Energy for different
meshes, using Mach total boundary conditions and with αin ̸= 0◦ . . . 76

7.39 Streamwise evolution of LXX for different different meshes, using
Mach total boundary conditions and with αin ̸= 0◦ . . . . . . . . . . 76

8.1 Turbine domain with inlet shown in green (left) and outlet shown in
red (right), 2-dimensional view . . . . . . . . . . . . . . . . . . . . . 78

8.2 Mesh of the turbine domain, 2-dimensional view (taken from [7]) . . . 79

8.3 Time-averaged and extremes instantaneous values of the wall coordi-
nates associated to the near-wall elements . . . . . . . . . . . . . . . 80

8.4 Time evolution of the pitchwise component of the momentum fluxes;
data are monitored during the numerical transient and extracted on
the inlet, the outlet and the blade, for both total (top) and static
(bottom) inlet boundary conditions [total case taken from 7] . . . . 81

8.5 Probes layout in the turbine domain . . . . . . . . . . . . . . . . . . 82

8.6 Streamwise evolution of the Reynolds stresses in the inlet region, av-
eraged over time and along pitchwise and spanwise directions, with
total (left) and static (right) inlet boundary conditions (total case
reproduced from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.7 Streamwise evolution of the TKE in the inlet region, averaged over
time and along pitchwise and spanwise directions, with total and
static inlet boundary conditions; the curves are compared to the TKE
evolution predicted using the DHIT (total case reproduced from [7]) . 84

8.8 Streamwise evolution of the integral length scales in the inlet region
related to the three components of velocity fluctuation, averaged over
time and integrated along the spanwise direction, with total (left)
and static (right) inlet boundary conditions (total case reproduced
from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.9 Energy density spectrum averaged over time and along pitchwise and
spanwise directions, extracted at 0.5 × cax upstream to the LE of
the blade, for total and static inlet boundary conditions (total case
reproduced from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.10 Instantaneous field of the Mach number extracted from the spanwise
plane at z = 0, with total (left) and static (right) inlet boundary
conditions (total case taken from [7]) . . . . . . . . . . . . . . . . . . 86

VIII Chapter 0 Carlo Di Cintio



Master’s thesis

8.11 Instantaneous field of the vorticity magnitude extracted from the
spanwise plane at z = 0, with total (left) and static (right) inlet
boundary conditions (total case taken from [7]) . . . . . . . . . . . . 87

8.12 Instantaneous field of the normalized density gradient (numerical
Schlieren) extracted from the spanwise plane at z = 0, with total
(left) and static (right) inlet boundary conditions (total case taken
from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.13 Instantaneous field of the entropy generation extracted from the span-
wise plane at z = 0, with total (left) and static (right) inlet boundary
conditions (total case taken from [7]) . . . . . . . . . . . . . . . . . . 88

8.14 Time and spanwise average of the isentropic Mach number on the
blade, with total and static inlet boundary conditions cases (total
case taken from [7]) compared to experimental data [1] . . . . . . . . 89

8.15 Time and spanwise average of the skin friction coefficient on the blade,
with total and static inlet boundary conditions cases [total case taken
from 7] compared to experimental data [1] . . . . . . . . . . . . . . . 90

8.16 Time evolution of the spanwise averaged skin friction coefficient on
the blade, with total (top) and static (bottom) inlet boundary con-
ditions (total case taken from [7]) . . . . . . . . . . . . . . . . . . . . 91

8.17 Time and spanwise average of tangential velocity profiles in the bound-
ary layer, with total and static inlet boundary conditions (total case
taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.18 Time and spanwise average of the tangential velocity in the boundary
layer, with total (top) and static (bottom) inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 93

8.19 Time and spanwise average of the TKE distribution in the boundary
layer, with total (top) and static (bottom) inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 94

8.20 Time and spanwise average of the boundary layer integral parameters,
with total (left) and static (right) inlet boundary conditions (total
case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.21 Time and spanwise average of displacement thickness (top-left), mo-
mentum thickness (top-right) and shape factor (bottom), with total
and static inlet boundary conditions (total case taken from [7]) . . . . 96

8.22 Time and spanwise average of the total pressure defect in the wake
on planes 05 and 06, with total and static inlet boundary conditions
cases (total case taken from [7]) compared to experimental data [1]
(plane 06 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.23 Time and spanwise average of the total temperature in the wake on
planes 05 and 06, with total and static inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 97

8.24 Time and spanwise average of the flow angle in the wake on planes
05 and 06, with total and static inlet boundary conditions (total case
taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.25 Time and spanwise average of the diagonal stresses in the wake on
planes 05 and 06, with total and static inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 0 Carlo Di Cintio IX



Master’s thesis

8.26 Time and spanwise average of the energy density spectrum in the wake
on planes 05 and 06, with total and static inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 100

8.27 Time and spanwise average of the integral length scales in the wake
on planes 05 and 06, with total and static inlet boundary conditions
(total case taken from [7]) . . . . . . . . . . . . . . . . . . . . . . . . 101

X Chapter 0 Carlo Di Cintio



List of Tables

3.1 Geometrical parameter of the SPLEEN blade . . . . . . . . . . . . . 23
3.2 Operating conditions for the SPLEEN simulation . . . . . . . . . . . 24

4.1 Turbulence parameters predicted with semi-empirical law and mea-
sured experimentally with hot-wire probes . . . . . . . . . . . . . . . 34

7.1 Characteristics of the baseline case . . . . . . . . . . . . . . . . . . . 45
7.2 Re and M values for the parametric study . . . . . . . . . . . . . . . 46
7.3 Summary of the parametric study . . . . . . . . . . . . . . . . . . . . 46
7.4 Boundary conditions for simulations with different Re and M . . . . 49
7.5 Boundary conditions for simulations with different α . . . . . . . . . 49
7.6 Example case with Free stream boundary conditions . . . . . . . . . . 50
7.7 Types of initial solution . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 Injection angles and related injection vectors . . . . . . . . . . . . . . 64

8.1 Inlet boundary conditions parameters for the turbine simulation . . . 80

XI





Chapter 1

Introduction

Over the past few decades, the utilization of Computational Fluid Dynamics
(CFD) has become an increasingly prevalent tool across various engineering disci-
plines. In industrial settings, Reynolds Averaged Navier Stokes (RANS) simula-
tions are extensively employed. However, in scenarios involving complex geometries
and flows characterized by laminar to turbulent transition and separation, such as
those encountered in turbomachinery, RANS methods tend to exhibit low reliabil-
ity. To achieve higher accuracy, Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS) are adopted. Despite their increased computational cost, these
methodologies enable the capture and analysis of complex flow features.

Arguably, turbulence represents the most intricate flow characteristic to accu-
rately model. This phenomenon is virtually ubiquitous in fluid dynamics and can
exert a substantial influence on flow properties. Consequently, the faithful represen-
tation of turbulence is of paramount importance in the majority of fluid dynamic
applications relevant to engineering, including turbomachinery. Unlike other meth-
ods where the effect of turbulence is partially or entirely modeled, DNS resolves all
turbulent scales, thereby yielding a higher fidelity of the results.

The challenge of accurately representing turbulence is particularly pronounced
when dealing with spatially evolving turbulent inflow boundary conditions. In such
cases, it becomes imperative to generate turbulent inflow data, thereby simulating
the introduction of turbulent eddies into the computational domain as a function of
time. This procedure is commonly referred to as turbulence injection, and a multi-
tude of methodologies exist in the literature for generating such inflow conditions.

The primary objective of this master’s thesis is to investigate how various numer-
ical simulation characteristics can impact the injection and evolution of turbulence
within the main computational domain, while maintaining a constant turbulent in-
flow dataset. To this end, DNS were performed on meshes generated using the
GMSH software. The numerical solver employed is ArgoDG, which implements a
high-order Discontinuous Galerkin Method (DGM). The turbulent inflow data were
generated through a Decaying Homogeneous Isotropic Turbulence (DHIT) simula-
tion in an auxiliary domain, following the precursor method.

This study can be ideally divided into two primary parts. The first part eval-
uates the effect of various simulation parameters on the injected turbulence. The
parameters selected for the parametric study are: Reynolds number, Mach number,
boundary condition type, injection angle, and mesh. The study is conducted through

1
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a series of DNS in a simplified free domain. This domain, characterized by its simple
geometry and absence of solid walls, was chosen to minimize the computational cost
of each simulation and to assess the impact on freely decaying turbulence.

In the second part of this study, the effect of different inlet boundary conditions
is analyzed in a numerical simulation with turbulence injection relevant to practi-
cal applications. The case under consideration is a high-speed low-pressure turbine
(LPT) pertaining to the new generation of geared turbofan (GTF) engines. The
fundamental concept behind these engines is to decouple the rotational speed of
the low-pressure turbine from the fan through a gearbox, thereby enabling optimal
rotational speeds and consequently enhancing the efficiency of the turbomachine.
Indeed, in conventional turbofans, the low-pressure spool speed is limited by com-
pressibility effects on the fan, leading to suboptimal operation of the low-pressure
turbine. The combination of high speed in LPT of GTF and low density in cruise
conditions induces different physical effect compared to conventional turbofans. A
large range of experimental results in on-design and off-design conditions has been
obtained in the SPLEEN project, which is led by the von Karman Institute for Fluid
Dynamics (VKI) [1]. Indeed, the LPT analyzed in this master’s thesis is a linear
cascased composed by SPLEEN blades, that are specially designed for low Reynolds
and high Mach conditions. Moreover, numerical studies of the SPLEEN cascade
have been conducted in previous works, by Bolyn [2], Khateeb [3], Borbouse et al.
[4, 5, 6], and Deneffe [7]. Specifically, the study of [7] employed turbulence injection
to analyze the turbine under three operating conditions, characterized by Reynolds
numbers of 70 · 103 and Mach numbers of 0.7, 0.90, and 0.95, respectively. The
turbine simulation performed in this study corresponds to the operating condition
with a Reynolds number of 70 · 103 and a Mach number of 0.70, utilizing the same
simulation parameters and turbulent inflow data as in [7], with the exception of the
inlet boundary condition type. While [7] used total inlet conditions, this study em-
ploys static inlet conditions. This master’s thesis presents a comparison between the
two numerical simulations, as well as with experimental results, to assess the effect
of free stream turbulence on the turbine simulation under different inlet boundary
conditions.

The structure of this master’s thesis is organized into the following chapters:

• Chapter 2 covers the main physical concepts related to the flow equations and
turbulence, including phenomena that occur with relative motion between a
fluid and a body, such as boundary layers and wakes;

• Chapter 3 summarizes some useful concepts for dealing with low pressure
turbine, which include geometry, operating conditions, performances, sources
of losses and blade channel phenomena;

• Chapter 4 briefly shows the VKI experimental setup used to obtain the SPLEEN
results;

• Chapter 5 introduces the computational resources used to run the simulations,
as well as the solver and numerical method employed;

• Chapter 6 presents the main turbulence injection method and details the pre-
cursor approach used to generate the turbulent inflow data employed in this
study;
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• Chapter 7 discusses the computational settings and the results related to the
parametric study and free domain;

• Chapter 8 focuses on the turbine computations, highlighting the effect of the
two different inlet boundary conditions types (static and total) while injecting
turbulence.

Chapter 1 Carlo Di Cintio 3



Chapter 2

Flow physics

This chapter provides the theoretical and conceptual foundation necessary to
understand the results presented in the following chapters. Firstly, the physical
model implemented for the numerical simulations is introduced, including the gov-
erning fluid flow equations and associated assumptions. Secondly, the concept of
turbulence is discussed, including common statistical tools used for its description
and key theoretical advancements in understanding the phenomenon. Given that
all simulations in this study involve turbulence injection (as detailed in Chapter 6),
the underlying physics of this process is also explored. The boundary layer concept
is then introduced, highlighting its ubiquitous nature in flows over solid surfaces.
The key parameters used to characterize boundary layers are discussed, along with
phenomena such as transition and separation. Lastly, the concept of wakes is pre-
sented, with a particular focus on the von Karman vortex street and the influence
of boundary layer state on wake characteristics.

2.1 Physical model

This section will briefly discuss the physical model implemented in the numerical
solver (ArgoDG). The equations that describe the motion of viscous fluids are known
as Navier-Stokes equations (NSE). The NSE are a set of partial differential equations,
which include continuity equation, momentum equations and energy equation. NSE
can be written in many different forms. The following NSE are given as examples
in Cartesian coordinates, using Einstein notation:

∂ρ

∂t
+

∂(ρui)

∂xi

= 0

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂τij
∂xj

+ ρfi

∂(ρE)

∂t
+

∂[(ρE + p)ui]

∂xj

=
∂(k∂T/∂xi)

∂xj

+ τij
∂ui

∂xj

+ ρfiui.

(2.1)

The terms that appear in Equation 2.1 are:

• t: time, [s];

• xi: i -th spatial coordinate, [m];

• ρ: density, [kg/m3];
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• ui: i -th velocity component, [m/s];

• p: pressure, [Pa];

• τij: viscous stress tensor, [Pa];

• fi: i -th direction of the body force per unit mass, [N/kg];

• E: total energy per unit mass, [J/kg];

• k: thermal conductivity, [W/(m·K)];

• T : Temperature, [K].

Since all the simulations in this study are DNS, the NSE are solved without any
model for the turbulence (see Chapter 5). However, some assumptions are made,
for example the body force are neglected (fi = 0), as well as the heat exchanges
with solid bodies (adiabatic walls). Furthermore, ideal and calorically perfect gas
assumptions are made. The fluid considered has a ratio of the specific heat capacities
γ = 1.4, a gas constant R = 287.1 J·kg−1·K−1 and a thermal conductivity k =
0.02414 W·m−1·K−1. Moreover, the viscous stress tensor is calculated using the
assumption of Newtonian fluid:

τij = µ

(
∂ui

∂uj

+
∂uj

∂ui

− 2

3
δij

∂uk

∂uk

)
, (2.2)

where µ is the dynamic viscosity [N·s/m2] and δij is the Kronecker delta. The latter
is defined by

δij =

{
1, if i = j

0, if i ̸= j .
(2.3)

Lastly the empirical Shuterland’s law [8] has been used to model the temperature
dependence of the dynamic viscosity:

µ

µ0

=

(
T

T0

) 3
2 T0 + S

T + S
, (2.4)

where µ0 is the dynamic viscosity at a reference temperature T0 and S is the Suther-
land’s constant. The values for the fluid considered in this study are µ0 = 1.5 · 10−5

N·s/m2, T0 = 293.15 K and S = 110.4 K.

2.2 Turbulence

This section aims to provide a brief overview of the fundamental concepts of
turbulence. For a more in-depth treatment of the subject, the reader is referred to
Pope [9] and Davidson [10].

Turbulent flow is characterized by an irregular and chaotic motion, exhibiting
a wide range of length scales and contrasting with laminar flow, where the fluid
motion is smooth and regular. However, laminar flow is often restricted to highly
viscous or low-speed flows and is rarely observed in nature. In fact, turbulence
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is ubiquitous in fluid dynamics and influences a vast array of phenomena, from
large-scale atmospheric flows to airflow through the human larynx. Consequently,
understanding turbulence is essential when dealing with fluid dynamics.

The chaotic behavior of turbulent flows is a direct result of non-linear terms in
the NSE. These terms became dominant in the NSE when the Reynolds number
increases; indeed, Re is a useful parameter to describe the turbulent behavior of the
flow. However, the transition mechanism from laminar to turbulent is extremely
complex and is not yet fully understood. In the following sections, only the tran-
sition in the boundary layer will be briefly discussed since a thorough discussion of
this subject is not the purpose of this study.

In the following subsections, useful statistical quantities and turbulence theories
will be discussed.

2.2.1 Statistical description

A common characteristic of turbulence is that the instantaneous velocity field
is unpredictable. Any experimental representation of a turbulent flow each time
reproduces a different solution, even if the initial and boundary conditions remain
unchanged. The reason is that turbulence tends to amplify all those inevitable and
very small differences that exist between one realization and another, thus leading
to a different result. Although the instantaneous turbulent field is random and
unpredictable, the statistical properties seem to be smooth and reproducible. This
is why statistical descriptions are used to deal with turbulent flows.

Averages

If a turbulent flow is statistically stationary, an useful statistical operation is
time averaging :

u(x) = lim
t→∞

1

t

∫ t′

0

u(x, t′) dt′. (2.5)

Statistically stationary (or statistically steady) means that the statistics are indepen-
dent of time. This operation has been widely used in this study, since all the flows
simulated are statistically steady. In these cases, time averages depend on position
in the space but not on time. Two other types of averages exists: the ensemble
average and the volume average. The former is the mean value of a quantity at a
given position and given time over a collection of identical systems

⟨u(x, t)⟩ = lim
N→∞

1

N

N∑
i=1

ui(x, t), (2.6)

while the latter is the mean value of a quantity over a specific volume

⟨u(t)⟩V = lim
V→∞

1

V

∫
V

u(x, t) dV. (2.7)

In a statistically steady flow, time average and ensemble average are equivalent. On
the other hand, volume average is useful in statistically homogeneous turbulence,
i.e. statistical properties do not depend on position. In that case volume average
and ensemble average are equivalent.
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Statistical tools

Following the discussion and the notation of Pope [9], is possible to introduce a
set of quantities useful to characterize a random variable U . In order to do that,
an independent variable V is introduced, that is a sample-space variable associated
to U . Since U is a random variable, the objective of a statistical theory is not
to determine the exact value of U , but the probability that a particular event will
occur. For example, given the event A like

A ≡ {U < Va}, (2.8)

the probability of the event A is

p = P (A) = {U < Va}. (2.9)

p is a real number between 0 and 1, and it represents how much an event is likely
to occur. If p = 0, the event is impossible, while if p = 1 the event is sure. To
determine the probability of any event, is possible to use the cumulative distribution
function (CDF), which is defined by

F (V ) ≡ P{U < V } (2.10)

and represent the probability of U being smaller than a specific value of V . This
function can be used also to determine the probability that U is between two specific
values, for example

P{Va ≤ U < Vb} = P{U < Vb} − P{U < Va} = F (Vb)− F (Va). (2.11)

Starting from the CDF, the probability density function (PDF) can be determined:

f(V ) =
dF (V )

dV
. (2.12)

Using the PDF, the probability of the random variable being in a particular interval
is

P{Va ≤ U < Vb} = F (Vb)− F (Va) =

∫ Vb

Va

f(V ) dV. (2.13)

Indeed, the PDF is the probability per unit of distance in the simple space:

P{V ≤ U < V + dV } = F (V + dV )− F (V ) = f(V ) dV. (2.14)

A random variable like U can be completely characterized by its PDF. The mean of
U , can be computed using PDF:

⟨U⟩ ≡
∫ ∞

−∞
V f(V ) dV. (2.15)

It is also possible to define the fluctuation

u ≡ U − ⟨U⟩, (2.16)

the variance

⟨u2⟩ =
∫ ∞

−∞
(V − ⟨U⟩)2f(V ) dV, (2.17)
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and the standard deviation

σu =
√
var(U) = ⟨u2⟩1/2. (2.18)

In general, the nth-order central moment is defined by

⟨un⟩ =
∫ ∞

−∞
(V − ⟨U⟩)nf(V ) dV. (2.19)

The central moments with n = 3 and n = 4 are respectively known as the skewness
factor and the flatness factor.

The concept just expressed for a single random variable U can be extended to
two or even more random variable. For example, is possible to consider the random
variables U = {U1, U2}, with the sample-space associated V = {V1, V2}. In this case
the joint CFD is

F12(V1, V2) ≡ P{U1 < V1, U2 < V2} (2.20)

and the joint PDF is

f12(V1, V2) ≡
∂2

∂V1∂V2

F12(V1, V2). (2.21)

With two random variables, the mixed 2nd-order moment is called covariance, and
is defined by

⟨u1u2⟩ =
∫ ∞

−∞

∫ ∞

−∞
(V1 − ⟨U1⟩)(V2 − ⟨U2⟩)f12(V1, V2) dV1 dV2. (2.22)

The ratio of the covariance divided by the product of the variance of both variables
is called the correlation coefficient :

ρ12 ≡ ⟨u1u2⟩/[⟨u2
1⟩⟨u2

2⟩]1/2. (2.23)

It describes the mutual influence between U1 and U2. For the Cauchy-Schwartz
inequality

−1 ≥ ρ12 ≥ 1. (2.24)

If ρ12 = 1 then the two variables are perfectly correlated, if ρ12 = −1 then they are
perfectly negatively correlated. If U1 and U2 are independent, then ρ12 = 0.

To apply this concept to the turbulence, is possible to define the velocity U(x, t)
as a random vector field time-dependent, with components (UX , UY , UZ). In order
to study the spatial structure of this random field, the two-point, one-time autoco-
variance (also known as two-point correlation) can be used:

Rij(r,x, t) ≡ ⟨ui(x, t)uj(x+ r, t)⟩. (2.25)

It is a simple statistic, closely related to the covariance, which allows to determine
how much speed is correlated in two points of the space. Therefore, in some way,
it allows to obtain information on the size and energy of the turbulent structures
contained in the flow. From Rij, it is possible to deduce a set of integral length scales,
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which also gives information about the influence of the velocity field in different point
in the space. An example of integral length scale is

LZZ(x, t) ≡
1

RZZ(0,x, t)

∫ ∞

0

RZZ(eZr,x, t) dr (2.26)

where eZ constitutes the unit vector in the z-direction. Another useful parameter
is the velocity spectrum tensor, which is the Fourier transform of the two-point
correlation

Φij(k, t) =
1

(2π)3

∫∫∫ ∞

−∞
e−ik·rRij(r, t) dr, (2.27)

and represent the contribution to the covariance ⟨uiuj⟩ of velocity modes with
wavenumber k. Another parameter expressed in terms of wavelength spectrum
is the energy spectrum function:

E(k, t) ≡
∫∫∫ ∞

−∞

1

2
Φii(k, t)δ(|k| − k) dk. (2.28)

E(k, t) represent the energy, at a given time, related to a specific wavelength, but
without the directional information of Φij(k, t).

RANS and closure modeling

Since the statistical properties of a turbulent velocity field are smooth and re-
producible, it would be useful to derive dynamical equations for these statistical
quantities. A simple idea to obtain an average velocity field, could be to mediate
the NSE. Unfortunately, since such equations are non-linear, there will be more sta-
tistical unknowns than equations. A way to average the NSE is to decompose the
parameters into a sum of their mean and fluctuation

u(x, t) = u(x, t) + u′(x, t) (2.29)

and then average the equations. For example, the unsteady momentum conservation
equation would be

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂

∂xj

(τ ij − ρu′
iu

′
j), (2.30)

where

τ ij = µ(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

). (2.31)

By applying this approach to the NSE, the Reynolds averages Navier-Stokes (RANS)
can be obtained. However, in the Equation 2.30 there is the averaged product of the
velocity fluctuations (−ρu′

iu
′
j), also know as Reynolds stress, which is an additional

unknown variable. This means that averaging the NSE leads to a not closed system
of equations. In general, this is known as the closure problem of turbulence. However,
closure relations are not exact and an empirical modeling is necessary. Many models
exist, anyway they invokes non-rigorous hypotheses and have limited range of use.

A possible alternative to modeling is to solve the three-dimensional, time-dependent
NSE, by direct numerical simulation (DNS). For this study, DNS has been employed;
however, it is worth to keep in mind that DNS are extremely computational expen-
sive and not practicable in most flows of engineering interest.
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2.2.2 Scales of turbulence

Turbulent flows are characterized by coherent flow structures, known as eddies,
which correspond to organized regions of vorticity. The latter is defined as

ω = ∇× u. (2.32)

Richardson’s theory

Base on Richardson [11], turbulence is a superposition of a broad spectrum of
eddy sizes. The largest eddies are created by inertial instabilities of the mean flow
and they contain most of the kinetic energy. These large eddies are in some way
instable and break up due to the effect of inertial forces. In this process the energy
is transferred to smaller eddies, which are instable as well, and consequently their
energy is passed to even smaller eddies. This concept has been called energy cascade
by Richardson. In this process, the large eddy Re is sufficiently high and the viscos-
ity in negligible. Indeed, the cascade is driven only by inertial forces and the energy
is not dissipated, but passed from large to small scales. The cascade stops when the
eddies become so small that their Re is of the order of unity. As a result, viscosity
is not negligible anymore and energy starts to be dissipated. In summary, turbulent
energy is distributed across a wide range of length scales. The largest scales contain
most of this energy, while dissipation is dominated by small scales (see Figure 2.1).

Following the discussion of Davidson [10], we define the Re of largest eddies as

Re =
u · l0
ν

(2.33)

while the Re of smallest eddies is
v · η
ν

∼ 1 (2.34)

l0 and η are, respectively, the length scales of the largest and the smallest structures,
while u and v are, respectively, the velocities of the two scales. ν is the kinematic
viscosity, [m2/s]. The rate at which the energy is passed from the largest scales to
the smaller is

Π =
[energy]

[turnover time]
∼ u2

l0/u
=

u3

l0
(2.35)

In statistically steady condition, Π has to be equal to the rate of dissipation of
energy, that is ϵ ∼ ν(v2/η2). Using this similarity

u3

l0
∼ ν

v2

η2
(2.36)

and the fact that the Re for the smallest scales is of the order of unity, is possible
to find that

η ∼ l0 ·Re−
3
4 , (2.37)

v ∼ u ·Re−
1
4 . (2.38)

η and v are called Kolmogorov microscales of turbulence, while l0 is called the inte-
gral scale. From these equations is possible to understand that the length scales of
the smallest eddies decrease if Re increases. This is why capturing all the eddies in
a flow with high Re with a numerical simulation is so difficult.
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Kolmogorov’s theory

Another great improvement in the understanding of turbulence has been done
thanks to Kolmogorov in 1941 [12]. Following the discussion of [13], Kolmogorov
developed three main hypotheses for turbulent flows with Re ≫ 1:

1. Hypothesis of local isotropy: the directional information is lost at the
smallest scales. It means that for scales l ≪ l0 (where l0 is the integral scale),
the turbulence statistics are isotropic. In this condition, the velocity spectrum
tensor Φij(k) is completely determined by the energy spectrum function E(k).

2. First similar hypothesis: the turbulence statistics for the smallest scales
(l ≪ lEI) are universal and depend only on ν and ϵ. It is possible to define
the scale lEI ∼ l0/6, such that l < lEI is the universal equilibrium region. In
this region, the energy spectral function can be written as

E(k) = ϵ2/3k−5/3Ψ(kη), (2.39)

where Ψ(kη) is the universal Kolmogorov compensated spectrum function.

3. Second similarity hypothesis: for lEI ≫ l ≫ η, the turbulence statistics
depend only on ϵ. It is possible to define lDI , such that lEI > l > lDI is
the inertial subrange and l < lDI is the dissipation subrange. In the inertial
subrange, the energy spectrum function can be written as

E(k) = Cϵ2/3k−5/3, (2.40)

where
C = lim

kη→0
Ψ(kη). (2.41)

Figure 2.1 shows a simple schematic of the wavenumbers related to the different
scales and the regions just discussed, with also the E(k) distribution.

2.2.3 Other parameters of turbulence and Taylor’s hypoth-
esis

Turbulence parameters

In Equation 2.30, is possible to see that when decomposing the parameters of
the NSE into their mean and fluctuating components, and then averaging the equa-
tions, some new and unknown statistical parameters appear: the Reynolds stresses.
These additional stresses lead to an increased momentum transport in turbulent
flows. They are a direct consequence of turbulent fluctuation and can be repre-
sented through a symmetric tensor: the Reynolds stress tensor

τR = −ρ

u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

 . (2.42)

The variables u′, v′ and w′ denote the fluctuating velocity components in the x, y,
and z directions, respectively. In general, τR will be used in this study for analyze
some features of the turbulent flows, for example the isotropy.
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Figure 2.1: Typical energy spectrum for homogeneous isotropic turbulence

Another parameter largely used in this study is the turbulent kinetic energy
(TKE). It has no directional information and characterizes the magnitude of kinetic
energy in the flow related to the turbulence. TKE can be calculated as the integral
on all modes of the energy spectral function or equivalently as half of the Reynolds
stress tensor trace:

TKE =

∫ ∞

0

E(k) dk =
1

2
u′
iu

′
i. (2.43)

TKE can be normalized with the free-stream velocity of the flow U∞, in order to
obtain the turbulence intensity (TI):

TI =

√
2

3

TKE

U2
∞

=

√
1

3

u′
iu

′
i

U2
∞
. (2.44)

As for TKE, TI is used to characterize the magnitude of the turbulent content of
the flow and is usually reported as a percentage.

Taylor’s hypothesis

Another crucial hypothesis extensively utilized in this study is the frozen-turbulence
approximation, also known as Taylor’s hypothesis [14]. Under this hypothesis, is
possible to convert a time signal in a specific point into a spatially coherent signal,
using the convection velocity Uc. This approximation, which assumes a homoge-
neous flow, becomes more accurate as the time it takes for a fluid particle to convect
past a given point becomes much smaller than the characteristic time scale of the
turbulent eddies. Following the discussion of Durbin and Rief [15], for the large
scales, the condition translates to

√
k

Uc

≪ 1, (2.45)
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implying that the turbulence intensity has to be small (k is the turbulent energy).
For small scales, the condition is given by

R
− 1

4
T

√
k

Uc

≪ 1, (2.46)

where RT is the turbulent Reynolds number, defined as

RT ≡ k2

ϵν
. (2.47)

For the smallest scales, the main challenge often lies in the accuracy of the probes
rather than in the validity of the hypothesis.

The turbulence injection process used for the numerical simulations in this study
is based on Taylor’s hypothesis (see Chapter 6).

2.3 Boundary layer

The first who introduced the concept of boundary layer (BL) was L. Prandtl in
1904 [16]. According to him, the flow past a body can be divided in two regions:
a thin layer close to the body, i.e. the boundary layer (also known as the friction
layer), and the remaining region outside. Due to the no-slip condition, the velocity
has to be zero on the surface of the body, thus the velocity gradient near the body
can be high. Therefore, even if a fluid has very small viscosity, the viscous forces
cannot be neglected in the boundary layer, while they can be neglected outside.
This Prandtl’s theory allowed to overcome the strong discrepancy between classical
hydrodynamics and experimental evidence; in fact, it is considered a keystone of
modern fluid mechanics.

Figure 2.2: Boundary layer developing on a flat plate at zero incidence

Figure 2.2 shows the simple case of a boundary layer developing on a flat plate
at zero incidence. U∞ is the velocity outside the BL, while u(x, y) is the velocity
inside. In a more general case, the outer velocity is a function of the x (Ue(x)). It
can be seen that u = 0 on the wall (i.e. y = 0) and it increase along the y-direction.
δ represent the BL thickness, which increase along the x-direction. However, δ is
an artificial concept and usually, for each x-position, δ is arbitrarily set at the point
where the u reach the 99% of U∞.
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The velocity gradient on the wall is particularly important because is directly
proportional to the wall shear stress:

τw = µ

(
∂u

∂y

)
y=0

. (2.48)

The shear stress represent the tangential force generated by the flow on the surface
and can be integrated on the whole wall to determine the friction drag. By using
a reference dynamic pressure, a dimensionless wall shear stress, namely the friction
coefficient, can be obtained:

cf =
τw

1
2
ρ0U2

0

. (2.49)

Following the discussion of Schlichting and Gersten [17], in addition to δ and τw,
other physical quantities useful to describe a BL can be introduced:

• the displacement thickness δ∗, which quantifies the streamline displacement
due to the presence of the BL:

δ∗(x) =

∫ ∞

0

(
1− ρ

ρe

u

Ue

)
dy, (2.50)

where the subscript ”e” refers to quantities outside the BL;

• the momentum thickness θ, which quantifies the drag:

θ(x) =

∫ ∞

0

ρ

ρe

u

Ue

(
1− ρ

ρe

u

Ue

)
dy; (2.51)

• the shape factor H, which describe the state of the BL:

H =
δ∗

θ
, (2.52)

where for H > 2 the BL is laminar while for H < 2 (typically around 1.4) it
is turbulent.

The remaining subsections of this chapter will delve deeper into specific aspects
of boundary layer theory. Firstly, the phenomenon of boundary layer transition
will be explored, including the factors that trigger it and the mechanisms involved.
Secondly, boundary layer separation will be discussed, focusing on its identification
and prediction. Lastly, the universal characteristics of the near-wall region of the
boundary layer will be highlighted, leading to the formulation of the universal law
of the wall.

2.3.1 Laminar-turbulent transition

The interaction between flow and body is strongly affected by the boundary
layer regime. Therefore, predicting and controlling the transition from laminar to
turbulent is of particular interest. In addition to the Reynolds number, the transition
of the BL depends on many parameters, some of the most important are the outer
pressure distribution, the wall roughness and the free-stream TI.

Following the discussion of [17], Figure 2.3 shows the different transition stages
from laminar to turbulent in a simple case with a flat plate at zero incidence:
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Figure 2.3: Sketch of transition in the boundary layer on a flat plate at zero incidence
(reproduced from [17])

1. initially the BL is laminar and stable;

2. the transition is initiated by axisymmetric waves called Tollmien-Schlichting
waves (TS) where the Reynolds number reach a value called indifference
Reynolds number (Reind);

3. the two-dimensional TS waves are unstable and lead to the formation of three-
dimensional waves and vortex;

4. the three-dimensional structures start to decay;

5. this decay leads to the generation of turbulent spots at arbitrary positions;

6. the BL reaches a fully turbulent regime when the Reynold number reaches the
critical value (Recrit).

Looking at the bottom part of the sketch, it is also possible to see that the
BL thickness strongly increases during the transition. Further, the time averaged
velocity profile changes as well (see Figure 2.4).

The velocity gradient on the wall is higher for the turbulent regime; therefore,
the wall shear stress is higher in a turbulent BL compared to a laminar BL, leading
to higher friction drag.

In order to predict the transition of the boundary layer, several theoretical models
have been developed. Usually, in these methods the flow is decomposed into a
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Figure 2.4: Time averaged velocity profiles for laminar and turbulent remise

laminar basic flow and superimposed perturbations, which are much smaller than
the basic flow. The general idea behind the stability theory of laminar flows is that
if the perturbations increase in time, the basic flow is unstable; if the perturbations
decrease in time, the basic flow is stable.

According to [17], two different methods can be used: the energy method and
the method of small disturbance. The first method focuses on the rate of change of
the energy of the perturbation, but it has been proved to be unsuccessful. On the
other hand, the second method focuses only on the perturbations consistent with
the hydrodynamic equations of motion, which progression in time is traced. These
perturbations are modeled by modes which represent waves propagating in the x-
direction. The resulting ordinary differential equation is known as Orr-Sommerfeld
equation.

However, this linear stability theory is not able to predict all the non-linear effect
that contribute to the transition. In the reality, the transition can be triggered in
many different ways and the most common are:

• natural transition, which is the mechanism represented in Figure 2.3 and rep-
resent typically the slowest one;

• bypass transition, where, due to free-stream TI or other disturbances, the first
3 steps of the natural transition are skipped and thus the process is faster;

• separated flow transition, where the large shear stresses generated by velocity
differences in the free shear layer trigger the transition (a free shear layer is a
shear layer that is not adjacent to a boundary);

• forced transition, where the mechanism is artificially accelerated by surface
imperfections or specific devices.

It can also happen that the reverse process occurs, i.e. the flow passes from
turbulent to laminar regime. The process in question is called relaminarization
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and is usually observed in cases of favorable pressure gradients, that is a negative
pressure gradient along the flow direction.

2.3.2 Separation

The boundary layer separation occurs when the flow within it reverses direction.
This phenomenon is common in diverging geometries, when there is an adverse
pressure gradient (that is a positive pressure gradient along the flow direction). The
location where the downwards and upwards moving flows meet is called separation
point. In this point the velocity gradient on the wall is zero, therefore the wall shear
stress is zero as well:

τw = µ

(
∂u

∂y

)
y=0

= 0 (at the separationpoint). (2.53)

The separation leads to a strong thickening of the boundary layer and a flow
mass transported from the wall to the outer flow.

Figure 2.5: Boundary layer separation on a curved surface

Figure 2.5 shows a typical BL separation on a curved surface, where the sepa-
ration point is indicated with S. The dotted line starting from S is the free shear
layer.

In many applications, the separation of the boundary layer is undesirable, since
it is detrimental for the aerodynamic efficiency due to high energy losses. This is
why usually streamwise bodies are preferred over bluff bodies, because they allow
the flow to smoothly pass around.

Another aspect to consider is the regime of the flow: a laminar boundary layer
tends to separate easier than a turbulent one. In the second case, the energizing ac-
tion of the outer flow on the boundary layer is higher. Indeed, although the friction
drag is higher for a turbulent regime, in some cases it is preferred over a lami-
nar one, because the separation point is moved further downstream and sometimes
completely avoided. Furthermore, laminar separation can trigger the separated flow
transition (see Subsection 2.3.1), leading the BL to become turbulent and to reat-
tach to the surface. The resulting recirculation area is also know as separation bubble.

Since the pressure gradient greatly affect the separation, an useful quantity to
predict the phenomenon is the acceleration parameter :

K =
ν

U2

dU

ds
, (2.54)
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where s is the curvilinear coordinate tangential to the surface. Positive values of
K mean that the local velocity is increasing and the pressure gradient is favorable,
while for negative values the local velocity is decreasing and the pressure gradient
is adverse. Therefore, with K < 0 the BL risk of separate, while for K > 0 the risk
is lower. If there is a positive value of K large enough, a separated boundary layer
can reattach, and even experience relaminarization if it was turbulent.

A last consideration about the separation region is its variation in time: a laminar
separation region is usually steady and well-defined in time, while a turbulent one
can behave highly unsteady.

2.3.3 Universal law of the wall

Following the discussion of [17], for large Reynolds number flows, the boundary
layer can be spit in two regions: a large core layer where the molecular momentum
transfer can be neglected compared to the turbulent momentum transfer, and a
thin wall layer where both momentum transfer are considered. Several experiments
show that the velocity distribution inside this wall layer appear to be universal. This
universal law of the wall is usually described using dimensionless quantities called
dimensionless wall units. The reference velocity for wall units is the friction velocity
(or more correctly wall friction velocity)

uτ =

√
τw
ρ
, (2.55)

while the reference length is the wall layer thickness

δv =
ν

uτ

. (2.56)

Consequently there are the dimensionless velocity

u+ =
u

uτ

, (2.57)

and the dimensionless characteristic wall coordinate

y+ =
y

δv
. (2.58)

Therefore, the velocity distribution in the wall layer has the form u+ = f(y+),
however, the equation is not the same in the entire wall layer. In order to find
a formulation for u+(y+), the wall layer can be further subdivided in three more
regions (see Figure 2.6). These regions are:

• the pure viscous sublayer: 0 ≤ y+ < 5;

• the buffer layer: 5 < y+ < 70;

• the overlap layer: y+ > 70.
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Figure 2.6: Velocity distribution in the wall layer

In the pure viscous sublayer is dominated by viscosity and the flow is laminar.
The velocity distribution in this region is

u+ = y+. (2.59)

In the overlap layer, the velocity distribution is given by the logarithmic overlap
law :

u+ =
1

k
ln y+ + C+, (2.60)

where the constant k is called the Karman constant and is equal to 0.41, while C+

is the constant of integration and depends by the wall roughness (e.g. C+ = 5.0 in
a smooth wall).

In the buffer layer, the velocity distribution is given by a combination of the two
adjacent layers.

Lastly, the dimensionless wall coordinates for a general surface can be introduced:

n+ =
n

δv
, s+ =

s

δv
, (2.61)

where n and s are respectively the normal distance from the wall and the tangential
distance along the surface.

2.4 Wake

The relative motion between a body and a fluid flow can generates a wake. The
latter is a complex phenomenon affected by various factor, for example, the geome-
try of the body and the Reynolds number. Usually, the wake is a region with high
vorticity and turbulence, which can have a major impact on the flow field down-
stream the body and also on the forces exchanged between the latter and the flow.
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Indeed, understanding the wake is of fundamental importance in many engineering
applications.

Following the discussion of Kundu and Cohen [18], this section will briefly de-
scribe the flow past a circular cylinder for a wide range of Reynolds numbers (which
is defined Re = U∞d/ν using the free stream velocity and the cylinder diameter).
Since the trailing edge of the turbine blade employed in this study has a circular
shape, similar phenomena are observed between the two geometries.

Figure 2.7: Sketch of a typical von Karman vortex street for a circular cylinder in a
flow with 80 < Re < 200 (reproduced from [18])

For Re < 1, the vorticity generated on the BL by the no-slip condition is simply
diffused and not advected. Then, for Re > 1, the vorticity starts to be confined be-
hind the cylinder due to the increasing advection effect. For Re > 4, two standing
small eddies appear attached behind the cylinder. For Re > 40, the wake becomes
unstable, with slow velocity oscillations that are periodic in time and with the am-
plitude increasing downstream. The resulting unstable wake has two staggered rows
of vortices with opposite sense of rotation. This phenomenon has been investigated
by von Karman, who concluded that wakes with nonstaggered rows of vortices are
unstable, while staggered rows are stable if the ratio of the lateral distance to the
longitudinal distance between the vortices is 0.28. This staggered row of vortices
is known as von Karman vortex street and is a dominantly two-dimensional phe-
nomenon. For Re > 80, the vortex street start to interact with the small eddies
attached behind the cylinder, which start to periodically break off alternately (see
Figure 2.7). This flow regime is characterized by an oscillating lateral force, which
may damage the structure if the natural frequency of the body is close to the vortex
shedding frequency. The latter can be described using the adimensional Strouhal
number :

St ≡ f · d
U∞

, (2.62)

where f is the frequency. For circular cylinders, St is close to 0.21 for a wide
range of Reynolds numbers [18]. For a general geometry, St can be defined using
a characteristic length L instead of d. Furthermore, St is also equal to the ratio of
the Roshko number (Ro) to Re:

St =
Ro

Re
. (2.63)

Following the empirical correlation of Ro for a cylinder [19], St expression becomes:

St = 0.212

(
1− 12.7

Re

)
. (2.64)
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Increasing the Re further leads to a fully turbulent wake; however, the BL re-
mains laminar for Re < 3·105. In this regime flow tends to separate from the surface
and the drag is high due to the asymmetry in the pressure distribution. In fact, the
pressure in the wake is almost constant and lower compared to the free-stream con-
ditions. For a circular cylinder, the critical value of Re is around 3 · 105, thus the
BL over this number tends to becomes turbulent. As discussed in Section 2.3, a
turbulent BL is less prone to separation. As a consequence, the separation point
moves downstream and the drag is decreased. However, the Recr is strongly depen-
dent by the free-stream TI and the roughness of the body surface. Indeed, the value
3 · 105 is related to a low free stream TI and a smooth surface. In general, the wake
depends by the BL regime and the transition may have a beneficial effect on the
flow, especially in situations where the BL is likely to separate.
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Chapter 3

Low pressure turbine features

This chapter provides a range of key concepts for understanding the results of the
high-speed low-pressure turbine presented in this study. The turbine under inves-
tigation is modeled as a linear cascade, composed of SPLEEN airfoils. Firstly, the
geometrical parameters encompassing both the individual SPLEEN airfoil and the
complete cascade are presented. Secondly, the most common parameters related to
the operating conditions and performance of turbine blades and cascades in general
are introduced. Subsequently, a method for evaluating losses in turbomachinery is
briefly discussed, with a particular focus on the possible sources of losses. Lastly, the
importance of boundary layer separation and transition in turbines is highlighted,
as well as the combined effect of the two phenomena and how they can strongly
affect the performance of the turbomachine.

3.1 Geometrical parameters

In the field of cascade design, there are some common parameters used to de-
scribe the geometry. Figure 3.1 shows a schematic of a low pressure turbine cascade
composed of SPLEEN blades with some of these key parameters.

The parameters are:

• c: true chord, which describe the distance between the leading edge (LE) and
the trailing edge (TE) of the blade;

• λ: stagger angle, defined as the angle between the true cord direction and the
axial direction;

• cax: axial chord, which is the projection of the true chord in the streamwise
direction (cax = c · cosλ) and gives a length of reference for the size of the
blade;

• g: pitch, defined as the distance between corresponding points on two adjacent
blades in a cascade;

• α′
1 and α′

2: metal angles respectively for the LE and the TE, defined as the
angle between the streamwise direction and the blade tangent in the point
considered.
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Figure 3.1: Schematic of the geometrical parameters for LPT cascade with SPLEEN
blades

Parameter Unit Value

c [mm] 52.28
λ [°] 24.40
cax [mm] 47.61
g [mm] 32.95
α′
1 [°] 37.30

α′
2 [°] 53.80

Table 3.1: Geometrical parameter of the SPLEEN blade

The geometrical parameter of the SPLEEN blade, which has been used in this
study, are presented in Table 3.1.

Another important geometrical parameter is the throat opening width w, which
is the minimum distance between two adjacent blades and determines the maximum
flow rate through the cascade for a given physical state of flow. For the SPLEEN
blade w = 19.40 mm. Additional geometrical parameters can be derived from the
previous ones, which are the solidity σ = c/g and the camber angle θ = α′

1 + α′
2.

The metal angles are positive if they are like in Figure 3.1.

In general, the direction of the flow can be different from the blade tangents at
the LE and the TE. Therefore, the flow angles can be defined: α1 and α2, which are
the angles between the axial direction and flow velocity at the inlet and the outlet
of the cascade, respectively. The difference between the metal and the flow angles
is called incidence angle at the LE (i = α1 − α′

1) and deviation angle at the TE
(δ = α′

2−α2). Moreover, the difference between the two flow angles is called turning
angle ϵ = α1 − α2 and represent the change of the flow direction induced by the
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blade.
Since the TE of the SPLEEN blade is designed in a circular shape, a last geomet-

rical parameter is its characteristic diameter t, which is 0.87 mm. This parameter is
useful to predict the characteristics of the wake generated by the blade and related
losses.

3.2 Operating conditions parameters

Usually, in order to define the operating conditions of a turbine cascade, four
dimensionless numbers are used: the inlet and outlet flow angles (α1 and α2), the
isentropic Reynolds number at the outlet and the isoentropic Mach number at the
outlet. The last two are defined as:

Mis,out =

√√√√ 2

γ − 1

[(
p0in
pout

) γ−1
γ

− 1

]
, (3.1)

Reis,out =
ρis,outUis,outc

µ (Tout)
. (3.2)

p0in and pout are the total pressure at the inlet and the static pressure at the outlet,
while Reis,out is defined using the outlet isoentropic quantities. Conventionally, to
define the operating conditions of a compressor cascade are used inlet quantities
instead of outlet ones.

The SPLEEN simulation discussed in this study focus only on one of the three
cases analyzed by Deneffe [7], which is the one with Reis,out = 70 · 103 and Mis,out =
0.70. However, the most common way to define the operating conditions in numerical
simulation of turbine cascades is by total temperature and pressure at the inlet
(T 0

in and p0in), flow angle at the inlet (αin) and static pressure at the outlet (pout).
Table 3.2 shows the value related to the SPLEEN operating condition analyzed in
this study.

Quantity Unit Value

T 0
in [K] 300

p0in [Pa] 10779.39
αin [°] 36.3
pout [Pa] 7771.1645

Table 3.2: Operating conditions for the SPLEEN simulation

3.3 Performance parameters

There are several parameters used to describe the performance of a turbine blade.
Probably, the most important are related to the blade loading, which refers to
the work extracted by the blade and how this work is distributed. One of these
parameter is the pressure coefficient :

cp =
p− pout
1
2
ρoutU2

out

. (3.3)
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which gives the pressure distribution on the blade p, using pout as a reference pressure
and the dynamic pressure at the outlet 1

2
ρoutU

2
out to make the parameter dimension-

less. Another way to represent the pressure distribution around the blade is by the
isoentropic Mach number:

Mis =

√√√√ 2

γ − 1

[(
p0in
p

) γ−1
γ

− 1

]
. (3.4)

In addition to the pressure acting in the normal direction of the surface, the flow
exerts aerodynamic forces on the blade also in the tangential direction. These forces
are described by the wall shear stress τw (see Equation 2.48) or, more commonly, by
the skin-friction coefficient:

cf =
τw

1
2
ρoutU2

out

(3.5)

where τw is made dimensionless using the dynamic pressure at the outlet. This
parameter is useful to calculate the aerodynamic friction, but also to find any sep-
aration point (see Subsection 2.3.2).

Since the blades have an optimal inlet flow angle, another performance parameter
is the average outflow angle. Indeed the inlet flow angle of a cascade is determined
by the outflow angle of the previous one. A deviation from the design value of the
angle can be highly detrimental for the turbine.

Probably, the most important performance parameter for gas turbine engines
is the efficiency. The latter is used to quantifies the portion of energy extracted
respect to the maximum available:

ηt =
hin − hout

hin − his,out

, (3.6)

where h is the enthalpy.
Lastly a loss coefficient can be defined. Several of them exists, but probably the

most common is the total pressure loss coefficient, defined by

ζ =
p0in − p0out
p0out − pout

. (3.7)

3.4 Sources of losses

Following the discussion of Denton [20], one effective method of measuring losses
in an adiabatic machine is through entropy creation. This method is particularly
convenient because entropy generation does not depends on the reference of frame.
Using the perfect gas hypothesis, the entropy variation can be written as

∆s = s− sref = cp ln
T

Tref

−R ln
p

pref
, (3.8)

where cp is the specific heat capacities with constant pressure. Since the change
from static to total condition is isentropic, Equation 3.8 can be written using also
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total temperature and pressure. In addition, in an adiabatic machine, the total
temperature is constant and the equation becomes

∆s = s2 − s1 = −R ln
p02
p01
. (3.9)

For small total pressure changes, the equation is

∆s ≈ −R
∆p0

p0
, (3.10)

therefore the entropy generation is directly linked to the total pressure loss. Fur-
thermore, the efficiency can be also closely obtained from entropy creation by

ηt ≈
h1 − h2

h1 − h2 + T2∆s
. (3.11)

According to [20], the main sources of entropy in turbomachines are: viscous
effects in boundary layers, viscous effects in mixing processes, shock waves and heat
transfer across temperature differences.

Regarding the boundary layer, most of the entropy is concentrated near the
surface in the inner part of the layer, where the velocity changes are larger. More
details about the formulation is given by [20] in function of Reθ. In general, in range
of Reθ where the BL can be both laminar or turbulent, the entropy is larger in the
turbulent case. On the other hand, the effect of the Mach number on this type of
loss is generally considered to be small.

However, entropy generation due to viscous effects is not confined to boundary
layers, but is associated with any shear rate within the flow field. Other regions with
significant shear rates include turbulent regions, such as the edges of separation zones
and wakes. Regarding the latter, [20] proposes a correlation for the total pressure
loss coefficient:

ζ =
∆p0

1
2
ρTEU2

TE

= −cpbt

w
+

2θ

w
+

(
δ∗ + t

w

)2

(3.12)

Still, this model does not account for the detailed mixing process, including the
unsteady nature of the Karman vortex street and the entropy generation due to
viscous dissipation of vortices. w and t are respectively the throat opening and
the TE thickness (see Section 3.1) while δ∗ and θ are respectively the displacement
thickness and the momentum thickness (see Section 2.3) at the TE. Cpb is called the
base pressure coefficient and is a dimensionless parameter linked to the pressure in
the base region pb:

cpb =
pb − pref
1
2
ρrefU2

ref

. (3.13)

The base region is the low pressure region just downstream the TE. Indeed, the first
term of the Equation 3.12 refers to the wake losses linked to the low base pressure.
On the other hand, the second term refers to the losses created by the mixing out
of the BL; in fact, it is related to the momentum thickness of the BL at the trailing
edge. Lastly, the third term refers to the mixing in the wake and usually it is smaller
than the others.
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If the BL separated before the TE, it could fail to reattach and an open separation
occurs. In this case there is an extra loss to take into account:

ζsep =
δ∗2 + 2tδ∗

w2
. (3.14)

Therefore, a large open separation leads to high losses in the cascade.

Shock waves are also a source of entropy due to their inherent irreversibility.
However, this phenomenon will not be discussed further as it is not observed in any
of the simulations presented in this study.

Lastly, the entropy can be also generated by heat transfer. Usually, this phe-
nomenon is negligible in turbomachines, except for cooled turbines. Since this study
is not the case, this last source of entropy will not be discussed further as well.

3.5 Separation and transition

As discussed in the previous section, flow separation is one of the main threats
to LPT performance. In low Reynolds number regimes, the flow has a tendency to
remain laminar and thus to separate before it becomes turbulent. In this condition,
the flow may not reattach, leading to large losses. As a consequence, it is important
to understand the role of BL transition when dealing with LPT.

Figure 3.2: Different modes of boundary layer transition related to Tu, K and Reθ
(reproduced from [21])

Following the discussion of Mayle [21], the BL transition mode can be predicted
using the turbulent intensity Tu, the acceleration parameter K (see Equation 2.54)
and the momentum thickness Reynolds number Reθ = (Uθ/ν). Figure 3.2 shows
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how these parameters are related to the different transition modes (these last are
described in Subsection 2.3.1). The iso-Tu curves represent the Reθ at which the
transition begins, for a given Tu and K. The stability criterion curve represents
the limit above which a Tollmien-Schlichting type of instability is possible, while
the separation criterion curve represents the limit above which a laminar BL sep-
arates and a separated-flow transition is possible. According to Thwaites [22], the
separation criterion is given by

Re2θK = −0.082; (3.15)

however, it does not consider the effect of Tu.

In the figure is not shown the periodic-unsteady transition, where the transition
is triggered by the periodic passing of wakes or shock waves generated from the TEs
of the upstream cascade. This type of transition is less known, also it can occur
in multiple modes and on multiple locations of the same surface at the same time.
Indeed, it is also known as multimoded transition.

Another transition type that is not shown in Figure 3.2 is the reverse transition,
i.e. from turbulent to laminar. This phenomena can occur when Tu is low and
K > 3 · 10−6 [21]. Flow regimes with high K can be encountered on LPT blades
on the suction side (SS) near the LE and on the pressure side (PS) near the LE.
Moreover, normal transition from laminar to turbulent cannot occur if K > 3 ·10−6.

The natural and bypass transitions modes have been already presented in Sub-
section 2.3.1, following the discussion of Schlichting and Gersten [17]. Regarding
the separated-flow transition, further studies have been done by Hatman and Wang
[23], which identifies three main separated-flow transition modes: transitional sep-
aration mode, laminar separation/short bubble mode and laminar separation/long
bubble mode (see Figure 3.3).

There is a succession of intermediate stages between these modes that allows for
a continuous process when passing from one mode to the other. In general, these
types of transition take place with both Tollmien-Schlichting instability and Kelvin-
Helmhottz (KH) instability. The former type has been described in Subsection 2.3.1,
while the latter verifies with a separated BL and the low-speed flow near the wall.

Following the discussion of [23], the transitional separation mode is related to
high Re flows and low adverse pressure gradients. In this case, the onset of transition
xt is upstream the separation point xs. Between this two points, TS waves develop
and evolves, while downstream xs KH instability also sets in. For this mode, the
maximum displacement location of the separation bubble xMD coincides with the
midtransition point xu′max. Then, the increase in turbulent mixing leads to the
reattachment of the BL in xR. The end of transition and a fully turbulent BL take
place in xT , usually just downstream of xR.

Regarding the laminar separation, for both short and long bubble modes, the
onset on transition is induced downstream xS by KS instability close to the maxi-
mum displacement point. The short bubble verifies in moderate Re flows with mild
adverse pressure gradients, while the long bubble is typical encountered with low Re
flows and strong adverse pressure gradients. In the first case, the pressure gradient
is not strong enough and the high turbulent mixing in the region of xu′max leads to
reattachment before the BL becomes fully turbulent. In the second case, the mixing
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Figure 3.3: Time-averaged representation of different flow-separated transitional
modes (reproduced from [23]): transitional separation mode (top), laminar sep-
aration/short bubble mode (center) and laminar separation/long bubble mode
(bottom)

in xu′max leads to the first reattachment point XR1. However the shear layer fails
to remain attached and the short bubble bursts into a long bubble. Then the BL
becomes fully turbulent and reattaches. Differently from short bubbles, which only
have a local displacement effect, long bubble can heavily affect the pressure distri-
bution along the blade (see [21]). Furthermore, if the adverse pressure gradient is
strong enough or the Re is very low, the bubble may never close, causing large losses.
Usually, in LPT cascades, the flow tends to separate on the PS near the LE, but it
rapidly reattach due to favorable pressure gradient present downstream. Contrary
to this behavior, in the SS the flow tends to separate near the TE, potentially caus-
ing a drastic drop in the performance of the cascade. Further investigation of the
separation, transition and reattachment on the SS of blade in turbomachines has
been done by Lou and Hourmouziadis [24].

Figure 3.4 shows the evolution of the loss coefficient ζ with Re for a LPT cascade.
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Figure 3.4: Qualitative effect of Re on the performance of a LPT cascade (repro-
duced from [24])

According to [24], when Re is high (a), a turbulent separation occurs near the
TE, leading to mixing losses, in addition to wall shear stress losses. Decreasing
Re, the turbulent separation disappears (b) and losses decrease as well. For even
lower Re, the transition moves downstream and a laminar separation occurs on the
SS (c). However, the turbulent shear layer reattaches before the TE. If the Re
decreases further, the transition shifts further downstream and the turbulent shear
layer cannot reattach (d), leading to a step increase of losses due to the mixing out
of the separation in the wake. In this region, the transition point moves downstream
as the Re decreases, until it reaches the TE plane (e). With lower Re, the loss grows
due to increased thickness of the free shear layer.
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Chapter 4

SPLEEN cascade experimental
background

Within the SPLEEN project [25], the von Karman Institute for Fluid Dynamics
(VKI) [26] has made a fundamental contribution in creating a unique experimental
database in the context of high-speed low-pressure turbine cascades. This data
provides a very important step for the development of new generation compact high-
efficiency LPT. An open-access experimental database, containing data collected
from 2018 to 2022 by the VKI and related to this context, can be consulted at
[1]. The experimental campaign was conducted on the linear cascade codnamed
SPLEEN C1, in the VKI high-speed wind tunnel S1/C. Measurements were taken
under both on-design and off-design conditions, in order to observe and investigate
in more depth the phenomena resulting from a wide range of operating conditions.

The following parts of this chapter contain a brief description of the VKI S1/C
facility and a discussion of the physic behind the turbulence generation in the wind
tunnel.

4.1 Experimental environment

The concepts presented in this section are entirely based on the work of Simonassi
et al. [27, 28]. Readers are encouraged to consult these references for a more in-depth
discussion.

Figure 4.1: VKI S1/C wind tunnel (taken from [27])

Figure 4.1 shows a schematic of the VKI facility. The S1/C is a closed-loop
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wind tunnel, where the flow is moved by a 615 kW, 13-stages axial flow compressor.
The layout is specifically designed for linear turbine cascades testing. Indeed, the
test section is located in the elbow of the tunnel, in order to easily handle the large
deviation of the flow induced by the cascade. Moreover, the vacuum pump and the
compressor rotation speed can be regulated independently, to change the Reynolds
number and the Mach number respectively. Typically, the Reynolds number can be
controlled in a range from 2× 104 to 3× 105, while the range for the Mach number
is from 0.6 to 1.2. This allows the simulation of a broad spectrum of operating
conditions.

Figure 4.2: VKI S1/C wind tunnel (taken from [27])

Figure 4.2 shows the schematic planar view of the test section, including the
measurement devices used. The linear cascade is composed by a total of 23 airfoils,
which only the central blade is equipped with sensor. This central blade can slide
along the spanwise direction, in order to measure a more complete distributions of
quantities of interest. Other several devices can be notices from the schematic:

• a turbulence grid placed upstream of the cascade, designed to obtain a TI of
around 2.5% at the blade (the back ground TI generated in the wind tunnel
is of approximately 0.9%);

• a boundary layer lip, which prevents the boundary layer developed upstream
to reach the cascade;

• a wake generator (WG) composed of 96 cylindrical rotating bars, which di-
ameters and rotating speed are adjustable to simulate a desired situation of
upstream turbine stage;
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• a cavity just upstream the cascade, which can simulate a purge/leakge flow.

The last two elements are optional, allowing different flow setups. The configurations
envisaged for the experimental campaign are:

• without both WG and cavity flow;

• with WG and without cavity flow;

• with both WG and cavity flow.

The results of the SPLEEN blade in this study refer to the first configuration.

4.2 Free-stream turbulence generation

When dealing with experimental simulations of a typical turbomachinery flow
field, the generation of turbulence can be fundamental. One of the simplest ways
of doing that in wind tunnels is using a grid placed normal to a uniform upstream
flow. Following the discussion of Roach [29], this method leads to the generation of
turbulence characterized by a fairly good homogeneity and isotropy. The device also
causes a pressure drop, which is found to be directly proportional to the turbulence
energy generated. Further considerations can be made about the flow just down-
stream the grid, which is strongly inhomogeneous, due to initially isolated bar wakes.
These wakes grow in size and eventually coalesce, leading to a homogeneous flow ten
mesh lengths downstream of the grid. Indeed, usually the experimental setups take
this length into account. Moreover, examinations have shown that for grid solidity
σ greater than 0.5, significant flow instability could occur. As a consequence, grids
with σ > 0.5 are not recommended.

Several methods available from the literature try to determinate the character-
istics of the turbulence downstream the grid. According to [29], the semi-empirical
power law introduced by Frenkiel [30] gives a prediction of turbulence energy decay
in good accordance with experimental evidence, without the necessity to estimate
the grid pressure loss. The law is

Tu = C
(x
d

)−5/7

, (4.1)

where Tu is the streamwise component of the TI, C is a function of grid geometry, x
is the distance upstream of the grid and d is the representative grid dimension. [29]
also introduced a semi-empirical power law to predict the evolution of the integral
length scales. The expression for the evolution of the streamwise component of the
integral scale is given by

Λx

d
= I

(x
d

)1/2

, (4.2)

where I is an empirical constant.

Regarding the VKI S1/C wind tunnel, the turbulence is generated through a
σ = 0.25 grid, made up of thin cylindrical rods with d = 3 mm. In order to have
a TI of approximately 2.5% on the cascade, the grid is placed 400 mm upstream to
the LE of the blade. Using Equation 4.1 and Equation 4.2, and considering that for
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Parameter Unit
Predicted
(blade LE)

Measured
(plane 02)

Tu [%] 2.43 2.34
Λx [mm] 6.93 12.05

Table 4.1: Turbulence parameters predicted with semi-empirical law and measured
experimentally with hot-wire probes

grid with parallel and round bars (C = 0.8 and I = 0.2), is possible to predict both
Tu and Λx.

Table 4.1 shows the value predicted for Tu and Λx with the semi-empirical laws
and also the same parameters measured with hot-wire probes at plane 02 of the
S1/C. Plane 02 is just upstream the LE of the blade, so is reasonable to think that
the Tu on the LE of the blade is slightly lower than the measured value, while the
Λx is slightly higher. Although the difference between experiment and prediction,
the TI magnitude is still satisfying. For Λx, the discrepancy between the two cases is
more pronounced. However, it is important to note that both the semi-empirical law
and the experimental measurements rely on a number of assumptions. Therefore,
the observed difference may not be entirely unexpected.

The turbulence injection for all the numerical simulations presented in this study
employs the fluctuations generated and utilized by Deneffe [7], which aimed to repli-
cate the experimental turbulence intensity level at the LE of the blade, using the
value reported in Table 4.1 (see Chapter 6).
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Numerical methods and tools

This chapter will briefly discuss the numerical and computational tools used to
obtain the results presented in this master’s thesis.

It is possible to predict fluid flows using computing resources, through Compu-
tational Fluid Dynamics. CFD simulations are a powerful tool for fluid dynamics
analysis. Compared to experiments, CFD simulations offer the advantage of being
able to simulate and analyze flow properties in situations that would be impossible
or very difficult to replicate experimentally. Additionally, CFD simulations avoid
the disturbances that physical probes can introduce into the flow.

To solve a fluid flow through the CFD it is necessary to discretize the Navier
Stokes Equations (NSE), which can be done in many ways, with the most common
being Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES),
and Direct Numerical Simulation (DNS). RANS models the effects of turbulence by
solving averaged equations, while LES resolves the large turbulent structures and
models the smaller scales. DNS, on the other hand, resolves all turbulent scales
(see Figure 5.1). Moving from RANS to DNS, there is a decrease in the amount
of modeling required, but an increase in computational cost, which scales with the
Reynolds number. Since the size of the smallest turbulent eddies (Kolmogorov scale)
is inversely proportional to Re3/4 (see Subsection 2.2.2), the computational cost of
a DNS simulation increases with the Reynolds. More precisely, the computational
cost is estimated to be proportional to Re3 for homogeneous turbulence and even
more for inhomogeneous cases [31].

In this master’s thesis, a DNS approach is employed, which allows the resolution
of all turbulent scales and leads to greater accuracy. While the simulations per-
taining to the free domain may be considered DNS, those concerning the turbine
cascade do not strictly adhere to the DNS criteria. This deviation stems from the
prohibitive computational cost associated with achieving the requisite wall resolu-
tion for a true DNS in such complex geometries. Nonetheless, the term is retained
herein due to the high resolution employed, which captures a significant portion of
the turbulent scales. To address the high computational cost associated with DNS,
high-performance computing resources are used. Thanks to technological advance-
ments, supercomputers are becoming increasingly powerful, capable of solving com-
plex problems. To further manage computational costs, the computational domain
is divided into multiple partitions that are solved in parallel, with each partition
assigned to one or more computational cores (CPUs).
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Figure 5.1: A visual comparison of the fundamental properties of different CFD
methods

The simulations presented in this master’s thesis were performed on NIC5 and
Lucia supercomputers, which will be discussed in detail later in this chapter. NIC5
was employed to solve the free domain simulations, while Lucia was employed for the
turbine ones. In both cases, the solver used is ArgoDG. The latter implements the
Discontinuous Galerkin Method, which among its various features has the advantage
of facilitating parallelization due to its discontinuous nature. The main features of
the numerical method and the numerical solver will also be presented in the following
sections.

5.1 HPC

NIC5 and Lucia supercomputers are high-performance computing (HPC) clus-
ters, the first one is hosted at the University of Liège in Belgium while the second
one is managed by a private non-profit applied research senter called Cenaero [32].
They are part of the CÉCI (Consortium des Équipements de Calcul Intensif ) infras-
tructure [33], that was born in November 9th 2010, by the signature of the Rectors
of five French-speaking universities in Belgium, and now provides computational re-
sources to researches across the country, thanks to the support of the Fond national
de la recherche scientifique (FNRS) and the Walloon Region. The computational
resources involved are 6 clusters and, except for Lucia [34], five of them are hosted
by different Belgian universities (like NIC5).

5.1.1 NIC5

NIC5 consists of 4672 cores spread across 73 compute nodes with two 32 cores
AMD Epyc Rome 7542 CPUs at 2.9 GHz. The default partition holds 70 of 73 nodes,
with 256 GB of RAM each and thus 3.9 GB per core. However, there are also 3 nodes
with 1 TB of RAM for memory-intensive tasks. All the nodes are interconnected
using a high-speed network (100 Gbps Infiniband HDR), crucial for parallel compu-
tations. NIC5 is also backed by a high-performance parallel file system, providing
fast access to large datasets of 520 TB.
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Furthermore, the scheduling of jobs on NIC5 is managed by a Slurm Workload
Manager. In order to queue and run the jobs, it is necessary to write a submission
script describing the needed resources and the desired operations. For instance, it
contains the computational time, the number of tasks, the number of CPUs per
task and the memory per CPU. During this study, regarding the simulations run
on NIC5, were used 64 tasks per simulation (one per partition), with one CPU per
task and a memory per CPU that was chosen according to the specific case.

5.1.2 Lucia

Lucia comprises three distinct partitions: a 300-node CPU partition, a 50-node
GPU partition, and a 14-node heterogeneous partition for specialized workloads.
Regarding the CPU partition, each node is equipped with two 64-core AMD EPYC
7763 processors operating at 2.45 GHz, while for the GPU partition, each node
features two 32-core AMD EPYC 7513 processors running at 2.6 GHz and four
NVIDIA A100 40GB GPUs. Both CPU and GPU nodes boast 256GM of RAM.
Of the other 14 nodes, 7 are large memory nodes, 1 is extra-large memory, 2 are
for AI workflows and 4 are for visualization. All partitions are integrated through
an HDR InfiniBand network and a 10Gb/s Ethernet network, ensuring high-speed
communication between nodes and resources. With a combined peak performance
of approximately 4 PetaFLOPS, Lucia was ranked 245th on the November 2022
Top500 List. Lucia leverages the IBM Spectrum Scale file system (formerly GPFS)
for storage, providing a robust and scalable solution. The system includes 2.87 PB of
standard disk space, further divided into 200TB for user home directories, 1.5PB for
project data, and 1PB for temporary scratch space. A robust backup system based
on IBM Spectrum Protect safeguards user data in the home and project directories.

Similar to NIC5, the scheduling of jobs on Lucia is managed by a Slurm Work-
load, with the difference that the nodes on Lucia cannot be shared with different
jobs and the number of nodes desired for each job has to be specified in the slurm
file. During this study, simulations run on Lucia have requested 16 nodes, and were
used 512 tasks (one per partition) with 4 CPUs per task.

5.2 DGM

Among the various methods developed to approximate the solutions of systems
of partial differential equations, two are the most well-known: the finite element
method (FEM) and the finite volume method (FVM). In both methods, the compu-
tational domain is split in small parts, called control volumes in FVM and elements
in FEM. In each part a discrete set of variables is computed through a correspond-
ing number of equation properly defined, and then used for the interpolation of
the approximated solution. The precision of this solution depends on the elements
size (i.e., the resolution of the mesh), and on the order of convergence (i.e., the
evolution of the error with the typical mesh size). The FEM is based on piecewise
polynomial approximations and is primarily applied to elliptic and parabolic (i.e.,
diffusive) problems. This method is particularly well-suited for cases where the so-
lution is sufficiently regular. On the other hand, in the case of solutions with strong
gradients or discontinuities, such as compressible flows, the approximation made by
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FEM methods typically suffers from the Gibbs phenomenon, that consists of non-
physical oscillations called spurious oscillations. Although stabilization techniques
exist, the difficulties in applying them to the solution of compressible flows com-
monly lead to the resolution of these flows using FVM. This second type of method
typically involves a piecewise constant approximation, with communication between
elements through fluxes. Since the reconstruction of the solution is discontinuous
at the interface between elements, FVM allows for easier management of solution
discontinuities, such as shock waves. In fact, these methods are the most used in the
case of convective or hyperbolic problems. The main drawback of these schemes is
that they usually have a low-order of accuracy, and the construction of a high-order
FVM is conditioned by the presence of various obstacles.

With the aim of combining the advantages of the previous two methods, the
Discontinuous Galerkin Method is introduced [35]. This method allows high-order
accurate scheme through the approximation of the solution obtained using piecewise
polynomial functions over a finite element mesh without any requirement on interele-
ment continuity (see Figure 5.2). The use of high-order polynomials to approximate
the solution, together with the discontinuous nature of this approximation, allows
for an excellent combination of accuracy and flexibility of the method. Since DGM
allows for communication between elements through fluxes as in FVM, the manage-
ment of the convective contributions of the solution over time can be easily handled
through upwind flux techniques. The same cannot be said for diffusive contribu-
tions, for which stabilization techniques are necessary. The solver ArgoDG uses
the symmetric interior penalty discontinuous Galerkin (SIPDG) method by default,
which consists in evaluating the jumps between elements (called penalties) aiming
to the best-fitted solution with the smallest penalties possible, in order to avoid too
large discontinuities at the interfaces between elements.

Figure 5.2: Example of the discontinuous trial space of the DGM (taken from [36])
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5.3 ArgoDG

ArgoDG is a three-dimensional solver developed at Cenaero (see [36] and [37]).
In the past years, it has been employed in several European programs, such as
ADIGMA, IDIHOM, Tilda and HiFiTurb. The simulation is controlled through an
input file where all simulation parameters are specified, such as the computational
mesh, boundary conditions, fluid properties, initial conditions, reference frame, non-
linear solver, order of accuracy, stabilization method, Jacobian matrix computation
method, and many others. In this work, the meshes were generated using the soft-
ware GMSH, which produces files that Argo can read and, if applicable, can assign
periodic boundary conditions defined during mesh generation.

Furthermore, the desired output must also be defined in the input file. For
example, it is possible to save specific solution parameters extracted from regions of
interest within the domain, such as the entire domain, interfaces, or specific points
and sections. Values can be extracted for a specific point and instant or averaged
over time and/or space. The generated output files can be in the form of numerical
data sets for easy post-processing, or they can be used to visualize the fluid flow
field through ParaView for example.
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Turbulence injection

This chapter introduces the concept of turbulence injection, which involves the
creation and utilization of flow data necessary for the numerical simulation of tur-
bulent inflow conditions. The various methods employed for turbulence injection
will be reviewed, highlighting their strengths and weaknesses. Subsequently, the
specific method adopted in this study will be detailed, including a description of the
simulation used to generate turbulent fluctuations and the criteria used to process
these data for application to the main flow simulation.

6.1 Review of existing turbulence injection meth-

ods

Generating turbulent inflow demands a time series that encompasses all the
length and time scales resolved by the simulation at the inlet boundary. This sec-
tion reviews existing methods for generating such turbulent inflow conditions in
numerical simulations. Following the discussion of Hao et al. [38], these methods
can be categorized into four groups:

1. transition-inducting methods;

2. turbulence library-based methods;

3. recycling-rescaling methods;

4. synthetic inflow generators.

It is also possible to identify a recent type of method based on machine learning and
deep learning techniques.

6.1.1 Transition-inducting methods

Differently from other types of method, this one does not aim to generate fully
developed turbulence, but aims to trigger the transition from laminar to turbulent
flow in the numerical simulation. These methods are based on the introduction of
controlled disturbance in the flow, e.g. acoustic waves or localized perturbations, in
order to mimic the natural mechanism of transition.

Although the implementation of this family of methods is relatively straightfor-
ward, the range of applicability is limited. They also typically require a large space
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to achieve fully developed turbulence. In addition, the injection of disturbance can
lead to spurious effects if not well controlled, and acoustic effects that are not always
of interest.

6.1.2 Turbulence library-based methods

In this type of methods, a realistic turbulent flow is extracted from a database
of snapshots or an auxiliary simulation, and then injected in the main simulation.
In these cases, the injected flow is already describing a physical solution, therefore a
”high-quality” turbulent flow field can be obtained with minor approximations (e.g.,
Taylor’s hypothesis). Furthermore, the auxiliary simulation parameters can be set
in order to have a specific length scale and TI.

Nevertheless, if the injection data are not already available, the generation of
the database or the use of an auxiliary simulation is associated with a high compu-
tational cost, especially if the Reynolds number is large. Also, the need to storage
the data must be taken into account, as well as the need to read and process them
in a way that does not affect the global performance of the simulation. Lastly, a
temporal correlation can be observed because of the finite length of the database.

The turbulence injection method used in this study belongs to the family of
methods just discussed. Specifically, the injection data was generated using an
auxiliary simulation (precursor method). More details about the latter are discussed
in Section 6.2.

6.1.3 Recycling-rescaling methods

In these methods, the flow information related to a downstream position in
the main domain is recycled as inflow condition for the same domain. In other
words, the flow imposed at the inlet is extracted from a downstream location. This
continuous process leads to an asymptotic configuration in which the turbulence is
fully developed. The main advantage over library-based methods is the feedback
of the inflow from the main domain itself. Following the discussion of Wu [39], the
recycling methods can be classified into two further types:

• strong recycling methods;

• weak recycling methods,

In the first sub-category, the strict periodic condition is applied between the down-
stream and the upstream positions. In the second type, the extracted data are
rescaled, in order to satisfy the desired statistics of the flow at the inlet. Rescaling
is necessary, for example, when dealing with a spatially developing boundary layer
[40, 41, 42].

In general, an important drawback of these methods is their limited range of ap-
plicability to simple configurations. Furthermore, due to the finite distance between
the extraction position and the inlet, this type of methods imposes a strong spatial
correlation.
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6.1.4 Synthetic inflow generators

Following the discussion of Dhamankar et al. [43], this type of methods aims
to reconstruct a turbulent velocity field, using analytical expression or statistical
techniques. These methods can be potentially used in a wide range of turbulent
flow conditions and the turbulence can be generated in order to have specific prop-
erties (i.e., length scale, TI, Reynolds stress tensor...). Furthermore, differently from
library-based methods, the computational cost and the need of storage capability
associated to an auxiliary simulation is avoided. An ideal synthetic method should
be able to generate a realistic turbulent flow for every situation. However, the re-
sulting turbulence does not solve the NSE at the inlet and thus is not perfectly
realistic, even though it fulfills a series of statistics. This type of methods requires
a certain development distance, called development fetch [44, 45]. Usually, the first-
order statistics are met immediately, while the higher-order statistics are met further
downstream. The need for this development fetch is handles by an extension of the
domain, which leads to an increase in the computational cost of the simulation.
Consequently, the distance of adaptation is a good indicator of the performance of
a synthetic method. An example of a synthetic method with favorable results is the
turbulent inflow data generator based on a digital filter developed by Klein et al.
[46].

Several methods belonging to this category exist, and a brief review can be found
in [38, 43].

6.1.5 Machine learning and deep learning techniques

The methods using these techniques have been developed recently, with the aim
to take advantage of the increasing power of artificial intelligence to generate high-
fidelity turbulence. These methods are trained with large experimental or numerical
databases of turbulent flows, in order to predict new artificial flow fields and poten-
tially generate realistic turbulent inflow conditions.

An example of method belonging to this family has been developed by Fukami
et al. [47], which used a neural network to generate time-dependent turbulent inflow
data, in the case of a channel flow. Another method has been developed by Kim
and Lee [48] on a similar test case, which has been able to reproduce flow fields at
various Reynolds numbers.

6.2 Turbulence injection procedure

The turbulent inflow data that have been used for this study have been generated
by Deneffe [7], who followed the procedure presented by Rasquin et al. [49]. The
procedure consist in using a precursor simulation to realize a turbulent free-stream
flow with zero mean velocity and then combine the resulting velocity fluctuations
u′ with the inlet mean flow U in of the main simulation. In the specific case of this
study, also the static pressure fluctuations p′ and the temperature fluctuations T ′

have been used. This turbulence injection method falls into the turbulence library-
based methods (see Subsection 6.1.2). The method can be performed under two
main hypotheses:

• Taylor’s hypothesis (see Subsection 2.2.3), and
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• spatially homogeneity of the flow field (even in the flow direction).

With the first hypothesis, the non-linear interaction between the mean inlet flow and
the velocity fluctuation can be neglected, so that the resulting turbulent injected
velocity field is U in + u′.

The following subsections will briefly discuss about the features of the precursor
simulation and the final realization of the turbulent inflow data. More details can
be found in [7].

6.2.1 Setup and execution of the precursor simulation

The precursor simulation employed in this study is the canonical case of homo-
geneous isotropic turbulence decay, simulated in a triply periodic cubic domain [9],
with a characteristic length of L = 4.11875 mm (Figure 6.1). The precursor domain
mesh, generated using GMSH, consists of 16 elements in each direction. This ele-
ment number was chosen as a trade off between computational cost of the precursor
simulation and the resolution required to simulate the DHIT.

Figure 6.1: Precursor domain mesh, 3-dimensional view

The precursor simulation was performed using the DGM solver implemented on
ArgoDG, with a polynomial spatial discretization of order p = 3. Assuming in-
compressible turbulent fluctuations at the inlet of the main simulation, the initial
conditions involved imposing an incompressible velocity field with zero mean in the
cube, following the methodology outlined by Rogallo [50]. The energy spectrum
of the field was given by Passot and Pouquet [51]. By considering the dimensions
of the precursor domain and adjusting the amplitude and spectral width of this
spectrum, specific initial turbulent kinetic energy and integral length scales could
be obtained. Additional initial conditions included uniform total temperature and
total pressure, consistent with the inlet conditions of the main simulation. Further
details regarding the precursor simulation setup can be found in [7].

The evolution of TKE within the precursor simulation is monitored to determine
the optimal time at which to extract the turbulent fluctuations. The goal is to repli-
cate the experimental conditions reported in Chapter 4, specifically the Tu = 2.34%
at a distance 0.5 × cax upstream of the LE of the blade (Table 4.1). However, due
to the significant discrepancy between the experimentally measured integral length
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scale and that obtainable from the precursor simulation (approximately 1 mm), a
different turbulent decay is expected. Specifically, a more rapid decay is anticipated
in the numerical simulation compared to the experimental data. Consequently, the
target value of Tu equal to 2.2% is set on the LE fo the blade, based on the measured
value at plane 02 (2.34%).

Given the Tutarget, it is possible to estimate the Tuextraction using the DHIT mon-
itored from the precursor simulation. Knowing ttarget (which is the temporal instant
corresponding to Tutarget), it is possible to calculate textraction, estimating the time
it takes the turbulent fluctuations to reach the blade from the inlet. The temporal
delay between textraction and ttarget was calculated knowing the distance of the blade
from the inlet (0.75 × cax) and the streamwise component of the mean velocity at
the inlet. The resulting value is ∆t = 3.0759 ·10−4 s, therefore Tuextraction = 5.214%.
More details about the estimation of Tuextraction can be found in [7].

6.2.2 Duplication, transformation, concatenation and blend-
ing of the precursor solution field

The idea is to inject turbulence into the main domain continuously, using the
fluctuations extracted from a much smaller precursor domain. Due to the limited
size of the triply periodic cube, a solution could be to use several copies of the turbu-
lent field. Using the same flow field in this way would have a very high correlation in
the streamwise direction, which is considered as much more detrimental than in the
pitchwise and spanwise directions. To overcome this problem, a procedure inspired
by Xiong et al. [52] and Larsson [53] has been adopted. This procedure consists in
using a concatenation along the streamwise direction of different pseudo-realizations
of the precursor domain, obtained through translations and rotations on the origi-
nal cube. To avoid discontinuities at the interfaces between the pseudo-realizations,
the concatenation is implemented by a blending technique. In this way a smooth
turbulent flow field is obtained along the streamwise direction. Lastly, to solve some
undesired compressibility artifacts typically introduced by the blending, a projection
of the velocity field on a divergence-free space is performed.

The blended turbulence box generated by [7] and used in this study, is obtained
by merging 24 pseudo-realizations of the initially extracted flow field, with a blending
length of nearly 20% of the total size of the box. The resulting domain retains
periodicity in all the direction.
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Chapter 7

Free domain simulations

This chapter focuses on the effect of various simulation parameters on the proper-
ties of freely decaying turbulence. The parametric study in question was conducted
through a series of simulations performed in a free domain. Firstly, the details re-
garding the numerical simulation setup will be presented. Secondly, the results of
the various cases will be compared and discussed, in order to evaluate the impact of
the simulation parameters.

7.1 Computational setup

The parametric study was conducted through several simulations, each with
different characteristics. Initially, a baseline simulation was established, i.e. the
baseline case. Subsequently, the effects of various parameters were investigated:

• Reynolds number and Mach number;

• injection angle (αin);

• type of boundary conditions imposed at the inlet (total or static);

• type of mesh (isotropic or anisotropic).

Table 7.1 summarizes the characteristics of the baseline case, where the Mach num-
ber and Reynolds number refer to the inlet section of the domain, and the charac-
teristic length for the Reynolds number is the length of the precursor domain used
for turbulence generation Re = (LUin)/νin.

Re M αin BC type Mesh type

4.584 · 103 0.4222 0◦ Total Isotropic

Table 7.1: Characteristics of the baseline case

To study the effects of Reynolds and Mach numbers, two different values were
considered for each quantity (see Table 7.2).

These values were combined to create four different flow configurations: Re1M1,
Re1M2, Re2M1, and Re2M2. In this first part of the parametric study, these four
chases were analyzed with the Re1M1 case serving as the baseline, while other pa-
rameters were kept constant. For the second part, Reynolds and Mach numbers
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Re1 Re2 M1 M2

4.584 · 103 7.825 · 103 0.4222 0.6

Table 7.2: Re and M values for the parametric study

were fixed to the baseline values, while other parameters were varied individually
and in combination. A summary of all cases analyzed is presented in Table 7.3.

Re and M αin BC type Mesh Type

Re1M1

0◦

Total

Isotropic

Re1M2

Re2M1

Re2M2

Re1M1

26.565◦

63.435◦

0◦

Static26.565◦

63.435◦

0◦

Total

Anisotropic

26.565◦

63.435◦

0◦

Static26.565◦

63.435◦

Table 7.3: Summary of the parametric study

The following parts of this section will discuss with more details several aspects
of the free domain simulations. Firstly, the computational domain and the relative
meshing are introduced. Secondly, the parameters of the numerical solver settings
and the physical hypothesis are listed and explained. Third, the boundary conditions
and their effect on the flow are discussed. Subsequently, the numerical transient of
the simulations is highlighted, considering the initial conditions of the solution and
the convergence criteria. Lastly, the virtual probes and monitors used to extract the
data and the parameters of interest are defined.

7.1.1 Computational domain and meshing

To investigate the spatial evolution of turbulent flow, a free computational do-
main was adopted, specifically a virtual wind tunnel in the shape of a parallelepiped.
This geometry is a simple choice to analyze the evolution of turbulent flow without
the effect of any wall. Due to the high number of cases analyzed, the tunnel is simple
and relatively small, in order to reduce the total computational cost.

The dimensions of the domain were determined based on the dimensions of the
cubic precursor domain presented in [7], with an edge length L = 4.11875 mm. The
parallelepiped extends for a length L in the y and z directions, while the streamwise
length (corresponding to the x-direction) is 12 × L. This configuration can be vi-
sualized as a sequence of 12 cubes with side length L, aligned along the streamwise
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direction (Figure 7.1).

Figure 7.1: Free domain, 3-dimensional view

The first 10 cubes constitute the primary region of interest, where analyses were
conducted to assess the evolution of flow parameters as a function of the streamwise
location. The last two cubes were dedicated to the implementation of a sponge layer.
This is a wave-damping region of the domain and its function is to gradually at-
tenuate numerical perturbations propagating towards the domain boundaries, thus
avoiding wave reflection and ensuring open boundary conditions. In other words,
the sponge layer absorbs the turbulence energy, simulating an infinite environment.

The mesh was generated using the open-source software GMSH (see Section 5.3).
In order to analyze the effect of spatial discretization on turbulent flow evolution, two
different meshes were used in this study: an isotropic mesh and an anisotropic one.
For the first mesh, the free domain was discretized similarly to the precursor domain
in [7] (Figure 6.1): each edge of length L was divided into 16 elements, while the
long side was subdivided into 12 · 16 = 192 elements. This resulted in a structured,
isotropic, three-dimensional mesh composed of 49152 identical cubic elements, with
an edge length of L/16 = 0.25742 mm each (Figure 7.2). The main domain is
discretized using the same spatial resolution as the precursor domain to optimize
computational resources. Employing a coarser mesh in the main domain would
compromise its ability to resolve the smallest turbulent structures. Conversely,
using a finer mesh would result in over-resolution, as the main domain would be
resolving structures generated in a coarser mesh. More details about the precursor
domain and the turbulence injection are discussed in Chapter 6.

Figure 7.2: Free domain isotropic mesh, 3-dimensional view

Subsequently, the mesh was split into 64 partitions, resulting in 768 elements per
partition. The choice of the number of partitions and the number of CPUs dedicated
to each partition (1 CPU per partition) is based on a trade-off between simulation
efficiency and the utilization of the HPC resources available (see Section 5.1.1).

For the anisotropic mesh, the elements size along the z-direction is halved (Fig-
ure 7.3). The resulting mesh exhibits a resolution comparable to the inlet region of
the turbine domain, where the streamwise and pitchwise resolutions are consistent
with the precursor domain, while the spanwise resolution is enhanced (see Subsec-
tion 8.1.1). Despite the doubled number of elements compared to the isotropic mesh,
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the simulation characteristics in terms of partitions and CPUs per partition were
kept unchanged, but the memory per CPU was appropriately increased.

Figure 7.3: Isotropic mesh (left) and anisotropic mesh (right), 2-dimensional inlet
view

7.1.2 Solver settings

As discussed in Chapter 5, the flow equations are solved using the ArgoDG
software. The compressible NSE are considered, including continuity, momentum,
and energy equations. Furthermore, the governing equations are dimensionless using
reference values for pressure (pref = 6000 Pa) and temperature (Tref = 260 K).
The numerical solver uses the conserved variables (ρ, ρu, ρv, ρw, ρE) as degrees
of freedom. More details about fluid equations, assumptions, and constants are
discussed in Section 2.1. A DGM with a polynomial order p = 3 is employed for
spatial discretization. This choice is consistent with the discretization used in the
precursor domain, as detailed in [7]. The Roe upwind flux for the convective terms
is used, while, to stabilize the diffusive fluxes, the DGM is coupled with the SIPDG
method, as discussed in Section 5.2.

Regarding the temporal discretization, a second-order backward difference (BDF2)
scheme is employed. A nonlinear tolerance of 10−4 is set for the time integration.
The nonlinear solver utilizes a Newton method, extended with a Generalized Mini-
mal Residual Method (GMRES) iterative solver. To accelerate convergence, a Jacobi
preconditioner is applied to the Jacobian matrix. Given the relatively slow varia-
tion of the Jacobian matrix over time, it is recomputed only every 5 time steps to
improve computational efficiency. This approximation is justified by the fact that
the Jacobian matrix size is directly proportional to the number of degrees of free-
dom (DOF) of the problem, and therefore, freezing it for several time steps can
significantly enhance the simulation performance. The time step size is determined
adaptively to satisfy the CFL condition. Typically, time steps in the range of 10−7

s to 10−6 s are used.

7.1.3 Boundary and initial conditions

To generate the flow for different test cases, different boundary conditions were
used. In all simulations, periodic conditions were applied on boundary faces in both
the y and z directions, respectively. At the inlet, either Mach total and Free stream
boundary conditions type were imposed, depending on the specific case. The first
condition type specifies total variables, while the second one specifies static variables.
Static pressure boundary condition was imposed at the outlet in all simulations, with
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the pressure value adjusted for each test case to ensure a statistically homogeneous
solution throughout the domain.

Figure 7.4: Free domain with inlet shown in green (left) and outlet shown in red
(right), 2-dimensional view

For the parametric study on the effects of Reynolds and Mach numbers, the same
inlet boundary conditions as in the baseline case were employed, i.e., Mach total
conditions. Total variables were used at the inlet of the baseline case because usually
it is the standard way to impose boundary conditions in turbine CFD simulations.
Table 7.4 details the inlet and outlet conditions for the various cases with different
Re and M . The case Re1M1 corresponds to the baseline case.

Quantity Unit Re1M1 Re1M2 Re2M1 Re2M2

P 0
in [Pa] 1.0779 · 104 0.8190 · 104 1.0779 · 104 0.8165 · 104

T 0
in [K] 300 300 200 200

Pout [Pa] 9.5353 · 103 6.4209 · 103 9.5353 · 103 6.4014 · 103
αin [°] 0

Table 7.4: Boundary conditions for simulations with different Re and M

To analyze the effect of the injection angle, the Reynolds and Mach numbers
were kept constant at the baseline case values (Re1M1), while the parameter αin

was varied (see Table 7.5).

Quantity Unit Case1 Case2 Case3

αin [°] 0 26.565 63.435

Table 7.5: Boundary conditions for simulations with different α

In the same way, Free stream boundary condition cases were simulated with
Re = Re1 and M = M1. As an example, Table 7.6 presents the values used to
reproduce the αin = 0 case. To change the injection angle, the inlet velocity U in is
modified in order to maintain the same magnitude and to obtain injection angles as
those in Table 7.5.

In all the cases, turbulence is introduced into the domain through the inlet.
However, for Mach total conditions, it is sufficient to specify the velocity field from
the precursor simulation, while for Free stream conditions, the static temperature
and static pressure fields must also be specified from precursor simulation.

To accelerate convergence, the flow field was initialized with a homogeneous so-
lution throughout the domain, consistent with the inlet boundary condition. The
specific properties of the initial solution varied depending on the type of inlet bound-
ary condition (Figure 7.7).
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Quantity Unit Example case

Pin [Pa] 9.5353 · 103
Tin [K] 289.6703
U in [m/s] [144.0567 0.0 0.0]
Pout [Pa] 9.5353 · 103

Table 7.6: Example case with Free stream boundary conditions

Mach total cases Free stream cases
Quantity Unit Quantity Unit

P 0 [Pa] P [Pa]
T 0 [K] T [K]
M [-] Ūin [m/s]
α [°]

Table 7.7: Types of initial solution

7.1.4 Convergence

Most of the data presented in this master’s thesis are time and space averaged
characteristics of turbulent flows, therefore data collection can start only after the
numerical transient of the simulation is finished and the domain is converged to a
statistically steady state.

To assess the end of the transient, the convective density flux at the inlet and
outlet is monitored. For a steady-state problem, it is sufficient to use the principle of
mass conservation by monitoring the mass flow rate through the domain boundaries.
However, since the flow in the cases considered is turbulent and thus intrinsically un-
steady, mass conservation is not verified instantaneously. Nevertheless, it is possible
to evaluate the statistical steadiness by assessing when the mass flow rate average
over time is zero.

Figure 7.5 and Figure 7.6 show the convective density flux at the inlet and outlet
and their difference, respectively for the numerical transient and for the converged
simulation. These data are extracted from the baseline case as an example; however,
the same reasoning applies to all cases. The x-axis reports the time in term of
convective time units (tc), which is an estimate of the time it takes for the flow
to go through the entire domain. More specifically, figure 7.5 shows 1536 CPU
hours of computation, corresponding to 16400 time steps, while figure 7.6 shows
6144 CPU hours of computations, from time step 16400 to 89900. For the baseline
case, the time step size is 10−7 s. The first figure shows the numerical transient
of the simulation, which can be considered exhausted after 4 tc. In the second
figure, it is possible to observe a null mass flow on average over time and therefore a
statistically steady-state flow configuration. Moreover, the plots in figure 7.6 show
a strongly periodic behavior. This behavior is linked to the blended turbulent box
finite streamwise length generated by [7].

Once the convergence condition was reached, the time required to obtain stable
time-average results was evaluated for each case. In some cases, the simulations
were not run for sufficient time to allow smooth trends; however, the results can be
considered representative.
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Figure 7.5: Convective density flux (Φρ [kg m−2 s−1]) during the numerical transient
of the simulation

Figure 7.6: Convective density flux (Φρ [kg m−2 s−1]) of the converged simulation
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7.1.5 Data extraction

To mitigate the usage of storage resources and the computational cost of post-
processing the full flow field, data extraction was performed using a set of virtual
probes. The probes are distributed in 48 planes, perpendicular to the streamwise
direction, and evenly spaced within a region that extends from the inlet to 2 × L
upstream of the outlet (Figure 7.7). This extraction region was chosen to avoid the
sponge layer (see Section 7.1.1).

Figure 7.7: Free domain probe set shown in red, 2-dimensional side-view

Two probes configuration were employed (Figure 7.8). The first one, with a
high density of probes, was used to collect data such as time and space averaged
quantities. The collection was carried out by co-processing, which is performed
simultaneously with the simulation. This approach allows efficient calculation of
statistical properties while minimizing storage requirements.

Figure 7.8: High density probe set shown in red (on the left) and low density probe
set shown in green (on the right), 2-dimensional inlet view

The second configuration in Figure 7.8, with a much lower probe density, was
used to capture instantaneous velocity data for the calculation of the streamwise
evolution of the velocity integral length scale LXX . Indeed, a different approach
was employed to calculate LXX compared to LY Y and LZZ . In the former case,
the streamwise velocity component was extracted from the low density probe set
at various time steps. Subsequently, in post-processing, the time series at different
points was used to determine LXX . For the other two integral length scales, spatial
correlation (see Equation 2.25) was utilized through the high density probe set to
directly compute the scales at several instants, while the values were time averaged
via co-processing. It is worth specifying that the integral length scales calculated in
Chapter 8 regarding the turbine simulation follow this second approach.
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7.2 Results and discussion

The first case presented is the baseline case, which serves as a reference for
subsequent analyses. After that, the effects of varying the following parameters are
investigated:

1. Reynolds and Mach numbers,

2. inlet boundary conditions type,

3. injection angle, and

4. mesh.

Initially, the simulations were conducted starting from the baseline case and
varying one parameter at a time. Subsequently, the combined effects of parameters
2, 3 and 4 are analyzed.

7.2.1 Baseline case

The characteristics of the baseline case are summarized in Table 7.1. This case
was selected as a reference for subsequent simulations because it presents the same
inlet conditions as those used by [7] for the low Mach number case, with the only
difference that αin = 0. Additionally, the isotropic mesh was employed.

Figure 7.9 shows the diagonal terms of the Reynolds stress tensor. u′u′, v′v′,
and w′w′ have been time-averaged and averaged in the y and z directions. The
x-axis represents the streamwise location, non-dimensionalized by the characteristic
length of the precursor domain cube L. The same averaging procedures and non-
dimensionalization of the x-axis apply to all results presented in this section.

Figure 7.9: Streamwise evolution of diagonal terms of the Reynolds stress tensor for
the base case

Turbulence anisotropy is evident in Figure 7.9, as u′u′ is smaller than both v′v′

and w′w′. This difference is already present at the inlet and increases rapidly over
a very short distance, due to the steep decrease of u′u′. Moving towards the outlet,
v′v′ and w′w′ decrease while remaining of the same order of magnitude. On the
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other hand, u′u′ decreases more slowly for most of the domain; in fact, the turbu-
lence anisotropy decreases moving toward the outlet.

(a) TKE (b) TI

Figure 7.10: Streamwise evolution of the Turbulent Kinetic Energy (left) and Tur-
bulent Intensity (right) for the base case

Figure 7.10a and Figure 7.10b show the streamwise evolution of the turbulent
kinetic energy (TKE) and turbulence intensity (TI), respectively. In both figures,
the blue curve represents the data extracted directly from the free domain, while the
orange curve corresponds to the data obtained from the precursor domain. Specif-
ically, the time evolution of TKE was extracted from the precursor box and then
transformed into a spatial evolution using the convective velocity at the inlet of
the free domain. This transformation was performed to enable a direct comparison
between the two curves on the same plot. The TKE at the inlet of the orange curve
corresponds to the time instant at which data was extracted from the precursor
simulation for turbulence injection. However, a discrepancy in TKE is observed at
the inlet between the two curves, indicating that part of the turbulent energy is lost
during the injection process. Nevertheless, both the orange and blue curves have
the same slope, therefore the turbulence decay is the same in both simulations.

Figure 7.11: Streamwise evolution of velocity integral length scale for the base case

Figure 7.11 presents the streamwise evolution of the integral length scales in the
x, y, and z directions, denoted as LXX , LY Y , and LZZ , respectively. Similar to the
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behavior observed for u′u′, v′v′, and w′w′, the terms corresponding to the y and
z directions are of the same order of magnitude throughout the domain, while the
term corresponding to the x direction is smaller. However, contrary to the diagonal
terms of the Reynolds stress tensor, LXX , LY Y , and LZZ are equal at the inlet and
then diverge rapidly.

7.2.2 Reynolds and mach numbers effect

In order to analyze the effect of the Reynolds number and the Mach number,
four cases are compared. Table 7.2 shows the values of Re and M used, while the
other parameters are the same of Table 7.1. The case with Re1 and M1 corresponds
to the base case.

Figure 7.12: Streamwise evolution of diagonal terms of Reynolds stress tensor for
different Re and M cases

Figure 7.12 shows the streamwise evolution of the diagonal terms of the Reynolds
stress tensor for the four cases. All the plots have almost the same behavior. Nev-
ertheless, M2 cases seem to be slightly more anisotropic.

Figure 7.13a shows u′u′ for the four cases. Although u′u′ at the inlet is almost
the same for each case, it has a steep decrease which magnitude depends on the
Mach number. In fact, cases with higher M have lower u′u′ in the first part of
the domain. Conversely, the slope of the plots seems to depend on the Reynolds
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(a) u′u′ (b) v′v′

(c) w′w′

Figure 7.13: Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different Re and M cases

number: cases with higher Re have lower decrease of u′u′ through the domain, and
therefore, higher u′u′ in the last part of the domain. The v′v′ and w′w′ evolution is
show in Figure 7.13b and Figure 7.13c respectively. The plots relative to different
cases are almost overlapping, hence, Re and M have very slight effect on them.

The TKE of the four cases are shown in Figure 7.14. Since the precursor sim-
ulation to create the turbulence is the same for each case, the time evolution of
TKE for the precursor box is also the same. Nevertheless, the convective velocity is
different in each case, therefore the orange curve relative to the DHIT in function
of the streamwise location is also different. In general, all cases present almost the
same inlet energy gap of the baseline case, however the streamwise energy evolution
is different from case to case: the mismatch between free domain and DHIT behav-
ior increase with high M and decrease with high Re. In fact, for Re2M1 case the
two curves are overlapped for most of the domain. Nevertheless, the baseline case
demonstrates the closest agreement between the free domain curve’s gradient and
the precursor domain curve’s gradient, probably because is the only one with the
same total boundary conditions at the inlet of the precursor simulation.

Figure 7.15 shows the Lii of the four cases. In each case, the behavior is almost
the same of the baseline case: the integral length scales are the same at the inlet,
then LXX rapidly diverge from LY Y and LZZ , while these last ones are of the same
order of magnitude in the full domain. Furthermore, the Lii anisotropy increase
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Figure 7.14: Streamwise evolution of the Turbulent Kinetic Energy for different Re
and M cases

with high M and decrease with high Re.

Figure 7.16a shows LXX evolution for the four cases. The behavior of the plot is
dominated mostly by the M , in fact cases with higher M have lower LXX . Compar-
ing cases with the same M is also possible to observe the effect of the Re: increasing
Re leads to a decrease of LXX .

Figure 7.16b and Figure 7.16c show LY Y and LZZ respectively. In contrast with
LXX , for these cases the behavior of the plots is dominated by the Re: increase the
Re leads to a decrease of the integral length scales. There is also a slight effect of
the M : increase the M leads to an increase of the curves.
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Figure 7.15: Streamwise evolution of velocity integral length scale for different Re
and M cases
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(a) LXX (b) LY Y

(c) LZZ

Figure 7.16: Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different Re and M cases
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7.2.3 Boundary condition type effect

This section will discuss the effect of changing the inlet boundary conditions type
of the baseline case, from Mach total to Free stream. The other parameters of the
simulation are kept the same, as shown in Table 7.1.

Figure 7.17: Streamwise evolution of diagonal terms of Reynolds stress tensor for
different inlet boundary conditions type

Figure 7.17 shows the streamwise evolution of the diagonal terms of the Reynolds
stress tensor for the baseline case (with Mach total boundary conditions) and for
the Free stream case. In the second simulations, u′u′, v′v′ and w′w′ are of the same
order of magnitude throughout the domain, therefore the turbulence is isotropic in
all streamwise locations.

Figure 7.18a shows the u′u′ for the two cases. Compared to baseline case, Free
stream conditions lead to higher u′u′ in all streamwise locations, without a steep
decrease near the inlet and with a greater decay throughout the domain. Otherwise,
v′v′ and w′w′, shown respectively in Figure 7.18b and Figure 7.18c, are slightly lower
for the Free Stream case, but they have similar behavior compared to the baseline
case.

In Figure 7.19 is possible to see that the TKE streamwise evolution of the two
cases is almost the same. In fact, the large increase of turbulent kinetic energy asso-
ciated with the x direction for the Free stream case is compensated by the decrease
of energy associated with both y and z directions. However, the two TKE curves
are slightly different near the inlet, where there is more energy for the Free stream
case. As a consequence, changing the boundary conditions type, the energy gap
between the free domain and the DHIT becomes smaller, but still present. Since
the superimposition of turbulent fluctuations on the mean flow at the inlet is not
perfectly physical, this probably leads to a rapid dissipation of small scales, and
consequently to a drop of energy.

Figure 7.20 shows the velocity integral length scales in the three directions for
the two cases. Changing the inlet boundary condition type from Mach total to Free
stream leads to a large increase of LXX , which becomes much closer to LY Y and
LZZ . Therefore, the three curves have a very similar behavior, but only in the first
half of the domain. Indeed, LXX diverges from the other integral length scales in
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(a) u′u′ (b) v′v′

(c) w′w′

Figure 7.18: Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different inlet boundary conditions type

the second half, though much less compared to the Mach total case.

Figure 7.21a, Figure 7.21b and Figure 7.21c show respectively LXX , LY Y and
LZZ for the two cases. These plots highlight that the only integral length scale
to change with the boundary conditions type is LXX , while the others are almost
unchanged. Although the LXX is the same at the inlet for both simulation, the
behavior shortly after is totally the opposite. For the Mach total case the curve
slightly decrease and rapidly settles at 0.2, while for the Free stream case curve
tends to oscillate around 0.3.
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Figure 7.19: Streamwise evolution of the Turbulent Kinetic Energy for different inlet
boundary conditions type

Figure 7.20: Streamwise evolution of velocity integral length scale for different inlet
boundary conditions type
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(a) LXX (b) LY Y

(c) LZZ

Figure 7.21: Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different inlet boundary conditions type
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7.2.4 Injection angle effect

This section presents the results of simulations with different injection angles,
using both Mach total and Free stream boundary conditions. The injection angle
is changed in the xy-plane in each case (see Table 7.8). The angles were chosen in
such a way as to cover the values normally found in turbines.

Injection angle
αin [°]

Injection vector
[x,y,z]

0 [1, 0, 0]
26.565 [2, 1, 0]
63.435 [1, 2, 0]

Table 7.8: Injection angles and related injection vectors

To properly compare the effect of αin, the curves present in this section are
plotted as functions of x̃/L, where x̃ is the axis of a relative reference frame obtained
rotating the absolute one around the z axis of an angle equal to the injection angle
in each case.

Mach total condition cases

Figure 7.22 shows the streamwise evolution of the diagonal terms of the Reynolds
stress tensor for different αin, obtained using the Mach total boundary conditions.
Compared to the zero injection angle case (which corresponds to the baseline case),
the effect of the low injection angle (αin = 26.565°) is really slight. Indeed, the gen-
eral behavior of the three curve is quiet similar, except for the fact that v′v′ and w′w′

are not overlapping anymore. Otherwise, the high injection angle (αin = 63.435°)
has a large effect, especially for v′v′, that is much higher than u′u′ and w′w′. Fur-
thermore, for this last case u′u′ and w′w′ are of the same order of magnitude.

Figure 7.22: Streamwise evolution of diagonal terms of Reynolds stress tensor for
different αin, using Mach total boundary conditions

Figure 7.23a, Figure 7.23b and Figure 7.23c show respectively u′u′, v′v′ and w′w′

for the different αin cases. Regarding u′u′, the curves of αin = 0° and αin = 26.565°
cases are really close, while the curve of αin = 63.435° is slightly higher. Also for
v′v′, there is no difference between zero and low injection angle, but the effect of

64 Chapter 7 Carlo Di Cintio



Master’s thesis

(a) u′u′ (b) v′v′

(c) w′w′

Figure 7.23: Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different αin, using Mach total boundary conditions

the high angle is much larger. Lastly, the low injection angle leads to a decrease
of w′w′ throughout the domain, while the high injection angle curve is of the same
order of magnitude of αin = 0° in the first half of the domain and then it becomes
the highest among the three for the second half. In general, in all diagonal terms
of the Reynolds stress tensor, the curves related to αin = 63.435° are less smooth,
particularly for the v′v′ plot.

Figure 7.24 shows the evolution of the TKE for the three cases compared to
the DHIT. The curves behavior is in accordance with the evolution of the Reynolds
stress tensor: the curves of zero and low injection angle are really close, while the
TKE for αin = 63.435° is much larger and also less smooth. Probably, the high
injection angle generates non-physical energy, especially in velocity fluctuations in
the y direction. Furthermore, the TKE in the high angle case is higher than the
TKE in the precursor box.

Figure 7.25 shows the velocity integral length scales in the three directions for
the three cases. One of the first aspects to look at is that LY Y and LZZ have a
different evolution when the injection angle is not zero. Another aspect is that LXX

is notably lower compared to the other integral length scales for the zero and low
injection angles, while is almost of the same order of magnitude of LY Y for the high
injection angle case.
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Figure 7.24: Streamwise evolution of the Turbulent Kinetic Energy for different αin,
using Mach total boundary conditions

Figure 7.25: Streamwise evolution of velocity integral length scale for different αin,
using Mach total boundary conditions

Figure 7.26a, Figure 7.26b and Figure 7.26c shows respectively LXX , LY Y and
LZZ for the three cases. Regarding LXX , the curve related to αin = 0° is the only
one approximately constant through the domain, while the curves of αin = 26.565°
and αin = 63.435° increase along the streamwise direction. Moreover, LXX for
the zero and low injection angles is almost the same near the inlet and then it
diverges going to the outlet. Otherwise, in the high injection angle case, the curve
is lower at the inlet, but it rapidly reach the αin = 0° evolution and stabilizes
at the same values. Regarding LY Y curves, the mean value increase αin, indeed
(LY Y )αin=63.435◦ > (LY Y )αin=26.565◦ > (LY Y )αin=0◦ . For the LZZ plot, the inlet values
are approximately the same in the three cases, but the curve related to the low
injection angle increases compared to αin = 0° through the domain, while the curve
related to the high injection angle case tends to decrease.
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(a) LXX (b) LY Y

(c) LZZ

Figure 7.26: Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different αin, using Mach total boundary conditions
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Free stream condition cases

Figure 7.27 shows the streamwise evolution of the diagonal terms of the Reynolds
stress tensor for different αin, obtained using the Free stream boundary conditions.
With these boundary conditions, the injection angle has no effect on u′u′, v′v′ and
w′w′, therefore the three turbulent flows are isotropic throughout the domain. As a
consequence, the TKE evolution is the same in all cases.

Figure 7.27: Streamwise evolution of diagonal terms of Reynolds stress tensor for
different αin, using Free stream boundary conditions

Figure 7.28 shows the evolution of the integral length scales. In this analysis,
αin does not affect LY Y and LZZ , but leads to a lower LXX . As a consequence,
the difference between LXX and the other integral length scales increase with the
injection angle.

Figure 7.28: Streamwise evolution of velocity integral length scale for different αin,
using Free stream boundary conditions

Figure 7.29 focuses on the LXX evolution for the three cases. Increasing the in-
jection angle from 0° to 26.565° does not change the integral length scale at the inlet,
but it decreases in the rest of the domain. On the other hand, for the high injection
angle case, LXX is much lower at the inlet, but it increases going downstream.
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Figure 7.29: Streamwise evolution of LXX for different αin, using Free stream bound-
ary conditions
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7.2.5 Mesh isotropy effect

This section contains the results of simulations with different meshes. As dis-
cussed in Section 7.1.1, one mesh is isotropic while the other is anisotropic (Fig-
ure 7.3). The isotropic mesh is the same used for the baseline case. Similarly to
Section 7.2.4, the simulations with different meshes have been run using both Mach
total and Free stream boundary conditions. The results in this section are run with
zero injection angle.

Mach total conditions cases

Figure 7.30 shows the u′u′ streamwise evolution for the isotropic mesh and the
anisotropic one. The two curve are perfectly overlapping throughout the domain.
Also, the curve related to the evolution of v′v′ and w′w′ have the same behavior
with the two meshes. As a consequence, the TKE evolution is the same for the two
meshses as well. To avoid redundancy, the figures pertaining v′v′, w′w′ and the TKE
are not included.

Figure 7.30: Streamwise evolution of u′u′ for different meshes, using Mach total
boundary conditions

Figure 7.31 shows the LXX streamwise evolution for the two meshes and also in
this case there is no difference between the curves. In the same way, the mesh does
not affect LY Y and LZZ , therefore the related figures are omitted for redundancy
reasons.

In conclusion, regarding the Mach total cases with αin = 0°, the mesh seems to
has no effect on the diagonal terms of the Reynolds stress tensor or on the integral
length scales.

Free stream conditions cases

Figure 7.32a, Figure 7.32b and Figure 7.32c show respectively the evolution of
u′u′, v′v′ and w′w′ for the isotropic mesh and the anisotropic one, obtained using
Free stream boundary conditions and αin = 0°. In these cases, the change of mesh
leads to an increase of the diagonal terms of the Reynolds stress tensor. At the inlet,
the increase is slight, but through the domain it is more evident.
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Figure 7.31: Streamwise evolution of LXX for different meshes, using Mach total
boundary conditions

Figure 7.33 shows the diagonal terms on the same plot for each mesh. Although
the new mesh is anisotropic, the turbulence with Free stream boundary conditions is
still isotropic. Indeed the increase of u′u′, v′v′ and w′w′ is of the same order of mag-
nitude, even if the mesh has been refined only in the z direction (see Section 7.1.1).

Figure 7.34 shows the TKE evolution for the two meshes of the free domain,
compared to the DHIT. Since the new mesh has almost no effect on the Reynolds
stress at the inlet, the energy gap between the main simulation and the precursor
simulation is still present. Nevertheless, the curve of the anisotropic mesh is closer
to the curve of the precursor simulation compared to the isotropic mesh. Indeed,
the orange and the green curves are overlapping in the second half of the free do-
main. However, the slope for the box is closer to the isotropic mesh compared to the
anisotropic one, probably because the first mesh has the same spatial discretization
of the precursor box. Apparently, refining the mesh leads to a slower turbulence
decay, and thus to a less decreasing curve.

Figure 7.35a, Figure 7.35b and Figure 7.35c show respectively the LXX , LY Y and
LZZ evolution for the two meshes. In general, all the integral length scales decrease
with the second mesh. They also tend to maintain the inlet value throughout the
domain, even if LXX decreases slightly near the outlet.

Figure 7.36 shows the integral length scales on the same plot for each mesh.
Although the mesh has been refined only in the z direction, the three scales in the
anisotropic mesh are of the same order of magnitude for most of the domain, since
LXX begins to diverge from LY Y and LZZ to lower values after about six boxes.
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(a) u′u′ (b) v′v′

(c) w′w′

Figure 7.32: Streamwise evolution of u′u′ (top-left), v′v′ (top-right), and w′w′

(bottom) for different meshes, using Free stream boundary conditions

Figure 7.33: Streamwise evolution of diagonal terms of Reynolds stress tensor for
different meshes, using Free stream boundary conditions
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Figure 7.34: Streamwise evolution of the Turbulent Kinetic Energy for different
meshes, using Free stream boundary conditions

(a) LXX (b) LY Y

(c) LZZ

Figure 7.35: Streamwise evolution of LXX (top-left), LY Y (top-right), and LZZ

(bottom) for different different meshes, using Free stream boundary conditions
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Figure 7.36: Streamwise evolution of velocity integral length scale for different
meshes, using Free stream boundary conditions
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7.2.6 Mesh isotropy effect with non-zero injection angle

This section will discuss the results of simulations with different meshes, but,
differently from Section 7.2.5, in these cases αin ̸= 0°. The computations have
been run using both Mach total and Free stream boundary conditions. Similarly to
Section 7.2.4, the x̃ axis of the plots in this section is related to a relative reference
frame.

Mach total conditions cases

Figure 7.37a and Figure 7.37b show the u′u′ streamwise evolution for the two
different meshes, respectively, for αin = 26.565◦ and αin = 63.435◦. Differently for
Subsection 7.2.5, in these cases the mesh seems to have an effect on the solution.
Indeed, the plots related to the simulations with the anisotropic mesh are above the
plots related to the isotropic mesh.

(a) αin = 26.565◦ (b) αin = 63.435◦

Figure 7.37: Streamwise evolution of u′u′ for different meshes, using Mach total
boundary conditions and with αin ̸= 0◦

For simplicity reasons, the graphs related to v′v′ and w′w′ are not shown, but in
general the effect of the anisotropic mesh is the same as exhibited by u′u′, that is
an increase of the curves compared to the isotropic mesh cases. Furthermore, the
increase of the orange curves seems to be larger for the high injection angle cases.

Figure 7.38a and Figure 7.38b show the TKE evolution for the two meshes, re-
spectively, for αin = 26.565◦ and αin = 63.435◦. Since the refined mesh leads to an
increase of the diagonal terms of the Reynolds stress tensor, the TKE is higher for
the anisotropic mesh in both cases, even if the behavior of the curves for the two
meshes remains approximately the same.

Regarding the integral length scales, the effect of the refined mesh is the opposite.
Compared to the isotropic mesh, the plots of Lii related to the anisotropic mesh are
below. Figure 7.39a and Figure 7.39b show the streamwise evolution of LXX for the
two meshes, respectively, for αin = 26.565◦ and αin = 63.435◦. The curves related
to LY Y and LZZ are not shown for redundancy reasons, because the effect of the
mesh is the same as for LXX . Differently from the Reynolds stress tensor, the shift
downwards of the orange curves for the integral length scales does not depend by

Chapter 7 Carlo Di Cintio 75



Master’s thesis

(a) αin = 26.565◦ (b) αin = 63.435◦

Figure 7.38: Streamwise evolution of the Turbulent Kinetic Energy for different
meshes, using Mach total boundary conditions and with αin ̸= 0◦

the amplitude of the injection angle. However, the decrease of the different scales
due to the new mesh in not the same. In fact, the effect of the mesh on LY Y is less
than the others, while for LXX and LZZ the shift is of the same order of magnitude.

(a) αin = 26.565◦ (b) αin = 63.435◦

Figure 7.39: Streamwise evolution of LXX for different different meshes, using Mach
total boundary conditions and with αin ̸= 0◦

Free stream conditions cases

The effect of the anisotropic mesh on simulations with Free stream boundary
conditions and α ̸= 0° is the same as it had on simulations with α = 0°. Therefore,
in this Subsection there are not graphs, as they are quite similar to those in the
Subsection 7.2.5.

As already discussed, the new mesh leads to an increase of all the diagonal
terms of the Reynolds stress tensor and, as a consequence, to an increase of the
TKE. The magnitude of the increase is independent from the amplitude of the
injection angle and is the same for all the diagonal terms, hence the turbulence is
still isotropic. With respect to the integral length scales, they decrease by the same
order of magnitude for both injection angles.
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Turbine simulations

Following the structure of Chapter 7 for the free domain, this chapter focuses
on turbine simulations. Specifically, a high-speed low-pressure turbine cascade with
high free stream turbulence. The linear cascade consists of SPLEEN blades, the
geometrical features of which are presented in Section 3.1. The aim of this part
of the study is to assess the effect of different boundary conditions on a practical
test case with turbulence injection. In this master’s thesis, static inlet boundary
conditions have been employed to simulate the turbine cascade. The results will be
compared with the numerical data obtained by [7], which used total conditions, and
the experimental data collected by [1]. All these results refer to the same operating
conditions: Mis,out = 0.7 and Reis,out = 70 · 103 (see Section 3.2). Although the use
of static variables for imposing inlet boundary conditions in numerical simulations
of turbines is not standard practice, they have been employed in this study to
investigate the impact of this approach on the simulation results.

8.1 Computational setup

This section provides details of the turbine numerical simulation. Firstly, the
computational domain geometry and mesh will be briefly discussed. Subsequently,
the imposed boundary conditions, initial conditions, and the criterion used to de-
termine the end of the numerical transient will be described. Finally, the locations
within the domain from which the results presented in this study were extracted
will be specified. Since the solver settings for the turbine simulation are identical to
those employed for the free domain simulations, they will not be discussed further.
However, it is worth noting that a time step of 10−7 s was used.

All solver settings presented in this section are directly applicable to those used
in [7], with the exception of the inlet boundary conditions.

8.1.1 Computational domain and meshing

Figure 8.1 shows the turbine computational domain. The geometric features of
the SPLEEN blade and the cascade have been presented in Subsection 3.1. The
domain used for this study is the same used by [7]. Differently from previous simu-
lations of the same blade [2, 6, 3], in this study and in [7] the inlet section is nearer
to the LE of the blade (0.75× cax). Since in these cases the simulation occurs with
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turbulence injection, the distance that turbulent structures must cover before reach-
ing the blade has been shortened. However, if the inlet is too close to the blade, it
may interfere with the boundary conditions. Nevertheless, this effect has been inves-
tigated by [7] and can be assumed to be negligible. Regarding the outlet section, its
distance is kept unchanged respect to the previous simulations (5×g downstream to
the TE), in order to have enough space to analyze the wake and to prevent any non-
physical interaction between the outlet and the blade due to reflection upstream of
perturbations. In addition, a sponge layer is implemented. The pitchwise thickness
is g, which is also equal to 8 × L. The spanwise thickness is equal to L, which is
approximately 9% of cax. This thickness is also different from [2, 6, 3], in order to
allow the turbulence injection through the precursor domain. Overall, 8 copies of
the precursor domain are required to cover the entire inlet surface. As a result, the
turbine simulation presents high correlation along the pitchwise direction. However,
it should not compromise the reproduction of a physical turbulent flow behavior (see
Chapter 6).

Since the flow is assumed to be quasi-two-dimensional, a small spanwise dimen-
sion relative to the domain can be employed to significantly reduce the compu-
tational cost, while still capturing the three-dimensional turbulent flow features.
To verify the adequacy of the spanwise thickness for the resolution of turbulent
structures, the integral length scales computed along the spanwise direction will be
discussed in Subsection 8.2.6.

Figure 8.1: Turbine domain with inlet shown in green (left) and outlet shown in
red (right), 2-dimensional view

Figure 8.2 shows the mesh of the turbine domain generated by [7] and used
in this study. As for the free domain simulations, the mesh has been generated
using the GMSH software; however, in this case the mesh is unstructured. Several
refinements regions are present in the domain: the complete inlet region, the blade
channel and the wake region. The element size in the inlet region is set to 0.5% of
c, matching the spatial resolution of the precursor domain, to optimally reproduce
injected turbulence. In addition, a 0.79 mm thick O-type structured mesh has been
used around the blade, with a second-order accuracy of the mesh edges. Specific
refinements regions have been introduced near the LE and the TE. The highest
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level of refinement can be found in elements in direct contact with the blade surface,
which have a size of 0.076% of c, while the coarsest level in the mesh is near the
outlet, with an element size equal to 7.6% of c. Regarding the spanwise resolution,
the domain has been divided into 34 equivalent layers, corresponding to 0.23% of c
for each element. The high spanwise resolution is also necessary to reproduce the
three-dimensional turbulent structures in the domain.

The overall number of elements is 2 020 042. Further details about the elements
size and the mesh quality can be found in [7].

Figure 8.2: Mesh of the turbine domain, 2-dimensional view (taken from [7])

To ensure that the mesh adequately resolves the flow features near the blade
wall, it is necessary to verify that the centroid of the elements closest to the wall
lies within the pure viscous sublayer, i.e., n+ < 5 (see Subsection 2.3.3). Fig-
ures 8.3 shows the wall coordinates of the elements in contact with the blade in
the normal and tangential directions, respectively, where the solid line represents
the time-averaged value and the dashed lines represent the extremes of the instan-
taneous values. The negative part of the abscissa in both graphs refers to the PS,
while the positive part refers to the SS. Given that the polynomial reconstruction
of the DGM is also of order 3 in the SPLEEN simulations, it is sufficient to verify
that n+ < 15. Figure 8.3a shows that this condition is satisfied around the entire
blade at all times. The values of the wall coordinate in the tangential direction s+

are higher due to the larger size of the elements near the wall in this direction (see
Figure 8.3b). Nevertheless, the values fall within a range that can be considered
acceptable for the wall resolution.

Following a similar approach to that outlined in Subsection 7.1.1 for the free
domain, the turbine domain mesh was divided into 512 partitions, with 4 CPUs
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(a) Normal wall coordinate (b) Tangential wall coordinate

Figure 8.3: Time-averaged and extremes instantaneous values of the wall coordinates
associated to the near-wall elements

assigned to each partition, requiring a total of 16 nodes on the Lucia cluster to run
the simulation.

8.1.2 Boundary conditions, initial conditions and conver-
gence

To simulate the flow in the turbine domain, several boundary conditions have
been imposed. Starting from inlet, free stream boundary conditions type is imposed.
Differently, the results of [7] have been obtained imposing Mach total boundary
conditions type at the inlet. A summary of the inlet parameters used in the two
cases is shown in Table 8.1. In both cases, the same static pressure is imposed at
the outlet: pout = 7771.164 Pa.

Mach total conditions Free stream conditions

Quantity Unit Value Quantity Unit Value
P 0
in [Pa] 10779.39 Pin [Pa] 9535.7

T 0
in [K] 300 Tin [K] 289.674

αin [°] 36.3 U in [m/s] [116.1 85.28 0]

Table 8.1: Inlet boundary conditions parameters for the turbine simulation

A no-slip condition is imposed on the blade surface, meaning that the fluid
velocity at the wall is zero. Additionally, the blade is assumed to be adiabatic,
resulting in zero heat flux across the blade surface.

Periodicity is imposed in both the pitchwise and spanwise directions. The first
condition allows to simulate a linear cascade composed by an infinite number of
blade, while the second condition allows to simulate an infinite span blade. Due to
the latter condition, blade tip and end wall effects are not considered in the frame
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of this study.

The flow field has been initialized using a statistically converged solution com-
puted by [7]. Since the mesh and the operating conditions of the turbine simulation
presented in this study are the same of [7], convergence to a statistically stable
state was achieved relatively short time despite the high number of DOF. Following
the approach adopted for the free domain, the end of the transient of the turbine
simulation was determined by monitoring the convective density flux at the inlet
and outlet. Given the unsteady nature of turbulence, mass conservation within the
domain is not instantaneously satisfied but can be verified by time-averaging. The
transient phase was considered complete after 37,000 time steps, corresponding to
slightly more than 2 tc.

(a) Mach total inlet boundary conditions

(b) Free stream inlet boundary conditions

Figure 8.4: Time evolution of the pitchwise component of the momentum fluxes;
data are monitored during the numerical transient and extracted on the inlet, the
outlet and the blade, for both total (top) and static (bottom) inlet boundary
conditions [total case taken from 7]
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The end of the transient can also be assessed by monitoring the momentum fluxes
on the boundaries. Figure 8.4 shows the time evolution of the momentum fluxes
along the pitchwise direction, considering the contribution of the inlet, the outlet
and the blade. Differently from the convective fluxes of density, the momentum
fluxes on the blade are not zero, thus they must be taken into account. The upper
plot is related to the simulation with total boundary conditions at the inlet, while
the lower one is related to the simulation with static conditions. In both cases,
the conservation of momentum is not verified instantaneously due to the unsteady
nature of turbulence; however, it is verified on average over the time. The fluxes
related to the total conditions case are shown in order to evaluate their stronger
oscillations. Although the injected turbulence is the same, in the total conditions
case it leads to higher fluctuation.

8.1.3 Data extraction

Similarly to the free domain, the data extraction in the turbine simulation has
been carried out in specific locations and using co-processing, in order to mitigate
the storage resources required and the computational cost of post-processing.

Figure 8.5: Probes layout in the turbine domain

Figure 8.5 shows the distribution of the probes used to collect data in the turbine
domain. Firstly, a set of probes distributed on 6 equidistant planes is employed in the
inlet region, between 0.6× cax and 0.1× cax upstream to the LE of the blade. These
data are used to evaluate the isotropy and the TKE of the turbulence reaching the
blade. Then, a probe set is also located near the blade to evaluate the boundary layer
evolution on PS and on the SS. This information is analyzed in combination with
data extracted directly from the blade surface, to assess the presence of separation
bubbles and transition in the BL. Lastly, a set of probes distributed on two planes
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located respectively 0.25 × cax and 0.5 × cax downstream to the TE of the blade
is used to monitor the wake region. These planes correspond to the plane 05 and
plane 06 used in the VKI S1/C wind tunnel (Figure 4.2). All probe sets presented
in Figure 8.5 are extruded along the spanwise direction across the entire blade span.
In addition, some instantaneous fields are extracted from a single spanwise plane to
generally evaluate the flow features.

8.2 Results and discussion

This section will present and discuss the results of the numerical simulation for
the turbine. The outcomes of the study is categorized as follows:

1. turbulent energy density spectrum and streamwise evolution of Reynolds stress
tensor, TKE, and integral length scales in the inlet turbulent flow;

2. instantaneous field in a single spanwise plane of the local Mach number, vor-
ticity, numerical Schlieren, and entropy generation;

3. time and spanwise average of the blade loading;

4. time and spanwise average of the skin friction coefficient on the wall blade,
and its temporal evolution;

5. velocity profiles and TKE in the BL, with related integral parameters;

6. pitchwise distribution of total pressure deflection, total temperature deflection,
Reynolds stress tensor and integral length scales in the wake, with deviation
angle and turbulent energy density spectrum.

8.2.1 Inlet

Figure 8.6 shows the streamwise evolution of Reynolds stresses in the inlet region
for the two types of inlet boundary conditions. The data related to this figure and
all the others present in this subsection are extracted through the inlet probe set
(Figure 8.5). The main differences between the two cases are the diagonal terms
of the Reynolds stress tensor. More specifically, the turbulence injected with static
conditions is much more isotropic. This result is perfectly consistent with what has
been observed in the free domain: in the total conditions case the u′u′ is lower, while
v′v′ is higher due to αin ̸= 0◦. The off-diagonal cross-product terms are near zero
for both cases, with a small difference in u′v′ that is negative for the total conditions
case, which also indicates turbulence anisotropy.

Figure 8.7 shows the TKE evolution in the inlet region with total and static
boundary conditions. The two curves are compared to the TKE evolution predicted
with the DHIT in the precursor domain. Similarly to the free domain, the TKE
at the inlet of the main domain is lower than the predicted value. Hence, some
turbulence kinetic energy is lost with the injection process, independently from the
type of boundary conditions. Furthermore, the curves related to the total conditions
case is higher due to the αin ̸= 0◦. Overall, the turbulent flow reaching the LE of
the blade in the static conditions case match better the expected values.
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Figure 8.6: Streamwise evolution of the Reynolds stresses in the inlet region, aver-
aged over time and along pitchwise and spanwise directions, with total (left) and
static (right) inlet boundary conditions (total case reproduced from [7])

Figure 8.7: Streamwise evolution of the TKE in the inlet region, averaged over time
and along pitchwise and spanwise directions, with total and static inlet boundary
conditions; the curves are compared to the TKE evolution predicted using the DHIT
(total case reproduced from [7])

Figure 8.8 shows the streamwise evolution of the integral length scales for the
three components of velocity fluctuation, computed along the spanwise direction.
The curves related to LXZ and LZZ are quite similar for the two numerical cases,
while a large difference can be observed for LY Z . In the Free stream case that
scale is close to LXZ , while the scale is higher and close to LZZ for the Mach total
case. In the case of homogeneous and isotropic turbulence, the integral length scale
calculated along a direction for the fluctuation of the velocity component in the
same direction is typically about twice the integral length scales calculated along
the same direction but related to the fluctuations of the velocity components in the
other directions:

LXZ ∼ LY Z ∼ 2LZZ . (8.1)

The scales reproduced by the Free stream case are much closer to this condition,
so this once again confirms that it is much closer to reproducing homogeneous and
isotropic turbulence. Overall, a slight increase of all scales along the streamwise
direction can be observed for both cases.

Figure 8.9 shows the energy density spectrum extracted at 0.5 × cax upstream
of the blade LE, for the static and total conditions cases. A line with slope -5/3
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Figure 8.8: Streamwise evolution of the integral length scales in the inlet region
related to the three components of velocity fluctuation, averaged over time and
integrated along the spanwise direction, with total (left) and static (right) inlet
boundary conditions (total case reproduced from [7])

is plotted in the inertial subrange as a reference of the spectrum function (Euqa-
tion 2.39). The curves related to the energy distribution of the two cases are quite
close, and also similar to the typical energy spectrum for homogeneous and isotropic
turbulence (Figure 2.1). However, the energy spectral content is slightly higher for
the free stream case.

Figure 8.9: Energy density spectrum averaged over time and along pitchwise and
spanwise directions, extracted at 0.5× cax upstream to the LE of the blade, for total
and static inlet boundary conditions (total case reproduced from [7])

8.2.2 Fields

Figure 8.10 shows the instantaneous field of the local Mach number M in a
spanwise plane. The M field, along with the other fields present in this subsection,
consists of multiple SPLEEN blades arranged side-by-side in the pitchwise direction
to enhance the visualization of the flow through the linear cascade. The general
behavior of the flow is the same for both inlet conditions cases. The flow decelerates
on the PS near the LE, where a short separation bubble can be observed due to the
adverse pressure gradient. Further downstream, the flow accelerates and reattaches
to the wall shortly after. Regarding the SS, the flow accelerates in the front part
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and separates in the rear part of the blade where the flow decelerates. Nevertheless,
the flow reattaches before reaching the TE. As a result, the wake width near the
blade is equal to the blade thickness at the TE (t). Furthermore, the low-velocity
region within the wake, which exhibits a highly unsteady nature, can be observed.

Since 8 precursor domains are required to cover the entire inlet section of each
blade domain, strong periodicity in the flow structure along the pitchwise direction
is observed. However, the high correlation along the pitchwise direction should not
compromise the reproduction of a physical turbulent flow behavior (see Chapter 6).

One aspect that differs between the two simulations concerns the local Mach
number gradient observed within the blade channel. Specifically, in the case of
static inlet conditions, the Mach field in this region is significantly smoother com-
pared to the case with total inlet conditions. This is probably caused by the higher
level of disturbances present in the latter case.

Figure 8.10: Instantaneous field of the Mach number extracted from the spanwise
plane at z = 0, with total (left) and static (right) inlet boundary conditions (total
case taken from [7])

Figure 8.11 shows the instantaneous field of the vorticity magnitude ω in a span-
wise plane. Similar to what was observed for the Mach number field, there is a
strong periodicity of the turbulent structures along the pitchwise direction. Also
in this case, the general vorticity distribution for the two different types of inlet
conditions exhibits the same characteristics. Vorticity production is concentrated
in the flow regions near the wall and in the wake. In particular, this visualization
highlights the separation bubbles. Indeed, high levels of vorticity are noticeable at
the free shear layer at the interface between the separated flow and the bubble, i.e.,
on the PS near the LE and on the SS near the TE. Nevertheless, the highest levels
of vorticity are located in the wake, especially in the portion closest to the blade’s
trailing edge.

Another aspect highlighted by this field is the flow acceleration in the blade
channel. Indeed, the turbulent structures are deformed and elongated along the flow
direction in this region. Regarding this phenomenon, it is worth specifying that the
difference found between the two cases for the vorticity distribution in the blade
channel can be attributed to the different time instant at which the corresponding
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fields were extracted. Although the same turbulence structures are injected in both
simulations, their position in the cascade is different due to the different time they
have had to travel downstream.

Figure 8.11: Instantaneous field of the vorticity magnitude extracted from the span-
wise plane at z = 0, with total (left) and static (right) inlet boundary conditions
(total case taken from [7])

Figure 8.12 shows the instantaneous field of the local normalized density gradi-
ent (∇ρ/ρ), also known as numerical Schlieren. Similar to previous fields, a strong
pitchwise periodicity is present in this case, due to the density variations caused by
the turbulent structures. The numerical Schlieren is displayed using a logarithmic
scale. The highest density variations are observed near the blade wall and in the
wake, while smaller variations attributable to acoustic waves are present in the rest
of the domain. Since the flow in subsonic, these waves can travel upstream. Indeed,
perturbations travel from the wake to the blade. Furthermore, ”V” shape structures
can be found near the rear part of the SS, where the waves reflect on the blade wall.

The main difference between the numerical Schlieren extracted from the cases
lies in the intensity of the acoustic waves. In fact, the density variations in the case of
total conditions are more marked. The cause of this phenomenon can be attributed
to the compensation procedure implemented within the turbulence injection. The
total pressure and total temperature imposed at the inlet for the Mach total simu-
lation are evaluated on the sum of convective inlet velocity and turbulent velocity
fluctuations. As a consequence, a compensation is necessary to obtain the desired
total value after imposing the velocity fluctuation from the precursor domain. This
procedure could be the cause of such acoustic disturbance in the numerical simula-
tion.

Figure 8.13 shows the instantaneous field of the entropy generation (∆s). As
discussed in Section 3.4, ∆s can be used to estimate the amount of losses in the
cascade. The entropy distribution in the two cases is very similar. Most of the
losses are generated on the rear part of the SS and in the base flow, by the viscous
effects in the mixing of the edges of the separation bubble and the wake. Indeed, a
slight ∆s level is also observed on the front part of the PS, where a short separation
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Figure 8.12: Instantaneous field of the normalized density gradient (numerical
Schlieren) extracted from the spanwise plane at z = 0, with total (left) and static
(right) inlet boundary conditions (total case taken from [7])

bubble occurs. The entropy generated by the free stream turbulence is negligible
compared to the other effects, and therefore is not visible.

Figure 8.13: Instantaneous field of the entropy generation extracted from the span-
wise plane at z = 0, with total (left) and static (right) inlet boundary conditions
(total case taken from [7])

8.2.3 Blade loading

Figure 8.14 shows the distribution of the isentropic Mach number on the blade
(Mis) for the two inlet boundary conditions cases and for the experimental case.
The upper curves are related to the SS, while the lower ones are related to the PS.
The x-axis refers to the streamwise location which is made dimensionless through
cax. The Mis distribution is directly correlated to the static pressure acting on the
wall (see Equation 3.1), thus it can be used to evaluate the normal component of
the forces exchanged between the flow and the blade surface.

The behavior of the curves related to the different inlet conditions is similar
for most of the blade surface, except in the front part of the PS and in the rear
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part of the SS. More specifically, the discrepancy is observed near the regions where
the separated flow reattaches to the wall. Apparently, the case with static inlet
conditions tends to reattach further downstream, both for the separation bubble on
the PS and for the one on the SS. The cause can be attributed to the different TKE
injected for the two cases. Indeed, the higher turbulent intensity associated with
the total inlet conditions case causes the transition of the boundary layer further
upstream, thus leading to an earlier flow reattachment.

In the remaining portions of the blade, the two curves are overlapped, except for
a discrepancy in the rear part of the SS, where the Mis of the total conditions case
is slightly higher.

Overall, both numerical simulations reproduce the experimental measurements
quite well. However, the simulation with static inlet conditions deviates slightly
from the experimental flow reattachment on the PS. On the other hand, it has a
better agreement near the reattachment on the SS.

Figure 8.14: Time and spanwise average of the isentropic Mach number on the
blade, with total and static inlet boundary conditions cases (total case taken from
[7]) compared to experimental data [1]

8.2.4 Skin friction

Figure 8.15 shows the distribution of the skin friction coefficient cf (see Equa-
tion 2.49) around the blade, related to the wall shear stress τw for the two numerical
cases. In addiction, the quasi-wall shear stress τq measured experimentally is plotted
on a separated axis. The latter is reported to make a comparison on the general

Chapter 8 Carlo Di Cintio 89



Master’s thesis

trend and not on the absolute value. Similarly to Figure 8.3, the solid lines rep-
resent the time-averaged values and the dashed lines represent the extremes of the
instantaneous values. In addition, the negative part of the abscissa refers to the PS,
while the positive part refers to the SS.

Figure 8.15: Time and spanwise average of the skin friction coefficient on the blade,
with total and static inlet boundary conditions cases [total case taken from 7] com-
pared to experimental data [1]

The general behavior of the two curves is the same. On the SS, cf is large
near the LE, then it decreases to 0 at the separation point (see Equation 2.53).
A long separation bubble occurs in the rear part (where cf < 0), then the flow
reattaches near the TE and the cf rapidly increases. The large fluctuations observed
in the rear part are linked to the transition of the BL from laminar to turbulent
regime. As predicted in the previous sections, the onset of turbulence in the static
conditions case is further downstream because of the lower TKE injected. As a
consequence, reattachment is also delayed downstream, leading to a better match
with the experimental results.

Regarding the PS, large cf is observed near the LE, then it rapidly decreases
to 0 at the separation point. The increase in fluctuations indicates the onset of
turbulence in the separated flow, which allows the reattachment of the BL and leads
to a short bubble formation. Due to the lower TKE in the static conditions case, the
reattachment occurs slightly downstream. In the remaining portion of the PS, the cf
gradually increases. Here, the decreasing fluctuations indicate the relaminarization
of the BL, caused by a favorable pressure gradient.

Figure 8.16 shows the temporal evolution of the spanwise averaged cf on the blade
for the two numerical cases, over a time span of 5 · 10−4 s. Black curves indicate
where cf = 0, thus allowing to assess the evolution of the separation bubbles over
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(a) Mach total inlet boundary conditions

(b) Free stream inlet boundary conditions

Figure 8.16: Time evolution of the spanwise averaged skin friction coefficient on the
blade, with total (top) and static (bottom) inlet boundary conditions (total case
taken from [7])

time.

The long separation bubble near the TE on the SS exhibits a strong oscillatory
behavior caused by periodic bubble bursting. However, the separated flow manages
to reattach before the TE in each time step, and an open separation never occurs.
Again, it is possible to observe the longer bubble for the static conditions case on
average over time.

Regarding the PS, the short bubble occurs near the LE. Unlike the long bubble,
the amplitude of fluctuations in this case is much smaller. Comparing the two
numerical cases, it is again possible to observe the slight difference in bubble size on
average over time.

Lastly, some blurred lines consistent with the shape of bubbles are present on
the rear part of the PS and on the front part of the SS. In the former case, the
lines indicate the vortices generated in the short bubble that travel downstream.
In the latter, they indicate information traveling upstream from the long bubble.
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Furthermore, the case with total conditions exhibits more blurred lines with more
directions, probably due to the greater acoustic disturbances present in this case
(Figure 8.12).

8.2.5 Boundary layer

Figure 8.17 shows some tangential velocity profiles for the two numerical cases.
The velocity data are extracted using the boundary layer probe set (Figure 8.5).
The tangential velocity is made dimensionless using the isentropic output velocity
(u/Uis,out). The negative part of the abscissa refers to the PS, while the positive
part refers to the SS.

The plots give the same information of the previous sections. On the PS, the flow
separation occurs near the LE, then it rapidly reattaches and accelerates moving to-
wards the TE. Regarding the SS, the flow accelerates in the front part of the blade
and separates in the rear part, but it manages to reattach before the TE. The curves
for the two cases overlap over most of the domain, except for the separation bubbles.
In the static inlet conditions case, the flow reattaches further downstream, with a
slight discrepancy in velocity profiles on the PS and a more noticeable one on the SS.

Figure 8.17: Time and spanwise average of tangential velocity profiles in the bound-
ary layer, with total and static inlet boundary conditions (total case taken from [7])

Figure 8.18 shows the dimensionless tangential velocity field in the boundary
layer. The information contained in this field is similar to that reported in Fig-
ure 8.17, but in this case the separation bubbles are highlighted. The magenta lines
represent the union of the points where the tangential velocity is zero. Since the field
refers only to the tangential component of velocity, the highlighted contour does not
exactly represent the average profile of the separation bubbles. Nevertheless, it can
be considered representative of the phenomenon and therefore an approximation of
the real shape. On the other hand, the normal component of velocity is zero on the
wall, thus the average separation and reattachment points correspond to the actual
ones.

Looking at the figure, it is evident the difference for the bubbles length and shape
on the two sides of the blade. The flow on the PS separates and reattaches quite
rapidly. Differently, the bubble on the SS has an elongated front part and a shorter
rear part. The former is due to the strong adverse pressure gradient encountered by
the boundary layer, while the latter is due to the turbulent reattachment.
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In addition, a slight difference can be observed between the two numerical sim-
ulations. Not only the bubbles of the simulation with static inlet conditions are
slightly longer, but they are also higher in a certain sense. Since the flow reattaches
further downstream, the free shear layer moves further away from the wall and the
flow displacement induced by the presence of the separation bubbles is greater.

(a) Mach total inlet boundary conditions

(b) Free stream inlet boundary conditions

Figure 8.18: Time and spanwise average of the tangential velocity in the boundary
layer, with total (top) and static (bottom) inlet boundary conditions (total case
taken from [7])

Figure 8.19 shows the TKE distribution in the boundary layer. The field high-
lights the turbulent fluctuations generated by separated flow transition (see Subsec-
tion 2.3.1). Indeed, high TKE is concentrated in the separated flow regions. On the
PS, the free shear layer produces high velocity fluctuations, which rapidly propa-
gate into the boundary layer, causing its transition and thus the reattachment of the
flow to the wall. In the rear part of the PS, the favorable pressure gradient leads to
relaminarization and gradual decrease in TKE. Conversely, the SS is characterized
by low velocity fluctuations up to the region near the TE, where the separated flow
transition leads to high levels of TKE. In the case with static inlet conditions, the
concentration of TKE is visibly further downstream, denoting the delayed transition
of the boundary layer.

Figure 8.20 shows the integral quantities on both PS and SS for the two numerical
cases. The quantities presented are the displacement thickness δ⋆, the momentum
thickness θ and the shape factor H (see Section 2.3). The horizontal dashed line in
H = 2 represents the boundary between laminar and turbulent regimes.

Overall, the curves behavior is the same for both simulations. On the PS δ⋆

increase rapidly near the LE due to the separation. θ also increases: at first the slope
is low, then the slope increases due to the increasing momentum exchange caused by
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(a) Mach total inlet boundary conditions

(b) Free stream inlet boundary conditions

Figure 8.19: Time and spanwise average of the TKE distribution in the boundary
layer, with total (top) and static (bottom) inlet boundary conditions (total case
taken from [7])

the transition of the boundary layer. At the same location, H drops sharply below
2, indicating the transition from laminar to turbulent regime. Just downstream the
transition, the flow reattaches and δ⋆ decreases. θ decreases with reattachment as
well, and also decreases due to the gradual transition from turbulent to laminar
regime. H tends to increase after the reattachment, confirming the relaminarization
caused by the favorable pressure gradient on the rear part of the PS.

On the SS, the separation occurs on the rear part of the blade, where δ⋆ rapidly
increases. H firstly increases due to the laminar separation, and then it starts to
decrease, indicating the transition of the BL. Subsequently, the higher momentum
exchange allows the reattachment before the TE and thus δ⋆ decreases. θ gradually
increases in the front part, while a high slope is observable near the TE due to the
transition.

Figure 8.21 shows the same information of Figure 8.20, with a focus on the
differences between the two numerical cases. In the static inlet conditions case, δ⋆

exhibits higher values in the separation region, with the maximum values further
downstream. Indeed, the flow displacement induced by the separation is stronger
compared to the total inlet conditions case; moreover, the reattachment of the flow
occurs further downstream. Regarding θ, the curve related to the static conditions
case is slightly higher in the short bubble on the PS, while it is slightly lower in the
long one on the SS. Lastly, the H curves present the same features discussed for δ⋆,
i.e., higher values and further downstream maximum values for the static conditions
case in the separation regions. Indeed, the transition is delayed due to the lower
TKE injected.
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(a) Mach total inlet conditions (b) Free stream inlet conditions

Figure 8.20: Time and spanwise average of the boundary layer integral parameters,
with total (left) and static (right) inlet boundary conditions (total case taken from
[7])

8.2.6 Wake

Figure 8.22 shows the normalized distribution of total pressure loss in the wake.
This parameter can be used to evaluate the losses in the wake (see Section 3.4). The
data of plane 05 and plane 06 are extracted using probe sets located downstream
the TE at 0.25× cax and 0.5× cax respectively (Figure 8.5). All the plots discussed
in this subsection refer to the same locations (plane 05 and 06). Experimental
measurements are available only for plane 06.

The curves of plane 05 are more elongated compared to plane 06. This behavior is
related to the total pressure decay, which affects both numerical simulations equally.
The maximum total pressure loss decreases, while the width of the curve tends to
increase due to the wake, which involves a larger portion of flow while moving
downstream.

Furthermore, for the same location, the shape of the curve changes slightly be-
tween the two numerical cases. In fact, the simulation with static inlet conditions
shows lower maximum values of total pressure loss and greater widths. The resulting
distribution leads to a better agreement with the experimental results, especially for
negative values of the pitchwise coordinate. The numerical simulation predicts the
peak of the curve very well, even though the width is still smaller.

Figure 8.23 shows the total temperature distribution in the wake. Overall, the
phenomena observed are similar to those discussed on Figure 8.22. Traveling from
plane 05 to plane 06, T 0 peaks decrease and its curve becomes wider. Furthermore,
the case with static conditions exhibits lower peaks and wider curves on both planes
compared to the total conditions case.

Figure 8.24 shows the flow angle distribution in the wake. The thick black line
correspond to the metal angle at the TE: α′

2 = 53.8◦ (see Section 3.1).

The shape of the curves is closely linked to the chaotic behavior of the von
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(a) Displacement thickness (b) Momentum thickness

(c) Shape factor

Figure 8.21: Time and spanwise average of displacement thickness (top-left), mo-
mentum thickness (top-right) and shape factor (bottom), with total and static
inlet boundary conditions (total case taken from [7])

Karman vortex street (Figure 2.7). In plane 05, the average flow angle is higher
for negative values of the pitchwise coordinate, and it is lower for positive values.
Traveling to plane 06, the trend is the opposite. Nevertheless, the pitchwise average
of the flow angle does not change between the two streamwise locations.

The shape of the curves relating to the two numerical simulations is almost
identical. However, the case with static inlet conditions shows a shift in the flow
angle of about +0.25◦. Consequently, the resulting deflection (δfs ≈ 0.3◦) is smaller
compared to the case with total inlet conditions (δtot ≈ 0.55◦).
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Figure 8.22: Time and spanwise average of the total pressure defect in the wake on
planes 05 and 06, with total and static inlet boundary conditions cases (total case
taken from [7]) compared to experimental data [1] (plane 06 only)

Figure 8.23: Time and spanwise average of the total temperature in the wake on
planes 05 and 06, with total and static inlet boundary conditions (total case taken
from [7])
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Figure 8.24: Time and spanwise average of the flow angle in the wake on planes 05
and 06, with total and static inlet boundary conditions (total case taken from [7])

Figure 8.25 shows the pitchwise distribution of the Reynolds stresses within the
wake. The turbulent content in this region is primarily attributed to the presence of
the von Karman vortex street. The intensity of the various Reynolds stress tensor
components is strongly influenced by the predominantly two-dimensional nature of
this coherent structure. Regarding the diagonal terms, u′u′ and v′v′ are of the same
order of magnitude and higher than w′w′. Furthermore, the higher non-diagonal
term is u′v′, while u′w′ and v′w′ are both around zero.

Those turbulent features are observable in both planes and for both numerical
cases. However, the curves related to plane 06 are flatter due to turbulent decay in
the wake. The general behavior for the two numerical cases is the same, with v′v′

and u′v′ slightly higher for the static conditions case.

Figure 8.26 shows the energy density spectrum in the wake, with a slope −5/3 as
a reference of the spectrum function (Equation 2.39). Due to the turbulent decay,
the turbulent content in the plane 05 is higher compared to plane 06. However, the
energy is distributed in the same way across the different scales. There is no signif-
icant spectrum difference between the two numerical simulations in either plane.
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(a) Plane 05

(b) Plane 06

Figure 8.25: Time and spanwise average of the diagonal stresses in the wake on
planes 05 and 06, with total and static inlet boundary conditions (total case taken
from [7])

Chapter 8 Carlo Di Cintio 99



Master’s thesis

Figure 8.26: Time and spanwise average of the energy density spectrum in the wake
on planes 05 and 06, with total and static inlet boundary conditions (total case
taken from [7])

Figure 8.27 shows the spanwise distribution of the integral length scales for the
three components of velocity fluctuation, computed along the spanwise direction.
The black dotted line indicates half of the spanwise thickness. Since the latter is
greater than the length scales, the computational domain should be thick enough to
solve the turbulent scales in both numerical simulations.

The general trend of the integral length scales is the same in both planes. Their
distribution along the pitchwise direction is strongly affected by the presence of the
wake. Since the von Karman vortex street is dominantly two-dimensional, LXZ

and LY Z are higher compared to LZZ in the middle of the plots, where the flow
phenomenon occurs. Conversely, LXZ and LY Z are lower than LZZ at the edges of
the plots, far from the wake. The turbulent structure in those regions refers to the
injected structures, which have been deformed in different ways in the blade channel.
Indeed, LXZ and LY Z exhibit strong fluctuations near the edges. Contrarily, the
curves are smoother in the middle due to coherent structures of the vortex street.

The flow characteristics described above are valid for both numerical simulations.
However, within the vortex street, LXZ and LY Z are higher for the static conditions
case.
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(a) Plane 05

(b) Plane 06

Figure 8.27: Time and spanwise average of the integral length scales in the wake on
planes 05 and 06, with total and static inlet boundary conditions (total case taken
from [7])
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Conclusion

In this master’s thesis, the effect of different simulation parameters on DNS with
turbulence injection was investigated. The study was performed on two primary
domains: a free domain and a high-speed low-pressure turbine.

In the case of the free domain, a parametric study was conducted to evaluate the
impact of the following simulation parameters: Reynolds and Mach numbers, inlet
boundary conditions type, injection angle, and mesh type. The initial phase of the
investigation, conducted by varying the Reynolds and Mach numbers while keeping
the other parameters constant, revealed that the effect on turbulence statistics was
minimal across different cases.

Subsequently, the remaining three simulation parameters were varied, while
maintaining the Reynolds and Mach numbers at their baseline values. The results
demonstrated that varying the inlet boundary conditions type leads to a signifi-
cant variation in turbulence statistics. The turbulence in the case of total inlet
conditions is highly anisotropic and also exhibits a substantial discrepancy between
LY Y and LZZ compared to LXX . Conversely, the case with static inlet conditions
showed isotropic turbulence for the diagonal terms of the Reynolds stress tensor and
a greater consistency of LXX with the other integral length scales. Regarding the
injection angle, the effect was particularly pronounced in the simulations with total
inlet conditions, especially concerning the v′v′ fluctuations. In contrast, αin had
minimal effect on the simulations with static inlet conditions, with the exception of
variation for LXX .

The effect of mesh type was evaluated by comparing isotropic and anisotropic
meshes, distinguishing between cases with αin = 0◦ and αin ̸= 0◦. In cases with
αin = 0◦, the mesh type did not induce any significant variation in the turbulence
statistics for simulations with total inlet conditions. However, distinct observations
were made for simulations with static inlet conditions. In the latter case, the refined
anisotropic mesh resulted in a slower decay of turbulence along the streamwise di-
rection. Despite the mesh anisotropy, the turbulence remained isotropic, albeit with
higher diagonal terms in the Reynolds stress tensor. Conversely, the integral length
scales decreased compared to the isotropic mesh case and exhibited better agreement
among themselves. For cases with αin ̸= 0◦, the mesh variation led to changes in the
turbulence statistics even for simulations with total inlet conditions. Specifically,
the anisotropic mesh, compared to the isotropic one, caused an increase in the diag-
onal terms of the Reynolds stress tensor proportional to the injection angle, while
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the integral length scales decreased. In contrast, the effect of mesh type on simula-
tions with static inlet conditions remained consistent for both αin ̸= 0◦ and αin = 0◦.

The observations from the free domain simulations were utilized to assess the
impact of boundary conditions with turbulence injection in the case of the high-
speed low-pressure turbine. To achieve isotropic free stream turbulence, static inlet
conditions were employed. The results were then compared with experimental [1]
and numerical [7] results pertaining to the same test case. To isolate the effect of inlet
boundary conditions, the turbine simulation conducted in this study used the same
mesh and computational setup as the simulation used for numerical comparison,
with the exception of the inlet conditions. Specifically, static inlet conditions were
used in this study, while total inlet conditions were used in [7]. Consistent with the
findings from the parametric study, the use of static inlet conditions enabled the
attainment of homogeneous and isotropic free stream turbulence. Furthermore, the
turbulent kinetic energy was lower compared to the case with total inlet conditions,
and exhibited better agreement with the experimental data.

Beyond the inlet region, the primary differences between the two numerical sim-
ulations are observable in the separation bubble regions, specifically on the PS near
the LE and on the SS near the TE. In both cases, laminar separation occurs, fol-
lowed by transition and reattachment of the separated flow. However, due to the
lower TKE injected in the case with static inlet conditions, the transition and subse-
quent reattachment occur further downstream. Consequently, the TKE production
in the boundary layer due to separation is also shifted downstream, and the flow
displacement from the wall due to the separation bubbles is increased. Overall, the
simulation with static inlet conditions exhibits better agreement with the experi-
mental data in terms of blade loading and wake characteristics. A final difference
between the two numerical simulations pertains to acoustic waves. Specifically, the
case with static inlet conditions demonstrates lower acoustic disturbances compared
to the case with total inlet conditions.

In conclusion, this study has demonstrated that various types of turbulence injec-
tion boundary conditions have a significant impact on DNS results. Future research
could explore the influence of additional simulation parameters on turbulence in-
jection, investigate further types of turbulence injection boundary conditions, and
examine the effect of these conditions on a wider range of test cases.
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