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Abstract

The newest concepts of rendezvous missions involving on-orbit servicing tasks and
proximity operations have highlighted the need for alternative strategies for the
Target's orbit determination. While a cooperative Target is usually a spacecraft
equipped with GNSS sensors and Inertial Measurement Units, and is therefore ca-
pable of communicating its state to the Chaser or to the Ground Segment, this does
not hold in the case of a non-cooperative Target, like a decommissioned or mal-
functioning satellite, an asteroid or a space debris. Angles-only navigation o�ers a
relatively simple and low cost solution to this problem, exploiting a Chaser-mounted
optical camera which tracks the Target motion along the entire orbit. The main dis-
advantage of angles-only navigation is represented by the complex determination
of the inter-satellite distance, which is unobservable if linear motion models are
employed. This Thesis presents a method for Initial Relative Orbit Determina-
tion (IROD) that leverages line-of-sight observations and the non-linearities in the
relative motion dynamics to retrieve the initial relative position between the two
spacecraft, which can be subsequently used to initialize a real-time navigation �lter.
Furthermore, given the space hardware requirements and constraints, this method
must be e�cient and computationally light enough to run on mission-feasible hard-
ware. In the long term, this could enable the design of fully autonomous spacecraft,
capable of accomplishing delicate tasks like orbit determination without necessarily
relying on data provided a priori or uploaded from Ground.
After a brief introduction on rendezvous and proximity operations, with a focus on
the contribution of DLR to the history of rendezvous and on-orbit servicing missions,
the Thesis will present the theoretical fundamentals of relative motion dynamics in
near-circular low Earth orbits, concentrating on analytical relative motion models
suited for on-board application. Subsequently, angles-only navigation will be cov-
ered thoroughly, with a deeper insight on the Initital Relative Orbit Determination
scope, challenges and possible solutions. Chapter 4 will evaluate the accuracy of
analytical relative motion models, and will introduce a mathematical formulation
which models the nonlinearities associated to the curvature of the orbital path. In
Chapter 5, the implemented IROD algorithm will be presented and extensively dis-
cussed, highlighting fundamentals, strengths, assumptions and the optimizations
that have been performed. Finally, Chapter 6 will o�er a detailed evaluation of
the algorithm performance, by highlighting its robustness in presence of noise and
visibility constraints, presenting tests based on Monte-Carlo analyses, assessing its
behaviour with real data from the PRISMA mission of DLR, and �nally evaluating
its runtime performance on a real onboard computer.
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1

Introduction

1.1 Space rendezvous

A space rendezvous is a sequence of orbital manoeuvres that enable one spaceraft,
commonly known as Chaser, to approach another spaceborne object, usually referred
to as Target. The Target could be a satellite, a space station, an asteroid or a space
debris. A rendezvous is essential whenever the Chaser must perform the so-called
proximity operations in the vicinity of the Target. Such operations include docking
to a designated port (e.g. the docking of a Soyuz spacecraft to the International
Space Station), inspecting the Target with on board dedicated sensors, or capturing
the Target with a robotic manipulator in order to perform various functions, such
as maintenance, assembly, or component replacement. These latter scenarios fall
under the domain of the so-called On-Orbit Servicing (OOS).

Figure 1.1: Soyuz TMA-03M docking to the International Space Station (ISS). Credits: NASA

The rendezvous process entails a high complexity, given the strict constraints that
must be met. The Chaser spacecraft must be precisely injected by the launch vehicle
into an orbit which is coplanar or quasi-coplanar to the Target one. Failure to
do so would ultimately result in an unsuccessful mission, since the fuel required
to complete the rendezvous at that point would likely exceed the amount stored
in the Chaser's tanks. If the rendezvous is successful and the two objects are in
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close vicinity to one another, it is crucial to avoid collisions or losses of control of
the Chaser: any approach trajectory must be inherently safe, and allow a collision
avoidance manoeuvre if required. Furthermore, position and attitude actuators
have to be appropriately collocated, calibrated and redunded in order to always
allow the completion of delicate and subtle manoeuvres. Finally, the rendezvous
sequence must cope with di�erent Sun illumination conditions, communication link
constraints and crew work cycle (in the case of a manned rendezvous) [3].

1.1.1 History of rendezvous missions

The �rst attempted rendezvous was made in 1965, when the National Aeronautics
and Space Administration (NASA) sent astronaut Jim McDivitt on the Gemini 4
in an attempt to drive the spacecraft towards its launch vehicle's (Titan II ) upper
stage. The manoeuvre could not be completed, but this failure posed the bases
for the �rst successful rendezvous attempt, when in 1966 astronaut Wally Schirra
manoeuvred Gemini 6 to within less than one meter of its twin spacecraft Gemini
7. Few months later, Neil Armstrong successfully docked Gemini 8 with the Agena
target vehicle, completing the �rst rendezvous and docking mission in the history
of mankind. One year later, in 1967, the USSR managed to accomplish the �rst
fully automated rendezvous and docking, successfully connecting the Kosmos-186
and Kosmos-188 unmanned spacecraft. From that point on, rendezvous missions
and experiments grew in number and complexity: from the rendezvous of the Lunar
Module with the Command and Service Module during Apollo 11, to the numerous
successful docking attempts of the Space Shuttle and of the aforementioned Soyuz
spacecraft with the ISS.

Figure 1.2: Gemini 8 approaching the Agena target vehicle. Credits: NASA
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1.2 On-Orbit Servicing

On-Orbit Servicing operations include all those tasks that the Chaser (also referred
to as Servicer) performs physically and directly on the Target, aimed for example
at extending the life, improving the functionability or restore the usability of the
Target itself. Such operations include refueling, repairs of hardware or software
components, �xing malfunctionalities, installing new components, assembling dif-
ferent pieces together, removing space debris to reduce space junk and de-orbiting
decomissioned satellites.
Several studies [4][5][6] have highlighted how relying on OOS could ultimately lead
to substantial costs reduction and more e�cient resources allocation. For example,
on-orbit refueling could extend the life of a certain satellite, preventing the operator
from requiring the construction of a new equivalent spacecraft to provide the same
exact service. Furthermore, on-orbit repair could allow satellite manufacturers to
decrease the redundancy of spacecraft subsystems and components, reducing weight,
system complexity and manufacturing costs.

Figure 1.3: Orbital Express: ASTRO and NEXTSat. Credits: Boeing/DARPA

1.2.1 History of On-Orbit Servicing missions

The �rst ever satellite servicing mission is often considered to be the the on-orbit
repair of the Solar Maximum Mission satellite. In 1984, the NASA Space Shut-
tle successfully approached the satellite, which had su�ered an electronic failure,
allowing astronauts James van Hoften and George Nelson to manually repair the
malfunctioning spacecraft, ultimately extending the satellite's lifespan by an ad-
ditional 5 years. In the following years, the famous sequence of manned on-orbit
repairs that the Hubble Space Telescope underwent took place, between 1993 and
2009.
In 2007, the United States Defence Advanced Research Project Agency (DARPA)
and NASA launched the Orbital Express mission (Figure 1.3). The experiment
demonstrated the feasibility of autonomous space servicing: the Boeing-manufactured
servicer ASTRO successfully refueled and swapped batteries of the Target NEXTSat.
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More recently, Northrop Grumman successfully developed and launched Mission Ex-
tension Vehicle (MEV) 1 and 2. In 2018, MEV-1 managed to rendezvous and dock
to Intelsat 901, a communication satellite which had been previously collocated in
a graveyard orbit, repositioning it to its designated geosynchronous spot and ulti-
mately extending its lifetime by 5 years. Similarly, in 2021 MEV-2 docked to Intelsat
10-02, an actively operating communication satellite, in order to extend its lifespan
by approximately 5 years.

1.2.2 Characteristics of On-Orbit Servicing missions

OOS missions may di�er signi�cantly from one another based on their ultimate goal;
however, it is possible to individuate 4 phases which are generally consistent across
all. An OOS mission begins with a rendezvous between Chaser and Target, aimed at
bringing the former in proximity of the latter. After that, the Chaser starts inspect-
ing the Target to acquire its motion and physical properties information, in order to
accurately plan approach, docking or grasping. Following this, the physical contact
between the two objects takes place, either with a robotic manipulator or through a
docking port. Finally, the Target is stabilized and the servicing operations begin [7].
The complexity of OOS operations varies considerably from case to case, and it is
a�ected by several factors, like environmental factors (orbit altitude, illumination,
thermal conditions), servicer capabilities (degree of autonomy, sophistication of the
robotic manipulator), and Target design and conditions (presence of docking ports,
tumbling motion).
One of the most signi�cant Target conditions to be assessed is the cooperativeness.
In the context of the initial rendezvous, approach and inspection, the Target is de-
�ned as cooperative if it is fully capable of communicating with the Chaser or with
the ground segment, and if it is able to control its own position and attitude. On the
contrary, a Target is uncooperative if it is neither able to transmit any information
regarding its states, nor capable of exerting authority over its position and attitude.
Such scenario is certain if the Target is represented by an asteroid, a space debris or
a completely non-functioning satellite. Hybrids between the two cases are also pos-
sible: for example, the Target may not be able to control its position and attitude
due to a failure of its Attitude and Orbit and Control System (AOCS), but may still
be able to communicate. In such case, the Target is still classi�ed as cooperative,
but also as uncontrolled.
In the case of an OOS mission with an uncooperative Target, the Chaser's rendezvous
Guidance, Navigation and Control (GNC) system has to deal with challenging con-
ditions. Indeed, being the Target just a passive object �ying in space, its orbit may
be determined approximately with optical or radar tracking from ground, but its
precise location has to be determined by the Chaser. The lack of functioning anten-
nas and GNSS sensors on the Target forces the use of optical navigation techniques
like angles-only navigation for the determination of its state by the Chaser [8]. Fur-
thermore, the absence of a constant ground station contact requires the GNC system
to have a strong level of autonomy, avoiding Man-In-the-Loop interventions as much
as possible, ideally only for non-nominal operations.
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1.3 Angles-only navigation: the legacy of PRISMA

and AVANTI

The main features of angles-only optical navigation, often also referred to as Line-
Of-Sight (LOS) navigation, will be addressed extensively in Chapter 3. For now,
it is su�cient to know that this technique utilizes bearing measurements acquired
through a simple optical camera mounted on the Chaser, enabling it to safely navi-
gate towards the Target and complete a full rendezvous manoeuvre. In particular,
LOS navigation can be used to approach the Target from several tens of kilometers
down to a few hundred meters, covering the so-called far-range and mid-range �eld.
For the close-range �eld, other specialized sensors shall take over the relative navi-
gation task to determine the Target states [1].
The Prototype Research Instruments and Space Mission technology Advancement
(PRISMA) mission was one of the �rst on-orbit testbeds to demostrate strategies
and technologies for rendezvous and formation �ying. The prime contractor was
OHB-SE, supported by the Swedish National Space Board (SNSB). Major contri-
butions and support have to be credited to the German Aerospace Center (DLR),
the French National Space Center (CNES) and the Danish Technical University
(DTU). Several hardware and software experiments involving Mango (the Chaser)
and Tango (the Target) were conducted during the mission, involving new technolo-
gies for propulstion, vision based sensors (VBS), Global Position System (GPS) and
Radio-Frequency (RF) based navigation, as well as several GNC algorithms [9].

Figure 1.4: Mango (left) and Tango (right). Credits: OHB-SE

One of the experiments was the Advanced Rendezvous experiment using GPS and
Optical Navigation (ARGON), designed and executed by the German Space Oper-
ations Center (GSOC) of DLR between the 22nd and the 27th of April 2012. The
idea behind ARGON was to demostrate the feasibility of a LOS navigation-based
Ground-In-the-Loop rendezvous with an uncooperative Target: indeed, for the sake
of the experiment, Tango was considered passive, and no information from its GPS
sensors was directly used during the demonstration. Mango managed to rendezvous
with Tango starting from a relative distance of approximately 30 km to a �nal inter-
satellite separation of 3 km, successfully testing the performance of several sensors,
of the image processing and of many GNC algorithms and techniques.
The positive outcomes of ARGON posed the bases for the design and realization of
the Autonomous Vision Approach Navigation and Target Identi�cation (AVANTI)
experiment, conducted in November 2016 by DLR. The AVANTI demonstration
was one of the secondary scienti�c objectives of the FireBird mission, a DLR sci-
enti�c mission primarly intended for Earth observation. The experiment used the
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Bispectral Infrared Optical System (BIROS) spacecraft of the FireBird constella-
tion as Chaser, while the Target was the Berliner Experimental and Educational
Satellite-4 (BEESAT-4) cubesat which was carried onboard of BIROS itself. The
main di�erence between ARGON and AVANTI was the near-complete autonomy of
the rendezvous between the two spacecraft in the latter experiment. Unlike AR-
GON, which was carried out with a Ground-In-the-Loop approach, many of the
GNC tasks (image processing, Target detection, relative navigation, optimized orbit
guidance, safety monitoring) in AVANTI were autonomously conducted on board,
with ground activities limited to the choice of the �nal formation con�guration and
to some validation and monitoring tasks. Furthermore, while in ARGON the GPS
data of Tango, although not used for the rendezvous, were always available in the
background and ready to be used if necessary for a collision avoidance manoeuvre,
the GPS sensors of BEESAT-4 were completely switched o�, making the Target
uncooperative in every aspect. During AVANTI, two successful fully autonomous
rendezvous where executed: the �rst brought BIROS from 13 km to 1 km of distance
to BEESAT-4, and the second from 3 km to 50 m, leveraging angles-only navigation
for the approaches [1][10][11].

Figure 1.5: BIROS (left) and BEESAT-4 (right). Credits: DLR

1.4 The problem of Initial Relative Orbit Determi-

nation

Although in AVANTI the level of autonomy of the whole GNC system reached a very
signi�cant level, the navigation algorithms (kinematic Target detection, Extended
Kalman Filter) were initialized with an a priori estimate of the states and covari-
ance based on Two-Line Elements (TLEs) information. The use of TLEs has two
main drawbacks: �rst, it generally provides low accuracy in determining the relative
cross-track and out-of-plane separation between the spacecraft; second, because it
has to be provided a priori and is not a product of any onboard process, it reduces
the overall autonomy of the system [12].
Therefore, it would be bene�cial to have a method to derive a coarse estimate of
the initial relative state which leverages onboard LOS measurements, allowing the
Chaser to autonomously determine the required initialization values of the state
vector and of the covariance matrix. This is the main object of the Initial Relative
Orbit Detemination (IROD) problem, which constitutes the principal topic of this
Thesis and of the related research activity.
The relatively recent interest that the problem has arised implies that very restricted
number of studies and solutions have been conducted and proposed so far, with no
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in-orbit demonstrations publicly performed and documented. Among the possible
approaches explored so far, some exploit complex mathematical frameworks like
polynomial dynamics [13] or advanced optimization methods like di�erential evo-
lution algorithms [14]. On the other hand, other approaches rely on more classic
and well-established techniques like batch least-squares re�nements [15] or convex
optimization methods [16].

1.5 Thesis content and outline

This thesis presents the work performed at DLR/GSOC, focused on the implemen-
tation and testing of a C++ algorithm for Initial Relative Orbit Determination. The
algorithm should be able to operate e�ectively in real mission scenarios, meaning
that it must acquire the necessary LOS measurements in a reasonable amount of
time and remain robust against typical noise and errors of angles-only navigation
during rendezvous operations. Moreover, considering the limited processing power
and storage available in traditional satellite computers, the algorithm should be
designed to be computationally e�cient, leveraging analytical models and straight-
forward mathematical techniques.
The Thesis is structured as follows. Chapter 2 will introduce the fundamentals of
spacecraft relative motion, covering the di�erent coordinate systems used through-
out the work, explaining the Relative Orbital Elements-based relative orbit formu-
lation and presenting several analytical relative motion models that will be utilized
for both analysis purposes and algorithm implementation. Chapter 3 will present
the main features of angles-only navigation, thoroughly explaining concepts such as
LOS measurements and their properties, Kalman Filters and their functioning logic,
and �nally will address the main challenges in terms of Initial Relative Orbit Deter-
mination, focusing on the problem of unobservability and range ambiguity. Chapter
4 will provide a performance assessment of the relative motion models presented
in Chapter 2, and will introduce a mathematical formulation capable of increasing
their LOS accuracy and, at the same time, of enhancing the observability for IROD.
Chapter 5 will discuss extensively the implemented IROD algorithm, highlighting
its mathematical backbone, the working principles and the algorithmic optimization
which was performed. Finally, Chapter 6 will present a thorough evaluation of the
algorithm: the implemented IROD method will be tested in presence of noise, and
its global performance will be assessed through an exhaustive Monte-Carlo analy-
sis. Furthermore, it will be tested using data extracted from the PRISMA mission,
evaluating its behavior with real data in addition to the simulated ones. Ultimately,
the runtime performance will be evaluated by deploying the algorithm on a platform
which could be used as satellite on-board computer in the very near future. Chap-
ter 7 will wrap the Thesis up, summarizing key outcomes and addressing future
developments and improvements.





2

Relative Motion Dynamics

The purpose of this chapter is to de�ne and describe all the elements necessary to un-
derstand the relative motion dynamics of spacecraft, as well as to introduce fundamental
concepts that play a crucial role in this Thesis, such as coordinate frames, equations of
motion, orbital elements, and perturbations.

2.1 Coordinate Frames

2.1.1 ECI frame

The Earth Centered Inertial (ECI) frame is the reference frame commonly used to de�ne
and describe the absolute dynamics of a spacecraft around the Earth. As the name
suggests, it is considered to be an inertial frame �xed with respect to the stars, though
it would be more correct to refer to it as pseudo-inertial reference frame due to the
phenomena of precession of the equinoxes and Earth's nutation. However, since the
motion associated with this phenomena is very slow over time, the ECI can e�ectively be
assumed inertial for the applications considered in this Thesis [17].
Naming {Î, Ĵ , K̂} the fundamental triad of unit vectors centred at the Earth's Centre
of Mass (CoM), the direction of Î is such that, during the vernal equinox, the Earth
sees the Sun in the Aries constellation; K̂ is orthogonal to the fundamental plane, which
coincides with the equatiorial plane, and points towards the emisphere containing Polaris;
Ĵ completes the right-hand triad. Figure 2.1 presents an illustration of the ECI frame.

Figure 2.1: ECI reference frame
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2.1.2 RTN frame

The Radial-Tangential-Normal (RTN) coordinate frame is a local orbital frame used
to describe the relative motion of spaceborne objects. By naming {R̂, T̂ , N̂} the
fundamental triad of unit vectors centred on the CoM of the object (typically a
spacecraft), R̂ is directed as the r vector connecting the CoM of the Earth with
the CoM of the spacecraft; N̂ is orthogonal to the funamental plane (the orbital
plane), and is directed as the angular momentum vector h; T̂ completes the right-
hand triad. In the context of this Thesis, the RTN frame is centred on the Chaser
spacecraft. The RTN frame can be visualized in Figure 2.2.

Figure 2.2: RTN reference frame

2.1.3 Spacecraft's body frame

The spacecraft body frame is a non-inertial coordinate system used to express the
orientation of the object in space. Its fundamental triad {X̂B, ŶB, ẐB} is attached
to the spacecraft's CoM, with X̂B pointing in the direction in which the sensors
are directed, ẐB such that when X̂B is contained in the orbital plane, so is ẐB,
and ŶB completes the right-handed orthogonal triad. See Figure 2.3 for a visual
representation of the spacecraft's body frame.

2.1.4 Camera frame

In the following Chapters, it will become clearer why and how a camera is used as
primary sensor for the navigation task. For now, it is su�cient to de�ne the camera
reference frame, whose fundamental triad is centred at the centre of the image plane.
Being {X̂cam, Ŷcam, Ẑcam} its unit vectors, X̂cam and Ŷcam are contained in the
image plane and point at the top and at the right of the image respectively; Ẑcam

completes the right-hand triad and points in the direction in which the camera is in
boresight.
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Figure 2.3: Spacecraft's body frame

2.2 Relative motion models

When discussing the relative motion of spacecraft, we refer to the movement of one
or more spacecraft with respect to another, whose CoM is typically assumed to be
the origin of the coordinate frame in which the relative motion is expressed. In case
of a formation consisting of two spacecraft, namely a Chaser and a Target, choosing
which spacecraft shall be the origin of the reference frame depends mainly on the
type of mission that has to be performed. In the context of a rendezvous with a
non-cooperative Target, the Chaser spacecraft is commonly the chosen object, since
its full state in the inertial frame can be determined with much higher precision
than the Target one. Furthermore, the Chaser may be equipped with sensors such
as cameras or Light Detection And Ranging (LiDAR) to capture the motion of the
Target, making it more reasonable to locate the origin of the frame on the same
spacecraft that carries such sensors.
In light of this, from this point forward in this Thesis, an RTN coordinate system
centred on the Chaser CoM will be considered as the reference frame in which the
relative motion is expressed and analyzed.

2.2.1 Hill-Clohessy-Wiltshire Model

It is assumed, from now on, that the ECI state of the Chaser is always known, and
expressed as xT

c = (rT
c ,v

T
c ), with rc and vc position and velocity vectors in the ECI

frame respectively. Analogously, the Target state can be expressed as xT
t = (rT

t ,v
T
t ).

The motion of an object moving within a central force �eld and subject to the sole
action of the gravitaional force of the central body can be expressed by the well-
known Newton's Second Law of motion [3]:

r̈ = −µB

r2
r̂, (2.1)

where r̂ is the position unit vector and µB = GMB is the gravitational parameter of
the central body, with G universal gravitation constant and MB mass of the central
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body. In presence of an external force acting on the spacecraft, naming m the mass
of the spacecraft itself, the equation becomes

r̈ = −µgrav
r2

r̂ +
Fext

m
. (2.2)

Therefore, denoting with ∆r = rt − rc the relative position in the inertial frame,
the relative motion between Chaser and Target over time can be expressed by

∆r̈(t) = r̈t(t)− r̈c(t). (2.3)

However, the solution of this di�erential equation is not simple, and although an
analytical, closed-form solution actually exists [3], it is not very intuitive and not
well-suited for every mission. As an example, in the case of a rendezvous mission is
more convenient to represent the relative dynamics in a local frame, located either
on the Chaser or on the Target.
If one considers the motion as unperturbed, and if assumes that the spacecraft orbits
are circular or nearly-circular and if the relative, along-track separation between the
two objects does not exceed few tens of kilometers, the motion of the Target with
respect to the RTN frame centered on the Chaser can be described by the Hill-
Clohessy-Wiltshire (HCW) equations [18]:

ẍ− 2νẏ − 3ν2x = 0,
ÿ + 2νẋ = 0,
z̈ + ν2z = 0,

(2.4)

where (x, y, z) represent the relative position of the Target with respect to the Chaser
along the Radial, Tangential and Normal directions respectively, and ν represents the
Chaser's mean motion. In a more general formulation, naming x = (x, y, z, ẋ, ẏ, ż)T

the state vector, the system can be written as:

ẋ(t) = Ax(t). (2.5)

This formulation is highly convenient because it enables the calculation of the generic
state at time ti using only State-Transition Matrix (STM) of the system and the
state at the initial time t0. For a linear time-invariant system, the generic relation
that gives the STM Φ at the time t from the state-matrix A holds true:

Φ(t, t0) = eA(t−t0), (2.6)

which allows to retrieve the generic state at the time ti, from:

x(ti) = Φ(ti, t0)x0, (2.7)

where the subscript 0 denotes the initial value taken at the reference epoch t0.
Combining and solving the equations above, calling ∆t = t − t0, it is possible to
�nally retrieve the State-transition Matrix for the HCW model [19]:
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ΦHCW (t, t0) =



4− 3 cos(ν∆t) 0 0 1
ν
sin(ν∆t) 2

ν
(1− cos(ν∆t)) 0

6(sin(ν∆t)− ν∆t) 1 0 − 2
ν
(1− cos(ν∆t)) 1

ν
(4 sin(ν∆t)− 3ν∆t) 0

0 0 cos(ν∆t) 0 0 1
ν
sin(ν∆t)

3ν sin(ν∆t) 0 0 cos(ν∆t) 2 sin(ν∆t) 0

6ν(cos(ν∆t)− 1) 0 0 −2 sin(ν∆t) 4 cos(ν∆t)− 3 0

0 0 −ν sin(ν∆t) 0 0 cos(ν∆t)


.

2.2.2 Relative Orbital Elements

It is common practice to describe the motion of a spacecraft around the Earth using
the so-called Keplerian Orbital Elements (KOEs). These are a set of six parameters
that uniquely identify a speci�c orbit. For a near-circular orbit, these six parameters
are:

� semi-major axis a

� eccentricity e

� inclination i

� right ascension of the ascending node Ω

� argument of perigee ω

� mean argument of latitude u

The reason that makes this formulation signi�cantly convenient is that the position
of the spacecraft over time can be related to quantities describing the size, shape
and orientation of the orbit itself, making it more intuitive than a representation in
Cartesian coordinates.
Analogously, it would be extremely bene�cial to have a similar parametrization
for the relative motion: therefore, it is possible to introduce a set of six elements
describing the evolution of the relative position between two spaceborne objects.
They will be referred to as Relative Orbital Elements (ROEs) [20]. Thus:

� relative semi-major axis δa

� relative mean longitude δλ

� relative inclination δi

� relative eccentricity δe

where

δi =

(
ix

iy

)
, δe =

(
ex

ey

)
, (2.8)

introducing �nally six elements in total. They can be easily derived from the Kep-
lerian Orbital Elements of Chaser and Target, indeed:
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δα =



δa

δλ

δix

δiy

δex

δey


=



(at − ac)/ac

ut − uc + (Ωt − Ωc) cos ic

it − ic

(Ωt − Ωc) sin ic

ext − exc

eyt − eyc


(2.9)

where the eccentricity vector is de�ned as e = (ex, ey)
T = (e cosω, e sinω)T .

(a) Relative inclination vector de�nition. Source: [21] (b) Eccentricity vector de�nition

Figure 2.4: De�nition of relative eccentricity and inclination.

The geometrical and physical representations of the ROEs are not as simple and
straightforward as the ones of the Keplerian orbital elements: nevertheless a brief,
concise but exhaustive explanation is provided below.

� The relative semi-major axis δa is the normalized di�erence between the semi-
major axes of the Target and the Chaser.

� The relative mean longitude δλ is the angular separation of the two objects
on the Chaser's orbit, obtained by projecting the Target's position onto the
Chaser's orbital plane.

� the relative inclination can be written as:

δi = δi

(
cos δθ

sin δθ

)
(2.10)

where δθ is the relative ascending node, de�ned as the latitude on the Chaser's
orbit at which the Chaser crosses the Target's orbital plane.
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� the relative eccentricity is the di�erence between the Target's and Chaser's
eccentricity vectors, and can be written as:

δe = δe

(
cos δϕ

sin δϕ

)
(2.11)

where δϕ is called relative perigee: this parameter is de�ned as the value of
the Target's argument of latitude u for which the Target is located right below
the centre of the relative ellipsis in the RT plane, in the case of a relative orbit
with δa = 0 and δλ = 0 [20].

Figure 2.5: Relative motion with relative eccentricity/inclination vectors. Source: [1]

The link between ROEs and relative Cartesian coordinates, not demostrated here,
can be expressed as follows [20]:

δrR
ac

= δa− δe cos(u− δϕ)

δrT
ac

= δλ+ 2δe sin(u− δϕ)

δrN
ac

= δi sin(u− δθ) .

(2.12)

The evaluations of the above equations' time derivatives yield:

δvR
vc

= δe sin(u− δϕ)

δvT
vc

= −3

2
δa+ 2δe cos(u− δϕ)

δvN
vc

= δi cos(u− δθ) .

(2.13)
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2.2.3 HCW with Relative Orbital Elements

Previously, it has been highlighted how each ROE is de�ned by an expression con-
taining one or more Keplerian orbital elements of both Chaser and Target. De�ning
κ = (a, e, i,Ω, ω, u)T , in absence of perturbations all the orbital elements comprised
in κ are constant over time, except for u:

κ̇ = (0, 0, 0, 0, 0, u̇)T . (2.14)

This obviously re�ects also on ROEs temporal variation , with only δλ varying over
time, being it the only ROE dependent from u:

δα̇ = (0,−3

2
νδa, 0, 0, 0, 0)T , (2.15)

where the formulation of δλ̇ has been derived considering the approximation u̇ = ν
valid for a near-circular orbit [20]. It can be seen that δα̇ exhibits an extremely
simple formulation, which can therefore be used to express in a very e�cient way
the HCW relative motion model. Before doing so, however, it is useful to introduce
a slight modi�cation in the formulation of the ROEs vector, which will be used from
this point forward. So far, ROEs have been expressed as non-dimensional quantities;
however, they can be given a more intuitive form by multiplying the current ROEs
state vector δα by the Chaser's semi-major-axis a:

α = aδα (2.16)

By doing so, it is possible to formulate the HCW motion model in ROEs terms,
with the following State-Transition Matrix [22]:

ΦHCW (t, t0) =



1 0 0 0 0 0

−3
2
ν∆t 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(2.17)

which can be used to retrieve the state vector α(ti) at the generic epoch ti as:

α(ti) = Φ(ti, t0)α0 . (2.18)

2.2.4 Alternative motion models

The strength of the HCW model relies in its semplicity and straight-forwardness,
both in its formulation in Cartesian coordinates and with Relative Orbital Elements.
However, the assumptions on which it is based are quite strong, and therefore its
applicability is limited to some speci�c cases that include near-circular orbits, small
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along-track separation and Keplerian motion. To overcome these limitations, sev-
eral other models have been developed throughout the past years [23]. Formulations
like the one of Yamanaka and Ankersen [24], or the one by Tschauner and Hempel
[25] can be used also we dealing with elliptical orbits. On the other side, the adop-
tion of a parametrization which accounts for the ROEs and includes a modeling of
the curvature of the orbital path can be used to extend the validity of HCW to
inter-satellite distances of several dozens of kilometers. Finally, the assumption of
Keplerian motion should be dropped if Low Earth Orbits (LEO) are considered: the
LEO environment indeed is characterized by strong perturbating e�ects, that cause
variations of the KOEs over time. The way each element varies over time is unique,
but it is possible to �nd a common ground acknowledging that these variations are
composed by a short-period oscillation, a long-period oscillation and a secular vari-
ation. If the oscillations are accounted for, then the Keplerian Orbital Elements are
labeled as osculating ; if, instead, accounting for the oscillations is neither necessary
nor desired, one could consider only the secular variation, obtaining the so-called
mean Keplerian Orbital Elements [26].
The most relevant source of perturbation stems from the Earth being non perfectly
spherical (geoid), which results in a non-homogeneous gravitational �eld. The com-
mon approach for modeling the gravitational �eld of a planetary body through a
representation that considers the zonal harmonics, the tesseral harmonics and the
sectoral harmonics that result from the non-homogeneous mass distribution around
the centre of the Planet. For the Earth, the �rst zonal harmonic, named J2, has an
e�ect that far exceeds the one of the other remaining terms, therefore it is considered
a good approximation to acount only for J2 when assessing this speci�c disturbance.
The KOEs that are most a�ected by J2 are the right ascension of the ascending
node, the argument of perigee and the mean latitude [27].
Another major contributor among the perturbations is the atmospheric drag: the
higher layers of the Earth's atmosphere extend into altitudes considered to be part
of the LEO space, with air density progressively decreasing as the distance from the
Earth's surface rises. The air is so scattered that it cannot be treated as a continu-
ous �uid; rather, its interaction with the spacecraft has to be modeled at molecular
level. Sometimes this determines di�culties in estimating the drag force acting on
the spacecraft, although approximate models have been extensively validated and
used throughout the years. Qualitatively, it is possible to a�rm that the drag acts
like a brake on the spacecraft, progressively lowering its semi-major axis and modi-
fying the eccentricity. [28]
There are several other disturbances in LEO, but their e�ect is relatively negligi-
ble compared to J2 and atmospheric drag. These other perturbations include the
third-body e�ects caused by the Sun's and Moon's gravitational �elds, and the solar
radiation pressure, caused by the momentum exchange that occurs when photons
emitted by the Sun collide with the spacecraft [29][30]. Other disturbances mainly
a�ecting spacecraft attitude (Earth's magnetic �eld, gravity gradient) are not rele-
vant in the context of this Thesis.
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2.2.5 Relative motion model accounting for J2

Given the remarkable impact of the J2 e�ect on satellites moving in LEO, it would be
bene�cial to have an analytical relative motion model that incorporates the in�uence
of the Earth's equatiorial bulge, mathematically expressed by the J2 coe�cient.
From now on, short and long-period oscillations of the ROEs will be neglected, and
only mean Relative Orbital Elements will be therefore considered.
Retaining the assumption of near-circular orbit, the relative motion in a J2 perturbed
environment can be expressed with a State-Transition Matrix: recalling that only
Ω, ω and u are a�ected by J2, it is indeed possible to obtain a �rst order relation
that links the state vector at ti to the initial state vector α0:

α(ti) = ΦJ2(ti, t0)α0. (2.19)

The STM ΦJ2 is structured as follows [31]:

ΦJ2(t, t0) =



1 0 0 0 0 0

(ζ + λA)∆t 1 λI∆t 0 λEex0∆t λEey0∆t

0 0 1 0 0 0
7
2
K∆t 0 3γν sin2 i∆t 1 − 4

β2 ex0K∆t − 4
β2 ey0K∆t

−7
2
ω̇A1∆t 0 −5KA1∆t 0 C + 4

β2 ω̇ex0A1∆t −S + 4
β2 ω̇ey0A1∆t

−7
2
ω̇A2∆t 0 −5KA2∆t 0 S + 4

β2 ω̇ex0A2∆t C + 4
β2 ω̇ey0A2∆t


(2.20)

with

γ =
J2R

2
⊕

2a2β4
, β =

√
1− e2,

C = cos(ω̇∆t), S = sin(ω̇∆t),

ṀJ2 =
3

2
γβν

(
3 cos2 i− 1

)
, ζ = −3

2
ν,

λA = −7

2

β + 1

β
ṀJ2, λI = −K(3β + 4),

λE =
3β + 4

β3
ṀJ2, K = −Ω̇ sin i,

A1 = −ex0 sin(ω̇∆t)− ey0 cos(ω̇∆t),

A2 = ex0 cos(ω̇∆t)− ey0 sin(ω̇∆t).

where M is called mean anomaly, and it is given by M = u− ω, Ṁ = ν + ṀJ2 and
R⊕ is the Earth's radius. All the KOEs in the equations above are the Chaser's
KOEs at t0.

2.2.6 Relative motion model accounting for J2 and drag

As explained above, another major e�ect on satellites' trajectories in LEO is caused
by the aerodynamic drag. The drag is often parametrized through a speci�c parame-
ter called ballistic coe�cient, which depends on the mass of the object, on its shape,
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on the wetted surface and on the �ow conditions around the spacecraft. While the
ballistic coe�cient of the Chaser can be precisely determined due to its well-known
mass, geometric features, and �nely controlled attitude, this is no longer possible
for an uncooperative Target, whose mass and inertia may not be easy to assess and
whose attitude is generally uncontrolled. Overall, these factors make it di�cult to
precisely model the di�erential drag between the two spacecraft. Nevertheless, if
not modeled, di�erential drag can at least be observed.
As mentioned in Section 2.2.4, drag tends to modify the elements a and e of the
Keplerian state vector, implying a variation of δa, δex and δey when ROEs are con-
sidered. However, on a �rst approximation, it is possible to consider the e�ect on
the eccentricity as negligible, focusing only on δa [10]. To do so, it is convenient do
add a seventh ROE which expresses the variation of δa, over time: the state vector
becomes:

aδα =



aδȧ

aδa

aδλ

aδix

aδiy

aδex

aδey


. (2.21)

It is possible to de�ne a STM which accounts for the in�uence of δȧ on the other 6
ROEs:

Φd(t, t0) =



∆t

1
2
(ζ + λA)∆t

2

0

7
4
K∆t2

−7
4
ω̇A1∆t

2

−7
4
ω̇A2∆t

2


. (2.22)

Combining this STM with ΦJ2, it is possible to obtain an analytical non-linear rela-
tive motion model which accounts for the main LEO preturbative e�ects, described
by the following State-Transition Matrix [22]:

Φ(t, t0) =

 1 01,6

Φd(t, t0) ΦJ2(t, t0)

 (2.23)





3

Angles-only Relative Navigation

Navigation refers to the process of determination of the state of a certain system. In
space�ight, navigation involves the tasks of determining position and attitude of a
spaceborne object, achieved by using di�erent kinds of sensors such as Global Nav-
igation Satellite System (GNSS) receivers, star trackers, cameras and LiDARs, ex-
ploiting di�erent measurements techinques, accounting for uncertainties and noises.
Most satellites are equipped with the so-called Guidance, Navigation and Control
(GNC) system, which manages the spacecraft movement, positioning and orienta-
tion in space. The de�nition of Navigation for spacecraft position dynamics has been
given previously; for Guidance and Control instead, a short description is provided
here for completeness. The role of Guidance is to determine the desired trajectory
and to plan and optimize manoeuvres to reach the desired orbit. On the other hand,
Control executes speci�c actions through actuators (usually thrusters) to adjust the
trajectory so that it follows the desired one.
Angles-only navigation is a well-established technique used to determine the position
of an object with respect to an observer, which has been exploited for thousands of
years by humanity. The underlying principle is rather simple: by measuring only
the Line-Of-Sight (LOS) angles between a speci�c reference point and the target
object over time, it is possible to determine the relative position and velocity. If
the moving object has no capability to control its motion (like in the case of an
uncooperative target), and therefore moves obeying to the laws of dynamics, LOS
measurements are a powerful tool that can be used to precisely model and predict
its trajectory. In case of a rendezvous mission, the instantaneous position of the
Target with respect to the Chaser and its evolution over time become the object of
the angles-only relative navigation problem [1][32][33].
One of the greatest advantages of this technique when applied to space missions like
rendezvous-based OOS missions is the possibility to use a simple, widely commer-
cially available and relatively inexpensive sensor like an optical camera to acquire
Target images that can be adequately processed to extract the LOS vector. The
main drawback of this method is the possibility that more than one position and
trajectory evolution may be associated to the same measurement pro�le. Indeed, if
only LOS angles are measured, the only quantity that can be directly extracted is the
direction of the relative position vector between the generic observer and the Tar-
get: the magnitude of the vector (in case of a relative position, the distance between
the two points) instead, requires additional information to be determined, which
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may be not always available. For a rendezvous mission, this issue arises when the
3-dimensional relative orbit of the Target is captured by the camera and projected
onto the 2-dimensional image plane, as illustrated in Figure 3.1: the same measure-
ment pro�le (i.e., the ellipsis on the image plane) corresponds to multiple relative
trajectories (i.e., the possible ellipses on which the Target may be moving) [1].

Figure 3.1: Relative orbit ambiguity in camera based navigation. Source: [1]

3.1 Angles-only navigation in far-range rendezvous

3.1.1 Line-Of-Sight measurements

The angles-only navigation task during a rendezvous with an uncooperative Target
aims at �nding the relative state vector x (t) between the Chaser and the Target
spacecraft by acquiring a set of n LOS measurements ui at di�erent epochs ti with
an optical camera placed on board of the Chaser spacecraft. The more these LOS
measurements are close to the actual LOS vector, the more the navigation task can
be performed with high accuracy and con�dence [12].
Consequently, t is necessary to de�ne the aforementioned actual LOS vector. This is
nothing but the relative position vector from the camera optical centre to the Target
CoM. The position vector of the camera in the ECI frame is named rcam, and rt
will be the position vector of the Target's CoM in the same coordinate system. It
must be acknowledged that in reality the position of the CoM of an uncooperative
object cannot be determined; the sensor is only capable of determining the centroid
of the Target image, but not the CoM's object position. Nevertheless, at far range
it is possible to approximate the CoM with the Target image centroid, without
introducing any observable error. Doing so, it is possible to de�ne the LOS vector
at time ti as [1]:

h(ti) =
rcam(ti)− rt(ti)

∥rcam(ti)− rt(ti)∥
. (3.1)

As stated before, the LOS vector can be computed if two LOS angles are known.
These two angles can be referred to with di�erent names depending on the nature
of the problem which is being addressed; in the context of this Thesis, they will be
called azimuth (ψx) and elevation (ψy). With respect to the Chaser orbital plane,
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they represent the in-plane and out-of-plane angular separation respectively. Figure
3.2 provides a visual representation of what has been explained above:

Figure 3.2: Visual representation of LOS angles

What has just been de�ned for the actual LOS vector can be extended to the LOS
measurement vector: the camera measures the azimuth and elevation angles of the
Target with respect to the optical centre of the image plane, starting from the
Target's pixels coordinates on the image. If the Target covers more than one pixel,
its centroid's position needs to be estimated �rst. The angles have to be somehow
related to a position unit vector that expresses the Target position with respect to
the camera frame; therefore, it is possible to write:

y =

ψx

ψy

 =

arctan
(ucam

x

ucam
z

)
arctan

(ucam
y

ucam
z

)
 . (3.2)

Remembering that z is de�ned as the boresight direction, it is easy to retrieve the
measured unit position vector in the sensor frame, by calculating its norm assuming
ucamz = 1:

∥ucam∥ =
√

tan2(ψx) + tan2(ψy) + 1. (3.3)

The unit LOS vector is �nally given by:

ûcam =

(
tan(ψx), tan(ψy), 1

)T
∥ucam∥

(3.4)



3.1. ANGLES-ONLY NAVIGATION IN FAR-RANGE RENDEZVOUS 24

It is trivial to say that, in real applications, the measured LOS vector ui will most
likely not be precisely matching the actual LOS vector hi, given factors such as
sensor noise, pointing errors, or unprecise centroiding. Thus, the quality of the
measurements can be assessed by calculating how much the measured position vector
deviates from the real position vector. This can be formulated mathematically by
computing the angle ϵ between the two unit vectors:

ϵi = arcsin (∥ui × hi∥) . (3.5)

If theoretically one could achieve a perfect measurement, the two vectors would be
superimposed and the sine of the angle between them would be zero. It is important
to remind that the vectors that have been considered here were already normalized;
however, the same relation would hold true if considering the relative position vector
ri instead of its normalized counterpart hi.

3.1.2 Critical conditions and limitations

When dealing with camera-based navigation, it should be acknowledged that, along-
side the numerous advantages provided by this technique, there are several limita-
tions that arise from the operating environment conditions and from the character-
istics of the sensor which is being utilized.
First and foremost, the Target has to be visible: in other words, the Target has to be
in sunlight in order to perform angles-only navigation with an optical camera. This
rather simple but critical aspect poses a fairly big challenge in the application of
angles-only navigation in a generic LEO orbit scenario. For instance, a rendezvous in
a Sun-synchronous dusk-dawn orbit would encounter minimal visibility challenges,
whereas the same operation in an equatorial orbit would be signi�cantly a�ected by
alternating lighting conditions [10].
Camera speci�cations and performance represent other key factors that can in�u-
ence angles-only navigation. A standard monocular camera will have a certain Field
of View (FOV), which is an angle that describes the angular extent of the scene
that the sensor is able to capture. For a camera with a rectangular image plane,
an Horizontal FOV (HFOV) and a Vertical FOV (VFOV) are commonly de�ned, as
shown in Figure 3.3.

Figure 3.3: Camera Field of View representation
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Another relevant factor is represented by the camera resolution. It has been high-
lighted previously how, in the very likely situation in which the Target comprises
more than one pixel, a centroid position estimation is necessary to compute the
LOS vector: this process will be brie�y described here. The acquired image gets
scanned pixel by pixel, looking for a pixel whose brightness exceeds a certain thresh-
old value I2. Subsequently, all neighbouring pixels which have a brightness higher
than another threshold value I1 lower than I2 are marked as belonging to the object
of interest, also called cluster. Labelling the position of the i-th pixel in the image
plane as pi, it is possible to retrieve the centroid position by computing the average
of the cluster's pixels positions weighted by their brightness [34]:

c =

∑n
i=1 I(pi)pi∑n
i=1 I(pi)

. (3.6)

It can be deduced how a higher image resolution helps in distinguishing the bright
pixels from the dark pixels, lowering proportionally the number of pixels with bright-
ness between I1 and I2 with respect to the ones with brightness higher than I2, thus
increasing the centroid estimation's precision.
Additional operational constraints derive from the presence of both the Sun and
the Earth. When the camera points directly towards the Sun, the brightness is so
intense that the sensor becomes overwhelmed, making it impossible to see or track
other objects in the scene. Therefore, the Sun Exclusion Angle is de�ned, as the
angle measured from the boresight axis of the camera to the centre of the Sun. If
this angle drops under a certain threshold (i.e. the camera is pointing approximately
towards the Sun), then the sensor is blinded, and navigation cannot be performed.
For some sensors, the Sun Exclusion Angle actually represents a limit value to avoid
exceeding not to damage the hardware; for others it simply represents a value under
which the camera is blinded and therefore not operative.
Regarding the in�uence of the Earth, the concept is analogous to what has been
explained for the Sun. If the Earth enters the FOV of the camera, the light re�ected
by its surface has an e�ect similar to the blinding e�ect of the Sun, making it im-
possible to see other �ying objects and perform the navigation tasks. Again, some
sensors shall avoid pointing towards the Earth not to be damaged by the re�ected
light and by its thermal radiation, while others are just not capable of seeing the
Target anymore, if the planet is in the Field Of View [35][36].

3.2 The problem of observability

For a generic dynamic system described in the state-space form, it is possible to
write:

ẋ(t) = f(x(t),u(t), t),

y(t) = g(x(t),u(t), t)
(3.7)

where x(t) is the state vector, u(t) is the control input, y(t) is the system output
and f and g are the functions describing the system dynamics and measurements
relationships respectively. A system is de�ned as observable if its initial state x0
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can be uniquely determined knowing the system outputs and inputs.
In the context of angles-only relative navigation in space, the observability problem
pertains to whether the Target's relative position and velocity, or its ROEs with
respect to the Chaser, can be determined through the acquisition of LOS measure-
ments over time. In previous sections, it has been highlighted how angles-only mea-
surements cannot provide precise, if any, information regarding the relative range
between the observer and the object of interest. It is intented now to provide a
demonstration of what stated above, and to analyze di�erent solutions that may be
employed to improve the relative motion observability.
First, it is necessary to introduce the de�nition of LOS measurement pro�le. It has
been seen previously that with LOS measurement it is intented the sensor reading
at a precise time ti; a measurement pro�le is a continuous function describing all the
individual measurements over a certain observation time span [33]. Therefore, the
acquisition of azimuth and elevation measurements over time will generate a LOS
measurement pro�le which can be expressed in the camera frame as:

ûcam(t) =

(
tanψx(t), tanψy(t), 1

)T
∥ucam(t)∥

. (3.8)

Before proceeding further, it is important to note that while it is reasonable to ex-
press LOS measurement pro�le in the camera frame, the same is not true for the
relative position vector. Instead, the relative position vector is more appropriately
expressed in a frame such as the Earth-Centered Inertial (ECI) frame or the Radial-
Tangential-Normal (RTN) frame. Given the nature of the problem analyzed, which
involves a space rendezvous, the RTN frame is the most suitable choice for the fol-
lowing demonstration. Consequently, it becomes necessary to express ûcam(t) in
the RTN frame. To achieve this, let RCAM

CHA denote the rotation matrix that trans-
forms coordinates from the camera frame to the Chaser's body frame. This matrix
remains constant over time if the camera is �xed to the spacecraft. Similarly, let
RCHA

RTN represent the rotation matrix that transforms coordinates from the Chaser's
body frame to the RTN frame. Using these matrices, it is possible to write the
transformation as:

û(t) = RCHA
RTNRCAM

CHA û
cam(t) = RCAM

RTN ûcam(t), (3.9)

which is identical by de�nition to the normalized relative position vector h(t), if
the measurements are considered ideal. For the sake of mathematical consistency, it
must be mentioned that in reality one would have to use the transformation matrix
T CAM
CHA instead of the rotation matrix, in order to consider also the position o�set

between the Chaser's CoM and the Camera optical centre. However, since this
o�set is typically of the order of tens of centimeters, and the problem considered
deals instead with distances of several kilometers, the approximation introduces a
negligible error. Let's consider now a linear relative motion model expressed with
ROEs, like the ones presented in Chapter 2. Recalling that

h(t) =
r(t)

∥r(t)∥
, (3.10)
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it is necessary to de�ne a mapping matrix able to transform the Relative Orbital
Elements state vector α(t) into a relative position vector expressed in the RTN
frame. In linear approximation, such mapping can be expressed as [37]:

C(t) =


1 0 0 0 − cosu − sinu

0 1 0 0 2 sinu −2 cosu

0 0 sinu − cosu 0 0

 , (3.11)

where u is the Chaser's mean argument of latitude. This yields:

r(t) = C(t)Φ(t, t0)α0, (3.12)

which substituted in 3.10 gives:

h(t) =
C(t)Φ(t, t0)α0

∥C(t)Φ(t, t0)α0∥
. (3.13)

It should be noticed how, when introducing an arbitrary scaling factor µ > 0 such
that the new initial state is µα0, the same relative position unit vector, and therefore
the same measurement pro�le, is obtained:

h(t) =
C(t)Φ(t, t0)µα0

∥C(t)Φ(t, t0)µα0∥
=

µC(t)Φ(t, t0)α0

|µ|∥C(t)Φ(t, t0)α0∥
. (3.14)

For any positive scaling factor µ, regardless of how many measurements are taken,
it is impossible to distinguish which is the real scaled condition that generates
the observed measurement pro�le, if a linear motion model and a linear output
mapping function are employed. This result is known in literature as Wo�nden's
dilemma [33].

Figure 3.4: LOS measurement pro�le ambiguity
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3.3 State observation and estimation

A state observer is essential to e�ectively perform the navigation task, as it deter-
mines the current state of the formation using a set of LOS measurements. While
numerous estimation techniques are explored in literature, only a few are well-suited
for onboard implementation due to their relatively low computational demands. It
is both desirable and practical to use a method capable of estimating the current
state in real time, a fundamental aspect for autonomous systems. The most famous
and employed method is by far the Kalman Filter.

3.3.1 Kalman Filter

Introduced by Rudolf E. Kálmán in 1960 [38], Kalman Filters (KF) are ideal for
systems that are continuously evolving. Their biggest advantage is that they re-
quire very little memory, since they only need to store information about previous
states, making them extremely suited for onboard application, real time issues and
embedded systems.
The basic Kalman Filter [39] operates assuming that the system's dynamics is lin-
ear, described by a State-Transition Matrix Φ: therefore, the evolution of the state
vector, in absence of control inputs, can be expressed as:

xk = Φxk−1 +wk, (3.15)

where xk−1 represent the state vector at the previous timestep, andwk is the process
noise, assumed to be Gaussian. The relationship between the state vector xk and
the measurement vector yk can be expressed as:

yk = Hxk + vk, (3.16)

where H is the observation matrix, which linearly maps the state vector xk to the
measurement space, and vk is the measurement noise, assumed to be Gaussian as
well. The algorithm is structured is two main steps, called prediction step and update
step.
In the prediction step, the state and the error covariance P at time k are predicted,
using the linear state-transition model:

x−
k = Φxk−1 (3.17)

P−
k = ΦPk−1Φ

T +Q, (3.18)

where Q represents the process noise covariance matrix and it is usally estimated a
priori.
During the update step, the state and the covariance matrix are updated based on
the acquired measurement at time k. First, the Kalman gain matrixK is computed,
as:

Kk = P−
k HT (HP−

k HT +R)−1, (3.19)
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where R is the measurements noise covariance matrix, which represents quantities
such as sensors inaccuracies and measurements noise and it is comupted a priori.
After that, the state estimate and the covariance estimate are updated as:

xk = x−
k +Kk(yk − x−

k ) (3.20)

Pk = (I −KkH)P−
k . (3.21)

3.3.2 Extended Kalman Filter

It should be noted how the KF, in the form that has been presented here, may note be
well suited for systems whose dynamics exhibits a non-linear behaviour. Therefore,
di�erent versions of the Kalman algorithm have been developed throughout the
years, trying to �nd a way to account for non-linearities with a higher �delity. One
is the Extended Kalman Filter (EKF), whose working principles are analogue to
the regular KF, but with the exploitation of non-linear dynamics and measurements
models which are subsequently linearized [40].
The dynamics, in absence of control inputs, can be formulated as:

xk = f(xk−1) +wk, (3.22)

where f is a non-linear function describing how the states evolve. Analogously, the
measurement model can be written as:

yk = h(xk) + vk, (3.23)

with h nonlinear function mapping the system state to the measurements space.
The prediction step is similar to the one of the basic KF, with the main di�erence
that, while previously the matrix Φ was directly describing the system dynamics,
this time it will be actually the result of a linearization of the function f around the
current estimate. In other words, Φ is the Jacobian matrix of f , obtained linearizing
f around xk−1:

x−
k = f(xk−1) (3.24)

Φk =
∂f

∂x

∣∣∣
xk−1

(3.25)

P−
k = ΦkPk−1Φ

T
k +Q. (3.26)

Analogously, in the update step, Hk represents the Jacobian matrix of the function
h linearized around the predicted state x−

k :

Hk =
∂h

∂x

∣∣∣
x−
k

, (3.27)

Kk = P−
k HT

k (HP−
k HT

k +R)−1, (3.28)

xk = x−
k +Kk(yk − h(x−

k )), (3.29)

Pk = (I −KkHk)P
−
k . (3.30)
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The EKF is therefore able to capture some of the e�ects that derive from the non-
linearity of the dynamics and measurements models. While this is certainly an im-
provement with respect to the basic KF, the linearization introduces computational
complexity, and the �rst-order Taylor expansion may not be su�ciently accurate
in case of highly non-linear systems, leading to divergence. To overcome this limi-
tation, other �lters like the Unscented Kalman Filter (UKF) have been developed,
but they will not be discussed here.

3.3.3 Filter initialization

All Kalman Filters require an initialization with an a priori estimate of the state
vector x0 and an a priori initial covariance matrix P0. In particular, P0 shall re�ect
the uncertainty on the initial state x0: for istance, if all the components of the
initial state vector are known (i.e. there is no uncertainty on the initial state), P0

will be a null matrix; on the other hand, if the state is not fully known, the initial
covariance matrix will have to be tuned accordingly to the level of uncertainty of
each single state variable. In real applications, even if the initial state of a system
is fully known, there is always a certain degree of uncertainty which shall not be
neglected, leading to a P0 matrix which is usually non-null.
This said, the problem of the initial state guess or estimation becomes a critical
challenge to deal with. Indeed, given the non-linear nature of the relative naviga-
tion problem, an initial guess which is too far from the true state would lead to a
divergence of the estimation process. Therefore having a robust, reliable initial guess
becomes a crucial factor to perform a successful relative navigation task. While in
the case of a cooperative Target, is it reasonable to assume that both satellites would
be able to provide their position via Global Positioning System (GPS) sensors or
other types of GNSS devices, in the scenario of a rendezvous with an uncooperative
Target the problem gets more challenging.
The most intuitive and straightforward way to provide the system with a guess of
the initial relative state would be the use of Two-Line Elements. TLEs are a peculiar
data format used to enumerate the orbital elements of an Earth-orbiting object at a
given epoch. Generally, every spaceborne object in LEO with a diameter larger than
10 cm is tracked with the TLEs, being it an active satellite, a non-functioning one or
a space debris. Obviously, for non-communicating objects, the TLEs give a coarse
estimate of the state, since the orbits are propagated with simpli�ed perturbations
models. It has been observed how, in the context of a rendezvous mission, the TLEs
may provide relatively accurate information on the along track separation, but it
lacks precision when it comes to estimating the cross-track and out-of-plane relative
orbit, and this may ultimately lead to a divergence of the estimation process [12].
After these considerations, it would be desirable to �nd a method able to retrieve
the initial relative state of the formation by using the same measurement technique
employed by the navigation task itself, namely the angles-only LOS measurements.
The Initial Relative Orbit Determination problem has indeed attracted considerable
attention in the past years [16][41][42], given not only the possibility to compute
the initial solution through a well-established, rather simple and low cost techinque
like angles-only measurements, but also for the improved autonomy of the system
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that its usage would provide. The main drawback, as already discussed in the pre-
vious section, is the non observability (or better, the weak observability, as it will
be highlighted in the following section), that the LOS measurements exhibit.

3.4 Observability for IROD

With Equation 3.5, it has been highlighted how a perfect LOS measurement satis�es
the condition:

ui × hi = 0. (3.31)

Recalling the de�nition of hi, without loss of generality it is possible to write:

ui × ri = 0. (3.32)

The adoption of a linear relative motion model like the HCW model, as well as
the employement of a linear mapping between the states and the relative position
vector, would yield to:

ui × (C(ti)Φ(ti, t0)x0) = 0. (3.33)

It is clear that, if x0 is a solution, then any scaled initial state vector µx0 is also a
solution, leading to an in�nity of solutions matching the LOS measurement pro�le.
In order to �t the measurement pro�le appropriately, it is necessary to adopt ap-
proaches able to guarantee the unicity of the initial state associated with that speci�c
LOS pro�le. These approaches may involve using di�erent propagation models, dif-
ferent mappings between the states and the relative position, or introducing terms
not dependent on x0. By doing so, it is theoretically possible to retrieve a unique
initial relative state which matches the LOS measurement pro�le: speci�cally, this
solution is the only one among the others which minimizes a loss function J , de�ned
as [16]:

J =
n∑

i=1

∥ui × h(ti,x0)∥2. (3.34)

3.4.1 Improving the observability

Section 3.2 has highlighted how a linear motion model is not suited for a relative
orbit determination, given its intrinsic non-observability which leads to an in�nity
of possible solutions. Fortunately, there are several techniques which can be used
to improve the observability of the system, although not always viable or suited for
the phase of far-range rendezvous.
The execution of manoeuvres is the most intuitive, straightforward and e�ective way
to increase the observability of the problem. The linear system would be described
by the equation:

ẋ = Ax+Bu, (3.35)
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with B control matrix and u control input, which in this context represents an
acceleration. The solution to this di�erential equation is:

x = Φ(t, t0)x0 +

∫ t

t0

Φ(τ, t0)Bu(τ) dτ. (3.36)

It should be recalled that Φ is the STM of a linear motion model. The state vector x
can also be a set of ROEs α: this choice will be adopted from now on, in accordance
with the rest of this Thesis. Consequently, the LOS unit vector can be expressed as:

h(t) =
C(t)Φ(t, t0)α0 +C(t)

∫ t

t0
Φ(τ, t0)Bu(τ) dτ

∥C(t)Φ(t, t0)α0 +C(t)
∫ t

t0
Φ(τ, t0)Bu(τ) dτ∥

. (3.37)

It should be clear how a generic manoeuvre generates a unique LOS measurement
pro�le, which is therefore associated with to a speci�c trajectory that could generate
only that precise pro�le over time. If, for istance, a scaled initial condition is selected,
the measurement pro�le in Equation 3.37 is such that:

C(t)Φ(t,t0)α0+C(t)
∫ t
t0

Φ(τ,t0)Bu(τ) dτ

∥C(t)Φ(t,t0)α0+C(t)
∫ t
t0

Φ(τ,t0)Bu(τ) dτ∥ ̸=
µC(t)Φ(t,t0)α0+C(t)

∫ t
t0

Φ(τ,t0)Bu(τ) dτ

∥µC(t)Φ(t,t0)α0+C(t)
∫ t
t0

Φ(τ,t0)Bu(τ) dτ∥ . (3.38)

It should be noted that, in reality, not all manoeuvres generate a unique LOS mea-
surement pro�le: some control inputs may for istance only change the magnitude
of the relative position vector r, but not its direction, resulting again in a non-
observability of the measurement pro�le. A mathematical formulation which ac-
counts also for these speci�c cases will not be discussed here, but it can be found in
[33]. Figure 3.5 provides a visual representation of what has just been presented.

(a) Unobservable manoeuvres pro�le (b) Observable manoeuvres pro�le

Figure 3.5: Di�erent manoeuvres pro�les

Although the execution of manoeuvres may be a viable approach at �rst, it should
be reminded that this would entail the use of fuel, which at the state of the art
cannot be easily replenished once in orbit. Therefore, unless the mission pro�le
allows it, this does not represent a generally feasible solution.
Another possible approach would be leveraging the o�set that exists between the
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camera and the Chaser's CoM [41]. Without going deep into details, the idea behind
this method is that, if the camera and the Centre of Mass are o�set by a vector d
�xed in the Chaser's body frame, it is possible to express the LOS vector in the
sensor frame as the sum of d and the relative position r. Even considering a scaled
initial solution, d would always remain unchanged, ensuring the unicity of the LOS
measurement pro�le:

h(t) =
C(t)Φ(t, t0)α0 +RCHA

RTNd

∥C(t)Φ(t, t0)α0 +RCHA
RTNd∥

̸= µC(t)Φ(t, t0)α0 +RCHA
RTNd

∥µC(t)Φ(t, t0)α0 +RCHA
RTNd∥

. (3.39)

Although rather simple and e�ective, this method would uniquely work in a close-
range scenario, when the spacecraft are separated by a few dozen meters and the
order of magnitude of d is comparable with the order of magnitude of r. In far-
range, the measurement pro�les accounting or not for d would be indistinguishable,
leading again to non-observability.

Figure 3.6: Observability with camera o�set

Since the limitations on the observability of the angles-only navigation come from
the fact that the relative motion has been for now considered linear, it is reasonable
to assume that a non-linear formulation of the problem would eventually increase
the observability. The great advantage of this approach is that it relies solely on
the intrinsic characteristics of the relative motion, it only requires an appropriate
problem formulation and can be applied to both far-range and proximity operations.
However, the observability may not increase as much as it is needed to perform the
IROD with su�cient precision and con�dence.
It has been illustrated in Chapter 2 how the relative motion models addressed so
far do not show a nonlinear dependency on the initial state vector α0. Therefore,
a possible way around would be to have a motion model non-linearly dependent on
the initial condition, so that the STM satis�es Φ(t, t0,α0) ̸= Φ(t, t0, µα0) where α0

is the initial state vector. However, these motion models [23][43] do not account for
one big source of non-linearity in the problem considered, which is the curvature of
the orbital path [16]. It has been said previously that one of the most important
underlying assumptions of the HCWmodel is that its validity is limited to formations
characterized by an along-track separation of few kilometers: this hypothesis has not
been relaxed for the other analytical models as well, since it is the consequence of not
accounting for the curvature of the trajectory. As a matter of fact, the matrix C(t)
which maps the ROEs state into a Cartesian relative state is a linear transformation,
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which can lead to a substantial degradation of the accuracy of the relative position
over time. This suggests that the adoption of a non-linear mapping from ROEs to
RTN relative position shall be adopted: this new transformation will be presented
in the following Chapter.





4

Evaluation of Relative Motion Models

This chapter intends to provide a quantitative evaluation of the accuracy and �delity
of several analytical motion models, like the HCW model or the J2 and Drag model
that have been presented previously. A model of the e�ect of curvature of the orbital
path will be also presented, highlighting the accuracy improvements with respect
to the traditinal "rectilinear" propagation. The evaluation is performed through a
C++ programme which compares the evolution of the states of the analytical relative
motion models with a high-�delity dynamic simulator, which is brie�y presented in
the following section.

4.1 High-Fidelity Simulator

The high-�delity simulator is a tool developed within DLR/GSOC [44][45]: it is a
numerical simulator which uses a Runge-Kutta 4 integrator to propagate the com-
plete state of a satellite (position, attitude and their derivatives), expressed in the
ECI frame. The simulator features a precise modeling of the main perturbations
which are present in LEO: it accounts for the solar radiation pressure, for the third-
body e�ect due to the presence of the Sun and Moon gravitational �elds, evaluates
precisely the drag acting on the spacecraft by considering its mass and geometry,
accounting also for the atmospheric density variations due to altitude and solar ac-
tivity, and �nally models the Earth non-homogeneous geopotential �eld with high
precision, accounting for a total of 20 subdivisions in the spherical harmonic expan-
sion (degree n = 20) and modeling the patterns in the east-west direction up to the
order m = 20. For reference, the Earth's oblateness e�ect, modeled through the
J2 coe�cient, corresponds to the harmonic of degree n = 2 and order m = 0. The
simulator allows also to perform manoeuvres, both for position and attitude, and is
able to account for models of several sensors and actuators errors.
An example of what the simulator can do is provided below. In the considered
use-case, which will be used throughout all this Chapter, the two satellites involved
in the AVANTI experiment of DLR [46], BIROS (the Chaser) and BEESAT-4 (the
Target), are employed. They are placed on two di�erent quasi-circular orbits at
an altitude of approximately 500 km, and they are initially separated by an along-
track distance of 10 km. Speci�cally, the initial state vector in terms of ROEs is
α0 = (−38.5, 10000, -2.34, 240, -13.3, 260)T m. The negative relative semi-major
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axis aδa suggests that the orbit of the Chaser is slightly higher than the orbit of
the Target, therefore BIROS is expected to drift away from BEESAT-4 during the
propagation, which lasts for approximately 4 and a half days (84 hours). Figure 4.1
shows that, during the considered timespan, the distance between the two objects
increases up to 50 km. In this use-case, no manoeuvres are performed.

Figure 4.1: Motion of the Target with respect to the Chaser in RTN frame. High Fidelity
Simulator

The relative cross-track motion can be captured even better when visualizing the
relative trajectory in the RN plane, as Figure 4.2 shows. This type of plot is ex-
tremely important for the IROD problem, since it represents the part of the Target's
motion that can e�ectively be seen by the camera mounted on the Chaser. In other
words, it corresponds to the measurement pro�le that could be ideally obtained with
a perfect, �awless angles-only navigation.

Figure 4.2: Motion of the Target with respect to the Chaser in RN plane. Dynamic Simulator
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Being a numerical motion model, while exhibiting an extremely high precision in the
propagation of the states, it demands a high computational e�ort to be processed,
making it unsuited for an onboard application. On the other hand, while being less
precise, the analytical models are computationally light, making them well-suited
for spaceborne real time applications.

4.2 HCW model

The HCW relative motion model has been already discussed extensively in Chap-
ter 2: it is the most simple model available for the description of the relative motion
of two spaceborne objects, and it contains only linear equations. In the HCW model,
no perturbations are considered, and the states are updated considering a circular
restricted 2-body dynamics, with the only force involved being the Earth's gravita-
tional attraction.
The use-case considered for the propagation is the same utilized above for the high
�delity simulator, and the state vector is updated every ∆t = 1 s. Figure 4.3 shows
that, during the considered timespan, the distance between the two objects increases
up to 30 km, which is less then the approximately 50 km obtained with the simula-
tor: this is mainly due to the high di�erential drag e�ect featured in this use-case,
caused by the low altitude of the orbits and by the massive geometric di�erences
between the satellites. As expected, in absence of perturbations, the formation man-
tains the same "shape" in the RN plane, with the only time-varying parameter being
the along-track separation.

Figure 4.3: Motion of the Target with respect to the Chaser in RTN frame. HCW model
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The constant shape of the relative cross-track ellipse becomes even clearer when
visualizing the trajectory in the RN plane, as Figure 4.4 shows:

Figure 4.4: Motion of the Target with respect to the Chaser in RN plane. HCW model

Finally, the evolution of the ROEs is depicted in Figure 4.5: as previously mentioned,
the only time-varying parameter is aδλ, which grows linearly over time.

Figure 4.5: Evolution of the ROEs for HCW model

For the scope of this Thesis however, the main concern is to assess how much these
analytical models deviate from the real evolution of the relative trajectory, here
represented by the high-�delity dynamics simulator: therefore, in order to appro-
priately test their accuracy, the best way to compare the models with the reference
trajectory is to compute the error between the relative position vectors propagated
with the analytical models and with the numerical one.



4.3. J2 MODEL 40

In particular, since angles-only navigation is considered, the key performance param-
eter to investigate is the LOS error between the two vectors, which can be computed
as:

ϵ = atan2(∥r × rref∥, r · rref ). (4.1)

Figure 4.6 shows the LOS error of the HCW model, for the use case considered so
far. Even though the evaluation of other models is yet to be presented, it is already
clear how HCW is not suited for far range angles-only relative navigation.

Figure 4.6: Evolution of LOS Error of the HCW model

4.3 J2 model

The performance evaluation of the J2 model described in Section 2.2.5 will be now
presented. Again, the use case is the same as the one mentioned previously. The
evolution in the relative position in the RTN frame at �rst glance may not look
di�erent from the HCW model:

Figure 4.7: Motion of the Target with respect to the Chaser in RTN frame. J2 model
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However, the 2D relative motion in the RN plane highlights the di�erences between
the two.

Figure 4.8: Motion of the Target with respect to the Chaser in RN plane. J2 model

As seen in Chapter 2, the analytical formulation of this model is based on the
assumption that, due to the J2 e�ect, the orbital elements Ω, ω and u are the only
one varying over time, wile a, e and i remain constant. Naturally, this re�ects on
the evolution of the ROEs, that in a J2-perturbed environment exhibit the following
behaviour:

Figure 4.9: Evolution of the ROEs for J2 model

Overall, the relative trajectory does not di�er much from the one obtained with the
HCW model, therefore it is reasonable to expect a LOS error similar to the one
obtained before: this is indeed the case, as Figure 4.10 shows. Even though the two
plots may look identical, the numerical data show minor di�erences between them,
with the J2 model being slightly more precise than the HCW model. However, the
error is still too high to make this model suited for angles-only navigation.
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Figure 4.10: Evolution of LOS Error of the J2 model

4.4 J2 and drag model

It is clear that for the use case considered, neglecting the drag e�ects leads to ex-
tremely unprecise results. Therefore, it is desirable to account also for this perturb-
ing action, especially for those low altitude orbits where the atmospheric density is
relatively high. Regardless of the altitude however, including the drag e�ect would
still increase the accuracy of the model, making it a reasonable choice also for higher
LEO orbits.
It has been explained in Section 2.2.6 how the di�erential drag between Target and
Chaser can be expressed in terms of ROEs as the temporal derivative of the relative
semi-major axis, aδȧ. However, unlike the other ROEs, the di�erential drag cannot
be directly related to the shape of the formation, being it the variation over time of
a geometric parameter. Therefore, in order to properly compare the model with the
high-�delity simulator, it is necessary to �rst retrieve an estimate of the initial dif-
ferential drag which characterises the considered use-case. To do so, the ECI states
of the satellites are propagated with the high �delity simulator for a su�ciently
long timespan ∆t, and then the di�erential drag is computed as the average rate of
change of aδa over the considered timespan:

aδȧ =
(aδa)f − (aδa)0

∆t
. (4.2)

It has already been seen how the e�ect of the drag on the relative eccentricity is
not considered in the model. Furthermore, the uncertainities on the attitude of the
Target and its time evolution, and the neglection of possible higher order terms make
the computed di�erential drag value an estimation, rather than an accurate result.
Nevertheless, the inclusion of this parameter increases the accuracy of the solution,
as it will be shown here below. The evolution of the relative trajectory in the RTN
frame already shows how this model is actually much more precise than the ones
seen previously: indeed, the along track distance here reaches approximately 50 km
at the end of the simulation, similarly to the high �delity simulator.
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Figure 4.11: Motion of the Target with respect to the Chaser in RTN frame. J2 and Drag model

The increased accuracy of this model is even more evident when looking at the
trajectory in the RN plane:

Figure 4.12: Motion of the Target with respect to the Chaser in RN plane. J2 and Drag model

Since the semi-major axis of a satellite is not constant anymore in a drag-perturbed
environment, the only constant KOEs are now e and i. This implies that all the
ROEs will be now time-varying, with the unique exceptions of the di�erential drag
itself, which has been assumed constant, and of aδix, which depends solely from the
inclination i.
Finally, a look at the LOS error with respect to the high �delity simulator (Figure
4.13) de�nitely shows the improvements introduced by this model. However, the
error is still considerably high; the model is not feasible for angles-only navigation
in a generic LEO scenario.
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Figure 4.13: Evolution of the ROEs for J2 and Drag model

Figure 4.14: Evolution of LOS Error of the J2 and Drag model

So far, the best analytical relative motion model, which accounts only for the J2
and Drag disturbances, has been proven to lack the required accuracy to be suited
for LOS navigation. The possible reasons behind this may be multiple, and �nding
the most impacting performance's degrading factor is not trivial. One of the pos-
sible candidates is represented by the approximated perturbation model employed,
therefore it would be helpful to quantitatively assess the impact of neglecting third
body e�ects, solar radiation and the higher orders terms of the Earth's geopoten-
tial �eld. To achieve this, one can take advantage of the high-�delity simulator's
customizability in de�ning the involved disturbances and their accuracies. In other
words, the idea is to simulate the relative motion with the simulator with only J2
and drag "switched on", and to compare the result with the trajectory propagated
with the whole set of disturbances. The evolution of the LOS Error between the
two propagations is reported in the plot in Figure 4.15.
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Figure 4.15: Evolution of LOS Error of the numerical J2-and-drag-only propagation

It is clear that disregarding minor sources of perturbations, while playing an observ-
able e�ect, cannot be the cause of the poor performance of the analytical models
considered so far. With the same set of perturbations, the simulator still outper-
forms the best model by approximately 30 times. Consequently, it is reasonable to
assume at this point that the lack of accuracy of the analytical models has to be
due likely to two principal factors: the intrinsic incomparable better performance
of numerical models for problems characterized by generally high complexity and
non-linearities, and the omission of the consequences of the curvature of the orbital
paths. While for the former there is not much that can be done, investigating the
latter may lead to performance improvements that could be massive enough to make
such models suited for angles-only relative navigation.

4.5 Curvilinear coordinate frame

The scope of introducing a curvilinear coordinate frame (CCF) is double: �rst, it
is auspicious that accounting for the orbits curvature will increase the precision of
the analytical propagation models considered so far; second, it has been discussed
previously how considering the curvature of the orbital path should make the IROD
problem at least slightly observable, while with a classical cartesian frame this is
not achievable if a linear relative motion model is considered.
A great advantage of using a curvilinear coordinate frame is that, for circular orbits,
the �rst-order equations of relative motion have the same form that they have in
cartesian coordinates; on the contrary, the second order dynamics exhibit substantial
di�erences between the two systems. Nevertheless, this does not concern the models
presented so far, as they are derived considering only �rst-order dynamics.
Multiple curvilinear coordinate frames can be used to meet the needs discussed so
far; however, the focus will be on spherical coordinates, illustrated in the image
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below.

Figure 4.16: Cartesian and curvilinear coordinates for relative motion. Source: [2]

In Figure 4.16, ϕ and θ represent the arc lengths of the out of plane and along-track
separation respectively. The correspondent subtended angles can be easily retrieved
as:

θ̂ =
θ

r

ϕ̂ =
ϕ

r

(4.3)

An exact mapping from the CCF to the RTN coordinate frame considered so far
exists [2], and it is given by:

x =(r + ρ) cos ϕ̂ cos θ̂ − r

y =(r + ρ) cos ϕ̂ sin θ̂

z =(r + ρ) sin ϕ̂

(4.4)

The opposite transformation, from RTN to CCF, is instead given by:

ρ =
√

(r + x)2 + y2 + z2 − r

θ̂ =arctan
( y

r + x

)
ϕ̂ =arcsin

( z

r + ρ

) (4.5)

While accounting for the exact transformation is fundamental when dealing with
large cross-track and out-of-plane separations, for shorter relative distances one may
consider an approximated mapping from CCF to RTN: this simple mapping results
in the curvature of the orbital path having in�uence only on the cross-track direction
x, while y and z remain unchanged in the two systems (y = θ, z = ϕ). This is done
by assuming that r is large compared to ρ, θ and ϕ so that θ̂ ≪ 1 and ϕ̂ ≪ 1. For
x, is it possible to write:

x = (r + ρ) cos ϕ̂ cos θ̂ − r.

It is intended now to study what are the e�ects of having θ several orders of mag-
nitude bigger than ρ and ϕ. Expanding θ in Taylor series truncated at the second
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order, cos(t) ≈ 1− t2

2
for small t, yields:

cos θ̂ ≈ 1− θ2

2r2
.

Substituting these into x:

x ≈ (r + ρ) cos ϕ̂

(
1− θ2

2r2

)
− r.

This simpli�es to:

x ≈ (r + ρ)− (r + ρ)

2r2
θ2 − r.

Since ρ
r
≪ 1 for r ≫ ρ, it is possible simplify further, leading to the �nal approxi-

mation of x:

x ≈ ρ− θ2

2r
.

For y, consider:

y = (r + ρ) cos ϕ̂ sin θ̂.

Using the small-angle approximation cos(t) ≈ 1 for t≪ 1:

y ≈ (r + ρ) sin θ̂.

Expanding θ to the second order results in sin(t) ≈ t for small t:

y ≈ (r + ρ)θ̂.

Since r ≫ ρ, the expression �nally yields:

y ≈ θ. (4.6)

Finally for z,
z = (r + ρ) sin ϕ̂.

Using the small-angle approximation:

z ≈ (r + ρ)ϕ̂.

Since r ≫ ρ:

z ≈ ϕ. (4.7)

Thus, the approximate transformation from the CCF to the RTN frame can be
written as [16]: 

x

y

z

 ≈ r̆ +


− θ2

2R

0

0

 , (4.8)
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where r̆ is the relative position vector in the curvlinear coordinates (ρ, θ, ϕ)T . As
said previously, the scope of introducing the CCF is both to increase the precision
and to introduce nonlinearities to make the IROD problem more observable: while
the latter aspect will be discussed extensively in the next Chapter, the �rst can be
assessed by propagating the relative trajectories with the motion models presented
so far, accounting for the curvature correction given by the CCF. The way the
CCF is included in the propagation is de�ned as follows: since the equations of
motions are the same for the Cartesian and for the curvilinear coordinates, the
relative trajectory is propagated in the curvilinear system using the same STM.
Then, the relative position in curvilinear coordinates is converted in a Cartesian set
of coordinates using the aforementioned transformation. In the following digression,
the exact mapping from CCF to RTN will be used.
For the HCW model, the LOS error with respect to the high �delity simulator
evolves as shown in Figure 4.17.

Figure 4.17: Evolution of LOS Error of the HCW model in curvilinear frame

It can be seen how even a simple motion model like HCW already exhibits more
precision than a model accounting for perturbations, if propagated in a frame that
better represents the problem's geometries like the CCF.
Analogously, the LOS error evolution for the J2 and Drag model shows the following
behaviour:

Figure 4.18: Evolution of LOS Error of the J2 and Drag model in curvilinear frame



4.5. CURVILINEAR COORDINATE FRAME 49

While still not as precise as the numerical propagation, the accuracy is improved by
approximately a factor 6 with respect to the rectilinear model. Keeping in mind the
umbridgeable gap between the analytical models and the numerical propagation, it
is possible to state that, even if not extremely accurate, the J2 and Drag relative
motion model in curvilinear coordinates is suited for onboard angles-only navigation.
As said, the exact mapping from CCF to RTN has been here considered in order to
evaluate the performance of the transformation. It would be nice however to see how
precise is the approximated transformation with respect to its exact counterpart,
in order to understand if it would be actually possible to use this simpler, more
straightforward conversion for the IROD problem.
Recalling the di�erences between the approximated and exact transformations, it
should be noticed how the most important assumptions that have been made are
the two angles ϕ̂ and θ̂ being small, with the consequent trigonometric functions
approximations. While this is in general not the case, it can be assumed as true
when dealing with a space rendezvous problem: indeed, it would not make sense to
consider the relative dynamics of two spacecraft, if they were not close enough to
at least hypotesize the possibility of performing a rendezvous manoeuvre. To give
an idea, for the use case that has been considered so far, the aδλ value of 10 km
implies an angular separation in the orbital plane of approximately 0.08°, at 500 km
of altitude. The same holds true for the out of plane separation: orbits indeed shall
be at least quasi-coplanar, since the change of inclination in LEO is known to be
one of the most fuel-intensive orbital manoeuvres. In the use case, the value of ϕ̂ in
degrees is approximately 2 · 10−5. This also justi�es the second assumption that has
been made, that is the higher order of magnitude of θ with respect to ϕ. In Figure
4.19, the comparison between the two transformations is depicted, for the use case
analyzed. Since the two plots follow almost the same trend, it has been decided to
keep them in two separates windows, because doing otherwise would have resulted
in a superimposition of one graph above the other.

Figure 4.19: Comparison between exact and approximate curvlinear transformation
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This, however, may not be always the case: as a matter of fact, the two spacecraft
may be separated by a much smaller distance in the along-track direction, or may
be located in two orbital planes with a slightly higher relative tilt compared to the
ones considered so far. Considering for istance a value for aδix of −1 km would
translate into an inclination di�erence between Target and Chaser of approximately
0.01°, at 500 km of altitude. The ϕ̂ angle can be approximated for simplicity with
the inclination di�erence between the two orbits. Having now comparable values for
ϕ and θ, it is intended to investigate what are the di�erences, if any, between the
exact and the approximated transformations. The Figure 4.20 shows how actually
there exists a quite remarkable di�erence between the two transformations, with the
approximated one being less precise and accurate than the exact one. Nevertheless,
for a rendezvous mission the Chaser is usually required to be in the orbital plane
of the Target, in order to initiate the approach: this implies that, for the scope of
this Thesis, the two transformations can be used interchangeably, without loss of
generality and accuracy.

Figure 4.20: Accuracy di�erence between the two transformations
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Initial Relative Orbit Determination

This Chapter intends to provide an extensive and exhaustive description of the IROD
problem and of the IROD algorithm that has been implemented as part of the Thesis
work. Given the requirements that the algorithm shall satisfy, several of the options
mentioned in Section 1.5 had to be discarded. Therefore, in the context of the Thesis
work, it has been decided to implement and evaluate the IROD algorithm proposed
in [16].

5.1 Observability enhancement through CCF

It has been previously demonstrated how employing a curvilinear set of coordinates
drastically improves the LOS accuracy of the analytical relative motion models,
making them more suited for onboard relative navigation purposes. However, how
these coordinates a�ect the observability of the angles-only navigation is yet to
be demonstrated. It has described before how making the problem of angles-only
navigation observable implies the possibility to �nd a unique solution that matches
a certain measurement pro�le or, in short, a x0 that uniquely satis�es:

ui × ri(ti,x0) = 0, i = 1, . . . , n. (5.1)

So far, ri has been retrieved through a linear formulation, speci�cally

ri = C(ti)Φ(ti, t0)x0, (5.2)

which as previously results in an in�nite number of possible solutions to Equation
5.1. Therefore, it would be bene�cial to retrieve ri through a non-linear function
g which determines a unique value for ri given an initial state vector x0. The
mapping function from the curvilinear to the rectilinear system can indeed ful�l
the requirements. Both in the exact and approximated forms, it introduces some
non-linear terms that determine the unicity of the solution to Equation 5.1. Writing:

ui × g(C(ti)Φ(ti, t0)x0) = 0 (5.3)

with g representing the aforementioned mapping (Equation 4.8) highlights how,
given an aribitrary positive scaling factor µ such that the initial condition is µx0,
the equation is solved by two distinct and independent initial state vectors:
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g(C(ti)Φ(ti, t0)x0) ̸= g(C(ti)Φ(ti, t0)µx0). (5.4)

It shall be recalled now that the most suited analytical model for angles-only naviga-
tion has been shown to be the J2 and Drag model (Section 2.2.6), with the correction
introduced by the curvilinear coordinates transformation. This model propagates a
7-dimensional state vector representing the so-called augmented ROEs state, which
includes the 6 base ROEs plus aδȧ. This means that the matrix C(t) de�ned in
Equation 3.11 is not applicable, being it a 6-columns matrix. Therefore from now
on, when mentioning C(t), the following formulation will be considered:

C(t) =


0 1 0 0 0 − cosu − sinu

0 0 1 0 0 2 sinu −2 cosu

0 0 0 sinu − cosu 0 0

 , (5.5)

which highlights how aδȧ does not contribute to the computation of the relative
position vector r from the augmented ROEs state.
Overall, while the improvements on the observability may not be as drastic as they
would be with other techniques like the execution of maneouvres, they are still
decent enough to allow performing the Initial Relative Orbit Determination, while
at the same time avoiding the waste of precious resources like fuel.

5.2 Algorithm for IROD

The core underlying principle around which the IROD algorithm is built is that the
solution to the IROD problem x0 is the one that minimizes the already mentioned
cost function J , here recalled for completeness:

J =
n∑

i=1

∥ui × h(ti,x0)∥2. (5.6)

While several techinques for the minimum search may be exploited, the main dif-
�culty is the computation of a solution in a reasonable amount of time, given the
limited onboard processing power.
It has already been discussed extensively how a linear motion model cannot be used
to perform the IROD, given the intrinsic non observability of the linear formulation
of the dynamics and of the measurement model; however the solution coming from
the linear theory, which will be covered extensively in the next Section, can be used
to initialize a batch least-squares adjustment in the vicinity of the true solution. To
do so, it is necessary to scale the solution coming from the linear theory, called x̂0,
by a set of scaling factors µ, that can be chosen arbitrarily or via iterative re�ne-
ments. Naming x̂µ

0 the scaled initial state vector coming from the linear model, and
σ(µ) the root-mean-square value of the measurements �tting residuals associated to
x̂µ
0 , so that:

σ(µ) =

√
1

n
J(x̂µ

0), (5.7)
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it is possible to extract a curve which is function of µ, whose minimum is given by
the value µ̂ which represents the best estimate of the scaling factor of the solution.

5.2.1 Linear motion model solution

As said, the �rst step to be performed is the computation of the solution x̂0 associ-
ated to the linear motion model. To do so, it is desirable to �rst write Equation 5.1
in a more compact form:

UiC(ti)Φ(ti, t0)x̂0 = Aix̂0 = 0, (5.8)

where Ui is the cross-product matrix associated with the i-th LOS measurement
vector, expressed in the RTN frame. Following the acquisition of n measurements,
the matrix A is given by:

A =


A1

A2

...

An

 , for i = 1, . . . , n. (5.9)

Recalling the de�nitions of the matrices C(ti) and Φ(ti, t0), it is evident that the
algorithm requires data from the Chaser's GPS sensors to function as intended.
Speci�cally, the Chaser's state at the initial time t0 is required to compute the
State-Transition Matrix, while its state at each i-th measurement is necessary to
compute both the STM and the conversion matrix C which transforms the ROE
state into the RTN position. Considering the 7-dimentional augmented ROEs state,
given n measurements A is a matrix of 3n × 7 dimension. Now, considering a
columns-wise partition of A such that:

A = (A1 A2 A3 A4 A5 A6 A7), (5.10)

the linear system can be equivalently written as:

Ã ˆ̃x0 = −µA3 (5.11)

with

Ã = (A1 A2 A4 A5 A6 A7)

ˆ̃x0 = (aδȧ aδa aδix aδiy aδex aδey)
T

(5.12)

and µ = aδλ. If µ is set equal to 1, then the state vector x̂0 is in its unscaled form.
The scaled version for a generic value of µ is obtained as:

x̂µ
0 = µx̂0. (5.13)

The choice of aδλ = µ as scaling factor is determined by the fact that a physical
range of possible values for this variable can be more intuitively derived, with respect
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to the other ROEs. Indeed, it is necessary to have a pre-de�ned search space to �nd
actual µ value, as it will be highlighted in the next Sections. Two things are worth
mentioning: �rst, the scaling factor µ represents a distance in meters. Therefore,
setting its value to 1 to retrieve the unscaled initial ROEs vector corresponds to
assigning a value of 1 meter. Second, the full initial vector x̂µ

0 , which includes all
the 7 initial ROEs estimated from the linear model, contains µ in the position of
aδλ. In other words, aδλ is set equal to µ.
The solution can be computed following di�erent approaches. Speci�cally, two pos-
sible methods have been exploited, and they are brie�y presented here.
The �rst is a Singular Value Decomposition (SVD), which breaks down the matrix
Ã is the form:

Ã = UΣV T , (5.14)

where U is a matrix containing the left-singular vectors of Ã, Σ is a diagonal
matrix containing the singular values of Ã and V contains the right-singular vectors.
Calling b = −µA3, the solution to the linear system is given by (intermediate steps
omitted):

ˆ̃x0 = V Σ−1UTb. (5.15)

The second approach instead retrives the solution in a least-squares sense, so that:

ˆ̃x0 = (ÃT Ã)−1ÃTb. (5.16)

In applying this method, the great advantage comes from the block structure of Ã
and b: those are in fact composed by blocks of size 3 × 6 and 3 × 1 called Ai and
bi respectively, each associated to a speci�c measurement and a to speci�c epoch ti.
This allows to compute the terms ÃT Ã and ÃTb, very e�ciently, in facts:

ÃT Ã =
n∑

i=1

ÃT
i Ãi,

ÃTb =
n∑

i=1

ÃT
i b̃i.

(5.17)

This formulation turns out to be extremely convenient when dealing with large
systems, whose dimension is the consequence of the acquisition of a massive number
of measurements: while the computational cost of SVD increases signi�cantly as
the system size grows, the cost of the least-squares-based approach remains nearly
constant and it is primarily determined by the multiplication of very small matrices,
their inversion, and their summation. Lowering the computational cost as much as
possible is a critical aspect that from now on will be constantly addressed in the
Thesis: it shall not be forgotten that one of the goals of the development of the
IROD method is the realization of an algorithm which satis�es the requirements for
onboard implementation. This means that the runtime must be low enough that,
when deployed on a real satellite processor, the algorithm can still �nd a solution
within a reasonable amount of time. A quantitative analysis of the runtime for the
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whole algorithm will be provided later on in this Thesis, while for now a comparison
between the two methods for the sole linear model solution will be presented.
As mentioned, the parameter that determines the system size is the number of
acquired measurements. This parameter, which will be quanti�ed later, must not
be too low or too high: too few measurements may prevent computing a correct
solution, while too many could lead to an excessively heavy computational process.
For the Ã matrix, the blocks associated to a single measurement have size 3 × 6:
this means, that, being n the number of measurements acquired, the size of the
system will be 3n × 6. In the SVD, for a system with n ≫ p, the computational
cost grows linearly with the number of rows, and it tends to O(np2). The least-
squares based method instead relies on the fact that, regardless of the number of
measurements acquired, the system to be solved will always be 6× 6, with an extra
small cost related to the inversion of ÃT Ã. One may argue that the costs associated
to the transposition of Ã and, most important, with the addition of the ÃT

i Ãi terms
has not been considered: nevertheless, it should be remembered that each matrix
corresponds to single LOS measurement, acquired with a certain frequency that
leaves time to the algorithm to perform the aforementioned operations during the
acquisition, rather than afterwards. Once all measurements are collected, the only
thing left to do is indeed the computation of the system solution. The table below
shows the di�erences between the two methods, for several number of acquired LOS
measurements.

Computation Time [µs]

Measurements SVD Least-Squares

500 98 12

1000 236 12

2000 551 12

4000 1054 13

Table 5.1: Computation time of linear model solution with SVD and least-squares on Intel Core
i9-13950HX 2.20 GHz

Obviously, the runtime varies consistently depending on the processor on which the
C++ code is executed. In this case, the processor is an Intel Core i9-13950HX 2.20
GHz. The table shows how the computation time for the SVD grows approximately
linearly with the number of measurements, while the least-squares approach runs
always in the same time.
As previously discussed, LOS measurements consist of a set of two angles, azimuth
and elevation, acquired through an optical camera. In this phase, however, the
algorithm is fed with LOS measurements that are based on the actual LOS angles,
computed by considering only the true trajectories of the Chaser and Target, which
are propagated using the high �delity simulator. Therefore, errors and uncertainties
related to image processing, centroid �ltering, or other types of sensor noises are not
modeled or accounted for in this phase. As described in Chapter 3, from the LOS
angles it is possible to extract the normalized LOS vector in the RTN frame, whose
components are the entries of the matrix Ui.
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5.2.2 Non-linear model solution

At this point, it is possible to start the search of the non-linear motion model
solution, which ideally represents the true, actual relative state in terms of ROEs
between the two spacecraft. The non-linear model employed will be the J2 and
Drag analytical model (Section 2.2.6) with the addition of the non-linear mapping
from curvilinear to RTN coordinates. In particular, given the hypotheses made in
Chapter 4, it is safe to a�rm that the approximate transformation is suited for the
IROD method. Recalling that:

r ≈ r̆ +


− θ2

2R

0

0

 , (5.18)

where for clarity the new notation R is being used to denote the Chaser's orbit
radius, it is possible to write Equation 5.1 as:

ui ×

(
r̆i −

θ2i
2R

(
1
0
0

))
= 0, i = 1, . . . , n. (5.19)

It is now convenient, for clarity and compactness, to introduce the matrixDi, de�ned
as:

Di = CiΦ(ti, t0), (5.20)

and recalling that θ represents the second component of the relative position vector
in CCF, Equation 5.19 can be rewritten as:

Ui

(
Dix0 −

1

2R

(
1
0
0

)
xT
0D

T
i2,1−7

Di2,1−7x0

)
= 0, (5.21)

where Di2,1−7 stands for the second row of Di.
The idea now is to perform a series of local minimizations around the linear model
solution x̂µ

0 , each of them with a di�erent scaling factor µ. It is legitimate to assume
that the solution of each minimization will be close to x̂µ

0 . Naming

qi(x) = − 1

2R

(
1
0
0

)
xTDT

i2,1−7
Di2,1−7x, (5.22)

linearizing Equation 5.21 around x̂µ
0 yields:

Ui

(
Dix0 + qi(x̂

µ
0 ) +

dqi

dx

∣∣∣∣
x=x̂µ

0

(x0 − x̂µ
0)

)
= 0. (5.23)

Considering now the linear model solution decomposition in (ˆ̃x0, µ), reminding that
µ replaces aδλ at the third position in the state vector, it is possible to obtain the
following relation:
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Ui

(
D̃i − 1

R

(
1
0
0

)
x̂µT

0 DT
i2,1−7

D̃i2,1−6

)
· x̃0 = Ui

(
−Di:,3µ+ 1

R

(
1
0
0

)
x̂µT

0 DT
i2,1−7

Di23µ+ qi(x̂
µT

0 )

)
, (5.24)

which presents the structure of a linear system in the form Aix̃0 = bi. For clarity,
Di:,3 refers to the third column of Di or, in other words, the column that subtracted

from Di turns it into D̃i. Furthermore, Di23 is the element of Di in position (2, 3).
After acquiring n measurements, the system takes the formA(µ)x̃0 = b(µ), A being
a 3n × 6 matrix. At this point it should be noted that this strategy would lead to
the calculation of the minimum of the function J =

∑n
i=1 ∥ui×r(ti,x0)∥2, while the

goal is to �nd the minimum of J =
∑n

i=1 ∥ui × h(ti,x0)∥2. Therefore, for the sake
of consistency, it is necessary to divide both sides of Equation 5.24 by the norm of
the relative position vector associated with the scaled linear solution:

∥rµ∥ = ∥µC(t0)x̂0∥ (5.25)

The minimum of the system, introducing ˆ̃xµ
0 , can be now derived as:

m(µ) = ∥A(µ)ˆ̃xµ
0 − b(µ)∥2, (5.26)

which can be rewritten as:

m(µ) = b(µ)TM(µ)b(µ), (5.27)

where M(µ) = I − P (µ), with P = A(ATA)−1AT , projection matrix of A.
Given the structure of b, highlighted in Equation 5.24, it is possible to decompose
it in two terms, such that:

b1 =
1

∥rµ∥
U

(
−µD:,3 +

1

R

(
1
0
0

)
µ2x̂T

0D
T
2,1−7D23

)

b2 =
1

µ∥rµ∥
U

(
− 1

2R

(
1
0
0

)
µ2x̂T

0D
T
2,1−7D2,1−7x̂0

)
,

(5.28)

so that b = (b1 + µb2). This way, m(µ) can be rewritten as:

m(µ) = bT1Mb1 + µ2 bT2Mb2 + 2µ bT1Mb2. (5.29)

Given the properties of the projection matrix, M is semi-de�nite positive. This
implies that the function is convex and a minimum can be found at:

µ̂ = −bT1Mb2
bT2Mb2

. (5.30)

After the true scaling factor µ̂ is found, it is possible to compute the remaining
elements of the initial state vector, x̃0, by solving the system A(µ̂)x̃0 = b(µ̂).
Denying this last step would mean not accounting for the e�ect of the curvature
on the other ROEs. Scaling the linear motion model solution by µ̂, although viable
given the small discrepancies that would result, is not consistent with the approach
and the methodology considered so far.
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5.2.3 Structure of the algorithm

While for the linear motion model solution the implementation in the form of C++
code is pretty straightforward and totally resembles what has been descibed in Sec-
tion 5.2.1, care has to be taken in highlighting the di�erences and optimizations
made in the implementation of the non-linear model solution. As a matter of fact,
it should always be kept in mind that the requirement for low computational inten-
sity is a constraint that must be addressed carefully.
The matrices Ui and Di are computed during the measurements acquisition and
then stored for the further use during the non-linear model solution computation.
From those, and from the linear model solution, it is possible to compute the terms
that compose Equation 5.24. For clarity and conciseness, from now on they will be
referred as follows:

L1i = UiD̃i

L2i = −Ui
1

R

(
1
0
0

)
x̂T
0D

T
i2,1−7

D̃i2,1−6

R1i = −UiDi:,3

R2i = Ui
1

R

(
1
0
0

)
x̂T
0D

T
i2,1−7

Di23

R3i = −Ui
1

2R

(
1
0
0

)
x̂T
0D

T
i2,1−7

Di2,1−7x̂
T
0 .

(5.31)

For n measurements, this results in:

L1 =


L11
L12
...

L1n

 , R1 =


R11
R12
...

R1n

 .

For brevity, L2, R2 and R3 have been omitted.
For a certain scaling factor µ, the following relations ultimately are obtained and
hold true:

A(µ) =
1

∥rµ∥
(L1 + µL2)

b1(µ) =
1

∥rµ∥
(µR1 + µ2R2)

b2(µ) =
1

µ∥rµ∥
(µ2R3).

(5.32)

On a computational e�ort perspective, the real bottleneck of the algorithm is rep-
resented by the computation of the matrix M . This is indeed a 3n × 3n matrix
obtained as:

M = I − P = I −A(ATA)−1AT , (5.33)
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which is a fairly complex operation in terms of computational cost. In order to
reduce the e�ort, it is possible to leverage once again the block structure of A.
In particular, it is possible to alleviate the cost associated to the computation of
(ATA)−1, by pre-computing some terms that are not dependent on µ, allowing their
reusability. Speci�cally:

T1 =
n∑

i=1

LT
1i
L1i

T2 =
n∑

i=1

(LT
1i
L2i +LT

2i
L1i)

T3 =
n∑

i=1

LT
2i
L2i .

(5.34)

This allows to compute ATA for each µ as:

ATA =
1

∥rµ∥2
(T1 + µT2 + µ2T3). (5.35)

While this light optimization certainly gives its contribution, the computational cost
associated with M is still considerably high. To give an idea, even with the precom-
putation of the terms associated with (ATA)−1, the total cost of the operation is
O(n2), which becomes critical when the number of measurements starts exceeding
the thousand. The main problem here is not just the cost of the single operation, but
rather the number of times this operation has to be executed. As a matter of fact, if
one wants to build the curve m(µ) appropriately, several iterations for di�erent val-
ues of µ are needed, each of them requiring a new computation of M . Speci�cally,
the inter-satellite separation can vary signi�cantly depending on the type of mission
and the phase of the rendezvous manoeuvre in which the two spacecraft are engaged.
Therefore, the pool of values from which to choose µ from cannot be too small, as
this would signi�cantly increase the risk of missing the true scaling factor. At the
same time, to properly evaluate the function m(µ), its shape, and the location of its
minimum, the interval from which the scaling factors are selected must be densely
subdivided. In order to take all these factors into account, a reasonable choice could
be considering an interval such that [µA;µB] = [1; 100] km, with a granularity of 1
km. This results in a total of 100 iterations during which M is computed, leading
to the previously mentioned computational cost issues.
To overcome this, it is necessary to �nd a method capable of �nding the location of
the minimum of m(µ) with a low amount of interations. The shape of the function,
which is convex and has one single global minimum (Figure 5.1), makes the appli-
cation of a simple method like the binary search ideal for the scope. As a matter
of fact, if the initial size of the interval is 100 km, 10 iterations are su�cient to
scale it of a factor 210, bringing its size to less than 100 m. The binary search al-
gorithm is executed as follows: �rst, an initial search interval is de�ned, for istance
[µA;µB] = [1; 100] km; after that, the derivative of m(µ) is evaluated at µA and
µK = 1

2
(µA + µB):

m′(µ) = 2bT1Mb2 + 2µbT2Mb2. (5.36)
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(a) Residual curve for an initial along-track distance of 10 km

(b) Residual curve for an initial along-track distance of 30 km

Figure 5.1: Residual curves for initial along-track distances of (a) 10 km and (b) 30 km

If m′(µA) · m′(µK) ≤ 0, the slope of the function changes sign within [µA;µK ],
therefore the minimum must be located within this interval. On the contrary, if
m′(µA) · m′(µK) > 0, the minimum must be located in [µK ;µB]. The process is
repeated starting from the newly obtained interval, until the size of the interval falls
below a used-de�ned threshold. As said, with the initial interval [1; 100] km and a
threshold of 100 m, 10 interations are executed before the algorithm stops. For the
extreme point of the interval retained for the next iteration, the value of m′(µ) is
cached to save computation time by avoiding its recomputation. Once the size of the
interval drops under the threshold, its middle point is assumed to be the value of µ
for which m(µ) reaches its minimum. Without further re�nements, this means that
the discrepancy between the assumed minimum and the actual minimum will never
exceed 50 m. Overall, this approach contributes in reducing the time of execution
of the IROD algorithm by approximately a factor 10, with respect to the case in
which m(µ) is evaluated in all the points of the interval with 1 km granularity. The
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last step that must be performed is the computation of the true scaling factor µ̂,
which is function of the µ value which minimizes the curve. This step is done more
for preciseness and rigour rather than for necessity, since µ is expected to be already
quite close to the true solution. However, as Equation 5.30 states, µ needs to be
used to compute the correspondent M , b1 and b2 values that return µ̂.
The value of µ̂ represents the "real" value of aδλ, computed accounting for the
curvature of the orbital path. As mentioned before, the full initial ROEs can be
found solving the system A(µ̂)x̃0 = b(µ̂). Just like how it has been done for the
linear model solution, it is possible to solve the system in the least-squares sense as:

x̃0 = (A(µ̂)TA(µ̂))−1A(µ̂)Tb(µ̂). (5.37)

For A(µ̂)TA(µ̂), one can use once again Equation 5.38. Analogously, for A(µ̂)Tb(µ̂)
it is possible to precompute some terms in order to avoid the transposition of A(µ̂).
Hence, simultaneously at the computation of T1, T2, T3, the following operations
are performed:

B1 =
n∑

i=1

LT
1i
R1i

B2 =
n∑

i=1

LT
1i
· (R2i +R3i)

B3 =
n∑

i=1

LT
2i
R1i

B4 =
n∑

i=1

LT
2i
· (R2i +R3i).

(5.38)

This allows to express A(µ̂)Tb(µ̂) as:

A(µ̂)Tb(µ̂) = µ̂B1 + µ̂2(B2 +B3) + µ̂3B4. (5.39)

The total runtime of the entire algorithm is obviously in�uenced remarkably by the
number of measurements that are acquired, just like the computation of the linear
model solution. Interestingly, it is possible to observe a increasing computation time
trend which is roughly proportional to n2.This clearly demonstrates how the runtime
is primarily in�uenced by the computational e�ort required to calculate M , with
all other operations having a negligible impact on the overall duration.

Measurements Computation time [s]

500 0.2

1000 0.9

2000 3.2

4000 12.4

Table 5.2: Computation time for IROD on Intel Core i9-13950HX 2.20 GHz



5.3. PRELIMINARY PERFORMANCE ASSESSMENT 63

5.3 Preliminary performance assessment

This section intends to provide an insight on the performance of the IROD algorithm,
under a handful of inital conditions and employed satellites. All these simulations
are conducted by taking into account the visibility constraint; furthermore, they
consider always the same camera parameters, speci�cally a Sun Exclusion Angle of
30° and a FOV of 20° both for the horizontal and vertical one.
The �rst example showcased here refers to the residual curve on Figure 5.1a. The
satellites involved are BIROS and BEESAT-4, and they are placed on a generic LEO
orbit at an altitude of 500 km. This particular scenario is somewhat challenging,
given that the visibility is such that the Target is visible only for approximately
10% of the time. The IROD is performed by acquiring a total of n = 1500 LOS
measurements spaced from one another by ∆t = 20 s. The table below provides the
results of the orbit determination process, as well as the true initial relative state
between the two spacecraft.

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -3.27e-4 -38.5 10000 -2.34 240 -13.3 260

IROD -3.35e-4 -38.1 9712 -1.85 231 -14.5 256

Linear (unscaled) -4.31e-8 -5.55e-3 1 -2e-4 2.43e-2 -2.28e-3 2.71e-2

Linear (scaled) -4.31e-4 -55.5 10000 -2.00 243 -22.8 271

Table 5.3: Full IROD and linear model solutions compared with the reference, 10 km separation

Table 5.3 also reports the so-called linear unscaled and linear scaled solution: As can
be observed, the linear solution is not far from the reference when scaled by an ap-
propriate factor, such as the actual aδλ. Therefore, by computing the linear unscaled
solution (derived from the linear model solution step) and having some knowledge
of the approximate relative distance between the objects (e.g., from TLEs), it is
possible to multiply this a priori known relative range by the linear unscaled ROEs
vector to obtain the linear scaled solution. This allows to avoid the execution of the
full IROD algorithm, saving time and resources but loosing some autonomy in the
GNC system. An extensive performance assessment of this shorter approach will be
provided in Chapter 6.
At this point, it is worth mentioning an important aspect of what the IROD algo-
rithm does, particularly in relation to its ultimate scope of providing an initial state
vector to the navigation �lter. The IROD solution that is computed refers to the
relative state at the beginning of the observation: however, when the Kalman Filter
is initialized, it requires the relative state at the exact moment of initialization or,
in other words, the state at the time real-time navigation begins. This means that
the IROD solution needs to be propagated from the initial time of observation t0
to the time tf at which the �lter is initialized. The propagation can be done once
again with an analytical motion model, such that

αf = Φ(tf , t0)αIROD. (5.40)

To assess if the propagation still guarantees the accuracy of the IROD solution, it
is possible to compare αf with the actual relative state at tf :
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aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -3.27e-4 -51.0 12336 -2.24 241 -10.4 257

IROD -3.35e-4 -49.2 11993 -1.85 232 -8.73 257

Table 5.4: IROD solution propagated to the �nal observation time, 10 km initial separation

Even though the analytical model introduces small discrepancies due to its inherent
limitations in accuracy, the solution remains highly precise compared to the refer-
ence. This highlights the viability of this approach for determining the relative state
required for the Kalman Filter initialization.
Another example is described hereafter: in this case, the Target is the AISat satellite
of DLR [47], while the Chaser is BIROS once again. This time, the two satellite are
initially separated by a relative distance of approximately 30 km in the along-track
direction. A total of n = 2500 measurements is acquired, with a frequency of 1
measurement every 5 seconds. As done previously, the observation is carried out
accounting for the Target visibility constraint. Results are reported in the table
below:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -4.90e-4 -102 30383 -2.99 246 -2.75 249

IROD -2.41e-4 -107 33119 -2.77 262 0.40 292

Table 5.5: IROD solution compared with the reference, 30 km initial separation

A quick look into these results highlights how, compared to the previous case, the
relative range aδλ is estimated with less accuracy. However, the relative error be-
tween the estimated and the actual value remains under the threshold of 10%, which
can be considered a indicative reference benchmark when assessing the perfomance
of the IROD algorithm. Another conclusion that can be preliminary drawn from
these results is the somewhat di�cult determination of aδȧ: this matter will be
thoroughly addressed in the following Chapter, however is it possible to make a few
comments over the results obtained here. It is likely that the di�culties in esti-
mating this parameter rise from the di�erent nature of the ROE itself: as a matter
of fact, aδȧ is the only ROE which does not express a distance, therefore it is not
directly related to the geometry of the formation. Thus, its estimation through LOS
measurements, which are intrinsically bounded to the geometry of the problem, is
somewhat di�cult. In this speci�c test case, the error between the expected and
the estimated di�erential drag amounts to approximately 0.2 mm/s, which can be
considered low but not negligible for the type of problem and the duration of the
typical rendezvous missions. For what concerns the propagation up to the current
time tf , the results are the following:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -4.90e-4 -111 33541 -3.33 248 0.92 247

IROD -2.41e-4 -111 36343 -2.78 263 4.10 292

Table 5.6: IROD solution propagated to the �nal observation time, 30 km initial separation
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The last example presented here involves another DLR satellite, Eu:CROPIS [48],
as Target, and the usual BIROS satellite as Chaser. In this case, the satellites are
placed on a relative orbit which features an along-track distance of approximately
46 km, at an altitude of 510 km from the Earth's surface. A total of n = 2000 LOS
measurements are acquired, with an interval of 7 seconds from one another. The
output of the IROD algorithm is the following:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -3.49e-5 -54.9 46312 135 156 -260 -195

IROD -4.92e-5 -47.7 50734 148 200 -281 -215

Table 5.7: IROD solution compared with the reference, 46 km initial separation

The propagated real and estimated states at the end of the acquisition are instead:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -3.49e-5 -54.7 47989 135 155 -257 -198

IROD -4.92e-5 -48.8 52206 148 200 -278 -219

Table 5.8: IROD solution propagated to the �nal observation time, 46 km initial separation
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IRODmethod performance assessment

This chapter intends to provide a comprehensive and exhaustive evaluation of the
implemented IROD method. In accordance with the initial requirements, the algo-
rithm performance will be assessed in presence of various sources of noise and errors,
analyzing whether and to what extent the noisy solution deviates from the ideal one.
Subsequently, a thorough analysis using Monte Carlo simulations will be presented
to evaluate performance across various mission scenarios and to determine optimal
performance parameters such as the necessary number of measurements and their
frequency of acquisition. Following that, the algorithm's performance with real data
from a past space mission of DLR will be presented. Finally, the runtime perfor-
mance will be assessed by deploying and executing the code on a processor which
will be used as satellite's onboard computer.

6.1 Performance with noise

6.1.1 Sources of noise and errors

In a real mission scenario, the overall performance of the IROD algorithm would
be a�ected by several sources of noise and errors the inherently characterize the
hardware and the sensors onboard the satellites.
For the speci�c task at hand, orbit determination using angles-only measurements,
the primary source of error is the camera noise. Speci�cally, the navigation optical
sensor will acquire LOS measurements of the Target which will be a�ected by er-
rors, that result in discrepancies between the actual and the measured values of the
azimuth and elevation angles. These discrepancies depends mostly on the quality
of the sensor itself and on the accuracy of the image processing task. The camera
used for the far range angles-only navigation in the AVANTI mission of DLR was
a�ected by a maximum LOS error of approximately 40�, which translates to an error
of 5 meters with 30 km of inter-satellite distance [16][49].
As described in Chapter 5, the IROD algorithm requires the GPS state of the Chaser
at each LOS acquisition time ti to perform: therefore, another source of noise will
be represented by the GPS errors on the satellite's position and velocity. For the
analysis, it will be assumed that modern, state-of-the-art GPS sensors and state
determination techniques will be employed.
Not only the position, but also the attitude of the Chaser is essential for the proper
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execution of the IROD algorithm. As described in Section 3.2, the LOS measure-
ments are acquired in the Camera Frame, but the relative position vector has to be
expressed in the RTN frame. This means that a rotation from the Camera Frame
to the RTN frame has to be performed, and this makes the attitude of the Chaser
a necessary information for performing the IROD task. Modern spacecraft usually
employ sensors like star trackers for the attitude determination. Although very pre-
cise, these sensors are a�ected by some residual noise which is usually expressed in
terms of angular deviation between the real and the measured orientation of the
body axes of the spacecraft. Last, the satellites employed for rendezvous missions
feature an active attitude control system, which often sees reaction wheels as the
main attitude actuators. Thus, there will be discrepancies between the commanded
and the actual control torques magnitude and direction, which have to be properly
considered when assessing the IROD performance.

6.1.2 Performance assessment

To assess the IROD performance in the presence of noise, multiple simulations are
conducted with di�erent initial relative orbits. For each relative orbit, several simu-
lations are performed, each with varying LOS errors, while the GNSS, star trackers,
and attitude actuators remain unchanged. The tables below show the noise param-
eters that have been adopted:

Simulation # Max LOS error [arcsec]

1 0

2 20

3 40

4 60

5 80

6 100

Table 6.1: Maximum LOS error for each simulation.

Body Axis Mean [arcsec] σ [arcsec]

XB 0 5

YB 0 5

ZB 0 30

Table 6.2: Star trackers errors mean and standard deviation.
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Position Errors [mm] Velocity Error [mm/s]

Component Mean σ Mean σ

Radial -2 103

0 0.5Tangential -7 282

Normal -15 197

Table 6.3: GNSS error mean and standard deviation for position and velocity.

Module Error [N · mm] Direction Error [arcsec]

Mean σ Mean σ

1 2.5 0 20

Table 6.4: Attitude actuators errors mean and standard deviation

The �rst investigated scenario involves an initial relative range of 10 km between
Chaser and Target, on an orbit of approximately 500 km of altitude. The LOS
acquisition accounts for the Target visibility along the trajectory, and a total of
n = 1000 measurements are acquired with an interval of ∆t = 180 s from one
another. The values of the GNSS, star trackers and attitude actuators errors at each
simulation step are drawn randomly according to the de�ned normal distribution;
In contrast, LOS errors are sampled from a uniform distribution within a prede�ned
range of [−max,+max], where the maximum value is speci�ed for each simulation
in Table 6.1. What happens when the LOS error increases is shown in Figure 6.1:
the residual curvem(µ) is shifted upwards, but the abscissa of the minimum remains
constantly the same, assuring that the IROD solution will not be a�ected much by
the di�erent noise parameters throughout the six simulations.

Figure 6.1: Residual curve with varying noise, 10 km of relative distance
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The results of the relative orbit determination are reported in the table below. The
code IROD-XX identi�es the maximum LOS error featured in the simulation.

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -3.27e-4 -38.5 10000 -2.34 240 -13.3 260

IROD-00 -3.45e-4 -36.4 9774 -1.77 230 -9.43 256

IROD-20 -3.46e-4 -36.2 9755 -1.79 230 -9.41 255

IROD-40 -3.47e-4 -36.0 9727 -1.81 229 -9.38 254

IROD-60 -3.49e-4 -35.6 9690 -1.82 228 -9.34 253

IROD-80 -3.50e-4 -35.0 9642 -1.83 227 -9.29 251

IROD-100 -3.52e-4 -34.4 9584 -1.84 235 -9.23 246

Table 6.5: IROD results with noise, inter-satellite distance of 10 km

Although degrading as the noise increases, the performance is still robust even at
100 arcsec, thanks to the precise determination of the correct scaling factor µ̂.
The second set of simulations involves an inital relative range of approximately
30 km between the two spacecraft, and the IROD algorithm is executed following the
acquisition of n = 2500 LOS measurements spaced by 5 seconds from one another.

Figure 6.2: Residual curve with varying noise, 30 km of relative distance

As Figure 6.2 shows, the orbit determination here is more challeging due to the
�atness of the residual curve, which makes it more di�cult to accurately determine
the scaling factor. Furthermore, is it possible to see how, unlike the previous case,
the increasing noise tends to have a negative e�ect on the location of the minimum,
which moves further away from the expected one as the noise increases. While this
may be related to speci�c features of the case study which has been considered
here, it may also be related to the fact that the same angular noise translates to a
greater position error as the distance between the two object increases. For example,
while 100 arcsec correspond to approximately 5 m at a distance of 10 km, for an
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intersatellite distance of 30 km the associated position error would be of 15 m,
degrading the orbit determination process. The detailed IROD results are reported
in the table below.

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference -4.90e-4 -102 30383 -2.99 246 -2.75 249

IROD-00 -2.41e-4 -107 33119 -2.77 262 0.40 292

IROD-20 -2.13e-4 -108 34355 -2.93 271 0.47 302

IROD-40 -1.91e-4 -108 35274 -3.05 278 0.52 310

IROD-60 -1.83e-4 -108 35625 -3.13 281 0.51 313

IROD-80 -1.03e-4 -109 39184 -3.53 308 0.88 343

IROD-100 -4.24e-5 -108 42144 -3.87 330 1.20 368

Table 6.6: IROD results with noise, inter-satellite distance of 30 km

While these preliminary results constitute a good qualitative assessment of the per-
fomance in presence of noise, the overall behaviour under di�erent mission scenarios
is yet do be determined. Therefore, more in-depth analyses are conducted based on
the Monte-Carlo simulations presented in the next Section.

6.2 Monte-Carlo analyses

6.2.1 Analyses set-up

As mentioned previously, the scope of the following Monte-Carlo analyses is to assess
the overall performance of the algorithm under di�erent environmental and opera-
tional conditions, as well as to determine an optimal number of measurements and
an optimal frequency of acquisition that guarantee the highest accuracy in the rela-
tive orbit determination. To achieve this, several parameters must be randomized,
with their values selected from a user-de�ned range. Speci�cally, the randomized
features are the Chaser's absolute orbit, the relative orbit between Chaser and Tar-
get, the number of measurements and the time spacing between two consecutive
measurements. Further details on the de�ned intervals for the selection of di�erent
parameters are provided in the Table below.

Chaser's KOEs
a [km] e [-] i [deg] Ω [deg] ω [deg] u [deg]

R⊕ + [400÷ 1500] [10−7 ÷ 5 · 10−3] [0÷ 110] [0÷ 360] [0÷ 360] [0÷ 360]

ROEs
aδa [m] aδλ [km] aδix [m] aδiy [m] aδex [m] aδey [m]

[−150÷ 0] [5÷ 75] [−300÷ 300] [−300÷ 300] [−300÷ 300] [−300÷ 300]

Number of Measurements [500÷ 4500] with a step of 250

Measurements time spacing [3÷ 120] s with non-regular progression

Table 6.7: Monte Carlo setup parameters

Some intervals require further explanation and justi�cation regarding how they are
de�ned. For the Chaser's semi-major axis a, the orbit altitude is picked between
400 to 1500 km in accordance with the standard de�nition of LEO orbit. For the
eccentricity e, the choice is dictated by the fact that the analytical motion model
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adopted for the IROD method is suited for quasi-circular orbits only. The inclination
i is picked between 0° and 110° because it is very unusual to �nd spacecraft orbiting
with higher inclinations, given the challenges posed in terms of required ∆V for the
launch.
Regarding the ROEs, aδa is chosen to be negative so that, in accordance with its
de�nition, the Chaser's orbit will always be slightly higher than the Target's one.
This is done to ensure that the Chaser drifts away from the Target without ever
"overtaking" it, avoiding issues related to the sign of aδλ changing or to the complex
camera pointing that would derive from that. Even though aδλ is picked between
5 to 75 km, the search space of the IROD algorithm is kept between 1 and 100 in
order to increase the uncertainty of the problem.

6.2.2 Assessment of perfomance in function of measurements

parameters

First, it is necessary to evaluate the behaviour of the IROD method in function of
the number of measurements and of the measurements acquisition frequency, so that
once optimal parameters for these quantities are found, the IROD accuracy can be
measured under the best possible conditions.
To do so, a total of approximately 130.000 simulations have be executed, each of
them characterized by a random selection of the con�guration parameters reported
in Table 6.7. In this stage, the performance evaluation is based uniquely on the
accuracy of the estimate of the relative range aδλ; more detailed assessments will
be conducted once optimal LOS acquisition parameters are determined. The Figure
below shows the dependency of the relative error on the number of measurements:

Figure 6.3: Relative error of aδλ in function of the number of LOS measurements acquired

The correlation is somewhat weak, however it is possible to see a slight reduction of
the relative error for a number of measurements between 2000 and 3500. This result
may look counter-intuitive at �rst glance, since one would expect that the more
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measurements are acquired, the higher is the accuracy of the IROD solution. How-
ever, it should also be acknowledged that acquiring more measurements increases on
average the total acquisition time, which results in a higher divergence between the
analytical propagation and the true trajectory at the end of the observation phase.
For what concerns the frequency of acquisition, the results are shown in Figure 6.4.

Figure 6.4: Relative error of aδλ in function of measurements acquisition interval

Here the correlation is stronger, and is it possible to note clearly how a measure-
ments spacing of 5 to 10 seconds assures the highest accuracy. This result also
highlights that, due to the need for a relatively short interval between consecutive
measurements, the overall observation time will be somewhat reduced, or at least
lower than it would have been with a longer time spacing. On a mission perspec-
tive, this implies that the Chaser will drift away from the Target of few kilometers
at most, avoiding excessive increase of the ∆V required to complete the rendezvous.
Now that the measurements parameters have been at least restricted to a narrow
interval, it is possible to assess the performance of the IROD method in terms of
accuracy of the determined relative orbit.

6.2.3 Assessment of performance in terms of accuracy

The main focus of this section is to assess how closely the computed IROD solution
matches the initial relative state, which is randomly determined at the start of
each simulation. Since the measurements parameters have been already restricted
to a relatively small interval, they will be picked from di�erent, narrower ranges
compared to the ones used before. In particular, for the number of measurements
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the value will be picked from 2000 to 3250, while the time spacing will only assume
the value 5, 7 or 10 seconds. This time, a total of approximately 100.000 simulations
has been performed.

Figure 6.5: Distribution of aδλ signed relative error

Figure 6.5 shows how the relative error on the relative range follows a distribution
which is not perfectly centered around 0, but it is rather shifted to the right towards
the positive values. Given the formula of the signed relative error:

ξ =
(aδλ)IROD − (aδλ)actual

|(aδλ)actual|
, (6.1)

this implies that the algorithm tends on average to slightly overestimate the along-
track separation between Chaser and Target.
However, in order to properly evaluate the accuracy of the IROD method, the dis-
tribution of the relative error |ξ| should be considered instead:

Figure 6.6: Distribution of aδλ relative error
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As it is also highlighted by the data on the plot, more than half of simulations results
in an accuracy on aδλ which exceeds 90%. The data also shows that in the 80%
of the simulations, the relative error falls under the threshold of 0.2, proving the
reliability of the algorithm. In the following table, the performance is broken down
accounting for the initial relative distance, to highlight possible di�erences in the
accuracy in function of the initial relative range:

Interval [km] Mean σ Median

5-15 0.187 0.175 0.134
15-25 0.121 0.121 0.085
25-35 0.103 0.113 0.068
35-45 0.104 0.119 0.066
45-55 0.116 0.136 0.072
55-65 0.125 0.130 0.082
65-75 0.127 0.109 0.094

Table 6.8: Summary of aδλ relative error in function of initial relative separation

It is possible to see that the best perfomance is achieved for intermediate initial
along-track separations (25-55 km). It is likely that at lower distances, the perfor-
mance decreases due to the reduced e�ect of the orbital path curvature, while at
higher distances, the performance worsens due to the larger relative position errors
introduced by the analytical motion models.
For what concerns the remaining ROEs, an evaluation based on the relative error
would be somewhat ambiguous, since the distribution from which they are initially
picked from is centered around zero. Errors of few meters could possibly translate
into huge relative errors, misleading the performance assessment. Thus, the analysis
focuses on the absolute errors in the radial and normal components of the relative
position in RTN, which are primarily in�uenced by all the ROEs except aδλ and
aδȧ, whose in�uence is comparatively smaller. De�ning r = (rR, rT , rN) the relative
position vector in the RTN frame, the absolute error on the radial component is
given by:

ER =|(rR)IROD − (rR)actual|. (6.2)

Figure 6.7: Distribution of absolute error on rR
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The errors on the radial component of the relative position vector expressed in the
RTN frame add up to a few tens meters on average. Going more in details, it is
possible to assess also how this position error relates to the distance at which the
Target is being observed and tracked by the camera, just like it has been done before
for the relative error on aδλ.

Interval [km] Mean [m] σ [m] Median [m]

5-15 30.5 36.7 17.0
15-25 24.6 30.4 13.5
25-35 25.0 30.6 13.7
35-45 30.0 35.5 16.6
45-55 37.0 41.1 21.7
55-65 45.3 46.5 28.3
65-75 54.7 50.6 38.3

Table 6.9: Absolute error on radial component for di�erent initial distance

Table 6.9 shows how once again the lowest errors are obtained for intermediate
ranges (15-45 km) and how the error does not increase linearly as the initial relative
distance gets bigger. The causes of this behaviour are very likely the same that
were considered when analyzing aδλ relative error in function of the initial relative
along-track separation.
Analogously at what has been done for the radial, the absolute error on normal
component of the RTN relative position vector is given by

EN =|(rN)IROD − (rN)actual|, (6.3)

and it exhibits the following distribution:

Figure 6.8: Distribution of absolute error on rN

Again, the errors add up to a few tens of meters like for the radial component. In
relation to the initial relative range, the absolute error has the following behaviour:
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Interval [km] Mean [m] σ [m] Median [m]

5-15 25.2 27.5 15.1
15-25 18.3 19.5 11.7
25-35 16.9 16.3 12.2
35-45 18.5 16.8 14.2
45-55 21.0 18.2 16.5
55-65 24.1 19.7 19.9
65-75 26.3 20.2 22.5

Table 6.10: Absolute error on normal component for di�erent initial distance

Table 6.10 proves that also for the normal component intermediate ranges are the
ones characterized by the lower absolute error, for the same reasons explained above.
A question which is yet to be answered however is how long the observation takes,
and how this time relates to the accuracy. As it has been explained extensively in
previous Chapters, the visibility constraint is always active and considered, imply-
ing that even if a measurement time spacing is de�ned, it may happen that no LOS
measurements are actually acquired for minutes or even for hours. Since an opti-
mization in terms of optimal trajectory, launch windows, orbit insertion and other
pre-rendezvous mission phases is not the scope of this Thesis, the visibility time is
not optimized or set as constraint, and it is therefore a consequence of the speci�c
mission scenario which is randomly put together by the Monte-Carlo randomizer.
The observation time is consequently evaluated, both in terms of number of orbits
and in total hours of required observation. Results are shown below.

(a) Total number of orbits (b) Total time

Figure 6.9: Durations of LOS acquisition process in terms of orbits and of time

The total observation time is aligned with the one experienced in previous similar
missions and experiments, like PRISMA and AVANTI [16][50].
It is intended now to search for a possible correlation between the accuracy of the
IROD solution and the total observation time. For conciseness, only the relative
error on aδλ will be considered as performance index this time.
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Figure 6.10: Accuracy in function of total observation time

As Figure 6.10 clearly shows, the accuracy increases remarkably as the observation
time increases, although already achieveing satisfying results for moderate acquisi-
tion times like 7-9 hours.
So far, of all the ROEs that compose the relative state vector, only the 6 related
to the shape of the formation have been object of analysis, while aδȧ is yet to be
addressed and evaluated. As mentioned in Chapter 5, an accurate determination of
aδȧ is somewhat complicated, likely given the fact that, unlike the other ROEs, it
is not directly related to the geometry of the relative trajectory and therefore not
directly correlated with the LOS measurements. In detail, the performance in terms
of absolute error is depicted in Figure 6.11:

Figure 6.11: Accuracy of aδȧ determination
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Even though an error of a few tenths of millimeters per second may seem negligible,
it should be recalled that the true expected value of aδȧ is on average in the order of
10−5 mm/s. Considering an unfavorable situation in which aδȧ is determined with
an error of 1mm/s (which is quite unlikely given the distribution in Figure 6.11) and
an observation time of 10 hours, this would determine an additional error of 36 m on
aδa at the �nal time (i.e the time at which the real time navigation begins) on top
of the base error on the determination of aδa itself. This highlights that, although
the overall performance of the IROD algorithm is robust and reliable, a more precise
determination method of aδȧ would be extremely bene�cial for enhancing the global
performance of the orbit determination process.

6.2.4 Performance assessment of the linear model solution

As mentioned in Chapter 5, if there exists a coarse estimation of the relative range
(e.g. from TLEs), it may be possible to retrieve the initial relative state by com-
puting only the solution of the linear motion model, appropriately scaled by the
relative range itself. It is intended now to assess if this linear motion model so-
lution is actually reliable in terms of accuracy, and how it performs compared to
the full IROD algorithm. Naturally, the assessment cannot concern the accuracy on
the determination of the relative range, since while for the full algorithm aδλ is a
parameter to be estimated, for the linear solution it will be assumed to be known
a priori. Therefore, the focus will be mainly directed towards the other ROEs of
the relative state vector. For the analysis, the linear model solution will be com-
puted accounting for a scaling factor aδλ to which, for each simulation, a random
relative error between −5% and +5% with respect to the real relative range will be
assigned. This choice is motivated considering the data processed during PRISMA
and AVANTI, which highlighted a TLEs error in the along-track direction with a
mean of roughly 1 km and a standard deviation of 500 m, at a distance of 30 km
[51][52].

Absolute error - Full IROD Absolute error - Linear solution

ROE Mean [m] σ [m] Median [m] Mean [m] σ [m] Median [m]

aδa 19.1 28.2 8.5 71.3 59.0 56.7

aδix 16.2 19.7 9.4 10.9 10.8 7.5

aδiy 25.9 21.3 21.2 21.7 20.5 15.2

aδex 25.9 30.7 14.9 20.2 25.8 11.6

aδey 26.7 31.0 15.7 20.6 26.0 11.8

Mean [mm/s] σ [mm/s] Median [mm/s] Mean [mm/s] σ [mm/s] Median [mm/s]

aδȧ 0.4 0.5 0.2 1.2 1.1 0.8

Table 6.11: Comparison of performance of full IROD method versus linear model solution in
terms of ROEs absolute errors

The results in Table 6.11 show how the full IROD method outperforms the linear
model solution when it comes to determine aδa and its time derivative aδȧ, likely
due to the neglection of the curvature e�ects which are not considered in the linear
model. On the other hand, the remaining ROEs computed with the linear model
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solution are slightly more precise than the correspondent ones computed with the
full IROD algorithm. The reader should not forget however that the linear model
solution requires an a priori knowledge of the relative range (i.e. the scaling factor
µ) to be computed: if leveraging the linear model solution would on one hand
guarantee a slightly more accurate result, on the other hand it would decrease the
autonomy of the GNC system and consequently of the entire rendezvous mission.

6.2.5 Performance assessment in function of eccentricity

It is intended now to assess the performance of the IROD method with respect to
the eccentricity of the Chaser's orbit. This evaluation does not concern the perfor-
mance of the algorithm itself, but rather intends to provide guidance on the �eld of
applicability of the IROD method. Previous Chapters have presented the analytical
relative motion models as intended for circular or quasi-circular orbits (e ≈ 0). Ac-
cording to the Backbone Catalogue of Relational Debris Information (BACARDI)
[53], more than 40% of LEO objects have an eccentricity lower than 0.001, and nearly
40% move on an orbit with eccentricity between 0.001 and 0.01. As explained thor-
oughly in [54], relative motion models like the HCW equations and especially the J2
and Drag ROE model used in the IROD algorithm perform very well for Chaser's
eccentricities smaller than 0.01, while above this threshold the eccentricity e�ects
dominate over those associated with perturbations, making necessary the adoption
of other relative motion models like Tschauner-Hempel [25]. As mentioned previ-
ously in Section 6.2.1, the Monte-Carlo analyses have been performed considering
Chaser's eccentricities between 1 · 10−7 and 0.005, in accordance with the appli-
cability �eld of the relative motion model employed in the IROD algorithm. For
this speci�c evaluation however, the eccentricity boundaries have been extendend to
1 · 10−8 on one side, and to 0.2 on the other. In total, 50.000 simulations have been
run approximately.
The �rst evaluation involves as usual the relative error on aδλ, this time with respect
to the Chaser's eccentricity:

Figure 6.12: Relative error on aδλ with respect to the eccentricity of the Chaser's orbit
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Figure 6.12 clearly highlights how, shortly before e = 0.01, the relative error starts
growing rapidly, while being nearly constant before this threshold.
Similar considerations can be made regarding the relative eccentricity vector com-
ponents, aδex and aδey.

(a) Absolute error of aδex correlated with eccentricity (b) Absolute error of aδey correlated with eccentricity

Figure 6.13: Error on relative eccentricity with respect to the eccentricity of the Chaser's orbit

These preliminary but already meaningful results limit the applicability of the IROD
method to rendezvous missions involving spaceborne objects in circular or quasi-
circular orbits (e < 0.005). If one intends to extend the range of feasibility of the
orbit determination algorithm, the adoption of a di�erent relative motion model
must be considered.

6.2.6 Performance assessment with respect to noise

The scope of this section is to assess the performance of the IROD method with
respect to sensors and actuators noise and errors, extending the preliminary results
that were shown in Section 6.1. To do so, the simulations are executed with the
same exact input parameters that were used to evaluate the behaviour in the ideal
case. This means that there is a one-to-one correspondance in terms of Chaser's
KOEs, ROEs, measurements time spacing and number of measurements between
correspondent variants of the Monte-Carlo simulations with and without noise. To
explain this more clearly, the following example is proposed: since the simulations
are run sequentially, each of them is associated with a variant number; in the Monte-
Carlo with noise, simulation with variant number #1981 will have the exact same
input parameters of simulation #1981 in the Monte-Carlo without noise. Obviously,
the presence of noise and errors determines di�erent results, even though the input
parameters are the same. The noise and error parameters are kept the same as
reported in Tables 6.2, 6.3 and 6.4 for star trackers, GNSS and attitude actuators,
while the LOS error is set to have a maximum possible value of 40”, in accordance
with PRISMA and AVANTI's camera characteristics.
As done previously, the analysis �rst focuses on the performance of determining aδλ.
Figure 6.14 shows how the accuracy is slightly degraded, when noise is taken into
account. However, it can be safely said that the performance remains fairly robust,
without massively diverging from the ideal case.
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Figure 6.14: Noise e�ect on aδλ accuracy

Analogously at what was done in Table 6.8, the relative error with respect to the
initial relative distance follows the trends reported here:

Interval [km] Mean σ Median

5-15 0.189 0.175 0.137
15-25 0.132 0.129 0.094
25-35 0.127 0.131 0.087
35-45 0.144 0.143 0.101
45-55 0.173 0.161 0.123
55-65 0.192 0.146 0.150
65-75 0.189 0.113 0.169

Table 6.12: Summary of aδλ relative error in function of initial relative separation, with noise

Unlike the case without noise and errors, it is possible to observe here how the error
at further distances equals or even surpasses the error at closer ranges, likely due
to the larger position error that the same angular error determines as the distance
between the two object increases. If the best performances were obtained before for
the range 25-55 km, the lower errors are now to be found at smaller distances, from
15 to 45 km.
Regarding the radial and normal components of the relative position vector, it is
possible to compare the absolute errors with and without noise, analogously at
what was done before (see Figures 6.7 and 6.8). Obviously, it is expected to have a
degradation of the performance here as well, similarly to what can be observed for
aδλ. Starting with the radial component:
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Figure 6.15: Noise e�ect on radial component accuracy

Regarding the accuracy with respect to the initial relative distance, it is reasonable
to expect a behaviour similar to the one of the along-track separation, with �nest
accuracies moved towards closer initial tangential relative separations. Results are
summarized in the Table below:

Interval [km] Mean [m] σ [m] Median [m]

5-15 30.9 37.2 17.4
15-25 26.1 31.4 14.5
25-35 28.6 33.7 16.3
35-45 36.4 39.9 22.0
45-55 46.8 45.7 31.0
55-65 59.4 51.3 44.0
65-75 71.6 52.9 59.9

Table 6.13: Absolute error on radial component for di�erent initial distance, case with noise

Note the same behaviour as aδλ: accuracy at further distances decreases consider-
ably, with respect to the case without noise (Table 6.9): if the best performance
before was obtained for the range 15-45 km, the optimal is now shifted to shorter
initial separations, from 5 to 35 km.
Last, the distribution of the absolute error on the normal component of the RTN
relative position vector, shown in Figure 6.16:
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Figure 6.16: Noise e�ect on normal component accuracy

Concerning the performance with respect to the initial relative distance, the follow-
ing results are obtained:

Interval [km] Mean [m] σ [m] Median [m]

5-15 25.5 27.6 15.5
15-25 19.3 20.3 12.5
25-35 19.1 18.4 13.5
35-45 22.0 19.9 16.5
45-55 25.5 22.0 19.9
55-65 29.6 23.4 24.4
65-75 31.4 23.4 26.7

Table 6.14: Absolute error on normal component for di�erent initial distance, case with noise

Again, one can note the degraded accuracy especially at larger initial along-track
separations, with respect to the results in Table 6.10.
Given the results reported in this Section, it is possible to con�rm that the IROD
method shows overall robustness to the main sources of errors and noises that char-
acterize its operational environment and conditions. As expected, the performance
is slightly degraded with respect to the ideal case, but the extent of the deterionation
is mild and contained, with generally small deviations from the noiseless results.

6.2.7 Estimation of initial covariance

As explained in Chapter 3, real-time navigation �lters like Kalman Filters require
not only an initial state vector (the IROD solution), but also an initial estimation of
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the uncertainty on the state vector, expressed through the initial covariance matrix
P0. The Monte-Carlo results can be e�ectively used for this scope: indeed, one can
compute the variances of the ROEs evaluating the averaged absolute error from the
estimated and expected ROE in each simulation. Being aδx a generic ROE, the
variance is computed as:

σ2
aδx =

1

N

N∑
i=1

(
(aδx)IROD

i − (aδx)REAL
i

)2
, (6.4)

where N is the total number of simulations. In other words, the variance is the
square of the standard deviation σ of each ROE.
This approach considers the absolute error of the ROE whose variance is being
computed. However, for aδλ, one would expect a larger absolute error and, conse-
quently, greater uncertainty in terms of distance as aδλ increases. In other words, it
would not be meaningful to use the same variance for a scenario where aδλ is 5 km
compared to one where it is 75 km. Therefore, it is more appropriate to use the
standard deviation of the relative error σrel

aδλ instead. Given an estimated value of
aδλ, the variance can then be computed as follows:

σ2
aδλ = (σrel

aδλ · aδλ)2 (6.5)

In order to consider the e�ects of noises and errors, the evaluation of P0 will account
for the Monte-Carlo results with noises.

ROE σ σ2

aδa 42 m 1764 m2

aδix 30 m 900 m2

aδiy 34 m 1156 m2

aδex 46 m 2116 m2

aδey 47 m 2209 m2

aδλ 0.12(aδλ) km 0.014(aδλ)2 km2

aδȧ 0.56 mm/s 0.31 (mm/s)2

Table 6.15: Standard deviation and variance for the ROEs.

The covariance matrix for the real-time navigation �lter can be therefore written as:

P0 =



σ2
aδȧ 0 0 0 0 0 0
0 σ2

aδa 0 0 0 0 0
0 0 σ2

aδλ 0 0 0 0
0 0 0 σ2

aδix
0 0 0

0 0 0 0 σ2
aδiy

0 0
0 0 0 0 0 σ2

aδex
0

0 0 0 0 0 0 σ2
aδey


(6.6)

Further re�nements could be made, for example adjusting the variance of the ROEs
considering the initial estimated along-track separation. This would likely lead to



6.3. EVALUATION WITH ARGON DATA 86

quicker convergence for intermediate distances, where it was observed that the errors
on the radial and normal components reach their lowest values. However, this and
other re�nements will not be investigated throughout this Thesis.

6.3 Evaluation with ARGON data

This Section intends to provide a performance assessment of the IROD method
which leverages the �ight data of the PRISMA mission of SNSB and OHB-SE [55],
in particular the one a�ering to the Advanced Rendezvous experiment using GPS
and Optical Navigation (ARGON) experiment conducted by DLR [56]. First, an
evaluation based on the GPS data of the experiment will be provided, perform-
ing the IROD with the LOS measurements extracted from the GPS information if
Mango (Chaser) and Tango (Target). After that, a preliminary assessment of per-
formance with image processing in-the-loop using real images from the mission will
be presented.

6.3.1 Performance with GPS data

During ARGON, the spacecraft were initially separated by approximately 30 km in
the along-track direction: over 6 days (22-27 April 2012), several manoeuvres were
performed in order to rendezvous Mango with Tango, bringing the two object to the
�nal relative distance of approximately 3 km.

Figure 6.17: Trajectory of Mango with respect to Tango during ARGON
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The GPS data of Mango and Tango can be used to test the IROD algorithm along
di�erent relative orbit scenarios, by computing the LOS vector from Mango's camera
to Tango and acquiring virtual LOS measurements which emulate those that would
be computed after the Target's image acquisition and processing. This approach can
be considered an hybrid between what was done so far and what one would have in
a real angles-only rendezvous mission: while LOS measurements so far have been
computed from the simulated spacecraft's positions, they are now extracted from
the real data of the GPS receivers. What is still missing is the image acquisition
and processing, which would naturally result in a further degradation of the LOS
measurements accuracy and introduce further uncertainties and challenges for the
orbit determination.
The IROD method is suited for the relative orbit determination in absence of ma-
noeuvres: since during ARGON several manoeuvres were actually performed, it is
necessary to �lter out time windows where there is evidence of an unnatural change
in the relative trajectory. To do so, it is possible to plot the ROEs of the formation,
which clearly show how manoeuvres generate a step change in the ROE evolution.

Figure 6.18: ROEs evolution during ARGON

Having identi�ed the timestamps and durations of manoeuvres, the IROD algorithm
could be tested, acquiring for each run a number of measurements between 2000
and 3250, with a time spacing between two consecutive measurements randomly
picked between 5 to 10 seconds. Few examples for di�erent initial relative orbits are
reported here:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference 1.50e-5 -20.5 -29475 -3.83 295 -51.0 -395

IROD 1.00e-4 -21.7 -28763 -1.99 293 14.2 -332

Table 6.16: IROD with ARGON GPS data, along-track distance of approximately 30 km
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aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference 1.54e-5 -132 -22186 -4.42 247 -21.8 -303

IROD 3.92e-4 -120 -19234 -4.15 217 21.8 -233

Table 6.17: IROD with ARGON GPS data, along-track distance of approximately 22 km

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference 1.48e-5 -49.3 -6454 -0.13 196 -1.60 -196

IROD 7.23e-4 -231 -8699 -1.71 249 18.8 -270

Table 6.18: IROD with ARGON GPS data, along-track distance of approximately 6 km

Note how the real initial aδλ is always negative, meaning that the approach was
conducted along −Vbar. Thus, the initial search space of the binary search has to be
adjusted accordingly, and is therefore set to [−100;−1] km instead of the preceding
[1; 100] km.
Overall, the performance of the IROD method is not as robust as observed in the
Monte-Carlo analyses: however, it is hard to assess if this is related to the method
itself, whose performance may be a�ected by the di�erent nature of the data em-
ployed, or if it is related to some speci�cities of the ARGON relative orbit, which may
pose additional challenges to the state determination with this speci�c algorithm.

6.3.2 Preliminary perfomance assessment with ARGON im-

ages

So far, the LOS measurements have been virtually acquired from the simulated or
from the real relative position vectors. However, it has been extensively discussed
how in reality azimuth and elevation angles are the outputs of a complex image
acquisition and processing task, which aims �rst at detecting the Target among
all the bright objects in the Field of View and then tracks it along its motion,
computing the LOS when required [34]. Since one of the main goals of ARGON
was to demonstrate the feasibility of angles-only navigation for rendezvous with
uncooperative Target, Mango was equipped with a camera tasked to acquire and
process images of Tango, in order to enable LOS navigation in a Ground-In-the-
Loop fashion [50]. The images captured during the experiment are still available,
and could be used to test the implemented IROD algorithm in a scenario which is
closer to reality than what was done so far.
Despite the 5-days duration of the experiment, only the images between 23rd and
24th of April 2012 are available: the dataset is therefore constituted by a total of
roughly 1500 images covering a timespan of approximately 2 hours. The images
are already partially processed, since the navigation sensor of Mango featured a
process that autonomously extracts the so-called Region Of Interst (ROI) around
the brightest objects in the FOV. Figure 6.19 shows one of the images downloaded
during the experiment: among several bright objects which may include stars or
di�erent satellites, Tango can be identi�ed with the bright spot in the centre of the
image.
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Figure 6.19: Image from the ARGON experiment. The bright spot in the centre is the Tango
spacecraft

The images are then processed following a procedure which is very similar to the
one described in Chapter 3, allowing the Target detection, the centroid's position
calculation and the calculation of azimuth and elevation angles. These angles are
converted into LOS vectors which are subsequently used to run the IROD algorithm.
Unfortunately, the full IROD algorithm could not guarantee even a rough estimate
of the relative orbit, failing in determining the relative range by approximately a
factor 6. However, it cannot be concluded that the issue is solely due to having
image processing in the loop, since the algorithm, when fed with GPS data over the
same time window and with LOS measurements acquired at the same timestamps
as the images, also resulted in failure. The most probable explanation is that, for
reasons that are yet to be determined, the IROD method is somehow not suited
for this speci�c time window of this speci�c orbit. Further analyses are required to
investigate the causes of the failure in the orbit deterimation process.
Despite this, some encouraging results can be observed when analyzing the linear
model solution. Two cases are investigated: one where the LOS measurements are
solely acquired from the images, and another where GPS-based LOS measurements
are added to the input. In this second case, the GPS measurements are acquired
after the image-based measurements, corresponding to the immediately following
time window. The linear model solution is then computed and appropriately scaled
by the real initial aδλ. Results are reported below:

aδȧ [m/s] aδa [m] aδλ [m] aδix [m] aδiy [m] aδex [m] aδey [m]

Reference 1.50e-5 -7.13 -29776 3.20 220 -83.5 -369

IROD - IMG only 8.87e-4 -205 -29776 25.4 327 -0.70 -387

IROD - IMG + GPS 3.06e-4 -99.4 -29776 6.70 274 -2.51 -320

Table 6.19: Linear solution performance with LOS from ARGON images

While some ROEs still exhibit relatively large deviations in terms of absolute po-
sition errors, others are instead close to the reference initial state, especially when
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GPS measurements are added to aid the orbit determination process. However, the
accuracy is still not su�cient, and further investigation and analyses are needed to
identify the causes behind this performance. Additional testing with images per-
taining to other phases of the experiment would also be very bene�cial to narrow
down the pool of possible performance degrading factors.

6.4 Runtime evaluation on Zynq Board

As discussed in Chapter 5, the IROD method is required to be computationally light
enough to be suited for on-board application. It is well known indeed that satellite
onboard computers usually feature lower processing power and storage capability,
compared to ordinary computer processors like the ones used in common laptops.
This means that at least in terms of computation time, the data reported in Chapter
5 (Tables 5.1 and 5.2) is not enough to assess the onboard implementation feasibility.
As a consequence, the C++ code is deployed and executed on the Zynq Board to
allow Processor-In-the-Loop (PIL) testing and runtime performance assessment.
The Xilinx Zynq�7020, in this Thesis also referred as Zynq Board, is a fully scalable
System on Chip (SoC) platform ideal for industrial Internet of Things (IoT) applica-
tions. Such devices have recently attracted attention for hybrid and recon�gurable
onboard computing due to their relatively low cost and wide market avaiability
[57][58]. The Zynq 7020 is also integrated in the ScOSA (Scalable On-board Com-
puting for Space Avionics) onboard computer of DLR, and may soon be launched
to orbit in the related space mission [59][60]. The Zynq Board features a dual-core
ARM Cortex-A9 MPCore with a clock speed of up to 866 MHz. Previous exper-
iments have shown that the runtime of other C++ programmes deployed on the
Board was roughly 20 times slower than on standard desktop computers' processors
belonging to the same family of the Intel Core i9-13950HX which was used in Chap-
ter 5 for the preliminary assessment [58]. Therefore, a similar performance is to be
expected also for the IROD algorithm.
The assessment is conducted evaluating the processing time for 4 di�erent numbers
of total measurements, and the computation time for the linear model solution is
measured for both the SVD and the least-squares based approach.

Measurements
Linear Model Solution [µs]

Full IROD [s]
SVD Least-Squares

250 2912 22 1.0

500 6538 24 3.9

1000 13702 23 15.6

2000 28088 23 60.3

Table 6.20: Runtime performance on Zynq Board

Compared to the data gathered in Table 5.2, it is possible to observe the expected in-
crease of the runtime by approximately a factor 20. Also, the quadratic dependency
of the computation time over the number of measurements is clear and evident,
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allowing to estimate the runtime also for those number of measurements that were
not tested here. Table 6.20 highlights the signi�cant di�erence between the two pro-
posed solvers for the linear model solution, con�rming that the least-squares method
is the preferred choice, even though the total runtime is primarily in�uenced by the
other processes of the IROD algorithm. The total processing time of approximately
1 minute with 2000 measurements can be considered a symbolic but meaningful
benchmark for future tests, re�nements and optimizations.
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Conclusion

The goal of this Thesis was the presentation the work related to the implementa-
tion and testing of an algorithm for Inital Relative Orbit Determination through
angles-only measurements. The IROD algorithm leverages a non-linear coordinate
mapping that allows to overcome the intrinsic non-observability problem of Line-
Of-Sight relative navigation for space rendezvous. Relying on a simple but e�ective
binary search method, the algorithm retrieves an estimate of the inter-satellite dis-
tance between Chaser and Target, and subsequently computes a coarse initial state
vector of the satellites formation. This coarse estimate, alongside with the associ-
ated covariance matrix, can be used to initialize a real-time navigation �lter. The
algorithm has proven to be robust to several sources of noise and errors typical of
vision-based rendezvous missions, most notably the LOS error. The method has been
tested through extensive Monte Carlo simulations, demonstrating its performance
across various mission scenarios and ultimately con�rming the overall accuracy of
the computed solutions. The IROD method has also been tested using real data
from the PRISMA mission, yielding promising results, though not yet conclusive
enough to con�rm its full reliability under the conditions of a real scenario. Finally,
the algorithm has been executed on a platform that could serve as a satellite on-
board computer in the near future, demonstrating both its suitability for onboard
implementation.
Future work should primarily focus on integrating image processing into the loop. In
this study, LOS measurements were obtained from the high-�delity dynamic simula-
tor, which inherently produced a perfect match with the true relative position unit
vector. However, in a real camera-based rendezvous scenario, the LOS vector must
be extracted from acquired images, a process that, even if precise, will never achieve
the same level of accuracy as numerical trajectory propagation. For a hypothetical
mission design process, using simulated images would likely su�ce to evaluate the
behavior of the IROD algorithm under conditions closely resembling reality. An-
other improvement could be represented by the adoption of a more accurate relative
motion model, which would ultimately increase the accuracy of the computed IROD
solution. As highlighted especially by the Monte-Carlo simulations, there is also the
need for an alternative method to calculate the di�erential drag parameter, whose
computation did not exhibit excellent performance overall. Moreover, in light of
a potential future vision-based rendezvous mission, a system-level optimization of
the code should be conducted, for example improving memory and resources man-
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agement. Lastly, it is essential to evaluate how a real-time navigation �lter, such
as an Extended Kalman Filter, responds to the outputs of the IROD algorithm to
determine whether its accuracy is su�cient for the intended purpose.
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