
POLITECNICO DI TORINO 

 

Corso di Laurea Magistrale in Ingegneria Meccanica 
 

 

 
 
 

TESI DI LAUREA MAGISTRALE 
 
 

COMPARATIVE ANALYSIS OF INVERSE KINEMATICS 
STRATEGIES FOR EFFECTIVE CONTROL OF REDUNDANT 

MANIPULATORS IN COLLABORATIVE ROBOTICS 
 

 

Relatori:                                                                           Candidato: 

Prof. Stefano Paolo Pastorelli                                  Tommaso Zinno  

Dott. Elisa Digo                                                     Matricola:313358 

Dott. Valerio Cornagliotto 

 
 

Anno Accademico 2024/2025 
Sessione di Laurea Aprile 2025 

 
 





Table of contents 
ABSTRACT ....................................................................................................................... 5 

INTRODUCTION................................................................................................................. 7 

1.1 Collaborative robotics ....................................................................................... 7 

1.1.1 Human-robot Collaboration (HRC) ............................................................ 8 

1.2 From Industry 4.0 towards industry 5.0 ........................................................... 11 

1.2.1 Basic Driving Concepts of Industry 4.0 and Industry 5.0 .......................... 12 

1.2.2 Opportunities and challenges in integrating cobots in Industry 5.0 ............ 14 

1.3 Sliding manipulators........................................................................................ 17 

1.4 Aim of the thesis ............................................................................................. 19 

MODEL .......................................................................................................................... 21 

2.1 Inverse kinematics ........................................................................................... 21 

2.1.1 Inverse kinematics algorithm .................................................................... 26 

2.2 Model implementation..................................................................................... 33 

2.2.1 Trajectory planning .................................................................................. 34 

2.2.2 Inverse kinematics algorithm subsystem ................................................... 36 

2.2.3 UR3 “Digital Twin” ................................................................................. 41 

RESULTS AND DISCUSSIONS ............................................................................................ 45 

3.1 Projected gradient method ............................................................................... 45 

3.2 Point to point trajectory ................................................................................... 53 

3.2.1 Disturbance .............................................................................................. 60 

3.2.2 Initial error ............................................................................................... 66 

3.3 Path motion trajectory ..................................................................................... 79 

3.3.1 Left-shoulder wrist-down ......................................................................... 81 

3.3.2 Left-shoulder wrist-up .............................................................................. 86 

CONCLUSIONS .............................................................................................................. 109 

REFERENCES ................................................................................................................ 111 





Abstract 

5 
 

ABSTRACT 
Inverse kinematics (IK) is a crucial concept in robotics, enabling a robot to determine the 

joint configurations required to achieve a desired end-effector position. In the case of 

redundant robots, which have more degrees of freedom (DOF) than necessary for a specific 

task, the IK problem becomes more complex. However, the redundancy provides the 

opportunity to optimize the robot's motion, considering factors such as joint limits, obstacle 

avoidance, and energy efficiency.  

In the first chapter, the introduction provides an overview of the state-of-the-art in 

collaborative robots and their increasing role in Industry 5.0, emphasizing their challenging 

integration into Human-Robot teams. 

In the second chapter, the model of a linear manipulator is presented, along with basic 

approaches to solving the inverse kinematics problem for redundant robots. The focus is on 

the mathematical formulations and the algorithm implementation. Specifically, the pseudo-

inverse, weighted pseudo-inverse, and Damped Least Squares (DLS) methods are 

proposed.  

In the third chapter, two trajectories are analyzed to explore and understand the functioning 

of the said techniques. 

In the last one, conclusions regarding the algorithms are formulated, such as their 

advantages and limits based on criteria like: task constraints, robot singularities and which 

of them can be the most appropriate solution for a Human-Robot-Collaboration (HRC). 

  



Abstract 

6 
 

  



Introduction 

7 
 

INTRODUCTION  
1.1 Collaborative robotics  
Collaborative robots, referred to as cobots or co-robots, are one of the latest technologies 

in robotics. They are designed to interact with human operators in a shared work 

environment guaranteeing safety while shortening production times and hence improving 

the efficiency.  

The first cobot was invented in 1996 by J. Edward Colgate and Michael Peshkin. The 

definition is that of "a device and method for direct physical interaction between a person 

and a computer-controlled manipulator."  

Since then, numerous cobots have been marketed. Kuka Robotics, which also launched one 

of the first industrial robots on the market, launched its first cobot in 2004, the LBR 3. 

Universal Robots, one of the world's largest cobot suppliers, launched its first cobot in 

2008, the UR5. Seven years later, it was followed by UR3, the one used in this thesis [1]. 

Cobots were being conceived principally because some tasks were too complex or 

expensive to be carried out by an industrial robot, or too weary and repetitive to be wholly 

made by operators. Accordingly, it is possible to combine human and robot complementary 

capabilities: the precision and fatigue-free nature typical of the robotic structure are 

exploited together with the operator's ability to make decisions, predict and solve inaccurate 

situations, and adapt to the flexibility and variability of tasks.  

The main differences between industrial robots and collaborative robots can be summarized 

in three terms: safety, flexibility and speed of installation. 

Safety is the main parameter that defines collaborative robots as they are equipped with 

integrated safety systems, such as emergency stop, limits on joint speeds and other passive 

measures that allow the sharing of the workspace with the operator without the aid of 

physical barriers. First of all, the size of cobot is smaller than that of a typical industrial 

robot. However, the safety feature derives not only from the size of the robot and from the 

limitations on movement speeds, but also from the possibility of equipping the structures 

with sensors, such as vision systems. These technologies allow to record the operator's 

position and consequently to control the movements of the robot and its reaction times [2]. 



Introduction 

8 
 

As far as flexibility is concerned, an industrial robot performs well in terms of productivity 

and economic return when it works on large volumes, as it ensures great speed of 

production and repeatability. Indeed, it is a type of automation called 'rigid', as it does not 

allow large variations in the layout of the production system and the change of production 

takes time. On the contrary, since collaborative robots are typically smaller, more compact 

and lighter, they can be easily and quickly moved within the industrial layout; in addition, 

they are easily reprogrammable for quick job changes. 

Finally, differently from bulky industrial robots, the installation of cobots does not require 

major changes in the production layout. This allows for a quicker integration inside work 

areas as there is no need to install physical barriers separating robots from operators. 

Therefore, the implementation of such robotic structures is not only simpler but also much 

faster than that of industrial robots.  

Thanks to these characteristics, collaborative robotics has made it possible to introduce 

automation in sectors and industries where traditional robotics could not be applied due, 

for example, to limited budgets, insufficient space in the industrial layout, or lack of 

operators specialized in programming industrial robots [2]. 

Typical industries in which cobots are deployed are food, plastics, packaging, electronics, 

pharmaceutical, automotive, and metal. 

1.1.1 Human-robot Collaboration (HRC)  
The transition of robots from caged robots to collaborative ones has been a gradual process, 

driven by advancements in technology and changing attitudes towards robotics in the 

workplace, as seen in Fig. 1.1.0 Here there is a brief overview of the key stages of this 

transition [3]: 

• Caged Robots: In the early stages of industrial automation, robots were confined 

within protective cages or enclosures. These physical barriers were designed to 

prevent any direct contact or interaction between robots and human workers. The 

primary objective of this approach was to ensure safety in the workplace, as the 

robots employed during this period were limited in their capabilities and lacked the 

advanced safety mechanisms necessary for safe coexistence with humans. 

• Collision Avoidance: As technological advancements continued to unfold, robots 

began to be equipped with a range of sensors and cameras that enabled them to 



Introduction 

9 
 

detect the presence of humans in their vicinity. These sensors allowed robots to 

identify the positions of nearby humans and respond appropriately to prevent 

potential collisions or accidents. This marked a significant step forward in 

enhancing safety in shared workspaces, as robots could now slow down or stop their 

movements when a human was nearby, reducing the risk of injuries and accidents. 

• Human–Robot Interaction (HRI): Further progress in robotics brought about 

breakthroughs in natural language processing and speech recognition technologies. 

These developments enabled robots to understand and respond to verbal commands 

and cues from humans. As a result, the communication gap between humans and 

robots began to narrow significantly. This phase ushered in a new era of more 

interactive and responsive robot behavior, making it easier for humans to work 

alongside and instruct robots effectively [3]. 

• Human–Robot Collaboration (HRC): Recent advancements have shifted the 

focus towards HRC. In this phase, robots and humans actively collaborate on tasks, 

often in close proximity. This collaborative approach necessitates robots’ ability to 

interpret human intentions, cooperate effectively, and ensure safety throughout the 

collaborative process. HRC represents a profound shift from the earlier isolation of 

robot functions to a mode where humans and robots work together as 

complementary partners. 

• Physical HRC (pHRC): The next stage in the evolution of robotics is Physical 

Human–Robot Collaboration. At this level, robots are not only collaborating with 

humans but also physically interacting with them. This interaction may involve 

tasks such as sharing tools, passing objects, or jointly manipulating objects. 

Achieving successful pHRC requires the development of highly advanced sensing 

and control systems that ensure safe and efficient cooperation. This stage represents 

a deeper physical integration between humans and robots, where their actions are 

closely intertwined. 

• Human–Robot Teaming (HRT): The last stage of robotics evolution is Human–

Robot Teaming. In this advanced stage, robots are integrated into human teams as 

equal partners. HRT demands sophisticated AI and machine learning algorithms 

that enable robots to adapt to human behaviors, preferences, and decision-making 

processes. These robots become active, adaptive team members that work alongside 

humans to achieve common goals HRT marks a paradigm shift in the relationship 

between humans and robots, where robots are not just passive instruments but active 



Introduction 

10 
 

contributors to collaborative endeavors. This final level of integration and 

teamwork represents the cutting edge of robotics technology, paving the way toa 

wide range of applications across various industries [3]. 

 

 

Figure 1.1.0 - Different types of shared workspace in HRC systems [3]. 

  



Introduction 

11 
 

1.2 From Industry 4.0 towards industry 5.0 
A new industrial paradigm, Industry 5.0, emerged shortly after Industry 4.0, sparking 

discussions about its application and relevance. Industry 4.0 is built around the concept of 

the smart factory, where smart products, machines, storage systems, and data converge in 

the form of cyber-physical production systems. From a technical perspective, Industry 4.0 

has enhanced human-machine interaction, but in terms of social sustainability, the 

technological advancements of Industry 4.0 must carefully account for the central role of 

humans. 

The significance of employees became especially evident during the COVID-19 pandemic, 

which also prompted a reevaluation of the Industry 4.0 paradigm. As a result, the concept 

of Industry 5.0 emerged as a natural extension of Industry 4.0, incorporating social and 

environmental dimensions. Industry 5.0 focuses on workers' skills, knowledge, and their 

ability to collaborate with machines and robots, while also emphasizing flexibility in 

production processes and minimizing environmental impact. 

As a reference to past trends, Figure 1.2.0 illustrates the transformations through the 

paradigms, highlighting the key participants and industry segments involved [4]. 

 

Figure 1.2.0 - Transformations through industrial paradigms [4]. 



Introduction 

12 
 

1.2.1  Basic Driving Concepts of Industry 4.0 and Industry 5.0  
Industry 4.0 is based on the concept of smart factories, whose initiative was founded by 

partners from industry and academy as an environment for test future technologies and to 

learn by doing. There are important key drivers [4]: 

• Internet of Things, services and data that enable the communication between 

objects. By placing the intelligence into objects, they are turned into smart objects 

able not only to collect information from the environment and interact or control 

the physical world, but also to be interconnected to each other through Internet, to 

exchange data and information. 

• Cloud computing is a driver which supports the Internet of Things, enabling the 

access to large datasets and its processing to generate new useful information 

through different types of reports.  

• Cyber-physical system (CPS) is defined as a new generation system with 

integrated computational and physical capabilities that can interact with people 

through new modalities. 

• Artificial intelligence supports the cyber-physical system for filtration of the 

multitude data incoming from different sensors in a production system and analyzes 

it through the reports. It offers the data-driven predictive analytics and capacity to 

assist decision- making in highly complex, nonlinear, and multistage production. 

• Augmented reality (AR) represents the integration of the virtual and real 

environments where objects in the real world are enhanced by computer-generated 

information or objects with the help of different technologies. 

• Simulation is a powerful tool used for decision making. The application of 

simulation methods is becoming increasingly relevant as developments in the field 

of digitalization lead to more comprehensive, efficient, embedded, and cost-

effective simulation methods 

Autonomous robots can detect problems and independently adjust their tasks to 

ensure that processes run smoothly. However, there are levels of robot autonomy, 

ranging from teleoperation to fully autonomous systems, that influence human–

robot interaction.  

 



Introduction 

13 
 

These elements enable the connectivity of the virtual and real world in order to achieve 

better results in production with maximum profit. A completely profit-driven approach is 

not sustainable for the long term. Instead of taking technology as a crucial element, the 

document of European Commission sees three key drivers as the center of new industrial 

paradigm Industry 5.0 (Figure 1.2.1): 

• Human-centric approach, which places human needs at the heart of the production 

process, asking what technology can do for workers and how can it be useful. 

• Sustainability, which focuses on reuse, repurpose, and recycle of natural resources 

and reduce of waste and environmental impact. 

• Resilience, which implies an introduction of robustness in industrial production. 

This robustness provides support through flexible processes and adaptable 

production capacities, especially when a crisis occurs. 

 

Figure 1.2.1 - Industry 5.0 with three key drivers [4] 

According to the European Commission, Industry 5.0 is a necessary evolutionary step of 

Industry 4.0 because of three important issues: (1) Industry 4.0 is not the right 

framework to achieve Europe’s 2030 goals, because the current digital economy is a 

winner-takes-all model that creates technological monopoly and giant inequality. (2) 

Industry 5.0 is not a technological leap forward, but a way to see the Industry 4.0 

approach in a broader context, providing regenerative purpose and directionality to the 

technological transformation of industrial production for people–planet–prosperity. (3) 

Industry 5.0 is a transformative model that reflects the evolution of our thinking 



Introduction 

14 
 

postCOVID-19 pandemic, by taking into consideration learnings from the pandemic and 

the need to design an industrial system that is inherently more resilient to future shocks and 

truly integrates social and environmental principles [4]. 

1.2.2  Opportunities and challenges in integrating cobots in Industry 

5.0  
The transition from Industry 4.0 to Industry 5.0 marks a significant shift towards human 

centric manufacturing processes, emphasizing the integration of collaborative robots with 

advanced sensory and cognitive abilities. Unlike previous industrial revolutions, Industry 

5.0 prioritizes the integration of human workers alongside advanced technologies, 

emphasizing collaboration, and acknowledging the unique strengths of both humans and 

machines, with a focus on human wellbeing. 

The transition, however, also poses several challenges [5]: 

1) Concerns about how safety considerations impact performance, leading to 

hesitancy in adopting cobots. 

Despite their advantages, the deployment of cobots remains 

limited and falls short of expectations. Illustrating this reluctance are the 

International Federation of Robotics data, showing that the share of cobots over the 

past five years, although gradually growing, amounted to just 10 % of total robot 

installations. 

One key challenge is the complexity of ensuring safety with cobots, which involves 

integrating technical, human, and organizational factors. This creates a 

contradiction in cobot safety, leaving practitioners uncertain about deployment. In 

fact, safety in industrial environments is often seen as conflicting with productivity, 

but modern approaches suggest that safety should not hinder performance. Instead, 

performance should be optimized within safety constraints, focusing on a balanced 

approach that also considers worker well-being. 

2) Narrow safety focus and overlooked system-wide impacts.  

Safety considerations in human-robot collaboration (HRC) have traditionally 

focused on physical risks, such as collision avoidance and compliance with ISO 

standards (e.g., ISO 15,066). However, this narrow focus often overlooks broader 

system-wide impacts, including psychosocial safety and operator well-being, which 

are equally critical in dynamic collaborative work environments. The proximity and 



Introduction 

15 
 

interaction between humans and cobots introduce additional complexities that 

cannot be fully addressed through technical safeguards alone. 

3) Limited guidance on the precise drivers of well-being. 

Industry 5.0 builds on the human-centric aspects of Science and Technology Studies 

(STS) by promoting technologies that enhance human well-being and facilitate 

meaningful human machine collaboration. Industry 5.0 explicitly incorporates well-

being as a core principle, advocating for the development of technologies that 

support sustainable, resilient, and human-centered industrial systems.  

Well-being in human-robot collaboration (HRC) is framed within ergonomics 

and human factors, which include physical and cognitive aspects. Safety is a core 

component of well-being, ensuring that robots operate safely alongside humans. 

This includes addressing both physical safety and cognitive and emotional 

impacts. While research has been conducted on ergonomics and human factors in 

HRC, there is limited practical guidance on implementing well-being measures and 

on the precise drivers of well-being in HRC [5]. 

 

  



Introduction 

16 
 

  



Introduction 

17 
 

1.3  Sliding manipulators 
Sliding manipulators are usually articulated manipulators with six or more degrees of 

freedom characterized by a prismatic joint as their first joint or positioned on a track. In the 

first case, they are redundant structures whose mobility in terms of translation is allowed 

by the initial prismatic joint; in the second case, they are a structure made redundant by the 

addition of the degree of translation determined by the mobile base (as shown in Figure 

1.3.0).  

 

Figure 1.3.0 - A sliding manipulator [6] 

In both cases, these structures have the typical advantages of both a redundant device and 

a mobile device: large working space, light weight, high fault tolerance, and high operating 

accuracy. In detail, redundancy results in: (i) greater dexterity or the ability to perform tasks 

increased manipulability, (ii) limitation of joint speeds, (iii) uniform distribution of motion 

on the joints, (iv) minimized consumption in the optimization of task execution times, (v) 

increased reliability with respect to failures, and (vi) avoidance of obstacles and/or 

singularity configurations. On the other hand, mobility allows for better maneuverability 

and control capacity as well as an increase in the overall workspace of the manipulator 

compared to a traditional manipulator with a fixed base [2]. 

Despite the several advantages brought by the use of a redundant sliding robotic system, its 

integration inside a production system needs some aspects to take into account:   



Introduction 

18 
 

1) Static load capacity: The base of the robot must be able to withstand the static load 

(consisting of the weight of the robot and the load, the bending, and the overall 

center of gravity under static conditions) so as to prevent the structure from tipping 

over.  

2) Dynamic load capacity: in addition to static conditions, the base must be properly 

sized taking into account the loads that develop when the robot performs the 

planned trajectory and, in addition, it is necessary to appropriately size the stops to 

prevent the robot from leaving the guide.  

3) Speed and acceleration: it is necessary to choose and appropriately size the robot 

actuator according to the speeds and loads required during the execution of the 

tasks. 

4) Precision and accuracy: in the case of several robots positioned on the same guide, 

it may be necessary to integrate support beams to comply with the requirements of 

precision and repeatability during the execution of the operations as well as to 

provide reference systems for calibrating the position of the robot on the guide itself 

[2]. 

 

 

 

  



Introduction 

19 
 

1.4 Aim of the thesis 
Currently, literature research concerning sliding manipulators does not focus on HRI.  

On the contrary, in Scopus database, it is possible to find scientific papers in which robots 

are used in industrial environments such as [7] and [8], where the sliding manipulator is 

employed for agricultural applications. Other studies such as [9] and [10] focus on the 

analytical aspects of the redundancy. 

In the market too, sliding cobots are mainly built for applications where the pHRC is not 

contemplated. The “SLIDEKIT 2.0” of Universal Robots, for instance, is able to perform 

operations, e.g. welding, palletising, finishing, machine tending, and parts inspection [11]. 

The first full collaborative solution is the “Movotrak Cobot transfert unit” of Universal 

Robots, provided by the manufacturer “Thompson linear” (Figure 1.4.0) [12]. Its 

appearance on the market (January 2025) is very recent with respect to the writing of this 

thesis.  

 

Figure 1.4.0 - Movotrak Cobot transfer unit [11] 

This solution is truly collaborative according to ISO safety standards, for its effective 

collision detection inside the base, which embeds a load sensor that stops the whole robot 

when triggered. In other 7th axis manipulators, the cobot is able to translate only when the 

collaborative mode is turned off. 



Introduction 

20 
 

Accordingly, to fill the gap in the academic literature on this topic, the aim of this master 

thesis is to evaluate the integration of a linear guide under the base of a collaborative robot 

(UR3, Universal Robot). Specifically, the thesis focuses on the computational analysis 

through Matlab and Simulink of the complex kinematics of a redundant robot without 

modeling the robot dynamics. In the following chapters, the mathematical procedures for 

resolving the kinematics are explained, modeled and traduced for specific tasks. 

Subsequently, the obtained movements of the robot are observed though a simulation 

environment in Simscape. Finally, results are presented and discussed, highlighting the 

advantages of the linear guide insertion for a collaborative scenario.  

The chronological workflow that has been following is shown in Figure 1.4.1. 

 

Figure 1.4.1 - Thesis workflow 

  



Model 

21 
 

MODEL 
In this chapter, in the first section, the analytical problem of the inverse kinematics for a 

redundant manipulator is presented. In the second section, the Simulink model 

implementing the theoretical part previously described is proposed.  

2.1 Inverse kinematics 
A manipulator is defined kinematically redundant when it has a number of degrees of 

freedom (DOFs) n that is greater than the number of variables necessary to describe a given 

task m. Therefore, redundancy is a relative concept: a manipulator can be redundant with 

respect to a task and non-redundant with respect to another task. With reference to the 

above-defined spaces, a manipulator is intrinsically redundant when the dimension of the 

operational space is smaller than the dimension of the joint space (m < n) [13]. This is the 

case of the present thesis, because the linear and angular velocities of the End-Effector (EE) 

are always defined (m = 6), and there are 7 DOFs (6 revolute UR3 joints + prismatic guide 

joint).  

The redundancy implies a Jacobian matrix (J(q)) with more columns than rows (6x7), so 

there are infinite joint velocities �̇� (7x1 vector) that can generate a desired EE velocity 𝒗𝑑 

(6x1 vector). Hence, unlike non-redundant robots, the simple inversion of the following 

differential kinematics equation is no longer possible. 

 

𝒗𝑑 = 𝑱(𝒒)�̇� (2.00) 

 

Closed-form solutions, which use direct kinematics for the inverse kinematics problem, 

cannot be used since infinite solutions exist. Therefore, numeric solutions techniques must 

be implemented, and this naturally leads to starting the problem from (2.00). This is one of 

the reasons why the trajectory must be also defined in velocity terms. 

In order to deal with the redundancy, a viable solution method is to formulate the problem 

as a constrained linear optimization problem. The values of 𝒗𝑑, an initial joint configuration 

𝒒(0), and the discrete time 𝑡 = 𝑘 ∙ 𝑇𝑠, where k is a positive integer number, and 𝑇𝑠 is the 

sampling time, are given. 



Model 

22 
 

By instantaneously optimizing an objective function 𝐻(𝑞, �̇�) that generally depends on the 

joint configuration and velocities, it is possible to compute the discrete joint velocities 

�̇�(𝑘 ∙ 𝑇𝑠); by integrating them with a numeric method, like the simple Euler’s one, the 

configurations of the next time step are obtained as shown [13]: 

  

𝒒((𝑘 + 1) ∙ 𝑇𝑠) = 𝒒(𝑘 ∙ 𝑇𝑠) + 𝑇𝑠 ∙ �̇�(𝑘 ∙ 𝑇𝑠) (2.01) 

 

From this result, the joint velocities of the current time step are solved, and so on for each 

time step by iterating the method, until the last sampled time. 

These are the so-called local methods used in this thesis. The global methods, in which the 

optimization of the objective function is done throughout the whole trajectory time, are 

more complex. For this reason, their numeric solutions are computationally intensive, 

therefore they cannot be solved online like the local methods [14]. 

One of the simplest objective functions is the quadratic cost function of joint velocities 

(2.02), where 𝑾 is a suitable (𝑛 × 𝑛) symmetric positive definite weighting matrix.  

 

𝐻(�̇�) =
1

2
�̇�𝑇𝑾�̇� (2.02) 

 

Thus, once the EE velocity and Jacobian matrix are available for a given configuration, it 

is desired to find solutions �̇� that satisfy the linear equation in (2.00) and minimize (2.02). 

This minimization can be obtained with the method of Lagrange multipliers, and, under the 

assumption that the Jacobian has full (row) rank, the solution achieved is the following one: 

 

�̇� =  𝑾−1𝑱𝑇(𝑱𝑾−1𝑱𝑇)−1𝒗𝑑 (2.03) 

 

Where the matrix 𝐽𝑊
#  is the right weighted pseudo-inverse of 𝑱: 

 

𝑱𝑊
# =  𝑾−1𝑱𝑇(𝑱𝑾−1𝑱𝑇)−1 (2.04) 



Model 

23 
 

A particular case occurs when the weighting matrix 𝑊 is the identity matrix. In this case, 

the solution simplifies into 

 

�̇� = 𝑱#𝒗𝑑 (2.05) 

 

Where the matrix 𝑱# is the right pseudo-inverse of 𝑱. 

 

𝑱# = 𝑱𝑇(𝑱𝑱𝑇)−1 (2.06) 

 

The obtained solution locally minimizes the norm of joint velocities, meanwhile (2.03) 

minimizes the weighted norm [13]. 

If 𝑱 is not full rank, then the pseudo-inverse is numerically computed using the Singular 

Value decomposition (SVD) of 𝑱[14]. 

The SVD is a factorization of a matrix into a rotation, followed by a rescaling followed by 

another rotation. It generalizes the eigendecomposition of a square normal matrix with an 

orthonormal eigenbasis to any (𝑚 × 𝑛) matrix. Specifically, the singular value 

decomposition of an (𝑚 × 𝑛) real matrix 𝑴 is a factorization of the form 𝑴 =

𝑼𝚺𝑽𝑇 ,where 𝑼 is a (𝑚 × 𝑚) real orthogonal matrix, 𝚺 is a (𝑚 × 𝑛) rectangular diagonal 

matrix with non-negative numbers on the diagonal and 𝑽 is (𝑛 × 𝑛) real orthogonal matrix. 

The diagonal entries 𝜎𝑖 =  Σii of 𝚺 are uniquely determined by 𝑴 and they are known as 

the singular values of 𝑴. The number of non-zero singular values is equal to the rank of 𝑱 

[15]. 

Therefore, the rank decreases when the last singular value approaches zero. Since the 

determinant of 𝑱 does not exist, the monitoring of this parameter can be used instead as a 

singularity detection.  

By applying this decomposition to the Jacobian matrix, it can be proved that its numerical 

pseudo-inverse 𝑱# is obtained as it follows: 

 

𝑱# = 𝑽𝚺#𝑼𝑇  (2.07) 



Model 

24 
 

Where 𝚺# is a (𝑛 × 𝑚) rectangular diagonal matrix with the diagonal entries being the 

reciprocal of 𝜎𝑖 [14]. An alternative solution overcoming the problem of inverting 

differential kinematics in the neighborhood of a singularity is provided by the so-called 

damped least-squares (DLS) inverse, expressed in the following equation: 

 

𝑱𝐷𝐿𝑆 = 𝑱𝑇(𝑱𝑱𝑇 +  𝜇2𝑰)−1 ⇒ �̇� = 𝑱𝐷𝐿𝑆(𝒒)𝒗𝒅 (2.08) 

 

Where 𝜇 is a damping factor. It can be shown that such a solution can be obtained by 

reformulating the problem in terms of the minimization of the cost functional: 

 

𝐻(�̇�) =
𝜇2

2
‖�̇�‖2 +

1

2
‖𝒗𝑑 − 𝑱�̇�‖2 (2.09) 

 

This method induces a robust behavior when crossing singularities, but in its basic version 

always gives a task error  proportional to the damping factor [12]. 

 

‖𝒗𝑑 − 𝑱�̇�‖ =  𝜇2(𝑱𝑱𝑇 +  𝜇2𝑰)−1𝒗𝑑 (2.10) 

 

Hence, it is a compromise between large joint velocity occurring in the proximity of a 

singularity and task accuracy. Ideally, 𝜇 should be variable depending on the value of the 

last singular value. Accordingly, the damping effect appears only when it is really needed, 

and the task error is confined to just a part of the trajectory [14]. 

Finally, the redundancy allows robot self-motion in which joint velocities do not contribute 

to the EE motion. These internal joint displacements can be chosen so as to 

improve/optimize the behavior of the robot.  

Analytically, a null space of 𝑱 exists. It is the subspace 𝒩(𝑱) in ℝ𝑛 of joint velocities that 

do not produce any EE velocity in the given manipulator posture. In our case study of 

intrinsically redundant robot, and if the Jacobian has full rank, the dimension of 𝒩(𝑱) is 

equal to one, but it can increase if a singularity happens. 



Model 

25 
 

Thus, self-motions can contribute along with the pseudo-inverse (or weighted-pseudo 

inverse) solution as demonstrated in the following equation:  

 

�̇� = 𝑱#𝒗𝑑 + (𝑰 − 𝑱#𝑱)𝒒0̇ (2.11) 

 

The second term of the right member of (2.11) includes all the possible solutions of the 

associated homogeneous equation 𝑱𝒒0̇ = 0 (self-motions), where: 𝒒0̇ is a vector of arbitrary 

joint velocities, and the matrix that pre-multiplies it is a projector in the null space of 𝑱. 

This equation can be deduced from the minimization of the norm vector �̇� − 𝒒0̇, as 

described in the following new cost function:  

 

𝐻(�̇�) =  ‖�̇� − 𝒒0̇‖2 (2.12) 

 

In other words, the goal is to find solutions that satisfy the constraint (2.00) while remaining 

as close as possible to 𝒒0̇. Hence, the objective specified through 𝒒0̇ becomes unavoidably 

a secondary objective to satisfy with respect to the primary objective specified by the 

constraint (2.00) [13]. 

Finally, it is important to discuss the way to specify the vector 𝒒0̇ for a convenient 

utilization of redundant DOFs. A typical choice is the Projected Gradient:  

 

𝒒0̇ = 𝒌0 (
𝜕𝑤(𝒒)

𝜕𝒒
)

𝑇

 (2.13) 

 

Where 𝒌0,𝑖 > 0 and 𝑤(𝒒) is a secondary function of the joint variables. Since the solution 

moves along the direction of the gradient of the objective function, it attempts to maximize 

it locally in compliance with the primary objective (kinematic constraint). The simplest 

objective function and the one used in the present thesis is known as “distance from 

mechanical joint limits”, which is defined as: 



Model 

26 
 

𝑤(𝒒) =  −
1

2𝑛
∑ (

𝑞𝑖 − 𝑞𝑖

𝑞𝑖,𝑀 − 𝑞𝑖,𝑚
)

2𝑛

𝑖=1

 (2.14) 

 

Where 𝑞𝑖,𝑀(𝑞𝑖,𝑚) denotes the maximum (minimum) joint limit and �̅�𝑖  the middle value of 

the joint range; thus, by maximizing this distance, redundancy is exploited to keep the joint 

variables as close as possible to the center of their ranges [13]. 

Even if they are simple and effective, there are some limits to these Jacobian-based 

methods. There is no guarantee that singularities are globally avoided during task 

execution; despite joint velocities are kept to a minimum, this is only a local property and 

“avalanche” phenomena may occur. Also, cyclic motions in task space do not map to cyclic 

motions in joint space, so motion are non-repeatable in the joint space [14]. 

2.1.1 Inverse kinematics algorithm 
Considering the numerical techniques to solve (2.00), by using a discrete-time 

implementation like shown in (2.01), the reconstruction of joint variables 𝒒 is entrusted to 

a numerical integration which involves drift phenomena of the solution. Consequently, the 

end-effector pose corresponding to the computed joint variables differs from the desired 

one. This inconvenience can be overcome by adopting a solution scheme that takes into 

account the operational space error between the desired and the actual EE position and 

orientation. Let 𝒙 be the 6x1 vector that contains the position and the three Euler angles, 

the error is expressed as [13]: 

 

𝒆 = 𝒙𝑑 − 𝒙𝑒  (2.15) 

 

Now, the time derivative of (2.15) is obtained as it follows: 

 

�̇� = 𝒗𝑑 −  𝒗𝑒 (2.16) 

 



Model 

27 
 

However, instead of using the Euler angles velocity, the angular velocities are preferred, as 

it will be explained later in the paragraph; thus, according to differential kinematics (2.00), 

�̇� is obtained as: 

 

�̇� = 𝒗𝑑 − 𝑱(𝒒)�̇� (2.17) 

 

For this equation to serve as the basis for an inverse kinematics algorithm, it is useful to 

relate the computed joint velocity vector �̇� to the error 𝒆, so that (2.17) defines a differential 

equation describing the error evolution over time. Nonetheless, it is necessary to choose a 

relationship between �̇� and 𝒆 that ensures convergence of the error to zero. Based on the 

assumption that the Jacobian matrix is square and nonsingular, the chosen relationship is: 

 

�̇� = 𝑱−1(𝒗𝑑 + 𝑲𝒆) (2.18) 

 

By substituting (2.18) into (2.17), the equivalent linear system is obtained as: 

 

�̇� + 𝑲𝒆 = 0 (2.19) 

 

If 𝑲 is a positive definite (usually diagonal) matrix, the differential system (2.19) is 

asymptotically stable. The error tends to zero along the trajectory with a convergence rate 

that depends on the eigenvalues of matrix 𝑲. The larger the eigenvalues, the faster the 

convergence. The block scheme corresponding to the inverse kinematics algorithm in 

(2.18) is illustrated in Fig.2.10, where 𝒌(∙) indicates the direct kinematics function that 

starting from 𝒒 provides 𝒙𝑬 [13]. 



Model 

28 
 

 

Figure 2.10 - Inverse kinematics algorithm with Jacobian inverse [8] 

In the case of a redundant manipulator, solution (2.18) can be generalized into 

 

�̇� = 𝑱#(𝒗𝑑 + 𝑲𝒆) + (𝑰 − 𝑱#𝑱)�̇�0 (2.20) 

 

which represents the algorithmic version of solution (2.11). 

So far the structure of the inverse kinematics algorithm has been seen from a planning 

perspective but it can also be conceptually adopted for a simple robot control technique, 

known as kinematic control. Indeed, a manipulator is an electro-mechanical system 

actuated by motor torques, so dynamic control techniques are usually implemented to 

properly account for the nonlinear and coupling effects of the dynamic model. However, at 

first approximation, it is possible to consider a kinematic command as the system input, 

typically a velocity. This approximation is possible considering the presence of a low-level 

control loop, which ‘ideally’ imposes any specified reference velocity. On the other hand, 

such a loop already exists in a ‘closed’ control unit, where the user can also intervene with 

kinematic commands. In other words, the scheme in Fig. 2.10 can implement a kinematic 

control, considering that the integrator represents a simplified model of the robot, thanks to 

the presence of single joint local servos ensuring a more or less accurate reproduction of 

the velocity commands. Nevertheless, it is important to emphasize that this kinematic 

control technique provides satisfactory performance only when excessively fast motions or 

rapid accelerations are not required [13] and hence by considering the system as a first-

order model [14]. 



Model 

29 
 

Finally, concerning the operational space error, in regards to the position error, its 

expression is given by: 

 

𝒆𝑃 = 𝒑𝑑 − 𝒑𝑒 (2.21) 

 

Where 𝒑𝑑 and 𝒑𝑒 denote the desired and computed EE positions, respectively. 

Furthermore, its time derivative is: 

 

�̇�𝑃 =  𝒑�̇� − 𝒑�̇� (2.22) 

 

On the other hand, for what concerns the orientation error, its expression depends on the 

particular representation of EE orientation, in terms of Euler angles, angle and axis, or unit 

quaternion [12]. The formers are of significant interest for kinematic structures having a 

spherical wrist; however, since this is not the case of the UR3 robot, they cannot be 

employed in this thesis, and this is the reason why they were not implemented in (2.17). 

The complexity of unit quaternions is not justified for this work, so the choice fell on the 

angle and axis. 

If 𝒏, 𝒔, 𝒂, are the unit vectors of the EE frame, 𝑹𝑑 = [𝒏𝑑  𝒔𝑑  𝒂𝑑]  denotes the desired 

rotation matrix of the EE frame and 𝑹𝑒 = [𝒏𝑒  𝒔𝒆 𝒂𝑒] the rotation matrix that can be 

computed from the joint variables. The orientation error between the two frames can be 

expressed as: 

 

𝒆𝑂 = 𝒓 sin 𝜃 (2.23) 

 

Where 𝜃 and 𝒓 identify the angle and axis of the equivalent rotation that can be deduced 

from the orientation matrix describing the rotation needed to align 𝑹𝑒 with 𝑹𝑑. 

 

𝑹(𝜃, 𝒓) = 𝑹𝑑𝑹𝑒
𝑇(𝒒) (2.24) 

 



Model 

30 
 

Notice that (2.24) gives a unique relationship for − 𝜋

2
<  𝜃 <

𝜋

2
. The angle 𝜃 represents the 

magnitude of an orientation error, and thus the above limitation is not restrictive since the 

tracking error is typically small for an inverse kinematics algorithm. It can be proved that 

(2.23) can be written as it follows [13]: 

 

𝒆𝑂 =
1

2
(𝒏𝑒(𝒒) ×  𝒏𝑑 +  𝒔𝑒(𝒒) ×  𝒔𝑑 +  𝒂𝑒(𝒒) +  𝒂𝑑) (2.25) 

 

Estimating the derivative of (2.25) over time leads to the following equation: 

 

�̇�𝑂 = 𝑳𝑇𝝎𝑑 − 𝑳𝝎𝑒  (2.26) 

 

Where  

 

𝑳 =  −
1

2
(𝑺(𝒏𝑑)𝑺(𝒏𝑒) +  𝑺(𝒔𝑑)𝑺(𝒔𝑒) +  𝑺(𝒂𝑑)𝑺(𝒂𝑒)) (2.27) 

 

And 𝑺 is the operator that transforms a vector into a skew-symmetric matrix. 

At this stage, the global expression of the operational space error is: 

 

�̇� = [
�̇�𝑃

�̇�𝑂
] = [ 

�̇�𝑑

𝑳𝑇𝝎𝑑
] − [

𝑰 0
0 𝑳

] 𝑱�̇� (2.28) 

 

A subdivision of 𝑲 into two 3x3 matrices is performed: one is related to the positional error 

𝑲𝑃, and one to the orientation error 𝑲𝑂. Hence, the equation (2.20) becomes (2.29) [13]: 

 

�̇� = 𝑱#(𝒒) [
�̇�𝑑 + 𝑲𝑃𝒆𝑃  

𝑳−1(𝑳𝑇𝝎𝑑 + 𝑲𝑂𝒆𝑂)
] + (𝑰 − 𝑱#𝑱)�̇�0  = 𝑱#(𝒒)�̇� + (𝑰 − 𝑱#𝑱)�̇�0 (2.29) 

 



Model 

31 
 

Where �̇� = [
�̇�𝑣

�̇�𝜔
] is the velocity command, composed of two 3x1 vectors: its linear 

component (�̇�𝑣) = (�̇�
𝑑

+ 𝑲𝑃𝒆𝑃), and its angular one �̇�𝜔 =  𝑳−1(𝑳𝑇𝝎𝑑 + 𝑲𝑂𝒆𝑂). 

  



Model 

32 
 

  



Model 

33 
 

2.2 Model implementation  
 

The algorithm shown in Figure 2.10 is implemented in the Simulink model as it follows 

(Figure 2.20). 

 

Figure 2.20 – Simulink model 

The model has three main subsystems:  

- The Trajectory planning subsystem allows the definition of the trajectory of the 

robot TCP in velocity and position/orientation terms. It is a variant subsystem with 

two options: point-to-point or path motion planning. 

- The Inverse Kinematics Algorithm subsystem is the core of the model, in which 

the inverse kinematics is implemented, and the joint velocities are computed as the 

input to the following subsystem. 

- The UR3 “Digital twin” subsystem contains the ideal and simplified robot 

behavior, from which the robot configuration is computed, that is needed for the 

inverse kinematics algorithm. It contains also post-processing results that do not 

interfere with the algorithm running. 

The Acquisitions subsystem is solely created to recall all the From blocks related to the 

Go to blocks. The latter collects the internal outputs of interest, which, once recalled, are 

sent into the workspace so they can be used and analyzed. The background colors of all 

blocks are chosen according to the following color code: green/yellow for inputs/outputs 

of a subsystem, orange for constants or inputs defined before the model run, cyan for “Go 

to” blocks, light blue for blocks used in correspondence of a switch, so they operate as 

selectors, and their value is defined before the model run.  



Model 

34 
 

2.2.1 Trajectory planning 
 

 

Figure 2.21 p-t-p planning subsystem 

Figure 2.21 displays the point-to-point trajectory planning subsystem. 

The provided inputs are the “Time Points” array, in which the trajectory starting and ending 

times are defined, and the initial and final TCP homogenous transformation matrix. 

Subsequently, the TCP velocity, acceleration, and matrix are computed through the 

“Transformation Trajectory” block from the “Robotics System toolbox”. This block is 

hidden in the “Linear-nonlinear” variant subsystem, which is activated depending on which 

time scaling is chosen. If the latter is requested, the time scaling is computed in the bottom 

left subsystem as demonstrated in Figure 2.22. 

A trapezoidal velocity profile or a fifth polynomial trajectory can be chosen through a 

selector. For the latter, the boundary conditions are given as input. To assure that a possible 

numeric error does not exceed the limits (0 and 1), the local coordinate is saturated. 

  



Model 

35 
 

 

Figure 2.22 - Time scaling subsystem 

Always considering the p-t-p subsystem, the position and body Euler angles “zyx”, which 

are collected along with the velocity and angular velocity in the “Trajectory” output, are 

extracted from the TCP matrix. 

For the path motion type of planning, the layout was taken from an open MathWorks source 

[16], but it is similar to what it is shown for the point-to-point, so it is not presented. Indeed, 

the operating principle is not exactly a path motion but a repeated point-to-point. For this 

reason, a fixed time step is needed for the Simulink solver, while in the other case a variable 

time step is preferable. In both scenarios, an automatic Simulink solver was used. In this 

kind of planning, the inputs are the waypoints and their corresponding orientations, and the 

time instant in which each waypoint is reached.  



Model 

36 
 

2.2.2 Inverse kinematics algorithm subsystem 
Except for the integrator, the scheme introduced in Figure 2.10 is in the main subsystem 

“Inverse Kinematics Algorithm”. When opening this subsystem, the content of Figure 2.24 

is obtained:  

 

Figure 2.24 - "Inverse Kinematics Algorithm" subsystem 

The Jacobian matrix is computed through the “Get Jacobian” Simulink block, and the direct 

kinematics function 𝒌(∙) is employed by the “Get Transform” block, which gives as output 

the TCP homogeneous transformation matrix that is used as feedback into the “Controller” 

subsystem shown in Figure 2.25. 

In this final subsystem, equations (2.21), (2.22), (2.25), and (2.26) are solved, but they 

produce the velocity command only if closed-loop inverse kinematics is desired. Otherwise, 

in open-loop mode, the desired trajectory is instantly treated as the reference command. 

The choice is made a priori with the selector, and the two options cannot be switched during 

the simulation. 



Model 

37 
 

  

 

Figure 2.25 - "Controller" subsystem 



Model 

38 
 

The “Inverse Kinematics” block is a variant subsystem containing the three possible inverse 

analyzed to solve the problem: Pseudo-inverse, Weighted Pseudo-inverse and DLS inverse. 

In Figure 2.24 the Pseudo-inverse is active, so its name appears on the top of the block; its 

contents are presented on Figure 2.26. 

In this section, the equation (2.11) is re-written as (2.30) to have an efficient evaluation of 

the solution.  

 

�̇� =  �̇�0 + 𝑱#(�̇� − 𝑱�̇�0) (2.30) 

 

Three “Saturation” blocks are needed for the joint velocities to recreate a real robot 

behavior. The first is for the linear guide. Considering that it has a 1000 mm stroke, its 

maximum has been chosen to be equal to ±0.4 m/s for a proper human-robot collaboration. 

The second Saturation block groups the first three UR3 joints, which have a speed limit of 

±180º deg/s. The third block is for the wrist joints, which have ±360 º deg/s as limits.  

In the “Null space” subsystem, equations (2.13) and (2.14) are formulated. If the null 

solution term of (2.11) is not desired, it can be deactivated through the selector. 

In the gradient function, joint limits are defined as follows: 

 

𝒒𝑖,𝑀 = [0.500 𝑚𝑚, 360°, 15°, 140°, 360°, 125°, 360°] (2.31) 

   𝒒𝑖,𝑚 = −[0.500 𝑚𝑚, 360°, 195°, 140°, 360°, 125°, 360°] (2.32) 

 

Especially for joints 3 (elbow) and 5 (second wrist joint) of the robot, the limits are stringent 

to avoid potential self-collisions.  

 

 



Model 

39 
 

 

 

Figure 2.26 - Pseudo-inverse variant 



Model 

40 
 

Finally, in Figure 2.27, the Jacobian pseudo-inverse matrix is obtained, either analytically 

or numerically by using the “Pseudoinverse” Simulink block. The choice is made 

automatically depending on the size of the last singular value 𝜎, which is extracted from 

the SVD algorithm executed through the “SVD” block. The size has been arbitrarily chosen 

to be equal to 0.05. Meanwhile, to monitor singularity proximity, the “Singularity counter” 

has an artificial method to count how many times 𝜎 goes below 0.1. When the singular 

value exceeds the threshold again, the counter is reset. 

 

Figure 2.27 - “Pseudo-inverse “subsystem 

The weighted pseudo-inverse and the DLS (the other variant subsystems) are not displayed 

because they are very similar to what has been demonstrated for the pseudo-inverse. 

However, just for clarification, it must be said that when the projected gradient method is 

applied to the DLS inverse, it creates a projection matrix (𝑰 − 𝑱𝐷𝐿𝑆𝑱) that has a component 

orthogonal to the null space of the Jacobian 𝒩(𝑱). Hence, it would have some effects on 

the motion of the EE and self-motions in the proper term would be no longer available [17]. 

  



Model 

41 
 

2.2.3 UR3 “Digital Twin” 
The last main subsystem has two sub-blocks called dynamics and post-processing 

dynamics. The first is shown in Figure 2.28. It contains the integrator, where the robot is 

represented in its ideal (and approximative) first-order behavior. 

The joint velocities command is given as input, and to reproduce joint inaccuracies or 

electromagnetic noises a disturbance signal can be added. Accordingly, the computed joint 

velocities differ from what is requested, like in a real trajectory. In this scenario, the 

kinematic control actively takes place in correcting the wrong EE pose resulted from the 

disturbance action.  

Indeed, although the kinematic control was introduced to compensate the drift error derived 

from the numerical integration, its effect is relevant only when multiple cyclic motions are 

performed, and this is not of significant interest for this work. On the contrary, the control 

intervention it is much more evident and observable with an artificial disturbance.  

 

Figure 2.28 - "Dynamic" subsystem 

In the integrator Simulink block, the initial configuration 𝒒(0) must be defined. By 

knowing and imposing specific initial EE pose and base position, it is possible to solve the 

inverse kinematics through an analytical method, just for the initial time step. In fact, by 

fixing a specific guide configuration, the redundancy ceases to exist.  

Another useful way of exploiting the control is to intentionally introduce an incorrect initial 

configuration 𝒒(0) that produce an initial position/orientation EE error, as it will be 

demonstrated in the next chapter. In the integrator, outputs are also limited so they are not 

able to surpass the joint limits, the same ones defined in (2.31) and (2.32). 



Model 

42 
 

In the post-processing (Figure 2.29), joint torques and the guide force are computed based 

on joint configuration, velocity, and acceleration. For the static balance, only the first is 

needed. On the contrary, all of them are necessary for the inverse dynamics. In this case, 

the external force has been set to zero for all the robot bodies. Moreover, there is the 

obtained velocity of the TCP, solved from the known differential kinematics equation 

(2.00). This internal output can be compared to the desired velocity; hence, a task error can 

be analyzed. By deriving the velocity over time, the EE acceleration is obtained too.  

All this procedure is possible thanks to the Simulink blocks: Get Jacobian, Gravity Torque 

and Inverse Dynamics. 

 

Figure 2.29 - "Post-processing Dynamics" 

In conclusion, three additional considerations are needed.  

First, the linear guide is placed horizontally, hence it does not contribute to the static 

balance. Second, the robot base is linked to the guide through a steel plate whose weight 

has been estimated to be roughly 4 Kg. Instead, its inertia is not of interest because the base 

can only translate. Therefore, in addition to the 11 Kg of the robot, the total moving weight 

is 15 Kg. 

 



Model 

43 
 

Thirdly, joint accelerations are only computed from a time derivative of joint velocities. 

However, they can be solved through the time differentiation of the differential kinematics 

equation (2.00), that leads to: 

 

𝒂𝑑 = 𝑱(𝒒)�̈� + �̇�(𝒒, �̇�)�̇� (2.33) 

 

The equation (2.33) is the second-order differential kinematics equation in which also the 

EE acceleration 𝒂𝑑 must be defined and given as input.  

Under the assumption of a squared and non-singular Jacobian matrix, (2.33) can be inverted 

in terms of joint accelerations [13]: 

 

�̈� = 𝑱−1(𝒒)(𝒂𝑑 − �̇�(𝒒, �̇�)�̇�) (2.34) 

 

The numerical integration of (2.35) to reconstruct joint velocities and positions would 

unavoidably lead to a drift of the solution; hence a second-order algorithm is needed. 

This kind of algorithm can be useful for control purposes when it may be necessary to 

invert a motion trajectory specified in terms of position, velocity, and acceleration. 

However, a first order differential kinematics is sufficient for a motion planning 

perspective, thus it was not implemented in this work. 

  



Model 

44 
 

  



Results and discussions 

45 
 

RESULTS AND DISCUSSIONS 
In this paragraph, a point-to-point and a path motion trajectory are presented. The former 

was ideated to understand the principles of the inverse kinematics algorithm, and the latter 

was intended to simulate a real Human-Robot Collaboration. 

Since the robot does not have a mounted tool, the TCP frame is equal to the EE frame and 

hence the two terms will be used as synonyms. 

The ground frame is in the middle of the table surface, while the robot base frame is 50 mm 

above it considering the sum of the guide and plate thicknesses. All the quantities are 

measured with reference to the ground. 

During a Simscape simulation, to visually grasp when a position or orientation error is 

generated, a physical reference rgb frame is built to follow the ideal EE pose. When there 

is no error, this object appears as if it was mounted on the EE. Instead, the presence of an 

error is highlighted by a white virtual frame. on the TCP 

Before introducing the trajectories, a brief explanation of the projected gradient method is 

presented. 

3.1 Projected gradient method 
In order to study the method, only self-motions are created by imposing a constant reference 

(𝒗𝑒 = 0). Consequentially, by employing the pseudo-inverse, (2.11) becomes: 

 

�̇� = (𝑰 − 𝑱#𝑱)𝒒0̇  (3.00) 

 

Hence, the joint velocities match with the null space projection of 𝒒0̇, a vector originated 

from the application of the gradient to the “distance from mechanical joint limits” objective 

function, as stated in (2.13) and (2.14). 

A first robot pose is imposed, with an initial configuration (Figure 3.1.00) which permits 

self-motions originated from the application of the method to the guide and elbow.  

 



Results and discussions 

46 
 

 

Figure 3.1.00 - Initial robot configuration 

Indeed, the initial configuration provides a position of the base of 0.15 m, and the elbow 

starts with a value of 58.07 deg; in this way, the base and the elbow can move to reach their 

reference value �̅�𝑖 , which is zero for both. By just activating the guide, its entry of the gain 

𝑘0 is the only one different from 0, with 100 as a value. The obtained 𝒒0̇ is shown in Figure 

3.1.01. 

 

Figure 3.1.01 - Base velocity derived from its gradient. Guide gradient only. 

Even if it seems that it exceeds the speed limit of 500 mm/s, the result must still be projected 

in the null space, as shown in Figures 3.1.02 and 3.1.03. 

 



Results and discussions 

47 
 

 

Figure 3.1.02 - Null space base velocity. Guide gradient only 

 

Figure 3.1.03 - Null space joint velocities. Guide gradient only 

In this configuration, the null space projection activates not only the guide, but also the 

shoulder, the elbow, and the first joint of the wrist (𝑞4). 

Of course, this is not unexpected because at least some other joints are needed to achieve 

self-motion. In this case, the elbow gets up (Figure 3.1.04) and the base reaches its centered 

value (Figure 3.1.05). 

 



Results and discussions 

48 
 

 

Figure 3.1.04 - Final robot configuration. 𝑞𝑔𝑢𝑖𝑑𝑒= 0. Guide gradient only.  

 

Figure 3.1.05 - Base position. Guide gradient only 

Considering again Figures 3.1.01 and 3.1.05, it is clear that 𝒒0̇ gets lower as the base 

approaches its reference value. 

In this work, the reference value for 𝑘0 will be equal to 100 even for revolute joints, because 

it ensures that the null space velocity term has a sufficient order of magnitude for its effect 

to be rapid and effective. For example, in Figure 3.1.02 the initial velocity is about 0.02 

m/s; instead, through the calculation of the gradient alone (𝑘0 = 1), the velocity would 

become equal to 0.0002 m/s, and its effect would be irrelevant.  



Results and discussions 

49 
 

In this motion, the elbow gets closer to its limit. So, when it is the only one active, the 

resulting self-motion is the opposite of what was discussed before (Figure 3.1.06). 

 

Figure 3.1.06 - Final robot configuration. 𝑞3 = 0. Elbow gradient only 

The base now moves to the left in the direction of one of its limits, while the elbow goes 

down, reaching the arm elongation that is associated with its null value (𝑞3 = 0). 

If both are active, the spontaneous question is related to which joint prevails on the other. 

If both the gains are equal to 100, the elbow “wins” and the guide gradient is virtually non-

existent (Figure 3.1.07). This could be explained by comparing the gradients (equation 

3.01): the elbow begins with a value of 58.07 deg (1.013 rad) and it has a range of 280 deg 

(4.89 rad), while the guide starts with a value of 0.15 m and it has a range equal to 1.0.  

 

0.15 𝑚

(1 𝑚)2
= 0.15 >

1,013 𝑟𝑎𝑑

(4,89 𝑟𝑎𝑑)2
= 0.042 (3.01) 

 

 

Figure 3.1.07 - Final robot configuration. 𝑞3 = 0. Guide + elbow gradient  



Results and discussions 

50 
 

Surprisingly, even if the guide gradient is the greatest suggesting that its repulsive effect 

should be the predominating one, the opposite occurs. In fact, the projected base velocity 

gets low, as already happened before in Figures 3.1.01 and 3.1.02 where only the base 

gradient was computed. There, starting from approximately 2 m/s, it dropped sharply to 

0.02 m/s. This does not happen for the elbow since it starts with (-)60 deg/s and, once 

projected, it starts with (-)23 deg/s (Figures 3.1.08 and 3.1.09).  

 

Figure 3.1.08 - Elbow joint velocity derived from its gradient. Guide + elbow gradient 

 

Figure 3.1.09 - Null space joint velocities. Guide + elbow gradient 



Results and discussions 

51 
 

The result cannot be easily predicted, because the null space projection matrix (𝑰 − 𝑱#𝑱) is 

analytically hard to grasp. It ponders the easiness of obtaining all the desired 𝒒0̇ in a given 

posture. Accordingly, for this particular configuration, it appears that the repulsive effect 

of the elbow limit is much stronger than the guide one. 

In fact, if the projected gradient method is active for the joints 𝑞1, 𝑞5 and 𝑞6, once their 𝒒0̇ 

is projected in the null space, the resulting velocity is zero, because their motion would 

generate an orientation error. Consequently, they would violate the desired task and the 

definition of self-motion. This is demonstrated in Figures 3.1.10 and 3.1.11. Nevertheless, 

𝑞6 already equal to zero, its reference value, does not contribute. 

 

Figure 3.1.10 - Joint velocities derived from their gradient (q1, q5 and q6) 

 

Figure 3.1.11 - Null space joint velocities. q1 +q5 +q6 gradient 



Results and discussions 

52 
 

This example was proposed just to illustrate the method. In a real trajectory, which is the 

attained equilibrium or which reference value �̅�𝑖 is achieved does not really matter. What 

is requested from the projected gradient method is its repulsive effect from the limits, and 

overall the standard rule to understand which joint has the priority is the following one: the 

lower the joint range, the greater the gradient effect.  

Hence, for 𝑞1, 𝑞4 and 𝑞6, which have a wide range of motion of 720 deg, it is possible to 

neglect their proximity to the limits, since it will rarely occur. Indeed, it is undesirable for 

their activation to interfere with the self-motions generated from other joints with lower 

ranges. Accordingly, their gain has been put to zero, as if they would have an infinite range. 

An alternative solution could be to activate them anyway but with a minor order of 

magnitude like 10 or 1. For the sake of simplicity, the former solution has been chosen. 

Reminding that 100 is a proper value to have an effective contribution of the null space 

velocities, the reference value for the gain 𝒌0 is defined as follows in equation (3.02): 

 

𝒌0 = 100 ∗ [1 0 1 1 0 1 0] (3.02) 

  



Results and discussions 

53 
 

3.2 Point to point trajectory 
The trajectory is a fifth-degree polynomial with a linear path along the guide axis, constant 

x and z EE coordinates, and a fixed orientation. Thus, only a positive y linear TCP velocity 

is generated, as demonstrated in Figures 3.2.00 and 3.2.01. The initial and final boundaries 

are null both for the velocity and acceleration. The trajectory lasts 20 seconds. 

The robot starts with a left-shoulder and wrist-down configuration, and the base is in its 

centered position, as demonstrated in Figure 3.2.02. 

The question concerning this trajectory is related to how the robot will reach the final pose: 

only by the guide translation or also by an extension of the elbow. 

 

Figure 3.2.00 - Desired EE linear velocity 

 

Figure 3.2.01 - Desired EE position  



Results and discussions 

54 
 

 

Figure 3.2.02 - Initial robot configuration 

When employing the pseudo-inverse, since its cost function is to minimize the norm of the 

velocities, the final desired pose can be reached by only moving the base. However, it 

reaches its joint limit of 500 mm (Figure 3.2.03), and the EE is not yet in the right final 

pose. Hence, a position error is generated as shown in Figure 3.2.04. 

 

Figure 3.2.03 - Pseudo-inverse base position  



Results and discussions 

55 
 

 

Figure 3.2.04 - Pseudo-inverse final robot configuration 

This simple method is not enough for this trajectory. Even the controller activation does 

not help, because it would only add an extra velocity for the guide, but the saturation of the 

mechanical joint limit would not still be perceived. This leads to the implementation of a 

null space solution, and the saturation can be avoided thanks to self-motions that generate 

the elbow elongation. 

Since in this scenario there is only one limit of interest, only the base gain is active to obtain 

simpler and clearer results. 

The null space projection affects the other joints, in particular the shoulder, the elbow and 

the first joint of the wrist (Figure 3.2.07). In this way, while the guide slows down (Figure 

3.2.06), the EE keeps progressing until the final pose is reached, as Figure 3.2.08 shows. 

The desired final pose is within the robot workspace; thus, the trajectory is feasible and no 

task error is generated. 



Results and discussions 

56 
 

 

Figure 3.2.05 - Guide velocity derived from its gradient 

 

Figure 3.2.06 - Null space base velocity  

 

Figure 3.2.07 - Null space joint velocities 



Results and discussions 

57 
 

 

Figure 3.2.08 - Final robot configuration. Pseudo-inverse + null space 

Another possible solution for avoiding saturation is to employ the weighted pseudo-inverse. 

By increasing the guide weight only up to 50, for example, its velocity gets lower, and the 

goal is obtained (Figure 3.2.09). Nevertheless, this does not ensure that the limit is not 

reached, because it depends on the arbitrary value of the weight. Indeed, if the weight is 

only 10, the limit is reached (Figure 3.2.10) and a position error occurs.  

 

Figure 3.2.09 - Base position, guide weight = 50 



Results and discussions 

58 
 

 

Figure 3.2.10 - Base position, guide weight = 10 

For this reason, the null space contribution is still needed. Thanks to its “repulsive” effect, 

a weight equal to 10 can be adopted. However, in this case, the robot immediately extends 

the elbow (Figure 3.2.11), then it “drags” its base as soon as it recognizes that it has to 

move it anyway to reach the final pose.  

Analytically, at the time instant of 10.8 s, which is approximately half of the trajectory 

duration, the elbow is close to its full extension (𝑞3 = 0, in Figure 3.2.12), but the base has 

moved only 16 cm (Figure 3.2.13). In the other half, while the other joints are constants, 

the base moves until the final pose is attained, covering a total distance of 27 cm. Since for 

the pseudo-inverse the elbow stretching lasts longer, it is more natural, therefore, that 

overall the robot movement appears more harmonious. 

 

Figure 3.2.11 - Elbow stretching. t = 10,8 s 



Results and discussions 

59 
 

 

Figure 3.2.12 - Joint configurations, guide weight = 10+ null space 

 

Figure 3.2.13 - Base position, guide weight = 10+ null space 

 

  



Results and discussions 

60 
 

3.2.1 Disturbance 
To view the controller in action, and its effect on a closed-loop solution, a disturbance on 

the joint velocities is inserted. A pseudo-inverse solution is considered with the essential 

null space contribution for the guide. The control gains are equal to 𝑲𝑃,𝑖 = 𝑲𝑂,𝑖 =
1

3
. The 

reason for this choice will be explained in the next pages. In this occasion, only a 

disturbance affecting the shoulder of the robot is examined, and it is analytically defined as 

a time-series signal on Matlab, as displayed in Figure 3.2.14. 

The signal is a step of 3 deg/s starting from the instant t = 5 s and finishing at t = 7 s. In this 

way, discontinuities of joint velocities are generated (Figure 3.2.15), leading to an increase 

of joint accelerations, which are anyway low (Figure 3.2.16). Accordingly, the kinematic 

control should be effectively working. 

 

Figure 3.2.14 - Joint disturbance 

 



Results and discussions 

61 
 

 

Figure 3.2.15 - Computed joint velocities due to the disturbance 

 

Figure 3.2.16 - Joint accelerations due to the disturbance 

Once the signal appears, it modifies the configuration of the second joint (Figure 3.2.16) 

lowering the robot (Figure 3.2.17). In an operational space view, it creates a negative linear 

velocity along the z-axis, an undesired variation on the y-velocity (Figure 3.2.18), and a 

negative angular velocity along the x-axis (Figure 3.2.19). Hence, a pose error occurs 

(Figure 3.2.20). 

 



Results and discussions 

62 
 

 

Figure 3.2.16 - Computed joint configurations due to the disturbance 

 

Figure 3.2.17 - Lowered robot configuration. t = 6,94 s 

 

Figure 3.2.18 - Obtained linear velocity of the EE due to the disturbance 



Results and discussions 

63 
 

 

Figure 3.2.19 - Obtained angular velocity of the EE due to the disturbance 

 

Figure 3.2.20 - Pose error due to the disturbance 

 

Since the controller can only lower the slope of the error, the error increases as long as the 

disturbance is present; nevertheless, after the signal disappearance, it can effectively adjust 

the trajectory. It is worth highlighting the exponential trend of the error, obtained resolving 

the linear ODE of (2.19). Due to its action, the velocity command (Figures 3.2.21 and 

3.2.22) changes from the original EE linear velocity (Figures 3.2.00) and the null angular 

velocity, due to the presence of the controller. 



Results and discussions 

64 
 

 

Figure 3.1.21 - Linear velocity command of the EE due to the disturbance 

 

Figure 3.2.22 - Angular velocity command of the EE due to the disturbance 

The EE velocity command is transformed into a joint velocity command through the inverse 

kinematics, obtaining Figure 3.2.23. Obviously, they differ from the computed ones (Figure 

3.2.15), because the obtained joint velocities are affected by the signal. However, once the 

disturbance ceases to exist, they become the same. This is also valid for the EE velocity; 

indeed, the task error (Figure 3.2.24) instantaneously returns to zero once the signal 

disappears. 

 



Results and discussions 

65 
 

 

Figure 3.2.23 - Joint velocities command due to the disturbance 

 

Figure 3.2.24 - Task error due to the disturbance 

It is worth specifying that the task error compares the obtained EE velocity with the EE 

reference velocity (Figures 3.2.21 and 3.2.22), not the ideal one (Figure 3.2.00). In this 

sense, the angular velocity task error is constant and equal in value to the disturbance. The 

reason for this constancy is that the command gives an angular velocity with a value that 

has an opposite sign with respect to the disturbance to compensate it. Hence, the obtained 

EE angular velocity decreases with the same value. Consequently, the difference does not 

vary, as highlighted in Figures 3.2.19 and 3.2.22: at t = 6 s the angular velocity is equal to 



Results and discussions 

66 
 

0.82 deg/s for the reference, the actual velocity is equal to (-)2.18 deg/s, and their difference 

is equal to 3 deg/s. 

Subsequently, at t = 7s, the EE angular velocity changes instantaneously its sign (Figure 

3.2.19), as it happens for the linear z velocity (Figure 3.1.18), meaning that now the robot 

is going back to its original path by raising its posture to achieve its true height. 

However, the linear task error is not exactly constant, but it varies by a small measure with 

a mean value of 0.019 m/s, that cannot be easily deduced from something that is known. In 

fact, the disturbance influences the shoulder, which is a revolute joint, so considerations for 

the angular velocity are immediate, while for the linear velocity are not simple. 

Finally, once the signal disappears, it seems that under a velocity perspective, there are no 

issues anymore; however, this can be misleading. In fact, the adjustment of the robot pose 

actually takes place after that time instant, as said before and shown in Figure 3.2.20.  

3.2.2 Initial error 
In the previous section where the robot starts in its correct pose, a trajectory following kind 

of control was tested under the action of a disturbance.  

Nevertheless, another way to test the controller is by starting with an incorrect initial robot 

configuration (Figure 3.2.25), that causes a pose error from the beginning of the trajectory. 

This can be done by autonomously selecting a wrong configuration, which differs from all 

the possible eight closed-form solutions, solved from the initial analytical inverse 

kinematics, which is in fact ignored. 

Now two possible kinds of control are possible: the trajectory tracking, in which the 

reference is time-varying, and the regulation of pose, in which the reference is constant. 

Starting with the former, for the first approach, only a pseudo-inverse solution is 

implemented. 

 



Results and discussions 

67 
 

 

Figure 3.2.25 - Incorrect initial robot configuration 

With a value of 𝑲𝑃,𝑖 = 𝑲𝑂,𝑖 =
1

3
  the error is compensated fast enough to ensure 

convergence by the end of the trajectory (Figure 3.2.26). This is also possible because the 

resulting error is great (0.59 m for the position), so a great recovering velocity is generated. 

As for the disturbance instance, this quantity was proven to be the best for getting a fast 

adjustment without obtaining unachievable joint accelerations, particularly for this case. 

Thus, this value will be used as reference for these kinds of control.  

 

Figure 3.2.26 - Pose error due to the incorrect initial configuration 



Results and discussions 

68 
 

However, to quickly achieve the convergence, still great joint and base accelerations are 

generated at the beginning (Figures 3.2.27 and 3.2.28). Differently from the previous case, 

the dynamic effects are considerable, and a kinematic control could not be enough.  

 

Figure 3.2.27 - Joint accelerations originated from the controller action. First 3 seconds 

 

Figure 3.2.28 - Base acceleration originated from the controller action 

 

 



Results and discussions 

69 
 

Even if there is no null space contribution, the limit of the linear guide is not reached (Figure 

3.2.29), because the robot rearrangement is accomplished through a backward movement 

of the base and an immediate elbow stretch (Figure 3.2.30). The robot arm is kept low 

throughout the rest of the duration of the trajectory allowing the avoidance of the limit 

(Figure 3.2.31). 

 

Figure 3.2.29 - Base position, pseudo-inverse solution for the incorrect initial configuration 

 

Figure 3.2.30 - Robot configuration. t = 4,2 s. (Pseudo-inverse) 

 



Results and discussions 

70 
 

 

Figure 3.2.31 - Final robot configuration. (Pseudo-inverse) 

Even if the actual torques are unknown, the post-processing dynamics can be analyzed 

every time, and this is the occasion to do it for the first time. 

For the static balance (Figure 3.2.32), as expected, the shoulder contributes the most since 

it holds almost all the robot weight in the elongated robot posture.  

 

Figure 3.2.32 - Gravity torques 

For the dynamic balance (Figure 3.2.33), only the effect of the joint velocities and 

acceleration are considered.  

 



Results and discussions 

71 
 

  

Figure 3.2.33 - Total torques needed minus the gravity torques, first 7 seconds 

Although the joint accelerations are great, the moments of inertia of the robot are small, so 

the torques needed to produce them are eventually low. This cannot be said for the guide, 

since it holds all the robot weight of 15 kg, and for achieving an acceleration of 1 m/s 

(Figure 3.2.28) a force of 14 N is requested (Figure 3.2.34). The force is not 15 N as 

expected, presumably because of internal robot movements in the direction opposite to the 

base trajectory.  

 

Figure 3.2.34 - Prismatic torque 

 



Results and discussions 

72 
 

In this case, it is the robot arm that is close to its mechanical limit of 15 degrees (Figure    

3.2.35). For this reason, to avoid potential collisions between the shoulder and the guide 

(even if they did not happen in the precedent motion), in the following solution the 

projected gradient method is active for 𝑞2, but also so for 𝑞3 and 𝑞4 (3.02). In this way, the 

elbow gets up, which is also preferable for a safer perception of the robot from a human 

point of view. 

 

Figure 3.2.35 - Joint configurations (Pseudo-inverse) 

The obtained gradient velocities are shown in Figures 3.2.36 and 3.2.37 

 

Figure 3.2.36 - Guide velocity derived from its gradient 



Results and discussions 

73 
 

 

Figure 3.2.37 - Joint velocities derived from their gradient (q2, q3 and q5) 

As expected, the second joint starts with a great value, due to its closeness to the limit. 

However, when its gradient velocity is projected in the null space, its effect is reduced 

(Figure 3.2.38). The null space projection has an influence also on 𝑞4 and 𝑞6, even if they 

are not included in the projected gradient method. 

 

Figure 3.2.38 - Null space joint velocities 

 



Results and discussions 

74 
 

 

Figure 3.2.39 - Null space base velocity 

  

From Figure 3.2.39 it is possible to see for a second time how the base velocity deriving 

from its gradient gets drastically reduced once projected. 

As wanted, in the first seconds of the trajectory, the robot rises itself (Figure 3.2.40), and it 

keeps its elbow up until the end of the path (Figure 3.2.41). 

 

Figure 3.2.40 - Robot configuration. t = 4,2 s. (Pseudo-inverse +null space) 



Results and discussions 

75 
 

 

Figure 3.2.41 - Final robot configuration. (Pseudo-inverse + null space) 

Finally, since the trajectory tracking control is implemented due to reference motion, the 

TCP returns to its desired path in a bent way (Figure 3.2.42), despite using a rectilinear      

p-t-p motion planning. 

 

Figure 3.2.42 - TCP path. Pseudo-inverse + null space solution 

By adopting the regulation pose control, instead, only the final pose is requested, which 

remains still. Starting from all the same parameters of the previous motion, now a straight 

path is achieved (Figure 3.2.43). 



Results and discussions 

76 
 

 

Figure 3.2.43 - TCP path. Pseudo-inverse + null space solution. Regulation pose control 

Now that the desired velocity is null, its feedforward action is absent, so the velocity 

command is only generated from the feedback action. Indeed, its trend (Figure 3.2.44) is 

similar to the error one (Figure 3.2.45). For the position error/linear velocity the only 

difference is a scaling factor given by the gain 𝑲𝑃. For the orientation error/angular velocity 

instead, remembering that �̇�𝑑 is null, the norm of the command becomes:  

 

‖𝑳−1(𝑲𝑂𝒆𝑂)‖ =  ‖𝑳−1(𝑲𝑂𝒓 sin 𝜃)‖ (3.03) 

 

Indeed, the orientation error 𝒆𝑂 is a vector, as defined in (2.23), and not just equal to its 

magnitude 𝜃. Furthermore, it is the sine of 𝜃 that is considered, which subsequentially is 

pre-multiplied not only by the gain 𝑲𝑂, but also by the matrix 𝑳−1. Consequenly, the ratio 

between (3.03) and 𝜃, is not clear. Moreover, the matrix is time-varying, and the sine 

function is not linear, so the ratio is not constant during the trajectory. 



Results and discussions 

77 
 

 

Figure 3.2.44 - Velocity command. Pseudo-inverse + null space solution. Regulation pose 

 

Figure 3.2.45 - Pose error. Pseudo-inverse + null space solution. Regulation pose control. 

As the error gets lower and lower, the velocity diminishes proportionally to it, so the 

convergence is slowly assured. Again, higher gains would cause too great accelerations, 

even more in this kind of motion, in which the starting error is greater than before, due to 

the bigger distance of the desired reference from the initial pose. 

Indeed, the joint accelerations (Figure 3.2.46) are already higher than in the tracking 

trajectory control (Figure 3.2.27). As a result, at the beginning a fast motion is achieved 

and the robot quickly arrives close to the final pose (Figure 3.2.47). 



Results and discussions 

78 
 

 

Figure 3.2.46 - Joint accelerations. Regulation pose control. First 6,5 seconds 

 

 

Figure 3.2.47 - Robot configuration. Regulation pose control.  t = 5,9 s 

  



Results and discussions 

79 
 

3.3 Path motion trajectory  
Once that the basics of the methods are known, a path motion trajectory is presented to 

simulate a Human-Robot interaction: a tool/object passing between two operators through 

the robot EE. Even if a point-to-point trajectory could be possible, it is better to subdivide 

the linear path into a segmented one, so the robot can have more time to achieve an enclosed 

posture and more collaborative motions are obtained. As illustrated in the section “2.2.1 

Trajectory planning”, the path motion is actually a repeated point-to-point that requires a 

fixed-time step to work. The time step was chosen equal to 8 ms for every simulation. 

The robot starts facing one side of the table (first waypoint) as if it is picking an object from 

an operator, then crossing the internal waypoints, it moves to the other side of the table 

(fourth waypoint), where it stops for a while (fifth waypoint), leaving the time for another 

operator to collect the tool. Subsequently, it goes back to its original position to be ready 

for another task while going through the same waypoints of the way out. Hence, there are 

eight waypoints in total that define seven segments. The trajectory to define each segment 

has the same duration of 4 seconds, so the whole trajectory lasts 28 seconds. The time 

scaling is made from a fifth polynomial with null boundary conditions for each segment. 

In this way, each waypoint is reached with a null EE velocity. Accordingly, it is simpler to 

visually identify when a segment starts and when it finishes.  

The waypoints are plotted in Figure 3.3.00. They have a constant altitude of 0.2 m with 

respect to the ground reference, which is placed on the table; the black line represents the 

guide axis on the robot base level, which is 50 mm above the ground. Their x and y 

coordinates are the following: 

Waypoint                    X                      Y 
First and last -0.4 m -0.3 m 
Second and seventh -0.2 m -0.2 m 
Third and sixth 0.2 m 0.2 m 
Fourth and fifth 0.4 m 0.3 m 

 

Table - 3.3.0, Waypoints X and Y coordinates  

From Table 3.3.0, it is evident a desired symmetry with respect to both the X and Y axes.  



Results and discussions 

80 
 

 

Figure 3.3.00 - Trajectory waypoints 

From Figure 3.3.00, it can be noticed that the z-axis of the EE of the external waypoints is 

perpendicular to the guide axis, meaning that the EE is correctly facing toward the long 

sides of the table where the operator can easily interact with the robot. Moreover, the 

orientations of the internal points are identical, meaning that only a translation is needed in 

that segment. 

The starting base position that must be arbitrarily chosen for the initial inverse kinematics 

is equal to (-) 0.3 m. 

From the eight possible starting configurations, four are discarded since the elbow-down 

option cannot be implemented for potential collisions with the working space. Right-

shoulder solutions are not fit for this specific trajectory, for joint limits reasons. Hence, 

their presentation in this thesis is not necessary. Finally, two solutions of significant interest 

are presented: left-shoulder wrist-down and left-shoulder wrist-up.  



Results and discussions 

81 
 

3.3.1 Left-shoulder wrist-down 
The starting configuration is shown in Figure 3.3.01. Due to the absence of a pose error in 

the following result, the white virtual EE frame is removed. In fact, the adoption of the 

pseudo-inverse Jacobian, along with the natural null space contribution, leads to a smooth 

robot motion: no saturation of mechanical limits, collisions, or singularities happens. 

Therefore, no significant task errors or position/orientation errors occur. This is also 

possible thanks to the wrist-down configuration, which is responsible for a straighter and 

broader robot posture. 

 

Figure 3.3.01 - Starting robot configuration, left-shoulder wrist-down 

To accomplish the second waypoint (Figure 3.3.02), the base goes to the left in proximity 

to its limit. Even if this seems erroneous and undesirable, it is actually preferable. If it has 

gone to the middle of the table instead, as the projected gradient method for the guide would 

prefer, the transition to the third waypoint would happen with the EE pointing at the robot 

itself. The resulting movement would be much more unnatural and odder. On the contrary, 

through a torso rotation, the third waypoint is safely achieved, as demonstrated in Figure 

3.3.03. 

 



Results and discussions 

82 
 

 

Figure 3.3.02 - Second waypoint robot configuration 

 

Figure 3.3.03 - Third waypoint robot configuration 

 

Figure 3.3.04 - Robot configuration. t = 9,88 s 



Results and discussions 

83 
 

The only excessive movement happens from the third to the fourth waypoint (Figure 

3.3.04), where a great rotation of the TCP is required. Indeed, the base moves excessively, 

more than 0.3 m, and with a change of direction too (Figure 3.3.05). A more compact 

solution might be solved with a weight on the guide, for example.  

 

Figure 3.3.05 - Base position, highlight on the third and fourth waypoint, and the final value 

The fourth waypoint is smoothly reached anyway (Figure 3.3.06), where the EE must stop 

(Figure 3.3.07) until the next segment starts. Even if it is not easily detectable by looking 

at Figures 3.3.06 and 3.3.07, small self-motions occur during the TCP halt, because the 

projected gradient method is still active. Hence, globally the robot changes its 

configuration, and it does not remain motionless.  

 

Figure 3.3.06 - Fourth waypoint robot configuration 

 



Results and discussions 

84 
 

 

Figure 3.3.07 - Fifth waypoint robot configuration 

On the way back, the sixth waypoint is achieved with the robot having a similar posture to 

what is already shown in Figure 3.3.03 for the third waypoint. Thus, its configuration is not 

illustrated. However, during the backward translation, there is almost a self-collision due 

to the elbow getting closer to its limit of 140 degrees (Figure 3.3.08), as demonstrated 

analytically in 3.3.09. This did not happen on the way out. Indeed, as said in the “2.1 Inverse 

kinematics” paragraph, cyclic motions in task space do not map to cyclic motions in joint 

space, so motions are non-repeatable in the joint space. This is evident by looking again at 

Figure 3.3.09: the joint configurations are not perfectly symmetrical with respect to the 

time instant of 14 seconds, which marks the two halves of the trajectory. However, in this 

scenario, they share some degrees of symmetry, and for these reasons, as already happened 

for the sixth waypoint, the seventh and last configurations are not included as images, due 

to their similarity to their corresponding solutions of the way out. 

Finally, to remark what has just been said, the base finishes its movement occupying a 

different position with respect to its starting one (Figure 3.3.05). 



Results and discussions 

85 
 

 

Figure 3.3.08 - Robot configuration. t = 22,54 s 

 

Figure 3.3.09 - Joint configurations, highlight on the elbow. 

The succession of the EE orientation obtained during the trajectory is illustrated in Figure 

3.3.10 



Results and discussions 

86 
 

 

Figure 3.3.10 - EE frame motion 

3.3.2 Left-shoulder wrist-up  
In this configuration, the robot starts with its wrist up (Figure 3.3.11). 

 

Figure 3.3.11 - Starting robot configuration: left-shoulder wrist-up 

It is immediately noticeable that now the robot begins with a more restricted/narrow 

posture. However, until the reaching of the fifth waypoint (Figures 3.3.12,3.3.13 and 

3.3.14), no issue arises. From then, the way back starts to be significantly different from 

the way out. Indeed, the sixth waypoint is obtained with the wrist in its null configuration 



Results and discussions 

87 
 

(Figure 3.3.15). This is the reference value for the projected gradient method, so this is a 

reason for its achievement.  

Subsequently, in the next segment, a self-collision occurs (Figure 3.3.16). This is due to the 

non-optimal wrist displacement that obliges the robot to reach an even narrower posture. 

Therefore, the elbow limit is attained, and its long saturation (Figure 3.3.17) represents the 

willingness of the algorithm to overcome it to fulfill the task. From Figure 3.3.17, it is also 

noticeable that during the translation of the EE 𝑞5 keeps its zero value throughout the 

segment. This could also be dangerous for a wrist singularity. However, since an angular 

velocity to the TCP is not requested, it does not happen. 

 

Figure 3.3.12 - Second waypoint robot configuration 

 

Figure 3.3.13 - Third waypoint robot configuration 



Results and discussions 

88 
 

 

Figure 3.3.14 - Fourth (and fifth) waypoint robot configuration 

 

Figure 3.3.15 - Sixth waypoint robot configuration 

 

Figure 3.3.16 - Self-collision. t = 21,9 



Results and discussions 

89 
 

 

Figure 3.3.17 - Joint configurations, highlight on the elbow saturation 

A possible solution for avoiding the elbow mechanical joint limit is by simply raising its 

null space velocity gain 𝑘0. Therefore, from the common reference value of 100, a value of 

150 is chosen only for the elbow. Recalling that the reference value for the elbow is 

associated with the arm in its full stretch form, this implies a more elongated robot posture 

in general.  

To obtain the sixth waypoint, the wrist does not rotate, so it remains in its up configuration 

(Figure 3.3.18). In this manner, the way back is naturally achieved with a close symmetry 

to the way out. 

 

Figure 3.3.18 - Sixth waypoint robot configuration. Elbow 𝑘0 = 150 

 



Results and discussions 

90 
 

However, the robot occupies more space by being wider; consequentially, the base has to 

move more to accomplish the task. This leads to the saturation of the guide (Figure 3.3.19), 

which happens twice: briefly on the way out, and longer on the way back (Figure 3.3.20). 

For this reason, a pose error occurs (Figure 3.3.21), which is compensated by the controller. 

Now a true kinematic control would be possible since the compensation does not generate 

great accelerations for long periods (Figures 3.3.22 and 3.3.23); although a small 

discontinuity still happens at the time instant of 22,76 seconds, caused by the “impact” with 

the end stroke (Figure 3.3.19). 

 

Figure 3.3.19 - Base position with two saturations, highlight on the second one. Elbow 𝑘0 = 150 

 

Figure 3.3.20 - Robot configuration on the way back. t = 23,9 s. Elbow 𝑘0 = 150 

 



Results and discussions 

91 
 

 

Figure 3.3.21 - Pose error caused by the guide saturation. Elbow 𝑘0 = 150 

 

Figure 3.3.22 - Base acceleration, zoom around t = 22.76. Elbow 𝑘0 = 150 

 

Figure 3.3.23 - Joint accelerations, zoom around t = 22.76 s. Elbow 𝑘0 = 150 



Results and discussions 

92 
 

Another solution could be to act on the trajectory planning by changing the desired 

orientation of the seventh waypoint (Figure 3.3.24) for a better wrist movement. Indeed, in 

addition to the translation, the EE has a rotation movement too on the way back. 

 

Figure 3.3.24 - Way back trajectory waypoints  

Obviously, the way out does not change so the configuration of the sixth waypoint is the 

same as Figure 3.3.15. From then, to accomplish the task, since an angular velocity is 

requested to the EE, the wrist rotates around its first joint, while its second and critical one 

remains in its null configuration. 

However, this is dangerous for a potential wrist singularity, which eventually takes place 

(Figure 3.3.25). Indeed, the robot should have to do an instantaneous wrist flip from the 

down configuration to its up (Figure 3.3.26), which surely cannot be achieved due to the 

physical limits of the actuators (Figure 3.3.27). This naturally implies a pose error, which 

cannot be recovered by the controller action, because in a real application the robot would 

immediately stop as soon as the singularity happens. 

 



Results and discussions 

93 
 

 

Figure 3.3.25 - Robot configuration as soon as the singularity occurs. t = 21,58 s 

 

Figure 3.3.26 - Robot in its wrist-up solution after the wrist-flip 

 

Figure 3.3.27 - Joint velocities during the singularity 



Results and discussions 

94 
 

Analytically, as presented in the “Model” chapter, the proximity of a singularity can be 

monitored through the last singular value 𝜎. In Figure 3.3.28, it can be noticed the value 

plummeted to almost zero during the singularity occurrence. The counter in Figure 3.3.29, 

which detects the number of time instants where 𝜎 goes below the threshold value of 0.1., 

reaches a value of 90, after it is reset since 𝜎 returns to acceptable levels. 

To overcome the problem of inverting differential kinematics in the neighborhood of a 

singularity, the missing DLS method is implemented here for the first time in this work. 

Starting for example with a damping factor µ equal to 0.03, but without the controller being 

active, the intrinsic error deriving from the method just keeps growing throughout the 

trajectory (Figure 3.3.30) despite the saturation being prevented. Obviously, this is not 

sustainable in the long term, so further discussion of results for this type of solution is not 

worthwhile. 

 

Figure 3.3.28 - Last singular value (Pseudo-inverse) 

 



Results and discussions 

95 
 

 

Figure 3.3.29 - Singularity counter (Pseudo-inverse) 

 

Figure 3.3.30 - Pose error, µ = 0.03, while the controller being deactivated 

To cope effectively with such an issue, a closed-loop solution must be found. Nevertheless, 

only from µ = 0.03 and beyond, the saturation is successfully avoided. Indeed, if for 

example the damping factor is equal to 0.02, its damping effect on the joint velocities is not 

quick enough (Figure 3.3.31). 

 



Results and discussions 

96 
 

 

Figure 3.3.31 - Joint velocities, µ = 0.02, five saturations occur 

With µ = 0.03, the saturation is reached briefly only for the elbow and the linear guide 

(Figures 3.3.32 and 3.3.33). 

 

Figure 3.3.32 - Joint velocities, µ = 0.03 



Results and discussions 

97 
 

 

Figure 3.3.33 - Base velocity, µ = 0.03 

Overall, this is not a significant issue, the resulting pose error is very low: 0.04 m for the 

EE position, and 1.17 degrees for the orientation (Figure 3.3.34). Indeed, the motion is still 

smoothly crossing the critical time instant, as shown in Figure 3.3.35. 

 

Figure 3.3.34 - Pose error, µ = 0.03 



Results and discussions 

98 
 

 

Figure 3.3.35 - Robot configuration in proximity of a singularity. t = 21,67. µ = 0.03 

The robot is able to complete its requested rotation, and finally, the seventh waypoint is 

achieved (Figure 3.3.36). Subsequently, the last desired waypoint is obtained (Figure 

3.3.37).  

 

Figure 3.3.36 - Seventh waypoint robot configuration. µ = 0.03 

 

Figure 3.37 - Final robot configuration. µ = 0.03 



Results and discussions 

99 
 

However, in this last segment, 𝑞5 crosses its null value again while the wrist rotates (Figure 

3.3.38). Thus, velocities briefly rise for a second time but with much lower values (Figure 

3.3.39).  

 

Figure 3.3.38 - Joint configurations, highlight on 𝑞5 = 0. µ = 0.03 

 

Figure 3.3.39 - Joint velocities, zoom on the second raise. µ = 0.03 

 

The DLS robust behavior while crossing singularities can be also seen in Figure 3.3.40. In 

this case 𝜎 does not get close to zero, where the actual singularity happens, as much as 

before for the Pseudo-inverse method (Figure 3.3.28).  



Results and discussions 

100 
 

 

Figure 3.3.40 - Last singular value, µ = 0.03 

By increasing the damping factor up to 0.05, the saturation of the elbow is avoided (Figure 

3.3.41). Nevertheless, it still happens for the linear guide for a very short period of 0.3 s 

(Figure 3.3.42). 

 

Figure 3.3.41 - Joint velocities, µ = 0.05 

 



Results and discussions 

101 
 

 

Figure 3.3.42 - Base velocity. µ = 0.05 

The pose error can easily be considered still tolerable (Figure 3.3.43). It is worth marking 

that it is derived from the intrinsic task error produced by the DLS method (Figure 3.3.44). 

Indeed, as explained in the model chapter, the error is generated from a velocity point of 

view, and it is recovered from a pose point of view by the controller. 

 

Figure 3.3.43 - Pose error, µ = 0.05 

 



Results and discussions 

102 
 

 

Figure 3.3.44 - Task error, µ = 0.05 

With µ = 0.07, even the base velocity does not approach its limit anymore (Figure 3.3.45). 

Nevertheless, the pose error cannot be considered acceptable. Particularly, the position 

error repeatedly exceeds 0.1 m, a quantity which can be arbitrarily thought of as 

inadmissible (Figure 3.3.46). 

 

Figure 3.3.45 - Base velocity, µ = 0.07 

 



Results and discussions 

103 
 

 

Figure 3.3.46 - Pose error, µ = 0.07 

As stated in the “Inverse kinematics” paragraph, the projected gradient method applied in 

the DLS does not produce proper self-motions, since it induces a small EE movement. This 

can be easily detectable when the TCP must be still, as it occurs from the fourth waypoint 

(Figure 3.2.47) to the fifth (Figure 3.2.48). Analytically with µ = 0.07, during the segment 

in question, the norm of the position error increases by just 21 mm (Figure 3.2.46), thanks 

to the controller action. This error is naturally proportional to the damping factor, and 

overall it can be considered neglectable for lower values.  

 

Figure 3.3.47 - Fourth waypoint robot configuration, µ = 0.07 

 

 



Results and discussions 

104 
 

 

Figure 3.3.48 - Fifth waypoint robot configuration, µ = 0.07 

So far, the controller gains 𝑲𝑃 and 𝑲𝑂 have been always equal to one third. By increasing 

them for example to 1.5 and returning to µ = 0.05, it is possible to almost eliminate the 

intrinsic error before the singularity occurrence (Figure 3.3.49).  

 

Figure 3.3.49 - Pose error. µ = 0.05. 𝐾𝑃 = 𝐾0 = 1.5 

It is possible to consider the kinematic controller sufficient if its effect does not generate 

an elevated EE acceleration. To analyze this, a comparison is made between the obtained 

acceleration and the desired one (Figure 3.3.50). 

 



Results and discussions 

105 
 

 

Figure 3.3.50 - "Task" acceleration error. µ = 0.05. 𝐾𝑃 = 𝐾0 = 1.5 

This is not properly a task error since the EE acceleration is not imposed. Indeed, the 

algorithm is not of the second order, so an acceleration command does not exist. By looking 

at Figure 3.3.50, it is evident that its action on the acceleration is almost non-existent.  

However, for the dynamics effects it is better to analyze the obtained joint accelerations 

(Figure 3.3.51), which are not great anyway during the first seconds of the trajectory.  

 

Figure 3.3.51 - Joint accelerations. µ = 0.05. 𝐾𝑃 = 𝐾0 = 1.5 

Of course, when the singularity occurs, the acceleration increases sharply (Figure 3.3.52). 



Results and discussions 

106 
 

 

Figure 3.3.52 - Joint accelerations during the singularity. µ = 0.05. 𝐾𝑃 = 𝐾0 = 1.5 

The huge values are not only due the singularity itself but also to the high gains of the 

controller. In fact, with 𝑲𝑃,𝑖 = 𝑲0,i =
1

3
, even if the joint (and base) accelerations are still 

huge, they do not exceed a thousand of deg/s2 (Figures 3.3.53 and 3.3.54). Obviously, even 

with lower gains, during the singularity, the kinematic controller would not be enough. 

 

Figure 3.3.53 - Joint accelerations during the singularity. µ = 0.05. 𝐾𝑃 = 𝐾0 =
1

3
 



Results and discussions 

107 
 

 

Figure 3.3.54 - Base acceleration. µ = 0.05. 𝐾𝑃 = 𝐾0 =
1

3
 

  



Results and discussions 

108 
 

  



Conclusions 

109 
 

CONCLUSIONS 
In this section, conclusions are presented considering the aim of this master thesis, which 

was to evaluate the integration of a linear guide under the base of a collaborative robot for 

a pHRC.  

The described analytical methods for the inverse kinematics, the Pseudo-inverse, weighted 

Pseudo-inverse, and DLS inverse, along with the projected gradient contribution, are all 

Jacobian-based methods that minimize the joint velocities norm. Consequently, they are 

suited for an HRI. However, as demonstrated in the previous chapter, some issues can arise 

during trajectory execution. For example, self-collisions can still occur even while the 

projected gradient aiming at minimizing joint limits index is active. A possible solution 

could be to dynamically adapt the gain 𝒌0 based on the proximity of a joint limit. If a joint 

gets too close to one of its limits, its gain progressively rises to avoid the saturation. 

Furthermore, joint limits defined in (2.31) and (2.32) are not always suitable, particularly 

for 𝑞5, because in some configurations 𝑞5 can be higher without causing a self-collision. 

Nevertheless, this depends on the value of 𝑞4. Thus, joint limits should dynamically change 

too, becoming dynamic inputs for the projected gradient method. Concerning the 

singularity, taking into account all the considerations introduced for the DLS method, the 

best value for µ was proven to be equal to 0.05, which represents the best compromise 

between large joint velocity occurring in the proximity of a singularity and task accuracy. 

This solution could be adopted, along with a proper position controller gain such as 𝑲𝑃,𝑖 =

𝑲0,𝑖 = 1.5, only when a singularity is detected. In this way, it is possible to adopt the 

Pseudo-inverse solution when the configuration is far from the singularity, without 

accumulating task error, whereas the DLS solution can be activated in proximity of a 

singularity.  

The gains 𝑲𝑃 and 𝑲0 might be changed based on the size of the pose error to avoid 

excessive accelerations. High accelerations can also be requested if fast velocities changing 

are needed during motion. Therefore, imposing four seconds for each segment could not be 

appropriate in some scenarios.  

Indeed, even if in a first-order algorithm joint velocities have limits, this is not guaranteed 

for joint accelerations, which may produce fast robot changes in motion unpredictable for 



Conclusions 

110 
 

human operators. Therefore, it is important to focus on the dynamic aspects too, by also 

modeling them in the algorithm, for safer and more accurate robot behavior.  

All these considerations are made to find a better solution for a time-varying trajectory, that 

is requested for a real pHRC. Indeed, during the trajectory shown in the 3.3 section as an 

example, if an operator moves along the table while being tracked by a camera or a sensor, 

the robot should adapt by modifying the desired position of the external waypoints. 

Consequently, online motion planning is requested, without the need of a human 

intervention. For this reason, the algorithm parameters should dynamically and 

automatically adapt. 

On the contrary, internal waypoints have been introduced only to constrain the motion, and 

they have been considered fixed. However, it was demonstrated how the desired internal 

orientations can be crucial both for singularity and self-collision problems. Nevertheless, if 

orientations are not specified, the EE angular velocity is not imposed. Therefore, the order 

of the redundancy increases up to four, and more complex solutions are needed, such as the 

Task augmentation method. 

Finally, to check if the implementation of the kinematic controller is correct and the 

assumption that a first-order dynamic model is sufficient to represent robot dynamics, 

experimental tests are required. Accordingly, dynamic effects can be effectively analyzed 

by comparing the actual robot pose to the desired one. 

  



References 

111 
 

REFERENCES 
[1] E. Galati. "Cobot" lecture from Sistemi integrati di produzione, a.a. 2022-2023, 

Politecnico di Torino,Turin. 

[2] C.Tartara (2023), “Braccio robotico collaborativo ridondante con settimo asse 

lineare.”(Tesi di laurea magistrale, Politecnico di Torino)  

[3] M. H. Zafar, E. F. Langås, and F. Sanfilippo, “Exploring the synergies between 

collaborative robotics, digital twins, augmentation, and industry 5.0 for smart 

manufacturing: A state-of-the-art review,” Oct. 01, 2024, Elsevier Ltd. doi: 

10.1016/j.rcim.2024.102769. 

[4] M. C. Zizic, M. Mladineo, N. Gjeldum, and L. Celent, “From Industry 4.0 towards 

Industry 5.0: A Review and Analysis of Paradigm Shift for the People, Organization and 

Technology,” Jul. 01, 2022, MDPI. doi: 10.3390/en15145221. 

[5] N. Berx, W. Decré, J. De Schutter, and L. Pintelon, “A harmonious synergy between 

robotic performance and well-being in human-robot collaboration: A vision and key 

recommendations,” Annu Rev Control, vol. 59, p. 100984, 2025, doi: 

10.1016/j.arcontrol.2024.100984. 

[6] https://www.rollon.com 

[7] A. Silwal, J. R. Davidson, M. Karkee, C. Mo, Q. Zhang, and K. Lewis, “Design, 

integration, and field evaluation of a robotic apple harvester,” J Field Robot, vol. 34, no. 6, 

pp. 1140–1159, Sep. 2017, doi: 10.1002/rob.21715. 

[8] A. Sridhar Reddy, V. V. M. J. Satish Chembuly, and V. V. S. Kesava Rao, “Collision 

free Inverse Kinematics of Redundant Manipulator for Agricultural Applications through 

Optimization Techniques,” International Journal of Engineering, Transactions A: Basics, 

vol. 35, no. 7, pp. 1343–1354, Jul. 2022, doi: 10.5829/ije.2022.35.07a.13. 

[9] Y. Tong, J. Liu, Z. Ju, Y. Liu, and L. Fang, “Dynamic precision analysis of a redundant 

sliding manipulator,” Robotics and Rehabilitation intelligence, 2020. 

[10] Y. Tong, J. Liu, Y. Liu, and Y. Yuan, “Analytical inverse kinematic computation for 

7-DOF redundant sliding manipulators,” Mech Mach Theory, vol. 155, Jan. 2021, doi: 

10.1016/j.mechmachtheory.2020.104006. 



References 

112 
 

[11] SLIDEKIT 2.0, Universal Robots: https://www.universal-

robots.com/marketplace/products/01tP40000071NNMIA2/  

[12] Movotrak Cobot transfert unit, Universal Robots: https://www.universal-

robots.com/marketplace/products/01tP40000071NiUIAU/ 

[13] B. Siciliano et al., “Robotics Modelling, Planning and Control”. Springer, 2000. 

[14] A. De luca., "Kinematic control" and “Kinematic redundancy part 1” lectures from 

Robotics 1 and Robotics 2, a.a. 2024-2025, Università degli Studi di Roma “La Sapienza”, 

Rome. 

[15] Wall, Michael E., Andreas Rechtsteiner, and Luis M. Rocha. "Singular value 

decomposition and principal component analysis." A practical approach to microarray 

data analysis. Boston, MA: Springer US, 2003. 91-109. 

[16] Simulink file "manipTransformTrajectoryTimeScaling.slx", from Trajectory Planning 

for Robot Manipulators, MathWorks. https://it.mathworks.com/videos/trajectory-

planning-for-robot-manipulators-1556705635398.html 

[17] A. S. Deo and I. D. Walker, “Overview of Damped Least-Squares Methods for Inverse 

Kinematics of Robot Manipulators,” 1995. 

 

https://www.universal-robots.com/marketplace/products/01tP40000071NiUIAU/
https://www.universal-robots.com/marketplace/products/01tP40000071NiUIAU/

	Abstract
	Introduction
	1.1 Collaborative robotics
	1.1.1 Human-robot Collaboration (HRC)

	1.2 From Industry 4.0 towards industry 5.0
	1.2.1  Basic Driving Concepts of Industry 4.0 and Industry 5.0
	1.2.2  Opportunities and challenges in integrating cobots in Industry 5.0

	1.3  Sliding manipulators
	1.4 Aim of the thesis

	Model
	2.1 Inverse kinematics
	2.1.1 Inverse kinematics algorithm

	2.2 Model implementation
	2.2.1 Trajectory planning
	2.2.2 Inverse kinematics algorithm subsystem
	2.2.3 UR3 “Digital Twin”


	Results and discussions
	3.1 Projected gradient method
	3.2 Point to point trajectory
	3.2.1 Disturbance
	3.2.2 Initial error

	3.3 Path motion trajectory
	3.3.1 Left-shoulder wrist-down
	3.3.2 Left-shoulder wrist-up


	Conclusions
	References

