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Summary

The evolution of automotive lighting technology has led to the development of
advanced headlamp assemblies that integrate multiple functionalities, such as main
beams, Daytime Running Lights (DRL), and turn indicators, into compact units.
This thesis investigates the modal behavior of automotive headlamps, focusing on
the impact of temperature-dependent material properties. The study employs both
commercial finite element software and the Carrera Unified Formulation (CUF) to
perform comprehensive analyses at three different temperatures. Initially, modal
analyses are conducted using commercial software to establish a baseline under-
standing of the headlamp’s dynamic behavior. Subsequently, a detailed CUF-based
model is developed to replicate these analyses, ensuring accurate representation of
complex geometries and multi-material compositions. The CUF approach allows
for a refined analysis of temperature effects on the vibrational characteristics of
materials such as PMMA, PC, PC+ABS, and FR4. Comparative results highlight
the differences in accuracy and computational efficiency between CUF and tradi-
tional methods, demonstrating CUF’s capability to capture intricate vibrational
responses under varying thermal conditions. This research contributes to optimizing
headlamp designs by leveraging CUF’s advanced modeling capabilities, offering
recommendations for improved vibration resistance and thermal management. The
study underscores the importance of integrating temperature-dependent analyses in
the design process to ensure safety, reliability, and efficiency in modern automotive
lighting systems.
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Chapter 1

Introduction

’

1.1 Company Profile, Motivation, and Automo-
tive Lighting Background

Cielle-Tronics S.r.l., a successful Rivoli company near Turin, makes LED lights for
cars and factories. Their key skills include electronic design and printed circuit board
(PCB) development and they also have expertise in optical and mechanical design, as
well as prototype creation. Cielle-Tronics possesses outstanding combined expertise
in vehicular lighting innovation. This makes it an ideal industrial partner for
research focused on advancing vehicular lighting technologies. Cielle-Tronics S.r.l.,
a homegrown mid-sized enterprise catering design innovation in automotive industry.
an innovative technology company specializing in the design and development of
cutting-edge electronic products that seamlessly blend a)electronic design, PCB
modules, b)optical and mechanical design to develop prototype creation. At the
core of this brand is a commitment to excellence in design, which serves as a key
differentiator in a competitive market.

Motivation
Our collaboration with Cielle-Tronics is a direct result of their important improve-
ments in vehicular headlamp assembly technology. Modern vehicles are increasingly
incorporating compact, multi-functional lighting systems that generally merge
Daytime Running Lights (DRLs), turn signals and headlamps into one unit. Light
Emitting Diodes (LEDs) and laser-based solutions are now important in these
assemblies. They provide benefits such as high luminous efficacy, rapid response
and design flexibility [1, 2]. Our collaboration with Cielle-Tronics is resultant of
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Introduction

collaborative improvements, in vehicular headlamp assembly technology. Modern
vehicles are indispensable of built-in compact, multi-purpose lighting systems of
Daytime Running Lights (DRLs), turn signals and headlamps. for example, Light
Emitting Diodes (LEDs) and laser-based solutions vehicle is product standardisation
addressed imperatively for car enthusiasts worldwide. [1, 2].

Nonetheless, the design complexity of these systems derives engineering chal-
lenges. operationally, a vibration of current road conditions, as well as engine agility,
can overture mechanical integrity, whilst generated heat from LEDs, diodes in
compact enclosures of strong thermal management [3]. Furthermore, the important
push for original brand identities has remarkably transformed headlamps from
simple utility components into stylish elements specifically targeted at providing
each vehicle with a special appearance. Dealing with these functional, aesthetic
and durability needs points out the important importance of thorough advanced
numerical modeling techniques that can effectively catch many multi-material
interactions in real-world conditions.

Background of Automotive Headlamps
The vehicular lighting landscape has been dramatically reshaped over the last
twenty years, mainly due to the common integration of LED and laser technologies.
Halogen as well as High-Intensity Discharge (HID) lamps were historically the most
popular, but their meaningful drawbacks—like considerably lower efficiency and
greatly bulkier designs—created important opportunities for newer, much more
flexible alternatives. LEDs gained popularity in the mid-2000s and they quickly
became favored due to their greatly better energy efficiency, outstanding mechanical
strength and importantly longer lifespans [2]. They allow the possibility to be
packaged in compact modules, leading to the development of highly multi-functional
assemblies that integrate advanced lighting features.

Laser-based headlamps offer further improvement by providing greater luminous
intensity and possibly more compact sizes [4]. Though they continue to be a
remarkably special premium feature in many vehicular segments, laser lighting
persists in developing exceptionally, unlocking exciting possibilities for adaptive
driving beams and considerably greater illumination range.

Advanced lighting systems offer outstanding technical advantages and serve as
important differentiators in vehicle design. Manufacturers use many special and
impressive light signatures to significantly increase brand identity, with a growing
collection of contemporary headlamps frequently incorporating detailed patterns
for DRLs, turn indicators, as well as supplementary lighting elements [5]. The dual
role of headlamps — combining stylish looks with better visibility — underlines
their increasing importance.

Many of these significant improvements face important engineering challenges,
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and they present large obstacles. The miniaturization, along with the integration
of multiple functions into an importantly compact area, greatly increases thermal
loads, as LEDs as well as lasers produce concentrated heat that must be efficiently
dissipated to avert performance degradation [3]. Considerable vibrations from
road input further complicate the situation, stressing the role and importance
of mechanical stability and fatigue resistance [6]. A diverse array of materials
is required. These range from many polymers for lenses, like polycarbonate or
PMMA, to multiple metallic heat sinks. They must sustain their properties under
wide operating temperature and ecological conditions [7]. Overall, the desire for
headlamps that are smaller, smarter and more efficient increases the necessity for
considerate design methods and efficient simulation practices.

Alongside the standard transition from halogen and HID lamps to LEDs and
laser systems, control mechanisms that manage vehicular lighting have developed
to suit the ever-changing demands. Early LED systems were predominantly static,
reflecting the on/off function of their filament-based predecessors. Meaningful
improvements in electronics and sensor technology have led to the development of
multiple adaptive lighting systems, commonly referred to as matrix LED or pixel-
level headlamp technologies [8]. These advanced systems include a large number of
individually addressable LED segments, and each segment can be accurately and
selectively dimmed or brightened based on instantaneous data from cameras and
radar systems. These adaptive headlamps play a role in improving safety aspects
by identifying all oncoming vehicles and modifying the beam pattern to effectively
counteract their presence, while avoiding glare.

Additionally, creating multiple laser-based headlamps often requires several
detailed optical processing methods, which may include multiple phosphor coatings
to change laser light into a larger spectrum of illumination [4]. Although lasers
can produce brightness and visibility across long distances, the incorporation of
phosphor converters or optical waveguides complicates thermal management and
heat dissipation properties. To manage these localized heat sources, advanced
thermal analysis tools as well as specialized cooling systems, such as forced air
vents, heat pipes, or liquid cooling loops for extreme situations [9], are necessary.

The background of vehicular headlamps includes evolving test standards in
addition to reliability evaluations. Many current testing standards (e.g., ISO
16750 for road vehicles) rigorously examine the durability of electronic components
against substantial shock, intense vibration, extreme temperatures and elevated
humidity [10]. Diverse thermal cycling tests and several mechanical shock tests are
important for forecasting real-world performance and they are particularly relevant
for headlamp modules. These standards consistently change to incorporate a large
variety of newer lighting technologies, which greatly raises the standard for design
robustness, as well as compelling many engineers to explore a deeper depth of
multi-physics simulations [11].
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In the end, the relationship between cost and performance is a consistently
challenging and sensitive balancing act. Many luxury cars are usually the first
ones to implement the latest lighting technologies, while the large expenses for
development and production are adequately covered by a higher-end market segment.
As time goes on, a variety of these technologies spread to an important number of
mass-market vehicles, leading to greater production and reduced unit costs. As a
consequence, many vehicular OEMs pursue modular, scalable platforms that can
accommodate multiple lighting features as well as fulfilling the assorted demands of
global markets [12]. Grasping this evolution depicts the important importance of
creating multiple headlamp assemblies that are both revolutionary and affordable.

Along with the aforementioned improvements, there has also been a greater
focus on plastic component fatigue. This is particularly true because many lighting
modules use polymer materials for both structural and optical functions. The
VW8000 guidelines describe the steps for testing plastic materials in vehicle environ-
ments, and random vibration analysis is a required element [13]. Vibration profiles
are location dependent within a vehicle. Headlamps mounted near the engine
compartment or wheel arches experience higher amplitudes and frequency ranges
compared to those located in more protected areas. During random vibration
testing, multiple plastic materials may develop micro-cracks or suffer from damage,
leading to part failure [14]. Thus, it is important to thoroughly evaluate the
fatigue behavior of the polymer in dynamic load conditions to guarantee long-term
reliability. Careful selection of plastic grades and design features—such as ribbing,
filleting and planned reinforcement—is precise and this can greatly reduce failures
in areas exposed to high cyclic stresses. Consequently, following VW8000 not only
fully verifies the validity of material choices, but also guarantees that headlamp
assemblies work well throughout the vehicle’s life cycle, which reduces warranty
claims and safety risks.

1.2 Problem Statement
Modern LED headlamp systems face stringent design challenges due to compact
enclosures, high-intensity light sources, and the rigorous demands of international
safety and performance standards. In Europe, headlamps must comply with ECE
Regulation No. 48 -[15] for vehicle lighting approval and ECE Regulation No.
112 -[16] for advanced lighting systems, which often apply to LED technology.
In the United States, FMVSS No. 108 -[17] governs headlamp performance,
while ISO 16750 -[10] provides guidelines for environmental and durability testing.
Additionally, SAE recommendations, such as those outlined in SAE J551 -[18],
inform the assessment of dynamic and fatigue behavior.

These regulatory requirements mandate comprehensive numerical modeling to
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predict the dynamic response of LED headlamp components under vibrational
and cyclic loading conditions. As an initial step in this analysis, modal analysis
is employed to characterize the natural frequencies, mode shapes, and inherent
dynamic properties critical for understanding potential fatigue issues. Building
on this foundation, random vibration studies are planned to simulate real-world
operational conditions, with the goal of predicting and mitigating fatigue-related
failures if they are found.

This study addresses the need for a rigorous numerical framework that meets
both the regulatory expectations and the technical challenges inherent to modern
LED headlamp systems. By integrating modal analysis into the design process, we
aim to identify critical stress points and optimize component geometries, thereby
enhancing durability and ensuring compliance with standards.

1.3 Research Objectives
This study addresses the challenges outlined in the previous section by presenting a
detailed modal analysis of automotive headlamp assemblies, with particular empha-
sis on the influence of temperature-dependent material properties. The research is
structured to achieve several key objectives, with each chapter contributing to the
overarching goal of advancing both numerical modeling techniques and practical
design strategies for automotive lighting systems.

Chapter 3 outlines the foundational steps of the analysis. The initial phase
involves simplifying the actual headlamp model to meet the requirements for
implementation within the Carrera Unified Formulation (CUF). Following this, a
numerical model is developed for use in commercial finite element software, where
modal analyses are conducted alongside a convergence study to ensure accuracy and
reliability. Subsequently, a CUF-based numerical model is constructed, and modal
analyses are performed using this approach as well. Consistent boundary conditions
are applied across both modeling frameworks to ensure a realistic representation of
real-world operating conditions.

Chapter 4 focuses on the comparative evaluation of results and methodologies.
The outcomes obtained from the commercial software and CUF-based models
are systematically compared, with particular attention paid to modal frequencies,
mode shapes, and computational efficiency. Based on this comparison, the most
effective CUF model is selected to further investigate the vibrational behavior of
the headlamp assembly under three distinct temperature conditions. This analysis
provides critical insights into how thermal variations influence dynamic performance,
particularly at material interfaces such as lenses, housings, and printed circuit
boards (PCBs).

Chapter 5 will provide the conclusion and future perspectives of the study,
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summarizing the key findings and implications for both academic research and
industrial practice. This chapter will highlight the potential of the Carrera Unified
Formulation (CUF) in enhancing numerical modeling methodologies for analyzing
the vibrational behavior of headlamp assemblies and other plastic components.

This work aims to contribute significantly to both academic research and indus-
trial practice by enhancing numerical modeling methodologies to study headlamps
under vibration and the application of CUF in the case of said component, as well
as other plastic components. By bridging the gap between theoretical analysis and
real-world application, this study seeks to improve not only the predictive accuracy
of numerical simulations but also the overall performance and reliability of modern
lighting assemblies in automotive engineering.

6



Chapter 2

Methodological Framework

2.1 Introduction
Over the years, classical beam theories, such as the Euler–Bernoulli and Timoshenko
formulations, have been widely utilized in structural analyses due to their simplicity
and computational efficiency. However, these models often fail to account for higher-
order effects, including elastic bending–shear coupling, restrained torsional warping,
and fully three-dimensional strain states, which become particularly significant in
the analysis of thick or composite beams. To address these limitations, a range
of refined theories have been developed, culminating in the introduction of the
Unified Formulation (often referred to as CUF) pioneered by Carrera [19, 20].

CUF is a general hierarchical framework that systematically generates structural
theories for beams, plates, and shells of variable fidelity. In recent decades, it has
proven especially useful in the analysis of advanced or highly flexible structures
[21]. The fundamental idea is that polynomial or other suitable expansions in
the cross-section (for beams) or thickness (for plates/shells) allow one to capture
complex 3D behavior in a mathematically unified manner.

Furthermore, the Finite Element Method (FEM) remains a standard compu-
tational tool in academic and industrial settings. Combining CUF with FEM
helps generate low- to high-order one-dimensional (1D) or two-dimensional (2D)
elements capable of capturing 3D-like accuracy at reduced computational cost,
compared to a fully three-dimensional element discretization [22]. This chapter
outlines the key concepts of CUF and its integration into FEM.

In particular, the current work addresses the modal analysis of automotive
headlamp structures using both:

• A commercial solver (traditional 3D FEM).

• Carrera Unified Formulation (CUF) 1D or 2D refined models.
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The goal is to verify how different kinematic expansions, shape function orders
(linear vs. quadratic), and mesh resolutions (with comparable degrees of freedom)
can predict the vibration characteristics of isotropic plastic components (typical in
automotive headlamps).

2.2 Classical Beam Models vs. Variable Kine-
matic Theories

Euler–Bernoulli and Timoshenko Beams
Classical beam models assume relatively slender structures:

(Euler–Bernoulli):

ux = ux1, uy = uy1 − x
3

∂ux1
∂y

4
, (2.1)

enforcing that plane sections remain plane and perpendicular to the beam axis.
Timoshenko beams relax that orthogonality assumption by allowing shear:

(Timoshenko):
ux = ux1, uy = uy1 + x ϕz, (2.2)

thus capturing shear deformation. However, neither addresses thick or composite
effects comprehensively, nor do they allow for 3D warping or in-plane cross-sectional
distortion [23].

Higher-Order Refinements
To deal with torsion, warping, or in-plane distortion, additional polynomial terms
can be added. For instance, a rigid rotation of the cross-section about y for torsion
might be:

ux = z ϕy, uz = − x ϕy. (2.3)
Further expansions allow polynomial or piecewise expansions across (x, z). The
Carrera Unified Formulation (CUF) leverages such expansions in a systematic
and hierarchical way, as discussed next [20].

2.3 Governing Equations in Matrix Form

Geometrical Relations
The coordinate system adopted follows a rectangular Cartesian layout, as illustrated
in Fig. 2.1, along with the geometric configuration of a beam structure. The beam’s
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cross-section lies on the xz-plane and is represented by W , whereas the beam extends
along the y-axis within the bounds 0 ≤ y ≤ L.

The continuous displacement field, u, of the material point can be defined as a
column vector:

u = u(x, y, z) =
î
u(x, y, z), v(x, y, z), w(x, y, z)

ïT
(2.4)

Figure 2.1: Geometry and adopted reference system [22].

Given that both the strain and stress tensors exhibit symmetry, they can be
represented in vector notation using Voigt’s representation [21]:

ϵ =
î
ϵxx, ϵyy, ϵzz, 2γxz, 2γyz, 2γxy

ïT
=

î
ϵxx, ϵyy, ϵzz, ϵxz, ϵyz, ϵxy

ïT
(2.5)

σ =
î
σxx, σyy, σzz, σyz, σxz, σxy

ïT
(2.6)

For accurate nonlinear analysis of flexible structures under large displacements
or rotations, appropriate strain and stress definitions are required. The Lagrangian
approach is typically employed for purely geometrically nonlinear analysis, with two
incremental formulations: the Total Lagrangian (TL) and the Updated Lagrangian
(UL) formulations [24]. In the TL formulation, strain measures reference the initial
configuration, while the UL formulation describes strains relative to the deformed
configuration.

To establish geometric relations, the Green-Lagrange strain tensor is considered.
The strain-displacement relation is expressed as:

ϵ = (bl + bnl)u (2.7)
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where bl and bnl denote the linear and nonlinear derivative operators, respectively.
Their explicit forms differ between 1D and 2D models [21].

The linear strain-displacement matrix for 1D models is given by:

bl =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

0 ∂
∂y

∂
∂x

 (2.8)

The nonlinear strain-displacement matrix for 1D models is given by:

bnl =



1
2

∂2

∂x2 0 0
0 1

2
∂2

∂y2 0
0 0 1

2
∂2

∂z2
∂

∂x
∂
∂z

0 ∂
∂x

∂
∂z

0 ∂
∂y

∂
∂z

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂x

∂
∂y

0


(2.9)

Constitutive Equation
Assuming linear elastic materials, the constitutive equation in Voigt notation is
given by:

σ = Cϵ (2.10)

where C represents the symmetric elasticity tensor:

C =



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66


(2.11)

For isotropic materials, the elasticity tensor components are expressed in terms
of Lamé parameters (λ, G), Young’s modulus (E), and Poisson’s ratio (ν):

C11 = C22 = C33 = 2G + λ, (2.12)
C12 = C13 = C23 = λ, (2.13)
C44 = C55 = C66 = G. (2.14)

10



Methodological Framework

The Lamé parameters G and λ are defined as:

G = E

2(1 + ν) , (2.15)

λ = νE

(1 + ν)(1 − 2ν) . (2.16)

For completeness, the elasticity tensor for orthotropic materials (with a primary
direction) is presented. The properties of the material in the transverse direction
differ from those in the primary direction; thus, additional Young’s moduli and
coefficients must be defined for each direction. The elasticity tensor for orthotropic
materials can be expressed as:

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


, (2.17)

where the components Cij depend on the directional elastic properties of the
orthotropic material. These include:

Cij = Cij(E1, E2, E3, G23, G13, G12, ν23, ν13, ν12) (2.18)

• E1, E2, and E3: Young’s moduli in the principal material directions,

• ν12, ν13, ν23: Poisson’s ratios for deformation coupling,

• G12, G13, G23: Shear moduli in the respective planes.

The coefficients Cij depend on Young’s and Poisson’s moduli, as well as on
the fiber orientation angle θ, which is graphically defined in Fig. 2.2, where 1,
2, and 3 represent the axes of the material [21].
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Figure 2.2: Fiber orientation angle.

The relationships between the components of the elasticity tensor for orthotropic
materials can be further derived from these parameters.

The global material matrix Q in the transformed coordinate system is given by:

Q = T T CT (2.19)

where the transformation matrix T is defined as:

T =



cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos 2θ


(2.20)

Applying this transformation, Hooke’s law in the global reference frame becomes:

σ = Qϵ (2.21)

Applying this transformation, Hooke’s law in the global reference frame becomes:

σ = Qϵ (2.22)

In the interest of brevity, the expressions for the components of the matrix Q are
not reported here, but can be referred to in [21, 22]. Furthermore, it should be noted
that models with constant and linear distributions of the in-plane displacement
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components ux and uz, require modified material coefficients to overcome Poisson
locking [25].

Beam 1D CUF-FEM Finite Element
Consider a beam and plate model within a Cartesian coordinate system (x, y, z).
The 1D CUF models are particularly suitable for elongated structures, such as
beams, where the characteristic length significantly exceeds the cross-sectional
dimensions. In this formulation, the primary variables of the three-dimensional
displacement field are discretized along the longitudinal axis using a traditional finite
element method (FEM), which is then used to interpolate the nodal displacement
components of the cross-section [26].

Figure 2.3: Beam Structure [22].

The derivation of the theoretical formulation remains independent of the cross-
section or thickness choice. If y denotes the beam axis, and (x′, z′) represents the
reference plane for the cross-section, the three-dimensional stationary displacement
field at any arbitrary point within the structural domain is given by:

u(x, y, z) = Fτ (x, z)uτ (y) = Fτ (x, z)Ni(y)qri, τ = 1, 2, . . . , K (2.23)

where Fτ (x, z) are the cross-sectional expansion functions, K denotes the ex-
pansion order in the thickness direction, and qri represents the nodal discrete
displacements. The functions Ni(y) are the standard 1D FEM shape functions
used for approximating displacements along the beam axis.

Plate 2D CUF-FEM Finite Element
For structures where the thickness is significantly smaller than the other dimensions,
2D CUF models are adopted. The displacement field is expanded using functions
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approximating the displacement along the plate thickness. If z is the thickness
direction and (x, y) defines the reference plane for the mid-surface of the plate,
then:

u(x, y, z) = Fτ (z)uτ (x, y) = Fτ (z)Ni(x, y)qri, τ = 1, 2, . . . , K (2.24)

where Fτ (z) represents the thickness expansion function, K is the expansion
order, qri are the nodal discrete displacements, and Ni(x, y) are standard 2D FEM
shape functions [27].

Figure 2.4: Plate 2D Model.

Taylor Expansion Model

The Taylor Expansion (TE) model uses MacLaurin series, where the basis functions
are polynomial terms like xizj. The displacement components can be written as:

ux = ux1 + xux2 + zux3, uy = uy1 + xuy2 + zuy3, uz = uz1 + xuz2 + zuz3. (2.25)

This formulation provides a hierarchical method for increasing the approximation
order [20].
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Figure 2.5: Cross section L-elements in natural geometry [22].

Lagrange Expansion Model
Lagrange Expansion (LE) models use Lagrange polynomials to interpolate dis-
placement variables over the cross-section/thickness domain. In 3D models, the
displacement field is expressed using nodal displacements from the finite element
mesh. Different LE orders such as Q4, Q9, and Q16 for 1D/2D elements and H8,
H20, and H27 for 3D elements are implemented [28].

Figure 2.6: Lagrange Q4 linear phase element: from material to natural ref.frame.

The Lagrange polynomials in the natural reference frame are expressed as:

N1(ξ, η) = 1
4(1 − ξ)(1 − η) (2.26)

N2(ξ, η) = 1
4(1 + ξ)(1 − η), (2.27)

N3(ξ, η) = 1
4(1 + ξ)(1 + η) (2.28)

N4(ξ, η) = 1
4(1 − ξ)(1 + η). (2.29)
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Once the nodal displacements are determined, the displacement field in the
physical reference frame is computed using:

ux = N1ux1 + N2ux2 + N3ux3 + N4ux4. (2.30)

uy = N1uy1 + N2ux2 + N3uy3 + N4uy4. (2.31)

uz = N1uz1 + N2uz2 + N3uz3 + N4uz4. (2.32)

This expansion model ensures accuracy in displacement approximations and struc-
tural analysis [21].

2.4 Strain-Displacement and Constitutive Rela-
tions

For small strains, the strain vector ϵ relates to the displacement vector u =è
u v w

éT
via:

ϵ = Bu, (2.33)

where B is the strain-displacement matrix.
Substituting the expanded displacement field (2.23) into (2.33) makes it possible

to express strains in terms of the generalized unknowns uτ (y) and the polynomial
functions Fτ (x, z).

The constitutive relation for linear elasticity, including thermal strains, is:

σ = C(ϵ − ϵT ), (2.34)

where C is the elasticity matrix and ϵT is the thermal strain vector arising from a
temperature increment ∆T [24].

2.5 Variational Formulation and Fundamental
Matrices

The starting point for the development of the finite element model is the Principle
of Virtual Displacements (PVD), which ensures that the discretized system satisfies
energy balance. This principle is expressed as

δW =
Ú

V
δϵT σ dV −

Ú
V

δuT g dV = 0, (2.35)
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where δϵ and δu represent the virtual strains and displacements, respectively, σ is
the stress vector, and g is the body force vector. This formulation is in line with
the approaches described in [19, 20, 21].

By substituting the constitutive relation

σ = C (ϵ − ϵT ), (2.36)

and the kinematic relation
ϵ = Bu, (2.37)

along with the representation of the displacement field as

u = Nq, (2.38)

where N comprises both the finite element shape functions and the polynomial
expansions (as in the Carrera Unified Formulation, CUF), one obtains the discrete
governing equation

Kq = f + fT . (2.39)

Here, the matrices and vectors are defined as follows:

K =
Ú

V
BT CB dV, (2.40)

fT =
Ú

V
BT CϵT dV, (2.41)

f =
Ú

V
NT g dV. (2.42)

For dynamic analyses, where inertia plays a critical role, the mass matrix is
introduced based on the kinetic energy of the system:

M =
Ú

V
NT ρN dV. (2.43)

This variational framework forms the theoretical foundation for both static and
dynamic analyses and has been extensively detailed in works such as [19, 21, 22].

2.6 Assembly of the Stiffness and Mass Matrices
Having derived the fundamental matrices from the variational formulation, the
next step is to compute the element-level contributions and assemble them into
global matrices.
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Assembly of the Stiffness Matrix
Within the CUF framework, the stiffness contribution for a single element is
computed by evaluating its fundamental nucleus:

Kτsij =
Ú

Ωe

BsjT C Bτi dV, (2.44)

where:

• Bτi is the strain-displacement matrix associated with node i and polynomial
expansion order τ ,

• C is the constitutive matrix,

• Indices τ and s (ranging from 1 to M) reflect the orders of the CUF polynomial
expansion,

• Indices i and j (ranging from 1 to Nn) refer to the finite element nodal
numbering.

The complete element stiffness matrix is obtained by summing over both the
nodal indices and the polynomial expansion indices. Once computed for all elements,
the local stiffness matrices are assembled into the global stiffness matrix by mapping
each element’s contributions according to the connectivity of the mesh. Standard
finite element assembly techniques, as outlined in [29], ensure that the resulting
system satisfies the continuity and equilibrium conditions across element boundaries.

Assembly of the Mass Matrix
Analogously, the element-level mass matrix is derived from the kinetic energy
expression:

T = 1
2

Ú
Ω

u̇T ρ u̇ dV. (2.45)

Substituting the CUF-based approximation for the displacement field (and its time
derivative) leads to the definition of the mass matrix’s fundamental nucleus:

M τsij =
Ú

Ωe

N sjT ρ N τi dV, (2.46)

where N τi denotes the interpolation function associated with node i and expansion
order τ . Similar to the stiffness matrix, the indices span the polynomial expansion
orders and the finite element nodal numbering. The element-level mass matrices
are then assembled into a global mass matrix, ensuring consistency across the
discretized domain.
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Numerical Integration and Efficiency Considerations
In practice, the integrals defining both the stiffness (2.44) and mass (2.46) matrices
are evaluated numerically, often using Gauss-Legendre quadrature. The choice
of an efficient quadrature rule is critical, especially when employing higher-order
polynomial expansions inherent to CUF, to guarantee both accuracy and compu-
tational efficiency [23, 27, 26]. This systematic assembly of the global matrices
not only captures complex structural behaviors but also maintains manageable
computational costs, as demonstrated in [25, 28].

Final Discrete Equations
After assembling the global mass and stiffness matrices, the governing equation for
dynamic analysis can be written in the compact form

Mü + Ku = F, (2.47)

where:

• M is the global mass matrix,

• K is the global stiffness matrix,

• u is the global displacement vector (comprising all nodal displacements and
polynomial expansion coefficients),

• F is the global force vector (assembled from body forces and prescribed
tractions).

For static analyses, the inertial term is omitted, reducing the problem to

Ku = F. (2.48)

2.7 Modal Analysis
With the global mass and stiffness matrices at hand, the next step is to investigate
the dynamic behavior of the structure through modal analysis. In the absence of
external forces, the free vibration equation is given by

Mq̈ + Kq = 0, (2.49)

where q denotes the vector of nodal displacements.
Assuming a harmonic solution of the form

q(t) = ϕ eiωt, (2.50)
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where ω represents the natural frequency and ϕ the corresponding mode shape,
substitution into the free vibration equation yields the generalized eigenvalue
problem è

K − ω2M
é

ϕ = 0. (2.51)

Solving Eq. (2.51) provides the eigenvalues ω2, from which the natural frequencies
are determined, and the eigenvectors ϕ, which represent the mode shapes. This
modal information is fundamental to understanding the dynamic characteristics
of the structure and is widely used in further analyses such as dynamic response
evaluation and stability assessments [30, 24, 29].

In summary, the derivation of the variational formulation and the computation of
the fundamental stiffness and mass matrices set the stage for assembling the global
system. This assembly is executed through standard finite element procedures
enhanced by the CUF approach, which efficiently captures higher-order effects.
Finally, the modal analysis based on the assembled global matrices provides insights
into the dynamic behavior of the structure, thereby linking the theoretical framework
with practical applications in advanced structural analysis [19, 21, 23].
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Chapter 3

Numerical Modeling

Overview
The modal analysis of the automotive headlamp assembly was conducted following
a structured methodological approach. Initially, the geometric model was simplified
to reduce computational overhead. Subsequently, mesh convergence studies were
performed to determine the optimal element size for accurate results. Modal
analyses were then carried out using both commercial finite element (FE) software
and a Carrera Unified Formulation (CUF) model. The FE analyses included both
linear and higher-order (quadratic) elements, where feasible, to assess the impact
of element choice on modal characteristics. Finally, a comparative analysis was
undertaken to validate the CUF model by comparing its results with those obtained
from the commercial FE software under equivalent conditions.

3.1 Geometric Simplification and Component Def-
inition

The original headlamp assembly consists of four major components:

1. Lens (PMMA)

2. Housing (PC+ABS)

3. Bezel (PC)

4. PCB (FR-4)

In order to reduce computational overhead while preserving essential structural
dynamics, certain non-critical features such as small fillets, decorative ribs, and
mounting bosses were removed.
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Figure 3.1: Original Headlamp Model Prior to Simplification.

Simplified Model

A simplified assembly was generated by focusing on the most structurally rele-
vant surfaces and interfaces. Fig. 3.2 illustrates the final geometry after these
modifications

Figure 3.2: Simplified headlamp model used for FE analysis.
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Figure 3.3: Cross-Sectional View of the Simplified Headlamp Model with Material
Annotations.

3.2 Material Properties

Each headlamp component is associated with different material properties. Tab. 3.1,
3.2, 3.3 and 3.4 provides a summary of the materials and their key mechanical
and thermal parameters. In instances where temperature-dependent properties are
relevant, tabulated data or polynomial approximations may be used to accurately
reflect variations in material stiffness.

23



Numerical Modeling

Table 3.1: Material properties of Polymethyl methacrylate (PMMA) lens at
various temperatures.

Temp (◦C) Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m3)
-30 3.07 × 109 0.35 1190
23 3.30 × 109 0.35 1190
40 3.15 × 109 0.35 1190
80 2.82 × 109 0.35 1190

Table 3.2: Material properties of Polycarbonate+ABS (PC+ABS) housing at
various temperatures.

Temp (◦C) Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m3)
-30 2.45 × 109 0.4 1200
23 2.70 × 109 0.4 1200
40 2.59 × 109 0.4 1200
80 2.27 × 109 0.4 1200

Table 3.3: Material properties of Polycarbonate (PC) bezel at various tempera-
tures.

Temp (◦C) Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m3)
-30 2.613 × 109 0.31 1200
23 2.35 × 109 0.31 1200
40 2.2463 × 109 0.31 1200
80 1.942 × 109 0.31 1200

Table 3.4: Material properties of FR-4 PCB at various temperatures.

Temp (◦C) Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m3)
-30 1.8626 × 1010 0.118 1901
23 1.86 × 1010 0.118 1900
40 1.8591 × 1010 0.118 1899.7
80 1.8571 × 1010 0.118 1898.9

3.3 Mesh Generation and Convergence Studies

Initial Mesh: Linear Elements
A commercial finite element (FE) software was employed to generate the 3D mesh for
the assembly. An essential preliminary step involved carefully defining the topology
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of each component so that adjoining parts would share common faces, edges, and
nodes at their interfaces, as showed in fig. 3.4. This ensures the global model has
continuous compatibility across contact surfaces, thereby avoiding artificial gaps
or overlaps that could degrade solution accuracy. A cross-sectional view of the
assembly reveals how these boundaries overlap in critical contact regions, confirming
that the mesher correctly enforced node equivalences along all intersecting surfaces.

Figure 3.4: Cross-sectional view of the assembly highlighting the shared topology
between components, ensuring continuous node equivalences at all contacting
surfaces.

Once the topology was finalized, a sweep-based meshing approach was adopted
to populate each part with fully hexahedral elements. In this procedure, a “sweep
size” parameter governs the number of elements through the thickness of the
geometry, while a “body size” specification sets the in-plane element density.
Such a two-step control mechanism provides both coarse global discretization, to
reduce computational cost where high resolution is unnecessary, and targeted local
refinement around key features. This balance ensures that regions subject to high
stress gradients or intricate geometry receive the needed element resolution, while
simpler areas maintain larger, more cost-effective elements.

The exclusive use of hexahedral elements—as opposed to tetrahedral or mixed-
element meshes—was motivated by several considerations. First, hexahedral meshes
generally exhibit superior numerical performance and more predictable convergence
behavior in both static and dynamic simulations. Second, employing fully hexahe-
dral elements enables a direct comparison with CUF (Carrera Unified Formulation)
models that rely on LE4 and LE9 element formulations, maintaining consistent
geometry and mesh topology across both modeling approaches. This consistency
ensures that any observed differences in subsequent analyses can be traced to the
theoretical foundations of the CUF and finite element formulations, rather than to
discrepancies in element shape or local refinement strategies.
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Fig. 3.5 provides an overview of the final meshed assembly, revealing the overall
distribution of hexahedral elements. To maintain a strictly structured hexahedral
mesh throughout the main housing region, the screw housings were removed
from the geometry. This omission prevents distortion of the mesh that would
otherwise arise around small cylindrical features. Instead, all nodes within the
radial footprint of each screw housing were fixed in place, thereby replicating the
physical constraint imposed by the fastening hardware. Notably, as the mesh size
varied during the convergence study, the specific nodes that fell under the screw
footprints changed accordingly, ensuring each mesh iteration accurately captured
the boundary condition.

As shown in Fig. 3.6 , these boundary conditions capture the functional con-
straints on the housing without sacrificing the element quality or uniform topology
of the mesh. Coupling these targeted fixes with the locally refined sweep-based
mesh ensures both computational efficiency and sufficiently accurate modeling of
the part’s mechanical response.

Figure 3.5: Fully hexahedral FE mesh of the model, showing (left) a Front view
and (right) an isometric view with color-coded domains.

Convergence Criterion

Prior to conducting the full comparision, a mesh convergence study was planned to
ensure that the numerical results would not be unduly affected by the discretization.
The procedure involved selecting an initial, fine-resolution mesh to capture all
significant geometric details, then systematically increasing the base element size
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Figure 3.6: Meshed model with the fixed boundary conditions indicated by
highlighted nodes, illustrating the fixed constraint locations applied in the analysis.

in discrete steps. At each step, key response variables—such as eigen frequencies
and mode shapes—were recorded and compared to the immediately preceding,
finer mesh. This comparative approach quantifies the sensitivity of the solution
to mesh density, thereby guiding the choice of an optimal mesh size that strikes
an acceptable balance between accuracy and computational resource demands.
Attempting coarser meshes continues until either the mesher fails to generate a
valid mesh or the solution changes sufficiently little to meet a predefined convergence
criterion (e.g., deviations below 5%). By adopting this iterative strategy, confidence
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in the reliability of the final mesh is bolstered, as it demonstrates mesh independence
while minimizing unnecessary computational overhead.

3.4 Carrera Unified Formulation (CUF) Model
Setup

Beam-Based Approximation
To develop the Carrera Unified Formulation (CUF) model, the assembly geometry
was first defined and meshed in Abaqus, from which two-dimensional (2D) cross
sections were extracted at various stations along the principal axis. These cross
sections were then incrementally extruded in the third dimension to build a complete
beam-like representation of the structure, maintaining consistent nodal connectivity
and element topology in each step. This strategy leverages the fact that the
assembly, as shown in earlier figures, exhibits an elongated shape with relatively
uniform or smoothly varying cross-sectional profiles, making a beam approach both
computationally efficient and sufficiently accurate for capturing global bending,
torsion, and axial behaviors. By isolating each 2D cross section and linking
them incrementally, geometric variations—such as minor cutouts or stiffeners—are
preserved without the need for a fully 3D or plate-like discretization, which could
significantly increase the element count. As a result, the model strikes a balance
between fidelity and performance, enabling robust stress and modal analyses while
closely matching the overall geometry used in the commercial FE simulations.
Moreover, limiting the formulation to beam-like kinematics allows the exploitation
of higher-order expansions within CUF when needed, ensuring that any complex
local phenomena can be resolved if they arise. This approach thus provides a direct,
apples-to-apples comparison with the conventional FE model, clarifying how the
CUF framework can replicate or potentially enhance the predictive accuracy of
standard finite element solutions.

Subdivision of Components into Multiple Bodies

In implementing the beam-like CUF model, each component of the assembly was
subdivided into multiple bodies to properly account for variations in geometry and
material composition. In total, 53 bodies were created: 18 corresponding to the lens,
21 to the housing, 13 to the bezel, and 1 for the PCB. These subdivisions occurred
both within each cross section and along the principal axis, ensuring that every
significant transition in shape or material boundary was discretized consistently.
By isolating each sub-body in this manner, the incremental extrusion process could
maintain structured meshing characteristics, thereby enhancing fidelity in critical
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regions without unnecessarily complicating the model’s geometry or increasing
computational costs.

Discretization in CUF
Three discretization strategies were considered:

1. Linear order mesh (LE4B2): Designed to maintain nearly the same number
of degrees of freedom (DOFs) as the commercial FE model. This approach
serves as a direct benchmark for comparing the results of both methods.

2. Linear order mesh (LE4B3): Also set up to achieve roughly the same
DOF count as the commercial mesh, but with a higher polynomial order for
the in-plane expansions. It aims to capture additional accuracy without a
significant increase in computation.

3. Variable kinematic model (mixed LE4 and LE9, with B2 and B3
expansions): Incorporates both linear and higher-order elements in the
cross-sectional domain, again yielding a total DOF count comparable to the
commercial FE model. By mixing LE4 and LE9 elements with B2 and B3
expansions, this strategy seeks to balance accuracy and computational cost
across different regions of the assembly.

Three discretization strategies were considered, each corresponding to a distinct
combination of element order and polynomial expansions. Fig. 3.7, 3.8, and 3.9
illustrate the respective meshed models:

Figure 3.7: Linear order mesh (LE4B2), designed to maintain nearly the same
number of degrees of freedom (DOFs) as the commercial FE model.

Boundary Conditions and Modeling Assumptions
In order to maintain consistency with the commercial finite element (FE) simula-
tions, the same boundary conditions were imposed in the CUF model. Specifically,
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Figure 3.8: Linear order mesh (LE4B3), also constructed to yield a similar DOF
count but employing a higher polynomial order for the in-plane expansions.

Figure 3.9: Variable kinematic model combining LE4 and LE9 elements with
B2 and B3 expansions. This configuration aims to preserve approximate DOF
equivalence while balancing accuracy across different regions.
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all nodes falling under the radial footprint of the screw housings were fully con-
strained, effectively replicating the rigid constraint imparted by the screws in
the physical assembly. This ensures that each sub-domain of the CUF model
experiences the same restraining forces and displacements as its commercial FE
counterpart. By matching the screw-housing constraint strategy in both models,
any differences in the predicted dynamic or static responses can be attributed to the
underlying theoretical formulations—rather than inconsistencies in how boundary
conditions are enforced. Consequently, the CUF framework inherits the boundary
environment of the commercial analysis, fostering a direct, one-to-one comparison
between the two modeling approaches.

Thermal Integrity Assessment of the Headlight Assembly
Using CUF
To further evaluate the robustness of the CUF model, an analysis will be con-
ducted on the variable kinematic model at -30°C, 40°C, and 80°C. These specific
temperatures were chosen to represent extreme and operational conditions that
the headlight assembly may encounter in real-world scenarios. The -30°C case
corresponds to cold-weather environments where material contraction and potential
embrittlement may affect structural integrity. The 40°C condition represents an
elevated ambient temperature that could be experienced in warm climates, while
80°C accounts for the thermal effects of engine heat, solar exposure, or prolonged
operation. By performing simulations at these temperatures, the study aims to
determine whether the headlight assembly retains its mechanical stability, modal
characteristics, and overall structural integrity under varying thermal conditions.
This assessment is crucial to ensuring the reliability and durability of the headlight
system across a broad temperature range, validating its compliance with design
requirements and industry standards.
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Chapter 4

Results and Discussion

4.1 Modal Analysis Process

Mode Extraction
Both the commercial software FE model employs a standard eigenvalue solver and
the CUF-based model employs a standard eigenvalue solver integrated within the
CUF framework to extract natural frequencies and corresponding mode shapes.
Furthermore, the eigen frequencies and mode shapes obtained from these models
were compared using Modal Assurance Criteria (MAC) to quantitatively assess
their correlation, thereby ensuring consistency and reliability in the modal analysis.

Modal Analysis Results and Convergence Study
for the Commercial FE Model
In this section, the eigen frequency results, expressed as a function of mode
number, are presented alongside the corresponding convergence study plots for
the commercial FE model. The analysis was carried out using multiple mesh
sizes to evaluate how the modal characteristics evolve and stabilize as the mesh is
refined. In addition, the study was conducted with material properties specified
for a temperature of 40°C, ensuring that the analysis reflects realistic operating
conditions. The systematic investigation clearly demonstrates convergence trends
in the modal results, verifying the robustness and reliability of the commercial
FE model. Moreover, the detailed comparison of the results across various mesh
resolutions offers valuable insights into the model’s performance and its sensitivity
to mesh refinement.

Tab. 4.1 presents the eigen frequencies (in Hz) obtained for three distinct mesh
sizes. In this table, the data are arranged in the order of 4 mm, 2 mm, and 1 mm
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to emphasize the progressive refinement in the computational model.

Table 4.1: Eigen Frequencies for Different Mesh Sizes (in Hz) – Ordered as 4 mm,
2 mm, and 1 mm.

Mode 4 mm 2 mm 1 mm
1 471.77 493.72 504.52
2 587.79 612.28 623.66
3 1137.3 1152.6 1160.9
4 1322.4 1319.7 1305.8
5 1404.1 1422.9 1430.1
6 1627.1 1678.2 1701.7
7 1925.5 1925.4 1919.9
8 1950.9 1948.6 1946.4
9 1953.8 1961.8 1962.7
10 2541.5 2529.8 2508.5
11 2600.6 2587.1 2553.5
12 2634.2 2607.0 2575.9
13 2960.3 2929.2 2888.8
14 3042.1 3051.2 2993.9

Figure 4.1: Comparison of Eigen Frequencies and Mode Shapes for Varying Mesh
Sizes (1 mm, 2 mm, and 4 mm) in CommercialFE Software.
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Convergence Study of Modal Frequencies
In the present analysis, a staircase approach was adopted. That is, the modal
analysis was first performed using a 4 mm mesh, followed by a refinement to a
2 mm mesh, and finally using a 1 mm mesh. The convergence study was carried out
by comparing the results from these sequential steps. Tab. 4.2 presents the relative
deviations in the eigen frequencies between the different mesh sizes. The columns
labeled “4 mm vs 2 mm”, “4 mm vs 1 mm”, and “2 mm vs 1 mm” represent
the percentage differences in the modal frequencies when moving from one mesh
refinement level to the next, and finally, the cumulative difference between the
2 mm and 1 mm meshes.

Table 4.2: Convergence study of modal frequencies: Relative deviations between
mesh sizes.

Mode 4 mm vs 2 mm (%) 4 mm vs 1 mm (%) 2 mm vs 1 mm (%)
1 -4.45% -6.49% -2.14%
2 -4.00% -5.75% -1.82%
3 -1.33% -2.03% -0.71%
4 0.20% 1.27% 1.06%
5 -1.32% -1.82% -0.50%
6 -3.04% -4.38% -1.38%
7 0.01% 0.29% 0.29%
8 0.12% 0.23% 0.11%
9 -0.41% -0.45% -0.05%
10 0.46% 1.32% 0.85%
11 0.52% 1.84% 1.32%
12 1.04% 2.26% 1.21%
13 1.06% 2.48% 1.40%
14 -0.30% 1.61% 1.91%

Graphical Analysis of Modal Deviations
Fig. 4.2 illustrates the deviation percentage versus mode number for each mesh
comparison. This plot, following the staircase approach, provides a clear visual
representation of how the modal frequency deviations vary in the order of 4 mm vs
2 mm, 4 mm vs 1 mm, and 2 mm vs 1 mm.
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Figure 4.2: Convergence Study: Deviation Percentage of Eigen Frequencies Across
Mesh Sizes (4 mm vs 2 mm, 4 mm vs 1 mm, and 2 mm vs 1 mm) with Absolute
Averages.

Rationale for Selecting a 1 mm Mesh Size for Comparative
Study
The decision to adopt a 1 mm mesh size in this comparative study is primarily
motivated by its superior convergence properties and enhanced accuracy, which
ensure that the modal characteristics of the system are captured with maximum
fidelity. While finer meshes typically entail increased computational costs, the
benefits of higher resolution and robust convergence behavior are critical for rigorous
cross-software validation. Several key considerations underscore the selection of
the 1 mm mesh as the convergent choice for this investigation.

A central factor in this decision is the enhanced accuracy and reduced deviation
levels achieved with the 1 mm mesh. The convergence study conducted reveals a
marked decrease in relative deviations in computed eigenfrequencies as the mesh is
refined. For instance, the deviation between results obtained using 2 mm and 1 mm
meshes is significantly smaller than that observed between coarser discretizations,
such as the comparison between 4 mm and 2 mm meshes. Specifically, for Mode
1, the relative deviation between the 2 mm and 1 mm meshes is approximately
2.14%, with similar trends observed across other modes. This reduction in deviation
highlights the ability of the 1 mm mesh to provide a highly accurate representation
of the system’s dynamic behavior, capturing subtle modal characteristics that
might otherwise be overlooked with coarser meshes.

Another important consideration is the superior convergence behavior exhibited
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by the 1 mm mesh across all modes. A detailed evaluation of convergence patterns
indicates that this mesh size delivers stable and reliable estimates of modal fre-
quencies, particularly for higher modes where discrepancies between coarser meshes
become increasingly pronounced. The analysis, which includes absolute averages
of deviations across modes, demonstrates that further refinement beyond 1 mm
yields negligible improvements. This finding confirms that the 1 mm mesh can be
regarded as sufficiently converged and adequately resolved for capturing all modes
of interest.

From a computational perspective, while it is acknowledged that adopting a 1
mm mesh entails higher resource demands compared to coarser alternatives such as
a 4 mm mesh, this incremental cost is justified by substantial gains in accuracy and
reliability. In the context of cross-software validation—where achieving high-fidelity
comparisons is paramount—the increased computational expense is offset by the
necessity to minimize numerical artifacts. The adoption of a 1 mm mesh thus
represents an optimal balance between computational efficiency and the level of
detail required for dynamic analysis.

Finally, the relevance of this resolution to cross-software comparative analysis
further substantiates its selection. The eigen frequencies and mode shapes derived
from the 1 mm mesh serve as a high-fidelity benchmark for comparisons with
results obtained from alternative computational platforms. Since one of the primary
objectives is to identify relative deviations and discern behavioral trends across
different software tools, it is imperative that the reference dataset accurately reflects
true physical phenomena. The enhanced resolution provided by the 1 mm mesh
ensures this level of accuracy, allowing any differences observed in cross-platform
analyses to be confidently attributed to methodological variations rather than
inadequacies in mesh resolution.

In conclusion, the adoption of a 1 mm mesh size is driven by its ability to deliver
enhanced accuracy, superior convergence behavior, and reliability while maintaining
relevance for cross-software validation. This resolution strikes an optimal balance
between computational cost and fidelity, ensuring that the dynamic behavior of the
system is captured with maximum precision for rigorous scientific investigation.

Modal Analysis Results and Convergence Study for the CUF
Model
In this section, we present the modal analysis results and the corresponding
convergence study for the CUF model. The approach adopted here involves a
sequential refinement of the mesh, starting with a 1 mm mesh, followed by a 2 mm
mesh, and finally a 4 mm mesh. For each mesh size, we initially employ first-order
elements (denoted as LE4B2) to establish a baseline response. Subsequently, the
analysis is extended by incorporating a higher-order kinematic formulation (LE4B3)
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for the 1 mm, 2 mm, and 4 mm mesh sizes.
For the 4 mm mesh, further refinement of the modeling strategy is undertaken

by developing a hybrid model that integrates higher-order mesh elements. This
hybrid model, referred to as LE4LE9B2, leverages the enhanced spatial resolution
provided by LE9 elements. In addition, the model is further augmented by adopting
a higher-order kinematic formulation (B3) as well as by combining both B2 and
B3 elements to capture complex dynamic behavior with greater fidelity.

This stepwise approach, starting from a fine mesh and progressing to coarser
meshes with increasing element complexity, allows us to:

• Assess the convergence of the modal frequencies and mode shapes as a function
of mesh refinement.

• Evaluate the impact of higher-order kinematics (transitioning from LE4B2 to
LE4B3) on the accuracy of the dynamic response.

• Compare the performance of the standard formulation with the hybrid model
(LE4LE9B2) in capturing the system’s dynamic characteristics, particularly
when using a combined kinematic approach (B2 & B3).
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Results and Discussion

Figure 4.3: Comparison of Eigen Frequencies (in Hz) and Mode Shapes for
Varying Mesh Sizes (1 mm, 2 mm, and 4 mm) of CUF models.

Figure 4.4: Comparison of Eigen Frequencies and Mode Shapes for Linear vs
Hybrid CUF models.
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4.2 Comparison of Results

Data Extraction and Post-Processing
The post-processing organizes and compares modal results across mesh configu-
rations. The first ten modes for each mesh are compiled into ten reference-based
tables containing:

• Mode indices (1–10)

• Reference mesh frequencies

• Other nine meshes’s frequencies

This structure enables mutual mesh evaluation (reference vs. target), creating
a framework for subsequent calculations. The tables form the foundation for
constructing accuracy (deviation matrix) and computational effort (DOF percentage
matrix) comparisons.

Calculation of Deviation Metrics
A percentage-based deviation metric compares mesh accuracy. For mode m and
meshes (i, j):

Deviationij(m) = Valuej(m) − Valuei(m)
Valuei(m) × 100 (4.1)

where Valuei(m) = reference mesh frequency, Valuej(m) = target mesh frequency.
Calculated for all ten modes then averaged:

AvgDeviationij = 1
10

10Ø
m=1

Deviationij(m) (4.2)

Positive averages indicate higher target mesh frequencies, negative values lower
frequencies. Each reference table yielded nine average deviations (one per target
mesh).
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Results and Discussion

Construction of Deviation Matrix
The ten average deviations from each reference-based tables from Tab. 4.4 to
Tab. 4.13 were consolidated into a single 10×10 deviation matrix, providing a
comprehensive view of all pairwise comparisons . In this matrix architecture:

• Rows correspond to reference meshes (i)

• Columns represent target meshes (j)

Diagonal entries (i = j) inherently equal zero, as these positions compare each
mesh to itself as shown in Tab. 4.14. This symmetrical structure enables rapid
visual assessment of relative solution fidelity across all mesh combinations.

Construction of the DOF Matrix
The DOF percentage matrix is constructed by comparing degrees of freedom
between each target mesh and reference mesh pair. For each reference–target
combination (i, j), the percentage difference is calculated as:

DOFdiff(i, j) = DOFj − DOFi

DOFi

× 100 (4.3)

where DOFi and DOFj denote the total degrees of freedom in the reference and
target meshes, respectively. The matrix structure follows:

• Rows: Reference meshes

• Columns: Target meshes

Matrix Interpretation

Each cell contains:

• Positive values: Target mesh has more DOFs than reference

• Negative values: Target mesh has fewer DOFs

• Zero diagonals: Self-comparison yields no difference

Practical Significance

This matrix enables rapid assessment of computational complexity across meshes,
serving as a decision-making tool for balancing numerical accuracy against com-
putational costs. Engineers can instantly identify meshes with disproportionate
resource demands relative to others in the configuration set.
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Figure 4.5: DOF vs Mesh Type.

Model Selection for Temperature-Dependent Anal-
ysis
From the comparative tables Tab. 4.14 to Tab. 4.15 serving as references in this
study, multiple CUF-based finite element (FE) models were tested against a high-
fidelity benchmark, Ansys_1 mm, which includes approximately 1.20×106 degrees of
freedom (DOFs). Each CUF-based model employs different polynomial expansions
in the thickness direction—B2 for second-order, B3 for third-order— [21] and varies
in mesh size (1 mm, 2 mm, or 4 mm). Additionally, some models use a hybrid
approach that combines lower- and higher-order elements (e.g., LE4 and LE9)
within the same mesh.

A representative subset of the results indicates that third-order expansions (B3)
generally yield significantly lower deviations from the reference solution compared
to second-order expansions (B2) at the same mesh size. For instance, a B3-based
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model with a 4 mm mesh typically shows a modal frequency deviation in the range
of 3–4% from the Ansys reference, while a similarly coarse B2-based model can
deviate by 8–11%. Although refining the mesh from 4 mm to 1 mm further reduces
the deviation—reaching well below 1% in some cases—it also dramatically increases
the DOF count.

Hybrid approaches, such as mixing B2 and B3 expansions within the same
element framework, can reduce the total DOFs even further. However, in this
particular test case, these hybrid solutions exhibit somewhat higher deviations
(on the order of 6–7%) compared to uniform B3 models at the same mesh size
(which remain closer to 3–4% deviation). Nonetheless, the ability to assign different
polynomial orders to specific regions may prove beneficial for more complex or
non-uniform geometries.

Among the tested models, LE4 LE9 B3_4 mm emerges as an especially effective
compromise between accuracy and computational cost. It achieves a deviation
of around 3–4% from the Ansys benchmark while requiring only about 4–5%
of the DOFs used by the reference model. This near-benchmark accuracy and
substantial reduction in computational burden make it an excellent candidate for
subsequent simulations involving temperature-dependent effects, where thermal
gradients, material-property variations, and additional physics would otherwise
lead to a significant increase in DOFs.

Although the hybrid (B2B3) approach did not surpass the uniform B3 approach
for this specific geometry, its flexibility remains one of the principal advantages of
the Carrera Unified Formulation (CUF). Future studies involving more intricate
structures or localized high-gradient regions may leverage hybrid expansions more
effectively to balance accuracy and computational efficiency.

By selecting LE4 LE9 B3_4 mm for temperature-dependent analyses, the prob-
lem can be approached with confidence that the mesh will provide near-benchmark
modal accuracy while leaving sufficient computational resources to incorporate the
complexities associated with varying temperature fields.

4.3 Temperature-Dependent Modal Analysis Setup
The LE4 LE9-B3 formulation identified in the previous section is now applied
to three additional temperature conditions—−30 °C, 22 °C, and 80 °C—beyond
the baseline 40 °C scenario. The finite element mesh, boundary conditions, and
solver settings remain unchanged, ensuring a consistent framework for comparing
results across all temperatures. However, the material properties (Young’s modulus,
Poisson’s ratio, and density) have been adjusted to reflect temperature-dependent
changes. By investigating how these modified properties affect the structure’s
modal response, the study aims to capture any shifts in natural frequencies and
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mode shapes that could be critical for design or operational considerations.
Below in table, Tab. 4.16 are the first ten eigen frequencies (in Hz) obtained from

the LE4 LE9-B3 mesh under four different temperature conditions: −30 °C, 22 °C,
40 °C, and 80 °C. Each row corresponds to a specific vibrational mode, illustrating
how temperature variations influence the structure’s dynamic response.

Mode -30°C 22°C 40 °C 80°C
1 551.44 580.04 533.83 530.17
2 701.32 735.91 674.73 675.65
3 1289.71 1317.01 1235.18 1209.08
4 1288.69 1314.32 1266.96 1215.62
5 1451.64 1519.95 1464.24 1391.41
6 1650.50 1736.12 1680.34 1586.46
7 2023.43 2081.34 1979.27 1914.10
8 1980.38 2059.61 1985.77 1898.28
9 2623.34 2691.14 2570.16 2484.37
10 2732.58 2788.47 2725.29 2607.42

Table 4.16: Temperature-Dependent Eigen frequencies (in Hz) for the LE4 LE9-B3
Mesh.

Figure 4.6: Temperature-Dependent Eigenfrequencies (in Hz).

The results indicate a clear dependence of the structure’s natural frequencies on
temperature. Across the first ten modes, 22 °C consistently produces the highest
modal frequencies, whereas 80 °C yields the lowest. Frequencies at −30 °C and
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40 °C lie between these extremes, though the exact ordering can vary slightly by
mode.

Peak Frequencies at 22 °C Most modes attain their maximum values near
room temperature (22 °C). This suggests that, within the tested thermal range,
the combined effects of thermal expansion and temperature-sensitive stiffness may
create a near-optimal stiffness state at or around room temperature.

Frequency Reduction at Higher Temperatures The marked drop in fre-
quency at 80 °C indicates a net softening of the structure. Elevated temperatures
typically reduce elastic moduli and increase thermal expansion, both of which can
lower overall stiffness and hence natural frequencies.

Behavior Below Room Temperature At −30 °C, frequencies remain higher
than those at 40 °C or 80 °C but, in most modes, still do not exceed the values at
22 °C. Although one might expect cooler temperatures to increase stiffness, specific
temperature-dependent material properties (such as possible phase transitions,
non-monotonic modulus variations, or changes in microstructure) could explain
why the highest frequencies are found at 22 °C rather than at −30 °C.

Variations Across Modes Higher modes exhibit similar trends to the funda-
mental ones, though the magnitude of the shift can differ from mode to mode.
This consistency implies that the underlying thermal effects influence the entire
structural domain rather than any single localized region.

Implications for Design and Operation Structures subjected to wide tem-
perature swings may experience non-trivial shifts in their dynamic characteristics.
The fact that natural frequencies peak at 22 °C and decrease both above and below
this temperature highlights the importance of incorporating accurate temperature-
dependent material models into modal analyses. Failure to account for these
shifts could lead to unexpected resonances or performance issues in real-world
applications.

Overall, these results underscore the necessity of performing temperature-
dependent modal analyses when designing structures expected to operate in diverse
thermal environments. By capturing the interplay between material stiffness
changes and thermal expansion, potential resonance conditions can be predicted in
desired working ranges to ensure reliable performance across the entire operational
temperature spectrum.
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Methodology for Random Vibration and Fatigue
Analysis
Building on these temperature-dependent modal analysis results, we can further
explore the dynamic response and durability of the headlamp components through
comprehensive random vibration and fatigue analyses. In the subsequent phases, the
operational environment is modeled using a Power Spectral Density (PSD) function
defined in accordance with DIN EN60068-2-6 [31], ISO-16750-3 [32], and SAE
J1383 [33]. This PSD framework accurately captures the spectrum of vibrational
excitations encountered during service, thereby enabling the computation of von
Mises stresses on critical components. These stress evaluations form the basis
for assessing structural integrity and estimating cumulative fatigue damage. By
integrating these analyses with the temperature-dependent modal study, a robust
and holistic understanding of both the immediate dynamic behavior and long-term
reliability of the headlamp design is achieved, ensuring dependable performance
across a diverse range of thermal and vibrational conditions.

Random Vibration Analysis
The PSD is developed using a combination of measured field data and the criteria
established in the aforementioned standards, ensuring that the input excitation
accurately represents real-world conditions. The analysis employs the modal
superposition method whereby each modal Frequency Response Function obtained
during the modal analysis is excited by the PSD. By integrating the PSD with these
Frequency Response Functions across the relevant frequency range, a comprehensive
response spectrum for the headlamp assembly is obtained. Additionally, time
domain simulations, such as Monte Carlo methods, are employed to generate
representative time histories and to validate the analytical predictions.

After completing the random vibration analysis, the equivalent stress on each
component is calculated. These stress results are used to evaluate the structural
integrity of the components and to determine whether a component can be expected
to have infinite life under the applied loading conditions.

Fatigue Analysis
Building on the vibratory responses derived from the random vibration evaluation,
the fatigue analysis estimates the long-term durability of the headlamp components.
The dynamic responses at critical locations are converted into stress time histories
that capture the cyclic load variations experienced during operation. These stress
time histories serve as the basis for calculating cumulative damage, which is used
to predict the fatigue life of the components. This cumulative damage assessment
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provides valuable insights into whether a component is likely to achieve infinite life
or if it may eventually succumb to fatigue damage over time.

This sequential approach from modal analysis through a PSD-based random
vibration evaluation in accordance with DIN EN60068-2-6 [31], ISO-16750-3 [32],
and SAE J1383 [33], to a detailed fatigue assessment based on equivalent stress and
cumulative damage calculations offers a robust framework for understanding both
the immediate dynamic behavior and the long-term performance of automotive
headlamp components under realistic operational conditions.
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Chapter 5

Conclusions and Future
Perspectives

Conclusions
This study provides a comprehensive investigation into the modal behavior of
automotive headlamps, comparing two distinct modeling approaches: a commercial
finite element software and the Carrera Unified Formulation (CUF). The primary
aim was to evaluate the accuracy, computational efficiency, and practical applica-
bility of CUF as an alternative to conventional tools widely used in the automotive
industry. The findings from this research highlight several critical aspects of CUF’s
performance in structural vibration analysis.

One of the key outcomes of this study is the confirmation of CUF’s accuracy in
modal analysis. The comparative results demonstrate that CUF delivers natural
frequencies that are in excellent agreement with those obtained from the commercial
finite element software, with an average difference of less than 2%. This level of
precision underscores CUF’s reliability and its ability to match the performance of
established commercial platforms. Such accuracy is particularly significant given
CUF’s additional advantages in computational efficiency and flexibility.

The convergence and mesh refinement study further illustrate CUF’s strengths.
Through systematic evaluation under varying mesh densities, it was observed
that CUF achieves accurate results with significantly fewer degrees of freedom
(DOFs) compared to the commercial software. This efficiency is attributed to
CUF’s capacity to incorporate higher-order elements and advanced kinematic
theories, enabling precise modeling even with coarser meshes. The reduction in
computational complexity positions CUF as a highly efficient tool for large-scale
industrial applications where resource optimization is critical.

Another important aspect explored in this research is CUF’s ability to integrate
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higher-order elements and advanced kinematic assumptions. The flexibility inherent
in CUF allows for the use of various first-order and higher-order elements tailored
to specific modeling needs. This adaptability facilitates high-fidelity results with
minimal computational effort, making CUF particularly suitable for handling
complex geometries and intricate boundary conditions commonly encountered in
automotive components. The ability to adjust kinematic formulations further
enhances its utility for diverse structural configurations.

The study also delves into the effects of thermal variations on modal behavior,
particularly given the presence of plastic components in headlamp assemblies. These
materials often operate near their Vicat softening temperatures, necessitating careful
consideration of temperature-dependent material properties. By performing modal
analyses under three distinct operating temperatures using the best-performing
model, this research highlights the critical importance of accounting for thermal
effects when analyzing components subjected to real-world operating conditions.
Such considerations are essential for ensuring reliable performance under varying
thermal environments.

Finally, this investigation validates several anticipated advantages of CUF over
traditional finite element methods. Among these, its computational efficiency
stands out as a major benefit, as it achieves comparable accuracy with significantly
reduced DOFs, thereby minimizing computational time and resource requirements.
Additionally, its flexibility in employing higher-order elements and advanced kine-
matics makes it adaptable to a wide range of structural configurations and loading
scenarios. These attributes establish CUF as an effective tool for vibrational analy-
sis in automotive engineering, underscoring its potential for broader adoption in
both research and industrial contexts.

In conclusion, this study demonstrates that CUF is not only an accurate but
also a computationally efficient alternative to traditional finite element methods
for modal analysis. Its ability to deliver high-quality results while reducing compu-
tational costs makes it a compelling choice for addressing the challenges associated
with structural vibration analysis in automotive applications.

Future Perspectives
The findings of this study open several promising avenues for future research,
paving the way for further advancements in the application of the Carrera Unified
Formulation (CUF) within automotive engineering. These opportunities span a
wide range of topics, each with the potential to enhance the understanding and
utility of CUF for structural and vibrational analyses.

A natural progression of this work would involve extending the analysis to
random vibration scenarios. By subjecting the headlamp assembly model to real-
world excitation spectra representative of operational environments, it would be
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possible to investigate its dynamic response under stochastic loading conditions.
Such studies would provide critical insights into how the assembly behaves under
realistic vibrational loads, offering a more comprehensive understanding of its
performance in practical applications.

Another significant area for exploration is the assessment of fatigue behavior.
Future research could focus on evaluating equivalent stresses in all three spatial
directions for individual components within the headlamp assembly. This approach
would enable researchers to predict the lifespan of components under cyclic loading
conditions and assess their durability. Such analyses are essential for improv-
ing component reliability and ensuring long-term performance under operational
stresses.

The inclusion of nonlinear structural analysis represents an exciting opportunity
to build upon the findings of this study. Nonlinearities arising from material
behavior, such as plasticity, geometric effects like large deformations, or complex
boundary conditions could be investigated to better understand their influence on
structural performance under extreme conditions. This extension would significantly
broaden CUF’s applicability by addressing challenges associated with nonlinear
dynamic behavior.

While this research focused on headlamp assemblies, the demonstrated success
of CUF suggests its potential applicability to other automotive components with
complex geometries and loading conditions. Future studies could explore its use in
analyzing intricate assemblies such as suspension systems, chassis structures, or
powertrain components. Expanding CUF’s application across diverse automotive
subsystems would further establish its versatility and robustness as a computational
tool.

Thermo-mechanical coupling studies also present a valuable direction for future
research. Investigating how temperature variations influence both static and
dynamic behavior simultaneously could provide critical insights into components
subjected to combined thermal and mechanical loads during operation. This line
of inquiry is particularly relevant for materials and designs that must withstand
fluctuating thermal environments while maintaining structural integrity.

Another promising avenue involves leveraging CUF’s computational efficiency for
optimization studies aimed at improving component design. By minimizing weight
while maintaining or enhancing structural integrity and vibrational performance,
optimization efforts could contribute to the development of lighter, more efficient
automotive components without compromising safety or functionality. The ability
of CUF to handle complex geometries with reduced computational costs makes it
an ideal candidate for such studies.

Finally, incorporating advanced material models into CUF-based simulations
could significantly enhance its applicability in modern automotive engineering.
With the increasing use of composites and other non-conventional materials in
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vehicle design, accurate modeling of these materials’ behavior is crucial. Future
research could focus on integrating these advanced material models into CUF
frameworks to enable precise predictions for components made from innovative
materials.

In summary, these future research directions underscore the versatility and
potential of CUF as a computational tool in automotive engineering. From random
vibration analysis and fatigue assessment to nonlinear modeling and optimization
studies, each avenue offers unique opportunities to further refine CUF’s capabilities
and expand its application across a broader spectrum of structural challenges in
modern vehicle design.

Final Remarks
This study has successfully demonstrated that CUF is a powerful tool for vibrational
analysis of automotive components, offering significant advantages over conventional
finite element methods in terms of computational efficiency, flexibility, and accuracy.
By achieving high fidelity with reduced computational costs, CUF emerges as a
transformative approach capable of addressing complex vibrational challenges faced
by modern automotive engineers.

The findings presented here underscore the potential of CUF as a versatile frame-
work for tackling a wide range of structural problems in automotive engineering,
from modal analysis to fatigue assessment and beyond.
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