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Abstract

The development of Advanced Driver Assistance Systems (ADAS) represents a
rapidly evolving field, focused on enhancing vehicle safety and efficiency through
the automation of key driving functions, including steering, acceleration, and brak-
ing. These systems serve as the foundation for autonomous vehicles, which aim
to operate without human intervention through the integration of sensors, control
algorithms, and real-time decision making. However, evaluating control strategies
in real-world conditions is often costly and impractical, thereby highlighting the
need of using simulation environments for rigorous testing and validation. In this
context, this thesis presents a simulation framework for evaluating control strate-
gies in autonomous vehicle applications, integrating Simulink for controller design
with the CARLA simulator for realistic testing scenarios. Two control methodolo-
gies, namely Proportional-Integral-Derivative (PID) control and Nonlinear Model
Predictive Control (NMPC), are implemented to control both lateral and longitu-
dinal vehicle dynamics. To improve the interface between the control system and
the CARLA simulator, a dispatching function is developed to convert the desired
acceleration outputs from the controller into appropriate vehicle input commands,
namely throttle and brake commands. This function is designed based on vehicle
data collected from the CARLA simulation environment. The proposed framework
is tested in highway scenarios featuring both curved and straight road segments,
including overtaking maneuvers. Simulation results validate the effectiveness of
the control strategies, highlighting their performance and applicability in real-world
driving conditions.

Keywords: ADAS, Path tracking, Control System, NMPC, PID Control, Simulink,
CARLA simulator
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Chapter 1

Introduction

1.1 Autonomous Driving

Autonomous driving, also known as self-driving or driverless technology, refers to
the technology enabling vehicles to navigate and operate independently without hu-
man intervention, leveraging a combination of sensors, machine learning algorithms,
and real-time data processing, with the aim of enhancing road safety by reducing
human errors, which are responsible for the majority of traffic accidents [1]. Addi-
tionally, AVs aim to improve traffic flow, lower emissions, and increase accessibility
for individuals who are unable to drive due to age or disability [2].

The advent of autonomous vehicles (AVs) however is not merely a technological
evolution; it is a reflection of deeper philosophical inquiries into human progress and
our relationship with machines. Basically Autonomous Vehicle research is rooted
in fundamental concerns about human efficiency, and societal transformation. One
of the primary motivations for AV development is the reduction of traffic-related
fatalities and injuries. Human error accounts for over 90 percent of road accidents,
driven by distractions or fatigue [3]. The introduction of AVs aims to eliminate such
risks through precise, data-driven decision-making. AVs are also often portrayed as
environmentally and economically beneficial due to lower emissions with their effi-
cient driving and electrification, allowing for greener cities and environment. Hence
as AVs take over driving responsibilities, trust in artificial intelligence becomes im-
portant [4].

Humans naturally develop trust in systems when they behave consistently and
predictably. Traditional human-driven cars, despite their risks, follow intuitive rules
of behavior. AVs, however, operate based on complex probabilistic models, which
might lead to unpredictable behavior in rare or ambiguous scenarios. AI-driven ve-
hicles make decisions based on sensor data fusion, deep learning models, and prob-
abilistic reasoning. Despite these challenges, autonomous driving research remains
one of the most promising frontiers in AI and transportation science. By refin-
ing sensor accuracy, improving predictive models, and enhancing AI explainability,
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researchers can reduce uncertainty and improve AV performance in real-world con-
ditions. Furthermore, continuous advancements in machine learning and Regulatory
control will ensure that AVs evolve into safer and more reliable alternatives to human
drivers [5].

The journey toward autonomous driving began decades ago with the introduc-
tion of basic driver-assistance features, such as cruise control and anti-lock braking
systems (ABS). Over time, these functions evolved into more sophisticated advanced
driver-assistance systems (ADAS), including lane-keeping assist, adaptive cruise con-
trol, and automated parking [6]. The Society of Automotive Engineers (SAE) classi-
fies autonomous driving technologies into six levels, from Level 0 (no automation) to
Level 5 (full automation under all conditions At lower levels (1-2), vehicles primar-
ily assist human drivers with functions like adaptive cruise control and lane-keeping
assistance, while higher automation levels (3-5) allow vehicles to independently man-
age driving tasks under specific conditions or entirely autonomously [7]. Figure 1.1
below better represents the detailed classification of SAE levels:

Figure 1.1: Levels of Automation by SAE

• Level 0 No Automation The human driver performs all aspects of the
driving task at all times. Even though it may have basic safety features like anti-
lock brakes or stability control, the driver is fully responsible for accelerating,
braking, steering, and monitoring the environment.

• Level 1 Driver Assistance The vehicle can assist the driver with either
steering or acceleration/braking, but not both simultaneously. The driver re-
mains responsible for monitoring the driving environment, continuously super-
vises the automation feature and must be ready to take full control at any time.
Features like Adaptive Cruise Control (ACC) assist the driver by maintaining
a predefined distance from the leading vehicle, although steering continues to
be controlled manually by the driver.
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• Level 2 Partial Automation The vehicle can control both steering and
acceleration/braking simultaneously under certain conditions. The driver, how-
ever, must monitor the environment and remain fully engaged. Features like
Highway Driving Assist combine adaptive cruise control and lane-centering on
well-marked highways. The driver is still the primary decision-maker and must
supervise the system.

• Level 3 Conditional Automation The vehicle can manage most aspects of
driving—steering, acceleration, braking, and environmental monitoring—under
specific conditions, but the driver must be ready to take control when the sys-
tem requests. The vehicle drives autonomously at lower speeds on highways
or in heavy traffic, handling lane keeping, following distances, and object de-
tection. The human driver does not need to monitor the driving environment
continuously while the automated system is active. However, when the system
encounters a scenario outside its operational design domain, such as unclear
road markings or complex intersections, it will issue a “handover request,” and
the human must then take over [8].

• Level 4 High Automation The vehicle can drive itself without human
intervention within a defined operational domain or set of conditions. If the
system cannot cope with conditions outside its domain, it will bring the vehicle
to a safe stop if a human does not intervene. Operating on fixed routes in urban
areas with well-understood traffic rules and conditions. A human driver may
not be required to take over at any time within the operational domain.

• Level 5 Full Automation The vehicle can handle all aspects of driving under
all conditions that a human driver could manage—no human driver is needed
at any point. The system can navigate complex roads, weather conditions, and
unexpected scenarios without any human input. Fully Autonomous Vehicles
in theory could drive from any point A to point B without human assistance,
whether on highways, rural roads, or urban centers. Commercial or private
vehicles that do not require steering wheels or pedals, since human control is
unnecessary.

The development of autonomous vehicles has been driven by continuous improve-
ments in artificial intelligence, sensor technology, and computational power. These
advancements have enabled AVs to process large amounts of data in real-time, en-
hancing their ability to perceive and navigate complex environments. Google ini-
tiated one of the most ambitious self-driving car projects in history. This effort,
which later evolved into Waymo (a subsidiary of Alphabet Inc.), was one of the first
large-scale autonomous vehicle research initiatives focused on achieving full auton-
omy (SAE Level 4 and Level 5), relying heavily on LiDAR (Light Detection and
Ranging) technology to create high-resolution, 3D maps of its environment. with
the aim of creating a vehicle that could drive without human intervention in urban
and highway environments [9].
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Figure 1.2: Waymo Autonomous Vehicle

Figure 1.3: Tesla Autonomous Vehicle

While Waymo pursued full autonomy from the starting point of research, Tesla
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took a different approach—introducing semi-autonomous driving features aimed at
enhancing human driving rather than replacing it entirely. Tesla’s Autopilot does not
use LiDAR. Instead, it relies on mounted surround cameras, radar, and ultrasonic
sensors to perceive its environment, processing real-time video data to detect lane
markings, vehicles, pedestrians, and road signs [10].

These two pioneering approaches, Waymo’s safety-first strategy and Tesla’s data-
driven evolution, reflect broader debates in the use of artificial intelligence and
engineering, demonstrating the complexity of autonomous driving innovation.

1.2 Functional Components of AVs

The architecture of an autonomous vehicle (AV) is a multi-layered system that
combines hardware and software modules to enable the vehicle to perceive its sur-
roundings, localize itself, make decisions, and execute control actions. This struc-
tured framework is essential for ensuring the safe and reliable operation of AVs in
dynamic and unpredictable environments [11].

Early AV architectures were centralized and primarily relied on rule-based decision-
making and pre-programmed algorithms. Therefore, these systems were to function
merely in controlled environments, and face difficulties with scalability and real-
time adaptability in more complex urban settings [12]. Modern architectures then
integrated a combination of deep learning and edge computing as well as advanced
communication protocols which shift AVs to process vast amounts of data in real-
time, making autonomous driving safer and more efficient.

Figure 1.4: Array of Sensors Implemented in AVs
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1.2.1 Layered Architecture

A well-structured AV system typically follows a layered architecture that compart-
mentalizes functions into discrete but interrelated modules. This separation of con-
cerns is essential for ensuring modularity, maintainability, and scalability [13]. The
key layers generally include:

• Sensing and Perception Layer In reality it functions like the eyes and brain
of the AV, enabling the vehicle to understand and interpret its surroundings. This
layer is responsible for collecting data from various sensors, processing it in real time,
and creating a precise representation of the external environment. The processing
involves identifying and classifying objects such as other vehicles, pedestrians, road
signs, and obstacles. Sensor fusion techniques combine raw data to create a compre-
hensive environmental model. Advanced algorithms, including convolutional neural
networks (CNNs) and transformer-based models, are employed to process also these
raw data [14]. The system not only detects what is present but also tracks the
movement of these objects over time, effectively predicting how they might behave
in the near future, ensuring safe and informed driving decisions.

• Localization and Mapping Layer It can be thought as vehicle’s internal navi-
gation system. It provides not only the car with a detailed map of its surroundings
but also continuously determines where the vehicle is within that map. The process
begins with high-definition maps that contain a wealth of information about road
layouts, lane markings, landmarks, and other static features of the environment.
Autonomous vehicles generally rely on a combination of GPS, Inertial Measurement
Units (IMUs), and Simultaneous Localization and Mapping (SLAM) algorithms to
determine their position within an environment [15].

• Planning and Decision-Making Layer This layer takes all the detailed infor-
mation gathered by the sensors and processed by the perception system and uses
it to plan the vehicle’s next moves. It doesn’t just react to what’s happening right
now. Regarding the Path Planning, for example, it computes a geometric path from
the current position to the destination, considering road topology, traffic rules, and
obstacles. Techniques such as Model Predictive Control (MPC) and Reinforcement
Learning (RL) are often used to optimize these trajectories [16]. It also predicts
what might happen in the next step. For instance, if a vehicle is about to change
lanes, this layer evaluates these possibilities and decides on the safest and most
efficient path forward.

• Control Layer Executes the planned maneuvers by interfacing with the vehicle’s
actuators. Basically, it is like a bridge between the vehicle’s decisions and its phys-
ical actions. After the Planning and Decision-Making layer, which figures out what
the vehicle should do, it translates it into real-world commands to the car’s actua-
tors—components like the steering system, throttle, and brakes—to ensure that the
vehicle follows the planned trajectory accurately and safely.
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Each of these layers interacts with the others through well-defined interfaces,
allowing developers to update or replace individual modules without compromising
the entire system.

A significant aspect of modern AV architecture is the integration of Vehicle-to-
Everything (V2X) communication. This communication serves as an additional layer
of data input that complements onboard sensors [17]. While sensors like LiDAR,
radar, and cameras provide useful but limited real-time local information, V2X
enables vehicles to exchange data with nearby vehicles (V2V), infrastructure (V2I),
pedestrians (V2P), and even cloud networks (V2N). This extended communication
network allows an AV to gain insights beyond its line-of-sight—such as receiving
early warnings about upcoming dangers or even traffic conditions [18].

Figure 1.5: V2X Technology

From a safety standpoint, by allowing vehicles to share critical information in-
stantaneously, V2X supports cooperative maneuvers and proactive hazard avoid-
ance. For instance, if one vehicle detects a sudden obstacle or slippery road condi-
tions, it can immediately alert others, potentially preventing accidents before they
occur. This level of communication not only augments the vehicle’s perception
but also contributes to the overall reduction of traffic incidents and enhances road
safety for both autonomous and human-driven vehicles [19]. Hence the integration
of V2X highlights the importance of developing common standards and protocols.
Governments and industry bodies are working together to establish frameworks that
ensure interoperability and secure data exchange among different manufacturers and
systems, as these standards are crucial for fostering trust in the technology and en-
suring that V2X-enabled vehicles can communicate seamlessly regardless of their
origin, thereby laying the groundwork for widespread adoption.

Correspondingly autonomous vehicles generate and process massive amounts of
data. To manage this computational load, AV architectures increasingly adopt a
hybrid computing approach that leverages both edge and cloud resources [20]. Edge
computing enables real-time processing of critical sensor data onboard the vehicle,
reducing latency and ensuring immediate responsiveness. In parallel, cloud comput-
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ing is used for tasks that require intensive computation or benefit from aggregated
data across multiple vehicles—such as machine learning model training, fleet man-
agement, and large-scale data analytics [21]. This dual strategy not only enhances
the vehicle’s performance but also allows for continuous updates and improvements
through over-the-air (OTA) software updates, ensuring that AV systems remain at
the cutting edge of technology.

1.3 Application and Challenges

Advanced Driver Assistance Systems (ADAS) are designed to enhance vehicle safety
and comfort by aiding the driver with real-time information and, in certain cases,
automated corrective actions. Among widely implemented ADAS features are men-
tioned in the following:

• Adaptive cruise control Adaptive Cruise Control automatically adjusts the
vehicle’s speed to maintain a safe and preset distance from the vehicle ahead. It
employs radar or camera sensors mounted at the front of the vehicle to continuously
monitor the speed and distance of the preceding vehicle [22]. Based on sensor
data, ACC automatically accelerates or decelerates, enhancing driving comfort on
highways and reducing driver fatigue.

vspace10pt

Figure 1.6: Adaptive cruise control

• Lane keeping assist These systems detect lane markings using camera sensors,
typically mounted behind the windshield. Lane Departure Warning provides an alert
(visual, audible, or tactile) if the vehicle unintentionally drifts from its lane [23].
Lane Keeping Assist actively intervenes by steering the vehicle back into the center
of the lane, improving safety by preventing accidents caused by driver distraction
or fatigue.

vspace10pt
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Figure 1.7: Lane keeping assist

• Blind spot monitoring Blind Spot Detection systems utilize radar or ultra-
sonic sensors placed at the sides or rear of the vehicle to monitor areas not easily
visible in mirrors [24]. When a vehicle enters this blind spot area, BSD alerts the
driver through visual indicators typically placed on side mirrors or through audible
warnings, reducing the risk of collisions during lane changes.

vspace10pt

Figure 1.8: Blind spot monitoring

• Automatic emergency braking Automatic Emergency Braking uses sensors
like radar, cameras, or LiDAR to detect obstacles, such as vehicles or pedestrians,
ahead of the car. If a collision risk is detected, the system first alerts the driver, then
automatically applies brakes to either prevent or reduce the severity of a collision.
AEB significantly reduces the chances of front-end collisions and enhances overall
safety [25].

vspace10pt
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Figure 1.9: Automatic emergency braking

• Traffic sign recognition This feature employs camera sensors with image pro-
cessing technology to detect and recognize road signs, including speed limits, stop
signs, and warning signs. The recognized signs are displayed to the driver on the
vehicle dashboard or head-up display, enhancing driver awareness and compliance
with traffic rules.

vspace10pt

Figure 1.10: Traffic sign recognition

• Driver drowsiness alerts Driver Drowsiness Detection systems monitor driver
alertness and behavior through steering inputs, eye-tracking cameras, or facial recog-
nition technology. If the system detects signs of fatigue or distraction, it alerts the
driver to take a break, reducing the risk of accidents due to drowsiness.
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• Rear Cross Traffic Alert Rear Cross-Traffic Alert systems use radar or ultra-
sonic sensors placed at the rear bumper to detect vehicles approaching from either
side while reversing out of a parking space. The system warns drivers through visual
or audible alerts, significantly enhancing safety when reversing in busy areas.

vspace10pt

Figure 1.11: Rear Cross Traffic Alert

Despite the advancements in the field of AVs, several challenges still remain in
the widespread adoption of autonomous vehicles. One of the primary obstacles is en-
suring the safety and reliability of AV systems in diverse and dynamic environments
[26]. Autonomous vehicles must be capable of handling a wide range of scenarios,
including adverse weather conditions, unexpected pedestrian behavior, and complex
urban infrastructure, which necessitate extensive testing and validation through
simulation platforms such as CARLA and real-world driving trials.

Another critical challenge is the ethical and legal implications associated with
autonomous driving. Determining liability in accidents involving AVs is a com-
plex issue, as responsibility may fall on vehicle manufacturers and even software
developers [27]. Moreover, ethical dilemmas arise in situations where AVs must
make split-second decisions that involve potential harm to pedestrians or passen-
gers. Addressing these concerns requires a collaborative effort among policymakers,
engineers, and ethicists to establish clear regulatory frameworks [28].

Cybersecurity is another pressing concern in the realm of autonomous vehicles.
As AVs rely heavily on interconnected systems, including cloud computing and
vehicle-to-vehicle (V2V) communication, they become susceptible to cyber threats
[29]. Unauthorized access to AV systems could lead to malicious interventions, pos-
ing risks to both passengers and other road users. Ensuring robust cybersecurity
measures is essential to prevent potential cyber-attacks and maintain public trust
in AV technology.

Furthermore, the integration of AVs into existing transportation infrastructure

11



Introduction

poses logistical and financial challenges. Roads, traffic signals, and signage may need
to be adapted to accommodate autonomous vehicles, requiring significant investment
from governments and private stakeholders. Public acceptance and trust in AV
technology also play a crucial role in its adoption. Many individuals remain skeptical
about the safety and reliability of self-driving cars, necessitating public awareness
campaigns and transparent safety demonstrations to build confidence in AV systems.

The economic implications of AVs also warrant careful consideration. While
autonomous vehicles have the potential to reduce transportation costs and increase
efficiency, they may also lead to job displacement, particularly in industries reliant
on human drivers, such as trucking and taxi services. Policymakers must address
these socio-economic concerns by implementing workforce transition programs and
exploring new job opportunities in the evolving mobility landscape.

1.4 The Role of Simulation in AV Development

Simulation plays an essential role in the development and testing of automated driv-
ing systems (ADS), allowing safe and cost-effective evaluation of complex or rare
scenarios which are not easily feasible in real-world settings [30]. The high com-
plexity nature of real-world road environments requires extensive testing in diverse
conditions—ranging from varying weather and lighting to intricate urban layouts.
Moreover, physical testing under these conditions can be financially prohibitive,
time-consuming, and potentially hazardous.

These digital environments also offer several key advantages. First, it enables
the decoupling of system components—such as perception, sensor fusion, planning,
and control—for individual assessment as well as integrated, closed-loop testing.
This modular testing is essential for identifying vulnerabilities in each subsystem
and understanding how errors or delays in one module may propagate through the
entire system. For example, simulation can model sensor noise, latency, and failure
modes, allowing developers to evaluate how robust the sensor fusion algorithms are
in aggregating data from LiDAR, radar, and cameras under adverse conditions [31].
Simulation is invaluable for integrating and testing the multiple subsystems that
comprise an autonomous vehicle—like perception, localization, planning, and con-
trol—in a cohesive and synchronized manner. It allows for iterative improvements
and rapid prototyping, where updates to one part of the system can be evaluated
in context with the rest of the vehicle’s operations. This modular testing is crucial,
as it ensures that even when individual components are well-tuned, their combined
behavior under diverse conditions is safe and reliable.

Moreover, it enables iterative experimentation, namely one can adjust param-
eters, introduce new obstacles, or modify vehicle configurations to observe system
responses of different models. This iterative process accelerates innovation by re-
ducing the time between design, implementation, and analysis.
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Figure 1.12: Simulation of ADAS Testing

Additionally, simulation allows for performance evaluation and benchmarking.
Advanced metrics—such as accuracy in object detection, reaction time to critical
events, and success rates in various maneuvers—can be gathered systematically
[32]. These data-driven insights guide further refinements in software and hard-
ware design. Furthermore, simulating multiple autonomous vehicles, often termed
“multi-vehicle simulation,” provides valuable information on coordination algorithms
and infrastructure requirements. Within the AV sector, simulation frameworks are
closely integrated with three fundamental methodologies: Model-in-the-Loop (MIL),
Software-in-the-Loop (SIL), and Hardware-in-the-Loop (HIL). These methodologies
form a progression of testing stages, each leveraging simulation in distinct ways to
ensure system reliability and performance before deploying physical prototypes on
actual roads.

Model-in-the-Loop (MIL) In MIL testing, developers evaluate mathematical
models or algorithmic representations of an AV’s components within a simulated en-
vironment. The “loop” here refers to the closed feedback loop between the simulated
plant and the control logic. This is usually performed at an early stage of develop-
ment when the system’s structure is still fluid, allowing for rapid iterations. An au-
tonomous emergency braking algorithm can first be modeled in MATLAB/Simulink
and tested against a virtual car-following scenario. By observing responses to differ-
ent vehicle speeds and braking profiles, researchers can refine their model parameters
and validate feasibility before committing to concrete software or hardware.

Software-in-the-Loop (SIL) SIL testing marks the transitions from purely
model-based representations to the actual software code intended for deployment
in the AV. The control algorithms, perception modules, and decision-making logic
would be run on a host computer, while the environment such as vehicle dynamics,
sensors, and roadway remains simulated. This allows one to check for real-time
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performance issues and software bugs under controlled but realistic conditions. One
of the primary advantages of SIL is its ability to replicate complex, dynamic driv-
ing scenarios within a controlled setting [33]. For instance, an autonomous driving
system designed for urban navigation might face numerous challenges such as un-
predictable pedestrian movement, variable traffic signals, and interacting vehicles.

Hardware-in-the-Loop (HIL) HIL testing integrates real hardware compo-
nents—such as Electronic Control Units (ECUs), sensors, and actuators—into a
simulated environment. In this setup, the physical hardware interacts directly with
a virtual vehicle and its surroundings, effectively closing the loop between real-world
inputs and simulated outputs. This method allows for comprehensive validation, not
only of the software’s performance but also of the behavior, reliability, and inter-
action of physical components under a wide range of operating conditions. A real
steering actuator or braking mechanism can be connected to a high-fidelity driving
simulator [34]. The simulator provides inputs that mimic road interactions, while
the hardware responds in real time. Any discrepancies or latencies in hardware re-
sponses are detected early, allowing engineers to calibrate the system before road
testing.

1.5 Advances in Autonomous Driving Simulators

Modern simulators employ sophisticated rendering engines and physics models to
replicate real-world scenarios, from road geometry to environmental conditions.
They also provide collaborative research, as many of these platforms are open-source,
allowing academic institutions and industry stakeholders to contribute new features
and modules. Among the most prominent CARLA, Sim4CV, and LGSVL (also
known as SVL Simulator) can be named [35]. These platforms serve as powerful
virtual environments where perception, planning, and control algorithms can be
iterated rapidly and at scale.

1.5.1 CARLA

CARLA (Car Learning to Act) is an open-source simulator developed specifically
for autonomous driving research. Built on the Unreal Engine, CARLA emphasizes
high-fidelity rendering, realistic vehicle dynamics, and comprehensive sensor sim-
ulation [36]. Its open-source nature encourages community involvement, fostering
continuous improvements and the addition of custom features. Researchers utilize
CARLA to design numerous driving scenarios—ranging from urban intersections
to suburban roads—each populated with pedestrians, other vehicles, and environ-
mental factors such as changing weather. CARLA’s extensibility is further demon-
strated through its ability to integrate with external tools such as Python API and
Simulink, facilitating the development and validation of advanced perception, plan-
ning, and control algorithms. Additionally, the simulator supports multiple map
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environments, including complex urban layouts and highway scenarios, ensuring ro-
bust testing across diverse driving conditions [37]. CARLA adopts a structured
methodology emphasizing the following characteristics:

Figure 1.13: CARLA Simulator Environment

• Sensor Simulation and Data Generation CARLA provides high-fidelity sensor
simulations, emulating realistic sensor behavior, including RGB cameras, LiDAR,
radar, IMU, GNSS, and semantic segmentation cameras. These virtual sensors gen-
erate data with realistic noise characteristics, occlusions, reflections, and distortions
typically found in real-world conditions.

• Environment Creation and Scenario Design CARLA supports custom map
creation using tools like RoadRunner or Unreal Engine Editor, allowing researchers
to design specific test environments tailored to particular research objectives. Sce-
nario definition can be scripted through CARLA’s ScenarioRunner, enabling precise
reproduction and automation of driving situations such as pedestrian crossings, ve-
hicle merging maneuvers, or emergency braking scenarios.

• Integration with Control Systems and Machine Learning Models CARLA
seamlessly integrates with external control and planning algorithms via Python and
ROS interfaces. This interoperability enables researchers to directly test their au-
tonomous driving algorithms within the virtual environment without modifications,
facilitating rapid iterations.

• Open Source and Community-driven The open-source nature of CARLA
promotes community engagement, enabling the rapid exchange of knowledge and
continuous development of new features.
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1.5.2 Sim4CV

Sim4CV (Simulation for Computer Vision) is based on bridging the gap between
computer vision research and robotics or autonomous driving applications. The
methodology behind Sim4CV revolves around generating high-fidelity synthetic im-
ages using advanced computer graphics techniques [38]. These images provide a
rich dataset for training and evaluating machine learning models, bridging the gap
between synthetic data generation and real-world applicability by providing photo-
realistic virtual scenes enriched with precise, automatically generated annotations.
The main advantages of this simulator consist of the following:

Figure 1.14: SIM4CV Simulator common Computer Vision Applications

• Scene Creation Sim4CV uses advanced rendering engines (commonly Unreal
Engine or Unity) to create realistic urban and suburban environments, including
dynamic conditions like variable weather (rain, fog, night lighting), multiple vehicle
interactions, pedestrian movements, and complex infrastructure layouts.

• Data Integration with Machine Learning Pipelines The data generated
from Sim4CV seamlessly integrates into existing machine learning frameworks such
as TensorFlow, PyTorch, and Keras. Researchers can export data directly into
compatible formats, facilitating rapid model training, validation, and benchmarking
without needing additional preprocessing.

• Photorealistic Rendering Sim4CV employs advanced graphics engines (e.g.,
Unreal Engine, Unity) to ensure realistic appearance and lighting conditions that
closely approximate real-world visuals.
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1.5.3 LGSVL

The LGSVL Simulator is an advanced open-source simulation platform explicitly de-
signed for autonomous vehicle (AV) development and testing. Created initially by
LG Electronics and further supported by the AutonomouStuff and Open Robotics
community, LGSVL has rapidly become one of the leading simulation tools for au-
tonomous driving research, recognized widely for its realism, versatility, and ease
of integration with popular autonomous driving software stacks [39]. Built on the
Unity game engine, LGSVL excels in creating realistic and highly interactive virtual
environments that closely mimic real-world driving conditions, allowing developers
to perform thorough testing of perception, planning, and control algorithms in a safe,
efficient, and repeatable manner. The primary methodology behind LGSVL Simu-
lator revolves around providing a high-fidelity virtual environment that integrates
seamlessly with existing software frameworks:

Figure 1.15: LGSVL Simulator Environment

• Environment Generation and Realism LGSVL offers highly detailed urban,
suburban, and highway maps, often replicating real-world cities such as San Fran-
cisco, Sunnyvale, Seoul, and more. Accurate road geometries (intersections, high-
ways, roundabouts). Realistic traffic control features (traffic lights, road signs).
Dynamic traffic agents, pedestrians, cyclists, and other vehicles. Variable weather
and lighting conditions (rain, fog, day/night cycles).

• Scenario Creation and Control LGSVL provides flexible tools for scripting
diverse scenario configurations through Python APIs or the Web-based Scenario
Editor as well as control of dynamic elements, including pedestrian movements,
traffic densities, vehicle maneuvers, and traffic signal patterns. SIL testing in LGSVL
allows AV software modules—such as perception, localization, planning, and control
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algorithms—to run directly against simulated sensor data. This capability is vital
for testing software functionality, performance, and robustness in diverse virtual
environments without physical vehicles.

1.5.4 SCANeR Studio

SCANeR Studio is a comprehensive modular simulation platform developed by
AVSimulation, widely used across the automotive industry and academia for the
development, testing, and validation of autonomous driving systems and Advanced
Driver Assistance Systems. It provides high-fidelity simulation capabilities that
encompass vehicle dynamics, sensor simulation, real-time traffic behavior, and cus-
tomizable virtual environments. SCANeR Studio supports all development stages –
MIL, SIL, HIL, and Driver-in-the-Loop (DIL) – which makes it a powerful platform
for rapid prototyping and system validation under varied driving conditions.

The architecture of SCANeR Studio is modular, where components such as vehi-
cle models, sensors, scenario creation, environment rendering, and traffic generation
are decoupled and interconnected, enabling flexibility and scalability for multiple
use cases. Some of the key features that distinguish SCANeR Studio as a reliable
simulation platform are outlined below:

• Environment Generation and Realism
SCANeR Studio offers dynamic and highly customizable environments, including
highways, rural roads, and urban centers. The software provides detailed 3D envi-
ronments with customizable lighting, weather and road friction. It provides realis-
tic road infrastructure including signage, lane markings, traffic signals, and round-
abouts, as well as dynamic entities such as AI-driven vehicles, pedestrians, and
cyclists.

• Scenario Creation and Control
Users can design complex traffic scenarios using a visual scenario editor or scripting
languages such as Python. The platform supports:

• Scenario generation for ADAS features like AEB, ACC, LKA, and overtaking.

• Euro NCAP and NHTSA protocol testing templates.

• Real-time control of vehicles, pedestrians, and environmental conditions.

• Integration with external controllers via Simulink, Python, or ROS.

• Vehicle and Sensor Simulation
The simulation supports both kinematic and dynamic vehicle models with customiz-
able parameters for mass, tire behavior, suspension, and powertrain. Sensor simula-
tion includes high-fidelity LiDAR, radar, RGB/IR cameras, GPS, ultrasonic sensors,
and IMU.
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Figure 1.16: SCANeR Environment

Among the currently discussed simulators, Carla is a powerful simulation plat-
form that stands out for several clear reasons, making it an excellent choice for our
autonomous driving research. First, its highly realistic environments—with accu-
rate physics, detailed urban settings, and a variety of sensor models—closely mimic
real-world conditions. This means that experiments conducted in Carla yield results
that are both reliable and applicable to practical scenarios.

Moreover, Carla is open source, which fosters a thriving community of researchers
and developers who continuously enhance its features. This collaborative ecosystem
ensures that the platform stays current with the latest technological advances while
also providing robust support and resources for users. Another significant advantage
is its flexibility. Carla’s modular design and extensive API allow for easy customiza-
tion and integration with various machine learning tools, making it adaptable to a
wide range of research applications. Additionally, the platform enables consistent
and repeatable testing, which is essential for validating experiments and ensuring
reproducibility in our studies.

1.6 Thesis Outline

In the development of advanced control systems for autonomous vehicles, ensuring
a consistent interface between the high-level algorithms and the vehicle’s dynamic
response is of high importance. Modern testing environments, such as the CARLA
simulator, provide a virtual platform to precisely evaluate these control strategies
before real-world implementation.

This thesis aims to develop and validate a comprehensive framework that evalu-
ates control strategies for advanced driver assistance systems (ADAS), recognizing
that ADAS plays a pivotal role in enhancing vehicle safety and efficiency by automat-

19



Introduction

ing critical driving functions. At the core of this framework is a Nonlinear Model
Predictive Control (NMPC) algorithm developed within Simulink. NMPC stands
out for its ability to forecast and optimize control actions by considering future
vehicle states and environmental conditions, making it ideally suited for managing
the inherent nonlinearities of vehicle dynamics. Complementing this, the framework
leverages the CARLA simulator as a dynamic data source and implementation envi-
ronment. CARLA provides high-fidelity simulation of real-world driving scenarios,
ranging from typical highway conditions to complex urban settings, which supplies
the NMPC controller with realistic sensor data and environmental feedback. This
integration creates a closed-loop system where the NMPC in Simulink can be rigor-
ously tested and refined under a wide array of simulated conditions.

To enhance the interface between the control system and the CARLA simulator,
a specialized dispatching function was developed. This function serves as an inter-
mediary that converts the acceleration outputs generated by the control algorithms
into specific vehicle input commands, namely throttle and brake signals. The de-
sign of this function is grounded in vehicle data obtained directly from the CARLA
environment, ensuring that its responses accurately reflect the dynamic behavior of
the simulated vehicle. By bridging the gap between abstract control outputs and
concrete vehicle commands, this approach enables a more faithful and responsive
interaction between the control system and the virtual vehicle model.

Successful integration and optimization of this system aim to improve path track-
ing accuracy, enhance responsiveness to disturbances (like obstacles or sudden route
changes), and increase computational efficiency, enabling real-time operation. This
approach highlights the effectiveness and practicality of using MATLAB integrated
with CARLA for comprehensive autonomous vehicle testing and development.
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Chapter 2

Vehicle Models

2.1 Vehicle Dynamics

Vehicle dynamics are the fundamental of any driving system’s control strategy and
form the basis for understanding and predicting how a vehicle behaves under various
driving conditions. Kinematic models are the simplest form of vehicle dynamics
models, where they ignore the physical forces acting on a vehicle and instead describe
the motion based on geometric and velocity relationships [40]. These models are
particularly useful for low-speed maneuvering and basic path planning tasks, where
tire forces and inertia effects are negligible. Dynamic models however incorporate
physical forces such as tire forces, inertia, slip angles, and friction. These models are
more complex and accurate than kinematic models and are suitable for high-speed
driving scenarios, such as on highways or during aggressive maneuvers.

When it comes to modeling vehicle dynamics for control and simulation, different
methodologies can be adopted depending on the level of complexity required, the
nature of the task, and the availability of data. These modeling approaches are
generally categorized into white-box, black-box, and grey-box methodologies [41],
each representing a different philosophy in how a system’s behavior is represented.

White-box model, also referred to as a physics-based or first-principles model,
relies entirely on known physical laws, mechanical relationships, and mathematical
formulations derived from classical mechanics. These models are constructed by
explicitly defining equations that describe how the vehicle responds to inputs like
steering, throttle, and braking. Parameters such as mass, wheelbase, center of grav-
ity, and tire stiffness are often either measured or estimated based on manufacturer
data or literature. White-box modeling offers a transparent, interpretable structure
and is especially suitable for controller design because it provides clear insights into
system dynamics and how they affect the vehicle’s behavior. Kinematic and dynamic
bicycle models, commonly used in path tracking and motion planning algorithms,
are good examples of this approach.

In contrast, Black-box modeling does not assume prior knowledge of the sys-
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tem’s internal structure. Instead, it focuses purely on observable input-output re-
lationships, using machine learning or statistical techniques to infer the system’s
behavior from data. These models are often employed when the physical processes
are too complex to model accurately or when the vehicle operates in unstructured
or highly variable environments. Neural networks, support vector machines, and
regression trees are examples of black-box modeling tools frequently used in au-
tonomous driving applications, especially in data-driven motion planning or end-to-
end learning systems. The strength of black-box modeling lies in its flexibility and
capacity to approximate highly nonlinear behaviors, though it comes at the cost of
interpretability and often requires large datasets for training and validation.

Figure 2.1: White/Black Box Concept

Between these two extremes lies grey-box modeling, a hybrid approach that
blends the structure of physics-based models with the flexibility of data-driven re-
finement. In grey-box modeling, a base model is typically built using physical laws,
but certain parameters or subsystems are calibrated or learned from data to enhance
accuracy. For instance, a developer might start with a dynamic bicycle model but
tune tire stiffness coefficients based on real driving data to better capture cornering
behavior under specific conditions. This method provides a balance: it maintains
interpretability while allowing the model to adapt to real-world variability, making
it especially valuable in practical applications where partial system knowledge is
available, but empirical adjustment is necessary.

Another important distinction in modeling approaches relates to the linearity of
the system. Linear models are often derived by linearizing a nonlinear system around
a fixed operating point, such as driving at a constant speed or along a specific path.
These are favored for their simplicity and suitability for classical control techniques
like PID or Linear Quadratic Regulator (LQR) [42]. However, their validity is limited
to small deviations from the linearization point. In more dynamic or aggressive
scenarios, such as overtaking, sharp cornering, or variable speed driving, nonlinear
models are required to accurately reflect the system’s behavior. Nonlinear modeling,
although more complex, enables the use of advanced control strategies like Nonlinear
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Model Predictive Control, which dynamically adapts to changing vehicle states and
road conditions in real time.

Having discussed both kinematic and dynamic vehicle models, as the underlying
methodologies used in their formulation, it becomes evident that the selection of a
vehicle model for control design is not only a matter of physical accuracy but also
an alignment with the goals and constraints of the application. Kinematic models,
while computationally efficient and simple to implement, lack the ability to capture
essential dynamic phenomena such as lateral slip, yaw inertia, and tire force satu-
ration; the factors that become increasingly important in high-speed or aggressive
maneuvers, such as in highway driving, overtaking, or sharp turning. On the other
hand, dynamic models offer a richer representation of vehicle behavior but demand
careful parameter identification and an appropriate modeling philosophy. Hence in
this work, we adopt a white-box modeling approach by employing a Dynamic Bi-
cycle Model as the predictive model within a Nonlinear Model Predictive Control
framework. This choice is motivated by the need to balance physical fidelity and
computational tractability.

2.2 Single-Track Model

The single-track model typically assumes that the vehicle is simplified as having two
wheels—one at the front and one at the rear—aligned along a central imaginary line
[43]. It considers only planar motion, focusing on lateral (sideways) movements and
yaw (rotational motion around a vertical axis), while neglecting vertical dynamics
such as roll, pitch, and suspension effects. The vehicle is modeled as a rigid body
with a fixed geometry, disregarding any deformation or suspension dynamics. Addi-
tionally, the single-track model often simplifies longitudinal dynamics by assuming
a constant velocity or using basic acceleration models. Tire behavior is usually rep-
resented through simplified linear models with small-slip angles, though nonlinear
tire models can also be integrated when required [44].
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Figure 2.2: Bicycle Model

The Dynamic Bicycle Model is a physically meaningful representation of a ve-
hicle’s motion that captures the core lateral and longitudinal dynamics necessary
for accurate path following, especially at medium to high speeds. The state of the
system usually includes the vehicle’s global position (x, y), heading angle ψ, longi-
tudinal velocity vx, lateral velocity vy, and yaw rate r.

Figure 2.3: Bicycle Model Detailed View

The dynamic bicycle model uses Newton’s second law in the lateral and yaw
domains [45]. The vehicle states evolve according to the following equations:
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ẋ = vx cos(ψ)− vy sin(ψ) (2.1)

Global x-position rate: The vehicle’s forward velocity projected
along the x-axis of the global frame, accounting for the heading an-
gle ψ.

ẏ = vx sin(ψ) + vy cos(ψ) (2.2)

Global y-position rate: Similar to the x-position, this represents the
motion in the y-direction in the global frame.

v̇y =
1

m
(Fyf + Fyr)− vxr (2.3)

Lateral acceleration: This equation models the vehicle’s lateral mo-
tion. The total lateral force is the sum of front and rear lateral tire
forces, which are divided by the mass m. The term vxr represents the
centripetal acceleration.

ṙ =
1

Iz
(LfFyf − LrFyr) (2.4)

Yaw acceleration: This describes the rotational motion of the vehicle.
It calculates the yaw moment from the moment arms Lf and Lr and
the lateral forces, scaled by the yaw inertia Iz.

ψ̇ = r (2.5)

Heading angle rate: The heading angle changes at a rate equal to
the yaw rate r.

The tire forces themselves are typically modeled as functions of the slip angles,
which represent the difference between the direction in which the tire is pointed and
the actual direction of travel. In a linear approximation (valid for small slip angles),
the tire forces can be expressed as:

Fyf = −Cαf αf , Fyr = −Cαr αr,

where Cαf and Cαr denote the cornering stiffness coefficients for the front and rear
tires, and αf and αr are the front and rear slip angles, respectively. These slip angles
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can be approximated by:

αf ≈ δ − arctan

(
v + Lf , r

u

)
, αr ≈ − arctan

(
v − Lr r

u

)
,

with δ representing the steering angle applied at the front wheels. In many practical
applications, the arctangent terms are linearized under the assumption of small
angles, which further simplifies the model.

These equations describe the vehicle’s lateral velocity (vy), yaw rate (r), and
global position (x, y), as well as its heading angle (ψ) as well as modelling the
evolution of the vehicle’s lateral motion, yaw rotation, and global position in the
inertial (world) frame. They form the basis of the dynamic bicycle model, widely
used in control-oriented applications such as Nonlinear Model Predictive Control
(NMPC).

From a control design perspective, the dynamic bicycle model is especially ad-
vantageous because:

• Essential vehicle behaviors: It includes lateral tire slip, oversteering/un-
dersteering dynamics, and stability margins—phenomena ignored in simpler
kinematic models.

• Balance between accuracy and efficiency: While more accurate than
kinematic models, it remains computationally light compared to high-fidelity
multibody or 3D models, making it suitable for real-time implementation in
NMPC loops.

• Analytically tractable: The model is nonlinear but structured, which makes
it compatible with direct transcription methods used in NMPC solvers.

After deriving the governing equations using Newton’s second law and linear
tire theory, we arrive at the following set of nonlinear differential equations, which
describe the complete state evolution of the system. These equations can be used
for control design, trajectory tracking, and vehicle simulation as follows: The state
vector is defined as:

x =


X
Y
ψ
Vx
Vy
ωψ

 and the input vector as: u =

[
ax
δ

]
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Ẋ = Vx cosψ − Vy sinψ

Ẏ = Vx sinψ + Vy cosψ

ψ̇ = ωψ

V̇x = Vyωψ + ax

V̇y = −Vxωψ +
2

m
(Fyf + Fyr)

ω̇ψ =
2

J
(lfFyf − lrFyr)

The lateral tire forces are computed using the linear tire model:

Fyf = −Cfαf Fyr = −Crαr

where the slip angles are given by:

αf = δ − Vy + lfωψ
Vx

αr = −Vy − lrωψ
Vx

Variable Description

X, Y Global position coordinates (in inertial frame)
ψ Yaw angle (heading)
Vx Longitudinal velocity (in vehicle frame)
Vy Lateral velocity (in vehicle frame)
ωψ Yaw rate (angular velocity around vertical axis)
ax Longitudinal acceleration input
δ Front wheel steering angle input
Fyf , Fyr Lateral tire forces (front and rear)
m Vehicle mass
J Yaw moment of inertia
lf , lr Distance from CG to front and rear axles
Cf , Cr Cornering stiffness of front and rear tires

However, the DST model does come with limitations. The assumptions of small
slip angles and identical behavior between left and right wheels may not hold under
extreme driving conditions, high lateral accelerations, or when tire nonlinearities
become significant [46]. In such cases, more complex models, such as the double-
track model that accounts for individual wheel dynamics and load transfers, might
be required for higher fidelity simulations.
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2.3 Path Planning and Control Strategies
Path planning is a key component in autonomous driving systems, responsible for
determining a feasible and optimal path that an autonomous vehicle can follow from
its initial position to a desired destination [47]. This process involves generating tra-
jectories while considering multiple factors, such as road conditions, traffic scenarios,
obstacles, vehicle dynamics, safety constraints, and passenger comfort.

In path planning, the vehicle continuously evaluates its surrounding environment
through data gathered from sensors, including radar, LiDAR, cameras, and GPS.
Based on this information, it predicts future states, identifies potential hazards, and
formulates an optimal route. This planning typically involves two main tasks: global
and local planning:

Global planning creates an overall route from the origin to the destination using
maps and navigation systems, while local planning makes real-time adjustments and
precise trajectory refinements to respond to immediate environmental conditions
and obstacles. Effective path planning ensures that the vehicle navigates safely and
efficiently, maintaining optimal trajectories for both comfort and safety. It also
integrates closely with control strategies, such as PID or NMPC, to execute precise
maneuvering and trajectory following [48]. The integration of these elements results
in reliable and adaptive autonomous driving capable of safely handling diverse and
dynamic driving conditions.

PID controllers are classical feedback control mechanisms that continuously cal-
culate the difference between a desired setpoint and the current state of the vehicle.
They then apply corrections based on proportional, integral, and derivative terms to
minimize this error over time. PID controllers are known for their simplicity, ease of
implementation, and computational efficiency [49]. However, they primarily react to
current errors without explicitly predicting future states or accounting extensively
for system constraints and nonlinear dynamics. As a result, their performance may
degrade in complex or highly dynamic driving scenarios. The basic principle behind
a PID controller is to continuously compute an error signal, e(t), and then adjust
the control input u(t) (for example, the steering angle) according to the following
law:

u(t) = Kp e(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
,

where:

• Kp is the proportional gain, which provides an output that is directly propor-
tional to the current error.

• Ki is the integral gain, which accounts for the accumulation of past errors and
helps eliminate steady-state error.

• Kd is the derivative gain, which predicts future error based on its current rate
of change, thereby enhancing the system’s stability and response.
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In a typical path planning application, the error e(t) is defined as the lateral
deviation of the vehicle from the reference path. In addition, a heading error may
also be incorporated to ensure that the vehicle not only converges to the path but also
aligns its orientation correctly. The PID controller computes a corrective steering
command that minimizes these errors over time.

The effectiveness of the PID approach in path planning relies on careful tuning
of the gains Kp, Ki, and Kd. Proper tuning ensures that the controller provides
a swift response to deviations without overshooting or inducing oscillations. This
tuning process can be accomplished through empirical methods, simulation-based
optimization, or more systematic techniques such as Ziegler–Nichols tuning.

One of the main advantages of using PID control for path planning is its sim-
plicity and low computational cost, making it suitable for real-time applications on
platforms with limited processing power [50]. However, its performance is inherently
linked to the linearity of the system; in highly nonlinear scenarios or when dealing
with large errors, the PID controller may require additional enhancements or gain
scheduling to maintain optimal performance.

In contrast, Nonlinear Model Predictive Control (NMPC) significantly enhances
autonomous driving performance by explicitly considering the vehicle’s nonlinear
dynamics and predicting future states and control actions. NMPC operates by
formulating and solving an optimization problem at each time step over a finite
time horizon, considering a prediction horizon that accounts for vehicle constraints,
road curvature, velocity, and potential obstacles [51]. This proactive approach allows
NMPC to anticipate future scenarios and optimize the control inputs accordingly.
NMPC explicitly considers the nonlinear dynamics of the vehicle and the constraints
that govern both state and input variables which makes it especially well-suited in
complex or dynamically changing environments. However, it involves greater [52]
computational complexity due to solving non-convex optimization problems.

The core principle of NMPC is the repeated solution of an optimal control prob-
lem at discrete time intervals. At each step, the current state of the vehicle is
measured or estimated, and the future evolution of the system is predicted over a
horizon of length N . A discrete-time representation of the vehicle model,

xk+1 = f
(
xk,uk

)
,

is used to capture the relationship between states and control inputs. The state
vector xk might include position, heading, velocities, and yaw rate, while the control
inputs uk typically include steering angle and longitudinal acceleration or throttle
commands.

A reference path or trajectory is defined in advance, often specified by a series
of waypoints or a continuous function that the vehicle must follow. The NMPC
controller then aims to minimize a cost function that measures tracking error relative
to this path, while also penalizing large or abrupt control inputs. A typical objective
function might include terms for lateral deviation, heading error, velocity tracking,
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and control effort:

J =
N−1∑
k=0

(
we e

2
k + wψ (ψk − ψref,k)

2 + wu∆u2
k

)
,

where ek is the lateral tracking error, ψk and ψref,k are the current and reference head-
ings, and ∆uk represents changes in control inputs. The weights we, wψ, and wu
determine the relative importance of path tracking accuracy versus control smooth-
ness.

An essential feature of NMPC is its ability to incorporate constraints directly
into the optimization. These constraints may reflect actuator limits (e.g., maximum
steering angle, acceleration, or braking), physical boundaries on velocity, or even
collision-avoidance requirements if the environment is known [53]. By embedding
these limits into the predictive model, NMPC ensures that all candidate solutions
remain within feasible operating bounds, thereby reducing the risk of unsafe ma-
neuvers.

Once the cost function and constraints are defined, a nonlinear optimization
solver is employed at each control step to find the optimal sequence of control inputs
over the horizon. Only the first set of inputs from this sequence is applied to the
vehicle. The horizon then shifts forward, and the process repeats at the next time
step. This receding-horizon approach allows the controller to continuously adapt
to new information, such as updated state estimates or changes in the reference
trajectory.

A key advantage of NMPC for path planning lies in its predictive capability.
By simulating how the vehicle will respond to control actions before they are ap-
plied, the controller can proactively adjust steering and acceleration to stay close
to the desired path [54]. This results in smoother trajectories and improved han-
dling, even under varying road or traffic conditions. However, this comes at the
cost of increased computational requirements, as the nonlinear optimization must
be solved in real time. Efficient numerical solvers and appropriate discretization
strategies—such as direct collocation or multiple shooting—are therefore critical for
practical implementations [47][55][56].
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Chapter 3

CARLA Simulator

3.1 CARLA Features and Architecture
The CARLA simulator is an open-source urban driving simulator designed to ad-
vance research in autonomous driving. It is actually based on a client-server archi-
tecture, wherein the server handles rendering and simulation tasks such as sensor
data generation, physics calculations, weather conditions and vehicle dynamics while
the client manages agent-related logic such as defining how the simulation evolves-
defining scenarios and implementing control algorithms-within the virtual environ-
ment. Communication between these components is facilitated through a Python
API to incorporate Python scripting into the simulation. This modular design allows
for experimentation and in-depth evaluation of different autonomous driving algo-
rithms within realistic traffic and environmental scenarios. Unreal Engine 4 (UE4)
serves as the fundamental rendering and physics platform for the CARLA simula-
tor, providing the real-time graphical and dynamic physical interactions required
for high-fidelity autonomous driving research, providing the groundwork for accu-
rate motion modeling, encompassing vehicle dynamics such as friction, collisions,
and inertial forces that mirror real-world scenarios.

Regarding the Configuration employed for the vehicles, it has to be noted that
CARLA employs a left-handed coordinate system with the z-axis pointing upward.
This configuration governs the representation of vehicle positions, orientations, and
the surrounding environment. Using Python API we can customize the virtual
environment and seamlessly extract simulation data. By running Python scripts
in parallel with the active simulation, one can instantiate autonomous vehicles,
configure the surrounding setting, and retrieve sensor outputs for further analysis.
This approach makes it possible to feed real-time data directly into lateral control
algorithms, thereby realizing a fully automated control loop. In doing so, one can
efficiently develop, test, and refine autonomous driving solutions within a reliable
simulation framework. The Pictures below present various snapshots of town10,
the main urban-structured map within the simulator. This environment features
both dense urban areas characterized by narrow streets, intersections as well and
also areas with multiple lanes along with different weather and daylight setting.
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Such diversity allows users evaluate the performance of their driving models and
algorithms under a wide range of urban scenarios and road conditions.

Figure 3.1: Carla Street View 1

Figure 3.2: Carla Street View 2
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Figure 3.3: Carla Street View 2-rainy weather

The main element of CARLA’s simulation framework is the World object, which
functions as an abstraction layer for overseeing the environment, spawning actors,
and adjusting simulation parameters such as weather conditions and traffic behavior.
Moreover, CARLA provides a Traffic Manager module to govern vehicle behavior
in autopilot mode, a high-level control system that dictates how AI-controlled ve-
hicles interact within the simulated environment. This would also enable users to
personalize traffic dynamics by fine-tuning factors like speed limits, and compliance
with traffic regulations. Users can also choose between deterministic traffic patterns,
where all vehicles follow strict rules, or stochastic behavior, where vehicles exhibit
variations in driving styles, introducing uncertainty into the simulation. Parameters
of blueprint vehicles are also specified by the client through the CARLA client API,
allowing for flexible configuration of each sensor’s 3D position, orientation relative
to the vehicle’s coordinate system, field of view (FOV), and sensing depth, and
generally favourable properties for each simulated vehicle. Additionally, CARLA
provides precise data on the locations and bounding boxes of all dynamic objects,
including pedestrians, bicycles, and other moving entities in the environment, a
feature essential for training and assessing different algorithms. In Figure 3.4, the
Traffic Manager architecture inside CARLA is shown. As explained above it acts as
an intermediary between the simulation state and the control logic, namely making
decisions for vehicles in autopilot mode. The Agent Lifecycle State Management
(ALSM) component continuously scans the environment to monitor the position,
velocity, and movement of all vehicles and pedestrians. In other words, it ensures
real-time updates of vehicle states while removing inactive entities from the registry
(an array of vehicles and pedestrians). The simulation state part is a cache store of
the position, velocity, and additional information of all the vehicles and pedestrians
in the simulation. We briefly explain the calculation strategy of movements of each
vehicle in the autopilot mode:
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Localization Vehicles plan their route dynamically using waypoints stored in
a simplified map grid. At intersections, paths are chosen randomly to simulate
real-world behavior.

Collision Detection Bounding boxes are placed along the vehicle’s trajectory
to detect and avoid potential crashes.

Traffic Light Handling Vehicles obey stop signs, junction priority rules, and
traffic signals based on their position in the environment.

Motion Planning The vehicle’s speed and direction are determined using a
PID controller, ensuring smooth and efficient movement.

Vehicle Lights Control Headlights, brake lights, and turn signals are acti-
vated based on environmental conditions (e.g., rain, fog) and driving behavior (e.g.,
braking, turning). Therefore, the generated commands are aggregated into a com-
mand array and transmitted to the CARLA server as a batch, ensuring synchronized
execution within the same simulation frame for consistent vehicle behavior.

Figure 3.4: Traffic Manager Architecture (courtesy of CARLA)

3.2 Anaconda Interface
Anaconda features a structured environment for running CARLA simulations, en-
suring that all required dependencies are installed and managed without conflicts.
By leveraging Anaconda, one can establish virtual environments tailored to CARLA,
simplifying the process of handling multiple Python versions and associated pack-
ages. This approach basically reduces compatibility issues and supports integration
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with CARLA’s Python API. Additionally, Anaconda includes development tools
such as Spyder and Jupyter Notebook, which streamline the workflow for writing,
testing, and debugging simulation scrips.

Figure 3.5: Integration Environment of Carla and Python using Anaconda

Hence for a proper interaction between Anaconda, Python, and CARLA an Ana-
conda virtual environment is created and configured with the appropriate Python
version and necessary dependencies. Subsequently, the CARLA Python API is in-
tegrated into this environment, enabling communication with the CARLA server.
Once this setup is complete, one can utilize Python scripts to control vehicles, pro-
cess sensor outputs, and model complex driving scenarios. The following are the cor-
responding versions of software and libraries used in this project making of python
and CARLA integrated, allowing direct control of the simulation environment:

- CARLA Installation (Version 0.9.14)

- Python version 3.7

- Python libraries: carla, pygame, numpy, opencv

Once these steps are completed, Python and CARLA become integrated, allow-
ing direct control of the simulation environment. As such we can establish multiple
virtual environments dedicated to CARLA, enabling parallel development and test-
ing of different configurations or dependencies without the risk of library conflicts.

It is important to note that Pygame serves as the foundational framework for
CARLA’s graphical interface and its basic functionality. It is actually a Python-
based library and widely used for rendering 2D graphics, handling events, and man-
aging user interactions which makes it a suitable choice for CARLA’s visualization
and interaction components. Therefore it is used to create a display window for the
simulation. This window can show live camera feeds from the simulated sensors, such
as front-facing cameras or LiDAR visualizations, and also includes a heads-up display
(HUD) that presents critical information like speed, location, and simulation frame
rate. This visual interface is essential for users to observe the simulation in real time
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and assess the performance of different control algorithms. By employing Pygame’s
event-driven framework, CARLA can efficiently handle both user-generated events
and system-generated updates. This ensures that the simulation remains respon-
sive, allowing real-time adjustments to the simulation parameters and control inputs,
which is especially valuable when evaluating autonomous driving algorithms such as
PID controllers or NMPC. Below is an example of the CARLA interface, showcasing
real-time sensor data and vehicle information displayed within the simulation:

Figure 3.6: CARLA Simulation Interface using Pygame

As shown in Figure 3.6 various sensors are displayed in the default mode to pro-
vide real-time feedback on the vehicle’s perception of its surroundings. the sensors
can be selectively specified sensors based on user preference. As an example, below
a snippet of activating these sensors are provided:

1 import carla
2

3 client = carla.Client(’localhost ’, 2000)
4 world = client.get_world ()
5

6 blueprint_library = world.get_blueprint_library ()
7 vehicle_bp = blueprint_library.filter(’vehicle.model3 ’)[0]
8 spawn_point = world.get_map ().get_spawn_points ()[0]
9 vehicle = world.spawn_actor(vehicle_bp , spawn_point)

10

11 camera_bp = blueprint_library.find(’sensor.camera.rgb’)
12 lidar_bp = blueprint_library.find(’sensor.lidar.ray_cast ’)
13

14 camera_transform = carla.Transform(carla.Location(x, z))
15 camera = world.spawn_actor(camera_bp , camera_transform , attach_to=

vehicle)
16
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17 lidar_transform = carla.Transform(carla.Location(x=0, z=2.5))
18 lidar = world.spawn_actor(lidar_bp , lidar_transform , attach_to=

vehicle)
19

20 sensors = [camera , lidar]

Listing 3.1: World and Sensor Definition

3.3 Carla Autonomous mode
CARLA simulator features a built-in autonomous driving mode, known as CARLA
Autopilot, which employs a rule-based control approach. This mode is designed
primarily for autonomous trajectory following. The methodology of the controller
is Proportional-Integral-Derivative (PID) control strategy to autonomously drive a
vehicle along a predefined or dynamically computed reference trajectory. The PID
controller in CARLA consists of two main parts:

Longitudinal Controller (Speed Control) manages the speed of the vehicle,
maintaining or adjusting it according to a predefined reference speed. Using PID
calculations, the controller adjusts throttle and braking signals to minimize the error
which is defined as the difference between the target speed (reference velocity) and
the actual vehicle speed. Accordingly, this part of the controller ensures smooth
acceleration and braking, aiming for minimal overshoot and steady cruising speeds.

Lateral Controller (Steering Control) controls the steering to ensure the
vehicle closely tracks the desired trajectory, primarily by managing the steering angle
in order to correct deviations promptly and smoothly. Similar to the longitudinal
controller, the integral and derivative terms in this case correct accumulated offsets
and dampen steering responses, respectively.

This implemented controller inside CARLA simulator offers a straightforward
solution for vehicle trajectory tracking and is suitable for controlled scenarios. How-
ever, it can sometimes be less reliable and more prone to errors compared to advanced
methods like Nonlinear Model Predictive Control for several reasons. Firstly, it does
not anticipate future states or situations, which are frequently encountered in real
environments. Additionally, it may struggle during complex maneuvers involving
lane changes, sudden obstacle avoidance, sharp turns, or changing road conditions.
Finally, it is highly sensitive to tuning parameters of the PID gains. In other words,
parameters tuned for one scenario may not be generalized well to other scenarios. In
contrast, NMPC can explicitly account for such disturbances within its predictive
model, offering improved robustness to real conditions and environment in reality.
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3.4 Carla and MATLAB Integration
The integration between Simulink and CARLA is essential for developing, testing,
and validating autonomous vehicle control strategies in a high-fidelity simulation
environment.

Figure 3.7: CARLA Matlab Interface using Python

This connection is facilitated through MATLAB’s Function block, which acts as
an interface for data exchange between Simulink and CARLA’s Python API. By
establishing a real-time communication link, Simulink can control the ego vehicle
within CARLA while simultaneously receiving feedback on its motion, allowing for
closed-loop trajectory tracking and controller evaluation. To be more exact, this
connection allows access to the CARLA world and manipulation of simulation pa-
rameters.

Looking at the schema below, inputs and outputs to the corresponding Block,
it ensures a continuous exchange of data between the controller and the simulation
environment; Simulink sends control commands (throttle, brake, and steering angle)
to CARLA, while CARLA returns vehicle state feedback (position, velocity, yaw)
to Simulink.

1 classdef Carla_enviroment_nmpc < matlab.System
2 % Carla Enviroment for Lateral Control
3

4 % Public , tunable properties
5 properties
6 steeringangle_input =0;
7 throttle_input = 0;
8 brake_input = 0;
9 end

10

11 properties(DiscreteState)
12

13 end
14

15 % Pre -computed constants
16 properties(Access = private)

38



CARLA Simulator

17 car;
18 end
19

20 methods(Access = protected)
21 function setupImpl(obj)
22 % Perform one -time calculations , such as computing

constants
23 port = int16 (2000);
24 client = py.carla.Client(’localhost ’, port);
25 client.set_timeout (10.0);
26 world = client.get_world ();
27 %edited_11_March
28 blueprint_library = world.get_blueprint_library ();
29 % cup_car = py.list(blueprint_library.filter ("

charger_police "));
30 % static_object = cup_car {1};
31 spawn_points = world.get_map ().get_spawn_points () ;
32 % spawn_location2 = spawn_points {303};
33 % spawn_location2.location.x = 180.43829345703125;
34 % spawn_location2.location.y = 39.93829345703125;
35 % spawn_location2.rotation.yaw = -45;
36 % static_car = world.spawn_actor(static_object ,

spawn_location2);
37

38 % control2 = py.carla.VehicleControl(throttle = 0,
steer = 0, brake = 1, hand_brake = True);

39 % control2 = py.carla.VehicleControl(throttle = 0, steer
= 0, brake = 1);

40 % control2 = static_car.get_control ();
41 % control2.brake = 1;
42 % static_car.apply_control(control2);
43

44

45

46 % Spawn Vehicle
47

48 car_list = py.list(blueprint_library.filter ("leon"));
49 car_bp = car_list {1};
50 %spawn_point = py.random.choice(world.get_map ().

get_spawn_points ());
51

52 % spawn_point = world.get_map ().get_spawn_points ();
53 % spawn_location = spawn_point {8};
54

55

56 %%% Spawn_point transformasyon matrisini o l u t u r
s o n r a s n d a

57 %%% i s t e d i i n konum d e e r l e r i manual olarak d e i t i r
58 spawn_location = spawn_points {303}
59 spawn_location.location.x = 50.33776092529297
60 spawn_location.location.y = 37.75230407714844;
61 %spawn_point.location.z = 0.6;
62 spawn_location.rotation.yaw = 0.017;
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63

64 obj.car = world.spawn_actor(car_bp , spawn_location); %%
spawn the car

65 %obj.car.set_autopilot(false)
66

67

68 end
69

70 function [ze ,x_acceleration] = stepImpl(obj ,
steeringangle_input ,throttle_input ,brake_input)

71 %
72 % pause (0.0001);
73

74 vehicle_transform = obj.car.get_transform ();
75 orientation = vehicle_transform.rotation;
76

77 x_position = obj.car.get_location ().x;
78 y_position = obj.car.get_location ().y;
79 x_velocity = obj.car.get_velocity ().x;
80 y_velocity = obj.car.get_velocity ().y;
81 w = obj.car.get_angular_velocity ().z*pi/180;
82

83 x_acceleration = obj.car.get_acceleration ().x;
84

85 % Simulink ’ten gelen steering angle d e e r i n i carla a r a c n a
uygula

86 control = obj.car.get_control ();
87 control.steer = rad2deg(steeringangle_input)/70;
88 % control.steer = 0;
89 % acceleration_input = (( acceleration_input +10) *2/13) -1;
90 % % E e r accelaration_input s f r d a n k k s e , fren yap
91 % if acceleration_input < 0
92 % % Control.brake d e e r i n i 0 ile -acceleration_input a r a s n d a

olacak ekilde ayarla
93 % control.brake = abs(acceleration_input);
94 % control.throttle = 0; % E e r fren ya p yor sa k , throttle ’

s f r a ayarla
95 % else
96 % % E e r accelaration_input s f r d a n b y k s e , throttle yap
97 % % Control.throttle d e e r i n i 0 ile acceleration_input

a r a s n d a olacak ekilde ayarla
98 % control.throttle = acceleration_input;
99 % control.brake = 0; % E e r gaz ya p yo rs ak , freni s f r a

ayarla
100 % end
101 control.throttle = throttle_input;
102 control.brake = brake_input;
103 yaw_angle = double(deg2rad(orientation.yaw));
104 % yaw_now = yaw_angle;
105 % w = (yaw_angle - yaw_old)/0.3 + w_old; %% angular

velocity
106 % w_now=w;
107 ze = [x_position ,y_position ,yaw_angle ,x_velocity ,
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y_velocity ,w]’;
108

109 obj.car.apply_control(control);
110

111 end
112

113 function [distance ,x] = isOutputComplexImpl (~)
114 distance = false;
115 x=false;
116 end
117

118 function [distance ,x] = getOutputSizeImpl (~)
119 distance = [6 ,1];
120 x = [1,1];
121

122 end
123

124 function [distance ,x] = getOutputDataTypeImpl (~)
125 distance = ’double ’;
126 x=’double ’;
127

128 end
129

130 function [distance ,x] = isOutputFixedSizeImpl (~)
131 distance = true;
132 x=true;
133

134 end
135

136 function resetImpl (~)
137 % Initialize / reset discrete -state properties
138 end
139 end
140

141 methods(Access= public)
142 function delete(obj)
143 % Delete the car from the Carla world
144 if ~isempty(obj.car)
145 obj.car.destroy ();
146

147 end
148 end
149 end
150 end

Listing 3.2: Carla Environment NMPC Class

3.5 Data Gathering
Therefore, it is essential to obtain direct access to the vehicle’s data and access local-
ization features and data are first introduced, highlighting the distinction between
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the map frame and the vehicle frame (centered at the vehicle’s rear axle). By using
CARLA’s Python API methods, including get_location(), and get_transform(),
one can track both the X–Y coordinates of the vehicle blueprint in meters (particu-
larly relevant on flat terrain) and the yaw angle, which is critical for curved routes.

Additionally, dynamic vehicle parameters—such as lateral and longitudinal ve-
locities (in meters per second), as well as yaw rate—can be accessed using the
methods get_acceleration() and get_velocity().

Our objective here involves gathering data from the ego vehicle, which can be
operated both under CARLA’s autonomous mode via the traffic manager and Man-
ual mode by a human driver. This dataset is then imported into MATLAB for
analyzing vehicle dynamics and assessing the models. A high-fidelity driving setup
was utilized in order to capture the corresponding manual driving data. This con-
figuration, as shown in Figure 3.8, includes a Logitech G29 Driving Force steering
wheel and pedal set combined with a Sparco sport seat, available in the department
lab. This setup provided a realistic driving experience, allowing a human driver to
navigate simulated highway scenarios. By recording steering control inputs as well
as controlling the pedals (throttle and braking), we have collected data thorught
the simulation environment manually as a benchmark for evaluating human driving
behavior against both CARLA’s built-in autopilot and the implemented Nonlinear
Model Predictive Control (NMPC) system.

Figure 3.8: Manual Driving Setup
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An essential aspect of data collection in the simulation is the sampling rate,
which determines the time interval at which vehicle state information is recorded.
Selecting an appropriate sampling rate for balancing data accuracy and computa-
tional efficiency, based on the scenario chosen, would be crucial. Once the scenario
and ego vehicle are initialized based on predefined parameters, data recording is
performed throughout the simulation. The duration of the data collection process
is determined by the vehicle’s motion and the constraints given in the scenario. At
each time step, key vehicle state parameters are logged for subsequent analysis.

Below we present a brief snippet of our implementation to provide clearer in-
sight into the methods and logics employed. However, for further details regarding
the methodologies capturing data from the simulation, including additional Python
scripts and clarification, please refer to the Appendix A.

1

2 steering_data = []
3

4 location_data_x = []
5 location_data_y = []
6 location_data_z = []
7 velocity_data_x = []
8 velocity_data_y = []
9 angular_velocity = []

10 yaw_data = []
11 acceleration_data_x = []
12 acceleration_data_y = []
13 throttle_data = []
14 brake_data = []
15 steering = []
16

17 class World(object):
18 def __init__(self , carla_world , hud , actor_filter):
19 self.world = carla_world
20 self.hud = hud
21 self.player = None
22 self.collision_sensor = None
23 self.lane_invasion_sensor = None
24 self.gnss_sensor = None
25 self.camera_manager = None
26 self._weather_presets = find_weather_presets ()
27 self._weather_index = 0
28 self._actor_filter = actor_filter
29 self.restart ()
30 self.world.on_tick(hud.on_world_tick)
31

32 def get_state(self ,):
33

34

35 acceleration = self.player.get_acceleration ()
36 steer_value = self.player.get_control ().steer
37 throttle_value = self.player.get_control ().throttle
38 brake_value = self.player.get_control ().brake
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39 location = self.player.get_location ()
40 velocity = self.player.get_velocity ()
41 transform = self.player.get_transform ()
42 yaw = transform.rotation.yaw
43 yaw_rate = self.player.get_angular_velocity ().z
44 yaw_rate = yaw_rate * math.pi/180
45 yaw = yaw * math.pi/180

Listing 3.3: Manual Data Gathering
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Control Design Strategies

4.1 Overview of the project
In this thesis, the primary goal is to guide a vehicle along a predetermined trajectory
while optimizing key performance indicators, namely minimizing cross-track error
(the lateral deviation from the reference trajectory) and reducing heading error (the
angular discrepancy between the vehicle’s orientation and the desired heading). At
the same time, the system aims to maintain stability and ensure efficient driving
performance throughout the journey. Unlike simpler controllers, NMPC can in-
tegrate and manage the trade-offs between tracking precision and actuator effort
systematically.

4.2 Vehicle Model
In the dynamic single-track model, the motion of the vehicle is described using
quantities like longitudinal velocity, lateral velocity, yaw rate, and side-slip angle.
The inputs to the system are the steering angle and the longitudinal force, which are
directly related to the driver’s or controller’s commands. Tire forces are modeled
using simplified linear tire models, which relate the lateral forces to the slip angles
at the front and rear tires. In this study, this model serves as the internal prediction
model for the NMPC controller. Based on the current state of the vehicle — such
as its position, speed, and orientation — the controller uses the dynamic model to
simulate how the car would move in the next few steps if certain control inputs were
applied. It then selects the control actions that best keep the vehicle on the desired
path while respecting physical and safety constraints.

Among the various vehicle models available in the CARLA simulator, the SEAT
Leon has been selected for this study. The reason for this choice is that the SEAT
Leon represents a typical passenger vehicle in terms of size, dynamics, and perfor-
mance characteristics.

The SEAT Leon vehicle in the CARLA simulator is modeled using a set of phys-
ical parameters that influence its motion behavior. These parameters are accessed
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via the vehicle.get_physics_control() method and are used in the bicycle model
for our control and subsequent simulation. Figure 4.1 illustrates the vehicle model
employed in the simulation and control methodologies employed in this study. This
vehicle serves as the primary agent in the CARLA simulator of our experiment and
is equipped with the necessary sensors and dynamic properties to accurately test
and evaluate the performance of manual driving, autopilot, and NMPC controllers.

Parameter Value

Vehicle Mass, m 1318 kg

Yaw Moment of Inertia, J 2500 kg·m2

Distance to Front Axle, Lf 1.54 m

Distance to Rear Axle, Lr 1.51 m

Front Cornering Stiffness, Cf 15000 N/rad

Rear Cornering Stiffness, Cr 15000 N/rad

Table 4.1: Seat Leon Physical Parameters in CARLA

Figure 4.1: The Seat Leon used for the Simulation

4.3 NMPC Path Tracking
Nonlinear Model Predictive Control (NMPC) is a feedback control methodology
characterized by the on-line solution of moving-horizon optimal control problems
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(OCPs). At each control interval, NMPC predicts future system states over a finite
horizon using a nonlinear model of the process or plant, and it determines the
optimal control actions (e.g., steering angle, throttle, brake) by minimizing a cost
function subject to state and input constraints. This approach has gained significant
traction in various fields—including automotive, aerospace, chemical processes, and
robotics—due to its flexibility in handling both nonlinear dynamics and complex
constraints.

One of the core strengths of NMPC is its ability to manage systematically
the trade-off between performance and control effort while also respecting input/s-
tate/output constraints. Conceptually, NMPC is often viewed as a nonlinear, finite-
horizon version of the Linear Quadratic Regulator (LQR), offering a more general
framework for systems with pronounced nonlinearities. In automotive applications,
NMPC is particularly appealing due to the nonlinear dynamics of vehicles and the
need to incorporate safety-critical constraints such as road boundaries, obstacle
avoidance, and actuator limits. The predictive nature of NMPC allows it to ac-
count for future trajectory deviations and proactively adjust steering, throttle, and
braking commands.

The prediction model used in NMPC is the dynamic single-track model described
earlier. The system can be represented in a nonlinear discrete-time state-space form
as follows:

xk+1 = f(xk, uk)

where:

• xk ∈ Rn is the state vector at time step k,

• uk ∈ Rm is the control input vector,

• f(·) represents the nonlinear vehicle dynamics.

The state vector typically includes:

x =
[
X Y ψ v r β

]T
where X, Y are global positions, ψ is the yaw angle, v is the longitudinal velocity, r
is the yaw rate, and β is the side-slip angle.

The control input vector is defined as:

u =
[
δ a

]T
where δ is the steering angle and a is the longitudinal acceleration.

At each time step, NMPC solves the following constrained optimization problem:

min
u0,...,uN−1

N−1∑
k=0

[
(xk − xref

k )TQ(xk − xref
k ) + (uk − uref

k )TR(uk − uref
k )

]
+ (xN − xref

N )TQf (xN − xref
N )
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subject to:
xk+1 = f(xk, uk), k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , ∀k
x0 = xcurrent

where:

• N is the prediction horizon,

• Q,R,Qf are positive semi-definite weighting matrices,

• xref
k , u

ref
k are reference trajectories for state and control,

• X ,U define allowable bounds for states and controls.

In practice, the optimization problem is solved numerically at each time step
using nonlinear programming (NLP) solvers. The optimization yields the optimal
control input sequence, but only the first input is applied to the system. This process
is repeated at the next time step in a receding horizon fashion.

The control scheme operates in closed loop, with real-time feedback from the ve-
hicle’s current state, allowing it to handle disturbances and uncertainties effectively.
The prediction model is updated at each iteration using the dynamic single-track
equations discretized using methods such as Euler or Runge-Kutta integration.

In the formulation of Nonlinear Model Predictive Control (NMPC), both the
temporal discretization and the weighting of different components in the cost func-
tion play a central role in the behavior and performance of the controller.

The sampling time Ts refers to the time interval at which the control algorithm
is updated. At each step, the current state of the vehicle is measured, and an
optimization problem is solved to compute the optimal control input. A smaller
Ts allows for finer time resolution and better responsiveness to fast changes in the
vehicle state or environment. However, it also increases the computational load,
which may be critical in real-time implementations. The vehicle model used in the
NMPC framework is discretized according to Ts, affecting the accuracy and stability
of the numerical predictions.

The prediction horizon Tp defines how far into the future the controller predicts
the system’s behavior. It is related to the sampling time via the number of prediction
steps N as:

Tp = N · Ts
A longer prediction horizon enables the controller to anticipate upcoming events,

such as curves or obstacles, more effectively. However, this comes at the cost of
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increased computational complexity. In practice, a trade-off must be made between
long-term planning and real-time feasibility.

The NMPC controller minimizes a cost function that balances the objectives of
state tracking and control smoothness. The general form of the cost function is:

J =
N−1∑
k=0

[
(xk − xref

k )TQ(xk − xref
k ) + (uk − uref

k )TR(uk − uref
k )

]
+(xN−xref

N )TP (xN−xref
N )

Here:

• Q ∈ Rn×n is the state weighting matrix. It penalizes deviations of the vehicle’s
actual state from the reference trajectory. Higher values in Q indicate that
precise tracking is a priority.

• R ∈ Rm×m is the control input weighting matrix. It penalizes excessive or
abrupt control actions. Higher values in R result in smoother, more conserva-
tive control.

• P ∈ Rn×n is the terminal state weighting matrix. It encourages convergence
of the final predicted state to the desired reference.

Proper tuning of these matrices is critical. Emphasizing Q results in accurate
path following, while emphasizing R leads to comfortable, energy-efficient driving.
The terminal weight P , often chosen as the solution to the discrete-time Riccati
equation in the linearized case, enhances the controller’s long-term behavior and
ensures stability at the end of the prediction horizon.

The control section focuses on identifying appropriate parameter values for the
NMPC controller once the underlying vehicle model has been established. Accu-
rate tuning of these parameters is crucial for achieving the desired vehicle behavior
with optimal precision, stability, and responsiveness. For the NMPC method im-
plemented in this study, the initial control parameters were derived based solely on
the vehicle dynamics modeled in Simulink.

To establish a reliable reference for the controller, steering angle (δf ) and longi-
tudinal acceleration (ax) signals were collected from a manual driving session within
the Simulink environment. These reference trajectories allowed for preliminary tun-
ing of the NMPC parameters, such as the weighting matricesQ, R, and P , prediction
horizon, and input bounds. While the Simulink-based vehicle model closely resem-
bles the SEAT Leon model in CARLA, they are not identical due to differences in
underlying dynamics, friction models, and actuator behaviors.

Through comparative analysis, it became evident that better tuning results could
be obtained by integrating feedback from the CARLA simulator. This hybrid ap-
proach—tuning the controller in Simulink while validating it in CARLA—enabled
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more realistic parameter identification. It also revealed discrepancies between theo-
retical predictions and real-time simulation behavior, particularly during aggressive
maneuvers or curved path tracking.

When readjusting the parameters, the objective was to identify a configuration
that generalizes well across different simulation scenarios, including both straight
and curved highway paths. In addition to minimizing lateral and longitudinal track-
ing error, another key objective was to enable the vehicle to travel at higher average
speeds while remaining within safe limits for control effort and physical constraints.
This meant not only tuning the matrices but also ensuring that input constraints,
such as acceleration and steering bounds, were carefully selected based on CARLA’s
vehicle dynamics.

Ultimately, the NMPC parameters were iteratively optimized to balance three
main goals: high-fidelity path tracking, minimal control effort, and adaptability to
both ideal and non-ideal road geometries. This iterative loop between Simulink-
based tuning and CARLA-based validation proved essential in developing a con-
troller that performs reliably across diverse driving conditions.

The results are based on the following weighting matrices and parameters:

Table 4.2: NMPC Parameters and Weight Matrices

Parameter Value

Ts 0.05
Tp 3
n 6

Q 1000×

[
1 0

0 1

]

P 100×

[
1 0

0 1

]

R

[
0.1 0

0 1

]

4.4 NMPC Model in Simulink
The following figure 4.2 presents the Simulink implementation of the Nonlinear
Model Predictive Control (NMPC) framework, which is designed for autonomous
vehicle path tracking and maneuver execution. The model consists of interconnected
blocks that represent the various components of the control system, including the
vehicle dynamics, reference trajectory generation, NMPC controller, and feedback
loops.
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Figure 4.2: NMPC Simulink Model

The sim_in block provides the desired trajectory that the autonomous vehicle
aims to follow. This trajectory typically includes position, speed, or other relevant
reference signals necessary for trajectory tracking.

The reference generator block processes the input trajectory from sim_in and
transforms it into a suitable format for the NMPC controller. It outputs structured
reference data, typically positions and velocities, required for accurate path tracking.
In the next chapter we examine the reference trajectory block, which generates the
desired path for the vehicle and serves as a key input to the NMPC controller.

The tbp block translates the reference trajectory into actionable signals for the
NMPC controller. It generates key dynamic references such as longitudinal ac-
celeration (ax) and steering angle (δ) required to guide the predictive controller’s
decision-making.

The dispa block represents the Nonlinear Model Predictive Controller, which
computes the optimal control actions. It minimizes the tracking error between the
predicted vehicle states and the desired reference trajectory, considering vehicle
dynamics and constraints. Its outputs include throttle (th) and brake commands
(br).

The vehicle block simulates the vehicle’s physical behavior, taking throttle,
brake commands, and steering inputs (δf ) as inputs. It outputs the resultant vehicle
states (ze), reflecting realistic vehicle response to the control inputs. ze consists of
6 output variables: x, y, ψ (yaw), vx, vy, and r (yaw rate).

The feedback loops involving the ax and delta_f blocks capture real-time ve-
hicle states and provide continuous state updates to the NMPC controller. This
feedback mechanism ensures that the controller can adapt dynamically to the ac-
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tual performance of the vehicle.

4.5 Reference Generator
This function serves as a critical component within a closed-loop path tracking
control system. From a systems engineering point of view, its primary role is to
bridge the gap between the global reference trajectory (a pre-recorded or planned
path) and the local trajectory that the vehicle must track over a finite prediction
horizon. The Parameters used here are as follows:

Np (Prediction Horizon Length): Defines the number of future reference
points to extract. This parameter is directly tied to the preview horizon of the
control algorithm. A larger Np allows the vehicle to anticipate curves or obstacles
earlier but requires more computational effort and accurate vehicle modeling.

ref_tr (Reference Trajectory): A pre-defined set of waypoints, where each
row consists of the global x and y coordinates. This serves as the high-level route
that the vehicle should follow.

ze (Current Vehicle Pose): Contains the current x and y position of the
vehicle, as well as its heading angle (yaw). This is the real-time input from the
localization system or vehicle state estimator.

One of the fundamental tasks in trajectory following is aligning the vehicle’s
local frame with the global reference. The function achieves this by computing
the Euclidean distance between the current vehicle position and every point on the
reference path, using vector norms. This ensures that the most relevant point on
the path—i.e., the one closest to the vehicle—is identified.

This closest point acts as an anchor: the starting point from which future trajec-
tory points will be selected. The use of norm-based distance ensures independence
from coordinate system orientation, making the method robust and generalizable.

After identifying the closest point c, the function proceeds to extract a forward-
looking segment of the path that spans Np future waypoints. The use of the
linspace function ensures that evenly spaced samples are selected between the
current index and the future index (c+Np−1). This approach guarantees temporal
and spatial smoothness in the reference path, which helps in avoiding erratic control
actions caused by abrupt changes in trajectory curvature.

The parameter NS defines the resolution of this segment and allows for interpolation-
like sampling even in discretely spaced paths.

Creating the Reference Vector for the Controller

Once the relevant portion of the path is selected, the x and y coordinates are re-
shaped into a single column vector that serves as the control reference input. This
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format is particularly suitable for control blocks in Simulink that expect a vectorized
input.

The output reference vector enables the control algorithm to plan motion over
the short horizon using accurate predictions of where the vehicle should be at each
time step. Below is the detailed script of this implementation:

1

2 function [ref ,ref_pose] =ref_gen(Np,ref_tr ,ze)
3

4 N=size(ref_tr ,1);
5 pose=ze(1:3);
6

7 % Point of the reference trajectory closest to the vehicle.
8 dis=vecnorm(ref_tr (: ,1:2) ’-pose (1:2)*ones(1,N));
9 [~,c]=min(dis);

10 ref_pose=ref_tr(c,:) ’;
11

12 % Portion of the reference trajectory corresponding to
13 % the time interval [t t+Tp] at the speed vx_ref.
14 NS=50;
15 ir=round(linspace(c,c+Np -1,NS+1));
16 ref_XY0=ref_tr(ir(1:NS) ,1:2) ’;
17 ref=reshape(ref_XY0 ,2*NS ,1);

Listing 4.1: Reference Generator

4.6 Dispatching
In the context of control systems, "dispatching" refers to the systematic process of
allocating or converting one form of control command into another set of actuator-
specific commands. Fundamentally, it is about taking a generalized control out-
put—in our case, a longitudinal acceleration command and distributing it into ap-
propriate throttle and brake commands that the vehicle can physically execute.

The philosophy behind dispatching is rooted in the idea of resource and task
allocation. Just as a dispatcher in logistics or telecommunications directs resources
where they are most needed, a dispatching algorithm in vehicle control assigns the
correct actuation signals based on predefined criteria. These criteria are often es-
tablished from empirical reference data and reflect the vehicle’s dynamic capabilities
under various conditions.

In autonomous vehicle control systems, precise regulation of vehicle speed and
dynamics relies significantly on accurately managing the throttle (acceleration) and
braking inputs. To achieve this, a specialized dispatching function is employed to
translate desired acceleration inputs into actual throttle and brake commands. This
function ensures that acceleration and braking demands provided by path planners
or controllers are effectively converted into actionable commands that match the
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vehicle’s current gear, performance capabilities, and dynamic constraints. For in-
stance, a negative acceleration may not always require active braking; sometimes,
reducing the throttle is sufficient to achieve the desired deceleration. The process,
therefore, includes weighting mechanisms that decide which control input to priori-
tize, ensuring smooth and efficient vehicle operation.

1 function [th ,br]=dispa(p,ax)
2 %
3 % if ax >0
4 % th=ax/p(1);
5 % br=0;
6 % elseif ax>p(3) && ax <=0
7 % th=0;
8 % br=0;
9 % else

10 % th=0;
11 % br=-ax/p(2);
12 % end
13

14

15 if ax >0
16 th=ax/p(1);
17 br=0;
18 elseif ax>p(3) && ax <=0
19 th=0;
20 br=0;
21 else
22 th=0;
23 br=-ax/p(2);
24 end

Listing 4.2: Dispatching Function

4.7 Performance Metrics
To better understand the model’s performance, we rely on metrics that measure
how effectively the controller maintains the vehicle’s desired path and orientation
in the highway scenario. Two primary indicators, namely Cross-Track Error (CTE)
and Heading Error, which serve as key measures in evaluating autonomous driving
performance, are here being employed:

Cross-track error (CTE) measures the lateral displacement of the vehicle
from the desired path or lane centerline. In highway driving, maintaining low lat-
eral deviation is critical for safety, as excessive drift could lead to unintended lane
departures on adjacent lanes. The objective here is that NMPC, with its predictive
horizon and ability to account for various constraints, excels at minimizing CTE by
adjusting control inputs based on future states.

Heading error, on the other hand, quantifies the difference between the vehi-
cle’s current orientation and the reference heading. This index is especially relevant
when negotiating curves or merging into different lanes, where the accuracy of the
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vehicle’s directional alignment affects both the smoothness of transitions and lane-
keeping stability. An autonomous controller which exhibits low heading error can
demonstrate quick correction capabilities, ensuring the vehicle remains properly ori-
ented and reducing the likelihood of abrupt steering adjustments.

Simulink Function’s Script for Cross Track and Heading Error

1 function [e_ct ,e_h]= errors(ref_pose ,ze)
2

3 pose_f=ze(1:3);
4

5 % Wrap angles in the interval [0,2*pi]
6 ref_pose (3)=wrap_to_2pi(ref_pose (3));
7 pose_f (3)=wrap_to_2pi(pose_f (3));
8

9 % Cross -track error
10 d=ref_pose (1:2) -pose_f (1:2);
11 e_ct=d(2)*cos(ref_pose (3))-d(1)*sin(ref_pose (3));
12

13 % Heading error
14 e_h=wrap_to_pi(ref_pose (3)-pose_f (3));
15

16 end
17

18 %
--------------------------------------------------------------------------

19

20 function lambda = wrap_to_2pi(lambda)
21 % Wraps angle in radians to [0 2*pi]
22 % lambdaWrapped = wrapTo2Pi(LAMBDA) wraps angles in LAMBDA , in

radians ,
23 % to the interval [0 2*pi] such that zero maps to zero and 2*pi

maps
24 % to 2*pi. (In general , positive multiples of 2*pi map to 2*pi

and
25 % negative multiples of 2*pi map to zero.)
26 % See also wrapToPi , wrapTo180 , wrapTo360.
27 positiveInput = (lambda > 0);
28 lambda = mod(lambda , 2*pi);
29 lambda (( lambda == 0) & positiveInput) = 2*pi;
30 end
31

32 function lambda = wrap_to_pi(lambda)
33 % Wraps angle in radians to [-pi pi]
34 % lambdaWrapped = wrapToPi(LAMBDA) wraps angles in LAMBDA , in

radians ,
35 % to the interval [-pi pi] such that pi maps to pi and -pi maps

to
36 % -pi. (In general , odd , positive multiples of pi map to pi and

odd ,
37 % negative multiples of pi map to -pi.)
38 % See also wrapTo2Pi , wrapTo180 , wrapTo360.
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39 q = (lambda < -pi) | (pi < lambda);
40 lambda(q) = wrap_to_2pi(lambda(q) + pi) - pi;
41 end

Listing 4.3: Carla Environment NMPC Class
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Chapter 5

Simulation Results and Analysis

5.1 Path Tracking Results
To verify the effectiveness of our proposed method, simulation results were obtained
using the CARLA simulator. As the model verification has been implemented earlier
as the first step in the urban area, the subsequent validation step involves testing it
under highway conditions. This stage ensures that the system can effectively man-
age higher velocities and prolonged lane-keeping maneuvers, as well as respond to
demanding conditions identifying vehicles and other objects. After reviewing the
available highway routes in CARLA, we have selected MAP 04, as shown in Fig-
ure 5.1, which features a highway environment, allowing a clear observation of lateral
deviation and heading consistency across different paths. This selection ensures a
suitable test environment for evaluating our system’s performance.

Figure 5.1: Map Overview
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In this simulation, the autonomous vehicle (AV) is initially positioned in the
rightmost lane at a standstill (Figure 5.2), illustrated in Figure 5.3, with both ve-
locity and acceleration set to zero. Its orientation is aligned with the highway’s
longitudinal axis, establishing a standardized starting point for evaluating the sub-
sequent acceleration, trajectory tracking and its overall performance. The refer-
ence trajectory here was generated by capturing center line of the lane throught
the whole path, which provides a steady, predefined path for the vehicle to follow.
The primary objectives here are to validate the controller’s ability to track these
reference trajectories under nonlinear vehicle dynamics and constraints, emulating
realistic driving scenarios. In other words, observing the vehicle maintaining its sta-
bility while navigating highway curves and straight paths together with performing
smooth maneuvers.

Figure 5.2: Ego Vehicle View

Metrics serve a vital role in determining how effectively a control system adheres
to its intended trajectory. These quantitative indicators not only enable objec-
tive comparisons among various control algorithms but also facilitate systematic
enhancements aimed at improving overall safety, stability, and passenger comfort.
Here the performance is assessed through two main key metrics, namely cross-track
error (CTE) and heading error; CTE measures the vehicle’s lateral deviation from
the reference path, ensuring precision in lane-keeping, while heading error quanti-
fies angular mismatches in orientation for directional accuracy. These metrics offer
a comprehensive view of both lateral and angular control efficacy, complementing
a broader suite of data-driven evaluations. These two metrics hold particular rele-
vance on highways, where higher speeds and frequent lane transitions require precise
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Figure 5.3: Path Reference

lateral control to mitigate drift and ensure robust navigation.
Before initiating a turn or overtaking maneuver, the controller, by assessing the

conditions, applies a measured slowdown or acceleration if required, while executing
a fine-tunes steering, torque, and braking to minimize path deviations and ensure
stable lateral positioning. It is important that the vehicle transitions smoothly
changes, demonstrating a seamless progression from controlled deceleration or ac-
cceleration to steady travel. For overtaking however the vehicle gradually acceler-
ates and shifts lanes while maintaining safe lateral clearance, continuously adjusting
torque, braking, and steering to deliver a stable lane-change experience. Once the
overtake is completed, the vehicle realigns with its chosen lane and resumes its
steady cruising speed. More details are explained in the following section.

5.2 Scenario Definition and Results
The main goal of the following scenarios is to observe the vehicle maintaining its sta-
bility when navigating highway curves and straight paths in addition to performing
smooth maneuvers. Thereby we define two scenarios as the following:

5.2.1 Scenario 1: Highway Lane Keeping

In this scenario, the vehicle travels along a standard highway route without any over-
taking maneuver, maintaining a consistent speed and following the corresponding
lane. The primary objective is to evaluate the controller’s ability to manage high-
way conditions, including slight curves and transitions between straight segments,
without deviating from the defined path. As shown in 5.4, in this case before
initiating a turn, the controller applies a measured slowdown or if required, the ve-
hicle travels along a standard highway route, maintaining a consistent speed and
following the designated lane. The primary objective is to evaluate the controller’s
ability to manage routine highway driving conditions, including slight curves and
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transitions between straight segments, without deviating from the defined path, and
continuously adjusting torque, braking, and steering to deliver a stable lane-change
experience. More details are explained in the following section. The figure 5.4
provides a visualization of the path layout:

Figure 5.4: First Scenario Path

5.2.2 Scenario 2: Highway Overtaking

This scenario focuses on assessing the vehicle’s capacity to perform overtaking ma-
neuvers smoothly, therefore the focus shifts to evaluating the controller’s ability to
execute an overtaking maneuver within typical highway traffic conditions. The con-
troller identifies an appropriate gap in the adjacent lane, transitions into it while
adjusting speed and lateral positioning, and then returns to the original lane once
the maneuver is complete. This setup tests both the adaptability and responsive-
ness of the autonomous system under typical highway passing conditions. In simpler
terms, the controller, by assessesing the conditions, applies a measured acceleration
while executing a fine-tune steering, torque, and braking to minimize path deviations
from the trajectory and ensure stable lateral positioning. It is important that the
vehicle transitions smoothly, demonstrating a seamless progression from controlled
acceleration to steady travel. For more clarity, the figure 5.5 presented below shows
more detail of the path layout:
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Figure 5.5: Second Scenario Path

5.2.3 Highway Lane Keeping NMPC Results

Having described the scenarios and corresponding routes in detail, we now turn
to the assessment of the NMPC’s performance within the simulated environment.
Aligning our reference drive within a shared coordinate system enables a direct
comparison between the ideal driving path and the subsequent NMPC-controlled
path.

As shown in Figure 5.6, the NMPC-controlled vehicle’s trajectory aligns closely
with the reference path, indicating that the controller can effectively predict and
adjust for the required steering and speed inputs.

We analyze the route further in two distinct segments at a finer scale: the straight
path and the curved path; as shown in Figure 5.7 and Figure 5.8, minor devia-
tions from the reference path become apparent. Regarding the straight segment,
the model demonstrates stable lane-keeping and appropriate steering adjustments
throughout the segment, having small mismatches which reflect the inner complex-
ities of real-time control in an autonomous driving context, mainly the predictive
horizon and vehicle dynamics influence the controller’s capacity to align perfectly
with the reference trajectory. However, regarding the curved path, at the beginning,
it shows some trajectory errors due to the sudden change in lateral acceleration and
the vehicle inertia and thus the initial response lag of the control system. Specifi-
cally, the controller rapidly adjusts steering angles and speed to accommodate the
increased curvature, and these rapid adjustments inherently introduce transient de-
viations from the ideal trajectory.
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Figure 5.6: Trajectory Comparison Scenario 1
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Figure 5.7: Trajectory Comparison Scenario 1 Curved Path Detailed View
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Figure 5.8: Trajectory Comparison Scenario 1 Straight Path Detailed View

To achieve a quantitative assessment of the model’s performance, the metrics
previously explained, namely cross-track error and heading error are examined, and
the results are illustrated in the Figure 5.9 and the Figure 5.10, respectively.
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Figure 5.9: Cross Track Error Scenario 1
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Figure 5.10: Heading Error Scenario 1

As it was obvious through the trajectory figures above, at the beginning of the
maneuver, both cross-track and heading errors are higher, indicating an initial tran-
sient state, typically caused by the vehicle’s adjustment to the changing trajectory,
inertia effects, and the controller’s initial predictive response lag. As the vehicle
progresses along the curve, the predictive part of NMPC allows it to anticipate
and correct these initial errors, indicating improved lane adherence as the maneu-
ver progresses. Over the next steps, feedback control incrementally reduces these
inaccuracies by refining steering and throttle-brake inputs, realigning its orienta-
tion with the reference direction. Also two statistical indicators, namely Root Mean
Square (RMS) and Maximum (Max) error values are here employed, providing better
accuracy rate of the model’s performance:

Root Mean Square reflects how closely and smoothly the vehicle complies
to the reference trajectory throughout the scenario. A lower RMS value indicates
better tracking performance as well as smoother maneuvers and greater stability

Maximum Error represents the largest deviation observed during the test.
This metric highlights potential worst-case scenarios, revealing how the controller
handles the most challenging conditions, such as sharp curves or rapid transitions.
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RMS Value [m] MAX Value Error [m]

Cross Track Error 0.087 0.252

Heading Error 0.006 0.023

Table 5.1: NMPC Performance Scenario 1

5.2.4 Highway Overtaking NMPC Results

In this scenario, the vehicle follows the same highway route as in scenario 1, but the
simulation now incorporates three overtaking maneuvers along with sharper turns,
with the aim of challenging the model by introducing rapid changes in steering an-
gle and acceleration variations, thereby testing its response under more demanding
driving conditions. At first look in Figure 5.12, it is apparent that even with the
added complexity of the route, the vehicle’s behaviour is quite reliable, support-
ing the notion that the NMPC model here is capable of balancing aggressive and
abrupt maneuvers with precise tracking path, ensuring the reliability of the model.

In the following, as the first scenario, a detailed graphical overlay of the ac-

Figure 5.11: Ego Vehicle View

tual and reference trajectory. Looking at the figure 5.13, the inclusion of sharper
turns regarding overtaking maneuvers introduces additional challenges, such as rapid
changes in steering angle. However the close alignment between the two trajecto-
ries, as suggested by the figure, implies that the control system effectively manages
rapid changes. Here we also quantify the performance of the NMPC for the chosen
path using numerical error metrics, including cross-track error, heading error, and
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Figure 5.12: Trajectory Comparison Scenario 2
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Figure 5.13: Trajectory Comparison Scenario 2 Curved Path Detailed View
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their associated RMS and maximum values. The initial rises while performing the
overtaking can be explained by the vehicle’s sudden lateral adjustment to follow the
curved path, the inertia effects inherent in its dynamics, and the brief delay in the
NMPC’s predictive response, which also delays a little the immediate realignment
with the reference trajectory. This delay creates a temporary deviation, which is
apparent as an increased cross-track error. For the same reason, transient peaks in
heading error may occur during abrupt maneuvers, such as during sharp turns and
lane changes, where the vehicle quickly adjusts its direction itself.
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Figure 5.14: Cross Track Error Scenario 2
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Figure 5.15: Heading Error Scenario 2

Although transient deviations here are evident during sharp turns, these vari-
ations are not significant when evaluated against the quantitative measure of fluc-
tuations shown in Table 5.6, namely the RMS and maximum error values remain
sufficiently low, indicating that the model maintains an acceptable level of tracking
accuracy.

RMS Value [m] MAX Value Error [m]

Cross Track Error 0.243 0.512

Heading Error 0.048 0.098

Table 5.2: NMPC Performance Scenario 2

5.2.5 Manual Driving mode

An alternative perspective is to perform the scenarios above in a manual driving
mode, demonstrating it as a way to capture real-world human behavior within the
virtual environment. By doing so, having a human driver to control the vehicle’s
steering and pedals, we gain insight into how a driver naturally adjusts speed and
maintains lateral positioning. This real-time data provides a baseline of typical
human performance. With this reference, we can later compare the automated con-
troller’s capabilities, determining how closely it mirrors or even surpasses a driver’s
intuitive handling of the route. Analyzing the CTE data generated during these
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manual driving sessions provides a realistic baseline for lateral deviations experi-
enced under human-controlled conditions. This empirical reference allows us to
directly compare the performance of our NMPC model with the responsiveness of
human drivers in terms of precision and stability, as well as quantifying the extent to
which human reaction times and control inconsistencies contribute to lateral devia-
tions. In the following the results of the simulations for the first and second scenario
are shown in 1 and 2, respectively.
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Figure 5.16: Manual Driving Mode Cross Track Error Scenario 1
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Figure 5.17: Manual Driving Heading Error Scenario 1

Here is the analysis of errors for the first scenario:

RMS Value [m] MAX Value Error [m]

Cross Track Error 0.143 0.264

Heading Error 4.32e-3 11.1e-3

Table 5.3: Manual Driving Performance Scenario 1
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Figure 5.18: Manual Driving Mode Cross Track Error Scenario 2
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Figure 5.19: Manual Driving Mode Heading Error Scenario 2

For the second scenario the numeric values of the errors are as the following:
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RMS Value [m] MAX Value Error [m]

Cross Track Error 0.384 0.612

Heading Error 0.048 0.098

Table 5.4: Manual Driving Performance Scenario 2

5.2.6 Carla Autonomous Driving

The CARLA’s autopilot mode as explained previously in chapter 3, is here em-
ployed as an established benchmark for subsequent comparative analyses as this
mode also offers predictable behavior under diverse driving conditions in addition
to the reason that autopilot mode is well-suited to the highway setting, where con-
tinuous pathways and defined lane structures allow the system to demonstrate its
precision in trajectory trackinga. This PID controller continuously receives feed-
back on the vehicle’s position relative to the desired trajectory and calculates the
necessary steering commands by combining the effects of the proportional, integral,
and derivative terms. In the following, we present the evaluation of the autopilot
mode’s performance.
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Figure 5.20: Autopilot Mode Cross Track Error Scenario 1
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Figure 5.21: Autopilot Mode Heading Error Scenario 1

RMS Value [m] MAX Value Error [m]

Cross Track Error 0.165 0.322

Heading Error 0.072 0.020

Table 5.5: Autopilot Mode Performance Scenario 1

and for the second scenario the results are:
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Figure 5.22: Autopilot Mode Cross Track Error Scenario 2
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Figure 5.23: Autopilot Mode Heading Error Scenario 2
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The errors remain relatively quite low throughout the straight path, indicating
that the vehicle consistently adheres to the planned path. When the vehicle ap-
proaches the curved segment, a small spike in error occurs due to the abrupt change
in path geometry. However, this time, it has been slightly higher than the previous
control method (NMPC). This spike is a natural response to the dynamic transi-
tion. As the vehicle continues through the curve, the error gradually diminishes and
returns to low levels for the remainder of the route, demonstrating the autopilot’s
capability to recover and re-establish control over the vehicle’s lateral position. As
detailed in the previous section, the RMS and maximum errors have been computed
for both cross-track and heading metrics to quantitatively assess the autopilot’s
trajectory tracking performance. The table below presents these numeric results:

RMS Value [m] MAX Value Error [m]

Cross Track Error 0.257 0.572

Heading Error 0.033 0.066

Table 5.6: Autopilot Mode Performance Scenario 2

In the takeover scenario, the control system experiences a temporary but no-
ticeable degradation in tracking performance, primarily observable through spikes
in both cross-track error (CTE) and heading error; This behavior is expected in
dynamic driving situations where rapid adaptation is required, as here there are 3
maneuvers added to the scenario. Hence the increase in the RMS values and Head-
ing errors reflects a general rise in the overall deviation from the reference trajectory
during the maneuver phase before the autopilot re-stabilizes the vehicle. Although
the RMS and maximum errors remain elevated compared to straight-line or nominal
driving, they remain within acceptable bounds for highway-level autonomous opera-
tion, indicating the PID-based autopilot mode demonstrates a reliable performance,
effectively managing the overtaking tasks while maintaining its stability.

5.2.7 Performance Comparison

From an academic standpoint, comparing NMPC with manual driving and AU-
topilot Mode in Carla provides critical insights into the advantages of model-based
predictive control in managing the inherent complexities of vehicle dynamics. The
NMPC controller’s ability to predict future states and optimize control inputs con-
tributes to lower RMS and maximum error values, even in scenarios demanding
rapid adjustments such as overtaking. This not only validates the controller’s de-
sign but also underscores its potential to reduce human error in high-risk maneuvers.
In contrast, manual driving performance, while flexible, is limited by human reac-
tion times and variability, which often result in higher transient errors during sharp
maneuvers. By providing a benchmark based on quantitative analysis, this compar-
ative study contributes to strengthen the idea that automated strategies can deliver
superior consistency and reliability.
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Table 5.7: Comparative Analysis of Various Control Strategies Scenario 1

Control Method RMS ect RMS eh Max ect Max eh

NMPC Control 0.087 0.048 0.252 0.098

Autopilot Control 0.165 0.072 0.322 0.020

Manual Driving 0.143 4.32e-3 0.264 11.1e-3

Table 5.8: Comparative Analysis of Various Control Strategies Scenario 2

Control Method RMS ect RMS eh Max ect Max eh

NMPC Control 0.243 0.0174 0.512 0.0450

Autopilot Control 0.257 0.033 0.572 0.066

Manual Driving 0.384 0.048 0.612 0.098

However, the predictive nature of NMPC requires solving an optimization prob-
lem in real time, which can be computationally intensive in more unpredictable
conditions. Regarding the advanced PID controller used in CARLA’s autopilot as
seen in the table of results, it has a good balance of performance with simpler imple-
mentation and lower computational demands compared to NMPC, demonstrating
reliable performance on normal highway trajectories, and also maintaining low de-
viations during straight sections and gradual curves as it was in our scenario case.
However sometimes this controller may experience brief unfavourable spikes in its
behaviour during rapid or unexpected changes in the trajectory, leading to higher
maximum errors in certain scenarios. Unlike NMPC, the PID approach might not
predict future trajectory changes as effectively, potentially limiting performance in
highly dynamic environments.

5.3 Obstacle Avoidance
Object avoidance in autonomous highway driving involves integrating safety con-
straints into the path-following algorithm to ensure that the vehicle maintains a safe
distance from obstacles while following its intended route. Essentially, the controller
not only tracks a predefined reference trajectory but also continuously monitors for
obstacles—such as other vehicles, debris, or road hazards—and dynamically adjusts
the planned path to avoid collisions. This is achieved by formulating additional
constraints within the control problem that define safe zones around the detected
objects.

76



Simulation Results and Analysis

The constraints typically specify a minimum separation distance between the
vehicle and any obstacle, ensuring that the vehicle does not come too close. These
can be spatial constraints, such as maintaining a safe lateral distance, and temporal
constraints, like ensuring the vehicle has enough time to slow down or steer away
when an obstacle is detected. By putting these constraints together into a Nonlin-
ear Model Predictive Control framework, the controller can optimize the vehicle’s
trajectory in real time, balancing the need to follow the reference path with the im-
perative to avoid obstacles. In practice, this approach allows the vehicle to integrate
object avoidance into its overall navigation strategy. When an object is detected,
the controller adjusts the trajectory within the bounds of constraints, ensuring that
deviations from the reference path are minimized while still providing a buffer to
prevent collisions.

Figure 5.24: Path changing of the Vehicle with Object

Therefore, following the successful behaviour of the model for path-following sce-
narios, the next phase of evaluation of our model would involves an object avoidance;
In this case, the model is required to autonomously detect an object, execute a lane
change to safely bypass it, and then return to the original lane once the object has
been passed. The objective is to perform these maneuvers smoothly, without intro-
ducing abrupt control responses that could compromise safety or passenger comfort.
The methodology used here is a state-driven system that adapts its behavior based
on eventual occurrences. In other words, under normal driving conditions, the con-
troller maintains a baseline state focused solely on tracking the predefined reference.
However, when the vehicle’s sensors detect an obstacle—based on the localization
of the object and the trajectory of the ego vehicle-it transitions into an obstacle
avoidance state.
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In this object avoidance state, the controller dynamically recalculates the ref-
erence trajectory to create a safe bypass; once the obstacle reaches a threshold
condition defined in advance, the system then adjusts the trajectory so that the
vehicle can safely navigate around the obstacle, taking into account the vehicle’s
dimensions and the obstacle’s position relative to the original path. Once the ve-
hicle successfully bypasses the obstacle and re-enters its original lane with a proper
safety margin regarding the obstacle, the system automatically transforms back to
its normal state. The results of this scenario are shown in the following:
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Figure 5.25: Yaw Angle of the Ego Vehicle

Regarding the results above we can say that a smoothly varying yaw angle typi-
cally indicates stable steering control, whereas sharp or abrupt changes may point to
sudden evasive maneuvers—often necessary in object avoidance scenarios. The close
alignment of actual and reference trajectories—except where deviation is required
to circumvent obstacles—implies that the system can be both safe and efficient in
real-world scenarios, where the model demonstrates a reliable approach to obsta-
cle avoidance, balancing the need for accurate path following with timely, smooth
evasive actions.
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Figure 5.26: Trajectory of the Ego Vehicle
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Chapter 6

Conclusion

6.1 Summary of Findings
To evaluate the controller’s performance, a simulation-based experiment is carried
out. This thesis has demonstrated the effectiveness of Nonlinear Model Predictive
Control in enhancing path tracking, vehicle stability, and control precision in au-
tonomous driving applications. The research focused on integrating NMPC into a
MATLAB/Simulink and CARLA co-simulation framework, where a comprehensive
system identification process and dispatching functions were implemented to trans-
mit real-time control commands for vehicle operation in the CARLA simulator.
Simulations were carried out in two distinct scenarios, featuring different maneuvers
and speeds. Key evaluation metrics, Cross-Track Error (CTE) and Heading Error
(HE), were analyzed to quantify tracking accuracy.

Additionally, manual driving data was incorporated to provide a realistic hu-
man driving benchmark, allowing for a direct comparison between NMPC, CARLA
autopilot, and human driving behavior. Carla’s built-in PID-based Autopilot is
discussed as a benchmark for comparison, illustrating the typical strengths and
limitations of a system that is presumably fine-tuned for a specific vehicle model.
This sets the stage for exploring the NMPC approach, which employs a predictive
model to anticipate future vehicle states. Even though it uses a simplified, more
general vehicle model, NMPC can optimize control inputs in real time to achieve
accurate and stable performance across varying speeds and driving conditions. The
final results of this study reveal that the NMPC-based system can outperform or
match the simulator’s native solution, despite the latter likely being tailored to a
single vehicle model. The findings underscore the generalizability and reliability of
NMPC, emphasizing its potential as a robust solution for future autonomous driving
applications.
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6.2 Future Work
Future work could focus on refining the vehicle model accuracy, incorporating more
precise road condition data, and extending NMPC’s capabilities to additional ADAS
functionalities such as lane changes and adaptive speed control, further advancing
the field of automated driving systems. We anticipate that CARLA will serve as
a valuable platform for researchers by offering a setting for testing a wide range
of perception, planning, and control strategies under realistic driving conditions. It
provides the capability to generate large-scale, diverse datasets, which are crucial for
the development of learning-based autonomous driving algorithms, including deep
learning models for perception, behavior prediction, and decision-making.

While the Nonlinear Model Predictive Control (NMPC) framework developed
in this project demonstrates promising results for path tracking within the CARLA
simulator, there remain several exciting avenues to enhance its robustness and appli-
cability to real-world autonomous driving scenarios. A first extension would involve
integrating richer perception capabilities. In its current form, the NMPC primar-
ily relies on high-level trajectory information. However, in real driving environ-
ments, diverse sensor data—such as cameras, LiDAR, radar, or GPS/IMU—would
be necessary to detect obstacles, lane boundaries, and other key features. By fusing
multiple sensor inputs, one can refine the NMPC cost function and constraints to
account for uncertain or dynamic elements (e.g., moving vehicles, pedestrians). This
sensor-fusion approach would likely involve advanced filtering techniques to robustly
estimate the vehicle’s state and its surroundings in real time.

A second related extension would be the development of adaptive or robust
NMPC schemes. In practical deployments, vehicle dynamics may vary due to tire
wear, changing weather, or aerodynamic effects. Consequently, incorporating pa-
rameter adaptation mechanisms—such as online identification via Extended Kalman
Filters or machine learning estimators—can help the NMPC remain effective under
a broader range of conditions.

Moreover, there is significant potential in combining classical NMPC with learning-
based methods. Reinforcement learning or imitation learning could generate high-
level policies or reference trajectories, which the NMPC controller would then refine,
ensuring adherence to stability and safety constraints. Such a hybrid approach bal-
ances the adaptability of data-driven models with the reliability of model-based
control.

Lastly, moving beyond single-vehicle scenarios to multi-agent or cooperative driv-
ing holds considerable promise. Extending the NMPC framework to account for
interactions with other road users, traffic rules, and communication protocols would
mark a critical step toward fully autonomous driving solutions. Ultimately, val-
idating these enhancements in more realistic conditions—via hardware-in-the-loop
testing or scaled vehicle prototypes—would demonstrate their effectiveness and pave
the way for real-world deployment of NMPC-based autonomous driving systems.
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Appendix

As discussed in Chapter 3, which outlines the data collection methodology in CARLA
using Python, this section presents a more complete script that was implemented
for data gathering:

1 steering_data = []
2

3 location_data_x = []
4 location_data_y = []
5 location_data_z = []
6 velocity_data_x = []
7 velocity_data_y = []
8 angular_velocity = []
9 yaw_data = []

10 acceleration_data_x = []
11 acceleration_data_y = []
12 throttle_data = []
13 brake_data = []
14 steering = []
15

16 start_time = time.time()
17 duration = 300 #based on methodology being in use
18 class World(object):
19 def __init__(self , carla_world , hud , actor_filter):
20 self.world = carla_world
21 self.hud = hud
22 self.player = None
23 self.collision_sensor = None
24 self.lane_invasion_sensor = None
25 self.gnss_sensor = None
26 self.camera_manager = None
27 self._weather_presets = find_weather_presets ()
28 self._weather_index = 0
29 self._actor_filter = actor_filter
30 self.restart ()
31 self.world.on_tick(hud.on_world_tick)
32

33 def get_state(self ,):
34
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35

36 acceleration = self.player.get_acceleration ()
37 steer_value = self.player.get_control ().steer
38 throttle_value = self.player.get_control ().throttle
39 brake_value = self.player.get_control ().brake
40 location = self.player.get_location ()
41 velocity = self.player.get_velocity ()
42 transform = self.player.get_transform ()
43 yaw = transform.rotation.yaw
44 yaw_rate = self.player.get_angular_velocity ().z
45 yaw_rate = yaw_rate * math.pi/180
46 yaw = yaw * math.pi/180
47 # print(acceleration)
48 # print(location)
49 # print(f’yaw:{yaw}’)
50 # print(f’acceleration_x :{ acceleration.x}’)
51 # print(f’acceleration_y :{ acceleration.y}’)
52 print(f’velocity_x :{ velocity.x}’)
53 print(f’position_x :{ location.x}’)
54 print(f’position_y :{ location.y}’)
55 print(f’position_z :{ location.z}’)
56 #print(f’velocity_y :{ velocity.y}’)
57 #print(yaw)
58 # -1.9616636037826538
59 #report the data into a list , called state
60 global acceleration_x
61 global acceleration_data_y
62 global steering_data
63 global location_data_x
64 global location_data_y
65 global velocity_data_x
66 global velocity_data_y
67 global angular_velocity
68 global yaw_data
69 global location_data_z
70 global throttle_data
71 global brake_data
72 global steering_data
73

74 acceleration_data_x.append(acceleration.x)
75 acceleration_data_y.append(acceleration.y)
76 steering_data.append(steer_value)
77

78 location_data_x.append(location.x)
79 location_data_y.append(location.y)
80 location_data_z.append(location.z)
81 yaw_data.append(yaw)
82 velocity_data_x.append(velocity.x)
83 velocity_data_y.append(velocity.y)
84 angular_velocity.append(yaw_rate)
85 brake_data.append(brake_value)
86 throttle_data.append(throttle_value)
87 steering_data.append(steer_value)
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88

89

90 return acceleration_data_x , steering_data , location_data_x ,
location_data_y , yaw_data , velocity_data_x ,

velocity_data_y , angular_velocity , throttle_data ,
brake_data

91

92 def restart(self):
93 # Keep same camera config if the camera manager exists.
94 cam_index = self.camera_manager.index if self.

camera_manager is not None else 0
95 cam_pos_index = self.camera_manager.transform_index if self

.camera_manager is not None else 0
96 # Get a random blueprint.
97 #blueprint = random.choice(self.world.get_blueprint_library

().filter(self._actor_filter))
98 blueprint = self.world.get_blueprint_library ().filter(’leon

’)[0]
99 blueprint.set_attribute(’role_name ’, ’hero’)

100 if blueprint.has_attribute(’color’):
101 color = random.choice(blueprint.get_attribute(’color ’).

recommended_values)
102 blueprint.set_attribute(’color’, color)
103

104 spawn_points = self.world.get_map ().get_spawn_points ()
105

106 #23 _10_24 primary and original location for the main
simulation

107 spawn_location = spawn_points [302]
108 #edited
109 spawn_location.location.x = 50.33776092529297
110 spawn_location.location.y = 37.75230407714844
111 self.player = self.world.try_spawn_actor(blueprint ,

spawn_location)
112

113 def game_loop(args):
114 pygame.init()
115 pygame.font.init()
116 world = None
117

118 try:
119 client = carla.Client(args.host , args.port)
120 client.set_timeout (2.0)
121

122 display = pygame.display.set_mode(
123 (args.width , args.height),
124 pygame.HWSURFACE | pygame.DOUBLEBUF)
125

126 hud = HUD(args.width , args.height)
127 world = World(client.get_world (), hud , args.filter)
128 controller = DualControl(world , args.autopilot)
129

130 # while True:
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131 # global start_time
132 # global duration
133 # current_time = time.time()
134

135 # if current_time - start_time > duration:
136 # break
137 # world.get_state ()
138

139 # time.sleep (0.3)
140

141

142

143 clock = pygame.time.Clock()
144 while True:
145 clock.tick_busy_loop (60)
146 if controller.parse_events(world , clock):
147 return
148 world.tick(clock)
149 world.render(display)
150 pygame.display.flip()
151

152 global start_time
153 global duration
154 current_time = time.time()
155

156 if current_time - start_time > duration:
157 break
158 world.get_state ()
159

160 # time.sleep (0.3)
161 time.sleep (0.05)
162

163

164 finally:
165 global location_data_x
166 global location_data_y
167 global acceleration_data_x
168 global acceleration_data_y
169 global steering_data
170 global velocity_data_x
171 global velocity_data_y
172 global yaw_rate
173 global yaw_data
174 global brake_data
175 global throttle_data
176 global angular_velocity
177

178

179 #simin ax , delta
180 #simout positionx ,y,t,yaw , velocx ,veloxy , yaw rate
181 # with open(’sim_in.txt’, ’w’) as file:
182 # file.write(’acceleration_x , steering_data\n’)
183 # for i, j in zip(acceleration_data_x , steering_data):

85



Appendix

184 # file.write(f’{i}, {j}\n’)
185 with open(’sim_in.txt’, ’w’) as file:
186 file.write(’location_x , , location_y , yaw_data ,

velocity_x , velocity_y , angular_velocity ,
acceleration_x , acceleration_y , brake_value ,
throttle_value\n’)

187 for a, s, d, f, g, h, j, k, l, m in zip(
location_data_x , location_data_y , yaw_data ,
velocity_data_x , velocity_data_y , angular_velocity ,
acceleration_data_x , acceleration_data_y , brake_data
, throttle_data):

188 file.write(f’{a}, {s}, {d}, {f}, {g}, {h}, {j}, {k
}, {l}, {m}\n’)

189 with open(’sim_in_simulink.txt’, ’w’) as file:
190 file.write(’acceleration_x , steering_value\n’)
191 for z, x in zip( acceleration_data_x , steering_data):
192 file.write(f’{z}, {x}\n’)
193 if world is not None:
194 world.destroy ()
195

196 pygame.quit()
197

198 while True:
199 clock.tick_busy_loop (60)
200 if controller.parse_events(world , clock):
201 return
202 world.tick(clock)
203 world.render(display)
204 pygame.display.flip()
205

206 global start_time
207 global duration
208 current_time = time.time()
209

210 if current_time - start_time > duration:
211 break
212 world.get_state ()
213

214 # time.sleep (0.3)
215 time.sleep (0.05)

Listing A.1: Carla Environment Data Gathering
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