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Abstract

In this thesis, possible implementations of a rotating detonation engine (RDE) for energy

generation are investigated and compared. In rotating detonation engines, unlike conven-

tional systems, detonation of reactants is substituted to deflagration combustion, leading

to an increase in the thermodynamic efficiency due to the higher temperature and pressure

of the chemical reaction products.

This thesis will concentrate on stationary RDE application for electricity generation, in

contrast to most of the other studies on this topic, which primarily address RDE applica-

tion for propulsion systems. Specifically, two rotating detonation combustor models will

be presented, and different power plant configurations and thermodynamic cycles will be

investigated and compared.

The analyses are carried out in a Python environment, where the Cantera library is used

for the evaluation of gas properties and the SDToolbox library is used for solving the

detonation equations and determining the post-detonation conditions.

Because of its well-known detonability and ability to operate the plant without emitting

CO2, hydrogen is the fuel of choice. The obtained values of efficiency are compared with

those of a Joule-Brayton cycle under different operating conditions, in order to understand

under which circumstances the usage of a rotating detonation combustor can present an

advantage with respect to a standard deflagration combustor.
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1. Introduction

1.1 Motivation

Global warming is one of the main problems in today’s world. According to the report of

the World Meteorological World Meteorological Organization, 2024, carbon-dioxide con-

centration in the atmosphere has never been so high. This is leading to catastrophic

consequences, such as the increase of Earth’s surface temperature due to the greenhouse

effect and always more extreme weather conditions. In 2022, the electricity and heat gen-

eration were responsible for nearly 44 % of global CO2 emissions from fuel combustion

(IEA, 2023), therefore, it is clear that an energy transition in which fossil fuel combus-

tion is replaced by renewable sources is of fundamental importance. On the other hand,

due to their volatility, renewable energy production alone is not sufficient to guarantee

an affordable and continuous current injection to the electric grid, and for that reason it

is necessary to couple it with energy storage technologies and with power plants able to

operate whenever the grid conditions require it. The advantage of a rotating detonation

engine (RDE) power plant is that it can be seen both as a base-load power plant as well as

a way to use stored energy. Like all other fuel-based engines, it can be run whenever the

grid needs it, and it can also operate continuously, ensuring affordable energy generation.

At the same time, one possible way to store energy is by using excess electricity produced

by renewable sources to run an electrolysis process, in which hydrogen is extracted from

water. Hydrogen produced in this way is called green hydrogen, and can be used as a

fuel for running an RDE power plant. Another great advantage of an RDE power plant

would be the thermodynamic cycle efficiency, which is expected to be higher than that of

a standard Joule-Brayton cycle. This increase in efficiency is due to the use of detonation

instead of a classic deflagration combustion, which presents higher outlet pressure and

temperature of the combustion products.

1.2 Fundamentals of Detonation

In this section, the theoretical background necessary to understand a planar ideal detona-

tion process is presented. All the reported information, as well as other insights, can be

found in Browne et al., 2023 and Kuo, 1986.

1.2.1 Detonation theory

According to Zeldovich, Von Neumann and Doering theory (ZND theory) , detonation can

be modeled as a shock wave followed by a chemical reaction. The description of detonation

theory starts by assuming a planar detonation wave front. In Figure 1.1, in the laboratory

reference frame (lab frame), a shock wave is traveling with a speed Us from the region 2

to the region 1. In the case of a detonation wave, 2 would be the region of products and 1

the one of reactants. The flow in region 1 is moving at a speed u1, while the speed of the

flow in region 2 is u2.

1



1.2. Fundamentals of Detonation

Figure 1.1: Schematic representation of laboratory and wave-fixed reference frames
(Browne et al., 2023)

The same situation can be represented in a reference system that is moving at the wave

speed Us in the same direction as the shock wave. In this new reference system, the shock

wave results in being steady, while the flow in zone 1 is traveling through the shock front

at a speed equal to w1. At the same time, the flow in the zone behind the shock is moving

away from the shock front at a speed w2. In particular, it is possible to apply the following

transformation to pass from the laboratory reference frame to the wave-fixed reference

frame:

w1 = Us − u1 (1.1)

w2 = Us − u2 (1.2)

The following analyses are all carried out in the shock wave reference frame. The continuity

equation can be written as:

ρ1w1 = ρ2w2 (1.3)

Where ρ1 is the density before the shock, and ρ2 the one after the shock.

The momentum equation is:

P1 + ρ1w1
2 = P2 + ρ2w2

2 (1.4)

Where P1 is the pressure before the shock and P2 the one after.

Finally, the energy conservation equation is:

h1 +
w1

2

2
= h2 +

w2
2

2
(1.5)

Where h1 and h2 are the specific enthalpies of the flow before and after the shock, respec-

tively. In the case of a detonation wave, the enthalpies must account both for the sensible

enthalpy and for the enthalpy of formation.

Finally, also an entropy condition needs to be fulfilled:

2



1.2. Fundamentals of Detonation

s2 ≥ s1 (1.6)

With s1 and s2 being respectively the specific entropy before and after the shock.

1.2.2 Rayleigh line

Combining the continuity and momentum equations, the following expression is obtained:

P2 = P1 − ρ1
2w1

2(v2 − v1) (1.7)

Where v1 and v2 are the specific volumes of the flow before and after the shock, respectively,

and they are equal to 1/ρ1 and 1/ρ2.

Assuming the initial conditions 1 of the flow before the shock are known, equation 1.7, in a

pressure-specific volume diagram, is the equation of a line. This line is called the Rayleigh

line. This line must pass both from the initial state 1 and from the final state 2. The slope

of the Rayleigh line is:

dP

dv
=

P2 − P1

v2 − v1
= −

w1
2

v2
1

(1.8)

It is possible to notice that the slope is proportional to the square of the flow velocity

before the shock in the wave reference frame, w1, which, according to equation 1.1, and

assuming Us >> u1, can be approximated with the shock velocity Us.

Due to the continuity equation 1.3, the slope of the Rayleigh line can also be expressed as

a function of the post-shock speed and specific volume, as it follows:

dP

dv
=

P2 − P1

v2 − v1
= −

w2
2

v2
2

(1.9)

1.2.3 Hugoniot curve

Combining the energy conservation equation with the continuity equation and the mo-

mentum conservation equation, (or equivalently the equation of the Rayleigh line with the

momentum conservation equation), the following equivalence is obtained:

h2 − h1 =
1

2
(P2 − P1)(v2 + v1) (1.10)

This is the equation of the Hugoniot curve. In order to represent it, as the Rayleigh line,

in a pressure-specific volume diagram, it is necessary to use an equation of state, where

the enthalpy h can be expressed as a function of pressure P and specific volume v. For

example, using the ideal gas equation of state:

Pv = RT (1.11)

3



1.2. Fundamentals of Detonation

where T is the gas temperature and R is the universal gas constant divided by its molar

mass, the Hugoniot relation can be rewritten as:

γ

γ − 1
(P2v2 − P1v1)−

1

2
(P2 − P1)(v1 + v2) = q (1.12)

Where γ is the ratio of specific heats, defined as:

γ =
cp
cv

(1.13)

Where cp is the specific heat capacity at constant pressure and cv the one at constant

volume.

The parameter q is defined as:

q = h01 − h02 (1.14)

and it is the difference of the enthalpies of formation between reactants and products.

The Hugoniot curve represents all the possible value couples (P2, v2) obtainable in the

final condition, after the shock wave. The final condition, represented by the point 2, is

determined by the intersection, in the pressure-specific volume diagram, of the Rayleigh

line and the Hugoniot curve. In particular, if the chemical composition of the gases in the

initial state 1 is the same as the one in the final state 2, and therefore no chemical reaction

is happening, as in the case of a shock wave, the Hugoniot curve passes both from the

initial point 1 and from the final point 2, as shown in Figure 1.2

On the other hand, in the presence of a chemical reaction, the reactants and the products

will lay on the same Rayleigh line but they will belong to different Hugoniot curves. In

particular, in this case, it is possible to distinguish between the following five regions

represented in Figure 1.3.

The point A corresponds to the gas reactants initial state, so is equivalent to the state 1 of

the previous equations. From this point, an horizontal and a vertical line are plotted, until

the Hugoniot curve of the products is reached. Those two lines represent respectively a

constant pressure and a constant volume combustion. Regions above the constant volume

combustion (regions I and II), are the detonation regions, and regions below the constant

pressure combustion (regions III and IV) are the deflagration regions. Regarding region

V, it is possible to notice that here the pressure P2 is higher than the gas initial pressure

P1, and also the specific volume v2 is greater than the one of the reactants v1. Therefore,

looking at equation 1.8, which indicates the slope of a Rayleigh line, it is possible to notice

that the left term is positive, while the right term is always negative. This means that there

is no physical solution in this region, since the possible mathematical solutions involve a

shock velocity w1 which is imaginary.

4



1.2. Fundamentals of Detonation

Figure 1.2: Hugoniot curve and Rayleigh line for a non reacting gas mixture (Browne et
al., 2023)

Figure 1.3: Possible solution regions on Hugoniot curve depending on the type of combus-
tion (Kuo, 1986)

5



1.2. Fundamentals of Detonation

1.2.4 Upper Chapman-Jouguet point

Considering the detonation branches (region I and II), a Rayleigh line passing from the

initial point A will always intersect the products Hugoniot curve in two points, the first

one belonging to the weak detonation region (region II) and the second one belonging to

the strong detonation region (region I). There is just one slope of the Rayleigh line that

crosses the product Hugoniot curve at only one point, and therefore the line is tangent to

the curve. This point is called the Upper Chapman-Jouguet (CJ) point, and corresponds

to the point U in figure 1.3. The same applies to the deflagration branch, and the tangent

point is called lower Chapman-Jouguet (CJ) point, which is represented by the point L in

figure 1.3. Since the slope of the Rayleigh line is proportional to the square of the shock

speed, the minimum value of shock speed for which it exist a solution in the detonation

branch is called the Chapman-Jouguet speed, and the solution provided from this slope

is the upper CJ point. Values of shock speed which are lower than the CJ speed will not

intersect the Hugoniot curve of products, and values that are higher will intersect it in

both the weak detonation region and in the strong detonation region.

1.2.5 Entropy and speed of sound

The speed of sound can be related to the slope of an isentropic curve in a P − v diagram

from the following expression:

c2 = −v2
(

dP

dv

)

s=constant

(1.15)

Where c is the speed of sound.

Four different isentropic curves, the Hugoniot curve and the Rayleigh line for a non-reacting

gas are shown in figure 1.4

The first isentrope s1 passes from the initial state 1, while the last one s4 passes from the

final state 2. In particular, s1 is smaller than s4, so that the condition reported in 1.6 is

fulfilled. The other two isentropes have intermediate values between s1 and s4.

From the Rayleigh line slope equation 1.8, it is possible to deduce that:

w1
2 = −v1

2dP

dv
(1.16)

Since, from figure 1.4, it is evident that the slope of the Rayleigh line is greater than that

of the isentrope s1 in the point 1, comparing the expression 1.16 with the sound speed

equation 1.15 applied to the initial point 1, it is found that:

c1
2 = −v1

2

(

dP

dv

)

s=s1

< −v1
2

(

dP

dv

)

Rayleigh line

= w1
2 (1.17)

This means that the shock wave velocity w1 is greater than the speed of sound relative to

point 1, and so it is supersonic. This is true also for detonation waves, since they consist

of a shock wave followed by a chemical reaction.

6



1.2. Fundamentals of Detonation
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Figure 1.4: Hugoniot curve, Rayleigh line and 4 isentropes for a non reacting gas mixture

The same procedure can be applied in point 2, but this time the slope of the isentrope s4

is greater than the one of the Rayleigh line. So, comparing equation 1.9 with the speed of

sound equation 1.15 in point 2, the following inequality is obtained:

c2
2 = −v2

2

(

dP

dv

)

s=s4

> −v2
2

(

dP

dv

)

Rayleigh line

= w2
2 (1.18)

This means that in the wave-fixed reference frame, in the case of a shock wave in non-

reacting gases, the speed of the gases in the final state w2 is subsonic.

Considering a reacting gas mixture, for the reason explained before, the detonation wave

velocity w1 is supersonic. Regarding the products velocity in the wave-fixed reference

frame w2, figure 1.5 must be taken into account.

In figure 1.5, the Hugoniot product curve, the Rayleigh line having a CJ detonation wave

speed, and the isentrope passing through the upper CJ point are represented. It is possible

to notice that all the three lines, in the CJ point, are tangent to each other. This means

that they all have the same slope. Therefore, comparing the equation of the Rayleigh line

slope 1.9 with the sound speed equation 1.15 applied to the CJ point, it is found that:

cCJ
2 = −vCJ

2

(

dP

dv

)

s=sCJ

= −vCJ
2

(

dP

dv

)

Rayleigh line

= w2
2 (1.19)

This means that, at the CJ point, the speed of the products is sonic.

This can also be demonstrated analytically if the ideal gas equation of state is used.
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Figure 1.5: Hugoniot product curve, Rayleigh line and the isentropic curve passing through
the CJ point for a reacting gas mixture, in the case of w1 = wCJ

The product Hugoniot curve equation for an ideal gas is reported in equation 1.12. It is

possible to evaluate the slope of this curve by deriving this expression for v2. After some

mathematical manipulations, the following expression is obtained:

dP2

dv2
=

(P2 − P1)− ( 2γ
γ−1

)P2

( 2γ
γ−1

)v2 − (v1 + v2)
(1.20)

At the same time, at the CJ point the slope of the Hugoniot is the same as the slope of

the Rayleigh line, therefore:

dP2

dv2
=

P2 − P1

v2 − v1
(1.21)

By equating the last two expressions, the following one is obtained:

P2 − P1

v2 − v1
= −γ

P2

v2
(1.22)

Equating this last expression with the slope of the Rayleigh line expressed as a function

of products velocity, equation 1.9, the following relation is obtained.:

w2
2 = γP2v2 (1.23)

Since, for an idela gas, the speed of sound is given by:

c =
√

γPv (1.24)
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1.2. Fundamentals of Detonation

It is possible to state that:

w2
2 = c2

2 (1.25)

Which means that, in the wave-fixed reference frame, the speed of the detonation products

is exactly sonic at the CJ point.

Now, the case of a reacting gas mixture in which the detonation wave speed is higher

than the CJ speed is considered. In this scenario, the Rayleigh line will intersect the

products Hugonit curve in two points, one belonging to the strong detonation branch and

one belonging to the weak detonation branch, as shown in figure 1.6.
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Figure 1.6: Hugoniot products curve, Rayleigh line and the isentrope passing through the
CJ point for a reacting gas mixture, in the case of w1 > wCJ

It is possible to notice, both from figure 1.5 and figure 1.6, that the Hugoniot curve is well

approximated by the isentrope passing through the CJ point.

Considering the intersection of the Hugoniot curve and Rayleigh line in the weak detonation

region, it is evident that the slope of the isentrope is smaller than the one of the Rayleigh

line; therefore:

c2
2 = −v2

2

(

dP

dv

)

s=s4

< −v2
2

(

dP

dv

)

Rayleigh line

= w2
2 (1.26)

So, in the weak detonation region, products velocity w2 is supersonic.

On the other hand, in the strong detonation region, the slope of the Rayleigh line is lower

than that of the isentrope, and so:
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1.2. Fundamentals of Detonation

c2
2 = −v2

2

(

dP

dv

)

s=s4

> −v2
2

(

dP

dv

)

Rayleigh line

= w2
2 (1.27)

Which means that, in the strong detonation region, the products speed w2 is subsonic.

Even if the Rayleigh line intersects the Hugoniot in two points, there must be only one

solution to the detonation problem. The point that is usually experimentally observed in

this condition is the one belonging to the strong detonation branch.

By rearranging equation 1.2, it is possible to say that:

Us = w2 + u2 (1.28)

Since, as it has been just shown in equation 1.27, in a strong detonation, the product speed

in the wave fixed reference frame w2 is subsonic, it follows that:

Us < c2 + u2 (1.29)

This means that, in the case of a strong detonation, in presence of any acoustic distur-

bance, which is moving at speed c2, the resultant propagation velocity of the products (the

sum of c2 and u2) is higher than the shock speed. Therefore, the acoustic disturbance and

the products can catch up with the detonation wave, and reduce its strength. As a con-

sequence, the detonation wave speed will be decreased. Once the detonation wave speed

reaches the CJ value, the products velocity in the wave fixed frame w2 became sonic, and,

therefore, the detonation wave speed will no longer be affected by disturbances behind it,

since:

Us = w2 + u2 = c2 + u2 (1.30)

In this condition, the detonation can sustain itself, since its strength will not be reduced

by acoustic disturbances.

In conclusion, in the case of a strong detonation, the system, after some time, will stabilize

at the CJ point. For this reason, in this thesis, the CJ point will always be used as the

solution of a planar detonation wave.

1.2.6 Zel’dovich, Von Neumann and Doering theory (ZND theroy)

Zel’dovich, Von Neumann and Doering, during the Second world war, developed indepen-

dently the same one-dimensional detonation theory. According to their model, in which

a steady one-dimensional flow is assumed, a detonation wave consists of a shock wave

followed by a reaction zone, where the chemical reaction occurs.

This can be visualized in a P-v diagram, as reported in Figure 1.7.
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Figure 1.7: ZND theory visualized on a P-v diagram

With reference to Figure 1.7, point 1 corresponds to the reactants initial state. When a

shock wave traveling at CJ speed crosses the reactant zone, reactant pressure and tempera-

ture increase. At this point, the gas mixture has not yet changed its chemical composition,

so its post-shock state, point 2, lays on the same Hugoniot curve which crosses point 1.

The post-shock condition 2 is found by intersecting the reactant Hugoniot curve with the

Rayleigh line having slope as expressed in 1.8, with w1 being the CJ speed. The increase

in temperature and pressure triggers the chemical reaction to begin. Point 3 represents

the final state of the detonation products, once the equilibrium chemical composition is

reached, and corresponds to the CJ point. It is determined by the intersection of the

products Hugoniot curve and the same Rayleigh line described before. It is important to

notice that, since a steady flow is assumed, all the stages of the detonation process will

lay on the same Rayleigh line, since this line is a consequence of the mass conservation

law. In particular, starting from point 2, the Rayleigh line will cross an infinite number of

Hugoniot curves before reaching point 3, each of them corresponding to a partial chemical

equilibrium state.

Pressure, temperature and density of the gas mixture, during the detonation process,

change as shown in Figure 1.8.

In particular, it is possible to notice that the pressure reaches its maximum after the shock,

and this peak pressure is known as Von Neumann spike. What happens after the shock

wave can be divided in two main parts: the induction zone and the reaction zone. In the

induction zone the reaction rate increases slowly, and is following the Arrhenius law. The

slow increase of the reaction rates causes pressure, temperature and density to stay almost

constant. During the reaction zone, the reaction rate increases rapidly, and it is possible
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1.2. Fundamentals of Detonation

Figure 1.8: Thermodynamic properties variation during a detonation process (Rouser,
2012)

to observe a huge variation of the thermodynamic properties of the mixture.

Also, the Mach number is changing between state 2 and 3 of figure 1.7. In fact, after a

shock wave, as discussed previously in equation 1.18, the speed of the flow in the wave-

fixed reference frame, w2, is subsonic. Then, due to the decrease in pressure, the flow is

accelerated until the sonic speed, which characterizes the CJ point, is reached in point 3.

1.2.7 Limits of 1-D detonation theory

In experiments dealing with detonation, what is found is that the detonation wave always

travels at a speed that is lower than the CJ one. But, according to the one-dimensional

detonation theory, the CJ speed corresponds to the minimum speed value at which it is

possible to obtain a solution belonging to the detonation branch. So, how is it possible

that in the experiments where detonation is observed, the detonation wave has a speed

lower than the CJ one?

The limit of the one-dimensional detonation theory lies in the assumption of a planar

wave front. In fact, the high pressure reached in correspondence of the Von Neumann

spike always deforms the recipient or pipe in which the detonation is happening. As a

result, the flow undergoes an expansion, which reduces the detonation wave strength, and

consequently the shock wave front will no longer be perfectly planar, but will instead

show a certain degree of curvature. The curvature of the detonation front is the reason

why the detonation speeds observed in experiments are always lower than the CJ speed.

In particular, the difference between the actual detonation speed and the CJ one will be

greater the more the radius of the tube is small. This is due to the reason that the expansion

happens near the tube walls, therefore, if the radius is big enough, the curvature will be

really small and the shock front, except from really close to the walls, can be considered
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1.3. Detonation in thermodynamic cycle analysis

almost planar. In case of small radius, it is instead necessary to apply some correction to

the one-dimensional detonation theory. Another aspect to take into account is the tube

material stiffness. In fact, the more the tube material will oppose to the expansion, the

more the detonation wave front is going to be similar to a planar one.

In addition to that, especially in the case of gases, detonation waves always present a

complex three-dimensional structure, which cannot be predicted with the 1-D detonation

model.

The discipline that studies the deviations from the ideal detonation theory is called ”Det-

onation Shock Dynamics”, and is not reported here, since all the presented rotating deto-

nation combustor models assume a planar detonation front.

1.3 Detonation in thermodynamic cycle analysis

It is already possible to notice, from Figure 1.3, how deflagration combustion, which is the

type of combustion traditionally used in a Joule-Brayton cycle, presents a huge difference

in specific volume between reactants and products, while the pressure difference is really

small. This is the reason why deflagration combustion is often approximated with an

isobaric process.

On the other hand, in a detonation process, the specific volume change between reactants

and products is negligible compared to the pressure change, with pressure being way much

higher in the products. For this reason, as a first approach, detonation can be modeled

as an isochoric process, but this consists of an underestimation of the product pressure

compared to using the CJ point as the solution of the detonation.

At the same time, the fact that the pressure is higher in the products, and so detonation

is a pressure-gain process, leads to higher thermodynamic efficiency compared to using

deflagration combustion. To demonstrate this, the simple Joule-Brayton cycle represented

in Figure 1.9 must be considered.

In this case, the gas mixture in point 1 is composed of hydrogen and air at a pressure P1

of 1 bar and a temperature T1 of 200 C. The mixture of hydrogen and air is stoichiometric,

and air is assumed to be composed only of oxygen and nitrogen. The molar composition

of the mixture is reported in table 1.1.

Moles

H2 2
O2 1
N2 3.76

Table 1.1: Mixture composition in moles

Starting from the same initial condition 1 and using the same components represented

in Figure 1.9, three different cycles are analyzed. In the first cycle, a constant pressure

combustion is applied, the second presents a constant volume combustion, and in the
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1.3. Detonation in thermodynamic cycle analysis

Figure 1.9: Joule-Brayton cycle usual components

last one, a CJ detonation combustion is used. In all the three cycles, the gas mixture is

compressed with the same pressure ratio β equal to 5, with β being:

β =
P2

P1

(1.31)

As a consequence of this, in all three cycles, state 2 is exactly the same. Both the com-

pression and the expansion process are assumed to be isentropic.

The three different cycles are represented in a pressure-specific volume diagram (with the

pressure axis in a logarithmic scale) in Figure 1.10

Regarding the cycle featuring the detonation combustion, the Von Neumann pressure spike

is neglected, and the flow passes directly from the state in point 2 to the post-detonation

state, point 3, which corresponds to the CJ point.

Figure 1.11 represents instead the three cycles in a temperature-specific entropy diagram.

For all the three cases, the useful specific work of the cycle is computed as the specific

work generated by the turbine minus the specific work used to run the compressor:

Wuseful = Wturbine −Wcompressor (1.32)

The useful specific work Wuseful can be rewritten applying the first law of thermodynamics

for open systems to the turbine and the compressor, assuming that for both the components

the flow inlet velocity is comparable with the one at the outlet. This results in:

Wuseful = (h3 − h4)− (h2 − h1) (1.33)
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Figure 1.10: Thermodynamic cycle of Figure 1.9 using a constant pressure combustion, a
constant volume combustion and a detonation combustion represented in a
P-v diagram
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Figure 1.11: Thermodynamic cycle of Figure 1.9 using a constant pressure combustion, a
constant volume combustion and a detonation combustion represented in a
T-s diagram
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1.3. Detonation in thermodynamic cycle analysis

With h being the specific enthalpy of the gas mixture in the point expressed by its subscript.

Finally, it is possible to compute the cycle efficiency as a ratio of specific useful work

Wuseful over the specific heat provided to the system through the combustion process.

This heat, for an ideal gas, can be evaluated as:

q = cp∆T (1.34)

With cp being the mixture gas specific heat at constant pressure, and ∆T the change

in temperature between products and reactants. cp anyway is not a constant, but is a

function of temperature. So, considering that in the case taken into account there is a big

change in temperature between reactants and products during the combustion process, the

specific heat q has been evaluated considering an average cp between states 2 and 3:

q =
cp2 + cp3

2
(T3 − T2) (1.35)

The cycle efficiency η, as described before, is then evaluated as:

η =
Wuseful

q
=

(h3 − h4)− (h2 − h1)
cp2+cp3

2
(T3 − T2)

(1.36)

The following results have been obtained:

Efficiency η

Constant pressure combustion 0.29
Constant volume combustion 0.56
Detonation combustion 0.64

Table 1.2: Efficiency comparison of the three cycles

As expected, the detonation cycle is the one presenting the highest efficiency. This is a

consequence of the following two aspects:

• The detonation cycle, as it is possible to observe from figures 1.10 and 1.11, is the

one that shows an higher pressure and temperature at the turbine inlet (point 3),

allowing the turbine to extract more work from the gas mixture.

• The detonation cycle, as it is possible to notice from figure 1.11, is the one which

implies the least amount of specific entropy change during the cycle. Since the

change of entropy is associated with losses due to irreversibilities, the detonation

cycle results to be the one with less irreversibility losses, and, as a consequence, with

the highest efficiency.

Anyway, even if the detonation cycle seems to be really promising in terms of efficiency,

there are some limitations to it. First of all, in case a turbine is used for expanding the
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1.3. Detonation in thermodynamic cycle analysis

gas mixture and extracting useful work, there is no material, nowaday, that can tolerate

a temperature as high as the one reached by the detonation combustion, which, as it is

possible to notice in figure 1.11, exceeds the 3000 K. Therefore, a cooling of the gas mixture

or a dilution of the reactants with some inert gas to reduce the turbine inlet temperature is

necessary. This will result in a decrease of the efficiency. In addition, as it will be explained

better in later chapters, in the case of a rotating detonation engine, the CJ conditions,

which in this analysis are used as the point of inlet of the turbine, can be assumed to

exist in a really thin layer just after the shock front. Before reaching the turbine inlet,

therefore, the gas mixture undergoes an expansion, which reduces the mixture pressure

and temperature, and consequently the cycle efficiency.

1.3.1 Literature review of detonation in thermodynamic cycle analysis

The story of detonation started with Abel, 1869, which measured the detonation velocities

of different types of reactants. The mathematical model to evaluate the theoretical det-

onation velocity of a mixture was published by Chapman, 1899 and Jouguet et al., 1904,

whose theory is known as the Chapman-Jouguet (CJ) theory. The CJ model, despite be-

ing still of great importance today, does not explain the structure of a detonation. This

topic has been described lately by Zeldovich, 1940, Von Neumann, 1942 and Doring, 1943,

which proposed the model of a detonation wave structured as the composition of a shock

wave followed by a chemical reaction (ZND theory). The oblique shock on the detonation

front has been observed for the first time by Campbell, 1927. Studies on the detonation

cellular structure and detonation cell size have been conducted by A. A. Vasil’ev, 1982,

A. A. Vasil’ev et al., 1987, Lee and Radulescu, 2005 and A. Vasil’ev, 2006. Research

about the phenomenon of the deflagration-to-detonation transition has been conducted by

Urtiew and Oppenheim, 1966, LEE et al., 1966, Lindstedt and Michels, 1989, Lee, 2008

and Ciccarelli and Dorofeev, 2008.

Due to its thermodynamic advantage compared to deflagration, detonation combustion

has been implemented in many propulsion systems. One example is the oblique detona-

tion wave engine, whose performance has been studied by Ostrander et al., 1987, Ashford

and Emanuel, 1996, Valorani et al., 2001, Sislian et al., 2001,Miao et al., 2018. Another

famous example of a detonation-based propulsion system is the pulse detonation engine

(PDE), whose performance evaluation and thermodynamic cycle analysis are reported in

Wintenberger and Shepherd, 2006. Other works related to the pulse detonation engine

have been conducted by Hutchins and Metghalchi, 2003, Yan and Fan, 2005, Glaser et

al., 2007, Shimo and Heister, 2008, Peng et al., 2013, George, Driscoll, Gutmark, and

Munday, 2014, Lu and Zheng, 2016, Roux, 2015 and Xisto et al., 2018. Works related

to the thermodynamic cycle analysis have been conducted by Alhussan et al., 2016, who

performed a cycle comparison between detonation combustion, constant volume combus-

tion and constant pressure combustion, first at the same values of pressure ratio and then

at the same value of turbine inlet temperature. Vutthivithayarak et al., 2012 compared

three possible cycles to model the thermodynamic performance of a PDE, concluding that

the Zeldovich–von Neumann–Doring process is the most appropriate one. Wolanski, 2011
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discussed the thermodynamic cycle of a detonation engine and described the advantages of

a rotating detonation engine over a pulsed detonation engine. Finally, Assad and Tunik,

2023 compared the detonation cycle with the Otto and Brayton cycles at the same value

of compressure ratio, concluding that the detonation cycle shows an advantage in terms

of efficiency compared to the other two, but, at really high values of compression ratios

(higher than 65), the Bryton cycle presents a higher value of efficiency. Also, if the three

cycles are compared at the same values of limiting temperature of the equivalent Carnot

cycle, the detonation cycle underperforms the other two in terms of efficiency and work

output, but still shows a lower value of internal irreversibilities.
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2. Theoretical fundamentals of rotating

detonation combustors

2.1 Working principle

A three-dimensional representation of the flow field in a rotating detonation combustor is

shown in figure 2.1, together with some geometrical properties.

Figure 2.1: 3D view of a flow field in a rotating detonation combustor (Liu et al., 2020)

As it is possible to observe, the fuel and the oxidizer are injected axially in an annulus

chamber, where a detonation wave is travelling around the combustor in the azimuthal

direction. In figure 2.1 only one detonation wave is present, but experiments and numer-

ical simulations have shown that the formation of more than one wave is possible. The

continuous axial injection of the mixture assures the sustainability of the detonation wave

and allows the combustor to work at high operational frequency, typically in the kilohertz

range.

If the channel width of the chamber is negligible compared to its radius and height, the

three-dimensional flow field inside a rotating detonation combustor can be simplified and

visualized on a 2-D plot, with the combustor axial height on the vertical axis and the

combustor circumferential length on the horizontal axis. Figure 2.2 shows an unwrapped

flow field of a rotating detonation combustor.

As it is possible to observe, four main lines can be distinguished, all of which have a

common point, called the ‘triple point.’ The first line is the line of the detonation front,

and it separates the fresh injected mixture, on its right, from the post-detonation products

(combustion products), on its left. From the interaction between the detonation wave

and the surrounding flow, an oblique shock is formed, represented by the shock wave

line. The third characteristic line is the slip line (contact surface b in figure 2.2), which
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Figure 2.2: Flow field of a rotating detonation combustor in a 2D unwrapped view (Shep-
herd & Kasahara, 2017)

separates the detonation products from the previous cycle, which have just crossed the

oblique shock, from the newly formed detonation products. In the post-detonation region,

close to the detonation front, the fluid reaches extremely high temperatures and pressures,

which prevents the mixture injection in the chamber. The fluid is then subject to a rapid

expansion, which makes those two quantities gradually decrease. In particular, once the

pressure in the combustor chamber is low enough to match the mixture injection pressure,

the refill of the combustor can start again, and an almost-triangular refilling zone is formed,

delimited by the injection slip-line (contact surface a in figure 2.2).

2.2 Main sources of losses

In this section, the main sources of losses of a rotating detonation combustor are reported

and commented. For thermodynamic cycle analysis purposes, it is important to obtain

the maximum possible temperature and pressure at the outlet of the combustor, together

with the minimum possible entropy increase. Therefore, every physical mechanism that is

decreasing temperature and pressure and/or increasing entropy will be considered as a loss.

The highest conditions of temperature and pressure in a rotating detonation combustor,

as explained before, are obtained just after the detonation front. For an ideal, planar,

detonation front, assuming that the fuel has a speed perpendicular to the detonation

front and equal to the CJ speed in the wave-fixed reference frame, they are represented

respectively from the temperature and pressure at the CJ point.

The main loss mechanism, which leads to a decrease in temperature and pressure, is

represented by the expansion of the detonation products. This expansion will lead the

combustor to have temperature and pressure at the outlet that strongly differ from the CJ
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ones. Therefore, for a rotating detonation engine, it is not possible to consider the CJ point

as the outlet point of the combustor (and the inlet point of the turbine), since this will lead

to an overestimation of the cycle thermal efficiency. For a more detailed thermodynamic

cycle analysis of a rotating detonation cycle, detonation product expansion must be taken

into account.

Another source of loss is represented by the oblique shock wave. Despite increasing tem-

perature and pressure of the fluid that are crossing it, it also increases entropy and repre-

sents, therefore, a source of irreversibility. Anyway, the entropy increase generated by the

oblique shock wave is small if compared to the one created by the detonation, as shown

by Kaemming et al., 2017, and reported in figure 2.3.

Figure 2.3: Main thermodynamic flow path of a rotating detonation combustor shown in
a temperature-entropy diagram (Kaemming et al., 2017)

In figure 2.3, the point 3.2 represents the thermodynamic state that corresponds to the

mixture injection conditions in the detonation chamber. The mixture is then subject to

a detonation process, which, according to the ZND theory, can be treated as a shock

wave followed by a chemical reaction. Therefore, point 3.4a, in case of ideal detonation,

corresponds to the CJ point. The flow field, after the detonation, undergoes an expansion

process, and a part of the flow field will then cross the oblique shock wave. Point 3.6b

represents the post-oblique-shock thermodynamic condition. It is possible to observe that

the entropy increase caused by the oblique shock wave is really small.

Always from figure 2.3, another source of loss can be visualized. In fact, at the begin-

ning of the refilling zone, despite chamber pressure having reached the same value of the

injection one, the chamber temperature is still significantly higher than the mixture injec-

tion temperature. Therefore, along the injection slip-line (contact surface a in figure 2.2),

a part of the mixture is burned by deflagration. This represents a source of loss, since

this means that not the totality of the injected fuel will be processed by the detonation

wave. In addition to that, as previously discussed in sections 1.2 and 1.3, the deflagra-
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tion generates a higher entropy increase compared to detonation and presents also lower

values of final temperature and pressure. In figure 2.3, the deflagration is represented as

a constant-pressure process, that starts from point 3.2 and ends in point 3.4c. Finally,

also the deflagrated flow crosses the shock wave, creating another increase in entropy. The

deflagrated flow post shock condition is represented by point 3.6c.

The last source of loss is represented by the backflow. In fact, in the region just after the

detonation front, the high values of pressure of the detonation products are preventing

mixture injection. Anyway, if the pressure of the products is too high, they can even enter

the propellant injector manifold and potentially cause an explosion. In order to avoid

that, fuel and oxidizer are usually injected separately in the combustion chamber, leading

to additional losses due to the mixing mechanism.

2.3 Literature review of rotating detonation engine

The rotating detonation engine was patented by Wolanski, Fujiwara, and Mitsubishi in

2004. Studies about rotating detonation waves have been performed by F. A. Bykovskii,

Zhdan, and Vedernikov, 2006, George, Driscoll, Anand, and Gutmark, 2017, Katta et al.,

2019 and Wen, Xie, and Wang, 2019. Experimental research on RDE has been conducted

by F. A. Bykovskii, Mitrofanov, and Vedernikov, 1997, F. A. Bykovskii and Vedernikov,

2003, F. A. Bykovskii, Zhdan, and Vedernikov, 2005, F. A. Bykovskii, Zhdan, and Ved-

ernikov, 2006 and F. Bykovskii and Zhdan, 2013. In particular, these experiments were

really useful for understanding the conditions in which the sustainability of rotating deto-

nation waves is achieved.Russo, 2011 studied the influence of injection mass flow rate and

equivalence ratio on rotating detonation engines fueled with hydrogen and air. Frolov, Ak-

senov, and Ivanov, 2015 experimentally demonstrated the Zeldovich cycle efficiency gain

over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture. Rankin

et al., 2017 used chemiluminescence in order to visualize the propagation of the detonation

waves around the annular channel. Numerical simulations of rotating detonation combus-

tors have been performed by Hishida et al., 2009, Schwer and Kailasanath, 2010, Schwer

and Kailasanath, 2011a, Kindracki et al., 2011, Schwer and Kailasanath, 2011b, Frolov,

Aksenov, et al., 2015, Cocks et al., 2016, Tsuboi et al., 2015 and Sun et al., 2018.

Reduced order models to estimate performances of a rotaing detonation engine have been

proposed by Braun et al., 2013, Nordeen et al., 2014, Kawashima et al., 2017, Shepherd

and Kasahara, 2017, Kaemming et al., 2017, Sousa et al., 2017, Bach et al., 2021, Wen,

Fan, and Wang, 2023 and Kanda and Inagaki, 2024.
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3. Power plant configurations

In this section, the proposed power plant configurations will be described and analyzed,

as well as fuel and oxidizer selection.

3.1 Fuel and oxidizer

In order to assure the integration of RDE power plants with renewable energy sources,

hydrogen represents the perfect choice as far as fuel selection is concerned. In fact, one

way to produce hydrogen is by using the excess energy produced by renewable sources

through an electrolysis process. Hydrogen produced in this way is called ‘green hydrogen,’

since it represents a perfectly clean and CO2 emission-free process for its production.

Hydrogen production represents, therefore, an energy storage mechanism, since, after being

produced, it can be burned to have the energy back whenever it is needed. In addition

to that, the combustion of hydrogen does not produce CO2, and therefore an RDE power

plant, if run with this fuel, results in being carbon dioxide emission-free. Lastly, hydrogen

is well-known for its detonability properties, which will facilitate RDE operation.

The oxidizer that will be explored is air, since detonation of hydrogen with pure oxygen

leads to too extreme post-detonation conditions.

3.2 Configurations

3.2.1 Power plant A

The first proposed power plant configuration consists of the same components of a standard

Joule-Brayton cycle, with the exception that in this case the deflagrative combustor is

replaced with a rotating detonation combustor. A schematic representation of the power

plant components can be visualized in figure 3.1.

Air and hydrogen are assumed to enter the compressor already premixed and at ambient

conditions (pressure = 1 bar, temperature = 25°C), in point 1. Then after the compression,

in stage 2, the mixture enters the rotating detonation combustor. After the combustion has

occurred, the post-detonation products will be expanded in a gas turbine in order to extract

useful work. Finally, the exhaust gases can be expelled into the atmosphere or, if possible,

used as a heat source. In figure 3.1 only the thermodynamic-relevant components are

shown, but, before being expelled into the atmosphere, it is important for exhaust gasses

to undergo some NOx-removing treatment, since they represent an important source of

pollution for the atmosphere.

3.2.2 Power plant B

The second proposed power plant configuration is shown in figure 3.2.

Its configuration is very similar to the previous one, since the only difference consists in

the mixture cooling before the injection into the rotating detonation combustor. This, as
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3.2. Configurations

Figure 3.1: Schematic of components of power plant A

Figure 3.2: Schematic of components of power plant configuration B
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3.2. Configurations

it will be shown later, allows the system to increase its efficiency, since, at the same value

of injection pressure, with lower injection temperature, higher values of post-detonation

conditions are obtained. Also in this case, the fuel is hydrogen, while air is used as an

oxidizer.

25



4. Methods

4.1 Simulation Tools

All the analysis carried out in this thesis has been performed in a Python environment

with the usage of the library Cantera (Goodwin et al., 2018). Cantera consists of an

open-source suite of tools that can be used to solve problems involving chemical kinetics,

thermodynamics, and transport processes. In particular, in the context of this work, it

is used to solve combustion problems and evaluate the gas thermodynamic properties in

different conditions.

To start, an object gas must be created, specifying the desired mechanism file to use. This

operation is done with the Solution function, as reported here:

[gas]=Solution(mech)

Where [gas] is the Cantera gas object created, and mech is a string that contains the

name of the mechanism file.

Cantera already provides a lot of different mechanism files from which it is possible to

choose, but at the same time the user can also create its own personalized mechanism file.

In this work, the mechanism ’gri30_highT.yaml’, already present in Cantera, has been

used for all the analysis.

Once a gas object has been created, it is important to set its state. To do that, two

thermodynamic properties must be assigned to the gas mixture, as well as the mixture’s

chemical composition. An example is here reported:

gas.TPX = 300, 1e5, ’H2:2 O2:1 N2:3.76’

In this case, the state of the gas has been set equal to the one of a stoichiometric hydrogen-

air mixture at a pressure of 1 bar and a temperature of 300 K.

As an alternative to temperature and pressure, it is possible to set the state using the

following combinations of thermodynamic quantities:

• gas.TD to set temperature and density

• gas.HP to set specific enthalpy and pressure

• gas.UV to set specific internal energy and specific volume

• gas.SP to set specific entropy and pressure

• gas.SV to set specific entropy and specific volume

Once the thermodynamic state has been set, it is possible to extract all the other thermo-

dynamic quantities from the gas object. For example:

h=gas.h

will extract the specific enthalpy.

26



4.1. Simulation Tools

Cantera can also be used to compute the chemical equilibrium of a mixture. For doing

that, the method equilibrate is used. For example, the chemical equilibrium of a gas

mixture at constant pressure and temperature is found in the following way:

gas.equilibrate(’TP’)

Other chemical equilibrium options are:

• equilibrate(’HP’): computes the chemical equilibrium at constant specific en-

thalpy and pressure

• equilibrate(’UV’): computes the chemical equilibrium at constant specific internal

energy and specific volume

• equilibrate(’SV’): computes the chemical equilibrium at constant specific entropy

and specific volume

• equilibrate(’SP’): computes the chemical equilibrium at constant specific entropy

and pressure

In addition to Cantera, the library Shock and Detonation Toolbox (Browne et al., 2023)

has been used. This library consists of a set of functions based on Cantera specifically

developed for solving shock and detonation equations. In particular, the CJ speed of a

mixture can be computed with the CJspeed function, as follows:

U_cj= CJspeed(P1,T1,q,mech)

Where:

• U_cj = CJ speed

• P1 = mixture initial pressure (Pa)

• T1 = mixture initial temperature (K)

• q = string describing the mixture chemical composition

• mech = Cantera mechanism file

The post-detonation conditions are obtained from the function PostShock_eq, which

presents the following syntax:

[gas] = PostShock_eq(U1,P1,T1,q,mech)

Where:

• [gas] = Cantera gas object

• U1 = detonation wave velocity

• P1 = mixture initial pressure (Pa)

• T1 = mixture initial temperature (K)

• q = string describing the mixture chemical composition
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4.2. Detonation maps

• mech = Cantera mechanism file

Another function used from the Shock and Detonation Tolbox is the function sound-

speed_fr, which computes the sound of speed relative to the input gas. It presents the

following syntax:

a = soundspeed_fr(gas)

Where a is the sound of speed and gas is a Cantera gas object.

4.2 Detonation maps

As a preliminary investigation, the post-detonation conditions as a function of different

values of inlet pressure and temperature are explored. This work has been performed

in order to determine if there are any ’more convenient’ inlet characteristics, which can

potentially lead to higher power-plant efficiencies.

The following analysis has been carried out in a Python environment. The thermodynamic

properties and the chemical composition of the post-detonation products are evaluated us-

ing the library ’Cantera’ (Goodwin et al., 2018), while the solution of the detonation

equations is provided by the ’Shock and Detonation Toolbox’ (Browne et al., 2023), which

is a library based on Cantera specifically developed for solving shock and detonation equa-

tions.

First, a stoichiometric mixture of hydrogen and air is considered. The injection pressure

has been varied between 1 and 20 bar, while the range of the inlet temperature is 300-500

K. The post-detonation solutions provided are the ones corresponding to the CJ state, and

the analysis has been carried out with the Cantera gas mechanism file gri30_highT.yaml.

In figure 4.1, the post-detonation temperature as a function of different mixture initial

temperature and pressure is shown.

What is observed is that the highest values of post-detonation temperature are obtained in

correspondence with the maximum values of injection temperature and pressure. There-

fore, post-detonation temperature is increasing for increasing values of injection tempera-

ture and pressure. Anyway, at the same time, it is worth noticing that the post-detonation

temperature is varying by roughly 300 K, for a quite wide range of different inlet condi-

tions. In particular, it is possible to observe that it is quite significantly affected by inlet

pressure, but only slightly influenced by inlet temperature. Therefore, increasing the initial

temperature does not result in significant changes in post-detonation temperature.

Figure 4.2 shows the post-detonation pressure.

In figure 4.2, it is first of all possible to observe that, unlike post-detonation temperature,

which can be considered almost independent from initial conditions, post-detonation pres-

sure is strongly affected by mixture inlet conditions, particularly by inlet pressure. The

higher the inlet pressure, the higher the post-detonation pressure, with values that can

reach up to 320 bar for an inlet value of 20 bar. Another interesting result from figure 4.2 is
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300 350 400 450 500
Initial Temperature (K)

5

10

15

20

In
iti

al
 P

re
ss

ur
e 

(b
ar

) 

Temperature (K)

2920
2960
3000
3040
3080
3120
3160
3200

Figure 4.1: Post-detonation temperature of a stoichiometric hydrogen-air mixture for dif-
ferent values of inlet pressure and temperature
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Figure 4.2: Post-detonation pressure of a stoichiometric hydrogen-air mixture for different
values of inlet pressure and temperature
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4.2. Detonation maps

that post-detonation pressure decreases with the increase of inlet temperature. Therefore,

the highest values of post-detonation pressure are produced by a high inlet pressure and

a low inlet temperature of the mixture.

As a consequence, since post-detonation temperature is almost independent from the initial

temperature, while post-detonation pressure is significantly higher in correspondence with

lower mixture temperatures, the addition of a post-cooler after the compressor, as in power

plant B (figure 3.2), is expected to increase the cycle efficiency compared to power plant

A (figure 3.1).

In figure 4.3, the CJ speed of a stoichiometric hydrogen-air mixture is represented for

different values of mixture inlet temperature and pressure.
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Figure 4.3: CJ speed of a stoichiometric hydrogen-air mixture for different values of inlet
pressure and temperature

It is possible to notice that the CJ speed follows the same trend as the post-detonation

pressure, being higher for high injection pressures and low injection temperatures. Since,

as explained in section 1.2, the CJ speed corresponds almost to the detonation wave speed,

the combustor is expected to operate at a higher frequency in correspondence with higher

values of CJ speed.

Finally, figure 4.4 shows the NOx mass fraction in the post-detonation products of a

stoichiometric hydrogen-air mixture for different values of inlet pressure and temperature.

Figure 4.4 shows that the higher mass fraction value of NOx in the detonation products

is found for high values of inlet temperature and low values of inlet pressure.

In conclusion, the detonation maps have not found a more convenient injection point,

since all the quantities taken into consideration present maximum and minimum values
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Figure 4.4: NOx mass fraction produced by a stoichiometric hydrogen-air mixture for dif-
ferent values of inlet pressure and temperature.

always in correspondence with the corners of the detonation maps. Therefore, it is always

possible to increase or decrease the considered post-detonation conditions by increasing or

decreasing the inlet conditions.

Anyway, the addition of a post-cooler, as in Power Plant B (3.2), is expected to have the

following impacts:

• higher post-detonation pressure

• slightly lower post-detonation temperature

• higher thermodynamic cycle efficiency

• higher combustor operational frequency

• lower NOx emissions

4.3 Rotating detonation combustor 1D model

In this section, a one-dimensional model for predicting outlet temperature and pressure

of a rotating detonation combustor is presented and discussed. The described model is

based on works of Sousa et al., 2017 and Kanda and Inagaki, 2024. The Python code of

the model is reported in section 0.1.

4.3.1 Model description

The model starts with acquiring the following input values:
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4.3. Rotating detonation combustor 1D model

• Mixture injection temperature

• Mixture injection pressure

• Detonation front height

• Combustor Radius

The first two parameters represent the thermodynamic conditions of the mixture before

entering the combustor. In particular, in the case of power plant A, they correspond to

the conditions in point 2 of figure 3.1, which also coincides with the compressor outlet

condition. In the case of power plant B, these values are the ones obtained after the

mixture post-cooling, represented schematically as point 3 of figure 3.2.

Regarding the detonation front height, F. A. Bykovskii, Zhdan, and Vedernikov, 2006

demonstrated that it is in the range of (12 ± 5)λ, with λ being the detonation cell size,

which, for a stoichiometric hydrogen-air mixture, is about 15 mm . As an alternative, if

results from a computational fluid dynamic simulation are known, it is possible to estimate

the detonation height directly from the flow field picture, as in figure 2.2.

In the same way, if known, the combustor radius can be set directly. As an alterna-

tive, F. A. Bykovskii, Zhdan, and Vedernikov, 2006 found that, for a stable operation of

the rotating detonation combustor, the ratio between the detonation front height and the

circumferential length should be in the range 0.14±0.04. Therefore, the combustor circum-

ferential length can be estimated from the detonation front height and, as a consequence,

the combustor radius.

The first step of the model consists of evaluating the CJ speed and the post-detonation con-

dition. For calculating those quantities, the Shock and Detonation Toolbox (Browne et al.,

2023) has been used. In particular, the CJ speed has been evaluated with the CJspeed func-

tion, and the post-detonation conditions are obtained from the function PostShock_eq.

The PostShock_eq function returns a Cantera gas object, from which it is possible to

obtain all the thermodynamic properties as well as the post-detonation chemical compo-

sition of the detonation products at the equilibrium state. The detonation wave velocity

U1, in the case of a planar and ideal detonation, corresponds to the CJ speed. A detailed

description of the numerical methods implemented in these two functions is described in

Browne et al., 2023, as well as simplified analytical expressions derived for an ideal gas

model.

Suddenly, an iterative process to evaluate the mixture injection velocity and the refill-

ing angle is initiated. In figure 4.5, the speed triangle at the inlet of the combustor is

represented, together with the injection refilling zone.

The injection velocity Vinj is assumed to be completely axial, while the detonation wave

speed U is assumed to be completely azimuthal. Since the detonation is presumed to be

ideal, in the wave-fixed reference frame, the mixture is entering the detonation front at a

speed equal to the CJ one Wcj . The angle β between the detonation wave speed U and the

CJ speed Wcj is assumed to be equal to the refilling angle, and only one detonation wave
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4.3. Rotating detonation combustor 1D model

Figure 4.5: Injection refilling zone and speed triangle at the inlet of the combustor (Sousa
et al., 2017)

per cycle is considered. The iterative process starts with guessing the injection velocity.

After that, knowing the CJ speed, the injection refilling angle can be evaluated as:

β = sin−1

(

Vinj

Wcj

)

(4.1)

Since only one detonation wave per cycle is considered, the distance between the two triple

points of figure 4.5 is equal to the combustor circumferential length, 2πR, with R being

the combustor radius.

Therefore, the position of Xref , which is the point where the refilling of the combustor

starts, can be found as:

Xref = 2πR− h

tan(β)
(4.2)

considering a reference system that has its origin in the correspondence of the orthogonal

projection of the first triple point on the horizontal line, with h being the detonation front

height.

The next step consists of evaluating the total pressure in the wave-fixed reference frame

after the detonation front. The static pressure after the detonation, as well as the value

of the specific heat ratio in the post-detonation state, can be extracted from the Cantera

gas object resulting from the PostShock_eq function. The total pressure can then be

evaluated from the isentropic flow equation as follows:

Pt2 = P2

(

1 +
γ2 − 1

2

)

γ2
γ2−1

(4.3)

With P2 being the static pressure and γ2 the specific heat ratio in the post-detonation point.

This expression is valid for an ideal detonation, where the speed of the post-detonation
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4.3. Rotating detonation combustor 1D model

products at the CJ point is exactly sonic and therefore presents a Mach number equal to

1.

The flow field after the detonation front is resolved in an analytical way, as proposed by

Kanda and Inagaki, 2024. In figure 4.6, a schematic representation of all the quantities

considered for the analytical solution is shown.

ϐ
ϐ

Figure 4.6: Schematic representation of characteristic lines after the detonation front
(Kanda & Inagaki, 2024)

After the detonation front, where the sonic point is reached, the flow undergoes an ex-

pansion, which lowers its temperature and especially pressure, and accelerates the flow

from sonic to supersonic in the wave-fixed reference frame. The expansion in this case

is assumed to be isentropic, and the backflow of the detonation products in the injection

manifold is neglected. As it is possible to observe from figure 4.6, two main Prandtl-Meyer

expansion fans turn the flow from an initial angle of β, one to zero degrees and the other

to the angle of the dividing streamline, which is the line that separates the detonation

products just formed from the ones of the previous cycle that crossed the oblique shock.

Anyway, for this analytical solution, the strength of the two expansion fans is considered

to be the same, and the Mach lines of the expansion fans are assumed to be straight lines.

Applying the isentropic flow equation, it is possible to evaluate the Mach number of the

detonation products in the wave-fixed reference frame at the point where the mixture

injection of the following cycle starts, as follows:

Mi =

√

√

√

√

2

γ2 − 1

(

(

Pt2

P1

)

γ2−1

γ2 − 1

)

(4.4)

With P1 being the mixture injection pressure, since mixture refilling can only start if the
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4.3. Rotating detonation combustor 1D model

detonation products reach a pressure equal to the injection one.

Knowing the Mach number of the detonation products at the start of the injection, it is

possible to evaluate the Prandtl-Meyer function at this point with the following formula:

νi =

√

γ2 + 1

γ2 − 1
tan−1

(
√

γ2 − 1

γ2 + 1
(M2

i − 1)

)

− tan−1

(

√

M2
i − 1

)

(4.5)

The Prandtl-Meyer function represents the angle through which you must expand a sonic

flow to obtain a given Mach number.

According to gas dynamic theory, when a flow is subjected to two expansion fans of the

same strength, which are turning it in opposite directions, it will have a final value of the

Prandtl-Meyer function that is double the one caused by a single expansion fan. After

having crossed the two initial expansion fans, the flow also undergoes the reflection of the

expansion waves on the walls, as represented in figure 4.6, before reaching the point where

the mixture injection restarts. Therefore, after crossing the wave reflected on the wall,

the value of the Prandtl-Meyer function doubles again, and the angle ∆ν4, represented in

figure 4.6, can be computed as:

∆ν4 =
νi

4
(4.6)

Knowing the values of ∆ν4, the corresponding Mach number M4 must be evaluated by

reversing the Prandtl-Meyer function in a numerical way or in an analytical way, as de-

scribed by Hall, 1975. The angle µi4 of figure 4.6 represents the Mach angle associated

with M4, and is evaluated as follows:

µi4 = sin−1(M4) (4.7)

By knowing the angles µi4, ν4, the detonation front height h, and with the estimation of

β, it is possible to calculate the position where the refilling of the fresh mixture starts:

Xref =
h

tan(µi4 − (β + ν4))
(4.8)

If the value of Xref is coherent with the one found before, then the iteration ends. If not,

by using the value of Xref obtained from equation 4.8, a new value of the injection angle

β is computed as:

β = tan−1 h

2πR−Xref

(4.9)

With R being the combustor radius. With this new angle, a new value of the injection

velocity is obtained as:

Vinj = Wcjsin(β) (4.10)
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4.3. Rotating detonation combustor 1D model

And the process is started again.

The combustor outlet conditions are computed assuming an axial and sonic (in the labo-

ratory reference frame) flow at the combustor outlet.

The mixture injection velocity, in the laboratory reference frame, presents only an axial

component. This means that there is no angular momentum in the combustor’s bottom

part, and, consequently, angular momentum should be zero also at the combustor outlet.

Therefore, the velocity of the detonation gas products at the outlet of the combustor is

assumed to be only axial. Experiments and more detailed numerical simulations show

that the outlet velocity of a rotating detonation combustor is not purely axial; anyway,

it is observed that some parts of the outlet flow present a circumferential velocity in one

direction and some others in the opposite one. As a consequence, the hypothesis of purely

axial outlet flow results to be acceptable if the average outlet velocity is considered.

The other hypothesis made for evaluating the outlet conditions consists of assuming the

outlet flow to be choked. This has been shown to be representative of a really wide range of

rotating detonation combustor operating conditions. Anyway, simulation results showing

both subsonic and supersonic exit flow are present.

With these two assumptions, the combustor outlet temperature is easily found from the

post-detonation total temperature, which is evaluated as:

Tt2 = T2

(

1 +
γ2 − 1

2

)

(4.11)

With T2 being the post-detonation temperature given by the PostShock_eq function. This

value is relative to the wave-fixed reference frame, in which the post-detonation products

have a sonic speed.

Since to pass from the laboratory reference frame to the wave-fixed one it is necessary to

subtract vectorially the detonation wave tangential velocity U , which is evaluated, with

reference to figure 4.5, as:

U = Wcjcos(β) (4.12)

the outlet velocity in the laboratory reference frame results in being equal to the axial

component of the outlet velocity in the wave-fixed reference frame.

Assuming conservation of energy between the post-detonation conditions and the combus-

tor outlet, the exit temperature is evaluated as:

Te = Tt2 −
1

2cp2
u2e (4.13)

With cp2 being the specific heat at constant pressure of the detonation products and ue

the outlet velocity of the gas in the wave-fixed reference frame.
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In particular, the outlet velocity is formed by its axial and circumferential components.

Therefore:

u2e = u2ea + u2ec (4.14)

The axial component, as discussed before, is equal to the one of the laboratory reference

system, that is assumed to be sonic. It can therefore be replaced with the following

expression:

uea =
√

γ2R2Te (4.15)

With R2 being the gas costant divided for the detonation gas products molar mass.

Also, since the only difference between the two reference systems is the detonation wave

velocity U , it follows that:

uec = U (4.16)

By substituting equations 4.15 and 4.16 in 4.13, the following expression for evaluating

the outlet temperature is found:

Te =
Tt2 − 1

2cp2
U2

1 + 1

2cp2
γ2R2

(4.17)

By knowing the exit temperature Te, the exit velocity can then be evaluated using equation

4.15.

The outlet pressure of the combustor is found by imposing mass conservation and axial

momentum conservation between the combustor inlet and outlet. In particular, knowing

the point where the fresh mixture injection starts Xref , the injection area per unit of

thickness can be computed as:

Ainj = 2πR−Xref (4.18)

Consequently, the inlet mass flow rate is evaluated as:

ṁinj = ρinjVinjAinj (4.19)

To evaluate the inlet axial momentum, a pressure equal to the post-detonation pressure

P2 is assumed to act on the part between the detonation front and the start of the refilling

zone. In reality, the pressure on the lower wall gradually decays from the post-detonation

value to the injection one. Therefore, this assumption can lead to higher values of com-

bustor outlet pressure and pressure gain.
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4.3. Rotating detonation combustor 1D model

The inlet axial momentum is composed of the sum of the contribution of the inlet mass

flow rate, of the injection pressure acting on the injection refilling zone, and of the pressure

acting on the blocked area. The expression to evaluate it is the following:

Fi = ṁinjVinj + P1Ainj + P2Xref (4.20)

Finally, by equating inlet and outlet mass flow rates and axial momentum, the outlet

pressure is found with the following expression:

Pe =
Fi

2πR
− ṁinjuea (4.21)

4.3.2 Advantages and limitations of the model

The presented model is based on the equations of mass conservation and momentum

conservation between the combustor inlet and outlet. Also, the outlet flow is assumed to

be sonic and completely axial in the laboratory reference frame. The main advantages of

this model are:

• Simplicity of implementation

• Execution time

Regarding the simplicity, the model consists of really few equations that are describing

the main features of the rotating detonation combustor, while providing, at the same

time, a good estimation of the combustor average outlet temperature and pressure. As a

consequence, the model results in being both easy to implement and computationally fast,

providing results in a matter of seconds even on an average computer.

This simplicity, anyway, is counterbalanced by the following limitations:

• The model assumes sonic exit flow. Despite this condition having been shown to be

appropriate for a wide range of combustor operating conditions, it does not represent

the totality of the possible cases.

• The model assumes perfectly axial outlet flow. This condition is justified by the

fact that rotating detonation combustors show an exit flow that presents positive

components of circumferential velocity in some points and negatives in others, which

leads to a net swing close to zero. Anyway, also in this case, this condition is not

true for the totality of the cases.

• The model does not consider the effect of the oblique shock wave

• The model does not consider the backflow of the detonation products in the injection

manifold

• The model does not consider the burning by deflagration of the fresh mixture along

the injection slip line, assuming all the fuel to be combusted by detonation

• Injection losses are neglected

• The presented model is suited for just one detonation wave per cycle.
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4.4 Rotating detonation combustor 2D model

In this section, a two-dimensional model for predicting outlet temperature and pressure of

a rotating detonation combustor is presented and discussed. The described model is based

on the work of Sousa et al., 2017. The Python code relative to the 2D model is reported

in section 0.2.

4.4.1 Model description

The input parameters needed for the model are the following:

• Mixture injection total pressure

• Mixture injection total temperature

• Detonation front height

• Combustor Radius

• Combustor axial length

Regarding those quantities, the same considerations reported in section 4.3 are still valid.

The present model is quite similar to the previous one, but, instead of finding the outlet

conditions by imposing an axial sonic outlet gas velocity, the entire post-detonation flow

field is solved with a method of characteristics.

As in the previous model, an iterative process to calculate the combustor injection velocity

is set up as described below.

The model starts by estimating an initial mixture injection velocity Vinj , which, as in

the previous model, is assumed to be completely axial. From this guess value, the static

values of injection pressure and temperature can be found from the stagnation ones with

the following equations:

Tinj = T0 −
1

2

V 2
inj

cp1
(4.22)

Pinj = P0

(

Tinj

T0

)

γ1
γ1−1

(4.23)

With T0 and P0 being the total inlet temperature and pressure respectively, cp1 being the

mixture constant-pressure specific heat and γ1 the mixture specific heats ratio.

By knowing the two static injection thermodynamic properties, the function CJspeed by

the Shock and Detonation Toolbox is used to evaluate the CJ speed. The syntax, inputs,

and output of this function have already been reported in section 4.1.

By reference to figure 4.5, knowing the CJ speed and with the guess value of Vinj , the

refilling angle β can be computed as:
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β = sin−1

(

Vinj

Wcj

)

(4.24)

With Wcj being the CJ speed.

Also in this case, the refilling angle is assumed to be the same as the angle between the CJ

speed and the detonation wave speed U . As in the previous model, only one detonation

wave per cycle is assumed to be present. Therefore, a first estimation of the injection

refilling Xref can be obtained with the following expression:

Xref = 2πR− h

tan(β)
(4.25)

with h being the detonation front height and R the combustor radius.

Suddenly, the post-detonation conditions are evaluated. This is done with the Post-

Shock_eq function from the Shock and Detonation Toolbox. This function has already

been commented in section 4.1. Also in this case, the detonation is assumed to be ideal;

therefore, as input parameter regarding the detonation wave speed, the CJ speed Wcj is

used. In particular, the post-detonation pressure P2, temperature T2 and specific heat ra-

tio γ2 need to be extracted from the Cantera gas object resultants from the PostShock_eq

function, since they will be needed for the following analysis.

Before starting with the resolution of the flow field with the method of characteristics,

the oblique shock angle θshock and the slip line angle δ of figure 4.5 need to be evaluated.

For this model, both the oblique-shock line and slip-line are assumed to be straight lines.

Anyway, while for the oblique-shock line this assumption results in being accurate, for the

slip-line numerical simulations have shown that it presents a curvature.

Sichel and Foster, 1980, proposed an analytical model to evaluate those two angles, which

can also be adapted and used in the case of a rotating detonation combustor. In particular,

their model was presented for analyzing a gaseous detonation bounded by an inert gas,

like, for example, air. The analysis starts by assuming a plane detonation wave, which is

moving at a speed equal to the CJ one in a cloud of mixture and oxidizer, as shown in

figure 4.7.

All the analysis is carried out in the wave-fixed reference frame; therefore, the vector

C of figure 4.7 represents the velocity of the mixture, which is travelling towards the

detonation wave with a speed equal to the CJ one. The interaction of the detonation with

the surrounding bounding layer has the effect of generating the oblique shock line and

the interface line, which separates the inert gas that crossed the oblique shock wave from

the detonation products. The main idea of the model consists in assuming an equilibrium

condition along the interface line. This can be expressed, in a mathematical way, with the

following two expressions:

Pi2 = Pe3 (4.26)
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Figure 4.7: Schematic representation of a plane detonation bounded by an inert gas (Sichel
& Foster, 1980)

δi2 = δe3 = δ (4.27)

In particular, equation 4.26 states that the pressure on both sides of the interface line

must be the same, with Pi2 being the pressure on the side of the inert gas and Pe3 the one

on the side of the detonation products. Equation 4.27 says that the flow direction of the

inert gas along the slip-line must equal the one of the detonation products, with δi2 being

the flow angle of the inert gas, δe3 the one of the detonation products, and δ the slip-line

angle represented in figure 4.7.

Since, in this analysis, the detonation front is assumed to be planar and the fuel is moving

towards the wave front with a speed equal to the CJ one, the pressure reached in the

post-detonation condition, Pe2, will be equal to the CJ pressure. This value of pressure

is present just in the very proximity of the detonation front since, after, the detonation

products are subjects to an expansion process. This expansion process is assumed to

be isentropic, and it is modelled through a Prandtl-Meyer expansion fan. Under those

assumptions, total pressure is conserved, and the static pressure of the detonation products

after the expansion fan, Pe3, can be evaluated from the post-detonation pressure Pe2 with

the following formula:

Pe3 = Pe2

(

1 + γe2−1

2

1 + γe2−1

2
M2

e3

)

γe2
γe2−1

(4.28)

With Me3 being the Mach number of the detonation products after the expansion fan and

γe2 the specific heat ratio of the detonation products, which is assumed to be the same

both in the post-detonation zone and after the expansion fan. In particular, equation 4.28

is expressing the conservation of total pressure between the post-detonation zone and the

end of the Prandtl-Meyer expansion fan, with the knowledge that, in the post-detonation

zone, since the detonation is ideal, the Mach number is equal to 1.
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According to the shock expansion theory, a flow crossing a Prandtl-Meyer expansion fan

is turned by a certain angle δ, which can be computed with the following expression:

δ = ν(M2)− ν(M1) (4.29)

Where ν is the Prandtl-Meyer function, whose value depends on the Mach number of the

flow, and point 1 represents the condition upstream of the expansion fan, while point 2

the one downstream.

The Prandtl-Meyer function has the following expression:

ν(M) =

√

γ + 1

γ − 1
tan−1

(
√

γ − 1

γ + 1
(M2 − 1)

)

− tan−1
(

√

M2 − 1
)

(4.30)

and, in the case of Mach=1, has a value equal to zero. Therefore, the flow angle of the

detonation products after the expansion fan δe3, is related to the Mach number Me3 by

the following equation:

δe3 =

√

γe2 + 1

γe2 − 1
tan−1

(
√

γe2 − 1

γe2 + 1
(M2

e3 − 1)

)

− tan−1

(

√

M2
e3 − 1

)

(4.31)

Since, before the expansion fan, due to the CJ sonic condition, ν(Me2) = 0.

The pressure and the flow angle relative to the inert gas in correspondence with the slip-

line are found by applying the oblique shock equations. In particular, the pressure jump

across an oblique shock is expressed with the following equation:

Pi2

P1

= 1 +
2γi1

γi1 + 1
(M2

i1sin
2(θ)− 1) (4.32)

Where P1 and Pi2 are, respectively, the pressure of the inert gas before and after the

oblique shock, γi1 is the specific heat ratio of the inert gas (assumed to be the same before

and after the oblique shock), Mi1 is the Mach number of the inert gas before the oblique

shock wave in the wave-fixed reference frame, and θ is the oblique shock angle.

Finally, the flow angle of the inert gas δi2 along the interface line is computed using the

following equation:

δi2 = tan−1

(

2cot(θ)
M2

i1sin
2(θ)− 1

M2
i1(γi1 + cos(2θ)) + 2

)

(4.33)

Which expresses the relation between the flow deflection angle after the crossing of the

oblique shock and the angle of the oblique shock inclination.

By solving equations 4.26, 4.27, 4.28, 4.31, 4.32 and 4.33 simultaneously, the values of the

unknowns Pi2, Pe3, δi2, δi3, Me2 and θ can be found.
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Applying the analytical model developed by Sichel and Foster to the case of a rotating

detonation combustor, with reference to the nomenclature of figure 4.5, the following

equations are obtained:

P3 = P2′ (4.34)

δ3 = δ2′ = δ (4.35)

P3 = P2

(

1 + γ2−1

2

1 + γ2−1

2
M2

3

)

γ2
γ2−1

(4.36)

δ3 =

√

γ2 + 1

γ2 − 1
tan−1

(
√

γ2 − 1

γ2 + 1
(M2

3
− 1)

)

− tan−1

(

√

M2
3
− 1

)

(4.37)

P2′

P1′
= 1 +

2γ1′

γ1′ + 1
(M2

1′sin
2(θshock)− 1) (4.38)

δ2′ = tan−1

(

2cot(θshock)
M2

1′
sin2(θshock)− 1

M2
1′
(γ1′ + cos(2θshock)) + 2

)

(4.39)

The difference between the case for which the model was developed and a rotating detona-

tion combustor consists in the fact that, in the latter case, the detonation is not bound by

an inert gas, but from the detonation products of the previous cycle. In the case studied

by Sichel and Foster, both the fuel-oxidizer mixture and the inert gas can be assumed to

be at ambient condition, and, consequently, the value of Mi1 can be evaluated as:

Mi1 =
C√

γe1Re1T1
(4.40)

The same principle is not applicable to the case of a rotating detonation combustor, because

the detonation products of the previous cycle present a temperature way much higher than

the one of the fresh injected mixture. Since the value of the detonation products at the

end of the cycle is not known a priori, the value of M1′ consists of an additional unknown.

In order to evaluate it, the pressure of the detonation products, before the crossing of the

oblique shock wave, is assumed to match the mixture injection pressure. The expansion

from the post-detonation pressure P2 to the injection one is assumed to be isentropic, and,

consequently, the temperature of the detonation products at the end of the cycle can be

evaluated as:

T1′ = T2

(

P1′

P2

)

γ2−1

γ2

(4.41)
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With T2 being the CJ temperature.

Once the value of T1′ is known, M1′ can be evaluated, and equations from 4.34 to 4.39 can

be solved in order to find the oblique shock angle and the slip-line angle.

At this point, all the quantities required for the application of the method of characteristics

are known, and the solution of the flow field can start.

The method of characteristics consists of a mathematical technique used for solving partial

differential equations. In particular, in the case of a two-dimensional, nonviscous, and

irrotational flow, the equation of the flow motion has the following form (Liepmann and

Roshko, 2001):

(u2x − a2)
∂ux

∂x
+ uxuy

(

∂ux

∂y
+

∂uy

∂x

)

+ (u2y − a2)
∂uy

∂y
= 0 (4.42)

∂uy

∂x
− ∂ux

∂y
= 0 (4.43)

Where x and y represents the two spatial coordinates, ux the flow speed in the x direction,

uy the flow speed in the y direction, and a the speed of sound.

These equations present different solutions between the subsonic and supersonic cases. In

particular, if:

u2x + u2y

a2
< 1 (4.44)

and, as a consequence, the flow is subsonic, equation 4.42 results in being of the elliptic

type, and the application of the method of characteristics is not possible.

For supersonic cases, and, therefore, when

u2x + u2y

a2
> 1 (4.45)

equation 4.42 results in being hyperbolic, and a numerical solution with the method of

characteristics can be found.

Therefore, the method of characteristics can be used to solve the flow field of a rotating

detonation combustor only in the wave-fixed reference frame and only in the case of ideal

detonation, where the detonation products have a speed exactly sonic. The two expansion

fans present after the detonation front will then accelerate the flow from sonic to supersonic

while, at the same time, reducing its temperature and pressure.

A hyperbolic equation is characterized by the presence of some particular directions, called

characteristic lines. Along those characteristics lines, the dependent variables always sat-

isfy a certain relation, which is called compatibility equation.

In the case of a supersonic flow with the previously made assumption, the characteristic

lines present the two following directions:
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(

dy

dx

)

C+

= tan(θ + µ) (4.46)

(

dy

dx

)

C−

= tan(θ − µ) (4.47)

Where θ represents the flow angle and µ is the Mach angle, which is a function of the flow

local Mach number and is evaluated with the following expression:

µ = sin−1

(

1

M

)

(4.48)

Therefore, for every point in the space, two characteristic lines can be distinguished, one

with a positive and one with a negative slope. In particular, the positive-sloped charac-

teristic line is called C+, while the other one is referred to as the characteristic line C
−
. A

representation of the two characteristic lines of a generic point A is shown in figure 4.8

Figure 4.8: Representation of the two characteristic lines of a generic point A (Fernandes
et al., 2023)

Regarding the compatibility equations, along a C+ characteristic line, the following relation

is always valid:

θ − ν(M) = K+ (4.49)

Where ν(M) is the value of the Prandtl-Meyer function, which depends on the local Mach

number according to relation 4.30, and K+ represents a constant value.

Along a C
−
characteristic, the following compatibility equation is always satisfied:
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θ + ν(M) = K− (4.50)

Where K− is a constant value.

The method of characteristic computational method is based on the idea represented in

figure 4.9

Figure 4.9: Representation of the characteristic network for three general points (Zucrow
& Hoffman, 1977)

Starting from two points in which Mach number, spatial coordinates, and flow angle are

known, with the method of characteristics it is possible to evaluate those quantities in a

point correspondent to the intersection of a C+ line of one of the known points with the

C
−
line of the other known one. With reference to figure 4.9, the known points are 1 and

2. It is possible to notice that points 1 and 4 lay on the same C
−
characteristic; therefore,

it is possible to say that:

θ1 + ν1 = θ4 + ν4 = K−

1
(4.51)

At the same time, points 2 and 4 belong to the same C+ characteristic line, and as a

consequence:

θ2 − ν2 = θ4 − ν4 = K+
2

(4.52)
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So, by solving equations 4.51 and 4.52, the flow angle and the Prandtl-Meyer function in

point 4 are obtained as follows:

θ4 =
K−

1
+K+

2

2
(4.53)

ν4 =
K−

1
−K+

2

2
(4.54)

By reversing the Prandtl-Meyer function (equation 4.30), it is possible to obtain the value

of the Mach number in point 4. Once this value is knonw, the Mach angle µ4 can also be

evaluated with equation 4.48.

Now, the spatial coordinates of point 4 need to be determined. It is important to mention

that, as illustrated in figure 4.9, the characteristic lines are not perfectly straight. However,

when the distance between the two known points and the unknown point is sufficiently

small, these curves can be reasonably approximated using straight-line segments. This

approximation, while practical for computational purposes, is responsible for introducing

some degree of error in the solution. To mitigate this error and improve accuracy, the

segments are computed by considering average values between the known points and the

unknown point, as expressed by the following formulas:

y4 − y2

x4 − x2
= tan

(

θ4 + θ2

2
+

µ4 + µ2

2

)

(4.55)

y4 − y1

x4 − x1
= tan

(

θ4 + θ1

2
− µ4 + µ1

2

)

(4.56)

By solving simultaneously equations 4.55 and 4.56, the spatial coordinates of point 4 are

obtained. Then, once all the quantities of point 4 are known, the two characteristic lines

C+ and C
−
can be drawn starting from point 4, which will then cross other characteristic

lines from other known points, creating a characteristics net.

In the case of the rotating detonation combustor, the method of characteristics is initiated

by the two Prandtl-Meyer expansion fans that take place just after the detonation front.

In particular, in the wave-fixed reference frame, the upper one is turning the detonation

products from their initial flow angle β to a final flow direction that will have the same

inclination as the interface line, presenting an angle equal to β + δ. Since backflow of the

detonation products in the injection manifold is not considered in this model, in the part

between the detonation front and the start of the mixture injection, the lower surface is

assumed to behave like a wall. Therefore, the lower expansion fan is assumed to turn the

flow from its initial angle β to a final flow direction of zero degrees, which corresponds to

the horizontal slope of the wall of the lower surface.

For each expansion fan, the total turning angle is divided into n parts, such as:
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n
∑

i=0

δi = δ (4.57)

For each infinitesimal angle δi, the corresponding quantities necessary for the method

of characteristics, such as the Prandtl-Meyer function, Mach number, and Mach angle,

are evaluated. The Mach lines produced from the upper expansion fan are treated as

C
−

characteristic lines, and the ones from the lower expansion fan are treated as C+

characteristic lines.

The characteristic network is then created, as shown in figure 4.10.
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Figure 4.10: Representation of the characteristic network for the upper and lower expan-
sion fans

In order to evaluate the pressure and temperature along the flow field, the total pressure

and total temperature after the detonation front in the wave-fixed reference frame need to

be computed. The total pressure is obtained from the following equation:

Pt2 = P2

(

1 +
γ2 − 1

2

)

γ2
γ2−1

(4.58)

While the total temperature is evaluated with the following expression:

Tt2 = T2

(

1 +
γ2 − 1

2

)

(4.59)
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With the exception of the zone between the oblique shock line and the interface slip line,

pressure and temperature are evaluated by assuming that the expansion of the detonation

products is isentropic and, consequently, total properties are conserved. The pressure

is therefore evaluated, in the points of intersection of two characteristic lines, with the

following expression:

P =
Pt2

(

1 + γ−1

2
M2

)
γ

γ−1

(4.60)

Where M represents the local Mach number, obtained from the solution of the method

of characteristics. Regarding the specific heat ratio γ, due to the significant change of

temperature between the detonation front and the end of the cycle, an average value

between those two points has been used.

In the same way, the temperature is computed as:

T =
Tt2

1 + γ−1

2
M2

(4.61)

Specific boundary conditions are imposed on the interface slip line, on the lower surface

between the detonation front and the start of the mixture injection point and on the

injection slip line.

On the interface line, the flow angle is imposed to be equal to the interface line inclination

and, therefore, equal to β + δ. Since the interface line is located in an upper position

compared to the internal points of the flow field, it will intersect a C+ characteristic line

passing through the closest internal point, as schematically represented in figure 4.11.

Figure 4.11: Schematic representation of a C+ characteristic line in the case of an upper
wall (Kyle Niemeyer, n.d.)

The interface slip-line is therefore treated as a wall, and the flow along it is assumed to have

the same direction as the wall slope. In this case, point 1 is the known one, while point 2
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has to be determined. By knowing that both points lay on the same C+ characteristic and

by knowing the flow angle in point 2, the value of the Prandtl-Meyer function in point 2

can be computed as:

ν2 = θ2 − θ1 + ν1 = δ + β − θ1 + ν1 (4.62)

Once the value of the Prandtl-Meyer function in point 2 is known, it is possible to com-

pute the corresponding Mach number and, consequently, the associated Mach angle with

equation 4.48. Then, spatial coordinates of point 2 can be computed with equations 4.55

and 4.56, as well as pressure and temperature, respectively, using equations 4.60 and 4.61.

Once all the quantities of point 2 are known, a C
−
characteristic line can be drawn from

this point in order to proceed with the solution of the method of characteristics.

In an analogous way, the boundary condition on the lower surface is imposed. In this case,

anyway, since no backflow in the injection manifold is considered, the flow is assumed to

have an angle of zero degrees. The other difference with the previous case consists in the

fact that this time the closest internal point and the point on the lower surface line will

belong to the same C
−
characteristic. Therefore, the value of the Prandtl-Meyer function

on the lower wall is computed as:

ν2 = −θ2 + θ1 + ν1 = θ1 + ν1 (4.63)

Also in this case, once the value of the Prandtl-Meyer function is known, all the other

quantities, such as Mach number, Mach angle, spatial coordinates, temperature, and pres-

sure, can be evaluated. After all the quantities are known, a C+ characteristic line can

be drawn, starting from this new point, in order to continue with the creation of the

characteristic network.

In particular, this boundary condition is imposed on the lower surface until the value of the

pressure, computed with equation 4.60, results in being higher than the mixture injection

pressure Pinj . Once the pressure decays until this value, injection of the fresh mixture

can begin. It is important, at this point, to save the horizontal spatial coordinates of the

point where this happens, since this corresponds to the computed Xref , which must later

be compared with the estimated one from equation 4.25. In particular, since it is quite

unlikely that the evaluated pressure on the lower surface will perfectly match the injection

pressure Pinj , the value of Xref is obtained by interpolation between the last point where

P > Pinj and the first one where P < Pinj .

The injection slip-line is assumed to be a straight line, and it is obtained by connecting

the point where the refilling of the fresh mixture starts, Xref , with the detonation front

height of the next cycle, which is considered to be always equal to h.

Along this line, the boundary condition imposed is that the pressure of the flow is equal

to the injection pressure. As in the case of the lower wall surface, the point on the line

and the closest internal point will belong to the same C
−
characteristic line. By imposing
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the pressure to be equal to the injection one, by reversing equation 4.60, the value of the

Mach number can be computed as:

M2 =

√

√

√

√

2

γ − 1

(

(

Pt2

Pinj

)
γ−1

γ

− 1

)

(4.64)

Once the Mach number is known, the value of the Prandtl-Meyer function can be evaluated

with 4.30. After its evaluation, by knowing that the two points lay on the same C
−

characteristics, the flow angle can be computed as:

θ2 = θ1 + ν1 − ν2 (4.65)

With 2 being the point on the injection slip-line and 1 the closest point belonging to the

internal flow field. Also in this case, all the missing quantities can be evaluated, and

another C+ characteristic line can be drawn starting from the point on the injection slip

line.

Since, unlike what happens in other computational methods, in the method of character-

istics the grid is not defined a priori but is constructed simultaneously with the solution

procedure, it is really unlikely that the points found with the intersection of the charac-

teristic lines will lie exactly on the combustor outlet line or combustor oblique shock line.

Therefore, to evaluate the outlet conditions, as well as conditions on the oblique shock line,

the solution of the flow field is continued also slightly outside of the combustor physical

borders, as represented in figure 4.12.

In figure 4.12, point 1 represents the closest point of the characteristic network to the

combustor outlet line. Point 2 also belongs to the characteristic network, but it is located

outside of the combustor physical domain. Finally, point 3 does not belong to the charac-

teristic network, but its position corresponds to the intersection of the C+ characteristic

line connecting points 1 and 2 and the combustor outlet line.

In order to evaluate pressure and temperature at the combustor outlet, the following

procedure is adopted. Since they both belong to the characteristic net, all the quantities

in points 1 and 2 are known. The slope of the C+ line connecting the two points can

be found from equation 4.56. At this point, by knowing the combustor axial length L,

it is possible to find the spatial coordinate of point 3 by solving simultaneously the two

following equations:

y3 = L (4.66)

y3 = y1 + SlopeC+
(x3 − x1) (4.67)

Once y3 and x3 are known, the distance of point 3 with the other two points can be

evaluated with the two following expressions:
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Figure 4.12: Representation of the characteristic net in a zone close to the combustor outlet
line

D23 =
√

(x3 − x2)2 + (y3 − y2)2 (4.68)

D13 =
√

(x3 − x1)2 + (y3 − y1)2 (4.69)

Where D13 is the distance between point 1 and point 3, and D23 the one between point 2

and point 3.

By assuming the flow angle to change linearly between points 1 and 2, the flow angle in

point 3 is evaluated as:

θ3 =

(

1− D13

D12

)

θ1 +

(

1− D23

D12

)

θ2 (4.70)

Where D12 is the distance between points 1 and 2.

Then, since point 3 also belongs to a C+ characteristic line, the value of the Prandtl-Meyer

function in this point is computed as:

ν3 = θ3 − θ1 + ν1 (4.71)

At this point, the Mach number can be computed by reversing the Prandtl-Meyer function,

and temperature and pressure can be computed with equations 4.61 and 4.60.

52



4.4. Rotating detonation combustor 2D model

The same procedure is applied to evaluate the points on the oblique shock line, with the

difference that equation 4.66 is substituted with the equation of the oblique shock line:

y3 = y1 + tan(θshock + β)(x3 − x1) (4.72)

Then, considering all the points along the oblique shock line, an average value of the Mach

number, pressure, and temperature obtained among them is evaluated. If the values are

in agreement with the estimated ones, the solution of the model can proceed. Otherwise,

another iteration is made, where the values of the average Mach number and pressure are

used to solve equations from 4.34 to 4.39. Then, the flow field is solved again with the

method of characteristics, but this time with the new values obtained for the oblique shock

angle θshock and interface line angle δ . The process is repeated until the value of the Mach

number and the pressure at the oblique shock line are in agreement with the one obtained

in the previous iteration.

Once those conditions are satisfied, the solution procedure continues by confronting the

obtained value of the fresh mixture injection starting point, Xref , with the estimated one.

If the two values are in agreement, it is possible to proceed with the next part. If not,

based on the value of Xref obtained from the solution of the method of characteristics, a

new value of the injection angle β is evaluated as:

β = tan−1

(

h

2πR−Xref

)

(4.73)

With h being the detonation front height and R the combustor radius.

Then, based on the new value of β, a new injection velocity is computed as:

Vinj = Wcjsin(β) (4.74)

And the full process is started again and iterated until the predicted value of Xref is in

agreement with the one obtained from the method of characteristic solutions.

The final part of the model consists in evaluating the outlet condition in the zone between

the oblique shock line and the interface line. It is in fact not possible to solve this part

with the method of characteristics proposed above due to the entropy change introduced

by the oblique shock, which is in contrast with the assumption of isentropic expansion. In

order to evaluate the outlet conditions in this zone, the oblique shock equations are used.

The value of Mach number, pressure, and temperature of the detonation products before

the oblique shock are obtained from the solution of the method of characteristics, while

the detonation products after the oblique shock are assumed to have a flow angle equal to

the one of the interface line, as proposed in Sousa et al., 2017. Therefore, for each point,

the pressure after the oblique shock is computed as:

PPost−Shock = P
2γM2sin2(s)− (γ − 1)

γ + 1
(4.75)
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4.4. Rotating detonation combustor 2D model

Where P and M are respectively the values of pressure and Mach number obtained from

the method of characteristics, and s is the oblique shock angle relative to the flow angle

before the oblique shock, which can be evaluated as:

s = θshock + β − θ (4.76)

Where θ is the angle of the flow before crossing the oblique shock, and is obtained from

the solution of the method of characteristics.

The temperature after the oblique shock is given by the following formula:

TPost−Shock = T
[2γM2sin2(s)− (γ − 1)][(γ − 1)M2sin2(s) + 2]

(γ + 1)2M2sin2(s)
(4.77)

And, finally, the Mach number after the oblique shock is evaluated from:

M2
Post−Shocksin

2(s− a) =
(γ − 1)M2sin2(s) + 2

2γM2sin2(s)− (γ − 1)
(4.78)

Where a is the deflection angle, caused by the oblique shock, relative to the upstream flow

direction. This angle is equal to:

a = δ + β − θ (4.79)

4.4.2 Summary of the algorithm

In this section, the algorithm used is summarized. The model starts with acquiring the

input parameters, which are total inlet pressure, total inlet temperature, detonation front

height, combustor axial length and combustor radius. As an alternative to total inlet

conditions, the static inlet conditions, if known, can also be used, with the difference that

in the first case the system will stabilize at a certain value of injection velocity, which will

then determine the value of the static injection conditions. In the latter case, the static

injection condition will be held constant, and therefore, the value of the found injection

velocity will determine the value of the total inlet condition corresponding to the stabilized

system.

The model then proceeds with a first guess of the injection velocity, which, in case total

conditions are used, sets the values of the corresponding inlet temperature and pressure.

Once those two quantities are known, the Cj speed and the post-detonation conditions can

be evaluated, and consequently, a first estimation of the point where the refilling of the

fresh mixture starts, Xref , can be performed.

For the first iteration, it is also necessary to estimate the values of temperature, pressure

and Mach number before the oblique shock wave in order to perform the computation of

the oblique shock angle and interface slip line angle. Those two angles are computed with

an adaptation of the model proposed by Sichel and Foster, 1980.

54



4.5. Validation of the models

After these angles are known, the flow field can be solved in the wave-fixed reference frame

with the method of characteristics. Then, the results obtained are used to evaluate a

new value of temperature, pressure and Mach number before the oblique shock line. If

those results are in agreement with the one of the previous cycle, the solution can proceed.

Otherwise, the newly obtained quantities are used for performing a new computation of

the oblique shock angle and interface slip line angle.

Once this loop is solved, it is necessary to confront the estimated value of Xref with the

one obtained from the method of characteristics. If the two values are in agreement, the

algorithm can continue with its last part, which consists of evaluating the outlet conditions

in the zone between the oblique shock line and the interface line. Otherwise, based on the

obtained value of Xref from the method of characteristics, a new injection velocity has

to be computed and used to restart the whole process. A schematic representation of the

algorithm flow chart is shown in figure 4.13.

4.4.3 Advantages and limitations of the model

The presented model has the main advantage that, compared to a computational fluid

dynamic (CFD) simulation, it can provide a quite accurate solution of the flow field and

of the combustor outlet conditions in a much shorter computational time. In fact, while

a CFD simulation can take several hours to provide the results, this algorithm just needs

a couple of minutes with a standard computer. This fact makes that model perfectly

suitable for thermodynamic cycle analysis, where lots of different inlet conditions have to

be studied in order to maximize the cycle efficiency.

At the same time, this model presents the following limitation:

• The method of characteristics, with the assumption of straight characteristic lines,

intrinsically introduces some errors in the flow field solution

• Since the method of the characteristics is valid only for supersonic flow field, it can be

used only in the case of an ideal detonation, where the detonation products presents

a sonic speed in the wave-fixed reference frame, which is then accelerated by the

expansion fans

• Injection losses are neglected

• Backflow of the detonation products in the manifold is not considered

• Deflagration along the injection slip-line is not modeled, assuming all the mixture to

burn by detonation

• The present model is suited for only one detonation wave per cycle, but adaptation

with more than one wave is possible

4.5 Validation of the models

In this section, a comparison between the presented 2D model and the results from Sousa

et al., 2017, on which the model is based, is firstly presented. Then, a comparison of the
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Figure 4.13: Schematic representation of the algorithm flow chart
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total outlet pressure and temperature profiles estimated with the two models is confronted

with results from the computational fluid dynamic (CFD) simulation performed also by

Sousa et al., 2017.

Figure 4.14 represents the characteristic network obtained by Sousa et al., 2017, while

figure 4.15 shows the final characteristics network obtained from the 2D model presented

in this thesis.

Figure 4.14: Characteristic network obtained from (Sousa et al., 2017)

0.00 0.25 0.50 0.75 1.00
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0.2

Figure 4.15: Characteristic network resulting from the 2D model presented in section 4.4

As it is possible to notice, one main difference is observable in the zone above the injection

slip-line. In this area, in figure 4.14, the characteristic lines are showing a divergent

behavior that, according to the shock expansion theory, symbolizes an expansion of the

flow. On the other hand, in figure 4.15, the lines tend to converge, which is a sign that

the flow is undergoing a compression. This phenomenon derives from the imposition of

the injection pressure along the injection slip-line, which, as a consequence, prevents the

detonation products from further expanding, showing the same behaviour as a compression.

Results obtained from the two presented combustor models have been compared with the

CFD simulation performed in Sousa et al., 2017.

In the CFD simulation, a hydrogen-air stoichiometric mixture is injected in the combustor

at a total pressure of 8 bar and a static temperature of 293 K. The combustor presents a

radius equal to 0.153 m and an axial length of 0.2 m. The CFD solution has been per-

formed with the software OpenFoam, using a two-dimensional unsteady Reynolds averaged

Navier–Stokes solver. In addition to that, to simulate deflagration-to-detonation transi-

tions of hydrogen-air, the solver ddtFoam, developed at TU Munich by Ettner, has been
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4.5. Validation of the models

used. In particular, this code uses a second-order accurate Harten-Lax-Van Leer-Contact

Riemann Solver, and the turbulent closure was achieved with the k-omega-SST model.

The rotating detonation combustion test case was performed on a 2D cylindrical numeri-

cal domain with a uniform mesh spacing of 1 mm in x, y and z directions, resulting in a

computational domain of 1.2 million cells. The Courant– Friedrichs–Lewy was kept below

0.3 for stability reasons, which resulted in a time step of approximately 5× 10−8s. When

the pressure close to the inlet exceeds the total injection pressure, the solver switched to

supersonic outlet conditions allowing for reverse flow into the inlet. Periodic detonation

was achieved after 15 detonation cycles.

The same geometrical properties have been used as input parameters for the two models,

together with a total inlet pressure of 8 bar and a total inlet temperature of 330 K. The

detonation front height has been set to the same value obtained from the CFD simulation,

which corresponds to 92 mm.

In Sousa et al., 2017 the results reported are the total outlet pressure and total outlet

temperature, both relative to the laboratory reference system. It is therefore necessary to

convert the static outlet values obtained from the two models to the total ones.

In the case of the 1D model, the process is straightforward, since the value of the outlet flow

velocity in the laboratory reference frame is already a known value. Therefore, referring

to the nomenclature used in section 4.3, and assuming the detonation products to behave

as an ideal gas, the value of the total pressure at the combustor outlet is evaluated as:

Pt1D = Pe

(

1 +
γ2 − 1

2

u2ea
γ2R2Te

)

γ2
γ2−1

(4.80)

Always using the isentropic flow equations, the value of the total outlet temperature of

the 1D model is given by:

Tt1D = Te

(

1 +
γ2 − 1

2

u2ea
γ2R2Te

)

(4.81)

Regarding the 2D model, the outlet conditions are provided by the solution of the method

of characteristics, which is relative to the wave-fixed reference frame. Therefore, it is

necessary to convert the obtained data in the laboratory reference frame.

The first step consists of evaluating the speed of sound at every point of the outlet. For this

purpose, the function soundspeed_fr from the Shock and Detonation ToolBox (Browne

et al., 2023) has been used. In particular, this function requires as an input a Cantera

(Goodwin et al., 2018) gas object, and provides the corresponding speed of sound as an

output. For each point of the outlet, a cantera gas object has been created using the

gri30_highT.yaml model, and initialized with the values of pressure and temperature

relative to the point taken in consideration. The chemical composition of the detonation

products is assumed to be fixed for all the expansion process, and therefore, for each point,

has been set equal to the one of the Cantera gas object resultant from the PostShock_eq

function.
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4.5. Validation of the models

A simple alternative can consist of assuming ideal gas behavior at the combustor outlet

and computing the sound speed with the classic formula:

c =
√

γRT (4.82)

Where T has to be substituted with the value of the temperature of the considered outlet

point obtained from the method of characteristics.

Once the sound speed in every point has been evaluated, the flow speed in the wave-fixed

reference frame can be computed by using the Mach number definition as:

Wi = Mici (4.83)

WhereMi is the Mach number, obtained from the solution of the method of characteristics,

of a general outlet point i, and ci its sound speed.

In order to pass from one reference system to the other one, it is necessary to add or

subtract vectorially the speed of the detonation wave U . The latter is assumed to be

constant, and, according to figure 4.5, can be evaluated as:

U = Wcjcos(β) (4.84)

Since U is purely tangential, in each outlet point, the flow angle obtained from the method

of characteristics, θi, represents the angle between the detonation wave speed U and the

flow speed in the wave-fixed reference frame Wi. Therefore, the speed in the laboratory

reference system is evaluated as:

Vi =
√

V 2
x + V 2

y (4.85)

Where

Vx = |Wicos(θi)− U | (4.86)

And

Vy = Wisin(θi) (4.87)

Finally, the Mach number in the laboratory reference system can be computed as:

Milab =
Vi

ci
(4.88)

and total pressure and temperature are evaluated with the isentropic flow equations:
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Pt2Di
= Pi

(

1 +
γ2 − 1

2
M2

ilab

)

γ2
γ2−1

(4.89)

Tt2Di
= Ti

(

1 +
γ2 − 1

2
M2

ilab

)

(4.90)

In figure 4.16, the comparison between the total outlet pressure profiles of the 1D model,

2D model and CFD simulation is shown. Figure 4.17 is representing instead the three

total temperature profiles.
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Figure 4.16: Comparison of the total outlet pressure profiles obtained from the two models
and the CFD simulation of Sousa et al., 2017

As expected, the 1D model only returns one value of total temperature and pressure, and

is therefore not able to reproduce the quantity oscillation along the azimuthal coordinate.

Anyway, as it is possible to observe, the single provided value clearly overestimates the

outlet pressure, but it is representative of the average combustor outlet temperature.

On the other hand, the 2D model is able to represent the spatial variation. In particular,

it is perfectly suitable to reproduce the peak values as well as the physical behaviour of the

outlet flow, such as the quantity decay and the small ’step’ increase towards the end of the

cycle. Anyway, it is clear that the decay predicted by the model results in being way much

slower than the one shown in the CFD simulation. As a consequence of this, also the flow

’recompression’ at the end of the cycle appears to have a certain delay with respect to the

one predicted by the CFD solution. In fact, this phenomenon is a consequence of the fresh

mixture injection that, as explained before, prevent the detonation products from further
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Figure 4.17: Comparison of the total outlet temperature profiles obtained from the two
models and the CFD simulation of Sousa et al., 2017

expanding. Since the decay of pressure is faster in the CFD simulation, the detonation

products are expected to match the injection pressure earlier, and, as a consequence, the

fresh mixture injection will start sooner. A possible reason to explain the slow decay of

the model could be the hypothesis of isentropic expansion from the post-detonation front.

Also, while for the total pressure the 2D model seems able to quite accurately reproduce

the CFD profile, it is clearly less precise with the reproduction of temperature. The same

phenomenon is also observable in the original version of the model, (Sousa et al., 2017),

whose results are shown in figure 4.18.

Figure 4.18: Comparison between the result obtained in Sousa et al., 2017 and the CFD
simulation of Sousa et al., 2017
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Of course, both the presented 2D model and the original model are compared to the same

CFD simulation. Also, as expected from the comparison of figures 4.14 and 4.15, it is

possible to notice that, in figure 4.18, the final ’recompression’ of the flow is not present.

While, as it is shown in figure 4.17, the 2D model overestimates the outlet temperature, the

values provided from the 1D model result in being very close to the arithmetical average

(which, as it will be explained later, is lower than the mass flux average) of the CFD

results, and as a consequence, it may underestimate the combustor outlet temperature.

On the other hand, the 1D model clearly overestimates the combustor outlet pressure,

while it is quite well approximated from the 2D model.

In conclusion, it is important to remember that the 1D model takes only a few seconds to

provide the results, and the 2D model usually takes around 2 minutes. Nevertheless, they

have proven to provide comparable results with a CFD simulation, which usually takes

several hours to be completed. Therefore, the two presented models have been shown to

be totally suitable if a quick estimation of the combustor outlet condition is needed, such

as in the context of thermodynamic cycle analysis.

As a consequence, the two models will be used to perform the efficiency evaluation of the

two proposed power plant configurations 3.1 and 3.2.
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5. Results

5.1 Comparison of the two models

In this section, a comparison between the outlet conditions predicted by the 1D model and

by the 2D model is shown.

The same parameters described in the validation section 4.5 have been used to perform

the models comparison. In figure 5.1, the static pressure profile obtained at the combus-

tor outlet using the 2D model is shown. Figure 5.2 represents instead the outlet static

temperature.
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Figure 5.1: Combustor outlet pressure profile obtained from the 2D model

Anyway, in the thermodynamic cycle analysis of the power plants represented in figure

3.1 and figure 3.2, the turbine is treated with the standard thermodynamic approach,

and, as a consequence, the thermodynamic state corresponding to the turbine inlet point

is characterized by a single value of temperature and pressure. Therefore, from the 2D

model, the value of the mass flux averaged temperature and pressure are extracted and

used to determine the turbine inlet thermodynamic state.

In particular, the mass flux averaged temperature is computed with the following equation:

Pavg =

∑n
i=0

ρiVyiPi
∑n

i=0
ρiVyi

(5.1)

Where the pedix i is relative to the considered outlet point, n is the total number of outlet
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Figure 5.2: Combustor outlet temperature profile obtained from the 2D model

points, ρi is the density of the considered point i, Vyi its axial velocity in the laboratory

reference system and Pi its pressure.

The density ρi can be evaluated using a Cantera gas object initialized with the known

value of temperature and pressure, with a procedure analogous to the one described in

section 4.5 regarding the speed of sound. As an alternative, the equation of state of ideal

gases can be used. The procedure to evaluate Vyi is also explained in section 4.5.

In the same way, the mass flux averaged temperature is evaluated as:

Tavg =

∑n
i=0

ρiVyiTi
∑n

i=0
ρiVyi

(5.2)

Regarding the 1D model, the single returned values of pressure and temperature will be

directly used to characterize the turbine inlet point.

Given the same initial conditions as the ones described in section 4.5, the two models have

provided the results reported in table 5.1.

1D model 2D model

Outlet temperature [K] 1737.17 1999.58
Outlet pressure [bar] 17.06 10.29

Table 5.1: Comparison of temperature and pressure provided from the two models with
the initial conditions reported in 4.5
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As expected, since also the axial flow speed and the outlet density in the 2D model present

a similar profile to the one of pressure and temperature reported in figures 5.1 and 5.2,

the mass flux averaged values, reported in the 2D model, result in being higher than

the arithmetical values. Also, the 1D model returns values relative to the turbine inlet

temperature that are lower than the one obtained from the 2D model, but shows higher

values of combustor outlet pressure.

5.2 Power Plant A

In this section, the results obtained from the efficiency evaluation of the power plant A,

shown in figure 3.1 are reported. Also, the efficiency of the power plant has been compared

to that of a standard ideal Joule Brayton cycle under different circumstances.

In this analysis, the detonation front height has been estimated using the lower limit of

the Bykowskii empirical correlation, which is:

h = 7λ = 0.1057 m (5.3)

With λ being the detonation cell width, that, for a hydrogen-air stoichiometric mixture,

is 15.1 mm.

The combustor radius has been computed starting from another empirical correlation found

always from F. A. Bykovskii, Zhdan, and Vedernikov, 2006. According to this relation,

to ensure a stable operation of the rotating detonation combustor, the ratio between the

detonation front height and the combustor circumferential length must be inside the range

0.10-0.18. Also in this case, the lower limit has been chosen, and the combustor radius has

been computed as:

R =
h

0.1× 2π
≃ 0.168 m (5.4)

In the case of the 2D model, the combustor axial length has been set equal to 0.2 m.

The compressor is treated as ideal, with a value of isentropic efficiency equal to 1. The

mixture is assumed to be premixed, and enters the compressor at a pressure of 1 bar and

a temperature of 300 K. The specific work of the compressor has been computed as:

Wcompressor = h2 − h1 (5.5)

With h being the enthalpy of the flow in point 1 and 2 of figure 3.1.

The thermodynamic properties of the various points have been evaluated by using Cantera

(Goodwin et al., 2018).

The study has been performed at different values of compressor pressure ratio (P2

P1
of

figure 3.1), ranging from 1 to 10. To estimate the rotating detonation combustor outlet
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conditions, the two models previously described have been used. In case of the 1D model,

the values obtained have been directly used to characterize the turbine inlet point, while

in the case of the 2D model, the mass flux averaged values of the obtained quantities have

been used.

The turbine is also treated as ideal, with unitary isentropic efficiency, and the specific work

extracted from it has been evaluated as:

Wturbine = h3 − h4 (5.6)

With h being the enthalpy in points 3 and 4, where in point 4 the flow has been expanded

until the ambient pressure of 1 bar is reached.

Regarding the Joule-Brayton cycle used for comparison, its efficiency is evaluated at the

same value of pressure ratio used for power plant A, and the constant pressure combustion

has been performed using the function equilibrate(’HP’) by Cantera.

Both for the RDE and for the Joule-Brayton cycle, the efficiency has been evaluated as:

η =
(ṁair + ṁH2)(Wturbine −Wcompressor)

ṁH2LHVH2

(5.7)

With LHV being the lower heating value of hydrogen and ṁ the mass flow rate.

5.2.1 Comparison at the same initial conditions

The comparison of the efficiency curve as a function of the compressor pressure ratio

between power plant A and a standard Joule-Brayton cycle is shown in figure 5.3. In this

case, for both cycles, the same amount of mass flow rate has been used, and, in both cases,

air and hydrogen are in a stoichiometric proportion.

5.2.2 Comparison at the same net power

In this section, the comparison between power plant A and a Joule-Brayton cycle has been

performed at the same level of net power produced. The net power produced by the cycle

corresponds to the numerator of equation 5.7. Also, while for a rotating detonation engine

a stoichiometric mixture of air and fuel may represent a suitable working condition, for a

Joule-Brayton cycle excess air is always used. Therefore, in this comparison, power plant

A is runned with a stoichiometric air-to-fuel mass ratio, while for the Joule-Brayton cycle

this value has been set equal to 70. Results of this comparison are reported in figure 5.4.

5.2.3 Comparison at the same turbine inlet temperature and initial conditions

The previous analyses have been performed only from a thermodynamic cycle efficiency

point of view, without considering any possible external limitation in the cycle.

Anyway, nowadays, one of the main obstacles that is preventing efficiency enhancement

in power cycles is related to the limit temperature at the turbine inlet. In fact, if the
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Figure 5.3: Efficiency of power plant A as a function of the compressor pressure ratio,
compared with a Joule-Brayton cycle at the same initial conditions

temperature of the flow is higher than the limit temperature of the turbine material, the

risk of melting the turbine blades may occur, and, as a consequence, this is something that

in the design phase of a power plant must be totally avoided.

Also, since the power plant in question is working with a stoichiometric hydrogen-air

mixture, the values of the turbine inlet temperature are expected to be higher than the

turbine inlet limiting temperature.

Therefore, this time the two cycles have been compared at the same amount of mass flow

rate, imposing a limitation on the turbine inlet temperature. In both cases, an initial

stoichiometric mixture between air and fuel has been used.

In particular, in case the flow in point 3 of figure 3.1 shows a temperature lower than the

limiting one, nothing changes, and the flow is expanded in the same way as previously

done. In the case of a temperature higher than the limiting one, the flow is assumed to be

cooled isobarically until the value of 1500 K is reached.

Results of the comparison of the two cycles under these conditions are reported in figure

5.5.

5.2.4 Comparison at the same turbine inlet temperature at different initial con-

ditions

In this section, the comparison between power plant A and a Joule-Brayton cycle has been

performed at the same turbine inlet temperature. Anyway, differently from the previous
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Figure 5.4: Efficiency of power plant A (stoichiometric mixture) as a function of the com-
pressor pressure ratio, compared with a Joule-Brayton cycle (air-to-fuel mass
ratio equal to 70) at the same value of net power produced
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Figure 5.5: Efficiency of power plant A as a function of the compressor pressure ratio,
compared with a Joule-Brayton cycle, in case of a limiting turbine inlet tem-
perature of 1500 K

case, the desired turbine inlet temperature is not reached by an isobaric cooling of the

flow but with the addition of air. Since also the added air will then expand in the turbine,

this results in a more efficient way of cooling the stream. In particular, regarding the

Joule-Brayton cycle, for every value of compressor pressure ratio considered, the value of

the air-to-fuel mass ratio needed to obtain the desired turbine inlet temperature has been

iteratively found. In the case of the RDE cycle, to ensure that the detonation will take

place, a stoichiometric mixture between air and fuel has been used, and, starting from the

results obtained at the combustion outlet, another stream of air at the same pressure is

added to the detonation products, in order to lower their temperature. Also in this case,

the amount of air needed to reach the desired turbine inlet temperature has been computed

iteratively. Since the air is added at the same pressure of the detonation products at the

exit of the combustor, the power needed to compress this air must be taken into account

in the efficiency evaluation.

The results of this comparison are reported in figure 5.6

5.3 Power Plant B

In this section, the results obtained from the efficiency evaluation of the power plant B,

shown in figure 3.2 are reported and compared first with the one obtained from the power

plant A, and then with the one obtained from a standard Joule-Brayton cycle.
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Figure 5.6: Efficiency of power plant A as a function of the compressor pressure ratio,
compared with a Joule-Brayton cycle, in case of a limiting turbine inlet tem-
perature of 1500 K, reached by increasing the amount of air
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The same detonation front height and combustor radius as the one reported in section 5.2

have been used. Also, the same assumptions previously made regarding the turbine and

the compressor are still valid in this section.

This time, the compressor pressure ratio considered ranges from a value of 1 to a value of

15, and the post-cooling after the flow compression is assumed to be ideal, with the flow

being isobarically cooled until the temperature reaches again its initial value of 300 K.

The comparison between the efficiency of power plant A and power plant B, as a function

of the compressor pressure ratio, is shown in figure 5.7.
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Figure 5.7: Comparison between efficiency of power plant A and efficiency of power plant
B as a function of the compressor pressure ratio

The analysis has been carried out without imposing any limitation on the turbine inlet

temperature, and the two cycles are compared at the same value of mass flow rate and

compressor ratio. Efficiency has been evaluated with equation 5.7.

Also in this case, the results have been compared with the efficiency of a Joule-Brayton

cycle, as shown in figure 5.8
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5.3. Power Plant B
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Figure 5.8: Comparison between efficiency of power plant A and efficiency of power plant
B as a function of the compressor pressure ratio
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6. Discussion

In this section, the results obtained and reported in chapter 5 are discussed and commented.

The first finding of the present thesis is represented in figure 5.3. Here, it is possible to

observe that, unlike the detonation cycle, represented in figures 1.10 and 1.11, a power

cycle featuring a rotating detonation combustor, from a thermodynamic point of view, is

not always more efficient than a Joule-Brayton cycle.

This effect is explainable with the fact that, by reference to figure 1.11, in the case of a

cycle featuring those types of combustors, starting from the post-detonation conditions,

a first part of the expansion process happens inside the combustor itself. This expansion

constitutes a ’parasitic’ expansion, since the turbine is unable to recover work from it.

In particular, by looking at figure 5.3, it is possible to observe that the cycle represented

in figure 3.1 shows higher efficiency than the Joule-Brayton at low values of pressure ratio.

This is due to the fact that a rotating detonation combustor, according to the used models,

presents a pressure gain combustion, which leads to a value of efficiency greater than zero

even when a unitary pressure ratio is used. Then, until the pressure ratio remains low,

the rotating detonation combustor cycle still shows an advantage in terms of efficiency.

Anyway, at some point, when the pressure ratio became high enough, it is possible to

observe that the trend is reversed. This happens because, while the turbine inlet pressure

of the studied cycle remains higher than the one of the Joule-Brayton, its temperature

results in being lower. In fact, the ’parasitic’ expansion process that is happening inside

the combustor is responsible for a temperature reduction from the post-detonation value to

a value lower than the one obtainable from a constant-pressure stoichiometric hydrogen-

air combustion. As a consequence of this fact, the Joule-Brayton cycle shows a higher

efficiency at higher values of pressure ratio.

A similar trend is observed in figure 5.4. Anyway, in this case, the two cycles are com-

pared at the same amount of net power produced, and, while the RDE cycle presents a

stoichiometric air-to-fuel ratio, in the Joule-Brayton cycle this value has been set equal

to 70. As a consequence, the observed turbine inlet temperatures result in being lower in

the Joule-Brayton case due to the excess air used. For this reason, and also for the higher

flow pressure at the turbine inlet, the RDE cycle shows higher values of specific turbine

work Wturbine at any value of compressor pressure ratio. Nevertheless, also in this case,

when the pressure ratio is high enough, the efficiency of the Joule-Brayton cycle results in

being higher than the one of the RDE cycle. In fact, considering the definition used for

evaluating the cycle efficiency (equation 5.7), while the numerator is equal in both cases,

the denominator results in being lower in the case of a Joule-Brayton cycle due to the used

value of excess air.

Anyway, as expected, if a limiting turbine inlet temperature is considered and the two

cycles present the same values of mass flow rate, the rotating detonation cycle shows a

higher efficiency compared to the Joule-Brayton, as reported in figure 5.5. The higher
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efficiency is a consequence of the pressure-gain combustion presented by the rotating det-

onation cycle, and, since the turbine inlet temperature has been saturated at the material

limiting value, the Joule Brayton cycle has lost the advantage of entering the turbine at a

higher temperature. At the same time, it is also possible to notice that, with the increas-

ing of the pressure ratio, the efficiency difference between the two cycles is diminishing.

Also, as expected, by limiting the cycle maximum temperature, the absolute values of the

efficiencies are lower if compared to the previous cases.

However, if the cooling of the flow is performed with the addition of air, the Joule-Brayton

cycle shows again higher values of efficiency at higher values of pressure ratio, as reported

in figure 5.6. Also in this case, the RDE cycle shows higher turbine specific work, but the

Joule-Brayton cycle requires a higher amount of excess air and, as a consequence, produces

more useful power.

Another interesting aspect of the cycle featuring rotating detonation combustors is repre-

sented by the fact that the efficiency curve as a function of compressor pressure ratio tends

to be more ’flat’ than the one of a Joule-Brayton cycle. In fact, in all the figures reported

in chapter 5, after a sufficiently high value of pressure ratio, the curve of efficiency shows a

really small increase for a very large pressure ratio increase. The reason for this behavior

can be found by looking at the detonation map reported in figure 4.1. As it is possible

to observe, the post-detonation temperature is really lightly affected by the mixture inlet

pressure, and presents an almost constant value. As a consequence, the efficiency curve

quickly reaches a plateau.

Also, as expected from the detonation maps reported in figures 4.1 and 4.2, a possible

way to increase the efficiency consists in reducing the combustor inlet temperature. This

will have the effect of slightly reducing the post-detonation temperature, but substantially

increasing the post-detonation pressure. As shown in figure 5.7, it is clear that the addition

of a post-cooler after the compressor and before the rotating detonation combustor had

the effect of increasing the thermodynamic cycle efficiency. Anyway, as shown in figure 5.8,

despite the efficiency being increased with respect to the power plant A, also in the case

of the second configuration, at a high enough value of pressure ratio, the Joule-Brayton

cycle will present a higher efficiency. Of course, in this case, the Joule-Brayton cycle will

start to show a higher efficiency value from a higher value of pressure ratio with respect

to the case shown in figure 5.3.

Another important aspect regards the importance of the combustor modeling. In fact,

while the 1D model and the 2D model show a good agreement regarding the performance

evaluation of power plant A, as shown in figures 5.3 and 5.4, the efficiency predicted in

the case of an imposed limiting turbine inlet temperature results in being higher if the 1D

model is used, as reported in figure 5.5. This is a consequence of the model overestimating

the combustor outlet pressure with respect to the 2D one. On the other hand, in the case

of power plant B, it is the 2D model that shows an overall higher efficiency, as shown

in figures 5.7 and 5.8. This is probably associated with the tendency of the 2D model

to overestimate the combustor outlet temperature, with respect to the 1D model, which

may underestimate it. A slightly higher value of efficiency is also predicted from the 2D
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model in figure 5.6, which is also a consequence of the higher combustor outlet temperature

predicted. In fact, for this reason, more air is needed to cool down the combustor outlet

flow of the 2D model with respect to the 1D one, and, consequently, a higher value of mass

flow rate is expanded in the turbine.

Another important aspect to consider is that the present analysis has been conducted

only from a purely thermodynamical point of view, assuming, as is usually done in power

cycle analysis, that the flow velocity at the inlet of the turbine is comparable with the one

at the outlet. Anyway, in the case of a rotating detonation combustor, the flow velocity

at the combustor outlet is quite important, and therefore, with a proper turbine design

able to recover the flow kinetic component at its inlet, the efficiency values can be further

increased.

Also, the interaction between the combustor outlet flow field, which results in being highly

irregular and non-uniform, and the turbine blades represents a challenging topic that has

to be further analyzed. This aspect is not considered in the present work, since the main

focus has been set on the combustor modeling.

Another aspect to mention is that, even if the two presented rotating detonation combustor

models were able to predict a pressure gain combustion, still nobody, according to the

author’s knowledge, was able to achieve it from an experimental point of view.

In conclusion, based on the results obtained from the current analysis, a cycle implementing

a rotating detonation combustor can provide an advantage in terms of specific turbine work

if compared to the Joule-Brayton cycle. Anyway, the efficiency of the latter seems to be

higher in almost all the cases considered, except at low values of pressure ratio, where the

pressure-gain combustion provided by the detonation makes the RDE cycle more efficient.

Finally, the current analysis has established that the addition of a post-cooler after the

compressor consists of a possible way to enhance the rotating detonation combustor cycle

efficiency.
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7. Conclusion

The current climate change is forcing the scientific community to find alternatives to the

actual fuel-based economy. Anyway, the transition in the energy field, with a switch from

the actual scenario to another where all the world is powered by energy from renewable

sources, results in being challenging due to the volatility intrinsically related to these

sources. Hydrogen is expected to have a huge role in the following years since it can be

produced by electrolysis using excess energy from the renewable sources, and at the same

time it can be used as fuel for power plants which have the role to constantly provide a

base load for the electric grid.

In addition to that, new ways of enhancing the power plant efficiency are currently under

research, and one of the most promising ideas consists of replacing the constant pressure

combustion with detonation, which, thanks to the introduced pressure gain in the combus-

tion stage, is expected to show better performance. In particular, the rotating detonation

engine consists of one or more detonation waves constantly travelling around a cylindrical

annulus, ensuring continuous operation and combustion of the fuel.

The present work focuses on the possible thermodynamic cycle analysis of power plants

featuring hydrogen-fueled rotating detonation combustors.

In the beginning, the theoretical foundation of the detonation theory is summarized, in

order to provide the reader with the necessary background to understand the following

analysis. A comparison of the ideal detonation cycle with respect to the constant volume

and constant pressure combustion is also represented, in order to further motivate the

reasons behind the present work. Then, a general description of the working principles

of a rotating detonation combustor has been provided, explaining all the sources of losses

in these devices and, as a consequence, the reasons why their efficiency is really likely to

not match the one of the ideal detonation cycle. After that, a preliminary analysis on

post-detonation conditions as a function of different combustor inlet conditions has been

performed. The results of this analysis showed that the post-detonation temperature is

minimally affected by the inlet pressure and temperature, while, with the reduction of

the flow inlet temperature, the combustor outlet pressure reported a substantial increase.

Then, two power plant configurations have been presented. The first one consists of a

modification of the Joule-Brayton cycle, where the standard combustor has been replaced

with a rotating detonation combustor. Taking into account the results of the preliminary

analysis, the second power plant configuration implemented a post-cooler after the com-

pressor, in order to reduce the flow combustor inlet temperature. Two rotating detonation

models have been proposed: a simpler 1D model and a 2D model. Both models share the

same iteration process to find the combustor injection velocity, but, while in the 1D model

the outlet conditions are found by assuming a sonic and completely axial outlet flow, in

the 2D model the method of characteristics has been used to compute all the quantities

relative to the post-detonation flow field. Both models have been validated by comparison

with a CFD simulation performed by Sousa et al., 2017.
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The present work has confirmed that the rotating detonation cycle, in the presence of

a limiting turbine inlet temperature, shows higher turbine specific work compared to the

Joule-Brayton cycle. Anyway, regarding the efficiency, the rotating detonation engine cycle

results in overperforming the Joule-Brayton only at low values of pressure ratio, thanks to

its pressure-gain combustion. The only case when the RDE cycle totally overperforms the

Joule-Brayton is in the presence of a limiting turbine inlet temperature and when the same

air-to-fuel ratio is used for both the cycles. In all other cases, the key advantage of the

Joule-Brayton cycle is its ability to operate with high levels of excess air, which is something

that is not feasible for the RDE cycle due to detonability limits. Also, the ’parasitic’

expansion of the flow, which takes part in the combustor, is reducing the flow temperature

to a value lower than the one obtainable from a constant pressure combustion, allowing the

Joule-Brayton cycle to show higher values of efficiency at high values of pressure ratio even

when no limitation on the turbine inlet temperature is imposed. Finally, the present work

has confirmed that the addition of a post-cooler after the compressor results in enhancing

the base-cycle efficiency.

In conclusion, the rotating detonation combustor represents a technology that can assure

some advantages compared to the current power plant design. Anyway, its efficiency,

according to the results obtained from the presented models, results in being way much

lower than that of the ideal detonation cycle. Therefore, in order to get closer to this

ideal value, new combustor design solutions to limit the ’parasitic’ expansions need to be

identified and developed.
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0.1 Python code of the 1D combustor model

import cantera as ct

from sdtoo lbox . thermo import soundspeed fr , soundspeed eq

from sdtoo lbox . postshock import CJspeed , PostShock eq , PostShock f r

from sc ipy . i n t e r p o l a t e import pchip # c r e a t e s a PCHIP i n t e r p o l a t i o n func t i on th

from sc ipy . opt imize import fminbound

from sys import e x i t

import matp lo t l i b . pyplot as p l t

import numpy as np

from math import ∗

from pynverse import ∗

from numpy . polynomial import Polynomial as P

from sc ipy . opt imize import f s o l v e

#Parameters

p i n j=5e5

T in j=300

Radius=0.153

d=2∗Radius

det h=0.092

mech=’ gr i30 h ighT . yaml ’

X1=’H2: 2 O2: 1 N2 : 3 . 7 6 ’

V
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#RDE model

#mixture p r op e r t i e s

gas=ct . So lu t i on (mech)

gas .TPX=T inj , p in j ,X1

cp1=gas . cp mass

R1=gas . cp mass−gas . cv mass

gamma1=cp1/gas . cv mass

#guess va lue s

v i n j =250

check=0

whi l e check==0:

#detonat ion p r op e r t i e s

c j s p e ed=CJspeed ( p in j , T inj , X1 , mech)

gas=PostShock eq ( c j speed , p in j , T inj , X1 , mech)

p2=gas .P

T2=gas .T

cp2=gas . cp mass

R2=gas . cp mass−gas . cv mass

gamma2=cp2/gas . cv mass

#func t i on s
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PM= lambda M: sq r t ( (gamma2+1)/(gamma2−1))∗ atan ( sq r t ( (gamma2−1)/(gamma2+1)∗

invPM=inve r s e f unc (PM, domain=[1 ,30 ] )

mu= lambda M: a s in (1/M)

invmu=lambda mu: 1/ s i n (mu)

#f i nd i n g v i n j and te ta0

te ta0=as in ( v i n j / c j sp e ed )

L1=det h / tan ( t e ta0 )

Xref=pi ∗d−L1

#pr in t ( ’ Xref ’ , Xref )

pt2=p2∗(1+(gamma2−1)/2)∗∗(gamma2/(gamma2−1))

Minj=sq r t (2/(gamma2−1)∗(( pt2/ p i n j )∗∗ ( (gamma2−1)/gamma2)−1))

PM4=PM(Minj )/4

mu4=mu(invPM(PM4) )

Xref2=det h /( tan (mu4−( t e ta0+PM4) ) )

i f abs ( Xref−Xref2 )/ Xref2<=1e−5:

check=2

e l s e :

L1=pi ∗d−Xref2

t e ta0=atan ( det h /L1)

v i n j=c j sp e ed ∗ s i n ( t e ta0 )
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gas .TPX=T inj , p in j ,X1

r h o i n j=gas . dens i ty mass

Ainj=pi ∗d−Xref

mi=rho i n j ∗ v i n j ∗Ainj

Fi=mi∗ v i n j+Ainj ∗ p i n j+p2∗Xref

Tt2=T2+(1+(gamma2−1)/2)

uec=c j sp e ed ∗ cos ( t e ta0 )

Te=(Tt2−1/(2∗ cp2 )∗ uec ∗∗2)/(1+1/(2∗ cp2 )∗gamma2∗R2)

uea=sq r t (gamma2∗R2∗T2)

pe=Fi /( p i ∗d)−mi∗uea

pte=pe∗(1+(gamma2−1)/2∗( uea/ sq r t (gamma2∗R2∗Te ) )∗∗2 )∗∗ (gamma2/(gamma2−1))

Tte=Te∗(1+(gamma2−1)/2∗( uea/ sq r t (gamma2∗R2∗Te ) )∗∗2 )

0.2 Python code of the 2D combustor model

import cantera as ct

from sdtoo lbox . thermo import soundspeed fr , soundspeed eq

from sdtoo lbox . postshock import CJspeed , PostShock eq , PostShock f r

from sc ipy . i n t e r p o l a t e import pchip # c r e a t e s a PCHIP i n t e r p o l a t i o n func t i on th

from sc ipy . opt imize import fminbound

from sys import e x i t

import matp lo t l i b . pyplot as p l t

import numpy as np

from math import ∗

from pynverse import ∗

from sc ipy . opt imize import f s o l v e

p l t . rcParams [ ’ f ont . s i z e ’ ] = 22

p l t . rcParams [ ’ f ont . fami ly ’ ] = ’ s e r i f ’

p l t . rcParams [ ’ f ont . weight ’ ] = ’ l i gh t ’

#PARAMETERS

p0=8e5
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T0=330

npo ints=30

mol H2=2

mol O2=1

mol N2=3.76

beta=mol N2/mol O2

d e t c e l l =10∗∗(−0.048∗ beta ∗∗2+0.46∗ beta +0.047)∗10∗∗(−3)

Radius=0.153

L=0.2

det h=0.092

Vinj=200

#FUNCTIONS

de f scaledM (M, gamma med ) :

M p3 sc=sq r t ( abs ( 2/ ( ( gamma med+1)/M∗∗2−gamma med+1)))

P p3=P0 MOC/(1+0.5∗(gamma med−1)∗M p3 sc ∗∗2)∗∗ (gamma med/(gamma med−1))

T p3=T0 MOC/(1+0.5∗(gamma med−1)∗M p3 sc ∗∗2)

re turn P p3 , T p3

de f center MOC(p1 , p2 ) :
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x p1=p1 [ 0 ]

y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

Km=teta p1+PM p1

Kp=teta p2−PM p2

te ta p3=(Km+Kp)/2

PM p3=(Km−Kp)/2

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

#P p3=P0 MOC/((1+(gamma2−1)/2∗M p3∗∗2)∗∗ (gamma2/(gamma2−1)))

slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

#slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2)/2+ be t a r e f )

slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

#slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1)/2+ be t a r e f )

’ ’ ’

x p3=(y p1−slopeCm∗x p1+slopeCp∗x p2−y p2 )/ ( slopeCp−slopeCm )

y p3=y p2+slopeCp ∗( x p3−x p2 )

’ ’ ’

a=np . array ( [ [ 1 , −slopeCp ] , [ 1 , −slopeCm ] ] )

b=np . array ( [ y p2−slopeCp∗x p2 , y p1−slopeCm∗x p1 ] )

c=np . l i n a l g . s o l v e ( a , b )

y p3=c [ 0 ]

x p3=c [ 1 ]
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p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

out1=np . z e r o s ( ( 1 , 7 ) )

out2=np . z e r o s ( ( 1 , 7 ) )

i f y p3>L :

i f y p1>L and y p2<L :

x ou t l e t=x p2+(L−y p2 )/ slopeCp

de l tax2=x out l e t−x p2

de l tax3=x out l e t−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3

t e t a ou t=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out=teta out−t e ta p2+PM p2

M out=invPM(PM out)

mu out=mu(M out )

P out=P0 MOC/((1+(gamma med−1)/2∗M out ∗∗2)∗∗ (gamma med/(gamma med−

out1 [ 0 , : ] = [ x out l e t , L , M out , PM out , mu out , t e ta out , P out ]

i f y p1<L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

de l tax2=x out l e t2−x p2

de l tax3=x out l e t2−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)
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d i s t=d i s t 2+d i s t 3

t e ta out2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out2=teta out2−t e ta p2+PM p2

M out2=invPM(PM out2 )

mu out2=mu(M out2 )

P out2=P0 MOC/((1+(gamma med−1)/2∗M out2 ∗∗2)∗∗ (gamma med/(gamma med

x ou t l e t 1=x p1+(L−y p1 )/ slopeCm

de l tax1=x out l e t1−x p1

de l tax3=x out l e t1−x p3

de l tay1=L−y p1

de l tay3=L−y p3

d i s t 1=sq r t ( de l tax1 ∗∗2+de l tay1 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 1+d i s t 3

t e ta out1=(1−d i s t 1 / d i s t )∗ t e ta p1+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out1=−t e ta out1+teta p1+PM p1

M out1=invPM(PM out1 )

mu out1=mu(M out1 )

P out1=P0 MOC/((1+(gamma med−1)/2∗M out1 ∗∗2)∗∗ (gamma med/(gamma med

out1 [ 0 , : ] = [ x out l e t1 , L , M out1 , PM out1 , mu out1 , te ta out1 , P out1

out2 [ 0 , : ] = [ x out l e t2 , L , M out2 , PM out2 , mu out2 , te ta out2 , P out2

re turn p3 , out1 , out2

de f print MOC(p1 , p2 , p3 ) :

x p1=p1 [ 0 ]

y p1=p1 [ 1 ]
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M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

x p3=p3 [ 0 ]

y p3=p3 [ 1 ]

M 3=p3 [ 2 ]

PM p3=p3 [ 3 ]

mu p3=p3 [ 4 ]

t e ta p3=p3 [ 5 ]

slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

#slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2)/2+ be t a r e f )

slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

#slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1)/2+ be t a r e f )

’ ’ ’

i f y p3<L :

x=np . l i n s p a c e ( x p2 , x p3 , 5 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ b− ’)

i f y p1<=L :

x=np . l i n s p a c e ( x p1 , x p3 , 5 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y , ’ b− ’)
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e l s e :

x ou t l e t=x p1+(L−y p1 )/ slopeCm

x=np . l i n s p a c e ( x out l e t , x p3 , 3 )

y=L+slopeCm ∗(x−x ou t l e t )

p l t . p l o t (x , y , ’ b− ’)

e l s e :

i f y p1>L and y p2<L :

x ou t l e t=x p2+(L−y p2 )/ slopeCp

x=np . l i n s p a c e ( x p2 , x out l e t , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ b− ’)

i f y p1<L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

x ou t l e t 1=x p1+(L−y p1 )/ slopeCm

x=np . l i n s p a c e ( x p1 , x out l e t1 , 3 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y , ’ b− ’)

x=np . l i n s p a c e ( x p2 , x out l e t2 , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ b− ’)

’ ’ ’

#ou t l e t c ond i t i on s

i f y p3>L :

i f y p1>L and y p2<L :
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x ou t l e t=x p2+(L−y p2 )/ slopeCp

i f x out l e t<=x l im :

x=np . l i n s p a c e ( x p2 , x out l e t , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y )

i f y p1<L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

x ou t l e t 1=x p1+(L−y p1 )/ slopeCm

i f x out l e t2<=x l im :

x=np . l i n s p a c e ( x p2 , x out l e t2 , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y )

i f x out l e t1<=x l im :

x=np . l i n s p a c e ( x p1 , x out l e t1 , 3 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y )

#obl shock cond i t i on s

i f det h+tan ( b e t a r e f+te ta )∗ ( x p3−2∗pi ∗Radius)>y p3 :

#entrambi i punt i prima d e l l o shock

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)<y p1 and det h+tan ( b e t a

x shock1=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCm∗x p1−y p1 )/

y shock1=det h+tan ( b e t a r e f+te ta )∗ ( x shock1−2∗pi ∗Radius )
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x shock2=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCp∗x p2−y p2 )/

y shock2=det h+tan ( b e t a r e f+te ta )∗ ( x shock2−2∗pi ∗Radius )

i f y shock1<=L and y shock1>=det h :

x=np . l i n s p a c e ( x p1 , x shock1 , 3 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y )

i f y shock2<=L and y shock2>=det h :

x=np . l i n s p a c e ( x p2 , x shock2 , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y )

#p1 prima e p2 dopo

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)<y p1 and det h+tan ( b e t a

x shock1=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCm∗x p1−y p1 )/

y shock1=det h+tan ( b e t a r e f+te ta )∗ ( x shock1−2∗pi ∗Radius )

i f y shock1>=det h and y shock1<=L :

x=np . l i n s p a c e ( x p1 , x shock1 , 3 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y )

#p1 dopo e p2 prima

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)>y p1 and det h+tan ( b e t a

x shock2=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCp∗x p2−y p2 )/

y shock2=det h+tan ( b e t a r e f+te ta )∗ ( x shock2−2∗pi ∗Radius )
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i f y shock2<=L and y shock2>=det h :

x=np . l i n s p a c e ( x p2 , x shock2 , 3 )

y=y p2+slopeCp ∗(x−x p2 )

#i n j e c t i o n l i n e cond i t i on s

##

i f y p3<=L and det h+tan ( b e t a r e f+te ta )∗ ( x p3−2∗pi ∗Radius)<y p3 :

i f y p1<=L and y p2<=L :

x=np . l i n s p a c e ( x p1 , x p3 , 3 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y )

x=np . l i n s p a c e ( x p2 , x p3 , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y )

i f y p1>L and y p2<L :

x ou t l e t=x p1+(L−y p1 )/ slopeCm

x=np . l i n s p a c e ( x out l e t , x p3 , 3 )

y=L+slopeCm ∗(x−x ou t l e t )

p l t . p l o t (x , y )

de f wal lp nord ( p2 ) :

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]
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t e ta p2=p2 [ 5 ]

t e ta p3=de l t a+be t a r e f

#teta p3=de l t a

PM p3=teta p3−t e ta p2+PM p2

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

#P p3=P0 MOC/((1+(gamma2−1)/2∗M p3∗∗2)∗∗ (gamma2/(gamma2−1)))

’ ’ ’

M p3=M

PM p3=PM(M p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

t e ta p3=PM p3−PM p2+teta p2

’ ’ ’

s lopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

#slopeCp=tan ( te ta p2+mu p2)

#slopeCp=tan ( te ta p2+mu p2+be t a r e f )

x p3=(det h−y p2+slopeCp∗x p2 )/ ( slopeCp−tan ( b e t a r e f+de l t a ) )

y p3=det h+tan ( b e t a r e f+de l t a )∗ x p3

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

out2=np . z e r o s ( ( 1 , 7 ) )

i f y p3>L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

de l tax2=x out l e t2−x p2

de l tax3=x out l e t2−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)
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d i s t=d i s t 2+d i s t 3

t e ta out2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out2=teta out2−t e ta p2+PM p2

M out2=invPM(PM out2 )

mu out2=mu(M out2 )

P out2=P0 MOC/((1+(gamma med−1)/2∗M out2 ∗∗2)∗∗ (gamma med/(gamma med−1)

out2 [ 0 , : ] = [ x out l e t2 , L , M out2 , PM out2 , mu out2 , te ta out2 , P out2 ]

r e turn p3 , out2

de f wal lp nord2 ( p2 ) :

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

x p1=save po in t s [ wa l l index nord [ −1 ] , 0 ]

y p1=save po in t s [ wa l l index nord [ −1 ] , 1 ]

t e ta p1=save po in t s [ wa l l index nord [ −1 ] , 5 ]

t e ta p3=teta p2

PM p3=teta p3−t e ta p2+PM p2

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

’ ’ ’

M p3=M

PM p3=PM(M p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))
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t e ta p3=PM p3−PM p2+teta p2

’ ’ ’

#slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

slopeCp=tan ( te ta p2+mu p2)

s lopeWal l =0.5∗( t e ta p1+teta p3 )

a=np . array ( [ [ 1 , − slopeCp ] , [1 , − s lopeWal l ] ] )

b=np . array ( [ y p2−slopeCp∗x p2 , y p1−s lopeWal l ∗x p1 ] )

c=np . l i n a l g . s o l v e ( a , b )

y p3=c [ 0 ]

x p3=c [ 1 ]

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

out2=np . z e r o s ( ( 1 , 7 ) )

i f y p3>L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

de l tax2=x out l e t2−x p2

de l tax3=x out l e t2−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3

t e ta out2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out2=teta out2−t e ta p2+PM p2

M out2=invPM(PM out2 )

mu out2=mu(M out2 )

P out2=P0 MOC/((1+(gamma med−1)/2∗M out2 ∗∗2)∗∗ (gamma med/(gamma med−1)

out2 [ 0 , : ] = [ x out l e t2 , L , M out2 , PM out2 , mu out2 , te ta out2 , P out2 ]
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re turn p3 , out2

de f p lot pnord (p2 , p3 ) :

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

x p3=p3 [ 0 ]

y p3=p3 [ 1 ]

M 3=p3 [ 2 ]

PM p3=p3 [ 3 ]

mu p3=p3 [ 4 ]

t e ta p3=p3 [ 5 ]

slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

#slopeCp=tan ( te ta p2+mu p2)

#slopeCp=tan ( te ta p2+mu p2+be t a r e f )

i f y p3<L :

x=np . l i n s p a c e ( x p2 , x p3 , 5 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ g− ’)

e l s e :

i f y p2<L :

x ou t l e t=x p2+(L−y p2 )/ slopeCp

x=np . l i n s p a c e ( x p2 , x out l e t , 3 )

y=y p2+slopeCp ∗(x−x p2 )
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p l t . p l o t (x , y , ’ g− ’)

de f p lot pnord2 (p2 , p3 ) :

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

x p3=p3 [ 0 ]

y p3=p3 [ 1 ]

M 3=p3 [ 2 ]

PM p3=p3 [ 3 ]

mu p3=p3 [ 4 ]

t e ta p3=p3 [ 5 ]

x p1=save po in t s [ wa l l index nord [ −1 ] , 0 ]

y p1=save po in t s [ wa l l index nord [ −1 ] , 1 ]

t e ta p1=save po in t s [ wa l l index nord [ −1 ] , 5 ]

#slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

slopeCp=tan ( te ta p2+mu p2)

s lopeWal l =0.5∗( t e ta p1+teta p3 )

i f y p3<L :

i f y p2<L :

x=np . l i n s p a c e ( x p2 , x p3 , 5 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ g− ’)

i f y p1<L :
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x=np . l i n s p a c e ( x p1 , x p3 , 3 )

y=y p1+slopeWal l ∗(x−x p1 )

p l t . p l o t (x , y , ’ g− ’)

e l s e :

i f y p2<L :

x ou t l e t=x p2+(L−y p2 )/ slopeCp

x=np . l i n s p a c e ( x p2 , x out l e t , 3 )

y=y p2+slopeCp ∗(x−x p2 )

p l t . p l o t (x , y , ’ g− ’)

i f y p1<L :

x ou t l e t 2=x p1+(L−y p1 )/ s lopeWal l

x=np . l i n s p a c e ( x p1 , x out l e t2 , 3 )

y=y p1+slopeWal l ∗(x−x p1 )

p l t . p l o t (x , y , ’ g− ’)

de f wal lp sud ( p1 ) :

x p1=p1 [ 0 ]

y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

t e ta p3=0

#teta p3=−b e t a r e f
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PM p3=−t e ta p3+teta p1+PM p1

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

#P p3=P0 MOC/((1+(gamma2−1)/2∗M p3∗∗2)∗∗ (gamma2/(gamma2−1)))

slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

#slopeCm=tan ( teta p1−mu p1)

#slopeCm=tan ( teta p1−mu p1+be t a r e f )

y p3=0

x p3=x p1−y p1/slopeCm

#x p3=(slopeCm∗x p1−tan ( beta re f new )∗Xref new−y p1 )/ ( slopeCm−tan ( beta re f

#y p3=tan ( beta re f new )∗ ( x p3−Xref new )

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

re turn p3

de f wal lp sud2 ( p1 ) :

x p1=p1 [ 0 ]

y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

#slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

slopeCm=tan ( teta p1−mu p1)

#y p3=0

#x p3=x p1−y p1/slopeCm

x p3=(slopeCm∗x p1−tan ( beta re f new )∗Xref new−y p1 )/ ( slopeCm−tan ( beta re f n

y p3=tan ( beta re f new )∗ ( x p3−Xref new )
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t e ta p3=0

te ta p3=beta re f new

PM p3=−t e ta p3+teta p1+PM p1

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

re turn p3

de f wal lp sud3 ( p1 ) :

x p1=p1 [ 0 ]

y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

#slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

slopeCm=tan ( teta p1−mu p1)

gamma=0.5∗(gamma med+gamma1)

#y p3=0

#x p3=x p1−y p1/slopeCm

x p3=(slopeCm∗x p1−tan ( beta re f new )∗Xref new−y p1 )/ ( slopeCm−tan ( beta re f n

y p3=tan ( beta re f new )∗ ( x p3−Xref new )

P p3=p

#M p3 tr=sq r t (2/(gamma−1)∗((P0 MOC/P p3 )∗∗ ( (gamma−1)/gamma)−1))

#M p3=sq r t ( abs ( (gamma+1)/(2/M p3 tr∗∗2+gamma−1)))

M p3=sq r t (2/(gamma med−1)∗((P0 MOC/P p3 )∗∗ ( ( gamma med−1)/gamma med)−1))

PM p3=PM(M p3)

mu p3=mu(M p3)

te ta p3=−PM p3+teta p1+PM p1

XXV



Bibliography

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

re turn p3

de f p lot psud (p1 , p3 ) :

x p1=p1 [ 0 ]

y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

x p3=p3 [ 0 ]

y p3=p3 [ 1 ]

M 3=p3 [ 2 ]

PM p3=p3 [ 3 ]

mu p3=p3 [ 4 ]

t e ta p3=p3 [ 5 ]

slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

#slopeCm=tan ( teta p1−mu p1)

#slopeCm=tan ( teta p1−mu p1+be t a r e f )

i f x p3<=2∗pi ∗Radius :

x=np . l i n s p a c e ( x p1 , x p3 , 5 )

y=y p1+slopeCm ∗(x−x p1 )

p l t . p l o t (x , y , ’ r − ’)

de f MOC 3(p1 , p2 ) :

x p1=p1 [ 0 ]
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y p1=p1 [ 1 ]

M p1=p1 [ 2 ]

PM p1=p1 [ 3 ]

mu p1=p1 [ 4 ]

t e ta p1=p1 [ 5 ]

x p2=p2 [ 0 ]

y p2=p2 [ 1 ]

M p2=p2 [ 2 ]

PM p2=p2 [ 3 ]

mu p2=p2 [ 4 ]

t e ta p2=p2 [ 5 ]

Km=teta p1+PM p1

Kp=teta p2−PM p2

te ta p3=(Km+Kp)/2

PM p3=(Km−Kp)/2

M p3=invPM(PM p3)

mu p3=mu(M p3)

P p3=P0 MOC/((1+(gamma med−1)/2∗M p3∗∗2)∗∗ (gamma med/(gamma med−1)))

#P p3=P0 MOC/((1+(gamma2−1)/2∗M p3∗∗2)∗∗ (gamma2/(gamma2−1)))

slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2 )/2)

#slopeCp=tan ( ( t e ta p3+teta p2+mu p3+mu p2)/2+ be t a r e f )

slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1 )/2)

#slopeCm=tan ( ( t e ta p3+teta p1−mu p3−mu p1)/2+ be t a r e f )

x p3=(y p1−slopeCm∗x p1+slopeCp∗x p2−y p2 )/ ( slopeCp−slopeCm )

y p3=y p2+slopeCp ∗( x p3−x p2 )

p3=[x p3 , y p3 ,M p3 ,PM p3 ,mu p3 , teta p3 , P p3 ]

out1=np . z e r o s ( ( 1 , 7 ) )

out2=np . z e r o s ( ( 1 , 7 ) )

shock1=np . z e r o s ( ( 1 , 7 ) )

shock2=np . z e r o s ( ( 1 , 7 ) )

i f y p3>L :
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i f y p1>L and y p2<L :

x ou t l e t=x p2+(L−y p2 )/ slopeCp

i f x out l e t<x l im :

de l tax2=x out l e t−x p2

de l tax3=x out l e t−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3

t e t a ou t=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out=teta out−t e ta p2+PM p2

M out=invPM(PM out)

mu out=mu(M out )

P out=P0 MOC/((1+(gamma med−1)/2∗M out ∗∗2)∗∗ (gamma med/(gamma med

out1 [ 0 , : ] = [ x out l e t , L , M out , PM out , mu out , t e ta out , P out ]

i f y p1<L and y p2<L :

x ou t l e t 2=x p2+(L−y p2 )/ slopeCp

x ou t l e t 1=x p1+(L−y p1 )/ slopeCm

i f x out l e t2<x l im :

de l tax2=x out l e t2−x p2

de l tax3=x out l e t2−x p3

de l tay2=L−y p2

de l tay3=L−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3
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t e ta out2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out2=teta out2−t e ta p2+PM p2

M out2=invPM(PM out2 )

mu out2=mu(M out2 )

P out2=P0 MOC/((1+(gamma med−1)/2∗M out2 ∗∗2)∗∗ (gamma med/(gamma

out2 [ 0 , : ] = [ x out l e t2 , L , M out2 , PM out2 , mu out2 , te ta out2 , P

i f x out l e t1<x l im :

de l tax1=x out l e t1−x p1

de l tax3=x out l e t1−x p3

de l tay1=L−y p1

de l tay3=L−y p3

d i s t 1=sq r t ( de l tax1 ∗∗2+de l tay1 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 1+d i s t 3

t e ta out1=(1−d i s t 1 / d i s t )∗ t e ta p1+(1−d i s t 3 / d i s t )∗ t e ta p3

PM out1=−t e ta out1+teta p1+PM p1

M out1=invPM(PM out1 )

mu out1=mu(M out1 )

P out1=P0 MOC/((1+(gamma med−1)/2∗M out1 ∗∗2)∗∗ (gamma med/(gamma

out1 [ 0 , : ] = [ x out l e t1 , L , M out1 , PM out1 , mu out1 , te ta out1 , P

i f det h+tan ( b e t a r e f+te ta )∗ ( x p3−2∗pi ∗Radius)==y p3 :

i f y p3<=L and y p3>=det h :

shock1 [ 0 , : ]= p3

i f det h+tan ( b e t a r e f+te ta )∗ ( x p3−2∗pi ∗Radius)>y p3 :

#entrambi i punt i prima d e l l o shock

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)<y p1 and det h+tan ( b e t a
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x shock1=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCm∗x p1−y p1 )/

y shock1=det h+tan ( b e t a r e f+te ta )∗ ( x shock1−2∗pi ∗Radius )

x shock2=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCp∗x p2−y p2 )/

y shock2=det h+tan ( b e t a r e f+te ta )∗ ( x shock2−2∗pi ∗Radius )

i f y shock1<=L and y shock1>=det h :

de l tax1=x shock1−x p1

de l tax3=x shock1−x p3

de l tay1=y shock1−y p1

de l tay3=y shock1−y p3

d i s t 1=sq r t ( de l tax1 ∗∗2+de l tay1 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 1+d i s t 3

t e t a sh1=(1−d i s t 1 / d i s t )∗ t e ta p1+(1−d i s t 3 / d i s t )∗ t e ta p3

PM sh1=−t e t a sh1+teta p1+PM p1

M sh1=invPM(PM sh1)

mu sh1=mu(M sh1 )

P sh1=P0 MOC/((1+(gamma med−1)/2∗M sh1 ∗∗2)∗∗ (gamma med/(gamma med

shock1 [ 0 , : ] = [ x shock1 , y shock1 , M sh1 , PM sh1 , mu sh1 , te ta sh1

i f y shock2<=L and y shock2>=det h :

de l tax2=x shock2−x p2

de l tax3=x shock2−x p3

de l tay2=y shock2−y p2

de l tay3=y shock2−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3

t e t a sh2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM sh2=teta sh2−t e ta p2+PM p2

M sh2=invPM(PM sh2)
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mu sh2=mu(M sh2 )

P sh2=P0 MOC/((1+(gamma med−1)/2∗M sh2 ∗∗2)∗∗ (gamma med/(gamma med

shock2 [ 0 , : ] = [ x shock2 , y shock2 , M sh2 , PM sh2 , mu sh2 , te ta sh2

#p1 prima e p2 dopo

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)<y p1 and det h+tan ( b e t a

x shock1=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCm∗x p1−y p1 )/

y shock1=det h+tan ( b e t a r e f+te ta )∗ ( x shock1−2∗pi ∗Radius )

i f y shock1<=L and y shock1>=det h :

de l tax1=x shock1−x p1

de l tax3=x shock1−x p3

de l tay1=y shock1−y p1

de l tay3=y shock1−y p3

d i s t 1=sq r t ( de l tax1 ∗∗2+de l tay1 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 1+d i s t 3

t e t a sh1=(1−d i s t 1 / d i s t )∗ t e ta p1+(1−d i s t 3 / d i s t )∗ t e ta p3

PM sh1=−t e t a sh1+teta p1+PM p1

M sh1=invPM(PM sh1)

mu sh1=mu(M sh1 )

P sh1=P0 MOC/((1+(gamma med−1)/2∗M sh1 ∗∗2)∗∗ (gamma med/(gamma med

shock1 [ 0 , : ] = [ x shock1 , y shock1 , M sh1 , PM sh1 , mu sh1 , te ta sh1

#p1 dopo e p2 prima

i f det h+tan ( b e t a r e f+te ta )∗ ( x p1−2∗pi ∗Radius)>y p1 and det h+tan ( b e t a

x shock2=(det h−tan ( b e t a r e f+te ta )∗2∗ pi ∗Radius+slopeCp∗x p2−y p2 )/
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y shock2=det h+tan ( b e t a r e f+te ta )∗ ( x shock2−2∗pi ∗Radius )

i f y shock2<=L and y shock2>=det h :

de l tax2=x shock2−x p2

de l tax3=x shock2−x p3

de l tay2=y shock2−y p2

de l tay3=y shock2−y p3

d i s t 2=sq r t ( de l tax2 ∗∗2+de l tay2 ∗∗2)

d i s t 3=sq r t ( de l tax3 ∗∗2+de l tay3 ∗∗2)

d i s t=d i s t 2+d i s t 3

t e t a sh2=(1−d i s t 2 / d i s t )∗ t e ta p2+(1−d i s t 3 / d i s t )∗ t e ta p3

PM sh2=teta sh2−t e ta p2+PM p2

M sh2=invPM(PM sh2)

mu sh2=mu(M sh2 )

P sh2=P0 MOC/((1+(gamma med−1)/2∗M sh2 ∗∗2)∗∗ (gamma med/(gamma med

shock2 [ 0 , : ] = [ x shock2 , y shock2 , M sh2 , PM sh2 , mu sh2 , te ta sh2

re turn p3 , out1 , out2 , shock1 , shock2

m tot=mol O2∗32+mol N2∗28+mol H2∗2

gas=ct . So lu t i on ( ’ gr i30 h ighT . yaml ’ )

#gas .TPX=300 ,1e5 , ’H2 : 2 O2: 1 N2 : 3 . 7 6 ’

gas .TPX=T0 , p0 , ’H2 : 2 O2: 1 N2 : 3 . 7 6 ’

cp=gas . cp mass

cv=gas . cv mass

R=cp−cv

gamma=cp/cv

check=0
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#Xref new=0

#ine r t− l i k e ga s s e s

P1=5e5

T1=1500

M1=3.5

whi l e check==0:

T=T0−0.5∗Vinj ∗∗2/ cp

p=p0 /( (T0/T)∗∗ (gamma/(gamma−1)))

#q=’H2 : ’ +s t r (mol H2)+ ’ O2: ’+ s t r (mol O2)+ ’ N2: ’+ s t r (mol N2 )

q=’H2: 2 O2: 1 N2 : 3 . 7 6 ’

mech=’ gr i30 h ighT . yaml ’

c j s p e ed = CJspeed (p , T, q , mech)

gas = PostShock eq ( c j speed , p , T, q , mech)

#speed t r i n g l e s

U=sq r t ( ( c j sp e ed ∗∗2−Vinj ∗∗2))

b e t a r e f=atan ( Vinj /U)

L1=det h / tan ( b e t a r e f )

L2=det h ∗ tan ( b e t a r e f )

Xref=Radius ∗2∗ pi−L1

#post shock e xp l o s i v e s

X=gas .X

P2=gas .P

T2=gas .T

rho2=gas . dens i ty mass

cp2=gas . cp mass

cv2=gas . cv mass

gamma2=cp2/cv2

R2=gas . cp mass−gas . cv mass

M2=1
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a2=soundspeed f r ( gas )

W2=M2∗a2

V2x=U−W2∗ cos ( b e t a r e f )

V2y=W2∗ s i n ( b e t a r e f )

V2=sq r t (V2x∗∗2+V2y∗∗2)

M2 lab=V2/a2

#T0 MOC=T2∗(1+(gamma2−1)/2∗M2 lab ∗∗2)

#P0 MOC=P2∗((1+(gamma2−1)/2∗M2 lab ∗∗2)∗∗ (gamma2/(gamma2−1)))

T0 MOC=T2∗(1+(gamma2−1)/2∗M2∗∗2)

P0 MOC=P2∗((1+(gamma2−1)/2∗M2∗∗2)∗∗ (gamma2/(gamma2−1)))

#rho0 MOC=rho2 ∗((1+(gamma2−1)/2∗M2∗∗2)∗∗ (1/(gamma2−1)))

check2=0

PM2= lambda M: sq r t ( (gamma2+1)/(gamma2−1))∗ atan ( sq r t ( (gamma2−1)/(gamma2+1)

invPM2=inve r s e f unc (PM2, domain=[1 ,30 ] )

whi l e check2==0:

#ine r t− l i k e gas

gas1=ct . So lu t i on (mech)

gas1 .TPX=T1 ,P1 ,X

cp1=gas1 . cp mass

cv1=gas1 . cv mass

gamma1=cp1/cv1

A=(gamma1+1)/(2∗gamma1)

P3 max=P1∗(M1∗∗2/A+1−1/A)

B=(gamma2−1)/2

M3 min=sq r t ((1+B)/(B∗(P3 max/P2 )∗∗ ( (gamma2−1)/gamma2))−1/B)

i f M3 min<1:

XXXIV



Bibliography

M3 min=1.2

#M3 min=round (M3 min , 3 )

p r i n t ( ’M3 min = ’ ,M3 min)

de f equat ions ( vars ) :

P3 , de l ta3 , M3, teta , de l t a2 = vars

eq1 = delta3−PM2(M3)

eq2 = P3/P2−((1+0.5∗(gamma2−1))/(1+0.5∗(gamma2−1)∗M3∗∗2) )∗∗ (gamma2

eq3 = P3/P1−1−2∗gamma1/(gamma1+1)∗(M1∗∗2∗( s i n ( t e t a ))∗∗2−1)

eq4 = tan ( de l t a2 )−(2∗1/ tan ( t e ta )∗ (M1∗∗2∗( s i n ( t e t a ))∗∗2−1)/(M1∗∗2∗(g

eq5 = delta2−de l t a3

re turn [ eq1 , eq2 , eq3 , eq4 , eq5 ]

guess= [15 e5 , 35∗ pi /180 , M3 min , 50∗ pi /180 , 35∗ pi /180 ]

r e s u l t =f s o l v e ( equat ions , guess )

P3 , de l ta , M3, teta , de l t a2 = r e s u l t

x l im=2∗pi ∗Radius+(L−det h )/ tan ( b e t a r e f+te ta )

p r i n t ( ’ d e l t a s l i p −l i n e = ’ , d e l t a ∗180/ p i )

p r i n t ( ’ d e l t a s l i p −l i n e 2 = ’ , de l t a2 ∗180/ p i )

p r i n t ( ’ t e t a shock = ’ , t e t a ∗180/ p i )

p r i n t ( ’M3 = ’ ,M3)

p r i n t ( ’P3 = ’ ,P3/1e5 , ’ bar ’ )

p r i n t ( ’ ’ )

#de f i n i n g an average gamma

gamma med=(gamma2+gamma1)/2

cp med=(cp2+cp1 )/2

cv med=cp med/gamma med

R med=cp med−cv med

PM= lambda M: sq r t ( ( gamma med+1)/(gamma med−1))∗ atan ( sq r t ( ( gamma med−1

#PM= lambda M: sq r t ( (gamma2+1)/(gamma2−1))∗ atan ( sq r t ( (gamma2−1)/(gamma

XXXV



Bibliography

invPM=inve r s e f unc (PM, domain=[1 ,30 ] )

#PM expansion fan nord

mu= lambda M: a s in (1/M)

invmu=lambda mu: 1/ s i n (mu)

’ ’ ’

dPM=np . l i n s p a c e (0 , de l ta , npo ints )

dM=np . ones ( npo ints )

f o r i in range ( npo ints ) :

dM[ i ]=invPM(dPM[ i ] )

dmu=np . a r c s i n (1/dM)

#dteta=be t a r e f+dPM

dteta=dPM

’ ’ ’

M max=invPM2( de l t a )

dM=np . l i n s p a c e (M2,M max, npo ints )

dPM=np . z e r o s ( npo ints )

dmu=np . z e r o s ( npo ints )

f o r i in range ( npo ints ) :

dPM[ i ]=PM2(dM[ i ] )

dmu[ i ]=mu(dM[ i ] )

dteta=be t a r e f+dPM

’ ’ ’

dteta=np . ones ( npo ints )

dteta [0 ]= b e t a r e f

f o r i in range ( npoints −1):

dteta [ i +1]=dteta [ i ]+dPM[ i+1]−dPM[ i ]

’ ’ ’
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#PM expansion fan sud

’ ’ ’

dPM2=np . l i n s p a c e (0 , b e ta r e f , npo ints )

dM2=np . ones ( npo ints )

f o r i in range ( npo ints ) :

dM2[ i ]=invPM(dPM2[ i ] )

dmu2=np . a r c s i n (1/dM2)

#dteta2=be ta r e f−dPM2

dteta2=−dPM2

’ ’ ’

M max=invPM2( b e t a r e f )

dM2=np . l i n s p a c e (M2,M max, npo ints )

dPM2=np . z e r o s ( npo ints )

dmu2=np . z e r o s ( npo ints )

f o r i in range ( npo ints ) :

dPM2[ i ]=PM2(dM2[ i ] )

dmu2 [ i ]=mu(dM2[ i ] )

dteta2=−dPM2+be t a r e f

’ ’ ’

dteta2=np . z e r o s ( npo ints )

dteta2 [0 ]= b e t a r e f

f o r i in range ( npoints −1):

dteta2 [ i +1]=dteta2 [ i ]−dPM2[ i +1]+dPM2[ i ]
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’ ’ ’

#MOC

p l t . f i g u r e (1 )

s ave po in t s=np . empty ( ( 0 , 7 ) ) #x , y ,M,PM,mu, teta , p r e s su r e

ou t l e t=np . empty ( ( 0 , 7 ) )

wa l l i ndex sud =[ ]

wa l l index nord =[ ]

#exp fan nord

p2=[L2 , 0 ,dM2 [ 1 ] ,dPM2[ 1 ] , dmu2 [ 1 ] , dteta2 [ 1 ] ]

f o r i in range ( npoints −1):

p1=[0 , det h ,dM[ i +1] ,dPM[ i +1] ,dmu[ i +1] , dteta [ i +1] ]

[ p3 , out1 , out2 ]=center MOC(p1 , p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

i f out1 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out1 , 0 )

i f out2 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out2 , 0 )

print MOC(p1 , p2 , p3 )

p2=p3

#1s t wa l l po int nord
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p2=save po in t s [ −1 , : ]

[ p3 , out ]=wal lp nord ( p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

wa l l index nord . append ( save po in t s . shape [0 ] −1)

i f out [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out , 0 )

p lot pnord (p2 , p3 )

#exp fan sud

p1=[0 , det h ,dM[ 1 ] ,dPM[ 1 ] , dmu [ 1 ] , dteta [ 1 ] ]

exp fan sud=np . ones ( ( npoints −1 ,7))

f o r i in range ( npoints −1):

p2=[L2 , 0 ,dM2[ i +1] ,dPM2[ i +1] ,dmu2 [ i +1] , dteta2 [ i +1] ]

[ p3 , out1 , out2 ]=center MOC(p1 , p2 )

i f i !=0:

exp fan sud [ i −1 ,:]=p3

i f out1 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out1 , 0 )

i f out2 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out2 , 0 )

print MOC(p1 , p2 , p3 )
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p1=p3

#1s t wa l l po int sud

p1=exp fan sud [ −2 , : ]

p3=wal lp sud ( p1 )

exp fan sud [ −1 , : ]=p3

plot psud (p1 , p3 )

#MOC part 1

imax=npoints−1

sud index =[ ]

sud index . append (0 )

f o r j in range ( npoints −1):

s ave po in t s=np . append ( save po int s , [ exp fan sud [ j , : ] ] , 0)

sud index . append ( s ave po in t s . shape [0 ] −1)

f o r i in range ( imax ) :

p1=save po in t s [ sud index [−2]+1+ i , : ]

p2=save po in t s [ sud index [−1]+ i , : ]

[ p3 , out1 , out2 ]=center MOC(p1 , p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

i f out1 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out1 , 0 )

i f out2 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out2 , 0 )
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print MOC(p1 , p2 , p3 )

#wal l po int nord

p2=save po in t s [ −1 , : ]

[ p3 , out ]=wal lp nord ( p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

wa l l index nord . append ( save po in t s . shape [0 ] −1)

i f out [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out , 0 )

p lot pnord (p2 , p3 )

imax=imax+1

’ ’ ’

f o r i in range ( s ave po in t s . shape [ 0 ] ) :

p r i n t ( i )

p r i n t ( s ave po in t s [ i , : ] )

p r i n t ( ’ ’ )

’ ’ ’

#c r e a t i n g next sud wal l po int

p1=save po in t s [ sud index [ −1 ]+1 , : ]

p3=wal lp sud ( p1 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

sud index . append ( s ave po in t s . shape [0 ] −1)

p lot psud (p1 , p3 )

#MOC part 2
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imax=sud index [−1]− sud index [−2]−2

PP=p0+2e5

shock=np . empty ( ( 0 , 7 ) )

j=0

whi l e PP>p :

f o r i in range ( imax−j ) :

p1=save po in t s [ sud index [−2]+2+ i , : ]

p2=save po in t s [ sud index [−1]+ i , : ]

#[p3 , out1 , out2 ]=center MOC(p1 , p2 )

[ p3 , out1 , out2 , sh1 , sh2 ]=MOC 3(p1 , p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

i f out1 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out1 , 0 )

i f out2 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out2 , 0 )

i f sh1 [ 0 , 0 ] != 0 :

shock=np . append ( shock , sh1 , 0)

i f sh2 [ 0 , 0 ] != 0 :

shock=np . append ( shock , sh2 , 0)

print MOC(p1 , p2 , p3 )

#wal l po int nord
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p2=save po in t s [ −1 , : ]

[ p3 , out ]=wal lp nord ( p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

wa l l index nord . append ( save po in t s . shape [0 ] −1)

i f out [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out , 0 )

p lot pnord (p2 , p3 )

#wal l po in t s sud

p1=save po in t s [ sud index [ −1 ]+1 , : ]

p3=wal lp sud ( p1 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

sud index . append ( s ave po in t s . shape [0 ] −1)

p lot psud (p1 , p3 )

PP=p3 [ 6 ]

’ ’ ’

f o r i in range ( s ave po in t s . shape [ 0 ] ) :

p r i n t ( i )

p r i n t ( s ave po in t s [ i , : ] )

p r i n t ( ’ ’ )

’ ’ ’

#Evaluat ing new Xref
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x p2=save po in t s [ sud index [ −2 ] , 0 ]

x p1=save po in t s [ sud index [ −1 ] , 0 ]

P p2=save po in t s [ sud index [ −2 ] , 6 ]

P p1=save po in t s [ sud index [ −1 ] , 6 ]

dP1=p−P p1

dP2=P p2−p

dPtot=P p2−P p1

Xref new=(1−dP2/dPtot )∗ x p2+(1−dP1/dPtot )∗ x p1

beta re f new=atan ( ( det h )/(2∗ pi ∗Radius−Xref new ) )

p r i n t ( Xref new )

#MOC part 3

xx=0

z=0

#shock=np . empty ( ( 0 , 7 ) )

#whi l e imax−j>=1:

whi l e xx<2∗pi ∗Radius :

f o r i in range ( imax−j ) :

p1=save po in t s [ sud index [−2]+2+ i , : ]

p2=save po in t s [ sud index [−1]+ i , : ]

[ p3 , out1 , out2 , sh1 , sh2 ]=MOC 3(p1 , p2 )

#[p3 , out1 , out2 ]=center MOC(p1 , p2 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

i f out1 [ 0 , 0 ] != 0 :

ou t l e t=np . append ( out l e t , out1 , 0 )

i f out2 [ 0 , 0 ] != 0 :
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ou t l e t=np . append ( out l e t , out2 , 0 )

i f sh1 [ 0 , 0 ] != 0 :

shock=np . append ( shock , sh1 , 0 )

i f sh2 [ 0 , 0 ] != 0 :

shock=np . append ( shock , sh2 , 0 )

print MOC(p1 , p2 , p3 )

#wal l po in t s sud

p1=save po in t s [ sud index [ −1 ]+1 , : ]

p3=wal lp sud3 ( p1 )

s ave po in t s=np . append ( save po int s , [ p3 ] , 0 )

sud index . append ( s ave po in t s . shape [0 ] −1)

p lot psud (p1 , p3 )

xx=p3 [ 0 ]

j=j+1

#p l o t s

x=np . l i n s p a c e (0 ,2∗Radius∗ pi+L2 , 3 )
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y=np . z e r o s (3 )

p l t . p l o t (x , y , ’−b ’ )

x=np . l i n s p a c e (0 , x l im , 3 )

y=L∗np . ones (3 )

p l t . p l o t (x , y , ’ b− ’)

x=np . l i n s p a c e ( Xref new ,2∗ pi ∗Radius , 1 0 )

y=tan ( beta re f new )∗ ( x−Xref new )

p l t . p l o t (x , y )

x=0∗np . ones (10)

y=np . l i n s p a c e (0 , det h , 1 0 )

p l t . p l o t (x , y )

x=np . l i n s p a c e (0 ,L2 , 1 0 )

y=det h−tan ( p i/2−b e t a r e f )∗ ( x )

p l t . p l o t (x , y )

x=(Xref+L1)∗np . ones (10)

y=np . l i n s p a c e (0 , det h , 1 0 )

p l t . p l o t (x , y )

x=np . l i n s p a c e (2∗ pi ∗Radius , 2∗ pi ∗Radius+L2 , 1 0 )

y=det h−tan ( p i/2−b e t a r e f )∗np . l i n s p a c e (0 ,L2 , 1 0 )

p l t . p l o t (x , y )

x=np . l i n s p a c e (0 , x l im−2∗pi ∗Radius , 1 0 )

y=det h+tan ( b e t a r e f+te ta )∗x

p l t . p l o t (x , y )

x=np . l i n s p a c e ( 0 , (L−det h )/ tan ( b e t a r e f+de l t a ) , 10 )

y=det h+tan ( b e t a r e f+de l t a )∗x

p l t . p l o t (x , y )
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x=np . l i n s p a c e (2∗ pi ∗Radius , x l im , 1 0 )

y=det h+tan ( b e t a r e f+te ta )∗ ( x−2∗pi ∗Radius )

p l t . p l o t (x , y )

p l t . ax i s ( ’ s ca l ed ’ )

p l t . g r i d (True )

#p l t . x t i c k s (np . arange (0 , x l im , 0 . 0 1 ) )

#p l t . yl im ( [ 0 . 1 9 5 , 0 . 2 0 5 ] )

#p l t . xl im ( [ 0 . 5 , 0 . 5 1 5 ] )

#p l t . t ex t ( 0 . 5 0 4 , 0 . 1 9 75 , ’ 1 ’ , f o n t s i z e =20)

#p l t . t ex t ( 0 . 5 1 1 , 0 . 2 0 3 , ’ 2 ’ , f o n t s i z e =20)

#p l t . t ex t ( 0 . 5 075 , 0 . 2 002 , ’ 3 ’ , f o n t s i z e =20)

p l t . s a v e f i g ( ’RDEMOC. pdf ’ , bbox inches=’ t i ght ’ )

p l t . show ( )

shock=shock [ np . a r g s o r t ( shock [ : , 0 ] ) ]

M1 new=shock [ 0 , 2 ]

P1 new= shock [ 0 , 6 ]

T1 new=T0 MOC/(1+(gamma1−1)/2∗M1 new∗∗2)

M1 new=sum( shock [ : , 2 ] ) / shock . shape [ 0 ]

#T1 new=T0 MOC/(1+(gamma med−1)/2∗M1 new∗∗2)

T1 new=T0 MOC/(1+(gamma med−1)/2∗M1 new∗∗2)

#T1 new=sum(T1 os )/ T1 os . shape [ 0 ]

P1 new=P0 MOC/((1+(gamma med−1)/2∗M1 new∗∗2)∗∗ (gamma med/(gamma med−1)

#P1 new=shock [ 0 , 6 ]

p r i n t ( ’M1 new = ’ , M1 new)

p r i n t ( ’M1 old = ’ , M1)

p r i n t ( ’P1 new = ’ , P1 new/1 e5 )
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pr in t ( ’P1 o ld = ’ , P1/1 e5 )

p r i n t ( ’T1 new = ’ , T1 new)

p r i n t ( ’T1 old = ’ , T1)

p r i n t ( ’ ’ )

i f abs (T1−T1 new)<=10 and abs (M1 new−M1)<=0.05 and abs (P1−P1 new)<=10e3

check2=1

e l s e :

T1=T1 new

P1=P1 new

M1=M1 new

i f abs ( Xref−Xref new )<0.001:

check=1

e l s e :

Vinj=c j sp e ed ∗ s i n ( beta re f new )

p r i n t ( ’ ’ )

p r i n t ( ’ Xref d i f f e r e n c e = ’ , abs ( Xref−Xref new ) )

p r i n t ( ’New Vinj = ’ , Vinj )

p r i n t ( ’ ’ )

#ob l i que shock equat ions

#x , y ,M,PM,mu, teta , p r e s su r e

#ex t r apo l a t i ng data pre−ob l i que shock

shock=shock [ np . a r g s o r t ( shock [ : , 0 ] ) ]

x os=shock [1:−1 ,0]−2∗ pi ∗Radius

y os=shock [1 : −1 ,1 ]

M sh=shock [1 : −1 ,2 ]

t e t a o s=shock [1 : −1 ,5 ]
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#M os=np . sq r t (np . abso lu t e ( 2/ ( (gamma1+1)/M sh∗∗2−gamma1+1)))

M os=M sh

P os=P0 MOC/(1+(gamma1−1)/2∗M os ∗∗2)∗∗ (gamma1/(gamma1−1))

T os=T0 MOC/(1+(gamma1−1)/2∗M os∗∗2)

beta os=te ta+be ta r e f−t e t a o s

#eva lua t ing post−ob l i que shock data

P2 os=P os ∗ ( (2∗gamma1∗M os∗∗2∗(np . s i n ( beta os ))∗∗2)−gamma1+1)/(gamma1+1)

x2 os=(L−y os )/np . tan ( b e t a r e f+de l t a )+x os

A=(gamma1−1)

B=M os∗∗2∗(np . s i n ( beta os ) )∗∗2

M2 os=np . sq r t (1/( np . s i n ( beta os −( d e l t a+be ta r e f−t e t a o s ) ) )∗∗2∗ (A∗B+2)/(2∗gamma

C=2∗(gamma1−1)/(gamma1+1)∗∗2

T2 os=T os ∗ ( (2∗gamma1∗B−A)∗ (A∗B+2)/((gamma1+1)∗∗2∗B) )

a os=np . ones ( T2 os . shape [ 0 ] )

rho os=np . ones ( T2 os . shape [ 0 ] )

f o r i in range ( T2 os . shape [ 0 ] ) :

gas=ct . So lu t i on (mech)

gas .TPX=T2 os [ i ] , P2 os [ i ] ,X

a os [ i ]= soundspeed f r ( gas )

rho os [ i ]=gas . dens i ty mass

W2 os=M2 os∗ a os

V2 os x=abs (W2 os∗ cos ( d e l t a+be t a r e f )−U)
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V2 os y=W2 os∗ s i n ( d e l t a+be t a r e f )

V2 os=np . sq r t ( V2 os x∗∗2+V2 os y ∗∗2)

M os lab=V2 os/ a os

P tot os=P2 os ∗(1+(gamma1−1)/2∗M os lab ∗∗2)∗∗ (gamma1/(gamma1−1))

T tot os=T2 os ∗(1+(gamma1−1)/2∗M os lab ∗∗2)

#P tot os=P2 os ∗(1+(gamma1−1)/2∗M2 os ∗∗2)∗∗ (gamma1/(gamma1−1))

#T tot os=T2 os ∗(1+(gamma1−1)/2∗M2 os ∗∗2)

o u t l e t o s=np . ones ( ( x2 os . shape [ 0 ] , 7 ) )

o u t l e t o s [ : , 0 ]= x2 os

o u t l e t o s [ : , 1 ]= P2 os

ou t l e t o s [ : , 2 ]= y os

ou t l e t o s [ : , 3 ]= x os

ou t l e t o s [ : , 4 ]= P tot os

o u t l e t o s [ : , 5 ]= T tot os

o u t l e t o s [ : , 6 ]= T2 os

ou t l e t o s=ou t l e t o s [ np . a r g s o r t ( o u t l e t o s [ : , 0 ] ) ]

x2 os=ou t l e t o s [ : , 0 ]

P2 os=ou t l e t o s [ : , 1 ]

y os=ou t l e t o s [ : , 2 ]

x os=ou t l e t o s [ : , 3 ]

P tot os=ou t l e t o s [ : , 4 ]

T tot os=ou t l e t o s [ : , 5 ]

T2 os=ou t l e t o s [ : , 6 ]

#ou t l e t data

out x=ou t l e t [ : , 0 ]

out M1=ou t l e t [ : , 2 ]

ou t t e t a=ou t l e t [ : , 5 ]

gamma=np . l i n s p a c e (gamma2 , gamma1 , out x . shape [ 0 ] )

#out M=np . sq r t (np . abso lu t e ( 2/ ( (gamma+1)/out M1∗∗2−gamma+1)))

out M=out M1

L
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out P=P0 MOC/(1+(gamma med−1)/2∗out M ∗∗2)∗∗ (gamma med/(gamma med−1))

out T=T0 MOC/(1+(gamma med−1)/2∗out M∗∗2)

out a=np . ones ( out T . shape [ 0 ] )

rho out2=np . ones ( out T . shape [ 0 ] )

f o r i in range ( out T . shape [ 0 ] ) :

gas=ct . So lu t i on (mech)

gas .TPX=out T [ i ] , out P [ i ] ,X

out a [ i ]= soundspeed f r ( gas )

rho out2 [ i ]=gas . dens i ty mass

out W2=out M1∗ out a

out Vx=abs (out W2∗np . cos ( ou t t e t a )−U)

out Vy=out W2∗np . s i n ( ou t t e t a )

out V=np . sq r t ( out Vx∗∗2+out Vy ∗∗2)

out M lab=out V/ out a

out P tot=out P ∗(1+(gamma med−1)/2∗ out M lab ∗∗2)∗∗ (gamma med/(gamma med−1))

out T tot=out T∗(1+(gamma med−1)/2∗ out M lab ∗∗2)

x out=np . concatenate ( ( x2 os , out x ) )

P out=np . concatenate ( ( P2 os , out P ) )

T out=np . concatenate ( ( T2 os , out T ) )

P tot out=np . concatenate ( ( P tot os , out P tot ) )

T tot out=np . concatenate ( ( T tot os , out T tot ) )

r h o ou t f i n a l=np . concatenate ( ( rho os , rho out2 ) )

v out=np . concatenate ( ( V2 os , out V ) )

vy out=np . concatenate ( ( V2 os y , out Vy ) )

rho out=P out /(R med∗T out )

mass avg T=sum( rho out ∗v out ∗T out )/sum( rho out ∗v out )

LI
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pr in t ( ’Mass averaged Temperature ’ , mass avg T )

mass avg P=sum( rho out ∗v out ∗P out )/sum( rho out ∗v out )

p r i n t ( ’Mass averaged pr e s su r e ’ , mass avg P/1 e5 )

p r i n t ( ’ ’ )

mass avg T=sum( r h o ou t f i n a l ∗v out ∗T out )/sum( r h o ou t f i n a l ∗v out )

p r i n t ( ’Mass averaged Temperature ’ , mass avg T )

mass avg P=sum( r h o ou t f i n a l ∗v out ∗P out )/sum( r h o ou t f i n a l ∗v out )

p r i n t ( ’Mass averaged pr e s su r e ’ , mass avg P/1 e5 )

#pr in t ( v out /(np . s q r t (gamma med∗R med∗T out ) ) )

#p l o t s

p l t . f i g u r e (2 )

x=np . l i n s p a c e (0 , x l im−2∗pi ∗Radius , 1 0 )

y=det h+tan ( b e t a r e f+te ta )∗x

p l t . p l o t (x , y )

x=np . l i n s p a c e ( 0 , (L−det h )/ tan ( b e t a r e f+de l t a ) , 10 )

y=det h+tan ( b e t a r e f+de l t a )∗x

p l t . p l o t (x , y )

f o r i in range ( x2 os . shape [ 0 ] ) :

x=np . l i n s p a c e ( x os [ i ] , x2 os [ i ] , 4 )

y=y os [ i ]+tan ( b e t a r e f+de l t a )∗ ( x−x os [ i ] )

p l t . p l o t (x , y )

p l t . f i g u r e (3 )

p l t . p l o t ( x out , P out /1 e5 )

p l t . x l ab e l ( ’ x [m] ’ )

p l t . y l ab e l ( ’ Outlet p r e s su r e [ bar ] ’ )

p l t . show

p l t . f i g u r e (4 )

p l t . p l o t ( x out , T out )

LII



Bibliography

p l t . x l ab e l ( ’ x [m] ’ )

p l t . y l ab e l ( ’ Outlet Temperature [K] ’ )

p l t . show

p l t . f i g u r e (5 )

p l t . p l o t ( x out , P tot out /1 e5 )

y=p0/1 e5∗np . ones (3 )

x=np . l i n s p a c e ( x out [ 0 ] , x out [ −1 ] ,3)

p l t . p l o t (x , y , ’ r−−’)

p l t . x l ab e l ( ’ x [m] ’ )

p l t . y l ab e l ( ’ Total Outlet p r e s su r e [ bar ] ’ )

p l t . show

p l t . f i g u r e (6 )

p l t . p l o t ( x out , T tot out )

p l t . x l ab e l ( ’ x [m] ’ )

p l t . y l ab e l ( ’ Total Outlet Temperature [K] ’ )

p l t . show

p in=save po in t s [ sud index , 6 ]

x in=save po in t s [ sud index , 0 ]

p l t . f i g u r e (7 )

p l t . p l o t ( x in , p in /1 e5 )

p l t . p l o t ( x in , p0/1 e5∗np . ones ( x in . shape [ 0 ] ) )

p l t . x l ab e l ( ’ x [m] ’ )

p l t . y l ab e l ( ’ I n l e t Pres sure [ bar ] ’ )

p l t . show
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