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Chapter 1

Preface

The following work attempts to enumerate and investigate a rather large number of

issues related to the stochastic solution of the adjoint neutron transport equation.

This is a crucial argument in the field of nuclear reactor physics, since the adjoint

flux distribution coincides with the importance distribution, and both play an im-

portant role in the design of a nuclear core. Importance is a measure of how much a

particle contributes to the state of the system. The first application of this concept

was in the formulation of Generalised Perturbation Theory, where studies of control

rod positioning and movement showed that the importance of the absorbed neutrons

was the most important parameter in evaluating the control rod effect. Similarly,

reactor kinetic parameters are strongly influenced by the importance distribution:

i.e. in a thermal reactor the effective delayed neutron fraction is higher than in a

fast reactor, even though they may have the same fuel.

This equivalence has led to the possibility of avoiding deterministic approaches to

the calculation of importance, so that the same MC code can be used to simulate

both direct and adjoint transport. This goal became particularly interesting when

considering that MC codes are the most widely used and optimised approach to solv-

ing the Boltzman equation. In addition, zero-variance MC methods require prior

evaluation of the importance distribution to increase the accuracy of the results.

Therefore, the ability to perform a single simulation, rather than a hybrid between

deterministic and stochastic solutions, can lead to the development of powerful tools

for nuclear engineering.

In order to accomplish this task, some basic knowledge is first introduced to provide
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a useful background for future argumentation. The relationship between direct and

adjoint transport is then explored: the introduction of a new type of particle requires

the derivation of its transport properties. From this, the procedure for simulating

an adjoint random walk is outlined. The main part of the thesis is devoted to the

presentation of an in-house MC code developed to solve both direct and adjoint

transport problems. Within Chapter 4, all the sampling functions implemented are

described, coupled with how corrections would be applied to better handle adjoint

transport. To ensure the reliability of the results, the well-known case study of the

deceleration problem is analysed.



Chapter 2

Introduction

2.1 Neutron transport theory

Nuclear reactor physics was born during the Second World War with the estab-

lishment of the Manhattan Project. The first applications were to understand and

exploit the interactions between neutrons and matter. The first demonstration of

the possibility of achieving a positive net energy balance by controlling a fission

chain reaction was Fermi’s pile. This is the ancestor of the nuclear power plant core

and, despite its simplicity of design, meets all the requirements of a nuclear reactor.

From there, the applications of nuclear technology expanded to include transport,

medicine, space travel and more.

The milestone of all activities related to the nuclear field is the Boltzman neutron

transport equation [1]:

Ω · ∇ϕ(r⃗, E, Ω⃗) =− Σt(r⃗, E)ϕ(r⃗, E, Ω⃗)+

+

∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σs(r⃗, E
′)fs(r⃗, E

′, Ω⃗′ → E, Ω⃗)ϕ(r⃗, E, Ω⃗)+

+
1

K

χ(E)

4π

∮
4π

dΩ⃗′
∫ ∞

0

dE ′νf (r⃗, E
′)Σf (r⃗, E

′)ϕ(r⃗, E ′, Ω⃗). (2.1)

This equation describes the neutron distribution in a multiplicative and stationary

system. The unknown is the neutron flux, defined as the product of the particle

density and its velocity, ϕ(r⃗, E, Ω⃗) = v(E)ϕ(r⃗, E, Ω⃗). The collection of all indepen-

dent variables, (r⃗, E, Ω⃗), is called the phase space and can be defined as the domain

of existence of the equation. On the other hand, a more practical point of view can

7



2.1. NEUTRON TRANSPORT THEORY 8

help to grasp the reason for all the variables used: moving from the density distribu-

tion to the single particle, the transport phenomenon can be described in terms of

its position, r⃗, and its velocity, v⃗. The latter is not explicit in the equation (2.1), but

it is only necessary to decompose the vector v⃗ into its magnitude, |v|, and direction,

Ω⃗. Finally, the magnitude is expressed as a function of energy using the definition

of kinetic energy. Often the dependence on the direction of flight is neglected, so

the problem is written in terms of the scalar flux, Φ(r⃗, E) =

∮
4π

dΩ⃗ ϕ(r⃗, E).

A brief description of each phenomena involved is provided.

• Ω · ∇ϕ(r⃗, E, Ω⃗)
The streaming term represents the spatial motion of the particles. This means

the net balance of neutrons passing through the observed volume of space, so

it can be generally referred to as the ’leakage’ term.

• Σt(r⃗, E)ϕ(r⃗, E, Ω⃗)

The removal term counts the fraction of particles initially inside the ob-

served phase volume that change their energy or direction as a result of

a collision. Here the unit of the equation (2.1) can be easily explained:

Σt(r⃗, E)
[

1
cm

]
is the probability per unit path to have an interaction, while

ϕ(r⃗, E, Ω⃗)
[

1
cm2 eV s

]
, so the result is the collision density normalised to the

phase volume F (r⃗, E, Ω⃗
[

1
cm3 eV s

]
).

•
∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σs(r⃗, E
′)fs(r⃗, E

′, Ω⃗′ → E, Ω⃗)ϕ(r⃗, E, Ω⃗)

The scattering term counts the fraction of particles reaching the observed phase

volume that change energy or direction as a result of scattering. fs(r⃗, E
′, Ω⃗′ →

E, Ω⃗) is known as the scattering function and introduces the probability that

a particle colliding within dr⃗dE ′dΩ⃗′ will end up within dr⃗dEdΩ⃗. Note that the

integrals are used to account for all possible incoming energies and directions,

including the observed one.

• 1
K

χ(E)
4π

∮
4π

dΩ⃗′
∫ ∞

0

dE ′νf (r⃗, E
′)Σf (r⃗, E

′)ϕ(r⃗, E ′, Ω⃗)
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The fission term counts all neutrons produced by fissions within the observed

phase volume. νf (r⃗, E
′) is the number of neutrons produced by a reaction at

energy E ′, so the multiplicity depends on the pre-collision characteristics. On

the other hand, the probability of emifing a neutron within dEdΩ⃗ is χ(E)
4π

. One

last consideration must be spent to describe the term 1
K
: it is an artificial

degree of freedom introduced to ensure a meaningful solution of the equation.

Physically, it describes how far the system goes before going critical.

A more general form of the equation (2.1) also includes a source term, S(r⃗, E, Ω⃗),

which is nothing more than an external positive contribution that can be arbitrarily

defined. In the case discussed here, the fission term plays the role of the source.

In order to pose the problem well, it is necessary to define boundary conditions.

Most applications can be resumed in the case of void boundary conditions: no in-

coming neutrons from outside the system.

ϕ(r⃗ = R⃗end, E, Ω⃗ = Ω⃗in) = 0 ∀E (2.2)

where R⃗end is a short notation to indicate all the edges of the domain, the same for

Ω⃗in which includes all incoming directions.

2.2 Monte Carlo methods

Monte Carlo (MC) methods are a family of algorithms designed to reproduce the

results of physical experiments on a computer. Their aim is to simulate stochastic

phenomena by sampling random numbers: often complex systems can be decom-

posed into a subset of different random processes with known probability density

functions (PDFs). MC codes were born and developed alongside nuclear physics

during the Manhattan Project. Metropolis, Ulam and von Neumann were pioneers

in applying probabilistic approaches to a wide range of problems, as can be seen

in the paper by Metropolis and Ulam [2]. They were able to perform the first MC

simulation of a thermonuclear reactor on ENIAC, the first computer ever built. The

accuracy of the results obtained marks a turning point in the history of reactor

physics, since from that moment on interest in stochastic methods increased until

they became a cornerstone of nuclear engineering knowledge. A very interesting
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account of the history of the project was written by Metropolis [3].

Over time, the invention of more powerful computational tools and the develop-

ment of optimisation techniques (i.e. parallelism) led to the consolidation of MC

methods as the main solution to the neutron transport equation (2.1). Tripoli-4 [4]

is the MC code released by the CEA in the 1990s, which has high accuracy results

due to advanced variance reduction (VR) techniques. Another example is Serpent 2

[5], developed at the VVT Technical Research Centre and optimised for core design

and fuel cycle studies. Finally, OpenMC [6] is an open source MC code that will

be launched at MIT in 2011. In addition to availability, its main features are high

parallelism to increase computational power and the potential to perform large-scale

simulations.

After giving some references to reconstruct the state of the art of MC codes, it

may be useful to give a very brief explanation of how they work. However, the

argument will be discussed in detail later. Given a phase space consisting of N

independent variables, a generic particle in it can be described by a vector of length

N . After a certain time interval ∆t, the properties of the particle change due to

random processes (i.e. scattering), and the new values can be collected in a new

vector of the same size. Thus, it can be assumed that there exists a set of probability

distributions that can describe all possible outcomes depending on the initial condi-

tions. For example, it has been shown that the jump between two different energy

levels occurs as a random process. Thus, if we consider a sufficiently large number

of particles at time t and perform this ’random application’ on them, the law of

large numbers ensures that we get a good approximation of how the particles will

be distributed on average at t + ∆t. Repeating this process for a sufficiently large

number of time steps will lead to the stationary distribution, if it exists. The main

feature of the MC code is thus the transition from complex integrals and probability

matrices to a simple chain of random events; on the other hand, a huge number of

histories is often required.
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2.3 Neutron importance

The concept of neutron importance was first introduced by A. M. Weinberg and E.

P. Wigner [7] as a measure of how significantly a single neutron can influence the

state of a chain reactor. The definition comes from the application of perturbation

theory to nuclear design to assess the effect of the presence of control rods and the

parameters on which it depends. An opposite point of view may be clearer, without

any lack of completeness: the introduction of an external neutron into a critical

system results in an increase of the neutron population. The number of descendants

supplied to the reaction can be interpreted as how ’important’ the ancestor is to it.

Once a general definition is given, it is necessary to provide a tool that allows

the evaluation of the importance distribution. From a mathematical point of view,

the importance is a scalar property associated with neutrons that depends on their

position in phase space, ψ(r⃗, E, Ω⃗). So the value associated with a population of

neutrons can be expressed as N0 · ψ(r⃗, E, Ω⃗), where N0 is the particle density. As

in the case of the equation (2.1), let’s consider a multiplicative stationary system:

since the importance of a neutron is proportional to the power it produces, it can

be assumed that its progeny will have the same importance. Following the proce-

dure described in Ussachoff’s book [8], a balance equation for a group of particles

travelling along a segment ds can be written as follows

N0ψ(r⃗, E, Ω⃗) = N0 (1− Σt(r⃗, E)ds)ψ(r⃗ + Ω⃗ds, E, Ω⃗)

+N0Σs(r⃗, E)ds

∮
4π

dΩ⃗′
∫ ∞

0

dE ′fs(r⃗, E, Ω⃗→ E ′, Ω⃗′)ψ(r⃗, E ′, Ω⃗′)

+N0
ν(r⃗, E)

K
Σf (r⃗, E)ds

∮
4π

dΩ⃗′
∫ ∞

0

dE ′χ(r⃗, E
′)

4π
ψ(r⃗, E ′, Ω⃗′). (2.3)

The left term is the total importance in the original position. Meanwhile, the right

term is composed of three different contributions, in order: the importance trans-

ported by particles that do not interact, the importance transported by particles

scattered in all possible phase volumes, and the importance transported by particles

produced by fissions. Note that also in this case it is necessary to introduce the

factor 1
K

to guarantee a nonzero solution. Each term is constructed by multiplying

the neutron density, N0, with the fraction of particles emitted in a chosen phase

volume, νkfk(r⃗, E, Ω⃗ → E ′, Ω⃗′)dE ′dΩ⃗′, and the probability to interact during the



2.3. NEUTRON IMPORTANCE 12

displacement, Σk(r⃗, E)ds. The final goal may seem obvious: a partial differential

equation for the importance. N0 can be simplified and some terms rearranged.

ψ(r⃗, E, Ω⃗)− ψ(r⃗ + Ω⃗ds, E, Ω⃗) = −Σt(r⃗, E)dsψ(r⃗ + Ω⃗ds, E, Ω⃗)

+ Σs(r⃗, E)ds

∮
4π

dΩ⃗′
∫ ∞

0

dE ′fs(r⃗, E, Ω⃗→ E ′, Ω⃗′)ψ(r⃗, E ′, Ω⃗′)

+
ν(r⃗, E)

K
Σf (r⃗, E)ds

∮
4π

dΩ⃗′
∫ ∞

0

dE ′χ(r⃗, E
′)

4π
ψ(r⃗, E ′, Ω⃗′).

(2.4)

The last step is to divide for the movement, ds, and compute the limit for ds→ 0.

On the left side the definition of the gradient computed along the direction of the

displacement.

−Ω⃗ · ∇ψ(r⃗, E, Ω⃗) + Σt(r⃗, E)ψ(r⃗ + Ω⃗, E, Ω⃗)

= Σs(r⃗, E)

∮
4π

dΩ⃗′
∫ ∞

0

dE ′fs(r⃗, E, Ω⃗→ E ′, Ω⃗′)ψ(r⃗, E ′, Ω⃗′)

+
ν(r⃗, E)

K
Σf (r⃗, E)

∮
4π

dΩ⃗′
∫ ∞

0

dE ′χ(r⃗, E
′)

4π
ψ(r⃗, E ′, Ω⃗′). (2.5)

This is nothing more than the adjoint transport equation. The simplest boundary

conditions to apply, and the most commonly used, are those related to the void.

Again, defining the importance of a neutron as proportional to power, it can simply

be assumed that the importance of outgoing neutrons is zero.

ψ(R⃗end, E, Ω⃗out) = 0 (2.6)

where R⃗end is the position of the boundary and Ω⃗out is the direction normal to the

outer surface.

A more rigorous derivations of the property of importance conservation, so also

of the equation (2.5) can be found on the book by Lewin [9].



Chapter 3

Direct and adjoint transport

3.1 Monte Carlo solution of the adjoint transport

equation

A more thorough perspective on the theoretical definition of importance has been

provided by J. Lewin. The author first demonstrates the equivalence between the

importance function and the adjoint with the aim of applying the variation principle

and perturbation theory to a number of well-known case studies in reactor physics,

the adjoint definition and properties can be found in his book [9]. This relationship

allows the application of the importance principle to be extended to source-driven

systems, thus decoupling it from fission and multiplicative media. According to this

new view, it is necessary to redefine the concept of source of importance: when can a

neutron be considered ’more important’ than others? This crucial question points to

the fact that there is no universal unit of measurement for the importance function;

the role of a neutron within a given system can only be assessed in proportion to

its peers. Thus, all importance values must be read as dimensionless numbers that

can only acquire meaning when compared with others. Similarly, the importance

function itself is related to the nature of the system: as mentioned above, the first

definition was proportional to the neutrons produced, because of the deep focus on

power generation; now it is possible to consider a study of the shielding capacity of a

layer of concrete, where the most relevant characteristic is the probability of escape

from the system. An equivalent but more rigorous formulation is given in Lewin’s

monograph, where he proves that, given a density function and the associated de-

tector, the latter acts as a source term for the relative adjoint equation. Thus, the

13



3.1. MONTE CARLO SOLUTION OF THE ADJOINT TRANSPORT EQUATION14

importance is generated depending on how the neutrons are observed.

The generalisation of the importance definition greatly increases the number of pos-

sible applications rather than the design of nuclear power plants. Equally important

is the relationship between the importance equation and the adjoint transport equa-

tion: the former is a property related to the neutrons it transports, while the latter

has the same unit of measure as a particle density. Thus, the adjoint transport equa-

tion can be solved by MC simulations. According to the definition of the adjoint

source, random walks start from the interaction of the neutrons with the detectors

and move backwards in time until they cross the original source. This approach

is particularly effective for calculations based on low-probability events. It is well

known that for MC results the associated variance decreases with the square root

of the number of histories performed, so the computational cost increases as the

probability of a particle contributing to the sample decreases. For a sufficiently

small detector (i.e. consider again the number of particles able to pass through a

neutron shield), the computation can be very expensive and inefficient, since only a

negligible fraction of the generated population will be able to complete the search.

On the other hand, adjoint paths start from the detector and, if the source is large

relative to the detector, almost all random walks will end there and contribute to the

evaluation. The equivalence between the two estimated observables is guaranteed

by the reciprocity theorem [9].

De Matteis [10] presents a method for sampling the adjoint transport equation based

on the simulation of the random walk of artificial particles called ”adjunctons”. The

idea behind this is to make standard MC codes capable of handling the adjoint equa-

tion: it is necessary to introduce the transport phenomena of adjunctons, and the

most intuitive solution can be to describe them using the neutron data just imple-

mented in existing codes. A later work [11] proposes to apply a direct equivalence

between neutron and adjunction cross sections, the main consequence being to de-

fine for the adjuncton the same types of reactions that are characteristic of neutrons:

scattering, absorption and fission. Although this last consideration may seem quite

intuitive, it is fundamental to note that the adjunctons have been defined arbitrarily,

so that the description of the relative interactions is also arbitrary, as long as the

reaction rate and the probabilities are preserved.
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Saracco, Dulla and Ravetto [12] perform a series of MC simulations aimed at testing

the sampling procedure proposed by A. De Matteis. The case study is the slowing

down problem (i.e. the evaluation of the energy spectrum of neutrons in an infinite

and homogeneous medium without absorption produced by a monoenergetic source)

The solution is known as the Placzek function. The same case can be applied to the

adjuncton: an analytical formulation is computed for the adjoint Placzek function

and an analogue MC code is run to validate the sampling procedure. Furthermore,

the increase in performance due to the application of VR techniques [13] is tested. It

is found that scattering can increase the adjoint weight, potentially leading to large

fluctuations at high energy, making both population control and particle splitting

techniques results particularly efficient. It should be noted that scattering also in-

creases the adjoint energy, so the term ’slowing down’ does not have a direct physical

implication as in the case of neutrons, but is retained for consistency.

3.2 Sampling procedure

Let’s define a phase space with six independent variables: three space coordinates

r⃗, energy E and two angles for the direction of flight Ω⃗. A simplified version of the

(2.1) can be written as [12]:

Ω⃗ · ∇ϕ(r⃗, E, Ω⃗) + Σt(r⃗, E)ϕ(r⃗, E, Ω⃗) = S(r⃗, E, Ω⃗)

+

∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σt(r⃗, E
′)f(r⃗, E ′, Ω⃗′ → E, Ω⃗)ϕ(r⃗, E ′, Ω⃗′). (3.1)

Where f(f(r⃗, E ′, Ω⃗′ → E, Ω⃗)) is known as total collision kernel and is a function

describing all transport phenomena related to the system. Under the assumption

of stationarity, the problem is guaranteed to be linear since the properties of the

medium do not depend on the flux itself. Note that, to generalize the discussion also

to non critical systems, the source term is included. Rewriting in the same way also

the equation 2.5, two main differences can be highlighted: the sign of the streaming

term and the ’direction’ of the collision kernel.

−Ω⃗ · ∇ψ(r⃗, E, Ω⃗) + Σt(r⃗, E)ψ(r⃗, E, Ω⃗) = S†(r⃗, E, Ω⃗)

+

∮
4π

dΩ⃗′
∫ ∞

0

dE ′ Σt(r⃗, E
′)f(r⃗, E ′, Ω⃗′ → E, Ω⃗)ψ(r⃗, E ′, Ω⃗′). (3.2)
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This can also be defined as the adjoint version of the equation (3.1). The former

is the mathematical equivalent of the backward random walk performed by the ad-

junctons: the direction of flight is reversed, so is the gradient. The latter underlines

the difference between the derivation of the two equations and the different nature

of the variables. The equation (3.1) is based on the conservation of mass, so its

solution is representative of a density. Thus, the collision integral takes into account

all the particles present in a different phase volume, ϕ(r⃗, E ′, Ω⃗′)dr⃗dE ′dΩ⃗′, and multi-

plies it by the transfer function from their volume to the observed one, dr⃗dEdΩ⃗. On

the other hand, the equation (3.2) is derived from the importance balance, so the

term represents the contribution of all possible outcomes produced by the neutron

within dr⃗dEdΩ⃗. It is important to stress that the importance is not a density, but

a dimensionless quantity defined only as a ratio between neutrons: the fraction of

scattered neutrons is calculated by Σt(r⃗, E
′)f(r⃗, E ′, Ω⃗′ → E, Ω⃗) and multiplied by

the importance after the collision. In summary, the direct collision term is based on

pre-collision information, while the adjoint term is based on post-collision informa-

tion.

The need to manage the equation (3.2) before attempting to solve it using an MC

code has just been mentioned in the previous section. On the other hand, it may be

useful to introduce a standard sampling procedure for direct MC simulation. There-

fore, all the strategies to adapt it to the adjoint transport will be explained. The

steps involved can be summarised as follows:

• Birth: sample the initial position, energy and direction of the particle from

the source distribution;

• Free-flight: sample the distance travelled by the particle until it interacts,

exponential distribution;

• Interaction: selects the type of interaction the particle will undergo and, if

necessary, saves the fission site;

• Outgoing data: sample the new energy and direction after the collision;

• Scoring: collect the appropriate measure to estimate the flux;

• Weight correction: multiply the particle weight by the number of particles

produced by the collision, νk;
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• Final check: if the particle is still in the phase domain, restart from free-

flight, otherwise end the story.

The procedure relates to an analogue MC code, but can also be used as a guide

for a non-analog case. However, some care must be taken when evaluating the flux

estimator and after applying the weight correction due to the implicit capture. A

final step can be added before the final check to apply VR techniques. In order

to properly sample the random variables depending on the random process, each

physical process requires an associated PDF.

The most general way to derive a PDF from a source distribution is given by

fS(r⃗, E, Ω⃗) =
S(r⃗, E, Ω⃗)∫

V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dES(r⃗, E, Ω⃗)

. (3.3)

The normalisation condition is naturally satisfied. In eigenvalue calculations, the

source energy distribution must correspond to the fission spectrum, while the neu-

tron emission can be assumed to be isotropic. The PDF associated with free-flight

sampling can be derived from the probability that a particle interacts with the

medium within a small interval dr after travelling a distance r

p(r)dr = Σte
Σtrdr. (3.4)

Where r = |r⃗|. In this case, the inverse transform method can be applied straight-

forwardly. For a more detailed discussion of standard MC procedures, the book by

Haghighat [14] serves as a useful reference. Considering a set of reactions k = s, a, f

(scattering, absorption, and fission) for neutrons, the total collision kernel can be

expressed as done in the paper written by Saracco [12].

f(E ′, Ω⃗′ → E, Ω⃗) =
∑

k=s,a,f

Σk(E
′)

Σt(E ′)
νk(E

′)fk(E
′, Ω⃗′ → E, Ω⃗) (3.5)

where fk(E
′, Ω⃗′ → E, Ω⃗) is the partial collision kernel, which defines the PDF gov-

erning the energy and angular distributions of the outgoing neutrons. From this,
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the probability of encountering a particular type of interaction can be constructed

pk(E) =
Σk(E)

Σt(E)
. (3.6)

It is important to note that the partial collision kernels, as well as the total collision

kernel, are normalised with respect to the outgoing energy and angle variables. This

property may seem rather obvious, but it is a fundamental requirement for treating

them as a PDF for sampling the neutron properties after the collision. The previous

discussion of the scattering integral now has an active purpose for the construction

of an adjoint random walk: it is not a PDF for the outgoing energy and angle,

since it is normalised with respect to the incoming values. It is therefore necessary

to construct an equation that is formally equivalent to the equation (3.5). The

simplest approach is to define an adjoint total collision kernel

Σt(E)f(E, Ω⃗→ E ′, Ω⃗′) = Σ†
t(E

′)f †(E ′, Ω⃗′ → E, Ω⃗). (3.7)

In this case, the term ’adjoint’ used to describe these new quantities has no math-

ematical derivation, it is simply an agreement to describe the transport properties

of these new particles called adjunctons. Thus, by changing the direction of the

reference system, it is possible to derive a transport equation for pseudoparticles

−Ω⃗ · ∇ϕ†(r⃗, E, Ω⃗) + Σ†
t(r⃗, E)ϕ

†(r⃗, E, Ω⃗) = S†(r⃗, E, Ω⃗)

+

∮
4π

dΩ⃗′
∫ ∞

0

dE ′ Σ†
t(r⃗, E)f

†(r⃗, E ′, Ω⃗′ → E, Ω⃗)ϕ†(r⃗, E ′, Ω⃗′).

(3.8)

The variable name replacement is used to emphasise that ψ(r⃗, E, Ω⃗) and ϕ†(r⃗, E, Ω⃗)

are not the same quantities, but are only distributed in the same way. Since a new

type of particle is introduced, a new density function can be associated with it,

and it can be shown that the equations (3.2) and (3.8) are formally identical and

must respect the same boundary conditions [9], so the two solutions can overlap.

Following the same steps as described above, it is still necessary to write the total

collision kernel as a function of the partial collision kernels in such a way as to

normalise them with respect to outgoing energy and directions.

f †(E ′, Ω⃗′ → E, Ω⃗) =
∑

k=s,a,f

Σ†
k(E

′)

Σ†
t(E

′)
ν†k(E

′)f †
k(E

′, Ω⃗′ → E, Ω⃗) (3.9)
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By substituting the two total kernel definitions, (3.5) and (3.9), within the equation

(3.7), a relation can be found between them.

∑
k=s,a,f

Σk(E)νk(E)fk(E, Ω⃗→ E ′, Ω⃗′) =
∑

k=s,a,f

Σ†
k(E

′)ν†k(E
′)f †

k(E
′, Ω⃗′ → E, Ω⃗).

(3.10)

The model described by De Matteis [11] introduces two main assumptions: neutrons

and adjunctons have the same set of reactions and the same collision rate. The

second condition implies that the total cross sections for both particles have the

same value

Σt(E) = Σ†
t(E) (3.11)

meanwhile the first one allows to extend the relation imposed on the total collision

kernels by the equation (3.10) to each pair of partial collision kernels:

Σk(E)νk(E)f(E, Ω⃗→ E ′, Ω⃗′) = Σ†
k(E

′)ν†k(E
′)f †

k(E
′, Ω⃗′ → E, Ω⃗). (3.12)

These hypotheses are entirely arbitrary. Although the analogy between neutrons

and adjoint cans seems natural and intuitive, it must be remembered that the only

mathematical constraint comes from the adjoint relation between the two transport

equations. Thus all possible alternative paths that satisfy the equation 3.7 are for-

mally valid and equally viable.

Equivalence between partial sections can be introduced following the same idea

Σk(E) = Σ†
k(E). (3.13)

Once the adjoint transport properties are defined, it is possible to compute all the

partial collision kernels. The steps are made explicit in the paper by Saracco [12].

ν†s(E) =
1

Σs(E)

∮
4π

dΩ⃗

∫ ∞

0

dE ′Σs(E
′)fs(E

′, Ω⃗→ E, Ω⃗′), (3.14)

f †
s (E, Ω⃗→ E ′, Ω⃗′) =

Σs(E
′)fs(E

′, Ω⃗′ → E, Ω⃗)∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σs(E
′)fs(E

′, Ω⃗′ → E, Ω⃗)

. (3.15)
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For the fission process yields

ν†f (E) =
χ(E)

Σf (E)

∫ ∞

0

dE ′νf (E
′)Σf (E

′), (3.16)

f †
f (E, Ω⃗→ E ′, Ω⃗′) =

νf (E
′)Σf (E

′)

4π

∫ ∞

0

dE ′νf (E
′)Σf (E

′)

. (3.17)

In principle, it is only necessary to apply the normalisation condition for the outgoing

energy and the angle of the adjoint collision kernel. The first novelty is the possibility

of multiplying adjunctons also in the case of scattering: a possible misunderstanding

could be the association between the path of a neutron and an adjunction, but the

last consideration emphasises the distance between the two phenomena. The case

of absorption is useless to present, since there are no particle distributions after the

collision. The pseudo-fission properties are calculated by introducing the isotropic

distribution with respect to the emission angle and the Watt distribution for the

energy. It is important to note that in the case of isotropic emission it is possible

to factorise the PDFs and sample each variable individually. The factor 4π on the

denominator is the scaling coefficient for the isotropic angle distribution. The Watt

distribution is therefore a widely used approximation to the energy spectrum of

neutrons emitted by fission.

3.3 Adjoint transport phenomena

Once a new type of particle has been introduced, it can be very useful to explore its

physical properties. It must be clarified that the following thread will be purely spec-

ulative, as the adjunctons existence, i.e. the relations obtained, is limited within

the simulation domain. Nevertheless, a clear insight into the differences between

neutron and adjunction transport can become a powerful tool for taking advantage

of reversed MC simulations.

The usual tendency is to observe the evolution of a particle’s life and then derive

a mathematical description capable of predicting the occurrence of each event. On

the contrary, in this case it is necessary to start from the behaviour of PDFs and try

to read all the clues to the definition of importance. Since the cross sections are the
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same as for neutrons, the free flight sampling in the medium is unchanged. For the

analysis of the scattering term, it may be useful to assume an isotropic scattering

with an s-wave shape for the energy. This simplification can be made by taking into

account that the phenomenon is not isotropic, but the cosine of the deflection angle

depends on the ratio between the incoming and outgoing energy.

fs(Ω⃗→ Ω⃗′) =
1

4π
, (3.18)

fs(E → E ′) =
1

(1− α)E
θ(E ′ − αE)θ(E − E ′). (3.19)

Where α =
(
A−1
A+1

)2
, with A the isotope mass number, and θ(x) is the Heaviside unit

step function. A simple substitution inside (3.14) and (3.15) yields

ν†s(E) =
1

(1− α)Σs(E)

∫ E
α

E

dE ′Σs(E
′)

E ′ , (3.20)

f †
s (E → E ′) =

Σs(E
′)

E ′
θ(E − αE ′)θ(E ′ − E)∫ E

α

E

dE ′Σs(E
′)

E ′

. (3.21)

The angular distribution is the same as for direct scattering. Looking at the equation

(3.21) it is clear that the probability is strictly positive only for energies higher than

the incoming one, so overall the adjunctons go from lower to higher energies. More

interesting is the loss of normalisation of the outgoing scattering weight. The νs(E)

distribution is shown in the figure 3.1: U234, U235 and U238 are chosen as reference

isotopes because most benchmarks are based on them. The data are taken from the

ENDF-VIII library with a frequency of 200 values for decades. Since all functions

are strictly greater than one, the adjoint can be multiplied without fissile material.

Note that the integral part allows an analytical solution only for the cross section

constant with energy: ν†s(E) =
−lnα
1−α

, marked with a dotted line. The behaviour of

the curves is quite constant: the effect is related to the high atomic number, which

reduces the energy interval accessible to a particle. A better explanation is that the

smaller the energy range of the integral, the more acceptable is the assumption of

a constant cross section. This is confirmed by the fact that the peaks are in the

resonance region. The integral must therefore be solved numerically, so the extremes

impose a constraint on the detail of the nuclear data. The case of scattering with

hydrogen is also worth mentioning because the integral is no longer upper bounded,
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which leads to several difficulties in the encoding of both PDF and ν†s .

In order to analyse the fission term well, it must be remembered that the defi-

Figure 3.1: Adjunctons scattering multiplicity, value refers to U234 and U238 are
increased and decreased by a factor of 10 respectively.

nition of importance for a critical system coincides with the probability of a neutron

having a fission. It is therefore reasonable to assume that when a fission occurs in

the neutron phase space, one or more adjunctons are produced. On the other hand,

the number of adjunctons produced and their distribution is not straightforward.

Equations (3.17) and (3.16) allow to construct graphs as a function of the outgoing

energy: these are shown in figures 3.2 and 3.3 respectively. The cross-sectional data

are taken from the ENDF-VIII library and are referenced to U235, while the Watt

distribution can be read in the Haghighat’s book [14]. Looking at figure 3.2, it is

easy to see the characteristic peak around 1MeV of the fast neutrons. On the other

hand, the spectrum of the adjunctons is widely distributed and dominated by the

Σf (E) behaviour. Since the effect of the resonance region is not noticeable in the

linear scale, it should be emphasised that the two curves are reported with different

y-axis scales. Remembering the background information on the importance prop-

erties given in Section 3.1, it is clear here how the detector of the direct problem
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acts as a source for the adjoint: adjunctons are emitted with an energy spectrum

very similar to that of fission-causing neutrons. From the implementation point of

view, this irregularity represents a considerable burden, since the energy has to be

sampled by the rejection method, and the unresolved resonance region, which is

characteristic of each isotope, drastically reduces the efficiency.

The other graph shows the adjuncton multiplicities, ν†(E). Again, different scales

are added to the curves: this allows the effect of the fission cross section to be better

appreciated. For neutrons, the value is more or less constant with energy, except for

a sharp change at very high energy, but the effect can still be considered negligible

for no-fast applications. For pseudoparticles, the leading term is the Watt distribu-

tion: since the scale is log-log, the curve can be approximated by an exponential

function. The most important aspect is the huge difference in the total number of

particles produced, which can be explained by a mathematical formulation: Since

the product νf (E) · ff (E → E ′) must be kept constant, the normalisation factor

of the dagger PDF is reflected in ν†f (E). On the other hand, the phenomenon is

self-compensating, since low energy adjunctons are most likely to be emitted, while

only high energy interactions can produce large numbers of particles. There is a

clear correspondence in the direct neutron transport, since most of them are born

in the fast region, but the probability of fission is higher if they are thermalised.
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Figure 3.2: Neutron and adjuncton energy emission spectrum

Figure 3.3: Neutron and adjuncton number of particle emitted per fission



Chapter 4

An in-house Monte Carlo code

4.1 Generalities

All the results presented in this paper are obtained by an in-house MC code devel-

oped in Python. Its main feature is the ability to switch between direct and adjoint

transport in a friendly way, using the model proposed in the Chapter 3. First, it is

possible to implement it in commercial MC codes by changing only the nuclear in-

puts, as shown in the previous paragraphs. On the other hand, the main objective is

to test the validity of the model. Therefore, the procedure indicated is not applied,

in favour of the possibility to better detect errors or to identify points that require

more careful treatment. In this way, a function is constructed for each transport

process and, if necessary, additional lines are used to adapt the output depending

on the particle being treated. Figure 4.1 shows graphically how the code is config-

ured: each block represents a function, so blocks with the same name are the same

functions, even if they are in different branches. The only missing information is

that the check between eigenvalue problems and source-driven problems has to be

done by the user when the simulation is configured.

The code is capable of representing infinite and homogeneous media or 1D geome-

tries such as spheres or plates. In both cases, it is possible to define a fixed source

or to perform K-eigenvalue calculations. Random variables related to particles are

sampled from continuous phase space: nuclear data as a function of incident parti-

cle energy are taken from the ENDF-VIII library with 200 values for each decade,

intermediate cases are built by linear interpolation. To obtain sufficient resolution

at all energy levels, the points are chosen to be logarithmically equidistant. Fur-

25
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Figure 4.1: Monte Carlo code flow chart
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thermore, the minimum and maximum energies are constrained to be 10−5eV and

20MeV respectively.

Non-analogue approaches are used to reduce the computational cost and increase

the accuracy of the results. Survival bias, Russian roulette and particle splitting are

the main VR techniques used, while in eigenvalue problems some bias is applied to

limit the population increase or decrease.

4.2 Particle sampling

The particle object is defined as a mutable structure containing information about

its state in phase space: position, energy and direction, completed by statistical

weight and particle nature (i.e. neutron or adjuncton). To sample a new particle,

each property must be treated independently to avoid bias introduced by possible

correlations between random variables. In addition, all relevant data is grouped

within the source structure.

Position sampling depends only on the nature of the problem to be solved. In

source-driven systems, the spatial distribution of the source must be provided by

the user as input. As the data format must be a vector of points, sampling is simply

done by selecting a random index. If not specified, the default is to start at the

axis origin. In the eigenvalue case, however, an iterative process is required to build

up an affordable source space distribution. The initial guess can be specified in the

same way as before, or by default is at the axis origin. Again, the fission site points

are collected into vectors as a function of the principal direction (i.e. in spherical

geometry the principal direction is the radius), but no sampling is required between

them since all sites will produce at least one particle.

The flight direction is sampled by a uniform PDF on the spherical surface.

φ = 2πη1, (4.1)

θ = sin−1(2η2 − 1), (4.2)
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where η is a random number uniformly distributed between 0 and 1. It is important

to note that since the random number to be generated must be independent, both η

values must be sampled separately. This approach is representative of all directional

sampling in the code, since the isotropic condition is always true.

The energy sampling is the most complex and, as mentioned above, represents a

crucial difference between the direct and adjoint simulations. It is possible to define

the source in three different main categories: ’mono-energetic’, ’fission’ and ’cus-

tom’. The former require that the initial energy of the particle is always equal to

the specified value, an application that will be considered later in the discussion of

the slowing down problem. The ’fission’ mode includes all the procedures developed

to reproduce well the fission emission spectrum. For neutrons, the energies are taken

from the Watt spectrum according to the procedure proposed by Haghighat[14].

i) k = 1 + b
8a

ii) L = a−1(k +
√
k2 − 1)

iii) x = − ln(η1), y = − ln(η2)

iv) M = aL− 1

v) If y −M(x+ 1)2 ≤ bLx, return E ′ = Lx.

While a and b are tabulated constants that are different for each isotope, the same

values are often used in general Watt spectra. Although it may not seem so clear,

the general idea is to use a standard rejection method, but the shape of the auxil-

iary function is optimised to increase efficiency. The need for this additional focus

on sampling efficiency becomes very clear when recalling Figure 3.2: the standard

rejection method uses a rectangle for linear sampling and only accepts points inside

the blue curve, so the presence of the peak imposes a huge increase in the area

subtended. Note that the efficiency of the rejection method can be calculated as

the ratio between the integral of the PDF to be reproduced and the integral of the

auxiliary function. This digression is fundamental to understand the relevance of the

proposed procedure for the sampling of the energy distribution of the adjunctons.

Returning to Fig. 3.2, it is necessary to implement a method capable of reproduc-

ing the red curve. The simplest and most intuitive solution is to use the standard

rejection method. Given E0 = 1 · 10−5eV and E1 = 20MeV
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i) E ′ = E0 + (E1 − E0)η1

ii) M = max(f †
f (E))

iii) if η2M ≤ f †
f (E

′) return E ′.

The graphical representation is shown in figure 4.2. Several attempts underline

the extreme computational time needed to sample an adequate number of random

numbers. As a benchmark, a simple calculation can be performed to evaluate the

efficiency of the procedure: all values are related to U235. The maximum point is

around ymax = 5 · 10−4, so the area inside the rectangle is A = 104. Since the

emission spectrum is normalised, the efficiency is ϵstd = 10−4: on average, for each

output to be produced, it is necessary to generate 104 pairs of random numbers, η1

and η2. Therefore, this work proposes an alternative procedure that aims to signifi-

cantly reduce the computational effort and time.

It is called logarithmic rejection and is based on modifying the auxiliary function to

follow the behaviour of the energy PDF. Roughly, you want to increase the frequency

of low values and vice versa. So, as the name suggests, a logarithmic distribution is

used as the auxiliary function for the rejection method.

g(E) =
M

E(lnE1 − lnE0)
, (4.3)

where M is an arbitrary value chosen so that the auxiliary function is always above

the PDF to be sampled. The shape of this curve is shown in the figure 4.2. Starting

from the calculation of the factor M , the simplest choice would be to select it by

comparingmin(g(E)) withmax(f †
s (E)) according to the standard rejection method.

However, this solution runs the risk of being self-defeating: since the area covered

by the logarithmic curve will always be larger than in the standard case, this can

be easily demonstrated by imagining that in figure 4.2 the orange curve is shifted

upwards. In this case, the value ofM is computed iteratively: given an initial guess,

it is tested whether the majority condition is satisfied for all points, and otherwise

the value is increased. For the following calculations, M = 55 is used. Note that

although in general different isotopes require different values of M to construct an

optimised function, in this case it is the same with an accuracy of the first integer

digit.
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Returning to the reasons for choosing the auxiliary function, g(E) is also useful

because it allows the application of the inverse transform method for sampling the

random variable, the implementation of which is reported below. Thus, although

some ad hoc functions can be constructed to better approximate the shape of the

adjoint fission spectrum, the candidate is still recommended because the sampling

of the random variable is straightforward: only a linear sampling of the exponent

needs to be performed.

E ′ = 10log10E0+(log10E1−log10E0)η. (4.4)

Finally, the acceptance probability must be rearranged to the new auxiliary function.

The condition to fulfil is
f †
f (E)

g(E)
≤ 1 ∀E. (4.5)

Hence the probability of accepting the proposed value, E ′, is

η ≤
f †
f (E

′)

g(E ′)
= f †

f (E
′) ·

E ′(lnE1

E0
)

M
, (4.6)

where η is always a random number uniformly distributed between 0 and 1. It is

interesting to note how the transition from a linear space, standard rejection, to

a logarithmic space, logarithmic rejection, leads to a self-correction of the statistic.

The term E ′, which is used within the equation (4.3) to increase the frequency of low

energies, acts within the equation (4.6) to facilitate the selection of higher energies.

To simplify the implementation, it is possible to collapse the term M

ln
E1
E0

into a single

constant, but the extended notation is preferred to make the domain of the function

explicit.

Once the robustness of the procedure has been proven, the implementation steps

are resumed.

i) E ′ = 10log10E0+(log10E1−log10E0)η1

ii) L = f †
f (E

′) · E ′(lnE1

E0
)

iii) if η2M ≤ L return E ′.

Figure 4.3 shows the result of a series of tests aimed at estimating the effective

gain in computation time due to the logarithmic rejection implementation. The
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Figure 4.2: Comparison between adjoint fission spectrum and sampling functions

Figure 4.3: Comparison between rejection methods performance
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curves are extrapolated from four measurements where 10, 20, 50 and 100 random

numbers had to be provided. The behaviour is almost linear in all cases, indicating

the constant efficiency of the rejection method. To give an idea of the improvement,

a good ’rule of thumb’ for selecting the number of particles to simulate in each cycle

for the power iteration method suggests at least 200 particles per tally. Considering

the linear trend of the curves to be affordable, the standard rejection method will

spend around 40min for each tally just to sample the initial energy distribution.

Meanwhile, the proposed alternative is capable of performing the same task in less

than 10min. For completeness, the theoretical efficiency of the logarithmic rejection

method is also given.

ϵlog =

∫ E1

E0

dEf †
f (E)∫ E1

E0

dEg(E)

=
1

M
=

1

55
. (4.7)

So ϵlog >> ϵstd = 10−6. The empirical results can be confirmed by looking at the

figure 4.2: although the area under the orange curve appears larger than the area

under the blue curve, the right side of the graph has a drastically higher weight due

to the logarithmic scale. The improvement in efficiency,
ϵlog
ϵstd

, is larger than the effec-

tive improvement in computation time,
tlog(N)

tstd(N)
, because an important contribution

comes from standard machine operations. These are neglected because they are not

the objective of this work.

The logarithmic rejection method can also be a useful tool for sampling cross section

values. Recalling the definition of f †
f (E) and identifying the fission cross sections

as the dominant term, the suitability of the procedure for the new task is self-evident.

4.3 Free flight sampling

The interaction between particles and matter is an inherently random phenomenon:

the cross section is physically defined as the probability per unit path that the

particle will have an interaction. So the probability of an interaction occurring in a
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small interval can be written as

P1(r) = Σt(r, E)dr. (4.8)

Meanwhile, to have a complete description of the probability of interaction around a

chosen point, it is also necessary to consider the probability of the particle travelling

to position r without interacting

P2(r) = e
−

∫ r

r0

dr′Σt(r
′, E)

. (4.9)

where r0 is the initial position and the notation r is always used to refer to |r⃗|. Since
both events must occur and they are independent, it is sufficient to multiply them,

and the general form of the equation (3.4) is derived.

p(r)dr = Σt(r, E)e
−

∫ r

r0

dr′Σ(r′, E)
dr (4.10)

Note that P1(r) and P2(r) are probabilities, whereas p(r) is a probability density

function, so the infinitesimal motion must be counted. In accordance with dimen-

sional analysis, the unit of measure for p(x) is the same as Σt(r, E). Another impor-

tant detail is the loss of energy dependence between the two sides of the equation:

since the particles do not interact until the collision occurs, their energy is constant,

so the cross sections depend only on position. The equation (3.4) represents the

case where the path is only within a single material. Only in this case is it possible

to solve the integral analytically, so the inverse transform method is used to sample

the path length.

l = − ln(η)

Σt(ri, E)
(4.11)

where ri does not describe the exact position of the particle, but only the medium.

On the other hand, the potential applications of this method are rather limited,

since only experimental reactors are usually made of a single homogeneous material.

A possible solution for systems made of layers of homogeneous materials may be to

sample a free flight and, if the particle crosses the boundary between two materials,

to repeat the sampling. This approach is a common choice for MC codes, but

requires the generation of multiple random numbers, especially for highly layered

geometries. With the aim of testing an implementation of an optimised solution,
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it is preferable to adopt the alternative solution proposed by Haghighat [14]. The

choice is justified by the fact that it involves the generation of a single random

number, which is often the most expensive task for a computer. The general idea is

to rewrite the equation (4.10) in terms of the mean free path (mfp) and use it as the

unit of distance. The mfp is defined as the expected distance a particle will travel

undisturbed.

λ = E[r] =

∫ R

0

drΣt(r, E)e
−Σt(r,E)rr. (4.12)

This is just the definition of the first order moment for a random variable. For a

homogeneous material the calculation is very simple: λ = 1
Σt(ri,E)

. This definition

can be applied to the equation (4.11).

l = − ln(η)1
λ

. (4.13)

In this way a new random variable can be defined as follows

b =
l

λ
= −ln(η). (4.14)

In order to provide the reader with as detailed a description as possible, the steps

to implement this algorithm in a sphere with homogeneous layers will be explained.

Let r0 be the particle position and di the distance between the particle position and

the surface to be crossed to overcome the relative layer.

i) Identify the direction of flight (i.e. outwards from the centre);

ii) construct a vector r such that r[0] = d1 and r[i] = di − di−1 for i > 0, the

enumeration must follow the order in which the particle will encounter the

materials;

iii) construct the vector b as b[i] =
∑i

j=0 rjΣt(rj, E);

iv) sample b = −ln(η);

v) for each material, enumerate as m, define bm−1 = b[m − 1] if m > 1 else

bm−1 = 0 and bm = b[m];

vi) stop the cycle when it finds m such that bm−1 < b ≤ bm;

vii) calculate l = b−bm−1

Σt(rm,E)
;
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viii) move the particle along the direction of flight for L = l + r[m− 1].

The notation is consistent with Python’s vector enumeration, so it should be adapted

depending on the programming language (i.e. in Python, access to the first element

is done using 0 as index). Special care must be taken when flying towards the centre

of the sphere: first, the list of sub-regions must be read in reverse to follow the

particle’s path, and finally, once the list has ended at the inner material, the same

scheme must be applied to follow the particle’s path outwards. The reason for this

can be understood by trying to imagine a hypothetical path of the particle: if it is

able to reach the inner part, it will be projected onto the opposite part of the sphere,

so that the relationship between the direction of flight and the vector normal to the

sphere’s surface is reversed. Obviously, all the indices must also be rearranged to

match the order imposed by the displacement.

In order to verify the performance of the proposed procedure in the treatment of

interfaces, a series of experiments are carried out. The domain can be described

as an ideal sphere, R = 10cm, consisting of a single block of pure C14. It is di-

vided into 99 equally spaced tallies. The idea is to introduce two dummy interfaces

along the radius to simulate the presence of different layers, but without changing

the material: the aim is to isolate any possible error related only to the numerical

models implemented. It is therefore expected to be able to reproduce the results

obtained in the simplified case. The setup involves the introduction of 105 particles,

all emitted at the same energy 1MeV and position, r⃗0 = (0, 0, 0). Figures 4.4 and

4.5 compare the neutron flux shape, with a ±3σ confidence interval, before and

after domain partitioning; grey lines are used for clarity only. The results can be

considered successful, as the introduced variation is very small with respect to the

flux value: note that the vertical axis is on a logarithmic scale, so small values are

emphasised. Nevertheless, the number of tallies used is deliberately exaggerated in

order to highlight even the smallest discontinuities. Finally, it is important to note

that the slope of the curve is unchanged. The same conclusions can be drawn from

the solution of the adjoint problem, figures 4.6 and 4.7. In this case, the continuity

of the curve is even better than in previous calculations, while the code is exactly

the same. The difference is due to random numerical fluctuations inherent in MC

applications.
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Figure 4.4: Test on interface treatment, Neutrons

Figure 4.5: Test on interface treatment, Neutrons
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Figure 4.6: Test on interface treatment, Adjunctons

Figure 4.7: Test on interface treatment, Adjunctons
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4.4 Energy sampling

Taking into account the lifetime of the particle, its properties must be updated once

the interaction has occurred. As mentioned above, the only scattering phenomena

modelled are the elastic and isotropic cases. Isotropism imposes that each direction

of flight is equally likely, while the elastic approximation allows the use of the Heav-

iside unit step function. The PDF governing the phenomenon is represented by the

Equations (3.18) and (3.19).

fs(Ω⃗→ Ω⃗′) =
1

4π
,

fs(E → E ′) =
1

(1− α)E
θ(E ′ − αE)θ(E − E ′).

As mentioned above, the angle distribution is the same for neutrons and adjunctons,

while the sampling procedure can be founded in the Equations (4.1) and (4.2).

Regarding the treatment of the energy variable it is important to note that fs(E →
E ′) can be integrated, so sampling can be performed by inverse transform method.

Remembering that the variable to sample is E ′:

Fs(E
′) =

∫ E′

0

dE ′′fs(E → E ′′) =
1

(1− α)E

∫ E′

0

dE ′′θ(E ′′ − αE)θ(E − E ′′).

The solution of the integral is straightforward

η =
1

(1− α)E
(E ′ − αE),

E ′ = αE + (1− α)Eη. (4.15)

So the possible outgoing energies of the neutrons are bounded between E and αE,

note that α < 1, and the Equation (4.15) is nothing but a linear sampling between

them.

On the other hand, a more structured and complex process is required for man-

aging post-collision energy of adjunctons. It may be useful to have a look at the

Equation (3.15)

f †
s (E → E ′) =

Σs(E
′)

E ′
θ(E − αE ′)θ(E ′ − E)∫ E

α

E

dE ′Σs(E
′)

E ′

.
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The main difficulty came from the extremes of the integral in the denominator:

unlike fission, the interval range depends on the incoming energy, making the con-

struction of a function much more challenging. The implemented algorithm therefore

includes its calculation for each collision. Contrary to the previous guideline, in this

case the simpler solution is preferred to the optimised one for two main reasons: the

implementation and debugging processes are much easier, while the computational

cost introduced is less relevant. The steps are as follows.

i) α =
(
A−1
A+1

)2
;

ii) find the last El < E in the energy vector;

iii) find the first Eu ≥ E in the energy vector;

iv) define the vector E = [El, ..., Eu];

v) define the vector Σ = [Σs[El], ...,Σs[Eu]];

vi) compute S =

∫ E
α

E

dE ′Σs(E
′)

E ′ numerically;

vii) define f(E ′) = Σs(E′)
E′ · 1S ;

viii) apply standard rejection method on f
(
E
)
.

The notation may seem forced, but it is necessary to distinguish the coding domain

from the mathematical domain. Even if the code is based on a continuous energy

model, the implementation imposes the definition of a vector of energies coupled to

the vector of cross sections to be imported. Thus El and Eu represent the values

or their indices stored in the elements of the energy vector. So E is a collection of

elements extrapolated from the energy vector. Following the same reasoning, Σs[E]

is the value collected within the cross section vector corresponding to the specified

energy value. Here, the standard cross section method is chosen over the logarith-

mic version presented in the previous section because, since the domain extension

is quite small, the efficiency value is definitely higher. The slowing down case study

discussed in Chapter 5 can also be read as a verification of this sampling procedure.
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4.5 Variance reduction techniques

Non-analog MC codes are characterised by the application of some ’corrections’ to

the PDFs in order to favour more useful results. To recall the case of the shielding

problem, the high probability of capture prevents particles from reaching the detec-

tor, thus reducing the number of histories that are useful for estimating the particle

flux over the edge. It is therefore possible to increase the probability of the particle

surviving without changing the average result. The book by Haghigat[14] reports

the basic constraint to be met.

wunbised · funbiased = wbiased · fbiased. (4.16)

This equation introduces a new property associated with the particle called the sta-

tistical weight. It is a correction factor applied to preserve the expected physical

result during the transition from the original to the biased PDF.

Survival bias is a widely used VR technique based on imposing a scatter proba-

bility equal to one. Since the scatter probability for a particle is ps =
Σs

Σtot
, from the

equation (4.16), wbiased = wunbiased · Σs

Σt
can be easily calculated. A more common

way of presenting the result is wbiased = wunbiased · (1− Σa

Σt
). So each time the particle

is forced to survive, its contribution to the score is reduced by a factor equal to the

effective probability of survival. This trick makes it possible to increase the number

of significant events in regions relatively far away from the source, but on the other

hand it may happen that particles with very low weight continue to be simulated. In

other words, since a cause for the end of a random walk is neglected it is necessary

to introduce a way to kill meaningless simulations.

Russian roulette is a stochastic method designed to handle low weight particles

without distorting the averaged results. Starting from the choice of a cut-off for the

minimum particle weight, it is compared to a random variable uniformly distributed

between one and zero, ρ. The weight of the particle can be interpreted as the prob-

ability of surviving the game: if ρ ≤ w, the particle weight is set to one, otherwise

the random walk is term.

Building on the idea of using a particle’s weight as a measure of its statistical
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contribution, the introduction of an upper limit becomes essential to mitigate large

fluctuations. This approach, known as particle splitting, involves splitting the orig-

inal particles into smaller ”daughters” while preserving the overall weight. Thus,

once w ≥ wmax:

• if n = w
wmax

is an integer, as many identical new particles will be created with

w′ = w
n
;

• if n = w
wmax

is real, a random sampling between INT [n] and INT [n] + 1 must

be performed with pINT [n]+1 = n − INT [n], so the new weight is adjusted

depending on the number of outgoing particles.

It is important to clarify that the operator INT [−] does not refer to the standard

mathematical rounding procedure, but to the specific integer truncation function

used in the calculation. The coupling between Russian roulette and particle split-

ting is often presented as a weight window technique, since the particle weight

domain is reduced to a closed interval. The same approach can be applied using any

parameter other than particle weight as a benchmark: a common case is to divide

the domain into sub-regions and assign them different levels of importance, I. The

procedure presented is the same, but it is necessary to adapt the trigger conditions

so that Russian roulette is applied when I1 < I0 and particle splitting when I1 > I0,

with n = I1
I0
. Where the random walk goes from I0 to I1.

4.6 Population control techniques

Moving from general cases to eigenvalue calculations, a bias is commonly introduced

into fission’s site sampling in order to limit population growth or decline. It may be

useful to give an example of the problem associated with non-critical systems solved

by the power method. Given an initial population, N0, and recalling the definition of

the first eigenvalue, K, the population at a generic cycle, n, can be simply expressed

as

Nn = Kn ·N0. (4.17)

Thus, considering K = 1.2 at the 30th cycle, the population will be more than

200 times higher, whereas in a subcritical system all neutrons will be extinguished.

Population control techniques are a large family of methods developed to keep the
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number of simulated particles more or less constant at each cycle.

The expected number of particles produced by a collision in a multiplicative medium

can be written as Ri = w · νΣf

Σt
, where i is the single event. Simultaneously, this

value can be used as an estimator of Keff , it’s presented in Haghighat’s book as the

collision estimator [14]. So one of the most common procedures is to use the actual

value of Keff as a bias for sampling the number of fission sites.

Ri = w · νΣf

Σt

· 1

Kn

(4.18)

To satisfy the condition imposed by (4.16), the statistical weight of the new particles

must be equal to Kn. If R is a real number, sampling must be performed between

the closest integers, as presented in the last section. An important aspect related

to the bias PDF is that the total statistical weight of the generation is preserved:

let’s consider a supercritical system, the correction applied to the equation (4.18)

will reduce the number of particles to be simulated while increasing their statistical

weight, Kn > 1.

Another possible solution starts from the equation (4.17) and applies a normali-

sation procedure at the beginning of each cycle. Since the single cycle estimate

of Keff depends only on the ratio between the populations and not on their ab-

solute value, it is possible to reduce or increase the total statistical weight of each

generation in order to keep it constant, N0. There are two possible treatments:

• Russian roulette and particle splitting: these techniques can be used to

sample the desired number of particles from the original population;

• Weight normalisation: the particle weight is adjusted depending on the

number of fission sites in the bank.

Since neither procedure is an application of bias to the PDF, conservation of total

statistical weight is not required: it decreases for K > 1 and vice versa. Note that in

the first case, the number of particles in the fission bank is constant and they have

an initial weight equal to one, imposed by Russian roulette and particle splitting.

On the other hand, the normalisation keeps the weight equal for all particles, but

the value can be different from one depending on Kn. In this case, the number of

random walks to be simulated can also change.
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4.7 Scoring

The final part of the code implementation discussion is devoted to data acquisition

and the post-processing required to extrapolate coherent results. Theoretically, it is

necessary to define a detector for the quantity of interest and derive its sensitivity to

triggers. The most conventional approach is to simply count the number of particles

interacting within a volume of phase space. This technique is called collision esti-

mation: the space r⃗ and energy E domains are discretised into N and M intervals,

respectively, and then all particles that have had a collision within δrn and δEm are

scored. Formally the detector response can be expressed as:

R(n,m) = R(n,m) + w. (4.19)

In this case, the dependence on direction is neglected, although the same treatment

can be applied to it. However, this simplification is common in most practical

simulations, since integral quantities such as collision density and scalar flux are the

main targets of interest, and the effort associated with handling angle-dependent

quantities is trivial. It should be emphasised that in analogue MC simulations the

value of w is always unitary. In order to pass from the number of particles to the

collision density, it is necessary to normalise the value with respect to the dimension

of the phase volume.

F (r⃗n, Em) =
R(n,m)

H∆Vn∆Em

(4.20)

where H is the total number of particles simulated, ∆Vn is the volume of the de-

tector and ∆Em is the energy range. To better explain how these intervals need

to be calculated, let us consider the simplest possible case: 1D phase space. If a

discretisation is applied to produce a vector of 100 elements, x, this will represent

the collection of boundary values between tallies. Thus xn describes the centre of

the tally. Following this model, the interval ∆xn must be evaluated as the difference

between the original values. To obtain the scalar flux, it is necessary to recall the

definition of the collision density:

F (r⃗, E) = Σt(r⃗, E)ϕ(r⃗, E). (4.21)
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Hence the direct application resulted in

ϕ(r⃗n, Em) =
F (r⃗n, Em)

Σt(r⃗n, Em)
. (4.22)

On the other hand, as seen earlier, the cross sections can vary very significantly

with energy, so choosing a single reference cross section to describe the whole small

group can lead to erroneous results. The problem can be overcome by defining a

new counter:

R′(n,m) = R′(n,m) +
w

Σt(r⃗, E)
. (4.23)

In this way it is possible to trace back to the original particle properties and avoid

introducing any approximations. Depending on the objectives of the simulation, it

is therefore necessary to choose the most efficient estimator. The book by Haghighat

[14] presents a number of alternative solutions and the criteria to choose depending

on the properties of the medium. The collision estimator is the only one that has

been implemented in the present work.

Looking at the global scheme of an MC code, the effective role of the estimator

is nothing more than the random variable to be sampled. In order to better ex-

plain this statement, it may be useful, for the first time in this paper, to forget

all physics and treat the simulation of the transport process as a black box. Each

history run takes as input the initial position of the particle, always in phase space,

and produces a distribution of estimator values depending on the outcome of some

random numbers. Thus, the mean of all collected estimators is representative of the

correlated quantity (i.e. the collision estimator can be defined in different ways to

compute ϕ(r⃗, E) or Keff ). Thus, if the phase space is defined only in terms of a 1D

space and energy, the estimator will be a N ×M matrix, where N and M are the

dimensions of the vectors generated from the space and energy discretisation. The

direct consequence is that when H histories are performed, the entire collection of

data to be processed is a N ×M ×H matrix.

The Welford algorithm [15] is an on-line procedure capable of constructing mean

and variance with only a single access to the single result of the random variable.

This useful feature avoids the need to store the entire collection of estimators, as

the mean and variance are updated as the random variable is generated. Thus, the
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memory required is reduced to just three N ×M matrices: the estimator, the mean

and the variance. A generic implementation is shown below.

i) collect xn for all n = 1, ..., N

ii) ∆ = xn − xn−1

iii) xn = xn−1 +
∆
n

iv) ∆2 = xn − xn

v) M2
n =M2

n−1 +∆ ·∆2

vi) return x = xN and σ2 =
M2

N

N
.

This routine calculates the mean and variance after N histories.



Chapter 5

Code verification

5.1 Problem definition

This section presents a small verification campaign performed on the code described

above. The case study is known as the slowing down problem or Placzek problem.

The main advantage is that both the direct and adjoint cases allow an analytical

solution, making the definition of a benchmark very accessible. They can be referred

to as the Placzek function [16] and the adjoint Placzek function [12].

Consider an infinite homogeneous medium consisting of a single isotope, charac-

terised by zero probability of particles being absorbed, Σa(E) = 0 ∀E. In this

simplified case, the neutron transport equation can be written as

Σs(E)ϕ(E) =

∫ ∞

0

Σs(E
′)fs(E → E ′)ϕ(E ′)dE ′ + S(E) (5.1)

where S(E) is a generic source term. Note that since the absorption cross section

is zero, the fission cross section must also be zero. Now reduce the interactions to

elastic and isotropic scattering only, recalling the equation (3.19)

Σs(E)ϕ(E) =

∫ E
α

E

Σs(E
′)ϕ(E ′)

dE ′

(1− α)E ′ + S(E). (5.2)

This formulation highlights the fact that in this model neutrons can only jump within

a limited energy range. In other words, neutrons can’t lose more than a fraction α

of their own energy. The final simplification concerns the source term: considering

most of the available neutron sources (i.e. the fission process), it is reasonable to

46
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restrict the discussion, without loss of generality, to monochromatic sources only,

S(E) = Sδ(E −E0), where δ(x0) is the Dirac’s delta and E0 indicates the emission

energy of the monochromatic source. The equation derived is

Σs(E)ϕ(E) =

∫ E
α

E

Σs(E
′)ϕ(E ′)

dE ′

(1− α)E ′ + Sδ(E − E0). (5.3)

It is more common to find it expressed in terms of collision density and as a function

of the lethargy variable: u = −ln
(

E
E0

)
.

F (u) =

∫ u

u−ϵ

e−(u−u′)

1− α
F (u′)du′ + Sδ(u). (5.4)

Where ϵ = ln
(
1
α

)
. The main difference is that negative motions in the energy

domain correspond to positive motions in the lethargy domain. This is the main

reason why the integral is defined only for lethargy values lower than the observed

one, it automatically follows that the source is located at u = 0. It is obvious that

the equation (5.4) is singular at u = 0, so the standard procedure is to treat the

point separately.

F0 = S. (5.5)

However, it makes more sense to concentrate on the collision part. To solve the

equation (5.4), note that each interval depends only on the previous one: it is

possible to divide the lethargy domain into intervals such that (n−1)ϵ < u < nϵ, so

the equation (5.4) can also be constructed step by step. This useful property derives

from the formulation of the scattering function, since it is impossible for a particle

to pass between two non-contiguous intervals with a single interaction. The same

discussion can be carried out by narrowing down around the source: neglecting the

point u = 0, where the flux is infinite, and focusing on the first collision interval,

it is possible to define a fictitious source term. This will be nothing more than the

distribution of the particle after the first collision.

Fc(u) =

∫ u

u−ϵ

e−(u−u′)

1− α
Fc(u

′)du′ + Sf(0→ u). (5.6)

The general form of the collision kernel is retained to stress the physical meaning

behind. Note that due to this simplification, the equation domain no longer resolves

to u = 0. For convenience, the solution of the equation (5.6) is given in the book by
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Montagnini [17]. The first two functions are reported as follows:

F1(u) = S
e(

α
1−α)u

1− α
, (5.7)

Fs(u) = S

(
1− α

1
1−α

1− α

)
e(

α
1−α)u − S

(
1− α

α
1−α

(1− α)2

)(
u− ln

(
1

α

))
e(

α
1−α)u. (5.8)

These are the most relevant because, as the particles move forward from the source

position, they tend to forgive the initial distribution properties: the value of the

Placzek function stabilises in F (u >> 0) = S
(
1 + α

1−α
lnα
)
.

5.2 Direct Placzek problem

The figures 5.1, 5.4, 5.2, 5.5, 5.3 and 5.6 compare the equations (5.7) and (5.8)

with the results of MC simulations carried out for different atomic numbers: A =

5, 8, 10, 15, 20, 25 respectively. In all cases N = 105 stories are performed and the

means are coupled with a ±3σ confidence interval. The lethargy variable is plotted

on the horizontal axis, while the collision density is plotted on the vertical axis,

F (u) = Σt(u)ϕ(u). Lethargy and atomic number are thus the only independent

variables analysed, as the Placzek function formulation for the collision density is

independent of the material cross section.

Since the collision density is the quantity to be estimated, the collision estima-

tor is applied without cross section correction, equation (4.19). This reduces the

post-processing section to normalisation to the energy interval only and increases

the accuracy of the code. A good agreement between the analytical solution and

the stochastic solution can be observed, with almost no outliers. Another important

point is that all characteristic discontinuities are well marked.

One fundamental observation is still missing: there are no negative lethargy val-

ues on the x⃗ axis. The reason lies in the physics of the problem: since the defined

scattering function does not include upscattering, no particles can be found at en-

ergy levels higher than that of the source. The source level is also neglected. An

argument that differs from the correction applied when solving the simplified trans-
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port equation can be attributed to the statistical nature of MC simulations: given a

continuous random variable, the probability that it will take exactly a certain value

is always identically zero. Applying this to the problem, it can be stated that after

the first collision, no particle will have the exact initial energy, and for all subsequent

events this point will be outside the result domain.

The last feature to be described is the asymptotic behaviour. The part of the

curve defined along u < 3ϵ takes the name of Placzek transients, because they are

oscillations that become smoother with higher lethargy values. Again, the reason

lies in the problem statistics: since the neutron property depends only on the pre-

vious state, the particle tends to forget the source distribution after a sufficiently

large number of interactions. Phenomena that respect this constraint are called

Markovian random walks. Consequently, only high energy levels are affected by the

source, while the tail represents a continuous and homogeneous flux of particles.

5.3 Adjoint Placzek problem

The adjoint version of the equation (5.1) reads

Σs(E)ϕ
†(E) =

∫ ∞

0

Σs(E)fs(E → E ′)ϕ†(E ′)dE ′ + S†(E). (5.9)

Since this equation admits an analytical solution, it is not necessary to introduce

adjoint cross sections and collision kernels. This is a useful point to emphasise

the fact that, since the unknown is the adjoint flux and not the importance, any

discussion of adjunctons and their interactions is a purely mathematical game. The

change on the ’direction’ of the collision kernel has been done only to make the

equation 3.2 solvable by MC codes. The distance is even greater when, as in this case,

two different equations are being solved: whereas in solving the direct problem the

aim is to check that the code output is consistent with the theoretical formulation,

here the aim is to show that the solution of the pseudo transport equation (3.8)

is consistent with the real one. Therefore, the formulation of the Placzek adjoint

function is presented, imposing the equation (3.19). Thus, introducing the elastic
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Figure 5.1: Analytical and simulated
results of direct slowing down prob-
lem, A=5, N=105

Figure 5.2: Analytical and simulated
results of direct slowing down prob-
lem, A=10, N=105

Figure 5.3: Analytical and simulated
results of direct slowing down prob-
lem, A=20, N=105

Figure 5.4: Analytical and simulated
results of direct slowing down prob-
lem, A=8, N=105

Figure 5.5: Analytical and simulated
results of direct slowing down prob-
lem, A=15, N=105

Figure 5.6: Analytical and simulated
results of direct slowing down prob-
lem, A=25, N=105
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scattering transfer function and a monochromatic source

Σs(E)ϕ
†(E) = Σ(E)

1

(1− α)E

∫ E

αE

ϕ†(E ′)dE ′ + S†δ(E − E0). (5.10)

The solution of this equation is reported in detail in the paper by Saracco et al.[12].

To give a general idea of the procedure, the function can again be split into a singular

part and a collided part. The formulation of the former is simple

ϕ†
0 =

S†

Σs(E0)
. (5.11)

The adjoint Placzek function is given in terms of the adjoint flux to maintain the

nomenclature used by the authors, and dependent on energy to have a clearer form.

The collided part is again defined by properties for any interval E0

αn−1 < E < E0

αn .

The first two group formulations are given explicitly

ϕ†
1(E) =

1

E0Σs(E0)(1− α)

(
E

E0

) α
1−α

, (5.12)

ϕ†
2(E) =

1

E0Σs(E0)(1− α)

(
E

E0

) α
1−α

×
[
(1− α)

(
1− α

1
1−α

)
−
(
α

1
1−α ln

αE

E0

)]
. (5.13)

The figures 5.7, 5.10, 5.8, 5.11, 5.9 and 5.12 are again made overlapping the adjoint

Placzek function and the results of MC simulations on the adjoint. Note that al-

though the formulation of the adjoint Placzek function is given for the adjoint flux,

the adjoint collision density is used as a benchmark. The reason is the same as

for the direct case: the slope of the collision density is independent of the material

cross section. This property is retained, although it is less evident in the mathe-

matical formulation. With the same idea of making the results easily reproducible,

the normalised energy is used as an independent variable. Obviously, the normali-

sation is carried out using as a reference value that which characterises the source.

Hence, the function is normalised with respect to the dimensionless energy interval,

∆Em =
Em,up−Em,low

E0
. For completeness, the step between the adjoint flux and the

adjoint collision density is also given.

F †
c (e) = Σt(E)ϕ

†
c(E) · E0 (5.14)
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where e = E
E0
. An interesting feature is the relationship between the indepen-

dent random variable used to express the direct and adjoint Placzek functions. The

lethargy scale can be aligned to a normalised logarithmic scale, while the normalised

energy is a linear scale; thus both expressions show the same behaviour. It can be

verified that they retain the same property when switching between scales. In a

few words, the properties of the direct Placzek function in the logarithmic scale are

reproduced for the relative adjoint in the linear scale and vice versa.

This point leads to a deeper consideration of the differences between particle and

relative Placzek problems. It has just been mentioned that the source of the direct

problem acts as a detector of the adjoint, so the detector of the direct problem be-

comes the source of the adjoint. Meanwhile, the functions obtained as solutions of

the equations (5.4) and (5.10) have the same mathematical structure for the source,

S(E) = Sδ(E − E0). The direct consequence is that the two Placzek functions do

not refer to the same system, even if the introduced hypothesis is the same. This

last concept may not seem so straightforward, since the starting point of this section

is the application of the adjoint operator definition to the direct slowing-down prob-

lem, but it can be clarified by paying attention to the order in which the assumptions

are applied. The transition from the direct to the adjoint problem is made before

the source definition, when no constraints were required. A more direct confirmation

can be obtained by looking at the domain of existence: neutrons can only exist for

E < E0, while adjunctons exist for E > E0.

MC simulations are performed with the same setup as defined for the direct case:

N = 105 histories with a ±3σ confidence interval. The integral to be computed

is again the basic collision estimator, equation (4.19). As expected, the stochastic

estimate of the collision density agrees almost perfectly with the reference solution.

Recalling the equation (3.20), it can be observed that νs(E) is proportional to the

integration interval. However, the integral has to be calculated numerically, so ideal

extremes may differ from the values used by the software. A similar argumenta-

tion is reported in the section 4.4. As the discretisation imposes a lower bound on

the reading of the energy intervals, it may happen that a relatively small value is

rounded up to the smallest applicable value. Hence, α→ 1 when A increases. This

is done in order to get a correct reading of the global trend of the blue dots. A closer

look reveals that the values obtained by the MC simulations are generally slightly
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Figure 5.7: Analytical and simulated
results of adjoint slowing down prob-
lem, A=5, N=105

Figure 5.8: Analytical and simulated
results of adjoint slowing down prob-
lem, A=10, N=105

Figure 5.9: Analytical and simulated
results of adjoint slowing down prob-
lem, A=20, N=105

Figure 5.10: Analytical and simulated
results of adjoint slowing down prob-
lem, A=8, N=105

Figure 5.11: Analytical and simulated
results of adjoint slowing down prob-
lem, A=15, N=105

Figure 5.12: Analytical and simulated
results of adjoint slowing down prob-
lem, A=25, N=105
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higher than the Placzek function. Nevertheless, the numerical error introduced is

less than the reported uncertainty and does not produce any outliers.

In equation (3.20), the cause of the increase of the statistical uncertainty can also

be found. Especially for small values of A, the weight of the adjuncts increases with

each collision. In order to avoid an excessive impact on the reliability of the results,

weight window technique is implemented. To sum up, the performance of the code

is considered both satisfactory and reliable.

5.4 Statistical reliability of the results

The results of a MC code are represented by a collection of mean values and their as-

sociated uncertainty. The calculation of the uncertainty is based on the assumption

of the validity of the Central Limit Theorem (CLT): assuming t run N stories

σx =
σx√
N
. (5.15)

Where x is a generic random variable to be sampled. The CLT, on the other hand,

relies on the hypothesis that N is large enough to make the x distribution converge

to a Gaussian distribution. The value of N is not yet known. As mentioned in

chapter 4, a common ’rule of thumb’ suggests simulating at least 200 particles for

each tally, however a more rigorous benchmark needs to be provided.

The analysis presented is based on the concept of Figure of Merit (FOM). It is

a metric used to evaluate the efficiency of VR techniques and is defined as

FOM =
1

R2
x T

. (5.16)

Where Rx is the relative standard deviation associated with the sample average’s

distribution, while T is the computational time required for the simulation. In short,

it can be described as a compact form that takes into account both precision and

computational cost: higher values of FOM indicate lower variance achieved in less

time. The book by Haghighat [14] presents a useful approach aimed at checking the

validity of the CLT by observing the FOM behaviour as a function of the number
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of histories performed. The relative standard deviation can be expressed by the

equation 5.15:

Rx ≈
σx√
N
≈ C1√

N
(5.17)

where C1 is a constant. It can also be assumed that the computation time increases

linearly with the number of histories.

T ≈ C2N. (5.18)

It is therefore possible to write the FOM as a function of N .

FOM ≈ 1(
C1√
N

)2
C2N

≈ C. (5.19)

The main corollary is that since Rx is constructed from the equation 5.15, the va-

lidity of the CLT hypothesis can be confirmed by checking that the FOM fluctuates

around a constant value.

In order to demonstrate that the applied algorithm follows the expected FOM

behaviour, a series of simulations are carried out with different total numbers of

particles: N = 2 · 103, 5 · 103, 104, 2 · 104, 5 · 104, 105. The case study considered is

the adjoint Placzek problem in three different configurations:

• reference: no VR techniques applied;

• weight window 1: weight window technique is applied imposing wmin = 0.25

and wmax = 2;

• weight window 2: weight window technique is applied imposing wmin = 0.5

and wmax = 4.

Two cases are studied for the application of the VR techniques, and since the FOM

also allows to evaluate which configuration shows better performances, a small sen-

sitivity analysis is carried out for the extremes of the weight window. It should be

noted that some modifications are applied to the general FOM formula in order to

adapt it to the data format. Since the result of the MC code is a vector representing

the collision density distribution, the variance will also be the same, so the average

variance value is used as a reference for the single simulation. Furthermore, the

computation time is not expressed in standard units (i.e. seconds or minutes) as
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it would be affected by machine performance. It is therefore decided to use the

total number of random numbers generated to describe the computation time. This

change can be made without loss of generality, since generating a random number

is the most expensive among the basic operations performed during a Monte Carlo

simulation. Finally, it is important to remember that both the relative standard

deviations and the total random number generated are produced by an MC code, so

they are random variables. To overcome this aspect and possible stochastic noise,

the reported value is calculated as the mean between 20 identical simulations. Ob-

viously, a correlated variance should also be reported in this case, but it would

have become a self-perpetuating cycle. Therefore, since the objective of the study is

only the global slope of the curve representing the FOM, the error bar is considered

meaningless.

Figure 5.13 collects the results obtained by the simulations described. The small

variations of the orange and green curves allow to assume that the convergence con-

dition of the CLT is reached, but the analogue case appears more unstable. However,

the most important information is the relative position between the curves. As men-

tioned above, higher FOM values mean higher efficiency. Thus, moving the allowed

particle weight range upwards increases code performance. On the other hand, the

application of VR techniques may be less effective at low particle numbers. In con-

clusion, an optimisation procedure may also be required for the application of VR

techniques in order to maximise the efficacy.
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Figure 5.13: Comparison of FOM values for different weight windows



Chapter 6

Conclusions

MC methods are a fundamental tool in any nuclear application due to their extreme

accuracy and ability to simulate very complex systems. On the other hand, they

can require very intensive computational efforts to obtain acceptable results, but the

increase in computational performance and the development of optimisation tech-

niques make it possible to overcome this obstacle. This is how many MC codes were

born and established themselves as reference tools for solving the Boltzman equation.

With the aim of applying standard stochastic methods to the solution of the impor-

tance equation, the formal definition of the adjoint operator is exploited. Once it is

proven that the importance equation and the adjoint transport equation admit the

same solution, it is possible to start from the latter and define a set of simulation

rules to emulate the phenomena related to the importance balance equation. In this

way, pseudo-particles and their transport properties, i.e., the adjoint cross section

and the adjoint collision kernel, are introduced. A parallelism with neutrons led to

the formalisation of these objects, called adjunctons. By imposing a correspondence

between pairs of interactions, it is possible to derive the values of the adjoint prop-

erties from the direct ones, i.e. the neutron data libraries.

The characteristics of the new physical phenomena are therefore being studied in

detail in order to gain a clear picture of the behaviour of the pseudoparticles.

An implementation procedure for a general MC transport code is proposed. Each

step is carefully explained and potential problems are identified and addressed. Par-

ticular attention has been paid to the sampling of the source energy distribution of
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the adjunctons: apart from the presence of a drastically different PDF, an optimised

sampling procedure had to be developed due to the excessive computational time.

The adaptation of the logarithmic rejection method to different isotopes is also pre-

sented. Following the events of a random walk, a useful discussion on the sampling

of post-collision properties is carried out. Emphasis is placed on the multiplicity

factor characteristic of adjoint scattering and how the numerical evaluation of inte-

grals affects it. To conclude the description of the code, some VR and population

control techniques are reported. Finally, the application of the collision estimator is

reviewed.

After mapping the code structure, a verification campaign is carried out to test

the reliability of the results. The slowing down problem is chosen as a benchmark

because of the availability of an analytical solution, the Placzek function. A good

agreement between the theoretical particle distribution and the simulation results is

observed. The same set of experiments is applied to the adjoint case: also for this

problem, the two solutions almost overlap.

Concerning the future perspectives for this work, the most straightforward step

will be to carry out a verification campaign on a number of K-eigenvalue case stud-

ies. Although the present work includes the treatment of the fission term in both

direct and adjoint transport, a meaningful collection of results should be produced

and compared with benchmark cases available in the literature: tests aimed at repli-

cating the Godiva reactor have already begun. After these preliminary verifications,

the proposed approach could be applied in the framework of qualified industrial MC

codes by introducing minor modifications to the algorithms already available and

by preparing a set of modified nuclear data emulating the adjoint kernels. Once MC

codes will be able to provide both direct and adjoint flux forms, a significant num-

ber of applications can be addressed using only stochastic approaches (i.e. reactor

kinetic parameter evaluation). Zero-variance MC methods must be nominated, as

it will be possible to develop an all-in-one code capable of first simulating adjoint

transport and then using it to increase the accuracy of the direct simulation.

A more horizontal projection can be the study of alternative solutions for the con-

struction of the total adjoint collision kernel. As has been widely discussed, the PDF

to sample for the simulation of pseudoparticle random walks requires some optimi-
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sations in order to reduce the simulation time. As an alternative to the equation

(3.7), different assumptions can be introduced and tested to achieve better perfor-

mance. Thus, although the use of the concept of importance is long established in

nuclear engineering applications, stochastic solutions still have a huge and untapped

potential to be explored in depth.



Appendix A

The adjoint operator

Let’s introduce a generic function, f(x⃗), defined on a phase space with x⃗ and an

independent random variable. On the same domain, let’s consider another function

g(x⃗) and an operator θ. The adjoint operator of θ, called θ†, must respect the

following equality ∫
dx⃗ g(x⃗), θf(x⃗) =

∫
dx⃗ θ†g(x⃗), f(x⃗). (A.1)

where
∫
dx⃗ is the integral over the whole domain. It is also defined as inner products

in phase space. An alternative notation is

(g(x⃗), θf(x⃗)) = (θ†g(x⃗), f(x⃗)). (A.2)

In some cases it happens that θ = θ†, so the operator is defined as self-adjoint. Note

that the adjoint condition is independent of the choice of functions f(x⃗) and g(x⃗).

The derivation of the adjoint transport equation is given. First, the scattering term:

θf(x⃗) =

∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σs(r⃗, E
′)fs(r⃗, E

′, Ω⃗′ → E,Ω)ϕ(r⃗, E ′, Ω⃗′), (A.3)

g(x⃗) = ψ(r⃗, E, Ω⃗), (A.4)

(ψ(r⃗, E, Ω⃗), θϕ(r⃗, E, Ω⃗)) =∫
V

dr⃗

∮
4π

dΩ

∫ ∞

0

dEψ(r⃗, E, Ω⃗)

∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σs(r⃗, E
′)fs(r⃗, E

′, Ω⃗′ → E, Ω⃗)ϕ(r⃗, E ′, Ω⃗′).

(A.5)
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The passages are straightforward: ψ(r⃗, E, Ω⃗) can be moved inside the inner integral,

since it does not depend on any variable to be integrated, dΩ⃗′dE ′, as a change of

variable is performed (E ′, Ω⃗′) ←→ (E, Ω⃗). This can be done without any loss of

completeness, since both variables are integrated over the whole domain. The result

is

(ψ(r⃗, E, Ω⃗), θϕ(r⃗, E, Ω⃗)) =∫
V

dr⃗

∮
4π

dΩ⃗′
∫ ∞

0

dE ′
∮
4π

dΩ⃗

∫ ∞

0

dEΣs(r⃗, E)fs(r⃗, E, Ω⃗→ E ′, Ω⃗′)ψ(r⃗, E ′, Ω⃗′)ϕ(r⃗, E, Ω⃗),

(A.6)

θ†ψ(r⃗, E, Ω⃗) =

∮
4π

dΩ⃗′
∫ ∞

0

dE ′Σ(r⃗, E)fs(r⃗, E, Ω⃗→ E ′,Ω′)ψ(r⃗, E ′, Ω⃗′). (A.7)

The derivation of the fission operator is neglected, since it is the same as the one just

done. The only difference is that the collision kernel depends only on the outgoing

energy, fs(E) =
χ(E)
4π

, so the operator is self-adjoint. So let’s deal with the streaming

term:

θf(x⃗) = Ω⃗ · ∇ϕ(r⃗, E,Ω), (A.8)

(ψ(r⃗, E, Ω⃗), θϕ(r⃗, E, Ω⃗)) =

∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dEψ(r⃗, E, Ω⃗)(Ω⃗ · ∇ϕ(r⃗, E, Ω⃗)). (A.9)

Integration by parts must to be performed.∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dEψ(r⃗, E, Ω⃗)(Ω⃗ · ∇ϕ(r⃗, E, Ω⃗)) =∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dE∇ · (ψ(r⃗, E, Ω⃗)Ω⃗ϕ(r⃗, E, Ω⃗))+

−
∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dE(Ω⃗ · ∇ψ(r⃗, E, Ω⃗)ϕ(r⃗, E, Ω⃗)). (A.10)

The first term can be simplified using the Gauss divergence theorem:∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dE∇ · (ψ(r⃗, E, Ω⃗)Ω⃗ϕ(r⃗, E, Ω⃗)) =

=

∫
δV

dS

∮
4π

dΩ⃗

∫ ∞

0

dE n⃗ · Ω⃗ψ(r⃗, E, Ω⃗)ϕ(r⃗, E, Ω⃗). (A.11)
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In the majority of cases, void boundary conditions are applied, so that this term

has become null.

(ψ(r⃗, E, Ω⃗), θϕ(r⃗, E, Ω⃗)) = −
∫
V

dr⃗

∮
4π

dΩ⃗

∫ ∞

0

dE(Ω⃗ · ∇ψ(r⃗, E, Ω⃗)ϕ(r⃗, E, Ω⃗)),

(A.12)

θ†ψ(r⃗, E, Ω⃗) = −Ω⃗ · ∇ψ(r⃗, E, Ω⃗). (A.13)
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