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Abstract

Monte Carlo simulation is a widely used methodology in particle physics, nuclear
medicine, reactor engineering, and many other scientific and engineering fields. One
of the crucial aspects of these simulations is the transport of particles through com-
plex geometries, which requires a highly accurate and efficient geometry navigation
engine. The geometry navigation engine is responsible for determining the path of
particles through materials and structures with complex geometries. This process
includes managing particle interactions with various materials, determining collision
points, and updating particle trajectories based on their interactions. The accuracy
of this component is essential to ensure that the simulation results are reliable.
TRIPOLI-5® represents a cutting-edge advancement in the realm of massively par-
allel and natively HPC-oriented stochastic particle transport codes, a collaborative
development effort between CEA and IRSN initiated in 2022. Central to the efficacy
of a Monte Carlo transport code is the accurate representation of the system geom-
etry under investigation. This involves decomposing the domain into volumes, each
characterized by a specific material composition. The geometry navigation engine
plays a crucial role, providing critical information such as the material composition
in which a particle resides, the distance to the nearest geometrical boundary, and the
subsequent volume the particle will traverse. Initially, TRIPOLI-5® relied exclu-
sively on a geometry navigator utilizing the ROOT package, a robust tool developed
by CERN. However, recognizing the need for enhanced performance and flexibility,
a novel native geometry engine, AGORA, has been integrated into TRIPOLI-5®.
AGORA adeptly handles nested geometries through the use of ”universes”, with
each universe comprising elementary volumes defined using Constructive Solid Ge-
ometry (CSG). A CSG volume is depicted using a combination of half-spaces defined
by elementary surfaces (such as planes, spheres, cylinders, cones, or quadrics) and
Boolean operators (intersection, union, or complement). The overarching geometry
adopts a tree-like structure, where each volume may contain a material (acting as a
leaf of the tree), a universe, or a lattice, which itself contains a list of universes.
The objective of this thesis is to develop methods to rigorously verify the reliability
of the AGORA native geometry engine and to conduct preliminary validation test
to ensure its integration with the TRIPOLI-5® Monte Carlo transport code. In this
work we conducted analyses comprising two primary approaches: internal compar-
isons within TRIPOLI-5® between AGORA and the ROOT-based navigator, and
external comparisons between TRIPOLI-5® (utilizing AGORA) and other Monte
Carlo transport codes such as OpenMC or TRIPOLI-4®.
We developed specific datasets and scripts for each code to describe a variety of
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geometrical configurations, ranging from elementary shapes like nested spheres or
cylinders, to complex geometries inspired by international benchmarks, such as the
Hoogenboom-Martin benchmark, which features multiple lattice levels.
Our methodology involved sampling a substantial number of particles from given
positions and comparing the materials identified by the different geometry engines.
Furthermore, we verified particle tracking by comparing the chord lengths traversed
in each material by the simulated particles from a given point in a specified direc-
tion.
A preliminary verification test study of AGORA was conducted in tandem with
the TRIPOLI-5® Monte Carlo code, with a focus on the SPERT-III experimental
benchmark. This study aimed to assess the accuracy and reliability of the AGORA
module in a valuable benchmark case in reactor physics calculations.
In addition, we have employed AGORA to verify Cauchy’s formula in simple but not
trivial configuration, examining the average chord length for isotropic and uniform
surface irradiation in a given body, which is articulated as a function of the body
volume and its bounding surface.
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Introduction

The continuous advancement in high performance and parallel computing has driven
the ongoing development of Monte Carlo codes, which today serve as a scientific
gold standard for simulating complex physical phenomena. Thanks to their ability
to model stochastic processes with a high degree of accuracy, Monte Carlo codes are
employed not only for the direct resolution of engineering and physics problems but
also for the validation of deterministic codes.
The evolution of computing architectures has led to a significant increase in compu-
tational performance, allowing simulations to be conducted on an increasingly larger
scale and with an unprecedented level of detail. The reduction in simulation times
and the enhancement of computational efficiency represent a true breakthrough,
with important implications in both academic and industrial fields. These improve-
ments not only enable the exploration of new physical and engineering scenarios
with greater precision but also overlay the way for an increasing integration be-
tween Monte Carlo methods and deterministic approaches, combining the strengths
of both to optimize the modeling and analysis of complex systems. Alongside ad-
vancements in numerical computation, there has been a significant evolution in the
geometric representation within simulations. The geometric models used in modern
transport codes are becoming increasingly detailed and more faithful to the physi-
cal reality of experiments and structures under analysis. The ability to accurately
represent intricate and complex geometries is a crucial step in ensuring reliable sim-
ulations, reducing uncertainties in results, and improving the predictive capability
of the models.
Accurate geometric definition is not only a technical requirement but also a strate-
gic element for the reliability of simulations: a geometrically realistic model allows
for results that are closer to experimental conditions, improving quality of results
and reducing the need for simplifying approximations that could compromise the
accuracy of calculations. In this context, the development of accurate Geometry
Navigation Engines and the associated tools for their verification are an important
research area within Monte Carlo codes.
Recent advancements in this field have focused on enhancing the efficiency and
robustness of geometry navigation algorithms, enabling faster and more precise cal-
culations within increasingly complex models. These improvements not only refine
the accuracy of simulations but also contribute to greater computational efficiency,
ensuring that Monte Carlo methods remain a gold standard across scientific and
engineering applications.
During my internship at the French Commissariat à l’Énergie Atomique et aux
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Énergies Alternatives (CEA) at Paris-Saclay, I had the opportunity to deepen my
understanding of Monte Carlo codes for neutron transport within the context of
nuclear research. The CEA is a major player in high-level research, providing con-
crete solutions to a wide range of needs in four main areas: low-carbon energies
(nuclear and renewable), digital technologies, technologies for the medicine of the
future, defense and security.
Within the CEA, the Service d’Études des Réacteurs et de Mathématiques Ap-
pliquées (SERMA) is a specialized unit dedicated to the development of advanced
numerical simulation software for both deterministic and stochastic particle trans-
port. This thesis is based on the work conducted during a six-month internship
at the Laboratoire du Transport Stochastique et des Données (LTSD), a laboratory
within SERMA focused on the development and optimization of stochastic trans-
port models for particles, under the supervision of Drs. Coline Larmier and Davide
Mancusi.
The LTSD is actively involved in the development of Monte Carlo transport codes,
ensuring their efficiency and reliability for simulations that are crucial to reactor
design and safety assessments. The methodologies and computational tools devel-
oped within this laboratory play a fundamental role in advancing neutron transport
simulations, contributing to key areas such as reactor physics, radiation shielding,
and safety evaluations. Research in this field continues to evolve, with the goal of
enhancing computational performance and improving simulation accuracy, thereby
supporting technological advancements in nuclear engineering.
Some of the findings related to the methodology developed for the verification of
the AGORA geometry navigation engine, as well as the results obtained, will be
featured in the paper ”C. Larmier, D. Mancusi, V. Di Blasi, A. Zoia, Verification
Methods for the AGORA Geometry Navigation Engine of the TRIPOLI-5® Monte
Carlo Code”, which will appear in the proceedings of the M&C2025 conference.
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Chapter 1

Theoretical Background

1.1 Neutron Transport Theory

Neutron transport theory plays a fundamental role in nuclear science and engineer-
ing, as it provides a framework for studying the behavior and propagation of neutrons
within various media, along with the associated phenomena such as transmutation,
activation, and radiation damage. Accurate modeling of neutron transport is essen-
tial for the design, optimization, and safety analysis of any nuclear system.
The neutron transport equation describes the time-dependent evolution of the neu-
tron flux ϕ(r, E,Ω, t) in space (r), energy (E), and direction (Ω):

1

v

∂ϕ(r, E,Ω, t)

∂t
+Ω · ∇ϕ(r, E,Ω, t) + Σ(r, E)ϕ(r, E,Ω, t) =

∮
4π

∫ ∞

0

Σs(r, E
′)fs(r,Ω

′,Ω, E ′ → E)ϕ(r, E ′,Ω′, t) dΩ′ dE ′+

χ(r, E)

4π

∫ ∞

0

ν(r, E ′)Σf (r, E
′)ϕ(r, E ′,Ω′, t) dE ′ + S(r, E,Ω, t)

The first term on the left-hand side describes the time evolution of the neutron
population, representing how the neutron flux changes over time. This change is
governed by the neutron velocity v, where the rate of variation in the flux is influ-
enced by both the motion of neutrons through the medium and their interactions.
The second term on the left-hand side, known as the streaming term, accounts for
the movement of neutrons through the medium, describing how neutrons propagate
in different directions. The third term represents the collision term, capturing the
loss of neutrons due to interactions with the material. This term incorporates the
total reaction rate, represented by Σϕ, where Σ is the total macroscopic cross sec-
tion, quantifying the probability per unit path length that a neutron will interact
with the material, either through absorption, scattering, or other nuclear processes.
The right-hand side of the neutron transport equation contains the source terms,
which represent the various ways neutrons are introduced into the system.
The scattering source term involves the scattering macroscopic cross section Σs,
which quantifies the probability of a neutron undergoing scattering per unit path
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CHAPTER 1.

length. This term also accounts for the type of scattering (elastic or inelastic) and
incorporates the scattering probability density function fs. This density function
depends on the position, energy, and direction of the neutron both before and after
the collision. When integrated over both angle and energy, this function gives the
probability that a neutron will scatter into a specific energy and direction range.
The fission source term represents neutrons that are emitted due to fission events
within the system. The term χ(r, E), known as the fission spectrum, describes
the probability of neutron emission at a given energy E. Fission events are often
modeled as isotropic, which introduces a factor of 1/4π to normalize the emission
direction. Additionally, ν represents the number of neutrons emitted per fission
event, and Σf is the fission macroscopic cross section, quantifying the probability of
a neutron inducing a fission event per unit path length.
Finally, the external source term S accounts for any external sources of neutrons
acting on the system, such as neutron generators or external radiation sources, which
contribute neutrons into the system from outside the medium being modeled.

1.2 Deterministic and Stochastic Methods

The integro-differential equation which govern neutron transport can be solved us-
ing both deterministic and stochastic numerical approaches.
The deterministic approach involves solving a system of partial differential equations
that describe the behavior of neutrons in the medium of interest. These equations
typically cannot be solved analytically due to their complexity, requiring discretiza-
tion in space, energy, angular direction, and time. Over the past five decades, various
advanced numerical methods have been developed to solve the transport equation
with high accuracy. Notable examples include the method of characteristics, the
spherical harmonics (PN) method, and the discrete ordinates (SN) method. Despite
their sophistication, deterministic methods yield approximate solutions due to the
inherent limitations introduced by discretization and truncation errors.
One significant advantage of deterministic methods is that, once the transport equa-
tion is solved, the results provide a reliable first approximation of the behavior of a
nuclear device. These methods are particularly useful in systems where a balance
between computational efficiency and accuracy is required.
The stochastic numerical approach relies on probability and statistical theories, com-
monly referred to as the Monte Carlo method. This method provides an accurate
representation of the propagation of randomly moving particles, with no inherent
approximations in principle. It is suited for handling complex geometries and gen-
erally delivers results that surpass the accuracy of deterministic methods. However,
a notable limitation of the Monte Carlo method is its inability to provide a rapid,
approximate solution to the transport equation. This arises from its probabilistic
nature, which requires the convergence of stochastic results to a mean value. Achiev-
ing results with low statistical error necessitates many simulations, which in turn
demands substantial computational resources.
However, the Monte Carlo method has become the golden standard for neutron
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1.3. MATHEMATICAL FOUNDATION OF THE MONTE CARLO METHOD

transport calculations due to its high accuracy and flexibility. Its adoption is gain-
ing even more momentum thanks to the rapid development of High Performance
Computing (HPC), which significantly reduces the computational time required to
perform a sufficient number of simulations.

1.3 Mathematical Foundation of the Monte Carlo

Method

The primary principle behind Monte Carlo simulations is that the macroscopic be-
havior of a large ensemble of neutrons can be predicted by applying statistical laws
governing random processes. A useful analogy is the roll of a die: while the result
of any individual roll is uncertain, the average result of many rolls will converge
toward the expected value, with approximately equal occurrences of each possible
outcome. Similarly, Monte Carlo simulations track the histories of a large number
of neutrons to predict the average behavior of the entire population.
Monte Carlo simulations rely on the axiomatic framework of probability theory,
which provides a rigorous foundation for modeling random phenomena. The follow-
ing key properties of probability are fundamental to the formulation of stochastic
models:

• Non-negativity: The probability of any event E is non-negative, i.e., for any
event E ⊂ Ω, the probability P (E) ≥ 0, where Ω is the sample space.

• Normalization: The probability of the entire sample space is unity, i.e.,
P (Ω) = 1, ensuring that one of the possible outcomes must occur.

• Additivity: For any mutually exclusive events Ei and Ej (i.e., Ei ∩Ej = ∅),
the probability of their union is the sum of their individual probabilities, i.e.,
P (Ei ∪ Ej) = P (Ei) + P (Ej).

1.4 Random Variables and Distributions

A random variable ξ is a measurable function that maps outcomes from the sample
space Ω to real numbers in R. It serves as a mathematical model for quantifying
random phenomena. For example, consider the toss of a fair coin. The sample space
Ω consists of two possible outcomes: {Head,Tail}, which we can label as {1, 0},
where 1 represents head and 0 represents tail. The random variable ξ maps these
outcomes to real numbers: ξ = 1 for heads and ξ = 0 for tails. The probability of
each outcome is 1

2
, so we have P (ξ = 1) = 1

2
and P (ξ = 0) = 1

2
.

In this case, the random variable ξ models the result of a coin toss, and its distri-
bution is defined by the probabilities of getting heads or tails.
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CHAPTER 1.

Figure 1.1: Example of random variable definition.

In Monte Carlo simulations for neutron transport, random variables are used to
model key quantities such as particle displacement, which represents the neutron’s
position as it moves through a medium, and interaction types, determining whether
a neutron undergoes a scattering event, is absorbed, or undergoes a fission event.
Additionally, scattering angles are modeled by random variables to simulate the
direction change of neutrons during collisions. These random variables enable the
probabilistic simulation of neutron behavior, allowing predictions of macroscopic
properties like flux, reaction rates, and energy deposition.
The Cumulative Distribution Function (CDF) Fξ(x) of a random variable ξ is defined
as:

Fξ(x) = P [ξ ≤ x],

where P [ξ ≤ x] represents the probability that ξ takes a value less than or equal to
x.
The CDF possesses the following fundamental properties:

limx→−∞ Fξ(x) = 0,
limx→+∞ Fξ(x) = 1,
limx→x+

0
Fξ(x) = Fξ(x0),

Fξ(x) is monotonically non-decreasing.

These properties ensures that the CDF approaches 0 as x approaches negative in-
finity, and approaches 1 as x increases to plus infinity. The monotonicity of Fξ(x)
ensures that the probability of ξ being less than or equal to any value x never de-
creases as x increases.

The Probability Density Function (PDF), denoted by fξ(x), is the derivative of
the CDF with respect to x:

fξ(x) =
dFξ(x)

dx
.
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The PDF provides a continuous representation of the probability distribution of
the random variable, and the integral of the PDF over any interval [a, b] gives the
probability that the random variable ξ falls within that interval:

P (a ≤ ξ ≤ b) =

∫ b

a

fξ(x) dx.

1.5 Moments and Statistical Quantities

In order to obtain average information about a statistical phenomenon, it is neces-
sary to define the concept of the moments of a probability distribution. The n-th
order moment is expressed as:

E[xn] =

∫ +∞

−∞
xnfξ(x) dx,

where fξ(x) is the PDF associated with the random variable ξ.
The PDF fξ(x) gives the likelihood that ξ will take a value in an infinitesimally
small range around x.
For n = 1, the result of the integral is the mean value:

E[x] =

∫ +∞

−∞
xfξ(x) dx

Here, E[x] represents the expected value or mean of the random variable ξ. The
integral computes the weighted average of all possible values of ξ, where each value
is weighted by the probability density function fξ(x). This formula gives us the
central tendency or average value of the distribution of ξ.
Another fundamental quantity is the variance (the mean squared error):

σ2[x] =

∫ +∞

−∞
(x− E[x])2fξ(x) dx = E[(x− E[x])2]

The variance σ2[x] quantifies the spread or dispersion of the random variable ξ
around its mean E[x]. The variance provides insight into the variability of the
phenomenon under study. A higher variance indicates that ξ can take values that
are far from the mean, while a lower variance suggests that ξ is tightly clustered
around its mean.
The square root of the variance is called the standard deviation:

σ[x] =
√
σ2 =

√
E[(x− E[x])2]

The standard deviation σ[x] serves as a measure of the average deviation of the
values of the random variable ξ from the mean, and, unlike the variance, it has the
same units as the original variable, making it more interpretable and providing a
more intuitive understanding of the spread of the values. It is commonly used to
express the precision of a statistical phenomenon, as it reflects the typical magnitude
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of deviation of individual values from the mean. Finally, the relative standard
deviation is defined as:

RSD =
σ

E[x]

The RSD is the ratio of the standard deviation to the mean. It is often used to
express the dispersion relative to the size of the mean, providing a dimensionless
quantity that is particularly useful when comparing the variability of different data
sets or variables with different units. The RSD gives a sense of how large the spread
is compared to the central value of the distribution.

1.6 Sample Average and its Statistical Properties

Consider performing N experiments, each associated with a value of the random
variable ξi. The values ξi obtained in the different experiments are random numbers,
identically distributed according to the same probability density function (PDF),
and statistically independent.
In this context, a new random variable, known as the sample average, can be defined
as:

ξ̄N =
1

N

N∑
i=1

ξi,

where the sample average ξ̄N represents the arithmetic mean of the observed values
over the N experiments. The following statistical properties of the sample average
can be derived, namely the expected value and variance:

E[ξ̄N ] = E[x] = µ,

σ2[ξ̄N ] =
σ2[x]

N
,

These equations are fundamental as they indicate that the random variable ξ̄N serves
as an estimator of the expected value µ, and its dispersion with respect to the mean
value is characterized by the variance σ2[ξ̄N ].
Importantly, as the number of experiments N increases, the dispersion of the sample
average decreases, resulting in a more precise estimate of the expected value.

1.7 Fundamental Theorems and Statistical Errors

The mathematical foundation of the Monte Carlo method is rooted in two key
theorems. The first of these is the Tchebycheff Inequality applied to the sample
average:

P [|ξ̄N − µ| > k] ≤ σ2

Nk2
,

which states that as the number of experiments N increases, the sample average
converges in probability to the true mean value µ. This result provides a bound on
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the probability that the deviation of the sample average from the true mean exceeds
a given threshold k.
While the Tchebycheff Inequality provides valuable information about the behavior
of the sample average, it does not specify the difference between the sample average
and the true mean for a finite number of experiments. This type of information is
provided by the Central Limit Theorem (CLT), which asserts that, as the number of
experimentsN tends to infinity, the distribution of the sample average ξ̄N approaches
a normal distribution.
Applying this theorem to the relations derived from the Tchebycheff Inequality it
can be demonstrated that:

P

∣∣∣∣∣∣ξ
(N) − µ√

σ2

N

∣∣∣∣∣∣ ≤ k

 ≈


0.68 if k = 1

0.95 if k = 2

0.99 if k = 3

This relation indicates that the probability that the relative error of the sample av-
erage is within k times the relative standard deviation of the sample average takes
specific values.
By using the CLT, it becomes possible to quantify the statistical error associated
with the results of Monte Carlo simulations. For example, if k = 1, this implies
that there is approximately a 68% probability that the expected value lies within
the error bar. Another important result from the CLT is that the convergence rate
of the sample average to the true mean follows a rate of 1/

√
N , which is critical for

estimating the precision of Monte Carlo simulations.

1.8 Random Walks

The Monte Carlo method, fundamental in the study of neutron behavior, relies on
probabilistic modeling to simulate the random walks of neutrons as they interact
with their surrounding medium. By tracking the trajectory of each neutron from
its birth, likely initiated by a fission event, to its death through absorption or leak-
age, this technique offers a detailed representation of the neutron’s life cycle. The
trajectory is represented as a series of events, or a “history,” which depends on the
position, energy, and direction of the particle, the distance between two consecutive
events, and the type of interaction.
The simulation process of a neutron’s random walk in a homogeneous medium is
based on a series of successive steps that model its free motion and the interactions
it may undergo, such as scattering or absorption. The initial position of the neu-
tron, represented by r⃗, and its direction of motion Ω⃗, can originate from a fission
source or from a neutron that has previously undergone an interaction. The neu-
tron’s movement is described through a probability distribution, which reflects the
distance traveled before the neutron undergoes an interaction.
The probability that a neutron moves from a point P = (r⃗, Ω⃗, E) to another point

P ′ = (r⃗′, Ω⃗, E) without interacting depends on the distance between the two points
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and the energy of the neutron, and it is expressed by the free flight PDF fl. This
function, which takes into account the macroscopic total cross section Σt(E), is given
by:

fl(|r⃗ − r⃗′|, E) = Σt(E)e−[|r⃗−r⃗′|Σt(E)]

In this context, the macroscopic cross section Σt(E) represents the probability of
interaction per unit distance traveled by the neutron. The cumulative distribution
function that describes the probability that a neutron will reach the point P ′ is:

Fl(|r⃗ − r⃗′|, E) = 1− e−[|r⃗−r⃗′|Σt(E)]

To generate random free flight trajectories following this distribution, the inverse
transform method is used. In this approach, a random number ρ ∈ [0, 1] is generated,
and the equation Fl(s, E) = ρ is solved, where s is the distance traveled by the
neutron. Solving for s, we obtain:

s = − 1

Σt(E)
log(1− ρ)

This step allows the determination of the distance traveled by the neutron before
any potential interaction.
Once the distance traveled is calculated, the neutron’s position is updated. It is
then determined whether the neutron remains within the domain of interest. If the
neutron exits from the domain of interest, the random walk ends due to leakage
outside the geometry. Otherwise, the next step is to determine the type of interac-
tion the neutron may undergo. Two possible events must be considered: collision or
crossing a geometry boundary. If the neutron crosses a boundary within the geom-
etry but remains inside the overall domain, the random walk does not end. Instead,
the neutron is repositioned at the boundary; the current volume and corresponding
material properties are updated and a new distance to the next collision is sampled
based on the properties of the new material.
In a collision event, the neutron may undergo one of three possible interactions: scat-
tering, capture, or fission, with probabilities proportional to the respective macro-
scopic cross sections, Σs(E), Σc(E), and Σf (E). If capture occurs, the neutron is
removed from the system, and the random walk ends. In the case of fission, the neu-
tron is absorbed, but the interaction produces secondary particles, including new
neutrons, which contribute to the overall neutron population. If the neutron under-
goes scattering, it changes direction and resumes its free flight process. The random
walk continues as the neutron travels through the medium, undergoing successive
interactions until either absorption occurs or the neutron leaks from the domain.
The random walk model simulates the behavior of a neutron moving through a
medium, where the distance traveled between interactions is determined by the
macroscopic cross section. This approach provides a detailed and probabilistic sim-
ulation of neutron transport, continuously updating the neutron’s position and de-
termining its interactions based on the probabilities associated with each physical
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event. To ensure accurate results with relatively low uncertainty, a large number
of neutron histories must be simulated, which, while computationally demanding,
guarantees high precision.
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Chapter 2

TRIPOLI® and AGORA

2.1 The Evolution of TRIPOLI® Codes

The TRIPOLI® family of codes represents a sophisticated suite of tools designed
for radiation transport simulations based on the Monte Carlo method. Developed
to address diverse applications such as reactor physics, radiation protection, and
nuclear instrumentation, these codes have been continuously refined over decades.
Their development began in the 1960s under the CEA, initially at the Fontenay-aux-
Roses laboratories before moving to Saclay [1]. Over time, TRIPOLI® has evolved
into a cornerstone of nuclear analysis and simulation, supported by an ecosystem of
complementary tools. This ecosystem includes deterministic codes for lattice and
core simulations, software for modeling fuel depletion, photon transport tools, and
advanced systems for evaluating and processing nuclear data.
At the heart of this family lies TRIPOLI-4® [2], the fourth generation of the series,
which serves as a key resource for CEA’s simulation activities.
TRIPOLI-4® has established itself as the reference code for not only CEA labora-
tories but also for major external organizations. For example, Électricité de France
(EDF), responsible for operating a fleet of nuclear reactors in France, relies on this
tool for its simulations and operational needs.
This Monte Carlo code excels in its ability to simulate neutral particles such as neu-
trons, photons, and even charged particles like electrons and positrons. Its energy
ranges are broad, covering neutrons from 20 MeV to extremely low energies and
photons from 20 MeV to 1 keV. For electrons and positrons, simulations extend
down to 1 keV, enabling precise modeling in areas like radiation detection and nu-
clear instrumentation.
The particle transport capabilities rely on continuous-energy nuclear data, which
encompass detailed characteristics such as scattering behaviors, secondary particle
yields, and fission spectra. Compatibility with a wide range of internationally rec-
ognized nuclear data libraries ensures flexibility and precision in its applications.
In addition to its advanced computational features, TRIPOLI-4® includes a robust
geometry package. This native package supports both surface-based and combina-
torial representations, offering versatility in constructing geometries and the ability
to combine these approaches when needed.
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A particularly valuable feature of TRIPOLI-4® is its compatibility with geometries
developed in the ROOT [3] software format. ROOT is an open-source data analysis
framework developed at Conseil Européen pour la Recherche Nucléaire (CERN),
designed for building, browsing, and visualizing complex geometries.
This compatibility enhances TRIPOLI-4®’s flexibility by allowing users to seam-
lessly integrate both geometries created with its native package and those from the
ROOT geometry package. This ensures broad applicability and interoperability
across diverse simulation scenarios.

2.2 TRIPOLI-5®

In 2022, a collaboration between CEA, Institut de Radioprotection et de Sûreté
Nucléaire (IRSN), and EDF initiated the development of TRIPOLI-5®, a next-
generation Monte Carlo particle transport code designed to perform highly parallel
simulations on advanced computing architectures [4].
This new code leverages the expertise gained from earlier research into the portabil-
ity of particle transport algorithms in high-performance computing environments,
particularly those that integrate hybrid systems combining traditional processors
and graphical processing units.
TRIPOLI-5® focuses primarily on reactor physics, with capabilities that include
modeling both stationary and dynamic reactor configurations while incorporating
multi-physics feedback. These features allow for simulations that account for in-
terdependent phenomena such as temperature, density, and nuclide concentration
variations, which are critical in complex reactor systems.
In the short term, the primary goal of TRIPOLI-5® is to address challenges in
areas such as reactor kinetics and fuel depletion, all while optimizing performance
on modern parallel computing platforms, ranging from large scale systems to stan-
dard workstations. Looking to the future, TRIPOLI-5® is intended to evolve into a
versatile tool capable of addressing a broader range of applications. These include
radiation shielding, advanced nuclear instrumentation, and the implementation of
variance reduction techniques to enhance simulation efficiency. This new code rep-
resents a significant step forward in leveraging advanced computing technologies to
meet the increasing complexity and precision demands of modern nuclear science
and engineering.
During the first phase of its development, TRIPOLI-5® relied on a geometry en-
gine based on the ROOT geometry package. This choice was driven by the fact
that TRIPOLI-4® also relies on the ROOT geometry engine, facilitating compar-
isons between the two codes. However, to enhance the flexibility and performance
of geometry modeling, the integration of a native geometry engine package was
recently introduced. AGORA, the new geometry navigation engine implemented
within TRIPOLI-5® and developed at CEA, is specifically designed to enhance the
geometry modeling process through its multi-nested structure, based on the Con-
structive Solid Geometry (CSG) paradigm. This architecture facilitates efficient
representation and navigation of complex geometries while improving computational
performance. To complement these advancements, TRIPOLI-5® provides advanced
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visualization tools to facilitate the inspection of geometries modeled with AGORA.
A dedicated tool recently implemented in TRIPOLI-5® allows for the visualization
of AGORA geometries through two-dimensional sections. The tool supports vari-
ous modes, including point and track representations, with or without wireframes.
Sections at different heights can be plotted to analyze the spatial distribution of
volumes and materials, providing valuable insights into the geometry’s structure
and composition. Additionally, the T4G visualization tool [5], originally developed
for TRIPOLI-4® and ROOT geometries, has been extended to handle AGORA
geometries. T4G offers comprehensive 3D navigation, including zooming, rotating
and slicing, as well as features for visualizing volume decomposition and material
distribution.
These visualization capabilities play a crucial role in assessing the spatial arrange-
ment of the modeled geometry, improving the accuracy and confidence in the rep-
resentation of the system under scrutiny.
To verify the accuracy and robustness of AGORA, we developed a series of verifica-
tion methods and conducted preliminary verification test as part of my internship.
However, before presenting these methods, along with the adopted procedures and
the obtained results, it is essential to first provide an overview of AGORA and
its role as the new geometry navigation engine of TRIPOLI-5®, to establish the
necessary context for understanding the following sections.

2.3 AGORA and Constructive Solid Geometry

In AGORA, the construction of geometries is grounded in the CSG paradigm, which
allows for the creation of complex, nested structures by combining simple geometric
primitives. This approach facilitates the modeling of intricate configurations, essen-
tial for accurately representing nuclear systems.
To fully appreciate the advantages of the CSG paradigm, it is essential to first
understand the key features of AGORA in geometry construction.

2.3.1 Surfaces Definition

The first concept to introduce is that of surfaces. Mathematically, a surface is
defined as the set of points that satisfy a given equation in Cartesian coordinates
f(x, y, z) = 0. Common examples of surfaces include:

• A plane perpendicular to the x axis: x− x0 = 0

• A cylinder parallel to the z axis: (x− x0)
2 + (y − y0)

2 −R2 = 0

• A sphere: (x− x0)
2 + (y − y0)

2 + (z − z0)
2 −R2 = 0

A half-space of a surface refers to the region of space whose points satisfy either
a positive or negative inequality of the surface equation.
To elucidate, consider a sphere centered at the coordinates (x0, y0, z0) with a radius
R. The canonical equation of the sphere is:

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = R2
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By reformatting this equation through the subtraction of the right-hand term from
both sides, we derive the surface equation for the sphere as:

f(x, y, z) = (x− x0)
2 + (y − y0)

2 + (z − z0)
2 −R2 = 0

From this formulation, one can infer that any point internal to the sphere satisfies
f(x, y, z) < 0, while any point external to the sphere satisfies f(x, y, z) > 0.
Hence, the coordinates for which f(x, y, z) < 0 define the negative half-space,
whereas the coordinates for which f(x, y, z) > 0 define the positive half-space.

Each surface in AGORA is defined by several parameters specific to each geometric
type. For instance, consider two cylindrical surfaces used to model a fuel rod:

s1 = agora.ZCylinder(0.0, 0.0, inner radius)

s2 = agora.ZCylinder(0.0, 0.0, outer radius)

Here thee first cylinder, s1, defines the inner surface of the fuel rod, while the
second cylinder, s2, defines the outer surface. The parameters in the brackets of
ZCylinder refers to the x-coordinate of the cylinder’s center, to the y-coordinate of
the cylinder’s center and to the radius of the cylinder respectively.
The first cylinder has a radius of dimensions inner radius, while the second cylinder
has a radius of dimensions outer radius. Both the cylinders s1 and s2 are defined
along the z-axis meaning their length extends infinitely in the z-direction and both
are centered in x = 0.0 and y = 0.0.

Figure 2.1: Graphic representation of surfaces.

2.3.2 Shapes Definition

Once the surfaces have been defined, the next step involves specifying the spatial
regions by applying Boolean operators to the corresponding surface half-spaces. In
AGORA, the Boolean operators included are:

• & (intersection): Represents a logical AND operation.

• | (union): Represents a logical OR operation.

• - (complement): Represents a logical NOT operation.
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By applying these operators to the surfaces, we can create shapes that represent
specific regions within the geometry model in AGORA.
Continuing the previous example, we can define the following shapes:

r1 = agora.Shape( -s1 )

r2 = agora.Shape( +s1 & -s2 )

r3 = agora.Shape( +s2 )

Here r1 defines the region inside the first cylinder s1. The unary minus (-) operator
indicates that we are taking the negative half-space of the surface s1, which could
represent the fuel region.
The Shape r2 defines the region between s1 and s2. The plus (+) operator denotes
the positive half-space of s1, while the minus (-) operator applied to s2 refers to
its negative half-space. The intersection operator (&) between +s1 and -s2 then
defines the space that lies within the outer cylinder and the inner cylinder, which
could represent the cladding region.
Finally r3 defines a semi-infinite region outside the outer cylinder s2. The unary
plus (+) operator indicates that we are taking the positive half-space of the surface
s2, which could represent the space surrounding the fuel rod such as the coolant
region.

Figure 2.2: Graphic representation of shapes.

2.3.3 Volumes Definition

In AGORA, the definition of volumes begins by assigning material properties to
geometric shapes, which then form the basis of spatial volumes.
These volumes represent the distinct regions within the geometry, each associated
with specific material composition that define their physical properties.
By assigning materials to shapes, AGORA generates volumes that model the cor-
responding regions of space. This approach is crucial for accurate simulation and
analysis, as each material influences the interaction of particles within its assigned
volume.
Continuing from the previous example, the definition of three volumes c1, c2 and
c3 is built upon the previously introduced shapes and surfaces. These surfaces
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serve as the boundaries of the shapes, which are subsequently linked to material
compositions to create the corresponding volumes:

v1 = agora.Volume(r1, "FUEL")

v2 = agora.Volume(r2, "CLADDDING")

v3 = agora.Volume(r3, "COLD WATER")

The volume v1 associates the shape r1 with the material "FUEL", representing the
region inside the inner cylinder. The volume v2 associates the shape r2 with the
material "CLADDING", corresponding to the region between the inner and outer cylin-
ders. The volume v3 associates the shape r3 with the material "COLD WATER", rep-
resented by the positive half space of the outer cylinder defined by r3.
These resulting volumes represent the fuel, the cladding, and the surrounding coolant
regions of a fuel rod.

Figure 2.3: Graphic representation of volumes.

2.3.4 Universes Definition

AGORA’s universe-based approach simplifies the modeling of repeated structures by
allowing users to define a single universe and instantiate it multiple times throughout
the geometry. This is particularly useful for modeling reactor components, where
individual fuel rods are repeated within assemblies, and assemblies are repeated
within the reactor core.
For instance, a pincell of a fuel rod can be represented as a universe containing the
previously defined volumes:

fuel cold = agora.Universe([v1, v2, v3])

In this definition fuel cold is the name assigned to the universe, representing a
complete fuel rod. The attribute [v1, v2, v3] refers to the list of volumes, previ-
ously defined, that comprise the universe.
By grouping these volumes into a universe, the fuel rod’s geometry and material
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configuration are encapsulated in a reusable structure. This approach is highly ben-
eficial when variations of the fuel rod need to be modeled.
For instance, replacing the coolant volume, containing COLD WATER and represented
by v3, with a hot coolant allows for modeling the thermal behavior of a fuel rod in
hotter regions of the reactor core.
A universe representing a hot fuel rod can be defined as follows:

r4 = agora.Shape(+s2)

v4 = agora.Volume(r4, "HOT WATER")

fuel hot = agora.Universe([v1, v2, v4])

Figure 2.4: Graphic representation of the fuel hot universe.

This new universe, created by replacing the cold coolant volume v3 with the hot
coolant volume v4, can be used to represents a hot fuel rod configuration. These
universes can be further combined into larger assemblies or used in lattices, as shown
in the next section.

2.3.5 Lattices Definition

Frequently, repeated structures in a geometry occur in a regular pattern, such as
a rectangular or hexagonal lattice. In such cases, it would be cumbersome for the
user to define the boundaries of each region to be filled with a universe.
In AGORA lattices are used to efficiently handle these repeated structures. A lattice
represents a regular, repeating grid of universes, where each cell in the lattice can
contain an individual universe that models a component or a group of components.
This approach drastically reduces the complexity and size of the geometry descrip-
tion by allowing the user to define a single instance of a structure and replicate it
multiple times within the lattice without the need to define each instance separately.
For example, consider the following rectangular lattice in AGORA:
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lattice = agora.RectLattice

(Point(x, y, z),

Vector(dx, dy, dz),

nx, ny, nz, replicated universe)

Here Point(x, y, z) specifies the starting coordinate of the lattice. The parame-
ters x, y, and z define the position of the lattice origin in 3D space.
Vector(dx, dy, dz) defines the spacing between adjacent cells in the lattice. The
parameters dx, dy, and dz specify the cell pitch in the x, y, and z directions.
The parameters nx, ny, and nz represent the number of cells in the x, y, and z di-
rections respectively, while replicated universe represents the object (universe)
to be repeated in each cell of the lattice. This can be a fuel rod, moderator, control
rod, or any other defined universe in the geometry.

Figure 2.5: Graphical representation of a 4 x 4 lattice filled with the fuel cold
universe previously defined.
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2.3.6 Composite Volumes Definition

In AGORA, a Composite Volume is used to combine a geometric shape with more
complex structures such as lattices or universes. This approach allows for the rep-
resentation of spatially restricted regions within larger ones, effectively focusing on
localized configurations while managing more complex structures. Composite Vol-
umes are particularly valuable in reactor simulations, where repeated structures
need to be confined to specific finite regions of space. The shape acts as a boundary,
and only the portion of the lattice or universe that falls within the boundary of the
shape is considered in the Composite Volume.
Continuing from the previous example lattice definition, we introduce a Composite
Volume to confine the lattice to a finite cylindrical region.
This is a typical scenario for modeling a localized section of the reactor core:

core surface = agora.ZCylinder(0.0, 0.0, core radius)

core bottom = agora.ZPlane(bottom z)

core top = agora.ZPlane(top z)

core shape = agora.Shape([-core surface & +core bottom & -core top])

composite volume = agora.CompositeVolume(core shape, lattice)

The core shape defines a cylindrical region with radius r = core radius, bounded
vertically by planes at z = bottom z and z = top z. The composite volume restricts
the visibility of the previously defined lattice to the region enclosed by this finite
shape.

Composite Volumes are particularly useful when dividing a geometric model into
different sections. For example, they can be used to represent distinct regions of
a reactor core, such as the hot and cold zones, a common approach for simulating
thermal behavior within a reactor. By using different sets of planes and filling the
lattice with different universes, it is possible to create distinct regions that reflect
the varying temperature profiles within the core.

Below is an example demonstrating how this approach can be implemented:

core shape hot = agora.Shape([-core surface & +core bottom hot & -core top hot])

hot core = agora.CompositeVolume(core shape hot, lattice hot)

In this case, the core bottom hot and core top hot are positioned at different
heights compared to the previously defined planes, thus distinguishing a different
zone within the reactor core. The hot core Composite Volume confines the hot sec-
tion of the core, where the lattice hot has been filled with the hot fuel universe.
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Figure 2.6: Graphic representation of the CompositeVolume. Each z-plane is shown
in the figure, delineating the hot core region in the upper part and the cold core

region in the lower part.

2.3.7 Root Universe Definition

In AGORA, the Root Universe serves as the foundational framework for the entire
geometry model, encapsulating all components within a single cohesive computa-
tional domain. It ensures the simulation domain is finite, enabling a comprehen-
sive modeling of the entire system, including both the physical geometry and the
surrounding unoccupied space. Building upon the previous example, the reactor’s
geometric model can be finalized as follows:

main universe = agora.Universe([cold core, hot core, vessel])

inside shape = agora.Shape(-outer vessel & +bottom plane & -upper plane)

v0 = agora.CompositeVolume(inside shape, main universe)

outside shape = agora.Shape(+outer vessel | -bottom plane | +upper plane)

outside volume = agora.Volume.outside(outside shape)

root universe = agora.Universe([v0, outside volume])

In this example, the main universe contains the essential physical regions of the
reactor, such as the cold core, hot core, and vessel. The inside shape defines the
spatial limits of this physical domain, which is constrained by the reactor vessel and
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bounded vertically between the bottom plane and upper plane. The combination
of inside shape with main universe through the Composite Volume v0 ensures
that the geometry is properly defined. The outside shape, in contrast, specifies the
unoccupied space surrounding the reactor geometry. This shape is constructed as
the union of three distinct regions: the space above the upper plane, the space below
the bottom plane, and the space outside the vessel boundary. Using the .outside

method, this region is assigned to outside volume, ensuring that all unoccupied
space surrounding the physical reactor is accurately represented in the simulation.
Finally, the root universe combines the physical domain v0 and the surrounding
unoccupied space outside volume, encapsulating the entire system within a single
cohesive framework.
This facilitates the code’s implementation of boundary conditions required for the
simulation and enables the geometry navigator to accurately model particle inter-
actions throughout the entire domain under analysis.

2.3.8 Correctly define the geometry

When defining a geometry model using the AGORA module, it is crucial to pay
particular attention to several key aspects to ensure that the calculations are both
accurate and reliable.

Absence of Gaps in the Geometry

One of the most fundamental aspects of defining a CSG geometry is to avoid the
presence of unintended gaps or voids between volumes. Such gaps can lead to signif-
icant errors in the simulation results. If a particle enters an undefined area (a gap),
the Monte Carlo code might be unable to handle it correctly, potentially leading to
physically inaccurate results or even causing the simulation to stop unexpectedly.
Gaps in the geometry can result in particles being lost, meaning they are no longer
tracked accurately, thereby reducing the precision and reliability of the simulation
outcomes.

Absence of Overlapping Volumes

Another critical aspect is ensuring that no overlapping volumes exist within the
geometry. When two or more volumes overlap, the Monte Carlo code may struggle to
correctly determine the particle’s position and identify the material through which it
is traveling. This can introduce errors in the particle transport calculations, leading
to incorrect predictions of particle interactions. Moreover, overlapping volumes can
cause issues in estimating absorbed doses, particle fluxes, and other parameters of
interest within the simulations, potentially compromising the entire study.
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Methodology for Verification and
preliminary Validation

In the realm of Monte Carlo codes, especially those pertinent to physical systems
and nuclear simulations, the Geometry Navigation Engine (GNE) emerges as a cor-
nerstone of paramount importance. This sophisticated component shoulders the re-
sponsibility of managing the spatial relationships and interactions between particles
and the geometrical representation of the system under scrutiny. The significance
of verifying and preliminarily validating this component cannot be overstated, as it
is fundamental to ensuring the integrity and reliability of the simulation outcomes.
Let us delve into a comprehensive examination of why this is the case.

3.1 The importance of the navigation engine

In Monte Carlo simulations, the accurate representation and navigation of the ge-
ometry under study are foundational to the success of particle tracking, directly
influencing the reliability of the simulation results.
The GNE plays a central role in ensuring that particles interact correctly with ma-
terials and boundaries within the modeled domain.
The primary task of this component is to ensure the ability to accurately and reliably
address three critical questions:

1. In which composition does the particle reside?
By identifying the material in which the particle is currently located, the code
applies the correct cross-sections for interactions such as fission, scattering, or
absorption, ensuring the fidelity of calculations.

2. What is the distance to the next geometrical boundary?
The GNE is responsible for calculating the distance to the nearest boundary, a
crucial parameter for determining the particle’s trajectory, especially in com-
plex geometries. Accurate distance calculations are vital to maintaining the
consistency and precision of the simulation, as errors in this step could lead
to significant deviations in the particle’s predicted path.
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3. Which is the next volume that the particle will traverse?
After crossing a boundary, the GNE must determine the next volume the par-
ticle will enter identifying the material composition, enabling continuous and
accurate tracking as the particle moves through the domain.

Any inaccuracy made by the GNE in geometry representation, boundary detec-
tion, or material assignment can significantly undermine the reliability and accuracy
of simulation results. Such inaccuracies can lead to flawed predictions of key out-
puts, including particle flux distributions or eigenvalue solutions, which are critical
for applications ranging from safety assessments and system design to operational
analysis. For instance, in Monte Carlo transport simulations, any lapse in handling
particle interactions with the geometry can skew predictions, directly affecting con-
clusions about the system’s behavior.
As contemporary simulations increasingly involve intricate and detailed geometries,
the GNE must adeptly navigate these complexities to maintain accuracy and reli-
ability. This requirement becomes particularly important in scientific research and
regulatory contexts, where reproducibility and consistency of results are vital for
verification and validation of models and supporting critical decisions.

3.2 Description of the methodology

To verify the correct functionality of AGORA, a fundamental step is establishing
equivalence between geometries represented by different Monte Carlo GNEs. This
process is essential to ensure the accuracy and reliability of simulations when com-
paring results across diverse computational tools.
A stringent approach would be to consider two geometries equivalent if their re-
spective engines assign the same cell number to each point in space. However, this
criterion is overly restrictive and impractical for comprehensive verification [6].
It is important to recall that particle tracking is predominantly influenced by mate-
rial interactions rather than the geometrical structure itself and its decomposition.
Moreover, an essential assumption is that the system can be represented as piecewise
homogeneous, composed of discrete Volumes (or cells), each defined by a specific
material composition (i.e. a list of nuclides and their concentrations).
Therefore, it is sufficient to relax the definition of equivalent geometry models to
those that assign the same material composition to each point in the geometry space
under study.
To clarify this concept, the Figure 3.1 displays the same geometry model as rep-
resented by two different Monte Carlo codes and their respective GNE. The image
shows the geometry’s decomposition into its respective volumes, with each volume
represented by a different color.
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Figure 3.1: Decomposition into volumes of the same geometry model: AGORA
model for TRIPOLI-5® (left) and ROOT model for TRIPOLI-4® (right) trough
the T4G visualization tool, each volume is represented by a specific color in each
software.

It is clear that the key factor for the equivalence of geometries lies not in the
specific subdivision of the geometry model into volumes, but rather in the mate-
rial composition of those volumes. Indeed, the same geometry could be modeled
in entirely different ways depending on the software used, as shown in Figure 3.1.
Furthermore, even within the same software, an identical geometric model could be
constructed in different ways based on the programmer’s approach.
Based on these assumption, we proceeded to implement a series of verification tech-
niques and related preliminary validation tests designed to serve two key purposes:
first, to ensure the internal consistency of the AGORA module within its host
code TRIPOLI-5®, and second, to facilitate external comparisons between the
geometric models produced by AGORA and those generated by other widely used
Monte Carlo codes.

3.2.1 Internal Consistency

To verify internal consistency and assess the performance of AGORA, two configu-
rations of TRIPOLI-5® were thoroughly examined:

• TRIPOLI-5® with AGORA

• TRIPOLI-5® with ROOT
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As previously mentioned, at the initial stages of development, TRIPOLI-5® relied
solely on the ROOT geometry package. This choice was driven by its existing in-
tegration with TRIPOLI-4®, making it easier the incorporation also into the new
code. The ROOT Navigator has long been recognized for its reliability and exten-
sive use within the simulation community, serving as a robust and trusted standard
for geometry navigation. To ensure AGORA’s functionality and seamless integra-
tion into TRIPOLI-5®, we compared simulation results from TRIPOLI-5® with
AGORA to those obtained using TRIPOLI-5® with the ROOT geometry package.
This comparison was essential for validating the correct integration of the new GNE
within its host code to ensure compatibility.

3.2.2 External Comparisons

External comparisons were performed to analyze the results generated by TRIPOLI-
5® with AGORA in relation to those produced by other Monte Carlo codes, used as
benchmarks. The primary objective of these comparisons was to assess the fidelity
of the geometric models developed by AGORA, as well as the performance and
efficiency of its navigation algorithms within the simulation framework. By assessing
the consistency and accuracy of AGORA’s results against established codes, the
external comparison aims to identify any discrepancies, offering a focused evaluation
of potential issues.
The analysis compared the performance of TRIPOLI-5® with AGORA against
the following configurations:

• TRIPOLI-4® with ROOT

• TRIPOLI-4® with Native Navigation Engine

• OpenMC [7]

The choice of the first two configurations was driven by the need to compare the
behavior of TRIPOLI-5® with AGORA to the neutron transport Monte Carlo code
currently used at the CEA, TRIPOLI-4®, both in its version with the native navi-
gator and with the ROOT geometry engine.
As for the last configuration, the inclusion of OpenMC in our comparative analysis
was driven by its shared reliance on CSG modeling principles with AGORA.
OpenMC, an open-source Monte Carlo code developed by the Computational Reac-
tor Physics Group at the Massachusetts Institute of Technology, is widely recognized
for its reliability and accuracy in transport simulations. Its use of CSG principles
provides a robust foundation for benchmarking AGORA’s geometric modeling and
navigation performance. This alignment makes OpenMC a logical and valuable in-
clusion in our comparative analysis.

3.3 Verification Techniques

To enable external comparisons and ensure internal consistency, we developed a
suite of Python [8] based verification tools. Python was chosen for its flexibility,
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extensive library ecosystem, and seamless integration with the application program-
ming interfaces (APIs) of the Monte Carlo codes and GNEs analyzed in this study.
These tools are designed as a series of interconnected scripts executed sequentially,
where the output of one serves as the input for the next. This modular architecture
facilitates progressive refinement and allows for additional diagnostic checks when-
ever necessary, ensuring a systematic and thorough verification process.
The verification framework is built to assess two critical aspects of the geometry
engine’s functionality: its ability to accurately identify materials within the geo-
metric domain and its capability to track particle trajectories with precision. These
objectives are addressed through two complementary methodologies:

Particle Location Verification

This method, developed specifically to address the question ”In which composition
does the particle lie?”, involves generating random discrete points within the geo-
metric domain. The geometry engine is tasked with identifying the material at each
point, and the results are compared to expected outcomes. This method focuses
solely on assessing material information at individual locations and does not require
particle tracking.

Particle Tracking Verification

The second method is designed to address the questions ”What is the distance to the
next geometrical boundary?” and ”What material will the particle encounter next?”.
In this approach, random segments are traced through the geometry model under
study. Each segment is characterized by a starting point, direction, and length.
By analyzing the paths of these segments and their interactions with the geometric
boundaries, we aim to ensure that material transitions are accurately associated to
each point along the segment’s path.

3.4 Selected reactor models

The verification techniques were initially conducted specifically on simple geometries
in order to refine the developed tools. Having achieved a sufficiently mature level
with these tools, we proceeded to more complex geometry models.
These reactor models were selected to provide a thorough and comprehensive evalu-
ation of the geometry engine’s capability to handle a wide range of reactor configura-
tions. From the earliest historical designs to the most complex and modern reactor
systems, these models encompass a variety of reactor types and complexities. The
choice of these particular models is intentional, as they represent key benchmarks
widely used in the reactor physics community. The reactors selected for this study
are as follows:

• Chicago Pile 1 (CP-1) [9]: The first nuclear reactor, built in 1942, CP-1 was
a graphite-moderated, uranium-fueled experimental reactor. This extremely
simplified model serves as an historical benchmark for nuclear reactor physics.
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• Hoogenboom-Martin Benchmark [10]: A hypothetical large pressurized
water reactor core, designed as a test case for large-scale reactor simulations.
Its complex geometry offers a challenging scenario for the verification of ge-
ometry engines.

• Special Power Excursion Reactor Test III (SPERT-III) [11]: A com-
pact pressurized water research reactor, used to study power excursions. The
SPERT-III model is notable for its intricate geometry and is often used in
nuclear reactor physics studies.

While a detailed description of these reactors configurations may be unnecessary
for the scope of this thesis, it is important to highlight the aspects pertinent to
the following discussion. In particular, Table 3.1 provides a detailed breakdown
of the AGORA geometry models used for these reactors. The table outlines key
characteristics of each configuration, including the number of surfaces, the number
of volumes (both simple and composite) the number of universes and the number of
lattices.
These parameters reflect the complexity of the geometric representation and the
structure of the selected reactor models, offering valuable insights into the challenges
posed by each case.
Moreover, the following figures illustrate the radial and axial cross-sections of these
geometric models in AGORA, visualized using the T4G tool, in their constituent
volumes decomposition mode.

Geometry Model Nsurf Nv Nu Nl

Chicago Pile 1 20 11 5 0

Hoogenboom-Martin 23 30 9 4

SPERT-III 210 227 64 16

Table 3.1: Features of the AGORA geometry models for the selected reactors: num-
ber of surfaces (Nsurf), number of volumes (Nv), number of universes (Nu), and
number of lattices (Nl) in the different configurations.
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Figure 3.2: Hoogenboom-Martin Benchmark: Axial section of the AGORA model
trough the T4G visualization tool.

Figure 3.3: Hoogenboom-Martin Benchmark: Radial section of the AGORA model
trough the T4G visualization tool.
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Figure 3.4: SPERT-III: Axial section of the AGORA model trough the T4G visual-
ization tool.

Figure 3.5: SPERT-III: Radial section of the AGORA model trough the T4G visu-
alization tool.
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Particle Location Verification
Through Points Analysis

The first phase of the verification process of the new geometry navigator engine
AGORA focuses on particle localization. Specifically, we have developed a compre-
hensive procedure, along with an associated tool, designed to prove the ability of
AGORA in answering the first fundamental question:

In which material composition does the particle reside?

This tool is composed by interconnected Python scripts, executed sequentially, where
the output of one script serves as the input for the next one. The modular approach
enhances the tool’s flexibility by enabling progressive refinement and additional di-
agnostic checks if needed.
The procedure begins with the generation of a set of random points uniformly gener-
ated within a user-defined bounding box, encompassing the geometry model under
investigation.
These points form the foundation for querying the geometry navigation engines of
the Monte Carlo codes, which are individually interrogated to identify the material
composition associated with each location. Each point is processed independently,
with dedicated scripts interacting directly with the navigation engines to retrieve
the material corresponding at each location.
The results obtained from AGORA are then compared with those generated by the
other geometry navigator engines used as benchmark. This comparison adheres to
the principle of equivalence, wherein AGORA is expected to produce results equiv-
alent with those produced by the other engines. If discrepancies are identified, the
developed tool is able to isolate and export the specific points and the correspond-
ing materials where deviations occur, enabling targeted analysis and facilitating the
resolution of potential issues.
To ensure consistency and interoperability, the tool uses JSON [12] files as a stan-
dardized input and output format. This file format was specifically chosen due to its
readable and interpretable structure, making it accessible for manual inspection and
debugging when necessary. Moreover, given the nature of the data (lists of points,
materials, and mappings) the JSON format hierarchical organization proved to be
a natural and practical choice for representing such information. Its widespread

33



CHAPTER 4.

support across programming environments further enhances its utility, facilitating
seamless integration with the developed Python tool and the other software compo-
nents used in this study.
The workflow of the procedure is structured as follows:

1. Point Generation: A set of random points is generated within the geometry
model under investigation, ensuring uniform distribution across the defined
domain. This step provides comprehensive coverage of the geometry model,
enabling a robust comparison.

2. Navigator Querying: The generated points are converted into formats com-
patible with each geometry navigator, the navigator engine is queried using
the random points to retrieve the material information at the specified random
locations.

3. Material Comparison: The retrieved material data is systematically com-
pared across AGORA and the other navigators. Any inconsistencies, if present,
are flagged for closer examination, highlighting potential issues in material
identification or particle localization.

4. Boundary Proximity Test: Points flagged with inconsistencies undergo
further analysis in AGORA using a script to identify boundary proximity,
directional material variations, and potential ambiguities, refining the accuracy
of the comparison.

Incorporating OpenMC into this comparative framework required a slight modifica-
tion to the methodology, as its geometry navigator engine cannot be queried directly
without altering the source code. This adaptation, which is explained in detail later
in this chapter, ensures seamless integration with the developed tool while main-
taining the same methodological rigor. In Figure 4.1, a schematic description of the
procedure is presented.
The following sections provide a detailed description of each component of the par-
ticle location verification tool, accompanied by results demonstrating its application
to the test geometry models outlined in 3.4.
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Figure 4.1: Schematic description of the particle location verification tool.
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4.1 Random Coordinates Generator

The random coordinates generator script is the first element of the verification frame-
work, designed to allow material query analyses within a three-dimensional space.
Its role is to generate a set of random points uniformly distributed within a user
specified volume. These points act as probes, enabling the interrogation of geometry
navigator engines involved in this study and the evaluation of the material identifi-
cation capabilities of AGORA.
The script ensures comprehensive spatial coverage by using an uniform probability
density function for coordinates generation, meaning every location within the user
defined bounds has an equal likelihood of being sampled. This unbiased distribution
is critical for analyzing geometries as it ensures that no region of the model is over
or under represented.

Inputs

The script requires the following inputs to function:

• Space boundaries: Minimum and maximum coordinates (x, y, z) of the 3D
space.

• Number of points: The desired quantity of random points to be generated.

Output

Upon execution, the following output is generated:

• Space coordinates: A list (.json) of randomly generated coordinates in
the defined 3D space.

The script operates by accepting user-defined inputs that specify the minimum and
maximum coordinates of the three-dimensional space, effectively defining the box
that encloses the geometry model under investigation. Additionally, the user must
provide the desired number of random points to be generated uniformly in the do-
main.
Each coordinate is sampled from a uniform distribution across the specified range.
This means that each value for x, y, and z has an equal probability of being chosen
within the user-defined bounds.
For each coordinate a random value is drawn from the uniform distribution U(cmin, cmax),
where the probability density function is defined as:

f(ξ) =

{
1

cmax−cmin
if cmin ≤ ξ ≤ cmax

0 otherwise

This process guarantees that the resulting dataset of points is evenly distributed
throughout the space, providing a robust foundation for subsequent material anal-
yses.
Once the points are generated, they are saved in a JSON file. This output file con-
tains the generated points as a list of coordinates, which can then be directly used
as input for subsequent material query scripts.
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4.2 Geometry Query Script for AGORA

The geometry query script for AGORA is a crucial element of the verification frame-
work. It is designed to analyze geometries by identifying the materials present
at each randomly generated point within the geometry model under examination.
The script operates by querying AGORA to navigate the geometry model using
the points generated by the random coordinates generator script. For each point,
AGORA identifies the material at that location, enabling detailed analysis of the
material distribution within the geometry model.

Inputs

The script requires the following inputs to function:

• Geometry file: The AGORA file (.agora) containing the geometry model
to be analyzed.

• Random points file: The JSON file containing the previously generated ran-
dom points.

Output

Upon execution, the following output is generated:

• Materials list for coordinates: A list (.json) of materials encountered at
each random point in the AGORA geometry.

The script begins by loading the random points from the JSON file together with
the AGORA geometry file (.agora). The AGORA geometry navigator, which is
responsible for moving through the model and identifying the material at each spec-
ified location, is then initialized. To guide the navigation, a direction vector is
initialized too, steering the navigator along the geometry.
The core of the script involves iterating through each random point. For each point,
the navigator is re-initialized at the new point’s coordinates and in the specified
direction. The navigator queries the geometry model and identifies the material
present at each point, the process is repeated for all the coordinates present in the
JSON list.
Once all the coordinates have been processed, the material data is saved into a new
JSON file containing a list of the materials encountered at each random point. This
output format ensures that the data is stored in a standardized manner, making it
easier to integrate with other scripts and tools within this verification framework.

4.3 Geometry Query Scripts for ROOT and TRIPOLI-

4®

The geometry query scripts for ROOT and TRIPOLI-4® are integral components
of the verification framework, designed to analyze geometry models defined in these
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respective formats by identifying the materials encountered at each randomly gen-
erated point within the model under study.
These scripts broaden the verification framework by enabling material identification
across different geometry formats, allowing them to serve as benchmarks for a direct
comparison with the material mapping provided by AGORA.

Inputs

The scripts require the following inputs to function:

• Geometry file: The file containing the geometry model to be analyzed.
For ROOT, this is a (.root) file, while for TRIPOLI-4® this is a (.t4) file.

• Random points file: The JSON file containing the previously uniformly dis-
tributed points.

Output

Upon execution, each script produces its respective output, namely:

• A JSON file containing a list of materials encountered at each random point in
the ROOT geometry.

• A JSON file containing a list of materials encountered at each random point in
the TRIPOLI-4® geometry.

ROOT Geometry Script

The ROOT geometry script begins by importing the necessary libraries, including the
ROOT navigator for handling the geometry file and the required modules for numerical
operations and data processing. The user provides the .root file via the command
line, which is loaded into ROOT’s TGeoManager class. This class is responsible for
managing and navigating the geometry, accessing volumes, shapes, and materials
defined within the model. The script then loads the JSON file containing the list
of random points and iterates over them. For each point, the InitTrack method
is invoked, initializing the geometry navigator at the specified coordinates with a
defined direction vector. This method allows the ROOT navigator to identify the
material at the precise location by directly querying the geometry model. Through-
out execution, the script provides periodic updates to inform users of its progress.
After all points have been processed, the material information encountered at each
coordinate is saved into a new JSON file for subsequent analysis.

TRIPOLI-4® Native Script

The TRIPOLI-4® script is designed to process the random points, utilizing the na-
tive geometry navigator of the code to accurately allocate them within the geometry
model under investigation. The process begins by reading the random points from
the JSON file and converting them into a (.text) format, which is the required input
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format for the TRIPOLI-4® native navigator.
The script constructs and runs a command that processes the generated points using
the .t4 file containing the geometry model under analysis. This command triggers
the TRIPOLI-4® native navigator, which performs the material identification at
each point present in the list and generates an output (.text) file containing the
results. The script then process this (.text) file, extracting the material names in
association with the corresponding random points.
Finally, the material information encountered at each coordinate is saved into a JSON
file, ensuring that the output format is consistent with those produced by the other
scripts in this verification framework.

4.4 Integration of OpenMC into the Tool

Due to the limitations of directly querying OpenMC at random points, for this part
of the tool we employed an alternative method based on particle tracks recorded
during simulations. This method aligns with the structure and purpose of other
scripts in the framework while adapting to the specifics of OpenMC.

Procedure

The process begins by running an OpenMC simulation configured to generate the
necessary data for analysis. The simulation requires three key input files:

• geometry.xml: Defines the geometry model of the simulation domain in OpenMC
using the CSG paradigm. This file outlines the spatial arrangement of the re-
gions within the geometry model representing them as combinations of simple
geometric shapes.

• materials.xml: Contains detailed information about the material composi-
tions used in the simulation. It associates each material with specific indices
(IDs), allowing the code to map materials to the correct regions in the geom-
etry. This file includes data on material properties such as densities, atomic
compositions, and other relevant physical characteristics necessary for the sim-
ulation.

• settings.xml: Configures the simulation parameters, defining the mode of
operation (e.g., fixed-source or criticality), the spatial and energy characteris-
tics of the source, and other run settings like the number of histories, batches,
and simulated particles. This file is essential for tailoring simulations to spe-
cific needs.

The simulation is set to fixed-source mode with a spatially sampled source located
within a user defined box. The number of histories and track files is imposed to
match the target number of random test points, ensuring sufficient data for analy-
sis. The simulation output is stored in the tracks.h5 file, which contains detailed
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records of particle trajectories, including their positions, directions, energies, and
the materials encountered during interactions.

Geometry Query Script for OpenMC

The integration of OpenMC into the verification framework required a slight mod-
ification to the existing scheme. A dedicated script processes the collision points
recorded in the tracks.h5 file, using them as sample points akin to those generated
by a random coordinates generator. These collision points represent the locations
where particles interact with the geometry and serve as a basis for material mapping
and comparison.

Inputs

The script requires the following inputs to function:

• Tracks file: The tracks.h5 file generated by an OpenMC simulation, con-
taining data about particle histories and interactions.

• Materials file: The materials.xml file, which provides a mapping between
numerical material IDs and their names.

Outputs

Upon execution, the following outputs are generated:

• Particle positions: A JSON file containing the coordinates (x, y, z) of the
collision points extracted from the tracks.h5 file.

• Materials list for coordinates: A JSON file listing the names of the materials
encountered at the extracted coordinates, translated from their numerical IDs.

The script begins by parsing the tracks.h5 file to extract particle positions and
their associated material IDs. For each particle position, the script translates the
material IDs using the materials.xml file, mapping them to meaningful material
names. This mapping ensures consistency with other datasets and facilitates direct
comparison with material mappings from AGORA and OpenMC geometry models.
Once the execution is complete, the script produces two output files, both in JSON

format. The first output contains the particle positions, which serve as input for
querying other geometry navigator engines in the framework, effectively replacing
the random point generator script used in this tool. The second output file stores
the material information encountered at each coordinate in the OpenMC model,
ensuring that the data is formatted consistently with the outputs from other scripts
within the verification framework.
This approach ensures seamless integration of OpenMC into the broader verifica-
tion framework while maintaining compatibility with the other procedures. The
modifications to the previous scheme are outlined schematically in Figure 4.2.
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Figure 4.2: Integration of OpenMC in the particle location verification tool.
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4.5 Materials Comparator Script

The materials comparator script is a core component of the particle localization
verification framework. It is designed to verify the consistency of material assign-
ments by comparing material specifications from two separate datasets generated
by different software systems.

Inputs

The script requires the following inputs:

• Coordinate file: A JSON file containing the coordinates of the points to
be analyzed (e.g., generated by a random point generator or extracted from
Monte Carlo simulation outputs).

• Material files: Two JSON files representing the material assignments output
from two different software systems to be compared.

Output

Upon execution, the script produces:

• Differences file: A JSON file documenting the materials identified at the
discrepant points in both datasets, including numerical indices for easier cross-
referencing.

The procedure begins with the script loading the necessary input files, including the
coordinate file and two material files from separate software systems. These files are
read and parsed into structured dictionaries to facilitate efficient analysis. This ini-
tial step ensures the data is accessible and prepared for the subsequent comparison.
To streamline the comparison process, the script constructs a dictionary that maps
material names to numerical indices for both datasets. This mapping is crucial as it
ensures uniformity and simplifies the task of identifying discrepancies between the
two datasets. By converting material names into consistent numerical representa-
tions, the script avoids potential complications arising from variations in naming
conventions.
The heart of the script lies in its comparison loop. For each coordinate in the
dataset, the script examines the material assigned to that point in both files. If the
materials match, the point is marked as consistent, confirming that both systems
assign the same material to that location. However, when a mismatch occurs, the
script records the coordinate and the differing material indices from both datasets.
This approach provides a precise account of any inconsistencies, allowing for tar-
geted analysis.
After completing the comparison, points where discrepancies are detected are stored
in a dedicated JSON file, capturing their coordinates for further examination. A de-
tailed log of the materials assigned by each dataset at these points is saved, offering
a comprehensive view of the inconsistencies ensuring a prompt detection of mis-
matches for further investigation.
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Finally, the script concludes by summarizing its analysis. It reports the total num-
ber of points processed, the number of discrepancies found, and their percentage
relative to the entire dataset.

4.6 Boundary Proximity Test

An additional test has been implemented in AGORA to identify points located near
the boundaries between two bodies within the geometry. This boundary proximity
test is designed to evaluate flagged points identified by the Materials Comparator,
where mismatches occur between datasets. When a point lies very close to a bound-
ary or directly on a surface separating two materials, different geometry navigation
engines may assign distinct materials to the same point depending on their initial-
ization direction. This behavior stems from the inherent sensitivity of geometry
engines to positional nuances at boundaries.
By carefully assessing such cases, the test distinguishes true mismatches from ar-
tifacts caused by boundary effects, ensuring a more precise and reliable particle
location verification of the geometry model under examination.

Inputs

The script requires the following inputs:

• Points file: A JSON file containing the coordinates of points identified by the
material comparator where discrepancies in material assignments have been
detected.

• Geometry file: An AGORA file (.agora) containing the geometry data to be
analyzed for each flagged point.

Outputs

Upon execution, the script generates the following outputs:

• Updated Points File: A JSON file containing the coordinates (x, y, z) of
the points with updated data, including the minimum distance to the nearest
boundary and the corresponding direction for each valid point.

• Statistics: Summary statistics (minimum, maximum, median, and mean dis-
tances) of the distances to the nearest boundary for valid points.

The boundary proximity test script begins by loading the necessary input files: the
points file, which contains the flagged points to be analyzed, and the geometry file
(e.g., .agora), which describes the geometry model. These files are parsed into
structured dictionaries to enable efficient processing and analysis.
Once the input data are prepared, the AGORA geometry navigator is initialized.
This navigator is essential for querying the geometry model and evaluating the
material composition at each flagged point. The test is designed to examine each
point in six different directions, represented by the vector Ω = (Ωx,Ωy,Ωz), where
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each component corresponds to the directional components along the x, y, and z
axes. The analyzed directions are:

Ω = (+1, 0, 0) Ω = (−1, 0, 0)

Ω = (0,+1, 0) Ω = (0,−1, 0)

Ω = (0, 0,+1) Ω = (0, 0,−1)

For each flagged point, the test initializes the navigator in the six directions query-
ing the material composition at the coordinates location. If the material assignment
differs depending on the direction, this suggests that the point lies on, or very close
to, the boundary between two volumes. Such points are flagged as potentially un-
reliable, as different geometry navigation engines may assign differing materials to
the same point based on their directional initialization. These points are excluded
from further comparisons to avoid introducing artifacts into the results.
Conversely, if the material assignment remains consistent across all directions, the
point is deemed valid for further analysis. For such points, the test calculates the
minimum distance to the nearest boundary and records the direction in which this
distance is measured. This ensures that only points sufficiently far from any bound-
aries in the geometry model are considered valid for further investigation.
The test concludes by storing the results for valid points. Subsequently, summary
statistics are generated to provide insights into the maximum, minimum, mean,
and median distances calculated for these points in all examined directions. This
detailed examination supports a robust evaluation of flagged mismatches, distin-
guishing genuine discrepancies from artifacts caused by boundary effects.

4.7 Applications and Results

Based on the tool and methodology developed, we conducted a comprehensive series
of verification tests employing the combinations of simulation codes and geometry
engines described in 3. These tests were designed to evaluate the accuracy and
robustness of AGORA in particle localization through the selected reactor configu-
rations in 3.4.
The results of our verification tests are summarized in Table 4.1 forNp = 106 random
test points uniformly sampled across the entire geometry model under investigation.

For Chicago Pile 1 case, perfect agreement was observed across all tested geome-
try engines and codes, with no discrepancies recorded for the sampled points.

Similarly, in the Hoogenboom-Martin case, AGORA demonstrated excellent accu-
racy, achieving 0% mismatches for all the configurations of codes for which the
geometric model was available.

A slight discrepancy was noted in the SPERT-III case, where the ROOT models
for this configuration exhibited a mismatch rate of 0.0175% compared to AGORA,
while a perfect agreement was observed with the OpenMC model.
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Verification Case TRIPOLI-4® TRIPOLI-4® TRIPOLI-5® OpenMC

Native ROOT ROOT CSG

Chicago Pile 1 0% 0% 0% 0%

Hoogenboom-Martin - 0% 0% 0%

SPERT-III - 0.0175% 0.0175% 0%

Table 4.1: Summary of the results obtained for the verification on particle location
for Np = 106 random points: failing rate between TRIPOLI-5® with AGORA versus
other codes and engines.

In general, the results demonstrate excellent agreement between AGORA and the
tested simulation codes across all configurations. The isolated discrepancies ob-
served in the SPERT-III model underscore the importance of cross verification with
diverse geometry engines to identify and address minor variations.
For this configuration, the additional diagnostic test was conducted to verify whether
changes in direction influenced material composition at any given point. No faulty
points were detected during this test, confirming the absence of erroneous points and
excluding proximity to boundaries or precision issues as the cause of the observed
mismatches between the AGORA and ROOT-based geometries.
Preliminary investigations suggest that these differences stem from subtle variations
in geometry definitions, particularly in the presence of overlapping volumes within
the geometric model, which obscure the clarity of navigation as elaborated in 2.3.8.
Nonetheless, preliminary tests which will be presented later in Chapter 6, revealed
that the impact of these mismatches on the physical quantities calculated during
simulations is almost negligible.
These findings highlight the robustness and precision of the developed particle lo-
calization verification process. They also demonstrate the potential for further re-
finement in geometry modeling to enhance compatibility across different simulation
tools.
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Chapter 5

Particle Tracking Verification
Through Chord Analysis

The second phase of the verification process for the AGORA geometry navigator en-
gine shifts from the point-based material identification approach to a more advanced
methodology centered on segment-based analysis and the corresponding decompo-
sition into chords.
Specifically, we have developed a comprehensive procedure, along with the associ-
ated tool, designed to tackle the two remaining fundamental questions:

What is the distance to the next geometrical boundary?

Which is the next volume that the particle will traverse?

To verify AGORA’s correct response to these questions we developed a robust tool,
comprising a suite of interconnected Python scripts, that performs a systematic anal-
ysis of randomly generated segments within a given geometry model. This analysis
provides a comprehensive means to investigate geometrical models aiming to verify
particle tracking. As in the case of the particle localization tool, Python was chosen
for this task for the same reasons outlined in 3.3.
The central concept of this approach is the analysis of ”chords”, which are defined as
the portions of a segment that lie, entirely or not, within a specific volume and the
associated material composition. To clarify, when a segment crosses multiple volume
boundaries, it is divided into distinct chords, each corresponding to the section of
the segment contained within a single volume. Figure 5.1 illustrates this concept
using a geometric model generated with AGORA, displayed through its decompo-
sition into constituent volumes via the T4G visualization tool. To each volume
is assigned a color that corresponds to the material it is composed of, making it
easy to distinguish between different material compositions within the model. The
red segments, which are not part of the original geometric model, have been added
to visually clarify the process of chord decomposition in a clear and intuitive way.
The segments S1, S2 and S3 traverse the geometric model and cross the boundaries
between adjacent volumes. At each boundary intersection, these segments are sub-
divided into smaller portions, the chords. Each chord is entirely contained within a
single material and represents the section of the segment confined to an individual
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Figure 5.1: Representation of segment decomposition into their respective chords:
AGORA simple geometry model trough the T4G visualization tool.

volume. The black dots in the figure indicate the intersection points where the seg-
ments cross the volume boundaries, defining the limits of the corresponding chords.
Arrows at the segments’ ends are used to highlight their direction as they cross the
geometry model boundaries.
This chord-based methodology enhances the information gained from the verifica-
tion of particle locations. While the point-based approach identifies discrepancies at
isolated positions, it does not account for particle motion and, therefore, cannot fully
verify the correctness of the particle tracking process. By following the segments
and analyzing their decomposition through the geometric model, the chord-based
approach provides a direct means of verifying particle tracking, offering a more ro-
bust and detailed assessment of the geometry navigator engine’s accuracy in the
identification of materials composition.
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The developed tool is designed to facilitate the comparison of the same codes and
geometry navigators introduced in 3 and, also in this case, its generic procedure has
been modified to include OpenMC in the analysis.

The workflow of the procedure is structured as follows:

1. Random Segment Generation: Random segments are generated uniformly
within the geometries of interest. These segments ensure thorough sampling
across the entire domain.

2. Navigator Querying: After the segment data is converted into a format com-
patible with the geometry navigators under analysis, each segment is queried
against the navigators to record the materials and distances associated with
the chords comprising the segment.

3. Chord Merging: Consecutive chords that share the same material are ag-
gregated to account for differences in how geometry engines subdivide the
geometrical domain under investigation.

4. Chord Comparison: The aggregated chord data is compared across the dif-
ferent navigators and AGORA to assess consistency in material identification
and distances traveled within each material.

The primary goal of this procedure is to ensure that the total distance traveled within
each material for each chord is consistent in all geometry engines and AGORA. This
demonstrates the geometry navigator engine module ability to accurately identify
materials during particle tracking, verifying its reliability regardless of the geomet-
ric partitioning strategies employed by the others Monte Carlo codes and navigators
used for the comparison. Figure 5.2 shows a schematic description of the procedure,
in the following sections a detailed descriptions of each component of the parti-
cle tracking verification tool is provided, accompanied by results demonstrating its
application to the test geometry models detailed in 3.4.
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Figure 5.2: Schematic description of the particle tracking verification tool.
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5.1. RANDOM SEGMENTS GENERATOR

5.1 Random Segments Generator

The random segments generator script is the first starting component of the particle
tracking verification tool, designed to extend material query analyses from random
points to random geometric segments within a three-dimensional space.
Its purpose is to generate a set of random segments, each defined by a starting point,
a direction, and a length, within user-specified boundaries. These segments act as
probes, enabling the interrogation of the model under investigation by the respective
geometry navigator engines.
The script ensures robust spatial coverage and flexibility by generating segments
within user defined boundaries, allowing for a targeted or global exploration of
the geometry under investigation. This capability is crucial because it enables the
study of limited portions of the geometry model in cases where inconsistencies arise,
focusing the analysis solely on the problematic regions of the model.

Inputs

The script requires the following inputs to function:

• Space boundaries: Minimum and maximum coordinates (x, y, z) defining
the 3D space under investigation.

• Number of segments: The desired quantity of random segments to be gen-
erated.

• Segment length range: The maximum allowable length of the segments.

Output

Upon execution, the following output is generated:

• Segment data: A list (.json) of segments, each defined by a starting point,
direction and corresponding length.

The script operates by first generating the starting point of each segment. The
starting points are uniformly distributed within the user-defined space boundaries,
ensuring that every region within the specified box has an equal likelihood of being
sampled. This uniform distribution guarantees thorough coverage of the geometry
under investigation.
Next, the script determines the direction of each segment.
This is achieved by generating a random vector Ω = (Ωx,Ωy,Ωz), with each compo-
nent independently sampled within the range [-1, 1]. This ensures that the directions
are uniformly distributed across all three dimensions, eliminating any preferential
orientation in space. The vector is then normalized, maintaining a uniform distri-
bution of directions, which results in a unit direction vector for the segment.
The length of each segment is subsequently assigned by sampling randomly within
the user-defined maximum, as the minimum length condition is set to be greater
than a specified threshold value. This ensures that only meaningful segments are
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considered, enhancing the quality of the analysis.
Finally, the script compiles each segment, represented by its starting point, direction
and length, into a structured dataset. The output is stored in a JSON file, ensur-
ing compatibility with the following components of the particle tracking verification
tool.

5.2 Geometry Query Script for Segments in AGORA

The geometry query script for segments in AGORA is a fundamental component of
the tool, enabling a comprehensive analysis of material composition within a spec-
ified AGORA geometry. It serves as a critical test for evaluating the functionality
of the geometry navigator module, specifically its operability in particle tracking
mode. Using randomly generated segments, the script assesses the navigator’s abil-
ity to manage particle tracking and accurately identify material transitions within
the geometry model.

Inputs

The script requires the following inputs to function:

• Geometry file: The AGORA file (.agora) containing the geometry model
to be analyzed.

• Segments file: The JSON file containing the previously generated random
segments.

Output

Upon execution, the following output is generated:

• Chord data: A JSON file documenting all the segments decomposed into
chords, where each chord represents a portion of a segment that traverses
a specific material with a corresponding distance. Each chord includes the
material encountered and the distance traveled within that material.

The script begins by loading the AGORA geometry file (.agora) and the previ-
ously generated random segments from the JSON file. The geometry file is then
processed by the AGORA geometry navigator module, which enables precise navi-
gation through the model.
For each segment, the process starts by initializing the navigator at the segment’s
starting point. The navigator module uses the direction and length specified in the
JSON file to trace the segment’s path. If the starting point lies outside the geome-
try, the navigator proceeds along the segment until it either enters the geometry or
reaches the segment’s end, recording the traveled distance throughout.
A specific function of AGORA is used to determine how far the navigator can move
within a current volume before encountering the next geometrical boundary. This
function calculates the distance traveled before transitioning into a new volume,
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TRIPOLI-4®

updating the navigator’s state as the segment crosses each boundary. This process
allows the script to decompose the segment into individual chords, each correspond-
ing to a specific material and the associated volume transition.
If the segment begins inside the geometry, the script records the initial material and
tracks the distances traveled within that volume until either the segment exits the
geometry or reaches its full length.
Additionally, the script features a functionality to apply a translation vector to the
segments before querying the navigator. This capability accommodates comparisons
of the same geometry model represented by two different geometry navigator engines,
even in cases where differences in the coordinate reference systems are present.
After processing all segments, the script compiles the results into a JSON file. This
output includes a detailed breakdown of the materials encountered and the cor-
responding distances traveled for each chord into which the segments have been
decomposed. The structured data format ensures compatibility with other compo-
nents of the tool, supporting further analyses and comparison of results.

5.3 Geometry Query Scripts for Segments in ROOT

and TRIPOLI-4®

The geometry query scripts for segments in ROOT and TRIPOLI-4® are designed
to analyze geometry models defined in the respective formats by tracing random seg-
ments through the geometry and documenting the materials encountered along each
segment’s path. By supporting different geometry formats, these scripts provide a
versatile solution for analyzing material distribution and segment decomposition in
to chords, enabling comparison in particle tracking across different simulation plat-
forms. These two distinct components of the tool enable direct comparisons between
the material mappings provided by AGORA geometries and those derived from the
respective navigators, thereby enhancing the overall robustness of the particle track-
ing verification framework.

Inputs

Each script require the following inputs to function:

• Geometry file: The file containing the geometry model to be analyzed. For
ROOT, this is a (.root) file while for TRIPOLI-4® this is a (.t4) file.

• Segments file: The JSON file containing the previously generated random
segments, with each segment defined by its starting position, direction, and
length.

Output

Upon execution, each script produces a structured output file:
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• A JSON file documenting each segment’s decomposition into chords for each
code, including distances traveled within each chord and the materials encoun-
tered.

ROOT Geometry Script

The ROOT geometry script is designed to analyze material distribution within a
geometry model defined in ROOT format. The user provides the .root geometry
file and a JSON file listing the random segments. The script loads the ROOT geome-
try using the TGeoManager class and initializes the geometry navigator through its
built-in navigation methods.
For each segment, the script sets the initial position and direction using the InitTrack
method and navigates along the segment path. A specific method is used to deter-
mine how far the navigator can move within a volume before encountering a bound-
ary, enabling the calculation of distances and tracking of material transitions as the
segment progresses. The script records the distances traveled within each material
until the segment exits the geometry or reaches its end.
Upon processing all segments, the script compiles the results into a JSON file, doc-
umenting each segment’s journey through the geometry and its decomposition into
chords. For each chord, the material encountered and the distance traveled, corre-
sponding to the chord length, are recorded.

TRIPOLI-4® Geometry Script

The TRIPOLI-4® geometry script is designed to analyze the material distribution
along the paths of randomly generated segments using the native geometry naviga-
tor of the TRIPOLI-4® code.
The user provides the .t4 geometry file containing the model to be analyzed and
the JSON file containing the list of random segments to be processed. The script first
reads the JSON file, which contains the segment data, and converts this information
into a format that is compatible with the TRIPOLI-4® native geometry navigator.
This formatted data is written into an intermediate .text file, which is then passed
along with the .t4 geometry file to a specific TRIPOLI-4® processing tool.
The TRIPOLI-4® tool navigates through the segment path and performs the de-
composition of the segments, returning a processed .text file with detailed chord
data. The script reads this file to extract information about each chord, including
the distances traveled and the materials encountered along the path.
The extracted data is then compiled into a structured JSON file consistently with
the output of the other script in this verification tool.

5.4 Integration of OpenMC into the Tool

The procedure for integrating OpenMC into the geometry verification framework
follows the same methodology outlined in the previous chapter, where OpenMC’s
simulation outputs are used to emulate the output produced by the random coordi-
nates generator script.
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Also in this case, the integration of OpenMC into the particle tracking verifica-
tion leverages the track data recorded during a simulation, allowing inclusion in the
analysis without altering the source code.

Procedure

The integration process begins with configuring an OpenMC simulation to generate
particle track data suitable for analysis. For this purpose, the simulation uses the
same setup as detailed in 4.4, which includes three primary input files:

• geometry.xml

• materials.xml

• settings.xml

For further details on the configuration process, please refer to the previous chap-
ter. However, in addition to the standard configuration already described, an op-
tional configuration is available that can provide valuable support for this analysis.
Specifically, this configuration allows for modifications to the materials.xml file,
enabling the replacement of the standard material compositions with a ”transparent”
medium, such as Helium-4 at an extremely low density. By using this configuration,
particles are able to travel along straight-line trajectories throughout the entire ge-
ometry, without experiencing any scattering or attenuation due to interactions with
the materials. This ensures that the direction of the particles remains unchanged
throughout their path, effectively emulating straight segments.
The output of the simulation is a tracks.h5 file containing detailed records of par-
ticle histories, including their positions, directions, and material interactions. These
data are processed for two main reasons: on one hand, to emulate the output of
the random segments generator script, allowing querying of AGORA through these
segments; on the other hand, to record the materials encountered during traversal
by the OpenMC navigator, enabling a direct comparison with the material mapping
provided by AGORA for the same geometry model.

Geometry Query Script for Segments in OpenMC

A dedicated script processes the tracks.h5 file to extract particle trajectories, seg-
menting them at points where direction changes occur. It then maps the material
interactions along each segment. These points of interaction are crucial for dividing
the paths into distinct segments and for conducting the following detailed analysis.

Inputs

The script requires:

• Tracks file: The tracks.h5 file generated by OpenMC, containing detailed
particle trajectory data.

• Materials file: The materials.xml file, which serve to map material IDs to
their corresponding names.
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Outputs

The outputs included are:

• Segment paths file: A JSON file documenting the start points, directions,
and lengths of trajectory segments. This output is analogous to the random
segment generator’s output data.

• Chords data: A JSON file listing distances traveled through each material
along the segments, enabling detailed chords comparison between OpenMC
and AGORA geometries.

The script begins by parsing the tracks.h5 file, which contains the trajectory data
generated by OpenMC simulations. Once the data is loaded, the script iterates
through the particle trajectories sequentially, processing each particle’s path to cre-
ate segments based on the direction of travel.
Initially, the direction of the particle’s movement is monitored at each interaction
point. As the particle moves through the geometry, it may change direction due to
scattering events or others interactions with materials. The script identifies when
these direction changes occur and uses them to delineate distinct segments. A new
segment begins whenever the direction of travel differs from the previous one, ensur-
ing that each segment corresponds to a straight path between two or more points.
For each segment, the script records both the starting and ending coordinate of
the trajectory. These positions are then used to calculate the Euclidean length of
the segment. The direction of movement is also stored, as it remains unchanged
throughout the segment. Once the segments are established, the next task is to
analyze the materials encountered along each segment to enable a comparison with
AGORA. The script examines each segment in detail using the distance traveled
through each material it encounters. If the particle crosses into a new material
during its path, the script records the distance traveled within material before the
transition. The material IDs encountered along the trajectory are cross-referenced
with the materials.xml file to obtain the corresponding material names, ensuring
consistency and enabling meaningful comparison.
Finally, the script generates two output in the form of JSON files, which docu-
ment the results of the analysis. The first file contains geometric details about the
segments, including their lengths and directions. This file will be used to emulate
the output of the random segment generator script for subsequent querying of the
AGORA geometry navigator module.
The second file lists the decomposition of segments into chords as ”seen” by OpenMC,
documenting the material encountered and the distance traveled within each mate-
rial for every chord. This file will be compared with the results provided by AGORA
to verify their consistency and equivalence.
Also in this case, the slight modification to the procedure enables meaningful com-
parisons and provides a comprehensive foundation for the verification of particle
tracking across different simulation platforms. The modifications to the previous
procedure are outlined schematically in Figure 5.3.
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Figure 5.3: Integration of OpenMC in the particle tracking verification tool.
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5.5 Merged Chords Script

The merged chords script its designed to process the chord data from the JSON file
generated by each geometry query script previously explained. It operates by aggre-
gating the lengths of consecutive chords that share the same material composition.
This merging process is crucial for our verification, as the primary goal is to ensure
the accurate identification of materials along each segment by AGORA, rather than
focusing on the specific geometric subdivisions made by the geometry navigators
involved in the comparison.

Input

The script requires the following input to function:

• Input JSON file: A JSON file containing detailed chord information derived
from the segment query scripts of the respective geometry navigator.

Output

Upon execution, the following output is generated:

• Merged chord data: A JSON file containing the previously defined segments,
where the distances of two or more consecutive chords within the same segment
that share the same material are aggregated into a single entry.

The script begins by loading the input JSON file, which contains a list of segments.
Each segment is characterized by an identifier, segment details, and a series of chords
that capture the distances traveled and materials encountered along the segment’s
path. The main objective of the script is to merge consecutive chords within each
segment that share the same material type. The script iterates through the list
of chords for each segment. When consecutive chords are found to have the same
material type, their distances are combined into a single entry. If a change in
material is detected, the script starts a new entry for the next material type. This
approach ensures that the material distribution along each segment is consistently
represented, rather than reflecting the volume decomposition of the geometry model.
Figures 5.4 illustrate this concept and the functionality of the script. The upper part
of the figure presents the AGORA geometric model with the segment decomposition
into chords, in the ”raw” version (i.e., before applying the merged chords script). In
this visualization, the chords are displayed without any merging, maintaining their
original separation based on the geometry model’s decomposition into volumes.
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Figure 5.4: AGORA model: the upper part shows the raw chord decomposition,
while the lower part shows the chords merged .

In the lower part, on the other hand, the same geometry model is shown with-
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out the volume decomposition, as the option to visualize the constituent volumes
has been disabled in the T4G visualization tool. Here, the materials that make up
the model are distinguished by the same set of colors, but the individual volumes’
boundaries are not shown. In the lower representation the same segments are now
divided into chords, not based on the volume and the boundaries they previously
traversed, but rather based on the material they pass through.
By aggregating contiguous chords lengths’ that encounter the same material, we
eliminate the variability introduced by different subdivision and geometry construct-
ing methods, enabling direct and meaningful comparisons between results obtained
by AGORA and the ones obtained from the other geometry navigators.
After processing all segments, the script provides statistics on the merging oper-
ation, including the number of chords before and after the process and the total
number of merges performed. The final merged data is then saved to an output
JSON file, ensuring it is ready for comparison.

5.6 Chords Comparator Script

The chords comparator script is the final component of the tool, it is designed to
compare segments and their corresponding chord decompositions across two distinct
datasets derived from their respective geometry navigators. Its primary goal is to
identify any discrepancies in the distances traveled by particles and the materials
encountered along their paths, ensuring that the datasets being compared align with
a user-defined tolerance threshold.

Inputs

The script requires the following inputs:

• Input JSON file 1: A JSON file containing the first dataset of geometric seg-
ments and their corresponding chord decompositions for the geometry under
analysis.

• Input JSON file 2: A JSON file containing the second dataset of geomet-
ric segments and their corresponding chord decompositions, derived from a
different geometry navigator.

• Relative tolerance: A numerical value (ϵ) defining the acceptable threshold
for relative differences in chord lengths between the two datasets. If the relative
difference exceeds this value, the whole segment is flagged as mismatched.

Output

Upon execution, the script produces:

• Mismatch report: A detailed output to the console, including the indices
of mismatched segments, the total number of analyzed segments, the count of
mismatches, and the percentage of errors relative to the total segments.
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• Flagged segments file: A separate JSON file containing the coordinates,
lengths, and materials of the segments flagged as mismatch for further analysis.

The procedure begins with the script loading the required input files. These include
two JSON files representing the segments data derived from the different geometry
navigator engines under comparison. Each file is parsed into structured dictionar-
ies, where each segment is defined by an identifier, starting point, direction, length,
and the series of chords into which is decomposed. Each chord is represented as a
tuple containing the material encountered and the distance traveled through that
material.
The script first maps material names in both datasets to numerical indices. This
step ensures consistency by eliminating potential issues caused by differing naming
conventions between the two navigators.
Before starting the comparison a relative tolerance (ϵ) is applied to account for slight
differences in the calculations of chord lengths between the two geometry navigators.
This tolerance ensures that only meaningful discrepancies are reported, avoiding the
detection of minor differences due to numerical precision or rounding errors criteria
of the relative code/navigator engines.
Next, the script compares the segments between the two datasets. For each segment,
it checks if the chord counts match. If there is a mismatch in the number of chords,
the segment is flagged as a mismatch. If the number of chords is the same, the
lengths of the corresponding chords are compared. Any relative difference between
the lengths that exceeds the specified tolerance threshold is flagged as a discrep-
ancy. Similarly, the materials associated with the chords are also compared and any
mismatches, if present, are recorded. Once the comparison is completed, the script
generates a detailed mismatch report in the console that includes the total number
of segments analyzed, the number of mismatched segments, and the percentage of
discrepancies.
After completing the comparison, the script stores the flagged segments in a dedi-
cated JSON file. This file includes detailed information about the mismatches, such
as the coordinates, chord lengths, and materials encountered in each dataset, pro-
viding a comprehensive overview of the discrepancies. This output facilitates further
investigation by offering a clear and organized record of the inconsistencies, ensuring
that any issues can be promptly identified and addressed.

5.7 Applications and Results

We have conducted an extensive series of verification tests using the same reactor
configurations as described in 3.4, leveraging the particle tracking verification tool
based on chord analysis. These tests were specifically designed to assess the accu-
racy and robustness of TRIPOLI-5® with AGORA in particle tracking, comparing
its performance with other Monte Carlo codes and geometry navigator engines. For
each test, the starting points of the segments were uniformly sampled across the
entire geometry, ensuring that the spatial distribution was representative of the full
model under analysis. Additionally, the segment directions were generated isotrop-
ically, resulting in a uniform angular coverage and eliminating any preferential ori-
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entation in the tested directions.
Any chords resulting from the segment decomposition with lengths below an im-
posed threshold of ∆ = 10−10 were excluded from subsequent analyses. This filter-
ing ensures that only chords of significant length are considered, avoiding potential
inaccuracies caused by numerical precision errors in very short chords. By focusing
on meaningful chord lengths, the comparison reflects the performance of the geom-
etry navigator engines in tracking only relevant particle trajectories.
The statistics of the number of chords per segment, both before and after the merg-
ing process, are summarized in Table 5.1 for the reactor configurations executed
using TRIPOLI-5® with AGORA.

Verification Case 〈Nc〉 (before merge) 〈N∗
c 〉 (after merge)

Chicago Pile 1 2.070 2.009

SPERT-III 54.513 32.086

Hoogenboom-Martin 233.000 162.327

Table 5.1: Average number of chords before merge 〈Nc〉 and after merge 〈N∗
c 〉 per

random segment using TRIPOLI-5® with AGORA for different verification cases.

These data offer insights into the segment decomposition and the merging pro-
cess highlighting the complexity of the underlying geometry model. It is evident
that, before merging, a segment is divided into a number of chords proportional to
the volume boundaries it traverses in the geometry model. After merging, however,
the same segment is divided into a number of chords proportional to the material
transitions encountered along its path. A high average number of chords per seg-
ment, both before and after merging, serves as an indicator of a particularly complex
and intricate geometry model.
The results presented in Table 5.2 offer a comprehensive comparison of the chord
length calculations performed using TRIPOLI-5® with AGORA against other Monte
Carlo codes and geometry navigator engines. Each verification case was executed us-
ing Ns = 105 random segments, allowing for a robust statistical analysis of the accu-
racy and consistency across the tested models. The failure rates between TRIPOLI-
5® with AGORA and various other codes/engines are presented, accounting for
distances excluded when they fall below the specified threshold ∆.
All comparisons were performed with a relative tolerance of ϵ = 10−10, ensuring that
even minute differences were captured during the chords lengths’ analysis.
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Verification Case TRIPOLI-4® TRIPOLI-4® TRIPOLI-5® OpenMC

Native ROOT ROOT CSG

Chicago Pile 1 0% 0% 0% 0%

Hoogenboom-Martin - 0% 0% 0%

SPERT-III - 0.326% 0.326% 0.032%

Table 5.2: Summary of the results obtained for the verification on particle tracking
for Ns = 105 random segments: failing rate between TRIPOLI-5® with AGORA
versus other codes and engines.

For the Hoogenboom-Martin and Chicago Pile 1 configurations, the results
show perfect agreement among all geometry engines and codes tested with failing
rates uniformly at 0%. This indicates that AGORA handled this configurations with
consistent precision, achieving identical chord length calculations without discrepan-
cies highlighting the capability of TRIPOLI-5® with AGORA to accurately handle
this configurations without introducing any discrepancies in the particle tracking
process.

Despite the overall agreement, the tests on chord lengths revealed certain discrepan-
cies. Specifically, an apparent and systematic difference was observed between the
AGORA model of the SPERT-III reactor when compared to the ROOT model, using
both TRIPOLI-5® and TRIPOLI-4®, with a consistent failure rate of 0.326%. This
divergence aligns with the findings based on point comparisons and discussed in 4.7,
suggesting that these discrepancies may originate from fundamental differences in
the geometric representation of the models.
Furthermore, for this verification case the tests highlighted a slight but consistent
disagreement between the AGORA and OpenMC models. Notably, this small dis-
agreement persisted even when the relative tolerance ϵ was reduced, indicating that
the observed differences are unlikely to be due to numerical noise or minor variations
in floating-point precision.
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Instead, the persistency of the mismatches, even with relatively low failure rate of
0.032%, suggest the presence of residual overlapping volumes or inconsistencies in
either one or both models, which has led us to investigate further in order to fully
understand the underlying causes.
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SPERT-III Reactor Case: A
Preliminary Validation Test Study
Using AGORA and TRIPOLI-5®

Two verification tools were developed and applied to various geometry models in
AGORA: a point location tool, which verifies whether points in the geometry are
correctly assigned to specific materials composition, and a particle tracking tool,
which aims to ensure accurate tracking of particle trajectories through the geome-
try model under study. Both tools have demonstrated robust performance across a
variety of cases, except for the SPERT-III reactor model, where systematic discrep-
ancies were observed between the AGORA when compared to the ROOT model,
using both TRIPOLI-5® and TRIPOLI-4®. These discrepancies, already discussed
in previous sections, raised questions about their potential impact on simulation
results and emphasized the need for further investigation.
This effort builds upon a study titled ”Benchmarking of the SPERT-III E-core ex-
periment with the Monte Carlo codes TRIPOLI-4®, TRIPOLI-5® and OpenMC”
[13], which involved a joint effort between CEA Paris-Saclay and the Nuclear Re-
search Center Negev (NRCN, Israel). In this work, we contributed by providing the
geometric model of the SPERT-III reactor in AGORA for use with TRIPOLI-5®.
The SPERT III E-core experiment, conducted in the 1960s, remains a valuable
benchmark for validating neutronics and thermal–hydraulics codes under both steady-
state and transient conditions. In this study, the computational results obtained
with TRIPOLI-5® in combination with the AGORA geometry engine were com-
pared to those produced by other Monte Carlo codes, such as TRIPOLI-4® and
OpenMC, as well as to experimental data.
The analysis focused on key reactor physics parameters, including the neutron ef-
fective multiplication factor (keff), transient and control rod worth, reactivity coef-
ficients, and kinetics parameters, using multiple nuclear data libraries.
While the primary goal of the paper was to develop and verify an OpenMC model of
the SPERT-III reactor for stationary criticality calculations, the secondary goal was
the verification of the TRIPOLI-5® stationary results using both the ROOT-based
geometry initially conceived for TRIPOLI-4® [14] and the new AGORA-based ge-
ometry model.
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6.1 SPERT-III Reactor Model in AGORA

The SPERT-III reactor is a pressurized light-water-moderated reactor, utilizing 4.8%
enriched UO2 fuel rods. The standard E-core configuration consists of 60 assemblies,
which include 48 fuel assemblies with 25 (5 x 5) pin cells, four assemblies with 16 (4
x 4) pin cells, and eight control rods with fuel followers. Surrounding the core is a
multi-layered stainless-steel vessel. At the center of the core, a transient cruciform
boron-steel rod is positioned. This rod is rapidly ejected during experiments to
insert the necessary reactivity and initiate the desired power excursion.

Figure 6.1: SPERT-III reactor: On the left, a general view of the reactor; on the
right, a radial view of the reactor in the E-core configuration with a sectional view
of its components.[11]

In the context of this study, we developed the geometric model of the SPERT-III
reactor in AGORA to be used into the TRIPOLI-5® Monte Carlo code. As part of
the modeling process, the various structural elements, such as the fuel assemblies,
control rods, transient rod, and grids, were modeled to aiming to a correct represen-
tation of all reactor components. Specifically, the AGORA model of the SPERT-III
reactor includes 210 surfaces, 227 volumes, 64 universes, and 42 lattices, all con-
tributing to a detailed representation of the reactor’s configuration.
Modeling this reactor geometry posed several challenges, particularly in transition-
ing from the original TRIPOLI-4® [14] model to AGORA, which employs a different
methodology for handling and constructing geometries.
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The process required converting the TRIPOLI-4® geometry into a CSG framework
while ensuring that all geometric details were accurately preserved. This transition
demanded a deep understanding of both the original model and the CSG approach
to guarantee that the AGORA representation remained faithful despite the change
in modeling framework.
In the following sections, a step-by-step breakdown of the SPERT-III reactor’s
main components is presented, illustrating their geometry and integration within
the AGORA model.

6.1.1 Fuel Assemblies

The fuel used in the SPERT-III reactor consists of UO2 with 4.8% enrichment. The
fuel rods are made of 0.42 inch outer diameter pellets, which are housed in SS348
stainless steel tubes, with a 0.003 inch radial gas gap between the pellets and the
inner wall of the cladding. To maintain the symmetry of the reactor lattice, the core
includes two types of fuel assemblies: the 5 x 5 elements and the 4 x 4 elements.
The 5 x 5 fuel assemblies consist of 25 fuel rods arranged in a regular 5 x 5 array
with a pitch of 0.585 inches. Cooling is facilitated by water circulation through
holes in the SS348 assembly boxes of the 5 x 5 fuel assemblies. Although the precise
geometry of the assembly box holes is unknown, a homogenization approach was
adopted in the original TRIPOLI-4® native model, based on the total volume of
the holes. This approximation has been retained in the AGORA model as well.
The 4 x 4 fuel assemblies are similar to the 5 x 5 assemblies, using the same fuel rods
and pitch. These 4 x 4 assemblies are located around the transient rod and in the
fuel follower section of the control rods. The fuel rods in both assembly types are
surrounded by 348SS stainless-steel plugs, which complete the fuel rods between the
active core and the grids. Figure 6.5 presents both the fuel assembly, as described
in [11], and a radial view of the AGORA model for the 5 x 5 fuel assemblies.

Figure 6.2: Left: Sectional view of the 5 x 5 fuel assembly. [11] Right: Radial view
of the AGORA model for the 5 x 5 fuel assembly seen through the visualization tool
of TRIPOLI-5®.
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6.1.2 Control Rods

The SPERT-III reactor has four pairs of control rods, which are inserted from the
top of the reactor. The specifications of these control rods are as follows:

• The fuel follower at the bottom consists of 4x4 fuel rod assemblies, protected
by a 0.475 cm square zircaloy guide tube.

• The absorber part, located at the top, is made of moderator surrounded by
a square casing of 0.472 cm made by 304 stainless-steel, enriched with 1.35%
boron. This is further protected by a 0.475 cm zircaloy guide tube.

• The flux suppressor is located at the junction between the fuel follower and
the absorber part. It consists of several components:

1. An absorber grid surrounded by stainless steel with 1.35% boron content.

2. An absorber grid with moderator in between.

3. A stainless-steel plate with 3x3 moderator holes.

4. An absorber grid with stainless-steel rods.

5. An absorber grid with fuel rods in between.

Each of these components is depicted in Figure 6.3 in its full complexity. In partic-
ular is shown their decomposition visualized in materials composition mode, where
each color represents a different material.

Figure 6.3: Visualization of the flux suppressor parts in materials composition mode.
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While in Figure 6.4, the same portion is presented with its decomposition into
constituent volumes, where each color represents a different volume in the geometric
model.

Figure 6.4: Visualization of the flux suppressor parts in volumes decomposition
mode.

6.1.3 Transient Rod

The transient rod, designed in a cruciform shape, plays a crucial role in inserting
reactivity into the core to initiate power excursions for experimental purposes. Un-
der normal operating conditions, the upper section of the transient rod, made of
stainless steel, resides within the core, while the lower section, constructed from
1.35% borated steel, is outside the core. To preserve the core’s symmetry, the four
fuel elements around the transient rod are of the 4 x 4 type. A Zircaloy-2 guide tube
protects the transient rod and its surrounding fuel elements. Figure 6.5 presents a
view of the transient rod as in [11] and a radial view of the AGORA model for the
cruciform transient rod, including the 4 × 4 fuel assemblies.
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Figure 6.5: Top: View of the cruciform transient rod. [11] Bottom: Radial view of
the AGORA model for the cruciform transient rod seen through the visualization
tool of TRIPOLI-5®.

6.1.4 Top and Bottom Grids

The SPERT-III reactor is supported by upper and lower grids made from 304L
stainless steel. These grids hold the fuel elements in place within the core. The
lower grid has a thickness of 3 inches and a diameter of 31.97 inches. It contains
holes corresponding to the fuel element locations, core fillers, and a cruciform hole
for the transient rod. The upper grid, which is 7 inches thick and has a diameter of
42 inches, features holes for the fuel assemblies, transient rod, and control rods. The
hole sizes differ: the top grid holes have a radius of 0.444 inches, while the bottom
grid holes have a radius of 1.03 inches. The upper grid is surrounded by moderator
above and around it, while the lower grid only has moderator below it. Figures 6.6
and 6.7 respectively show the upper and lower grids in the AGORA model of the
reactor.
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Figure 6.6: Radial view of the top grid seen through the visualization tool of
TRIPOLI-5®.

Figure 6.7: Radial view of the bottom grid seen through the visualization tool of
TRIPOLI-5®.
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Figure 6.8: AGORA model of the SPERT-III reactor geometry seen through the
visualization tool of TRIPOLI-5®: radial cut at z = 0.5
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Figure 6.9: AGORA model of the SPERT-III reactor geometry seen through the
visualization tool of TRIPOLI-5®: axial cut at y = 12.5
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6.2 Key findings of the study

In this thesis, only the most significant results from the study are highlighted, specifi-
cally the Cold Zero Power keff Calculation and the Transient Rod Worth Calculation.
All results are presented with associated one-sigma error bars to quantify the un-
certainty in the calculations.
For a comprehensive discussion on the physical models implemented, including the
correction methods for energy shifts and neutron interactions, as well as the batch
and cycle configurations used in the simulations, the reader is referred to the original
work [13].

Cold Zero Power (CZP) keff Calculation

In this study, the critical Cold Zero Power (CZP) configuration of the SPERT-III
reactor was investigated. In this setup, the control rods are positioned 14.6 inches
above the bottom of the active fuel zone, measured from the top of the flux sup-
pressor. Furthermore, the top of the poison section of the transient rod is placed at
0 inches from the bottom of the active fuel zone, meaning it is entirely outside the
core. This configuration serves as a benchmark for evaluating the consistency and
accuracy of different neutron transport codes.
The values of the effective multiplication factor keff computed for the critical CZP
configuration using TRIPOLI-4®, TRIPOLI-5®, and OpenMC are summarized in
Table 6.1.

Code CZP keff Difference from TRIPOLI-4® [pcm]

ENDF/B-VIII.0

TRIPOLI-4® 1.00029 ± 7 × 10−5 -

TRIPOLI-5® + ROOT 0.99971 ± 9 × 10−5 58 ± 11

TRIPOLI-5® + AGORA 1.00018 ± 10 × 10−5 11 ± 12

OpenMC 0.99922 ± 8 × 10−5 107 ± 11

JEFF3.3

TRIPOLI-4® 1.00289 ± 7 × 10−5 -

TRIPOLI-5® + ROOT 1.00262 ± 9 × 10−5 27 ± 11

TRIPOLI-5® + AGORA 1.00312 ± 10 × 10−5 -23 ± 12

OpenMC 1.00235 ± 8 × 10−5 54 ± 11

Table 6.1: Reactivity results obtained for the CZP configuration using ENDF/B-
VIII.0 and JEFF3.3 libraries.
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The results obtained with TRIPOLI-5® using the AGORA geometry model are
in very close agreement with those from the other Monte Carlo codes involved in
the study. The difference between TRIPOLI-5® with AGORA and TRIPOLI-4®

is only 11 ± 12 pcm for the ENDF/B-VIII.0 library, and -23 ± 12 pcm for the
JEFF3.3 library, indicating a high level of consistency.

Transient Rod Worth Calculation

The transient rod worth is a key parameter for assessing the impact of control rods
in a reactor core. In the study, the control rods were maintained at the ”critical” po-
sition for the CZP configuration, while the transient rod was progressively inserted
from 6 cm to 20 cm, with 2 cm increments. At each insertion step, a criticality
calculation was performed, and the corresponding effective multiplication factor keff
was estimated.
This procedure allowed for the determination of the integral rod worth, representing
the total anti-reactivity worth of the transient rod, expressed in dollars $. The to-
tal anti-reactivity values for the transient rod are reported in Table 6.2, comparing
results from the different codes involved in the study and measurements from 1966,
using different nuclear data libraries.

Measurement TRIPOLI-4® OpenMC TRIPOLI-5® TRIPOLI-5® Nuclear data

1966 With ROOT With AGORA Library

Total 4.33 ± 0.02 4.31 ± 0.01 4.33 ± 0.02 4.36 ± 0.02 JEFF3.3

anti-reactivity 4.6

[$] 4.49 ± 0.02 4.48 ± 0.01 4.49 ± 0.02 4.48 ± 0.02 ENDF/B-VIII.0

Table 6.2: Total anti-reactivity results for the transient rod in the CZP configuration
using ENDF/B-VIII.0 and JEFF3.3 libraries.

In this case, a slight discrepancy is observed between results obtained with
TRIPOLI-5® using the AGORA geometry model and the experimental measure-
ments. This difference can be partially attributed to the inherent approximations
made in modeling the transient rod, as some geometrical details were not clearly
specified in the original references and had to be approximated. Despite these chal-
lenges, the anti-reactivity values calculated for TRIPOLI-5® with AGORA remain
in close agreement with the results calculated by the other Monte Carlo codes in-
volved in the study, and are within 10% of the measured values data of 1966.
The results presented for both simulations clearly demonstrate that the outcomes
obtained with AGORA and TRIPOLI-5® are in close agreement with those of the
other Monte Carlo codes tested in the comparison. Despite the discrepancies iden-
tified in both the particle tracking and particle location verification tools (albeit
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small in magnitude but consistently observed) it has been demonstrated that their
impact on the key physical parameters in the simulations is negligible. Specifi-
cally, fundamental quantities such as the effective multiplication factor keff and the
anti-reactivity values for the transient control rod exhibit strong agreement across
different codes under study. This finding underscores the reliability and robustness
of the AGORA module in geometry representation and navigation, confirming that
the observed discrepancies in the verification tools do not compromise the accuracy
of the primary quantities of interest in the simulation results. In the following chap-
ter, it is proposed an extension of the analysis on chord lengths discussed in 5. This
extension provides an additional approach for verifying and preliminary validate
the performance AGORA by evaluating its alignment with an established physical
property of random walks.
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Verification of an Invariant
Property of Random Walks with
AGORA

The analysis on chord lengths, explained in detail in Chapter 5, can be further
extended to verify an invariant property of random walks, providing an additional
means to prove the accuracy of the TRIPOLI-5® geometry navigator. This method
leverages the intrinsic relationship between the geometric characteristics of a body
and the statistical properties of random trajectories traversing it. By employing this
framework, we can assess whether the geometry navigator accurately traces particle
paths while respecting the invariant geometric relationships of random walks. Specif-
ically, this technique is used to verify the correct application of Cauchy’s mean chord
formula, which relates the average chord length in a three-dimensional body to its
volume and surface area.

7.1 Cauchy’s Mean Chord Formula

Cauchy’s mean chord formula establishes a relationship between the average chord
length ⟨ℓ⟩ through a three-dimensional body irradiated uniformly and isotropically
and the geometrical quantities of the body, namely its volume V and surface area
S. The theoretical formula is expressed as:

⟨ℓ⟩th =
4V

S

where ⟨ℓ⟩th represents the theoretical average chord length, V is the volume, and S
is the surface area of the body.
Although the formula is primarily applicable to convex bodies [15], it can also be
extended to non-convex bodies, provided that the geometry navigator accurately
tracks the segments that traverse the volume. When a segment re-enters the body,
the new segment length should be attributed to a new chord rather than being
added to the previous one, this ensures consistency in the calculation of average
chord lengths, as discussed in [16].
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To facilitate this process and ensure adherence to the definition of chords, a special-
ized geometry was created for this study. Each volume within the geometry is filled
with a distinct material, making it impossible for a segment to re-enter a volume
without first traversing a different material. This design guarantees that any seg-
ment crossing back into a volume is treated as a new chord, aligning with the rule
that a chord is defined as the uninterrupted traversal of a single material.
To ensure that the segments are generated uniformly and isotropically, the Random
Segment Generator described in 5.1 has been modified. This type of distribution
where the segments are both uniformly distributed and isotropic, is referred to as
µ-randomness.
This modification to the segment generation process is crucial to ensure that the
conditions required for the application of Cauchy’s formula are met. AGORA is
then queried using the same script introduced in the section 5.2. The results, con-
sisting of the decomposition of segments into chords, their lengths, and the materials
encountered along each chord, are then processed by a newly developed script. This
script computes the relevant statistical quantities, enabling a direct comparison with
the theoretical values predicted by Cauchy’s formula.
The procedure for carrying out this comparison is described in the following sections.

7.2 Segment Generation

The segment generation process explained in 5.1 has been carefully modified to
ensure compliance with the conditions of µ-randomness, a critical prerequisite for
applying Cauchy’s mean chord formula. This involves ensuring that segments are
initiated from a uniformly distributed source and propagate isotropically through
the geometric bodies under analysis. This is achieved by ensuring that all segments
originate from the surface of a bounding box defined by the user. To define this
bounding box, the user must provide three coordinates for the minimum boundary,

cmin = (xmin, ymin, zmin),

and three coordinates for the maximum boundary,

cmax = (xmax, ymax, zmax).

The face from which a segment originates is sampled based on probabilities
proportional to the areas of the bounding box faces. For a box defined by cmin and
cmax, with dimensions

Lx = cmax,x − cmin,x, Ly = cmax,y − cmin,y, Lz = cmax,z − cmin,z,

the probabilities associated with the six faces are:

P (i) ∝ Ai,

where Ai is the area of the face i, the associated probabilities are:
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P (i) =
Ai

2 · (LxLy + LyLz + LxLz)
,

with i ∈ {0, 1, 2, 3, 4, 5} corresponding to the faces of the bounding box.
The face index is determined using discrete sampling, with probabilities P (i) as

computed above.
The direction of each segment is the generated using a uniform distribution

expressed in terms of spherical coordinates by the polar angle θ and azimuthal
angle ϕ.

The angle ϕ is uniformly distributed between 0 and 2π, with the following prob-
ability density function and corresponding cumulative distribution:

fϕ(ϕ) =
1

2π
, Fϕ(ϕ) =

∫ ϕ

0

fϕ(t) dt =

∫ ϕ

0

1

2π
dt =

ϕ

2π
, ϕ ∈ [0, 2π].

For θ, isotropy in spherical coordinates requires:

fθ(θ) = sin θ, Fθ(θ) =

∫ θ

0

fθ(t) dt =

∫ θ

0

sin t dt = 1− cos θ, θ ∈ [0, π].

The cumulative distribution Fθ allows sampling of θ using the inverse transform
method:

θ = arccos(1− 2 ξθ),

where ξθ is a random number uniformly distributed in the interval [0, 1].

Given θ and ϕ as sampled above, the corresponding Cartesian components of the
unit direction vector Ω are retrieved as:

Ω =

sin θ cosϕsin θ sinϕ
cos θ

 .

Once the starting face i is determined, the origin point p0 of the segment is
uniformly sampled within the face, with coordinates:

p0 ∼ U(pmin,pmax),

where pmin and pmax are the opposite vertices of the selected face.
Finally, the segment length λ is determined by finding the first intersection point

between the direction Ω and the remaining faces of the cube.
For each face j (with j ̸= i), the distance is calculated as:

λj =
cj,k − p0,k

Ωk

,

where cj,k is the coordinate of the plane of face j along axis k, p0,k is the k-
th coordinate of the starting point, and Ωk is the k-th component of the direction
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vector.
The final segment length is defined as:

λ = min ({λj | λj > 0, j ̸= i})

7.3 Geometry Model

The procedure has been applied to a specially designed test geometry, created specif-
ically for this verification framework. Although simple in structure, this geometry
model integrates both convex and non-convex volumes. Figures 7.1 and 7.2 illus-
trates the geometric model, showcasing its composition of concentric cylindrical
shells and the presence of a sphere that breaks the symmetry. The different volumes
within the model are filled with distinct materials to allow for easy differentiation
as follows:

• v1 (innermost cylinder): Filled with FUEL.

• v2 (first cylindrical shell): Filled with STEEL.

• v3 (second cylindrical shell): Filled with MODERATOR.

• v4 (sphere): Filled with LEAD.

• v5 (outermost cylindrical shell): Filled with AIR.

The properties of the target bodies, including their materials, volumes, areas and
theoretical mean chord lengths, are summarized in Table 7.1.

Figure 7.1: Model to test the Cauchy’s formula: geometry seen through the visual-
ization tool of TRIPOLI-5® from an AGORA file, section at y = 0.
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Figure 7.2: Model to test the Cauchy’s formula: geometry seen through the visual-
ization tool of TRIPOLI-5® from an AGORA file, section at z = 0.

For the sampling of the uniform and isotropic segments, we used a bounding box
specifically designed to fully enclose the five target volumes. This fictitious sampling
box was positioned in the space between the outermost cylindrical shell, v5, and the
external cylinder that encloses all of the five volumes. It is important to note that
this yellow outermost cylinder, filled with VOID, does not contribute to the analysis,
as it is not fully contained within the sampling bounding box.

Volume ID Material Volume Area ⟨ℓth⟩

v1 FUEL 14074.335 3920.707 14.3589

v2 STEEL 21205.750 6126.105 13.8461

v3 MODERATOR 57585.393 12698.317 18.1395

v4 LEAD 33.510 50.265 2.6666

v5 AIR 303821.331 42976.987 28.2775

Table 7.1: Features of the test geometry: The theoretical mean chord length ⟨ℓth⟩
is calculated as ⟨ℓth⟩ = 4V

S
, where V is the volume and S is the surface area.
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This geometric model was then utilized as input in conjunction with the isotropic
uniform segments, within the geometry query script for segments in AGORA, de-
scribed in 5.2. The script, when executed, generates a JSON file as output which
contains the decomposition of each segment into its corresponding chords. Each
chord in the file includes information about the material encountered and the dis-
tance traversed within that material.

7.4 Results and Statistical Analysis

The generated JSON file is then processed by a dedicated script designed to compute
the relevant metrics for this study. Specifically, it analyzes the data from the chord
decomposition, calculating the following statistical quantities:

Sample Average (⟨ℓ⟩): The script calculates the sample average (mean) of the
chord lengths within each volume. This is done by summing up all the distances
(chord lengths) associated with a particular material and then dividing by the total
number of distances recorded (number of chords) within that material. The formula
is:

⟨ℓ⟩ =
∑n

i=1 ℓi
n

where ℓi is the distance of the i-th chord, and n is the total number of chords that
encounter that material.

Variance: The variance is calculated to measure the spread of the chord lengths
around the mean value. It is computed by taking the difference between each calcu-
lated distance and the sample average, squaring this difference, and summing them
up. The sum is then divided by n− 1 to obtain the variance as follows:

σ2 =
1

n− 1

n∑
i=1

(ℓi − ⟨ℓ⟩)2

where ℓi is the i-th chord length, and ⟨ℓ⟩ is the sample average.

Standard Deviation (SD): The standard deviation is the square root of the
variance. It provides a measure of how much the chord lengths deviate from the
sample average, and it is given by:

σ =

√√√√ 1

n− 1

n∑
i=1

(ℓi − ⟨ℓ⟩)2

Relative Standard Deviation (RSD): The relative standard deviation is a
normalized version of the standard deviation, calculated by dividing the standard
deviation by the absolute value of the sample average:

RSD =
σ

|⟨ℓ⟩|
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Student’s Score (t): The Student’s score is used to assess the agreement be-
tween the theoretical predictions and the Monte Carlo estimates. It is calculated
as:

t(ℓ) =
|⟨ℓ⟩th − ⟨ℓ⟩|

σ(ℓ)

where ⟨ℓ⟩th is the theoretical mean chord length, ⟨ℓ⟩ is the Monte Carlo estimate,
and σ(ℓ) is the standard deviation of the chord lengths.

These quantities provide a measure of the dispersion and reliability of the com-
puted chord lengths allowing to assess how consistent the results are and whether
the sample of segments is representative of the expected values.
Finally, the Monte Carlo estimates of the mean chord lengths, computed from
M = 106 random segments, were compared with the theoretical predictions ⟨ℓ⟩th
derived from Cauchy’s formula as applied in 7.1. The results of the comparison,
which incorporate the statistical quantities previously described, are presented in
Table 7.2.

Volume ID ⟨ℓth⟩ ⟨ℓ⟩± σ(ℓ) RSD t(ℓ)

v1 14.3589 14.3498 ± 0.0289 0.002 0.3136

v2 13.8461 13.8138 ± 0.0254 0.0018 1.2672

v3 18.1395 18.1048 ± 0.0234 0.0012 1.4822

v4 2.6666 2.6514 ± 0.0326 0.0122 0.4665

v5 28.2775 28.2916 ± 0.0217 0.0007 0.6615

Table 7.2: Average chord length in target volumes: analytical values and numerical
results.

The comparison between the Monte Carlo-calculated chord lengths and the theo-
retical predictions demonstrated excellent agreement across all bodies, emphasizing
the validity of Cauchy’s formula for both convex and non-convex shapes. The re-
sults provided further confirmation of the reliability of the AGORA estimates. The
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Students’ Scores for all bodies, whether convex or non-convex, were consistently
below 3, indicating that the differences between the Monte Carlo results and the
theoretical values were minimal and statistically insignificant.
The strong statistical agreement with an invariant property of random walks un-
derscores AGORA’s accuracy in modeling complex structures, ensuring the correct
preservation of geometric relationships between the constituent bodies.
This consistency demonstrates that AGORA can effectively track particles, lever-
aging an intrinsic property of their trajectories, and maintain the integrity of the
underlying geometric relationships.
This method is proposed as a tool for verifying the accuracy of AGORA. The in-
variance of the average chord length ensures that the expected value is well defined,
allowing for the assessment of the accuracy through simple statistical tests. These
tests can be performed with arbitrary precision, providing a robust way to evaluate
the performance of the geometry navigator engine module [17].
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Conclusions

During this thesis, two methodologies were developed for the verification of the new
geometry navigator engine of TRIPOLI-5®. These methodologies were designed
to verify two crucial and complementary aspects: particle location and particle
tracking. Both techniques were implemented to ensure the correct functioning of
AGORA, initially tested on simple geometries, before being applied to more com-
plex and realistic reactor models and relevant benchmark cases.
The data related to the new geometry navigator engine of TRIPOLI-5® were com-
pared with other Monte Carlo codes and geometry navigators to perform an external
comparison and to ensure internal consistency. The geometries analyzed using these
techniques yielded excellent results, demonstrating a remarkable level of agreement.
Only in the case of the SPERT-III reactor did the two methodologies reveal minor
yet consistent discrepancies. The impact of these differences was assessed through a
dedicated study on this specific configuration, showing that even in the worst-case
scenario of mismatch rate, whether in terms of points or chord analyses, the key
results of interest and the fundamental physical parameters for the simulations re-
mained highly accurate and in strong agreement with expectations, as well as with
the results from the other codes under study.
As a continuation of the particle tracking method through chord analysis, the ability
of AGORA to correctly compute an invariant property of random walks was verified.
The strong agreement between the theoretical results predicted by Cauchy’s rule for
mean chord length and the results provided by AGORA, following a statistical ap-
proach, confirms the high accuracy and precision of the new geometry navigator
engine of TRIPOLI-5® in navigating and correctly identifying all components and
bodies present in the geometry under analysis.
During my internship, an additional tool was developed for the detection of voids
and overlaps within an AGORA geometry model. This tool, of fundamental im-
portance, will further ensure the correct definition of the AGORA CSG models,
significantly aiding both the geometry construction and debugging phases. It will
be essential in guaranteeing the integrity of geometries, thus ensuring the correct
operation of the AGORA geometry navigator and of its host code TRIPOLI-5®.
Future developments will focus on the implementation of a geometry converter from
OpenMC (.xml) to AGORA (.agora) geometry models. This will allow AGORA to
leverage the vast library of CSG geometries available in OpenMC without requir-
ing manual redefinition by the user. By simplifying the conversion of geometries
between different codes, this tool will improve compatibility and make simulations
more versatile and accessible across various platforms.
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