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Abstract 

Parkinson’s disease (PD) is a prion-like neurodegenerative disorder driven by α-synuclein misfolding, 

spreading pathology across the brain, especially in cases with GBA mutations. Advances in MRI processing, 

such as graph analysis and connectomics, help map brain-wide functional connectivity and clarify 

neurodegenerative mechanisms. Network analysis reveals how diseases alter brain organization and 

hypothesizes abnormal protein spread. The Aggregation Network Diffusion (AND) model predicts future 

pathology based on baseline data, simulating misfolded protein spread and aggregation into neurotoxic 

forms. To account for individual variability in disease progression, AND must adapt to subject-specific 

dynamics for accurate atrophy modelling. Thirteen GBA-positive, 39 GBA-negative PD patients and 60 age- 

and sex-matched controls underwent clinical evaluation, 3DT1-weighted and resting-state functional MRI 

(rs-fMRI) at baseline and, only PD patients, over a 7-year period. Functional connectome for each subject 

was obtained from rs-fMRI scans as the Pearson’s correlation coefficient between time-series in 83 cortical 

and subcortical brain regions. Graph analysis and connectomics assessed global and local functional 

topologic network, and regional functional connectivity using Network Based Statistics (NBS). AND model 

was developed to predict PD pathology progression as a spreading process from a seed through an averaged 

functional connectome extracted from healthy controls. Pearson’s correlations were calculated between 

AND-predicted atrophy and the observed longitudinal atrophy in PD patients over follow-ups of 7-years. 

Through the use of grid searches and optimization methods, the model was tailored to each individual, 

maximizing correlation values by refining model parameters, and selecting seed regions. Relative to controls, 

GBA-positive PD patients showed severe global functional network alterations, while GBA-negative patients 

showed relatively preserved functional brain architecture. Considering NBS analysis, functional connectivity 

breakdown in the parietal lobe, temporal, and occipital, sensorimotor, and right frontal differentiated GBA-

positive PD patients from controls. AND model produced highly variable results across both groups. Seed 

region identification showed overlapping patterns across both groups. In GBA-negative patients, the model 

primarily selected regions in the temporal lobe, with secondary preference for the frontal lobe. Similarly, in 

GBA-positive patients, regions were mainly located in the temporal lobe, with additional preference for the 

basal ganglia and sensorimotor lobe. Parameter optimization enabled detailed analysis of simulated atrophy 

patterns, with the global network "transmissibility" constant, beta, emerging as the key factor. Lower beta 

values, with a seed region in the temporal lobe, led to early involvement of the basal ganglia, frontal, and 

temporal lobes at 24 months, followed by progression to the parietal, sensorimotor, and occipital lobes at 

later stages. In contrast, higher beta values, starting from the same lobe, resulted in early involvement of the 

basal ganglia, temporal, frontal, parietal, and sensorimotor lobes, with later progression to the occipital lobe. 

These findings show that GBA mutations drive distinct functional network changes in PD. Patient-specific 

spreading patterns confirmed the need for individualized model fitting. Integrating predictive modelling with 

connectivity analysis offers new insights into PD progression. 
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1. Parkinson’s Disease and GBA Mutation  

1.1.Parkinson’s Disease 
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder first identified in 1817 by surgeon James 

Parkison and later distinguished it from other tremor-related conditions by neurologist Jean-Martin Charcot, 

identifying PD as a separate movement disorder. (1) 

PD presents a range of symptoms, both motor and non-motor, that can impact the way of life of those affected. 

The main motor symptoms include tremor, rigidity, bradykinesia (or akinesia), and postural instability with 

additional motor features that may include reduced facial expression, speech and swallowing difficulties. These 

symptoms progressively worsen over time, exacerbating disability and mortality while diminishing quality of 

life.  Non-motor symptoms, which can precede motor signs by years, encompass mood disturbances (e.g., 

depression and apathy), cognitive impairment, fatigue, sleep disorders, and autonomic dysfunctions such as 

orthostatic hypotension and excessive sweating. (2) 

While rates vary significantly, the neurodegeneration progression is a characteristic of PD which is used for 

diagnosis. Both lack of progression and rapid declines may point to an exclusion of PD or other alternative 

diagnosis respectively. PD neurodegeneration often shortens life expectancy, but many individuals can deal 

with its symptoms for decades, such as cognitive and motor decline. The onset of disability may put those 

affected in need of personal or long-term care, placing considerable strain on caregivers and family. 

1.1.1. Epidemiology and Risk Factors 
Globally, neurological disorders are the leading cause of disability with PD ranking 10th in terms of global 

disease burden. In 2019, more than 8.5 million people were reported to be living with PD worldwide (3). PD 

has a higher prevalence in developed regions in North America and Europe but this datum might be affected 

by underreporting in less-developed regions making it difficult to identify the true global burden of the disease 

(4).  

The same global epidemiological trends can be found in Italy with a 2020 systematic review and meta-analysis 

which found the prevalence of PD in Italy to be 1937 per million individuals, with a sharp increase with age, 

which is confirmed to be the most significant risk factor in this population too (5). The male-to-female 

prevalence ratio is also consistent with global data with men being more likely to develop PD. Moreover, 

demographic variation in Italy, due to its aging population, increases the burden of degenerative diseases 

significantly stressing the national healthcare system (5). 

Aging is indeed a major contributor as most cases occur after 60 and early-onset PD, with diagnosis before 50, 

comprise only 4% of the total (6). Another factor is a family history of PD since first-degree relatives have an 

approximately two- to three-fold higher risk of developing it and familiar forms contributing to 5-15% of all 

cases (7). Key genetic mutations can also affect disease progression with SNCA mutations associated with 

earlier disease onset, faster progression, and prominent non-motor symptoms. Other mutations include those 

in LRRK2, PRKN, PINK1 and GBA genes (8). Although not common, GBA mutations are noteworthy for 

their link to earlier onset, severed disease progression and rapid cognitive decline (9). 
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1.1.2. Pathology 
PD is characterized by the loss of dopaminergic neurons in the substantia nigra (SN), the striatum, the globus 

pallidus and the thalamus. These regions are related to the control of voluntary movement and the limitation 

of involuntary actions. 

 

Figure 1.1.2.1: Neuroanatomy of brain regions mainly affected by Parkinson’s Disease (10) 

The degeneration of dopaminergic neurons, the formation of Lewy Bodies (LBs) and the depigmentation of 

the pars compacta of the SN are all PD features revealed by post-mortem examinations. Lewy bodies are 

caused by misfolded alpha-synuclein (α-Syn) proteins which lead to the formation of insoluble spherical, 

eosinophilic inclusions within neurons, composed of more than 90 proteins, with alpha-synuclein and ubiquitin 

as the primary components. 

While post-mortem disease characterization is clear, the early identification of PD is more challenging as 30% 

of dopaminergic neurons may be lost once the motor symptoms begin, ramping up to 60% once they are 

detectable (11). This lag is partly due to the ability of the brain to compensate and adapt to neuronal loss and 

damage. 

 

Figure 1.1.2.2.: SN Neuronal Quantity Decline with PD Phase Progression (11) 
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1.1.3. Clinical Features 
Parkinson’s disease manifests with both motor and non-motor symptoms which evolve in intensity as the 

disease progresses. 

1.1.3.1.Motor Symptoms 
The PD diagnosis comes with the identification of specific motor affections, chief among them is the presence 

of bradykinesia in association with tremors and rigidity, which is often asymmetrical. Other symptoms can 

range across postural instabilities, postural abnormalities, gait disturbances and freezing-of-gait (FoG) 

episodes. Another confirmation of PD can be achieved through means of observation of the alleviation of these 

symptoms as the patient is treated with levodopa (12). 

The following motor symptoms, along with their clinical context, are critical for PD diagnosis and 

management: 

• Bradykinesia: Characterized by slowed movements with reduced amplitude, often accompanied by 

hypomimia, hypophonia, reduced blinking, and fine motor difficulties like micrographia or inability 

to fasten buttons.  

• Tremor: A resting, low-frequency tremor often begins unilaterally and may later affect both sides. It 

diminishes with voluntary movement and is differentiated from essential tremor, a separate 

neurological disorder which affects action movements. 

• Rigidity: Stiff limbs, torso, or shoulders, often mistaken for arthritis or injuries. 

• Postural Instability: Difficulty maintaining balance with an increased fall risk, particularly in later 

stages. 

• Gait Disturbances: Common in advanced PD, including Freezing of Gait (FoG), a temporary failure 

to step, and festination, a reduction of step size and an increase in step frequency often preceding FoG.  

• Speech Impairments: Hypokinetic dysarthria causing reduced volume, monotone pitch, breathiness, 

and articulation issues.  

1.1.3.2.Non-motor symptoms 
Earliest indicators of PD are non-motor symptoms which include depression, constipation and REM sleep 

behaviour disorder. These can show up to 15 years prior to clinical diagnosis and their recognition opens the 

door for early intervention and tracking strategies. (13) 

1.1.4. Diagnosis 
In-vivo clinical PD diagnosis as described by the Movement Disorder Society (MDS) (14) relies on the 

identification of some of the most common motor symptoms such as bradykinesia alongside with tremor or 

rigidity. Researchers are focused on the task of the identification of biomarkers for PD to allow for an early 

identification which is not achievable only looking at the aforementioned criteria. Furthermore, the latter can 

only provide a probable diagnosis, and histopathology is the only method which provides certainty of PD. 

Additional confidence of diagnosis can be acquired by looking at patient response to dopaminergic therapy 

such as dyskinesia, rest tremor in a limb, olfactory loss, and cardiac sympathetic denervation. 

On the other hand, a loss of diagnosis confidence can be induced by several factors, such as a rapid progression 

of gait impairment or a lack of it over five or more years, respiratory disfunction, and severe autonomic failure 

within the first five years of the disease. The absence of common non-motor symptoms can also put cast doubts 

on the diagnosis. Certain criteria definitively rule out a diagnosis of Parkinson’s disease. These include evident 

cerebellar abnormalities, cortical sensory deficits, downward supranuclear gaze palsy, a confirmed diagnosis 
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of probable behavioral variant frontotemporal dementia or primary progressive aphasia, parkinsonism confined 

to the lower limbs for over three years, lack of any observable response to high-dose levodopa, and normal 

functional neuroimaging of the presynaptic dopaminergic system. 

1.1.4.1.Parkinsonian Syndromes 
To administer proper care, it’s necessary to differentiate between the various Parkinsonian syndromes. 

Stratification is useful for the identification of symptoms, prognoses and potential treatments (15). The primary 

syndromes are: 

• Idiopathic Parkinson’s Disease: the most common form of PD, defined by hallmark motor symptoms 

such as tremor, rigidity, and bradykinesia. 

• Dementia with Lewy Bodies (DLB): showing symptoms of dementia and parkinsonism, with visual 

hallucinations, fluctuating cognition, and REM sleep behavior disorder. 

• Progressive Supranuclear Palsy (PSP): showing postural instability, gait disturbances and cognitive 

decline, with faster progression.  

• Multiple System Atrophy (MSA): a separate neurodegenerative disorder affecting multiple systems, 

presenting with parkinsonism, autonomic dysfunction, and cerebellar ataxia. 

• Corticobasal Degeneration (CBD): triggering asymmetric motor symptoms, cognitive impairment, and 

phenomena such as the "alien limb". 

• Vascular Parkinsonism (VaP): presents cerebrovascular disease and may respond to treatment of 

underlying vascular issues.  

1.1.4.2.Neuroimaging 
While neuroimaging is not used for PD diagnosis, brain MRIs are useful to exclude structural abnormalities 

which might explain the presence of Parkinson’s-like features and provide additional information which may 

lead to alternative diagnosis of MSA or PSP. 

A single photon emission computed tomography using 123I-FP-CIT (DaTscan) highlighting striatal dopamine 

transporter allows to quantify presynaptic dopamine transporter density and observe loss of dopaminergic 

neurons. The technique is especially useful in scenarios where the diagnosis remains uncertain after other 

clinical evaluations (16) and the patient is supposed to receive implants for deep brain stimulation (DBS) as it 

requires a higher diagnosis confidence due to the invasiveness of the procedure. 

1.1.4.3. Rating Scales 
Clinical evaluation for PD uses standardized tools and scales such as the Movement Disorder Society - Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) and Hoehn and Yahr scale to rate disease progression and 

motor impairment. 

a) Hoehn and Yahr 

The Hoehn and Yahr (H&Y) scale was first introduced in 1967 and is a widely used clinical tool to evaluate 

the severity of PD symptoms. It ranges across stages 1 through 5 where each stage indicates a different grade 

of disability. Stage 1 refers to unilateral involvement, followed by bilateral involvement without balancing 

issues at stage 2, postural instability at stage 3, loss of physical independence at stage 4, and being wheelchair 

or bed-bound at stage 5. 

The severity of these motor symptoms correlates with neurocognitive complications, such as dementia, 

depression, and hallucinations, getting more severe with higher scores. 
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A modified version of the H&Y scale introduced in the 1990s includes 0.5-point increments, improving its 

descriptive accuracy. Both versions are quick to administer, typically requiring less than five minutes as 

clinicians observe patients performing tasks. 

 

Table 1.1: Hoehn and Yahr (H&Y) scale and its modified version (mH&Y) scale 

b) Unified Parkinson's Disease Rating Scale (UPDRS) 

The UPDRS is a comprehensive tool used to assess various aspects of PD, divided into four parts: 

• Part I: Non-Motor Experiences of Daily Living 

o Comprises 13 questions, divided into two sections:  

▪ Part IA: Six clinician-administered questions assessing complex behaviors. 

▪ Part IB: Seven self-administered questions evaluating non-motor symptoms. 

• Part II: Motor Experiences of Daily Living 

o Assessing how motor symptoms impact daily activities and functionality. 

• Part III: Motor Examination 

o Evaluating motor signs of PD while noting whether the patient is in the ON or OFF medication 

state and accounting for co-existing medical conditions. 

• Part IV: Motor Complications 

o Evaluating motor fluctuations, dyskinesias, and complications like OFF-state dystonia, with a 

summarization of the patient's functional status over the previous week. 

In summary, the UPDRS provides an evaluation of both motor and non-motor symptoms, with a detailed 

overview of the patient’s clinical condition and disease progression. 

  

Hoehn and Yahr Scale Modified Hoehn and Yahr Scale

1
Unilateral involvement only usually with 

minimal or no functional disability
Unilateral involvement only

1.5 - Unilateral and axial involvement

2
Bilateral or midline involvement without 

impairment of balance
Bilateral involvement without impairment of balance

2.5 - Mild bilateral disease with recovery on pull test

3

Bilateral disease: mild to moderate disability 

with impaired postural reflexes; physically 

independent

Mild to moderate bilateral disease; some postural 

instability; physically independent

4
Severely disabling disease; still able to walk 

or stand unassisted

Severe disability; still able to walk or stand 

unassisted

5 Confinement to bed or wheelchair unless aided Wheelchair bound or bedridden unless aided

H&Y and mH&Y
Stage
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1.1.5. Treatment 
Current therapies focus on symptom alleviation as there are none which modify disease progression. The main 

strategies depend on dopamine replacement with the alternative use of DBS for advanced PD. While these 

therapies are effective in managing motor symptoms, they don’t affect disease progression thus making the 

patient dependent and at high risk to develop side effects. These include levodopa-resistant symptoms such as 

freezing, dysarthria, dysphagia, hallucinations, cognitive decline, sleepiness, and incontinence (17). 

• Levodopa 

Levodopa is the most effective treatment for symptom management. It can cross the blood-brain barrier and 

arrive to the substantia nigra where it can be converted to dopamine and supplied to the remaining 

dopaminergic neurons. 

Unfortunately, it carries a limitation which is the development of motor complications after repeated use, such 

as fluctuations, dyskinesia and dystonia. Additional side effects include manifestations of symptoms of nausea, 

hypotension, confusion, hallucinations, and impulse control disorders which become more common as higher 

doses are required. 

On the other hand, levodopa’s effects are rapid and last several hours for patients in the early stages. The 

situation changes as the disease progresses, shortening the effect of symptom relief thus requiring more 

frequent dosing. ‘OFF’ states experienced by patients may be characterized by severe motor symptoms similar 

to the ones observed in advanced states. (18) 

• Dopamine Agonists 

Dopamine agonists directly stimulate dopamine receptors in the striatum, bypassing the need for conversion 

by dopaminergic neurons. While they are less effective than levodopa for managing motor symptoms, they 

carry a lower risk of side effects. Dopamine agonists may be used as monotherapy in early stages or in 

combination with levodopa (17). 

• Deep Brain Stimulation (DBS) 

A surgical treatment option for advanced PD is the implantation of devices for Deep Brain Stimulation (DBS). 

This approach involves delivering high-frequency electrical currents to specific brain regions, typically the 

subthalamic nucleus, globus pallidus internus, or thalamus. The currents modulate neural circuits which are 

responsible for movement with excitatory and inhibitory effects.  

Unfortunately, DBS carries a series of potential side effects due to the complexity of the procedure and due to 

the possibility of developing cognitive decline and psychiatric disturbances limiting its possible application. 

Despite these risks, it remains a valuable option for appropriately vetoed patients with advanced PD. (19)  

1.2.Alpha Synuclein and GBA Mutation 

1.2.1. Alpha Synuclein 
One of the defining characteristics of PD is the accumulation of the protein alpha-synuclein (α-Syn) in the 

brain, affecting the development and progression of the disease (20)  

1.2.1.1. Physiological Role 
α-Syn is a small, soluble protein found in presynaptic terminals of neurons where it regulates neurotransmitter 

release. It is encoded in the SNCA gene, and its mutations can lead to α-Syn misfolding. 
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Its intrinsic disorder under physiological conditions allows for a high degree of structural flexibility which 

enables interaction with a wide range of molecular targets but also makes it prone to misfolding. In its native 

state, α-Syn exists in various forms, including monomers, oligomers, and membrane-bound conformations, 

with its state influenced by pH, lipid composition, and protein concentration (21). 

The regulating role of α-Syn is to facilitate the assembly and maintenance of the SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) complex which is responsible for efficient 

neurotransmitter release. (22)  

In PD, however, α-Syn becomes misfolded and aggregates into insoluble fibrils and other abnormal clumps of 

protein found inside neurons (23). This misfolding disrupts α-Syn’s normal functions and contributes to the 

formation of Lewy bodies, a pathological hallmark of PD. Both genetic and environmental factors can drive 

this process such as mutations in the SNCA gene (24) and environmental exposures to pesticides. (25) 

The presence of these aggregates interferes with cellular processes and contributes to neurodegeneration 

observed both in PD and other α-Syn related disorder. In summary, α-Syn requires a delicate balance to fulfil 

its physiological role whose absence can trigger neurodegeneration. 

1.2.1.2.Aggregation of α-Syn 
Under normal physiological conditions, α-Syn predominantly exists as a monomer in equilibrium with its 

membrane-bound or tetrameric forms. The tetrameric state is particularly resistant to pathogenic aggregation. 

However, disruptions in this equilibrium, triggered by changes in the cellular environment or stressors, can 

result in monomer assembly and subsequent oligomer formation. Notably, monomeric α-Syn is kinetically 

stable under physiological conditions but is susceptible to nucleation at hydrophilic/hydrophobic interfaces, 

where local protein concentration increases due to amphipathic interactions. α-Syn aggregation follows a 

nucleation-dependent polymerization mechanism, characterized by three distinct phases: a lag phase, a slow 

process where monomers form unstable nuclei, an elongation phase and a stationary phase, where dynamic 

equilibrium between monomers is established (26). 

 

Figure 1.2: Stages of Aggregation of α-Syn (26) 
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An acceleration of this process can be caused by the presence of preformed fibrillar seeds in a process of 

heterogeneous nucleation which accelerates aggregation bypassing the lag phase. Through this process, α-Syn 

aggregation can be triggered in regions which don’t produce misfolded α-Syn explaining one of the key 

mechanisms of disease spread. 

The presence of oligomeric intermediates, especially the high molecular weight prefibrillar species, is linked 

to cellular dysfunction as they interact with organelles disrupting homeostasis. Evidence from transgenic 

models and human brain samples confirms the presence of such oligomers in synucleinopathies, highlighting 

their pathological relevance. (26) 

1.2.1.3.Prion-Like Behavior  
One of the most striking features of misfolded α-Syn is its ability to aggregate and propagate between neurons 

in a prion-like manner. This behavior implies that misfolded α-Syn can induce properly folded α-Syn proteins 

in nearby neurons to adopt a similar misfolded conformation, perpetuating a cycle of protein misfolding and 

aggregation (27). This mechanism of spread contributes to the progressive nature of PD and other 

synucleinopathies, where pathological α-Syn gradually affects interconnected regions of the brain. 

The spreading of α-Syn is believed to happen through different pathways: exosome-mediated, direct cell-to-

cell and endocytosis-mediated transmission. All these processes have an end in the transmission of α-Syn 

within the recipient cell where the misfolded α-Syn acts as a template, inducing normal α-Syn to adopt the 

pathological conformation (27). At a larger scale and over time, this prion-like spread facilitates propagation 

and progression of PD. 

1.2.1.4.Other Proteinopathies 
α-Syn’s prion-like behavior is not unique and shares similarities with other misfolded proteins implicated in 

neurodegenerative diseases, such as tau and beta-amyloid in Alzheimer’s disease (AD).  

Like α-Syn, tau is a protein that aggregates and spreads across neurons. Misfolded tau is present in all 

tauopathies, such as AD and frontotemporal dementia. Both proteins use similar mechanisms for propagation, 

such as exosomal transport and direct cell-to-cell transfer. However, while α-Syn primarily affects synaptic 

and dopaminergic neurons, tau pathology is often associated with microtubule destabilization and widespread 

cortical involvement. (28) 

In contrast, AD presents beta-amyloid aggregates into extracellular plaques instead of intracellular inclusions 

while still exhibiting prion-like characteristics with the same misfolding dynamics (29). Another confirmation 

of the similarity of pathological pathways of α-Syn and beta-amyloid can be found in their co-occurrence 

within mixed neurodegenerative conditions. (30) 

These findings group α-Syn within a category of misfolded proteins which drive neurodegenerative diseases 

allowing for the sharing of protein dynamics information across the different diseases which ultimately leads 

to the uncovering of new avenues for therapeutic intervention. 

1.2.2. GBA Mutations 
Mutations in the GBA gene, which encodes the enzyme glucocerebrosidase (GCase), represent one of the most 

significant genetic risk factors for PD. GBA mutations are well known for their association with Gaucher’s 

disease, a lysosomal storage disorder, but their link to PD has gained increasing attention in recent years. 

Epidemiological studies have shown that individuals carrying GBA mutations have a significantly higher risk 

of developing PD compared to non-carriers (31).  

The prevalence of GBA observed in the general population is approximately 4-6% of PD cases in (32). The 

most common GBA mutations associated with PD include N370S and L444P, both of which have been 

implicated in increasing susceptibility to the disease. GBA mutations have also been associated with an earlier 
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onset of PD symptoms, a greater incidence on cognitive features (33), and a faster progression of both motor 

and non-motor symptoms (34).  

Given the distinct clinical phenotype of PD in GBA mutation carriers understanding the role of GBA mutations 

and GCase activity is crucial for developing targeted therapies aimed at modifying disease progression. 

1.2.2.1.Glucocerebrosidase 
GCase plays a critical role in lipid metabolism by operating within lysosomes, the cellular organelles 

responsible for breaking down and recycling various macromolecules, in particular glucorebroside which is a 

lipid component of cellular membranes. Its breakdown generated ceramide, which serves as a signaling 

molecule that regulates apoptosis, cell differentiation, and inflammatory responses. 

Impaired GCase activity disrupts lysosomal balance, leading to stress, reduced autophagic clearance and 

accumulation of undegraded substrates. The combined effects of this stress, toxic alpha-synuclein aggregates, 

and disrupted cellular signalling ultimately culminates in neuronal death. (35) 

1.2.2.2.Impact of GBA Mutation on PD 
Numerous studies have demonstrated a mechanistic link between the impaired function of GCase and the 

accumulation of α-Syn, suggesting that GBA mutations may exacerbate this pathological process. 

Bae et al. (2015) investigated the role of glucocerebrosidase deficiency in promoting α-Syn aggregation in 

neuronal models of PD. Their study found that reduced GCase activity, because of GBA mutations, leads to 

impaired lysosomal function and subsequent accumulation of α-Syn. This finding suggests that normal GCase 

function is critical for the degradation of misfolded α-Syn via the autophagy-lysosome pathway. (36) 

Maor et al. (2019) expanded upon these concepts by exploring the prion-like spread of α-Syn in D. 

melanogaster in presence of human mutant GCase. Their study provided evidence that GBA mutations increase 

α-Syn aggregation and accumulation locally within affected neurons. (37) 

Migdalska-Richards et al. (2020) investigated the role of a specific GBA mutation, L444P, in formation and 

spread of α-Syn by injecting pre-formed α-Syn fibrils in mice with a knock-in mutation, finding greater 

formation and spread of α-Syn compared to wild-type. (38). 

Collectively, these studies provide insights into the mechanisms by which GBA mutations accelerate α-Syn 

aggregation and spread. The primary driver appears to be the deficiency in GCase activity, which leads to 

lysosomal dysfunction and, consequently, to an impaired autophagy-lysosome pathway, reducing the ability of 

cells to clear misfolded or aggregated proteins, including misfolded α-Syn.  
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2. Magnetic Resonance Imaging  
Magnetic resonance imaging (MRI) is a non-invasive imaging technique that employs strong magnets and 

low-energy radiofrequency waves, without using ionizing radiation which characterises techniques providing 

similar results (39). With advancements in technology and decreasing costs, MRI is becoming more accessible 

and widely utilized in clinical and research settings. 

MRI has its base in the principles of nuclear magnetic resonance (NMR) which was experimentally 

demonstrated in 1946 by Felix Bloch and Edward Purcell, who in 1952 received a Nobel Prize in Physics for 

it. NMR’s potential for medical diagnostic started being explored in 1971 with Raymon Damadian identifying 

different relaxation times across different tissue types. The final breakthrough which opened up NMR use to 

the field of medical imaging was achieved by the work of Paul Lauterbur, Peter Mansfield, and Richard 

Grannell, who introduced the use of spatially varying magnetic fields for spatial encoding (40). 

Contemporary MRI systems utilize cryogenic superconducting magnets, typically operating at field strengths 

between 0.5 Tesla (T) and 1.5 T, with 3 T systems becoming increasingly prevalent in research settings. Higher 

field strengths offer enhancements of 30–50% in signal-to-noise ratio (SNR) and of 96% in contrast-to-noise 

ratio, while also reducing variability. However, these improvements come with drawbacks such as greater 

susceptibility to artifacts and image distortions (41). 

2.1.Basic Principles 

2.1.1. Source of MR Signal 
MRI uses constant magnetic fields in conjunction with oscillating electromagnetic fields to generate resonance 

by matching the frequency of spinning nuclei. The latter act like magnets spinning around their own axes while 

immersed in a constant magnetic field. 

The ability of being influenced by such fields is linked to the “spin” property which is dependent upon the 

number of protons in the nucleus to be considered. Hydrogen is the most frequently used for such analysis, but 

other possible options include carbon-13, sodium, and phosphorus (39). The uneven distribution of protons 

and neutrons creates a magnetic moment with a local magnetic field which aligns with the external one [Figure 

2.1].  

 

Figure 2.1: Schematic representation of the magnetic moment of a proton and its precession about a 

magnetic field, B0 (39) 

Without an aligning field, dipoles are randomly oriented in space resulting in a net magnetic vector of 

magnitude zero. In the presence of a constant external magnetic field B0, the proton aligns with the field either 

in the same direction of the field (parallel) or in the opposite direction (antiparallel).  
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Parallel alignment is energetically favoured thus resulting in most nuclei to be directed in such way resulting 

in only about 10 out of a million to be directed in the antiparallel way. The presence of the latter manifests in 

the generation of a net magnetization vector (Mz). As the energy between the two states is matched by incident 

radiation, the proton can absorb it and change from one state to the other in a process known as magnetic 

resonance. 

Due to the rotational momentum of nuclei, they do not perfectly align with the external magnetic field, they 

precess around the field direction [Figure 2.1]. The frequency of precession (ω0), used to trigger magnetic 

resonance, can be calculated by using the Larmor equation ω0=γ*B0 where γ is the gyromagnetic ratio of the 

nucleus.  

2.1.2. Excitation and Relaxation Phase 
In its equilibrium state, the net magnetization vector (Mz) of nuclei within a magnetic field remains static and 

does not generate a detectable signal. To extract information from nuclear spins, the direction of the net 

magnetization must be altered within the static magnetic field (B₀) by applying a radiofrequency (RF) magnetic 

field (B₁) at the Larmor frequency (resonance frequency), oriented perpendicular to B₀. This energy is typically 

delivered in short pulses lasting microseconds, and it is absorbed by the nucleus, which then undergoes a 

transition between energy states, causing the spins to precess in phase. 

Under equilibrium conditions in the presence of B₀, the magnetization vector M₀ has only a longitudinal 

component (MZ). Applying a 90° RF pulse induces a transition that effectively rotates M₀ by a specific angle 

relative to B₀. The effect is that the net magnetization (MZ) flips by 90° into the transverse plane, leaving M0 

with only its transverse component (MXY) [figure 2.2]. As this transverse magnetization precesses around a 

receiver coil, it induces an alternating current (AC) in the coil according to Faraday’s law of electromagnetic 

induction. 

 

Figure 2.2: Classical representation of the interaction of the spins with a 90° RF pulse to produce spin 

rotation. This leads to a macroscopic magnetisation, Mxy, perpendicular to the static field B0. (39) 

After the RF frequency is stopped, magnetization will decay over time towards the initial state in a process 

called “Free-Induction Decay” (FID). The detector registers this phenomenon as a sinusoidal signal with an 

exponential amplitude decrease [Figure 2.3]. 
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Figure 2.3: Representation of a registered “free induction decay” FID signal. (39) 

The restoring of the initial conditions is the process of relaxation, and its timing is a critical aspect. This process 

is composed of two parts: transverse relaxation and longitudinal relaxation whose timing is independent of 

each other. 

The realignment of the spins to the direction of the external magnetic field is the longitudinal relaxation process 

and it’s linked to the interactions with the environment of the nucleus. Its relaxation time is T1, defined as the 

time required for the system to recover 63% of the value at equilibrium. 

Transverse relaxation, the second relaxation process, is linked with the precession of spins around the 

magnetization vector and the gradual loss of phase coherence among them due to spin-spin interactions. 

Immediately following RF pulse excitation, the spins precess in complete synchrony and, over time, they 

dephase making the detected signal diminish. This process is characterized by T2 relaxation time which is the 

time it takes for dephasing to decay to 37% of its original value. 

Another relaxation phenomenon can be observed due to B₀ inhomogeneities which causes differences in 

precession frequencies across the sample and an acceleration of the dephasing process. The time linked to this 

exponential decay is T2* and it’s related to the magnetic properties of the sample. 

These timings are critical to the identification of different tissues, for example water and cerebrospinal fluid 

(CSF) have long T1 values (3000–5000 ms), appearing dark on T1-weighted images, while fat has a short T1 

value (260 ms) appearing bright on T1-weighted images. 

2.1.3. Spatial Encoding 
To generate an image, the MR signal from hydrogen protons must contain spatial information about their 

positions within the body and this is accomplished through three fundamental steps: slice selection, frequency 

encoding, and phase encoding. Specifically, magnetic field gradients are used to introduce controlled variations 

in the static magnetic field strength, thus altering the Larmor frequency, and can be applied along three 

orthogonal axes using dedicated gradient coils.   

To isolate a specific imaging slice a magnetic gradient of approximately 5 mT/m is briefly applied along the 

longitudinal (z-axis) direction for a few milliseconds. Midway through this gradient application, an RF pulse 

is delivered into the body consisting of a narrow band of frequencies centred around a target resonance 

frequency [Figure 2.4]. The latter is dependent on the local magnetic field determined by the sum of the 

gradient field strength and B₀ allowing for narrow slice acquisition. 
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Figure 2.4: Slice selection: the Larmor frequency is varied through the application of a magnetic field 

gradient which allows for selective excitation of spins. (39) 

Following the RF pulse, only the excited protons will undergo relaxation and generate signal, which is detected 

by the receiving coil. Another parallel slice can be acquired by modifying the excitation frequency. To encode 

spatial information within a selected slice, frequency encoding and phase encoding are applied, allowing the 

differentiation of individual points within the slice. 

 

Figure 2.5: Phase encoding: the phase encode gradient is switched on (top) and then off after a short period 

of time (a) causing a phase shift while retaining frequency once turned off (b). When another line is acquired 

(bottom), a different phase encoding gradient is used which triggers a different phase shift. Its accumulation 

is retained up to the time the signal is read. (39) 

In phase encoding, a brief, temporary change in the magnetic field along the y-axis is introduced between the 

RF excitation pulse and signal readout [Figure 2.5]. During this process, spins precess at different frequencies 

due to the magnetic field variation. However, once the phase-encoding gradient is turned off, all spins revert 

to precessing at the same frequency while retaining the phase shift.  
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Figure 2.6: Frequency encoding: during acquisition of the signal, a gradient field (orthogonal to the phase 

encoding direction) is switched on leading to a spatially dependent frequency. (39) 

Frequency encoding is used to distinguish pixels that share the same phase encoding by applying a magnetic 

gradient during the signal readout phase. This causes spins to precess at different frequencies, which 

correspond to their spatial locations along the applied gradient axis. By analysing the signal frequencies and 

knowing the amplitude of the readout gradient, each frequency can be correlated with a specific spatial 

position. 

By combining phase and frequency encoding, a structured grid is formed in which each pixel is defined by a 

unique combination of phase and frequency values. This matrix of raw signal data is referred to as k-space. To 

reconstruct the image, a fast Fourier transform is applied to the data converting it from an amplitude as a 

function of time to a function of frequency corresponding to a single spatial coordinate.  

The frequency encoding process, which relies on the readout gradient, has minimal impact on total acquisition 

time due to its short duration, typically lasting only a few milliseconds, while phase encoding significantly 

influences it, as it requires one RF pulse per echo and is dependent on the repetition time, which is mainly 

determined by the desired image contrast.  

2.1.4. Contrast Modulation 
A weighted MRI scan can be performed by leveraging tissue properties which increase its contrast when 

observed in particular acquisition sequences. T1-weighted images emphasize differences in longitudinal 

relaxation times, whereas T2-weighted images highlight variations in the decay of transverse magnetization. 

The alteration of these properties, and the resulting variation of contrast, due to pathological conditions is at 

the basis of the interpretation of MRI for medical diagnosis.  

MRI contrast is mainly determined by two key parameters: echo time (TE) and repetition time (TR). Echo time 

refers to the interval between the radiofrequency pulse and the peak of the detected signal, defining when the 

signal is measured. Repetition time is the period between successive excitation pulses, which influences how 

frequently images are acquired. Adjusting TE and TR enables MRI sequences to highlight specific tissue 

properties and improve diagnostic accuracy [Figure 2.7]. 

T2-weighted imaging relies on an extended TE, which allows sufficient time for T2 relaxation time to happen, 

and an extended TR, which minimizes T1 relaxation. Typically, an echo time longer than 80 milliseconds is 

chosen to enhance tissue contrast, while TR is set above 2 seconds to optimize image clarity. 
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Figure 2.7: MR images of the same transaxial slice through the human brain acquired by weighting the 

acquisition for T1 (longitudinal relaxation), T2 (transverse relaxation), or ρ (proton density). The desired 

weighting is achieved by varying the echo time (TE) and repetition time (TR). (39) 

In contrast, T1-weighted imaging requires a short TE, below 25ms, which allows contrast to be governed by 

longitudinal relaxation. This is often accompanied by a short TR, below 200ms, to allow sufficient longitudinal 

magnetization recovery before the next excitation pulse. 

A proton density-weighted image is generated when a long TR (greater than 2 seconds) and a short TE (less 

than 25 milliseconds) are applied. This type of image offers a high signal-to-noise ratio (SNR) but generally 

has lower contrast compared to T1 and T2-weighted images. 

In addition to conventional weighting techniques, inversion recovery sequences are used to achieve specific 

contrast adjustments by modifying the inversion time (TI). A short TI (STIR) significantly reduces fat signal 

intensity, while a long TI suppresses signals from fluids such as cerebrospinal fluid (CSF) in fluid-attenuated 

inversion recovery (FLAIR) sequences which is widely used in brain imaging to darken CSF and enhance the 

visibility of other structures and pathological lesions. 

2.1.5. Pulse Sequences 
To obtain an FID signal, it’s sufficient to send out a 90-degree pulse which triggers transverse net 

magnetization. Before sending out a different pulse, necessary in certain sequences, it’s necessary to wait 3 to 

5 times the longest T1 of the sample called the repetition time (TR). The sequential use of 90-degree pulses is 

identified as saturation recovery (SR). 

 

Figure 2.8: Schematic RF-pulse sequence for Saturation Recovery (SR). (42) 
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However, waiting for TR is not an optimal strategy when having to spatially encode the output signals or using 

a second signal to manipulate contrast across tissues. The pulse sequence can be finely controlled to obtain 

more informative scans by modifying RF and magnetic pulses, sampling intervals and time gaps between 

pulses. 

One of the sequences is the definition of the spin echo method which relies on the application of two 

radiofrequency (RF) pulses: an initial 90° RF pulse (excitation pulse) followed by a 180° RF pulse (refocusing 

pulse). The first pulse rotates all spins moving the magnetization vector (M) into the transverse plane and 

rephasing them together. Once the RF pulse is turned off, the spins begin to precess and gradually lose phase 

coherence. 

Then, a 180-degree pulse is applied at a time t=TE/2 after the application of the initial pulse which rotates the 

spins by 180° relative to their original positions refocusing the spins. After this, the spins remain in the 

transverse plane, but those with higher precessional frequencies ("faster" spins) shift behind those with lower 

precessional frequencies ("slower" spins). This phase accumulation causes by magnetic field inhomogeneities 

between t = 0 and t = TE/2 is corrected after the 180° RF pulse, leading to a rephasing effect at t = TE (echo 

time), which occurs TE/2 seconds after refocusing.   

Since B₀ field inhomogeneities are static over time, they are cancelled out by this method. However, spin-spin 

interactions fluctuate over time, meaning that T₂ decay persists. The longer a spin echo takes to be acquired, 

the greater the effect of T₂ relaxation. 

The 180° RF pulse can be applied repeatedly, producing multiple echoes of diminishing amplitude. This 

sequence, known as the Carr-Purcell-Meiboom-Gill (CPMG) train, consists of a repeated cycle: 90° – TE/2 – 

180° – TE – 180° – TE – 180° [Figure 2.9]. The echo time (TE) represents both the interval between consecutive 

180° pulses and the time between successive echoes, which appear midway between RF pulses. Importantly, 

TE must always be shorter than T₂. 

 

Figure 2.9: Carr-Purcell-Meiboom-Gill (CPMG) Train of pulses. (42) 

Gradient echo (GRE) is another sequence that utilizes, rather than an RF pulse, a gradient pulse which is a 

controlled linear variation in magnetic field strength over a brief period of time.  

In a GRE, an excitation pulse is applied, followed by two gradient pulses. The first gradient pulse is activated 

immediately after the excitation pulse, altering the local magnetic field strength as a function of spatial 

position. According to the Larmor equation, spins precess at different frequencies within this gradient field, 

leading to phase accumulation and a reduction in the observed signal. When the first gradient is turned off, a 

second gradient pulse of equal amplitude but opposite polarity is applied. Spins that were initially forced to 

precess at slower frequencies than those in the presence of B₀ now precess faster under the influence of the 

second gradient. Over time, this reverses the phase dispersion, leading to partial rephasing of the spins. 

These two techniques modify contrast based on TE and TR, but another important parameter is TI which can 

be used in inversion recovery to get rid of undesired signals during imaging. This is done by sending a 180-

degree pulse at time TI before the 90-degree excitation pulse making CSF or fat signal null. [Figure 2.10] 
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Figure 2.10: Schematic RF-pulse sequence for Inversion Recovery (IR).  (42) 

Acquiring images using conventional MRI pulse sequences can be highly time-consuming as even a TR of 1 

second can lead to hours long acquisitions which are impractical for a clinical setting. To mitigate this issue, 

several strategies have been developed to accelerate MRI acquisition. 

A compromise can be reached by reducing the number of data points, with the cost of having a lower resolution, 

or using multi-slice imaging, which allows simultaneous acquisition of data from multiple slices within the 

intervals between excitation pulses, capturing 16 or 32 slices at once by subjecting each slice to slightly 

different magnetic fields. The latter technique can substantially decrease total scan time to around 30 minutes. 

To further accelerate imaging, the Turbo Spin Echo (TSE) method, which captures multiple spin echoes within 

a single pulse sequence, can be utilized reducing scan duration to around ten minutes or less. TSE is primarily 

used to generate T₂-weighted images, with contrast variations dependent on the echo time. 

Another rapid imaging method is single-shot echo planar imaging (SS-EPI), which enables the capture of a 

complete image in a single RF excitation by alternating the direction of the x-gradient rapidly while short phase 

encoding gradients are applied in the other directions. Although SS-EPI is extremely fast and useful for 

functional MRI (fMRI), angiography and diffusion imaging, it presents technical challenges due to its 

complexity making multi-shot EPI a more stable alternative for routine MRI.  

In recent years, the Magnetization-Prepared Rapid Gradient Echo (MPRAGE) sequence has become a widely 

adopted technique for obtaining high-resolution T₁-weighted images of the human brain, particularly in high-

field MRI. This technique consists of three main phases: magnetization preparation which optimizes contrast, 

data acquisition utilizing a gradient-echo sequence with a short TR, and magnetization recovery allowing 

further contrast control. 

A refined version of MPRAGE, known as MP2RAGE, further enhances image quality. This method begins 

with a 180° inversion pulse to prepare magnetization, followed by multiple gradient-echo acquisitions at a low 

flip angle [Figure 2.11]. After a delay, a second gradient-echo block is applied with a different flip angle, 

followed by another recovery period. This cycle is repeated to sample the space in three dimensions. The final 

image is generated by combining data acquired at different inversion times, leading to improved contrast and 

image clarity. (43) 

 

Figure 2.11: Schematic RF-pulse sequence for MP2RAGE (43). 
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2.2.Structural MRI 
Structural MRI provides high-resolution images of the anatomical features of the brain, allowing for the 

assessment of the brain’s spatial distribution and the detection of physical abnormalities such as atrophy or 

lesions. From such scans we can identify two types of brain tissue matter: white (WM) and grey (GM). The 

former consists mainly of myelinated axons while the latter includes neuronal cell bodies and glial cells. The 

presence of myelin is the relevant factor in MRI investigations as it affects contrast by decreasing T1, T2 and 

proton density by reducing the interaction between free water and macromolecules in its sheath (44).  

For structural MRI, high-resolution T1-weighted 3D sequences such as MPRAGE and MDEFT (Modified 

Driven Equilibrium Fourier Transform) are commonly used as these sequences are optimized to enhance 

contrast between grey matter, white matter, and cerebrospinal fluid, allowing for detailed anatomical 

visualization (43).  

In these images, fat and WM exhibits high signal intensity, appearing white, whereas fluids and GM produce 

low signal intensity, appearing darker. Although T1-weighted imaging effectively differentiates between white 

and grey matter, it is less useful for distinguishing cerebrospinal fluid from grey matter. This limitation makes 

it challenging to visualize fluid compartments such as the ventricles, the cerebral aqueduct, and the 

subarachnoid space6. 

Conversely, in T2-weighted images, fluids generate high-intensity signals which makes for an excellent 

contrast between cerebrospinal fluid and brain tissue. More recently, fluid-attenuated inversion recovery 

(FLAIR) has been developed as a complement or even a potential replacement for conventional T2-weighted 

imaging, particularly for detecting abnormalities in the presence of fluid compartments (45). 

2.2.1. Extraction of GM Thickness 
Particularly important in the study of neurodegenerative diseases is the ability to estimate cortical thicknesses 

and brain volumes to track atrophy. The extraction process is done by using FreeSurfer, a widely used open-

sourced tool, and it involves several key steps, leveraging advanced image processing algorithms to accurately 

delineate and quantify cortical structures.  

The processing of structural T1-weighted MRI scans includes steps of normalization to a standardized atlas 

(Tailarach Atlas), removal of non-brain tissues, automatic segmentation of brain tissues, such as grey matter, 

white matter and cerebrospinal fluid (CSF), pial and white matter surface reconstruction, cortical thickness 

calculation and a final step of registration and parcellation. 

The last step in particular is made to allow for intra- and inter-subject comparisons. Registration is the process 

of alignment of the image to a standard brain template which ensures that corresponding regions of different 

brains are aligned. Once this procedure is completed, the cortex is then subdivided into anatomical regions 

through a process called parcellation. FreeSurfer uses the Desikan-Killiany atlas to label regions enabling 

region-specific analysis of grey matter thickness. 

An option in the processing of structural MRI scans in FreeSurfer is the use of a longitudinal processing 

pipeline which is specifically designed to enhance the analysis of brain changes over time, making it 

particularly useful for studying progressive changes in brain structure like the ones in PD (46). This pipeline 

offers several distinct advantages over cross-sectional processing, which only analyses individual time points 

independently, like enhancing the accuracy and sensitivity of detecting structural changes in the brain by 

leveraging the temporal relationship between multiple time points. 

One of the key features of FreeSurfer’s longitudinal processing is the creation of a subject-specific template 

generated by averaging the MRI data across all its time points. This is done by using a technique called inverse 

consistent registration which aligns and averages the images from different time points to form a common 

reference space which serves as a baseline for subsequent analysis, reducing variability which might be 

introduced by differences in image quality or misalignment between scans taken at different time points. 
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Each time point is then analysed in relation to the template leading to more reliable measurements of brain 

volumes and cortical thicknesses which is particularly beneficial in settings where following individual 

patients over time can reveal early signs of neurodegeneration. 

2.3.Functional MRI 
Functional MRI (fMRI) is used to detect regional time-dependent changes in brain metabolism, which may 

result from task-induced cognitive state changes or spontaneous resting-state processes. It manages to obtain 

this information while relying on the same MRI equipment as the one used for structural scans and being non-

invasive. 

An fMRI time series reflects the changes in the blood oxygen level-dependent (BOLD) signal, which is an 

evoked response resulting in a complex and nonlinear function arising due to neuronal activity changes in 

response to a stimulus or task. Neural activity in the brain requires energy in the form of adenosine triphosphate 

(ATP), which is primarily generated by mitochondria through the oxidative metabolism of glucose, which 

produces carbon dioxide as a byproduct. When a specific brain region is activated, increased neural activity 

raises the local energy demand, leading to an elevated cerebral metabolic rate of oxygen consumption in that 

area (47). 

 

Figure 2.12: Typical BOLD response divided into three different regions:  initial dip, peak, and post-stimulus 

undershoot. (48) 

This process, known as the hemodynamic response, enhances regional cerebral blood flow and oxygen 

delivery. These changes alter the relative concentrations of oxyhaemoglobin (O2Hb) and deoxyhaemoglobin 

(HHb), which can be detected using MRI due to their different magnetic susceptibilities. Unlike O2Hb, which 

has minimal magnetic susceptibility differences compared to surrounding tissues or water, HHb is highly 

paramagnetic, causing significant slowing of the decay rate of the MRI signal, leading to an overall increase 

in signal strength which is generally small—around 1% or less—but can vary depending on the strength of the 

magnetic field. (49) 

The temporal characteristics of neural activity as captured by fMRI, which reflect low-frequency fluctuations 

in the BOLD signal, differ significantly from those observed in neurophysiological studies that directly 

measure high-frequency neural firing. The BOLD signal typically begins about two seconds after neuronal 

activation, reaches its peak around 5–8 seconds after peak activity, and then drops below baseline in a phase 

known as the post-stimulus undershoot, which lasts approximately 10 seconds. This undershoot occurs because 

the reduction in blood flow outpaces the decline in blood volume, resulting in an increased concentration of 
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HHb in the activated brain regions. Additionally, a brief decrease in oxygenation can be observed shortly after 

neural activation, leading to an initial negative BOLD response, sometimes referred to as the "negative dip," 

within the first one to two seconds following stimulation. (48) 

The fMRI signal is influenced by random noise and other factors arising from both the scanning hardware and 

the subjects. One particular source of noise is the thermal motion of electrons within both the subject and the 

scanner, which generating a random noise that is independent of experimental conditions that can be managed 

by averaging data across multiple acquisitions. 

Another source of signal fluctuation is scanner drift, which results from instabilities in the MRI system and 

introduces slow, low-frequency variations in voxel intensity over time. Since this drift varies across different 

regions of the brain, it must be accounted for in fMRI analyses. Physiological noise, including subject 

movement, respiration, and heartbeat, also affects the fMRI signal by causing spatial and temporal fluctuations. 

While some of this noise can be modelled and corrected, periodic variations due to cardiac and respiratory 

cycles remain challenging to fully eliminate. 

Despite its many advantages, fMRI has inherent limitations that affect its ability to measure brain activity 

coming from constraints on spatial and temporal resolution. Although MRI can achieve sub-millimeter 

anatomical resolution, acquiring such high-resolution functional images would take too long for practical use 

in fMRI. In typical fMRI studies, spatial resolution is approximately 3×3×5 mm, with image dimensions 

around 64×64×30 voxels, acquired within approximately 2 seconds.  

Temporal resolution, which is dictated by the repetition time (TR) between image acquisitions, generally 

ranges from 0.5 to 4.0 seconds. While shorter TR values improve the ability to track rapid neural events, they 

often come at the expense of spatial resolution. Another significant challenge in fMRI research is making 

population-level inferences, as individual subjects have different brain sizes and anatomical variations. To 

compare data across participants, brain images are transformed onto a standard template which can introduce 

some degree of inaccuracy and blurring (50).  

2.3.1. Resting-State Networks 
Resting-state fMRI (rs-fMRI) captures brain activity in the absence of external stimuli or specific tasks, 

allowing researchers to examine neural activity during rest. This can be done by focusing on spontaneous low-

frequency fluctuations in the BOLD signal. The concept of these fluctuations was first introduced by Biswal 

in 1995, who demonstrated synchronized activity between primary and higher-order somatosensory areas. (51)  

Research has identified two opposing brain systems, commonly referred to as "task-positive" and "task-

negative" (or "intrinsic" and "extrinsic") networks. Task-positive networks are engaged during cognitive tasks 

and goal-directed activities, such as processing external stimuli or executing tasks. In contrast, task-negative 

networks are more active when the brain is at rest or disengaged from external stimuli. An example of a task-

negative network is the Default Mode Network (DMN), one of the primary resting-state networks which 

includes the medial prefrontal cortex and the posterior cingulate cortex, initially identified through PET studies 

and later confirmed using fMRI. (52) 
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2.4.MRI findings in PD Patients 

2.4.1. Structural MRI findings 
MRI has identified specific morphological and metabolic brain changes associated with PD which can also be 

used for the diagnosis of parkinsonian syndromes. 

Structural MRI studies have reported notable changes in the frontal, parietal, and occipital lobes, particularly 

in advanced cases and patients with cognitive impairment (53). Additionally, distinct atrophy patterns have 

also been identified in early-stage PD (54). Other research also highlights thinning of the substantia nigra pars 

compacta, relatively less atrophy in the frontal cortex, and possible enlargement of the ventricles (55).  

In newly diagnosed Parkinson’s disease patients, significant grey matter atrophy or cortical thinning may not 

be evident at baseline compared to healthy controls although some longitudinal studies suggest that early-stage 

patients show initial cortical changes, with atrophy occurring primarily in the basal ganglia and progressive 

cortical thinning in the fronto-parietal and hippocampal regions over 1.5 to 3 years. On the other hand, middle-

stage Parkinson’s disease is more easily associated with initial cortical thinning, followed by widespread 

cortical atrophy while, in advanced stages, MRI can detect hyperintensities on T2-weighted sequences and 

blurred boundaries of the red nucleus near the SN (54).   

To detect SN changes, new techniques have been developed such as neuromelanin-sensitive T1-weighted 

imaging and inversion recovery sequences, which take advantage of the paramagnetic properties of 

neuromelanin, which binds iron and increases signal intensity in neuromelanin-rich regions like the substantia 

nigra and locus coeruleus. They are emerging as valuable tools for early detection and monitoring disease 

progression (54).   

Inversion recovery sequences, including T2-FLAIR and Fast Inversion Recovery for Myelin Suppression, 

further enhance contrast by selectively suppressing certain tissue signals. Both sequences help detect atrophy 

in critical brain regions while also identifying ventricular enlargement and deep white matter hyperintensities, 

which could serve as additional PD markers for early diagnosis (55).   

Recent developments in high-field (3.0 T) and ultra-high-field (7.0 T) MRI have shown promise in detecting 

abnormalities in the substantia nigra and nigrostriatal pathway. The improved signal-to-noise ratio at higher 

field strengths enhances anatomical detail, increases sensitivity to small lesions, and provides sharper grey-to-

white matter contrast, resulting in clearer images and more precise visualization of brain (54).   

A systematic review by Filippi et al. (2022) examined various neuroimaging studies focusing on GBA-

associated parkinsonism. Specifically, certain longitudinal structural MRI studies reported that GBA-PD 

patients experience a more aggressive disease progression, characterized by greater cortical involvement and 

more significant atrophy in both grey and white matter regions. However, other studies failed to observe these 

differences suggesting that, while GBA mutations may contribute to distinct neurodegenerative patterns, 

further research is needed to clarify their impact. Nonetheless, incorporating genetic information into the 

clinical assessment and monitoring of PD patients remains essential (56). 

2.4.2. Functional MRI findings 
The brain is organized into several intrinsic functional networks that remain active even when the body is at 

rest, which can be picked up through rs-fMRI. These include the default mode network (DMN), sensorimotor 

network, executive control network, and others whose integrity can be analysed to evaluate disease progression 

(57). In PD, disruptions in these resting-state networks have been identified, providing insights into how the 

disease affects brain function beyond the motor symptoms (58).  

Additionally, rs-fMRI enables the study of functional connectivity alterations through connectomics, providing 

valuable insights into how neurodegenerative diseases impact brain function. The next section explores this 

approach in greater detail.  
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3. Connectomics 
Advanced imaging techniques have allowed for the analysis of brain networks through connectomics, by 

representing the brain as a connectome, a graph where each brain region serves as a node linked to others by 

connections or edges. One such graph is the structural connectome, derived from diffusion tensor imaging 

(DTI) or diffusion-weighted imaging (DWI), which reconstructs axonal pathways, reflecting the brain’s 

physical network architecture, and is crucial for detecting disruptions seen in neurodegenerative processes.   

In contrast, the functional connectome, extracted from rs-fMRI, is constructed based on temporal correlations 

between the BOLD signals of different brain regions. This connectome captures functional interactions rather 

than direct anatomical connections, providing information into how regions communicate dynamically. The 

analysis of this connectome has been particularly valuable in studying neurodegenerative diseases, as it can 

reveal early pathological changes, track disease progression, and serve as a potential biomarker for monitoring 

cognitive and motor impairments. 

3.1.Functional Connectome (FC) 
Recent studies have shown that PD patients exhibit reduced functional connectivity in motor-related regions 

such as the basal ganglia, thalamus, and motor cortex but also in networks related to cognition (59). These 

changes are thought to reflect the dysfunction of the dopaminergic pathways that are central to the motor 

control deficits in PD. 

The analysis of FC also holds promise in identifying early-stage PD or individuals at risk for developing the 

disease especially in tandem with machine (60) and deep learning techniques (61) as rs-fMRI can detect subtle 

changes in brain connectivity even before evident motor and non-motor symptoms appear. It also plays a 

critical role in assessing the effects of therapeutic intervention by examining changes in FC pre- and post-

treatment. For example, levodopa therapy, which temporarily restores dopamine levels, has been shown to 

affect the connectivity patterns in the primary motor cortex (62).  

A study by Sezgin et al. (63) investigated FC in asymptomatic carriers of heterozygous GBA mutations and  

the researchers focused on the striatocortical circuitry, a network integral to motor and cognitive functions, 

revealing significant alterations in FC between the striatum and various cortical regions, including the 

prefrontal cortex and sensorimotor areas, when compared to non-carrier controls. These findings suggest that 

disruptions in striatocortical connectivity may occur prior to the onset of clinical symptoms in GBA mutation 

carriers, potentially serving as early biomarkers for PD.  

In summary, the analysis of FC is instrumental in advancing the understanding of degenerative mechanisms of 

PD. The identification of key disruptions in brain networks not only offers new insights into disease 

progression but also aids in the identification of potential biomarkers for early diagnosis and evaluation of the 

impact of therapeutic interventions. 

3.2.Graph Theory 
One technique used for the identification of alterations is graph theory, which provides a mathematical 

framework for analysing brain networks which can be represented as graphs where nodes correspond to single 

brain regions and edges represent the structural or functional connections between them. These connections 

can be extracted through neuroimaging techniques such as fMRI for functional connectomes and diffusion 

tensor imaging (DTI) for structural connectomes (64). 

The characterization of functional connectomes is carried out with measures of global and local properties. 

Global properties evaluate various aspects related to maximization of information flow along with 

minimization of resource costs (65). The first global property is functional segregation, which reflects the 
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network’s ability to form specialized, highly efficient communities. The second, functional integration, 

provides insight into the efficiency of information flow across nodes. The third, small-worldness, characterizes 

the system’s ability to balance high segregation with high integration, effectively merging the previous aspects. 

Lastly, network resilience represents the network's ability to recover from failure. In contrast, local properties 

rely on the characterization of hubs or nodes with central, highly relevant positions within the network which 

affect its topology. These are divided into connector and provincial hubs based on indexes of nodal centrality 

within the network, such as nodal degree, nodal strength, betweenness and eigenvector centrality. 

The identification of such measures is useful for the identification of functional connectivity alterations within 

neurodegenerative diseases such as AD. Specifically researchers identified degeneration of brain hubs with the 

reduction of local and global measures consistent with disconnection phenomena previously identified in AD. 

The application was also extended to multiple sclerosis, another neurodegenerative disorder, in which 

measures of eigenvector centrality reported alterations consistent with clinical indexes of disability (66). In the 

context of PD, graph theory have identified significant differences in topological measures between PD 

patients and controls, particularly within the DMN and occipital lobes (67). 

No applications in literature were identified for PD patients carrying GBA mutations spurning the interest for 

carrying out such analysis on FC coming from this subgroup. 

3.3.Network Based Statistics (NBS) 
Another statistical method for the analysis of complex brain networks is Network Based Statistics as introduced 

by Zalesky et al. (68). This approach identifies alterations in brain networks while avoiding challenges related 

to multiple comparison analysis which reduce statistical power by comparing results with null distributions. 

This method relies on three steps: mass-univariate testing, component identification and significance 

assessment. Mass-univariate testing is performed by analysing each connection independently for differences 

across groups, component identification is used to identify connected subnetworks based on topological 

network adjacency and significance assessment is carried out through permutation testing to generate a null 

distribution whose components will be compared to the observed components to obtain statistically significant 

alterations. 

The focus on interconnected networks allows for control over family-wise error rate, increasing the sensitivity 

to changes in FC. While this technique was introduced for spotting alteration in schizophrenia patients, the 

identification of FC alterations can be applied to neurodegenerative diseases. 

In AD patients, several disconnected components were identified in regions connected to the DMN, an 

observation consistent with alterations identified with other techniques (69). In PD patients, NBS has been 

used to identify functional connectivity alterations distinguishing those eligible for DBS from those who are 

not. This approach highlights the potential of NBS as a highly sensitive tool for the early identification of DBS-

eligible patients, aiding in more precise and timely treatment decisions. (70) 

In summary, NBS’s ability to grant a powerful statistic framework, while enhancing sensitivity even in multiple 

comparisons, make it suitable for the identification of differences across GBA carrier and non-carrier PD 

patients. 
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Figure 3.3: Regional analysis results obtained with NBS, from left to right: increased functional connectivity 

in candidates for DBS relative to controls; increased functional connectivity in Candidates for DBS relative 

to non-candidates; decreased functional connectivity in Candidates for DBS relative to non-candidates. (70) 

3.4.Modelling Neurodegeneration 
Neurodegenerative diseases are characterized by the progressive loss of neuronal function and cell death in 

specific brain regions, making their tracking and prediction crucial for understanding disease mechanisms. 

While significant progress has been made in identifying pathological hallmarks, such as the accumulation of 

misfolded proteins, the precise mechanisms underlying their spatial and temporal progression remain largely 

unknown.  

In this regard, computational models have emerged as powerful tools for simulating disease progression, 

integrating biological, structural, and functional data to uncover underlying mechanisms. Various modelling 

approaches have been developed, each based on different hypotheses regarding how neurodegeneration 

spreads. The following sections will explore these diverse frameworks, examining their applications and 

potential for advancing future research. 

3.4.1. Models Based on Local Gene Expression 
Neurodegenerative diseases exhibit regionally selective vulnerability, with certain brain areas deteriorating 

earlier and more severely than others. Increasing evidence suggests that local gene expression patterns, 

particularly those related to synaptic maintenance, protein homeostasis, and immune responses, play a crucial 

role in shaping these atrophy patterns. To better understand how genetic susceptibility interacts with disease 

progression, recent modelling approaches have integrated transcriptomic data into agent-based frameworks. 

One such approach leverages the Susceptible-Infected-Removed (SIR) model, originally designed for 

epidemiological studies, to describe neurodegenerative disease spread at the neuronal level. In this context: 

• Susceptible (S) neurons belong to brain regions at risk of pathology, 

• Infected (I) neurons are affected by disease-related misfolded proteins, 

• Removed (R) neurons are permanently damaged or lost due to disease progression. 

The model is governed by differential equations, where the rates of pathology spread, and neuronal loss can 

be adapted to be region-dependent and influenced by local gene expression patterns. 

A study by Shafiei et al. (71) applied this approach to behavioural variant frontotemporal dementia (bvFTD), 

demonstrating that regional gene expression of disease-relevant genes, such as C9orf72 and TARDBP, 
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significantly contributes to local vulnerability. Their model, incorporating gene expression maps alongside 

structural and functional connectivity data from healthy controls, successfully predicted the spatiotemporal 

distribution of atrophy. This emphasizes the importance of integrating molecular factors alongside network 

connectivity in disease modelling. 

Similarly, Abdelgawad et al. (72) applied an SIR model to longitudinal data from PD patients. In this case, 

pathology spread was modulated by structural connectivity and by the expression of genes GBA and SNCA, 

both implicated in PD. The model achieved significant correlations between simulated and actual atrophy 

patterns over the first two time points, demonstrating the potential of transcriptomic-informed models in 

predicting neurodegeneration dynamics. 

 

Figure 3.4.1: Simulation of pathology spread through a SIR model. Proteins propagate via the structural 

connections between brain regions and induce atrophy, both pre- and post-synaptically. (71) 

3.4.2. Machine and Deep Learning Models 
Recent advancements in computational modelling for neurodegenerative diseases have increasingly 

incorporated machine learning and deep learning techniques to enhance predictive accuracy and uncover 

complex disease mechanisms.  

The first approach by Zhang et al. (73) leverages Physics-Informed Neural Networks (PINNs) to enforce 

generic physical models while using symbolic regression to discover the underlying reaction-diffusion 

equations governing tau propagation. By integrating clinical imaging data, the model optimizes parameters of 

the reaction function, allowing for patient-specific predictions of disease progression. The system of 

differential equations incorporates brain connectivity data, ensuring that the diffusion process aligns with 

known anatomical pathways of neurodegeneration. While this approach shows promise in observing long-term 

tau concentrations, the data presented by the study is limited to short-term casting doubts on the predictive 

powers of such model. 

The study by Young et al. (74) focuses on FTD, examining how different MAPT mutations influence clinical 

features and atrophy patterns analysed by an unsupervised machine learning technique. The Subtype and Stage 

Inference (SuStaIn) algorithm is trained on longitudinal clinical and imaging data to identify distinct atrophy 

trajectories associated with specific mutations linking genotype to phenotype and providing insights into how 

tau pathology leads to region-specific neurodegeneration.  

In another study, Sanz Perl et al. (75) applied a deep-learning whole-brain perturbational modelling approach 

to investigate how neurodegenerative diseases alter brain connectivity in patients diagnosed with Alzheimer's 

disease and behavioural variant frontotemporal dementia. By introducing perturbations, they identified critical 

regions and pathways involved in disease progression, providing insights into potential therapeutic targets.  
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Figure 3.4.2. Methodological outline of whole-brain perturbational modelling through a deep-learning 

approach (75). 

3.4.3. Computational Models based on Network Based Diffusion 
Network-based diffusion models have become instrumental in understanding the progression of 

neurodegenerative diseases by simulating how pathological agents, such as misfolded proteins, propagate 

through the brain's structural connectivity network, offering insights into disease dynamics and potential 

therapeutic targets. 

Chen et al. (76) developed a mathematical framework to study tau pathology spread in Alzheimer's disease 

and related disorders. Their model comprises a system of partial differential equations addressing two primary 

propagation pathways: Intracellular Diffusion, where tau spreads through synaptic connections or nanotubes 

crossing adjacent neurons, and extracellular diffusion, where secreted protein diffuses through interstitial fluid 

and is taken up by neighbouring cells. Numerical simulations revealed that intracellular diffusion aligns with 

the gradual progression observed in clinical Alzheimer's cases emphasizing the significance of cross-

membrane tau transport and extracellular clearance in maintaining neuronal health. 

Tora et al. (77) introduced a Network Transport Model (NTM) to capture the directional spread of tau proteins 

in Alzheimer's disease. Unlike traditional diffusion models, the NTM incorporates active transport mechanisms 

along axonal pathways, accounting for the observed directional bias in tau propagation. This model, 

parameterized by microscopic processes such as aggregation and transport rates, provides a comprehensive 

framework linking molecular dynamics to macroscopic disease progression. 
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Figure 3.4.3. Illustration of NTM in which brain regions are represented by nodes and white matter fibre 

projections between them by edges. Tau pathology propagates through active diffusion in an anterograde or 

retrograde direction, depending on the cell polarity and the solubility of tau (77). 

3.4.4.  Network Diffusion Models (NDM) 
The NDM has emerged as a pivotal tool in elucidating the progression of neurodegenerative diseases. By 

simulating the transneuronal spread of pathological proteins along the brain's structural connectivity, this 

model offers insights into disease dynamics across various prion-like diseases. 

Raj et al. (78) first introduced the NDM to investigate disease propagation in AD and behavioural variant 

Frontotemporal Dementia (bvFTD). Utilizing diffusion MRI data from healthy individuals, they constructed 

the structural connectivity network to model how misfolded proteins disseminate along neuronal pathways. 

The model's predictions closely mirrored observed atrophy patterns in AD and bvFTD patients, supporting the 

hypothesis that neurodegenerative diseases spread through the brain's network architecture.  

Expanding upon this framework, Pandya et al. (79) tailored the NDM to PD by focusing on the propagation of 

misfolded alpha-synuclein proteins. By integrating structural connectivity data, the model simulated the spread 

of pathology originating from randomized seed regions. The simulations accurately reflected the spatial and 

temporal progression of PD, aligning with known neuropathological stages. Notably, the model identified the 

substantia nigra as the most probable seed region, reinforcing its central role in PD pathogenesis. This study 

underscored the utility of the NDM in predicting disease trajectories and highlighted their potential in refining 

diagnostic and therapeutic strategies. 

Another application of NDM was carried out by Bhattarai et al. (80) to predict neurodegeneration patterns in 

patients with limb-onset ALS. By utilizing structural MRI data, the model simulated the spread of pathology 

through the brain's connectome. Findings indicated that the NDM could accurately replicate both the severity 

and progression of neurodegeneration observed in these patients, highlighting its potential as a predictive tool 

for ALS progression. 
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Collectively, these studies demonstrate the versatility and robustness of the NDM in capturing the complex 

dynamics of neurodegenerative disease progression. By leveraging the brain's structural connectivity, NDM 

provides a unified framework to simulate the dissemination of pathological prion-like proteins, offering 

valuable insights into disease mechanisms and potential therapeutic targets across various neurodegenerative 

conditions.  

 

Figure 3.4.4. Application of the NDM for ALS in which model output is related to measured atrophy to 

predict neurodegeneration. (80) 

3.4.5. Models Simulating Aggregation 
While models based on diffusion alone show promising results, they can be expanded by considering protein 

aggregation phenomena which play a crucial role in the progression of neurodegenerative diseases. Recently, 

a growing number of computational approaches have started to integrate such concepts to more accurately 

model disease mechanisms. 

Lindstrom et al. (81) developed an aggregation-based model to explore the molecular origins of Alzheimer's 

disease, focusing on the formation and accumulation of amyloid-beta monomers into dimers and trimers. By 

emphasizing the role of reaction kinetics in driving protein aggregation, the model simulates the transition 

from monomeric species to toxic species such as oligomers and fibril formations. The model replicates the 

rapid increase in AD incidence with age by incorporating age-related changes in protein dynamics while 

providing a quantitative framework for understanding how molecular interactions contribute to disease 

progression. 

Brennan et al. (82) introduced a model integrating network-based diffusion with protein aggregation kinetics 

to study the dynamics and treatment of AD. This approach captures the spread of misfolded proteins across the 

structural connectome while incorporating the processes of nucleation, elongation, and fragmentation of 

aggregates. By simulating disease progression within a network framework, the model offers a powerful tool 

for predicting atrophy patterns and evaluating potential therapeutic interventions targeting specific brain 

regions or molecular pathways.   
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3.4.6. Aggregation-Network-Diffusion (AND) Model 
Raj et al. (83) developed a mathematical model that integrates protein aggregation kinetics with network 

diffusion to simulate tau propagation in AD. The AND model describes mathematically the biophysical 

mechanisms underlying misfolded protein production, aggregation, and diffusion across the brain’s structural 

connectivity. The following section provides a detailed analysis of the model’s mechanics, laying the 

groundwork for its adaptation to α-Syn propagation in PD in the methods section. 

 

Figure 3.4.6.1 Illustration of the mechanisms of monomer production, aggregation and network transmission 

(left) with a focus on Smoluchowski aggregation from monomers to tangles (right). (83) 

3.4.6.1.Smoluchowski Aggregation 
The aggregation process follows a system of infinite discrete differential equations first described by 

Smoluchowski in 1917 to model the rapid coagulation of aerosols. This theory is based on pairwise 

coagulation, making it applicable to various fields that require modelling the evolution of diffusing particle 

densities, such as polymerization, biological populations, and fuel mixtures. More recently, Smoluchowski’s 

equations have been used to describe the aggregation of Aβ amyloid (84) and τ-polymers (85). The established 

parallels between these proteins and α-Syn in the context of prion-like propagation provide the foundation for 

applying this theory to α-Syn aggregation in PD.  

The theory offers characterization of the behaviour of polymers of length k (Pk) as sets of k identical monomers 

which are free to move within a medium. This approximation is made in the context of aggregation phenomena 

within brain regions, diffusion is mediated through implementation of network-based diffusion in the following 

section. The aggregation is described in through a probability that two monomers or oligomers might approach 

each other and merge into bigger oligomers of size equal to the sum of the lengths of the original species. 

Admitting only binary reactions, the coalescence process is described through: 

𝑃𝑘 + 𝑃𝑗 → 𝑃𝑘+𝑗 

for the two polymers of size k and j. To characterize this process, the assumption of Brownian diffusion is 

made and the concentration of polymer Pm of size 𝑚 𝜖 [1,𝑀] being um(x,t) at a spatial location x at time t. The 

discrete diffusive coagulation of the polymer follows this reaction-diffusion equation: 

𝑄𝑚(𝑢)  =  
∂ um(x, t)

∂ t
  −  dm Δx um(x, t) 



35 
 

Where net gain of polymer (Qm) is result of the subtraction between increments over time of concentration and 

the diffusion of said polymer mediated through diffusion coefficient dm over space variations of Δx. 

The net gain can be further expressed as being as the subtraction between gain (𝑄𝑔,𝑚(𝑢)) and loss (𝑄𝑙,𝑚(𝑢))  

of polymer due to aggregation phenomena in the following way: 

𝑄𝑚(𝑢) = 𝑄𝑔,𝑚(𝑢) − 𝑄𝑙,𝑚(𝑢) 

𝑤𝑖𝑡ℎ     

{
 
 

 
 𝑄𝑔,𝑚(𝑢) =

1

2
∑ 𝑎𝑚−𝑗,𝑗

𝑚−1

𝑗=1

 𝑢𝑚−𝑗  𝑢𝑗

𝑄𝑙,𝑚(𝑢) = 𝑢𝑚∑𝑎𝑚,𝑗

∞

𝑗=1

 𝑢𝑗

 

where, am,j  represents the kinetic coagulation rate, which defines the reaction leading to the formation of a 

polymer of length m + j from polymers of sizes m and i. 

The gain term accounts for the aggregation of smaller polymers into a polymer of size m, while the loss term 

represents the depletion of polymers of size m as they aggregate into larger polymers. Since polymer 

aggregation has no intrinsic upper bound, polymers can theoretically grow indefinitely. Merging the equations 

together to obtain an ordinary differential equation for the aggregation process: 

𝜕 𝑢𝑚(𝑥, 𝑡)

𝜕 𝑡
  =  𝑑𝑚 Δ𝑥 𝑢𝑚(𝑥, 𝑡)  + 

1

2
∑ 𝑎𝑚−𝑗,𝑗𝑢𝑚−𝑗  𝑢𝑗

𝑚−1

𝑗=1

 −  𝑢𝑚∑𝑎𝑚,𝑗𝑢𝑗

∞

𝑗=1

   

3.4.6.2.Network Diffusion 
The postproduction transmission of prion-like proteins through neural pathways is modelled through the 

implementation of the aforementioned NDM, initially ideated for τ propagation (78), which has found 

successful implementation in α-Syn progression in PD (79) and in the spread of FTD (86). The NDM relies on 

propagation of pathological proteins through the brain network following this graph diffusion term: 

𝜕𝑢𝑚(𝜈, 𝑡)

𝜕𝑡
= −𝑑𝑚𝛥𝛤𝑢𝑚(𝜈, 𝑡) 

Where 𝛥𝛤 is the positive weighted Laplacian associated with the graph Γ, which in our case if the functional 

connectivity matrix, and is defined as: 

𝛥𝛤 = 𝐼 − 𝐷
−
1
2𝐶𝐷−

1
2 

Where C is the functional connectivity matrix, D is the diagonal matrix of node degree, and I is the identity 

matrix. This formulation of the Laplacian allows for enforcement of row and column normalization, making 

the model insensitive to variance in region size and node degree (87). Effectively this formulation replaces the 

diffusive term, which was previously reliant on Brownian motion only, with one that reflects the complexity 

of the brain network and its preferential routes for pathology spread.  
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3.4.6.3.Misfolded Monomer Production 
The last component of this model is the generation of misfolded monomers of the protein driving the disease 

which happens only in one region, i.e. the seed region. Production is therefore modelled as an additive term 

which only comes in play for the monomer equations following a gamma shaped function: 

𝑓τ(𝑣𝑖, 𝑡) = {
 
𝑡

𝜎𝑓
𝑒𝑥𝑝(−

𝑡

𝜎𝑓
)       ,           𝑣𝑖 = 𝑣𝑠𝑒𝑒𝑑

0              ,          otherwise

 

Where v is the vector identifying the single regions, vseed is the seed region fixed as the entorhinal cortex, and 

σf is the support of the gamma function fitted to the potential duration of the disease, set to 25 years arbitrarily. 

3.4.6.4.Aggregation and Diffusion Rate  
Aggregation and diffusion rates were defined to ensure a reduction of transmission that would decrease as 

oligomer length increased. This scaling behaviour was set to fit empirical in vitro data on amyloids through a 

gamma-shaped expression (88): 

𝑎𝑚,𝑗 =
𝑚𝑗

𝜎agg
2
𝑒𝑥𝑝 (−

𝑚𝑗

𝜎agg
2 )          𝑎𝑛𝑑          𝑑𝑚 =

𝑚

𝜎𝑑𝑖𝑓𝑓
𝑒𝑥𝑝 (−

𝑚

𝜎𝑑𝑖𝑓𝑓
)  

where σagg and σdiff are scaling constants arbitrarily set to values of two and one respectively. 

3.4.6.5.Complete AND Model 
While the mathematical implementation calls for the modelling of an infinite number of polymers of different 

length, a feasible approach calls for the use of some simplifications. First is the upper bound on the polymer 

length which is set to the last τ form observed in literature of τ tangles, second is the grouping of polymers of 

similar lengths into 5 protein forms: monomers (m = 1), small oligomers (m = 2), large oligomers (m =3), 

protofibrils (m = 4) and tangles (m = M = 5). This effectively limits the amount of ordinary differential 

equations to 5 expressed in the following way: 

{
 
 
 
 

 
 
 
 ∂τ1(𝑣, 𝑡)

∂𝑡
= −β𝑑1ΔΓτ1(𝑣, 𝑡) − 𝑐1τ1(𝑣, 𝑡) +∑𝑎1𝑗τ𝑗(𝑣, 𝑡)

𝑀

𝑗=1

+ 𝑐2𝑓τ(𝑣, 𝑡) , 𝑓𝑜𝑟 𝑚 =  1

∂τ𝑚(𝑣, 𝑡)

∂𝑡
= −β𝑑𝑚ΔΓτ𝑚(𝑣, 𝑡) + 𝑐1 [

1

2
∑ 𝑎𝑗,𝑚−𝑗τ𝑗(𝑣, 𝑡)τ𝑚−𝑗(𝑣, 𝑡)

𝑚−1

𝑗=1

− τ𝑚(𝑣, 𝑡)∑𝑎𝑚,𝑗τ𝑗(𝑣, 𝑡)

𝑀

𝑗=1

] , 𝑓𝑜𝑟 2 ≥ 𝑚 ≥ 4

𝜕τ𝑀(𝑣, 𝑡)

𝜕𝑡
=
𝑐1
2

∑ 𝑎𝑗,𝑘τ𝑗(𝑣, 𝑡)τ𝑘(𝑣, 𝑡)

𝑗+𝑘≥𝑀; 𝑘,𝑗<𝑀

 , 𝑓𝑜𝑟 𝑚 =  𝑀 =  5
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3.4.6.6.Results 
The evaluation of the model’s results was based on correlations with three types of empirical data. First, 

atrophy patterns observed in MRI scans were compared to tangle concentrations, yielding significant 

correlations. Second, tangle concentrations were validated against tau-PET imaging data, confirming the 

model’s accuracy in capturing regional tau distributions. Third, CSF phosphorylated tau levels were assessed 

by comparing them to the sum of protein concentrations, weighted by their diffusivity rate, providing a 

biochemical validation of the model’s predictions. 

These results suggests that a similar framework could be used to model α-Syn spread and validate it against 

observed neurodegeneration in PD, providing a quantitative tool for studying disease progression. 

 

Figure 3.4.6.2. Glass brain rendering of the AND Model evolution in terms of τ burden (left) and its 

comparison to regional Flortaucipir-PET scans (middle) and regional atrophy (right). (83) 
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4. Materials and Methods 

4.1.Subjects 
A total of a hundred and fifty-four patients diagnosed with PD with H&Y under or equal to 4 were 

prospectively recruited from the Movement Disorders Department of the Neurology Clinic, Clinical Center 

of Serbia, as part of an ongoing longitudinal study. All participants met the UK Parkinson’s Disease Society 

Brain Bank diagnostic criteria (89). At the time of enrolment, the cohort included both treatment-naïve 

patients and those receiving stable dopaminergic therapy. Patients underwent assessments at baseline and 

were re-evaluated annually or biennially for a minimum of two and up to five follow-up visits within a 

seven-year observational period. Exclusion criteria included moderate to severe resting head tremor, 

dementia at study entry based on the Movement Disorder Society (MDS) diagnostic criteria for PD dementia 

(Emre et al., 2007), cerebrovascular disease, intracranial masses detected on routine MRI, a history of 

traumatic brain injury, or any other significant neurological or medical conditions.  

At baseline, all patients underwent genetic screening to identify GBA mutations. Among the 154 PD patients, 

13 were found to carry a GBA mutation (GBA-positive). From the remaining PD non-carriers (GBA-

negative) patients, 39 individuals were selected to match the GBA-positive group based on age, age at onset, 

sex, education, and disease severity as measured by the UPDRS-III total score. Additionally, 60 healthy 

controls, matched for age, sex and education, free from any neurological, psychiatric, or major medical 

conditions, were recruited from non-consanguineous relatives, institute personnel, and word-of-mouth 

referrals. Healthy controls underwent clinical, cognitive/behavioural, and MRI assessments only at baseline. 

The demographic characteristics of the study cohort are summarized in Table 4.1. All participants provided 

written informed consent prior to enrolment. 
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Variables HC PD GBA-

Positive 
PD GBA-

Negative  

p: HC vs 

PD GBA-

positive 

p: HC vs 

PD GBA-

negative 

p: PD 

GBA- 

positive vs 

PD GBA-

negative 
N 60 13 39    

Age 
[years] 

61.96 ± 9.34 
(46.14-77.72) 

62.37 ± 4.32 

(54.45-

67.93) 

61.98 ± 7.02 

(43.05-

75.86) 
1.00 1.00 1.00 

Sex 
[man/ 

woman] 

16 (41.00)/ 
23 (59.00) 

5 (38.46)/ 
8 (61.54) 

19 (48.72)/ 
20 (51.28) 0.87 0.49 0.52 

Education 

[years] 
13.17 ± 2.49 
(8.00-16.00) 

12.53 ± 2.87 

(8.00-17.00) 
13.17 ± 2.63 

(8.00-20.00) 1.00 1.00 1.00 

Age at 

onset 
[years] 

- 
58.15 ± 5.58 

(49.00-

66.00) 

58.95 ± 7.89 

(40.00-

74.00) 
- - 0.53 

Disease 

duration 
[years] 

- 4.21 ± 3.92 
(1.35-13.37) 

3.03 ± 3.99 
(0.11-22.49) - - 0.53 

UPDRS-

III total - 
22.38 ± 

15.44 (5.00-

59.00) 

18.07 ± 8.91 

(7.00-51.00) - - 0.23 

Hoehn & 

Yahr - 1.42 ± 0.67  
(1.00-3.00) 

1.15 ± 0.52 
(1.00-4.00) - - 0.18 

Table 4.1: Demographic characteristics of the cohort: values are reported as mean ± standard deviation 

(range) or absolute and percentage frequency (%) for continuous and categorical variables, respectively. 

Differences between Parkinson’s Disease (PD) patients and healthy controls (HC) and between PD patients 

carrying GBA mutation (GBA-positive) and PD non-carrier patients (GBA-negative) were assessed using 

one-way ANOVA (for continuous demographic and general clinical variables) and Chi squared test (for all 

categorical variables). P-values were adjusted for multiple comparisons. 

The distribution of baseline and follow-up assessments of the selected cohort is reported in Table 4.2. 

Group Baseline Follow-up Visit 
1 Year 2 Years 3 Years 5 Years 7 Years 

PD GBA-

positive 39 39 38 34 30 21 

PD GBA-

negative 13 13 12 9 6 5 

Table 4.2: Availability of evaluations for PD patients. 

4.1.1. Clinical Evaluation 
At baseline and each follow-up visit, an experienced neurologist conducted clinical. Patients were examined 

in ON state (i.e., period when the dopaminergic medication is working and symptoms are well controlled). 

Demographic and general clinical data, including sex, education, age, age at onset, and disease duration, 

were collected using a semi-structured interview. Disease severity was assessed using the HY stage and 

UPDRS-III.  

4.1.2. Genetic Screening 
Sequence analysis of exons 8–11 of the GBA gene was performed. Primers used for the amplification of 

exons 8 and 9 were specific to the functional GBA gene, avoiding co-amplification of its pseudogene 

(GBAP). Exons 10 and 11 were amplified using a nested PCR approach with partially mismatched primers to 



40 
 

prevent interference from GBAP. Subjects carrying the D409H mutation were additionally sequenced for the 

H255Q variant.  

4.1.3. Neuropsychological and Behavioural Evaluations 
Neuropsychological and behavioural assessments were conducted at baseline and each follow-up visit, 

within 48 hours of MRI acquisition. Healthy controls underwent the same test battery at baseline only. 

Assessments were administered by trained neuropsychologists who were blinded to the clinical data, GBA 

status, and MRI results. All neuropsychological and behavioural variables were measured at each time point. 

The neuropsychological assessment included global cognition assessed with the Mini-Mental State 

Examination (MMSE) and the Addenbrooke’s Cognitive Examination-Revised (ACE-R). Memory was 

evaluated using the Rey Auditory Verbal Learning Test, the Pattern Recognition Memory (PRM) tests from 

the Cambridge Neuropsychological Test Automated Battery (CANTAB), and the Digit Span forward. 

Executive function was assessed with the Digit Span backward, the Clock Drawing Test, the Intra/Extra 

Dimensional Set Shift test from CANTAB, and the Stroop color-word test. Attention and working memory 

were measured using the Trail Making Test, the Digit Ordering Test, and the Letter Cancellation Test. 

Language abilities were examined with the Boston Naming Test and the language subtest of ACE-R. Fluency 

was assessed through semantic and phonemic fluency tests. Visuospatial abilities were evaluated using the 

Hooper Visual Organization Test and the visuospatial subtest of ACE-R. Mood was assessed with the 

Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, the Beck Depression Inventory 

(BDI), and the Apathy Evaluation Scale. 

4.2. MRI Acquisition 
Brain MRI scans were acquired at each time point using a 1.5 T Philips Achieva scanner at the Clinic of 

Neurology in Belgrade, Serbia. The imaging protocol included three MRI sequences.  

First, a dual-echo (DE) turbo spin-echo (SE) sequence (TR = 3125 ms, TE = 20/100 ms, echo train length = 

6, in-plane sensitivity encoding parallel reduction factor = 1.5) was used to acquire 44 axial slices with a 

slice thickness of 3 mm. The field of view (FOV) was 240 × 232 mm², resulting in a voxel size of 0.94 × 

0.94 × 3 mm. 

Second, a high-resolution 3D sagittal T1-weighted Turbo Field Echo (TFE) sequence (frequency direction = 

anterior-posterior, TR = 7.1 ms, TE = 3.3 ms, inversion time = 1000 ms, flip angle = 8°, out-of-plane SENSE 

parallel reduction factor= 1.5, sagittal orientation) was acquired with an FOV of 256 × 256 mm², yielding a 

voxel size of 1 × 1 × 1 mm. 

Third, for resting-state functional MRI (rs-fMRI), a gradient-echo planar imaging sequence was used (TR = 

3000 ms, TE = 35 ms, flip angle = 90°). The acquisition covered an FOV of 240 × 240 mm² with a slice 

thickness of 4 mm, generating 200 volumes consisting of 30 contiguous axial slices. During rs-fMRI 

acquisition, subjects were instructed to remain motionless with their eyes closed while not thinking about 

anything. 
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4.3.MRI Analysis 

4.3.1. Brain Parcellation 

4.3.1.1.Cortical Thickness Measurement 
To estimate cortical atrophy, cortical reconstruction and cortical thickness estimation were performed using 

the FreeSurfer image analysis suite, version 5.3 (90). Contrast between grey matter (GM) and white matter 

(WM) was enhanced by nulling image values below the mean cerebrospinal fluid (CSF) intensity and 

rescaling intensities above this threshold. Following registration to Talairach space and intensity 

normalization, an automatic skull stripping procedure was applied to remove extra-cerebral structures, 

including the cerebellum and brainstem. All images were manually inspected for skull stripping errors to 

ensure segmentation accuracy. 

Subsequently, images were segmented into GM, WM, and CSF, with cerebral hemispheres separated and 

subcortical structures delineated from cortical components. The WM/GM boundary was tessellated, and the 

surface was deformed along intensity gradients to optimally delineate WM/GM and GM/CSF borders, 

producing the WM and pial surfaces. The cortical surface was then inflated and registered to a spherical 

atlas, and the cerebral cortex was parcellated into 34 regions per hemisphere based on gyral and sulcal 

structures, following the Desikan et al. atlas (91). Cortical thickness was computed as the mean shortest 

distance between the WM boundary and the pial surface.  

For longitudinal analysis of cortical changes in PD patients, T1-weighted images from each subject across 

multiple time points were processed using FreeSurfer’s longitudinal processing pipeline. This approach 

generated an unbiased within-subject template from the T1-weighted scans through a robust, inverse 

consistent registration. 

Several image processing steps, including skull stripping, Talairach transformation, and atlas registration, 

were initialized using a single-subject template to enhance consistency and statistical power compared to the 

standard cross-sectional FreeSurfer pipeline, as previously described. Individual surface maps from all 

timepoints were aligned to a common average surface and smoothed using a Gaussian kernel with a full 

width at half maximum (FWHM) of 10 mm. This procedure resulted in 68 cortical thickness measures per 

subject per scan. 

4.3.1.2. Gray matter volumetry 
Grey matter volumetry was extracted by employing FMRIB’s Integrated Registration and Segmentation Tool 

(FIRST) in FSL (92) to automatically segment GM regions. These regions included the brainstem along with 

7 regions per hemisphere: caudate, pallidum, putamen, thalamus, nucleus accumbens, amygdala and 

hippocampus. A total of 15 mean GM volumes were extracted and further multiplied by a volume scaling 

normalization factor derived from a SIENAx analysis (93) accounting for the differences in head size across 

subjects. 
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4.3.1.3. Cortical Thickness and GM Volumetry Normalization 
Once all cortical thickness and subcortical volume data were extracted, extreme outlier detection was 

performed. Values that deviated by more than three standard deviations from the mean at each time point were 

flagged. Further manual inspection confirmed that these outliers resulted from segmentation inaccuracies, and 

they were excluded from subsequent analyses by setting them as not a number. 

To facilitate between-subject comparisons, all cortical thickness and volume values were normalized using 

baseline data from healthy controls. Regional values were converted into atrophy z-scores based on the 

following formula: 

APD =
xPD−𝑥𝐻𝐶

√
𝜎𝐻𝐶

2

𝑛𝐻𝐶

  

 

where APD represents the z-scored regional atrophy value for each region, for each patient at each time point; 

xPD is the regional cortical thickness or subcortical volume of the PD patient; 𝑥𝐻𝐶  is the average regional value 

from the 60 healthy controls; 𝜎𝐻𝐶  is the standard deviation of the control group’s regional values; and nHC is 

the number of healthy controls. 

4.3.2. Functional Connectivity  

 Rs-fMRI Preprocessing 
The first step in Rs-fMRI image preprocessing was the registration to T1-weigthed images, which were 

previously skull stripped with the Brain Extraction Tool and segmented using FMRIB’s Automated 

Segmentation Tool (94), through a 7 degrees-of-freedom linear affine transformation through the FMRIB’s 

Linear Image Registration Tool (95).  

The second preprocessing step was performed using the Statistical Parametric Mapping software package 

(SPM12) running on MATLAB and FSL. During this stage, the first four volumes of the acquisition were 

discarded to allow for magnetization signal stabilization, minor head movement was corrected using 

MCFLIRT, and non-brain tissue was removed. 

Subsequently, the REST software was employed for temporal filtering with linear detrending and bandpass 

filtering between 0.01 and 0.08 Hz to minimize high-frequency noise and signal drift. Additionally, REST was 

used to compute six motion parameters, along with the mean signals from the ventricular CSF and WM, which 

were used to reduce the impact of non-neuronal sources of signal synchrony and motion-related artifacts. 

4.3.2.1.Functional Connectome Reconstruction 
In healthy controls, undirected, weighted graphs describing brain network functional connectivity were 

obtained by computing correlations between the 83 GM segmented ROIs. Mean time series were extracted 

from each of the 83 regions of interest by averaging signals from all voxels belonging to the region. In order 

to exclusively take into account the voxels that correspond to the GM and prevent the influence of atrophy, 

resting data was masked with the GM map of each subject to not consider the effects of atrophy. The Pearson’s 

correlation coefficient between the mean time-series of each node pair was calculated and entered into a 

functional connectivity matrix.  

Pearson’s correlation coefficients were then converted to z-scores using Fisher’s r-to-z transformation. The 

matrix was further filtered based on the presence of anatomical connections in an independent healthy control 

sample. 
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4.3.2.2. Structural Connectome Construction of Independent Controls 
The construction of these anatomical connections relied on a pulsed gradient SE single shot echo-planar 

acquisition (with TR = 6713ms, TE = 86ms, flip angle = 90°, FOV = 224x220mm) resulting in 50 contiguous 

axial slices with voxel size 2x2x2.6mm with diffusion-encoding gradients applied in 65 non-collinear 

directions (b factor = 1000s/mm2) and seven averages of the acquisition with b equal to 0. The resulting images 

were parcellated in the same way as previously described, skull-stripped (with Brain Extraction Tool from 

FSL), and corrected for distortions (96). 

To correct for motion and eddy current distortions, a rigid-body three-dimensional motion correction (six 

parameters) was combined with a constrained nonlinear warping procedure (eight parameters) based on a 

model of expected eddy current distortions. These transformations were concatenated with an additional 

affine transformation to register diffusion-weighted (DW) images to MNI space, and the resulting 

transformation was applied to the DW data. 

The diffusion tensor (DT) was estimated on a voxel-by-voxel basis using the DTIfit toolbox, which is part of 

the FMRIB Diffusion Toolbox (FDT) within FSL. This process generated voxel-wise fractional anisotropy 

(FA) maps, which were used for subsequent white matter tractography. 

White matter (WM) fibre tracts were reconstructed using Diffusion Toolkit/TrackVis (97) with the Fiber 

Assignment by Continuous Tracking (FACT) algorithm. Whole brain tractograms were generated by 

initiating fibre tracking from each WM voxel, following the principal diffusion direction. Tracking was 

terminated if the streamline entered a voxel with FA < 0.15, if the trajectory made a turn with a curvature 

angle exceeding 45°, or if the streamline exited the brain mask. 

An individual structural brain network was generated for each healthy control using the following procedure 

(98). First, the streamlines from the whole-brain tractogram that connected each pair of nodes were 

identified. The number of streamlines for each tract was then computed and recorded in an adjacency matrix. 

If no streamlines connected a pair of nodes, a zero was assigned to indicate the absence of a structural 

connection. To reduce the presence of spurious fibres, connections with fewer than three streamlines were set 

to zero along with connections present in less than 40% of the sample. 

This process was repeated for each pair of nodes, resulting in an undirected, weighted connectivity matrix. 

Finally, functional connectivity matrices for both patients and controls were masked using the structural 

connectivity matrix derived from the independent healthy control sample. If a structural connection was 

absent in this reference matrix, the corresponding functional correlation coefficient in the functional 

connectivity matrix was set to ‘NaN’ (not a number). 
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4.4.Connectomics 

4.4.1. Graph Analysis 
To analyse differences across functional connectivity matrices between controls and PD groups, graph 

analysis was employed. The graph measures to be extracted were selected based on the framework 

established in previous graph-theoretical studies of brain networks. (66) (65) (99). 

a) Clustering Coefficient  

The clustering coefficient quantifies the extent to which a node's neighbours are also connected to each other, 

thereby forming tightly interconnected communities within the network. This measure reflects functional 

segregation, which describes the brain’s ability to form specialized processing units. Higher clustering 

coefficients indicate stronger local connectivity and the presence of modular structures within the network. 

The clustering coefficient for the network is calculated in the following way: 

𝐶 =
1

𝑛
∑𝐶𝑖
𝑖∈𝑁

=
1

𝑛
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑁

 

where: 

• Ci is the clustering coefficient of node i,  
• ti is the number of triangles (fully connected triplets) formed by the node,  
• ki is the degree of the node (the number of edges connected to it), 
•  n is the number of nodes in the network. 

 

b) Transitivity 

Another measure of functional segregation is transitivity which assesses the overall tendency of the network 

to form tightly connected communities. Higher transitivity values suggest a network that maintains modular 

processing while still enabling long-distance communication. Transitivity is calculated in the following way: 

𝑇 =
∑ 2𝑡𝑖𝑖∈𝑁

∑ 𝑘𝑖(𝑘𝑖 − 1)𝑖∈𝑁
 

 

c) Local Efficiency  

Last measure reflecting integration is local efficiency, a variant of global efficiency that quantifies the 

efficiency of information transfer within the local neighbourhood of a node.  

𝐸𝑙𝑜𝑐 =
1

𝑛
∑𝐸𝑙𝑜𝑐,𝑖
𝑖∈N

  =  
1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

Where: 

• Eloc,I is the local efficiency of node i,  
• aij is the presence of the connection between nodes i and j (1 if the connection exists and 0 if it doesn’t), 
• djh is the shortest path length between the nodes j and h. 
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d) Characteristic Path Length 

Characteristic path length represents the average shortest path between all pairs of nodes in the network and 

provides insight into functional integration, or how efficiently information is transferred across distant brain 

regions. Networks with shorter characteristic path lengths tend to support faster and more efficient global 

communication. It is calculated as: 

𝐿 =
1

𝑛
∑𝐿𝑖
𝑖∈N

=  
1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑗≠𝑖  

𝑛 − 1
𝑖∈𝑁

 

where Li is the average distance between node i and all other nodes, and dij represents the shortest path length 

between each pair of nodes. 

e) Global Efficiency  

Another measure of functional integration is global efficiency which measures the efficiency of parallel 

information transfer in a network and is the inverse of the characteristic path length. It is defined as:  

𝐸 =
1

𝑛
∑𝐸𝑖
𝑖∈N

  =  
1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

f) Mean Distance 

Mean distance quantifies the average distance between a node and all other nodes in the network. It provides 

insight into how well the network maintains efficient communication despite potential disruptions and it’s 

calculated as:  

𝐷𝑚𝑒𝑎𝑛 =
1

𝑛
∑𝐷𝑖
𝑖∈𝑁

  =
1

𝑛
∑

1

𝑛 − 1
∑ 𝑙𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁

  

Where: 

• Di is the mean distance of node i from other nodes,  
• lij represents the number of edges in the shortest path between nodes. 

 

g) Nodal Degree  

Nodal degree is a fundamental measure of hub identification, representing the number of direct connections a 

node has with other nodes. Higher average degree values indicate more highly connected nodes, which may 

serve as key hubs within the network. Calculated in the following way: 

𝑘𝑚𝑒𝑎𝑛 =
1

𝑛
∑𝑘𝑖
𝑖∈𝑁

  =
1

𝑛
∑

1

𝑛 − 1
∑ 𝑎𝑖𝑗

𝑗∈𝑁,𝑖≠𝑗

 

𝑖∈𝑁

 

where ki is the degree of a node. 
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h) Nodal Strength 

Nodal strength extends the concept of nodal degree by incorporating the weight of connections, rather than 

considering only their presence or absence. This measure provides a more nuanced assessment of node 

influence within the network. 

𝑘𝑚𝑒𝑎𝑛
𝑤 =

1

𝑛
∑𝑘𝑖

𝑤

𝑖∈𝑁

  =
1

𝑛
∑

1

𝑛 − 1
∑  𝑤𝑖𝑗

𝑗∈𝑁,𝑖≠𝑗𝑖∈𝑁

 

 

where wij is the weight of the connection between nodes. 

 

i) Betweenness Centrality  

Betweenness centrality quantifies the extent to which a node acts as a bridge for information flow between 

other nodes. It is a key metric for identifying connector hubs, which facilitate communication between 

different modules of the network and its mean is calculated as: 

𝐵𝐶 =
1

𝑛
∑𝐵𝐶𝑖
𝑖∈𝑁

=
1

𝑛
∑

1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗
ℎ≠𝑗≠𝑖𝑖∈𝑁

 

where:  

• BCi is the betweenness centrality of node i,  
• ρhj is the total number of shortest paths from node h to node j,  
• ρhj(i) is the number of those paths that pass through node i. 

 

j) Eigenvector Centrality  

Eigenvector centrality provides a measure of node influence by considering not only a node’s connections 

but also the importance of its neighbours. This metric is particularly useful for identifying highly influential 

hubs within the network. It is extracted as:  

𝐸𝐶 =
1

𝑛
∑𝐸𝐶𝑖
𝑖∈𝑁

=
1

𝑛
∑𝑒𝑖𝑔(𝐹𝐶)

𝑖∈𝑁

 

where ECi is the eigenvector centrality of node i, which is the i-th element in the eigenvector corresponding 

to the largest eigenvalue of the functional connectivity matrix (FC). (99) 

 

Global and local metrics were compared between groups using ANOVA models, followed by post-hoc 

pairwise comparisons, Bonferroni-corrected for multiple comparisons (p<0.05). Box plots were used to 

visualize metrics distribution among patients and lobes. 
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4.4.2. Network Based Statistics 
To investigate differences in functional connectivity between patient and control groups, network-based 

statistical (NBS) analysis was employed (68). When comparing PD groups to healthy controls, age and sex 

were included as covariates. For comparisons between different PD subgroups, UPDRS-III score was 

incorporated to correct for disease severity. 

The analysis followed a network-based statistical approach, designed to identify clusters of significantly 

altered connections while controlling for multiple comparisons. Rather than examining each connection 

independently, this method assesses whether sets of functionally connected regions exhibit systematic group 

differences in pairwise comparisons  

To assess differences in functional connectivity, a multivariate analysis of covariance (MANCOVA) was 

applied at each connection in the network. To account for multiple comparisons, network-based correction 

was applied by identifying clusters of significantly altered connections be retaining only connections where 

the p-value was below a predefined threshold (p < 0.05). They were then assessed for network-wide 

significance by examining the largest set of interconnected nodes that exhibited significant alterations.   

To determine whether the observed connectivity differences were statistically meaningful, a permutation-

based significance test was conducted by randomly shuffling group labels 5000 times and repeating the 

analysis for each permutation. This generated a null distribution of network differences that would be 

expected due to random variation. 

By comparing this null distribution with the observed alterations from the original group labels, an empirical 

p-value was computed. A p-value below 0.05 was considered indicative of statistically robust differences. 

4.5.Model 

4.5.1. System of Ordinary Differential Equations (ODE) 
The model used for simulating atrophy progression is the Aggregation-Network-Diffusion (AND) Model, 

developed by Raj et al. (2021), originally used for progression of tau pathology in AD, and characterized by 

a system of ordinary differential equations. This implementation adapts the model to α-Syn pathology in PD 

by incorporating modifications that account for key differences between the two proteins, such as variations 

in protein form classification. The characteristic mechanisms of this model, i.e. monomer production, 

aggregation and network diffusion, are integrated as follows: 

• Monomer Production 

Misfolded protein production starts and continues in a seed region, following a gamma-shaped function with 

temporal support corresponding to the duration of the neurodegenerative disease. This aspect is considered 

exclusively for monomers (m = 1) and is modelled in the following way: 

𝜕𝛼1,𝑓(𝑣, 𝑡)

𝜕𝑡
=  𝑐2𝑓𝛼(𝑣, 𝑡) 

where c2 is the global constant linking monomer production rate to network diffusivity, and fα is the gamma 

shaped function defined as: 

𝑓𝛼(𝑣𝑖, 𝑡) = {
  𝑓𝛼(𝑡)       ,           𝑣𝑖 = 𝑣𝑠𝑒𝑒𝑑
0              ,          otherwise

 

with 

  𝑓𝛼(𝑡)  =  
𝑡

𝜎𝑓
𝑒𝑥𝑝(−

𝑡

𝜎𝑓
) 
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Where v is the vector identifying the region with vseed as the seed for disease start, t is the time in years, σf is 

the time scale of monomer production indicative of total disease.  

• Aggregation of α-Syn 

This process follows Smoluchowski kinetics, describing the aggregation of α-Syn into groups of protein 

forms codified through the variable m, from monomers (m = 1) to mature fibrils (m = M = 6) passing from 

each intermediate species: dimers (m = 2), oligomers (m = 3), prefibrillar species (m = 4), large prefibrillar 

assemblies (m = 5) (26). The phenomenon is described through the following aggregative terms, which are 

part of the system of ordinary differential equations describing the model: 

{
  
 

  
 𝜕𝛼1,𝑎𝑔𝑔(𝑣, 𝑡)

𝜕𝑡
= −𝑐1𝛼1(𝑣, 𝑡)∑𝑎1𝑗𝛼𝑗(𝑣, 𝑡)

𝑀

𝑗=1

        ,        𝑓𝑜𝑟  𝑚 =  1

𝜕𝛼𝑚,𝑎𝑔𝑔(𝑣, 𝑡)

𝜕𝑡
= 𝑐1 [

1

2
∑ 𝑎𝑗,𝑚−𝑗𝛼𝑗(𝑣, 𝑡)𝜏𝑚−𝑗(𝑣, 𝑡)

𝑚−1

𝑗=1

− 𝜏𝑚(𝑣, 𝑡)∑𝑎𝑚,𝑗𝛼𝑗(𝑣, 𝑡)

𝑀

𝑗=1

] , 𝑓𝑜𝑟 2 ≥ 𝑚 ≥ 6

 

where αm is the concentration of amount of protein form present in region v at time t, c1 is the global constant 

relating aggregation rate to network diffusivity and am,j is the aggregation rate parameter defined as: 

𝑎𝑚,𝑗 =
𝑚𝑗

𝜎agg
2
𝑒𝑥𝑝(−

𝑚𝑗

𝜎agg
2 ) 

Where m and j are the protein form numbers, and σagg is the scaling constant governing relationship between 

aggregation and oligomer size. 

• Diffusion of α-Syn 

Network-based diffusion is used to model the propagation of misfolded α-Syn across the brain functional 

connectivity. This term relies on this formulation: 

𝜕𝛼𝑚,𝑑𝑖𝑓𝑓(𝑣, 𝑡)

𝜕𝑡
= −𝛽𝑑𝑚𝛥𝛤𝛼𝑚(𝑣, 𝑡) ,          𝑓𝑜𝑟 1 ≥ 𝑚 ≥ 6 

Where ΔΓ is the Laplacian of the averaged functional connectivity matrix of healthy controls, dm is the 

diffusion rate expressed in the following way: 

{
𝑑𝑀 =

𝑚

𝜎𝑑𝑖𝑓𝑓
𝑒𝑥𝑝(−

𝑚

𝜎𝑑𝑖𝑓𝑓
)  ,          𝑓𝑜𝑟 1 ≥ 𝑚 > 6

𝑑𝑀 = 0 ,          𝑓𝑜𝑟 𝑚 = 𝑀 = 6

 

Which governs the diffusion of different protein forms. The formulation for mature fibrils (m = M = 6) is set 

to zero due to the hard constraint on the diffusion of mature fibrils, considered too heavy to diffuse across the 

network. 

• Complete System of Ordinary Differential Equations 

Accounting for each of the mechanisms described, the system of ODE defines separate equations for each of 

the species considered. Monomer modelling includes all three terms of diffusion, aggregation and production 

in the following way: 

𝜕𝛼1(𝑣, 𝑡)

𝜕𝑡
=
𝜕𝛼1,𝑑𝑖𝑓𝑓(𝑣, 𝑡)

𝜕𝑡
+
𝜕𝛼1,𝑎𝑔𝑔(𝑣, 𝑡)

𝜕𝑡
+
𝜕𝛼1,𝑓(𝑣, 𝑡)

𝜕𝑡
 , 
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𝜕𝛼1(𝑣, 𝑡)

𝜕𝑡
= −𝛽𝑑1𝛥𝛤𝛼1(𝑣, 𝑡) − 𝑐1𝛼1(𝑣, 𝑡) +∑𝑎1𝑗𝛼𝑗(𝑣, 𝑡)

𝑀

𝑗=1

+ 𝑐2𝑓𝛼(𝑣, 𝑡) . 

On the other hand, dimers, oligomers, prefibrillar species and large prefibrillar assemblies are modelled only 

through terms of diffusion and aggregation as follows: 

𝜕𝛼𝑚(𝑣, 𝑡)

𝜕𝑡
=
𝜕𝛼𝑚,𝑑𝑖𝑓𝑓(𝑣, 𝑡)

𝜕𝑡
+
𝜕𝛼𝑚,𝑎𝑔𝑔(𝑣, 𝑡)

𝜕𝑡
  , 

𝜕𝛼𝑚(𝑣, 𝑡)

𝜕𝑡
= −𝛽𝑑𝑚𝛥𝛤𝛼𝑚(𝑣, 𝑡) + 𝑐1 [

1

2
∑ 𝑎𝑗,𝑚−𝑗𝛼𝑗(𝑣, 𝑡)𝛼𝑚−𝑗(𝑣, 𝑡)

𝑚−1

𝑗=1

− 𝛼𝑚(𝑣, 𝑡)∑𝑎𝑚,𝑗𝛼𝑗(𝑣, 𝑡)

𝑀

𝑗=1

] , 

with m indicating each of the protein forms ranging from 2 corresponding to dimers to 5 corresponding to 

large prefibrillar assemblies. Last, mature fibrils are only modelled through aggregative terms: 

𝜕𝛼𝑀(𝑣, 𝑡)

𝜕𝑡
=  
𝜕𝛼𝑀,𝑑𝑖𝑓𝑓(𝑣, 𝑡)

𝜕𝑡
 , 

𝜕𝛼𝑀(𝑣, 𝑡)

𝜕𝑡
=
𝑐1
2

∑ 𝑎𝑗,𝑘𝛼𝑗(𝑣, 𝑡)𝛼𝑘(𝑣, 𝑡)

𝑗+𝑘≥𝑀; 𝑘,𝑗<𝑀

 . 

 

The combination of these equations forms the basis for the AND model and allows for the analysis of the 

temporal evolution of the concentration of each of the 6 species.  

4.5.2. ODE45 
The numerical solution of the system of ODEs to obtain temporal evolution of concentration values is 

entrusted to the ODE45 solver in MATLAB (100) which is a variable-step, Runge-Kutta (4,5) method, which 

is well-suited for solving non-stiff ordinary differential equations. This solver was selected as it was used by 

the initial proposers of the AND model in use. (83)   

4.5.2.1.Initialization  
For each simulation, the solver was initialized with:   

• A zero-state vector representing baseline conditions across all regions indicating the absence of 

misfolded α-Syn in the system.     
• A set of time points defining the times at which the solution must be evaluated for comparison with 

observed atrophy. 
• A function representing the system of ODEs of the AND model with its parameters. 

4.5.2.2.Configuration   
The ODE45 solver was configured with appropriate numerical tolerances to ensure stable and accurate 

solutions:   

• Relative Tolerance set to 10-2 controlling error estimation to maintain a balance between precision 

and efficiency.   
• Absolute Tolerance equal to 10-4 ensuring accurate resolution of small changes in atrophy dynamics.   
• Non-negativity constraints enforced to prevent implausible negative values in protein concentration.   
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4.5.3. Evaluation of System Output 
The evaluation of the system by the ODE45 solver generates a matrix representing α-Syn concentration for 

the six considered forms across all 83 brain regions and at each timepoint. In contrast, the real atrophy data is 

structured as a bidimensional matrix, capturing atrophy values across the same 83 regions but with time 

points varying based on scan availability. 

To evaluate the model’s accuracy, correlations were computed by selecting specific combinations of α-Syn 

forms from the model output. The simulated atrophy (SA) for each region and time point was calculated as: 

𝑆𝐴(𝑟, 𝑡𝑝) =  ∑𝑂𝑓(𝑟, 𝑡𝑝)

𝑓∈𝐶

  

where: 

• SA(r,tp) represents the predicted atrophy for region r at time point tp. 

• Of(r,tp) is the ODE solver output for each α-Syn form f. 

• C denotes the subset of protein forms considered in each trial. 

Once the predicted atrophy was extracted for each region at each time point, Pearson’s correlation coefficient 

was computed between the predicted values and the z-scored real atrophy of PD patients. The predicted and 

real atrophy values for the seed region were excluded from this calculation, as the gamma-shaped monomer 

generation function could, if monomers were in the subset C, introduce a reduction in simulated atrophy at 

later timepoints, which should otherwise follow a monotonically increasing trend. 

Correlation values were considered significant if the associated p-value was below a significance threshold 

of 0.05, generating multiple correlation values for each patient depending on the number of available scans. 

Non-significant correlations were set to not a number, ensuring that atrophy predictions at baseline were 

always assigned a null value, as the model inherently produces a zero solution at time zero. 

4.5.4. Optimization 
The implementation and optimization of the model involved several trials testing its components and 

strategic adjustments to maintain its generalizability, ensuring its applicability to the broadest population 

possible. The initial approach leveraged parameter values from the first implementation of AND to provide 

an individualized strategy for selecting seed regions. The next phase of development shed fixed-variable 

assumptions by exploring broad parameter ranges, establishing a robust basis for choosing the protein forms 

incorporated into the simulated atrophy. Both these aspects and their results culminated in a complete model, 

enabling a MATLAB optimizer to determine optimal individualized model parameters. 

4.5.4.1.Seed Region Selection 
The first investigation focused on selecting the seed region, a critical component of the model. The objective 

was to determine whether the seed region could be established as an a priori variable or if it needed to be 

individualized for each patient. Despite literature indicating uncertainty about the initial regions of α-Syn 

misfolding, both approaches were explored using a model with fixed parameters used in the first 

implementation of AND by Raj et al. (83).  

Given the lack of consensus in the literature regarding the neurotoxic effects of mature fibrils of α-Syn, and 

the understanding that neurodegeneration is likely caused by a combination of protein forms (26), the 

predicted atrophy was calculated by including all six protein forms generated by the model.  

To evaluate the performance of each approach, correlations were averaged across the entire dataset while 

setting negative and non-significant values to zero. The individualized region selection approach involved 

two steps: first, running the model for all potential regions, and second, choosing the region that yielded the 
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highest correlation performance at the first follow-up time point. This approach was designed to facilitate 

potential future applications of the model where the initial region could be determined based on early 

simulated atrophy correlations, allowing for accurate progression simulations. 

To evaluate the effectiveness of this approach, it was compared against a fixed-region approach, where the 

model was run using each region as the seed. The performance of both methods was compared to determine 

whether individualized region selection provided a significant advantage, and the best strategy was selected 

and used for each model run for the following trials. 

4.5.4.2.Exploration of Suitable Parameters Bounds 
The next step involved identifying suitable upper and lower bounds parameter values for following 

optimization steps. This was done through a series of trials and manual visualization of single-subject results, 

allowing for the observation of instances where individual patients required bound expansions values. 

First approach utilized a grid search to explore potential values for global parameters (β, c1, c2) only, 

ensuring manageable computational time while exploring variable spaces. During this phase, the scaling 

parameters were maintained at the values proposed by Raj et al. (83), and the model output was calculated as 

the sum of all six protein forms, in the same way as previously done. 

Once the grid was sufficiently wide to encompass peak correlation values for all patients, the strategy 

evolved to include the scaling parameters, whose bounds were determined. The result of this analysis 

provided a solid foundation for the following process, facilitating more precise optimization of the model's 

predictive performance. 

4.5.4.3.Protein Form Selection 
As described in Section 5.3.3, the AND model output must be converted into simulated atrophy through a 

weighted sum, determined by the specific combination of α-Syn protein forms contributing to 

neurodegeneration. This approach stems from the hypothesis that different α-Syn species may drive atrophy 

in PD (26), challenging the assumption made in the tau-based implementation of this model, where only 

mature fibrils were considered. To systematically evaluate all possible protein form contributions, a six-

dimensional grid was constructed based on the bounds of each model parameter. Each point of the grid 

corresponded to a set of parameters which was used to generate a system output and combined to generate 

simulated atrophy values. 

Given that six protein forms were analysed, the total number of possible combinations was 26 (63) minus 

one, excluding the scenario where no protein form was selected, resulting in 63 distinct atrophy simulations 

for each grid point. For each point, the simulated atrophy was correlated with real atrophy data across all 

patients, and the combination yielding the highest average Pearson correlation coefficient was identified as 

optimal. The most frequently selected combination across all patients was then used as the reference for the 

following optimization efforts. 

By following this process, the generalizability of this selection was significantly improved, ensuring that the 

optimal combination of protein forms would perform consistently across diverse patient profiles and not just 

under narrowly defined conditions.  
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4.5.4.4.Constant Optimization    
The ODE45 solver was embedded within an optimization function to estimate model parameters that yielded 

the best correlated simulated atrophy values. The surrogateopt (101) function in MATLAB was employed, 

which is a derivative-free global optimization method designed for high-dimensional problems where 

function evaluations are costly as the model evaluation is.  

The objective function was evaluated based on a performance index calculated as the sum of significant 

correlations for each timepoint. The optimization was performed over a six-dimensional parameter space 

corresponding to the aforementioned model parameters (β, c1, c2, σf, σdiff, σagg) and each parameter was 

scaled by a predefined multiplier to enforce integer constrains reducing the capillarity with which the 

variables needed to be investigated. Upper and lower bounds of evaluation were kept from previous steps. 

The surrogateopt function was configured with the following settings: 

• the maximum amount of function evaluations (MaxFunctionEvaluations) was set to 1000 to avoid 

excessive computational time; 

• for the same reason, the maximum amount of time (MaxTime) per patient optimization was set to 

10,000 seconds (2.8 hours); 

• upper and lower bounds for each model variable corresponding to the ones determined during the 

exploration of parameter bounds; 

• initial guess for parameters which was set arbitrarily through performance observations made in the 

grid searching phase. 

To enhance computational efficiency, parallel computing was enabled using MATLAB’s parfor (102) 

function. This allowed multiple patient-specific optimizations to run concurrently, reducing the overall 

runtime significantly. 

Each patient underwent an independent optimization run, with the best-fit parameter set identified based on 

the highest correlation between predicted and actual atrophy progression. Once optimization was complete, 

the selected parameters were scaled back to their original values for further analysis. 
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5. Results 

5.1.Connectomics 

5.1.1. Graph Analysis 
The statistical analysis of network measures revealed significant differences in only a subset of the evaluated 

graph measures across the contrasts considered, as detailed in Table 5.1. The comparison between GBA-

positive patients and healthy controls identified reductions in two key network measures. A decrease in nodal 

degree was observed in the temporal, sensorimotor, and parietal lobes, indicating that several regions within 

these lobes became functionally disconnected from the rest of the network, reducing overall brain efficiency 

and synergy potential and impairing communication. 

Additionally, betweenness centrality differences were recorded in the left hemisphere, suggesting alterations 

that affect the capacity of specific regions to facilitate information flow. Further differences in the same 

measure were identified when comparing GBA-positive and GBA-negative patients, specifically in the left 

occipital lobe, as well as in the right frontal lobe when comparing GBA-negative patients and healthy 

controls.  

These findings suggest that network disruptions follow distinct patterns depending on genetic mutation with 

GBA-positive patients exhibiting more pronounced functional connectivity alteration and efficiency reduction. 

Contrast Measure Lobe p-Value 

GBA-positive vs HC 
Nodal Degree 

Temporal  0.037 
Left-Temporal  0.017 
Sensorimotor  0.049 
Left-Sensorimotor  0.023 
Right-Hemisphere 0.033 

Right-Frontal  0.034 

Right-Parietal  0.022 
Betweenness Centrality Left-Hemisphere 0.027 

GBA-positive vs GBA-negative Betweenness Centrality Left-Occipital  0.023 
GBA-negative vs HC Betweenness Centrality Right-Frontal  0.035 

Table 5.1 : Significantly affected graph measures for all contrast between the three groups: HC, GBA-

negative and GBA-positive. 

5.1.2. Network Based Statistics 
Network-based statistics confirm that the most significant differences are observed in the comparison between 

healthy controls and GBA-positive patients. In this contrast, functional connectivity was affected in 26 

connections involving nodes in the parietal, left temporal, left occipital, sensorimotor, and right frontal regions. 

No affected connections were identified in other contrasts, further suggesting that GBA-positive patients 

experience more pronounced network disruptions compared to GBA-negative patients or healthy controls. 
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Figure 5.1: Transversal view of affected connections which are highlighted in purple. The colour of each 

region is relative to the lobe they are part of, following this code: blue is frontal lobe, green is basal ganglia, 

red is sensorimotor lobe, purple is parietal, yellow is temporal and grey is occipital. 

5.2.Simulating Atrophy  

5.2.1. Seed Region Selection 
To investigate which seed region selection strategy was the most effective between the fixed and individualized 

one, the average correlation performance was conducted over the whole dataset. At no timepoint did any single 

region prove effective enough to generate correlations comparable to those obtained with the personalized 

selection approach. Even though the effectiveness of the personalized strategy declined in later timepoints, as 

indicated by a reduction in average correlation performance, the fixed seed reference remained significantly 

less effective throughout the progression. 

 

 
Figure 5.2.1: Histograms comparing the average Pearson’s correlation performance between seed region 

selection strategies across all considered time points. The distribution of performance for the fixed region 

approach across all patients is represented in blue, while the black line denotes the performance obtained 

through an individualized approach. 
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5.2.2. Exploration of Suitable Parameter Bounds 
The first phase of the exploration focused on evaluating global parameters, revealing that single patient  

Pearson’s correlation values were highly dependent on the diffusive parameter β while showing relative 

robustness to parameters c1 and c2. The sensitivity to each parameter was assessed by visually inspecting graphs 

of each patient while evaluating whether to expand boundaries in the effort of increasing maximum correlation 

performance, one example of this tendency can be seen in figure 5.2.2. 

 
Figure 5.2.2.1 Boxplots representing the maximum Pearson’s correlation indexes achieved with varying 

model parameter values of β, c1, c2, for patient 5 from the GBA-positive group.  

Analysis of β distribution showed that the performance variation within the same parameter value was limited 

with respect to the variations observed with different β values, indicating that it was the primary determinant 

of model performance, while reinforcing the reduced influence of c1 and c2. As a result, β required broader 

parameter bounds to achieve meaningful performance improvements across all patients leading to the upper 

bound set to 100.  

Once these values were determined, the same process was applied to the scaling parameters, with a reduced 

resolution in the step sizes used for global parameters. A heightened dependency of maximum correlation was 

identified for the σdiff parameter which carries a similar meaning to β as it is related to diffusivity within the 

model as this variable affects the diffusivity of different protein forms in different ways, favouring diffusion 

of monomers with respect to fibrils.  

The emergence of this pattern across both β and σdiff is consistent with the model’s mathematical formulation, 

in which these parameters are multiplicatively linked. Their combined variation directly influences the 

diffusion component of the model, which serves as the primary driver of atrophy spread. 
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Figure 5.2.2.2: Boxplots representing the maximum Pearson’s correlation indexes achieved with varying all 

model parameter values for patient 8 from the GBA-negative group. 

5.2.3. Protein Form Selection 
For each point of the grid of parameter sets, the optimal combination of protein forms was selected, and the 

resulting distribution was analysed. 

The most frequently selected combination, accounting for more than 27% of parameter sets, included only 

monomers. The second and third most favoured combinations, representing 13% and 7% of selections, 

involved a mix of monomers with high molecular weight protein forms of large prefibrillar assemblies and 

mature fibrils. The fourth most preferred combination, chosen in 6% of cases, relied solely on mature fibrils.   

Other combinations, each selected in 5% or fewer parameter sets, also incorporated prefibrillar species 

alongside monomers, large prefibrillar assemblies, or mature fibrils. These preferences indicate a recurring 

pattern in which monomers, either alone or in combination with larger aggregated species, play a significant 

role in driving atrophy dynamics in the model.  

 
Figure 5.2.3: Distribution of combinations which retrieved the best correlations among the grid search 

parameter sets. 
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5.2.4. Performance of the Optimization Process 
The individualized region selection and the use of monomers for the calculation of simulated atrophy, within 

the optimization framework resulted in significant correlations across most timepoints for the majority of 

patients. Among GBA-negative patients, only two individuals exhibited no correlated timepoints, suggesting 

that, despite identifying the global minimum of the objective function, the optimization process may not always 

yield suitable parameter values.  

For most of these patients, all available timepoints were positively and significantly correlated, while a 

minority reported significant correlations in only a part of all timepoints. The model demonstrated a higher 

success rate in GBA-positive subjects compared to GBA-negative subjects, with only two GBA-positive 

patients showing incomplete correlations across available follow-up scans. 

Across both datasets, the highest percentage of significant correlations were observed at the earliest timepoints, 

with a progressive decline in later stages. This pattern is likely influenced by the strategy used for selecting 

the seed region, introducing a performance bias favouring the early stages of disease progression. 

 
Figure 5.2.4.1: Histograms representing the percentage of significant and positively correlated scans for 

both GBA groups. Histograms on top represent comparisons across timepoints while the ones on the bottom 

represent comparisons across all patients within their respective PD group. 

The decline in performance after the first follow-up is evident in the distributions of correlation metrics in 

Figure 5.2.4.2, where the maximum and median Pearson’s correlation indexes decrease at later timepoints. 

Despite this reduction, the overall distribution of correlations remains relatively stable, indicating that the 

model maintains a broadly consistent performance across timepoints. 
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Figure 5.2.4.2: Boxplot of correlation performance across timepoints for both GBA-positive subjects 

(orange) and GBA-negative subjects (blue). 

5.2.5. Parameters Selected in the Optimization Process 
The optimization process allowed for the identification of parameters tailored to each patient, whose 

distribution was not uniform across the range. The β parameter, for example, exhibited a notable accumulation 

of selected values at the lower bound, with 15 GBA-positive and 4 GBA-negative patients selecting the lowest 

available value. Beyond this accumulation, the remaining distribution of β values was evenly spread across the 

range in both GBA groups, reflecting that the previous processes identified a sufficiently high upper bound.  

Another pattern was observed for parameters c1, c2, and σagg , with values clustering at both the lower and upper 

bounds across both GBA groups. While this trend might suggest a need for further boundary adjustments, 

previous analyses indicated that these parameters have a limited impact on correlation performance, making 

further expansion unnecessary. In contrast, σdiff and σf displayed a tendency toward the upper bounds of their 

respective ranges while still maintaining a sufficient spread across the full parameter space.  

 
Figure 5.2.5: Histograms of the distribution of parameters selected by the optimization process for GBA-

negative patients (left) and GBA-positive patients (right). 
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5.2.6. Regions Selected in the Optimization Process 
Additionally, the distribution of selected seed regions was examined. GBA-negative patients predominantly 

exhibited a preference for seed regions within the temporal lobe, with secondary selections primarily located 

in the frontal lobe. GBA-positive patients also showed a strong preference for temporal lobe regions but 

demonstrated a separate secondary preference for the basal ganglia and sensorimotor areas. This differentiation 

in regional selection may reflect underlying differences in disease propagation patterns between the two 

groups. 

 
Figure 5.2.6: Histogram of the distribution of regions selected for GBA negative patients (left) and GBA 

positive patients (right). 

5.2.7. Characteristic Atrophy Patterns 
A defining parameter of the model is β, the network transmissibility constant governing the spread of atrophy 

across the functional network, as its variation had the widest impact on performance and on the shape of disease 

progression.  

The difference between these low and high β patterns is evident while observing correlation plots between z-

scored observed atrophy and simulated atrophy [Figure 5.2.6]. Lower β values were associated with a more 

localized and gradual spread of atrophy, with several regions remaining minimally affected throughout all the 

timepoints. In contrast, higher β values led to widespread involvement of most brain regions, even at the 

earliest stages of progression, with a further burden increase in the later timepoints. 
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Figure 5.2.7 : Scatter plots correlating simulated to z-scored observed atrophy for patient 8, from GBA 

positive group, and Patient 31, from GBA negative group, highlighting differences in atrophy patterns along 

with β parameter variations. 

5.2.8. Spatial and Temporal Evolution of Simulated Atrophy 
A more comprehensive understanding of simulated atrophy dynamics can be achieved by visualizing its spatial 

progression across affected regions, as illustrated in Fig. 5.2.8. In the GBA-negative patient, the model 

identified the left amygdala as the seed region of misfolded α-Syn production along with optimized parameters 

characterized by a β parameter whose low value suggested that the atrophy spread would remain highly 

localized and close to the initial region. At the two-year timepoint, atrophy was confined to the left temporal 

lobe, with only mild involvement of other regions within the left hemisphere. As the disease progressed to year 

three, there was an overall increase in atrophy burden while still maintaining a largely lateralized pattern. By 

year five, atrophy extended further within the left hemisphere, progressively affecting the remaining lobes, 

without spreading to the right hemisphere yet. At the seven-year timepoint, the atrophy burden saturated the 

left hemisphere and finally extended into the right hemisphere. This pattern highlights the regionally restricted 

progression characteristic of low β values, where atrophy remains localized for an extended period before 

expanding more widely.   

In contrast, the GBA-positive patient exhibits a very different atrophy trajectory driven by a high β value which 

is associated with rapid diffusivity through the network with early and widespread involvement of regions. By 

the two-year timepoint, atrophy starting from the seed region of the right banks of the superior temporal sulcus 

has already spread beyond the right temporal lobe the right parietal lobe. As the disease progresses to year 

three, the influence of the high β value becomes evident as atrophy extends across hemispheres, reaching lobes 

within the left hemisphere. By year five, a widespread increase in atrophy burden is observed, affecting all 

lobes across both hemispheres. This pattern continues into year seven, with extensive neurodegeneration 

observed across all major brain regions. Although this widespread atrophy trajectory is demonstrated here for 

a GBA-positive patient, it is a characteristic feature of all cases with a high β value even the GBA-negative 

ones, indicating that disease progression in such individuals is significantly more aggressive compared to those 

with lower β values.   

The simulated patterns demonstrate that β values play a critical role in dictating atrophy spread dynamics. Low 

β values result in a localized, slower progression, while high β values lead to early, extensive 

neurodegeneration providing basis of reasoning for interpreting model parameters after fitting with possible 

applications for stratification of patients. 
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Figure 5.2.8: Representations of simulated atrophy for patient 8, from GBA positive group, and patient 31, 

from GBA negative group, highlighting differences in atrophy patterns along with β parameter variations. 
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6. Discussion 

6.1.Connectomics 
The investigation of graph measures obtained from functional connectivity reveals significant alterations in 

brain network topology associated with GBA mutations. The observed reductions in nodal degree and 

betweenness centrality, particularly in temporal, sensorimotor and parietal lobes suggest a pattern of decrease 

integration within these regions. Given the crucial roles of these areas in motor, sensory and cognitive 

functions, their disconnection may contribute to the poorer clinical outcomes observed in GBA-positive PD 

patients (56). 

In contrast, GBA-negative patients exhibited reduced betweenness centrality within the right frontal lobe 

compared to healthy controls, indicating that PD without GBA mutations affects brain information 

transmission in different locations and to a lesser extent to GBA-positive PD. 

The distinction between PD groups is further supported by betweenness centrality alterations within the left 

occipital lobe when comparing GBA-positive and GBA-negative patients, highlighting differences in affected 

brain regions and extent of connectivity disruptions. 

NBS results further emphasize the greater disruption of connectivity in GBA-positive patients relative to 

healthy controls, in connections spanning multiple regions, including the parietal, temporal, occipital, 

sensorimotor, and frontal areas. The absence of significant connections in the contrasts (GBA-positive vs. 

GBA-negative and GBA-negative vs. HC) reinforces the notion that GBA mutations may drive unique 

alterations of functional network degeneration in PD. This is in line with previous research suggesting that 

GBA mutations lead to earlier and more aggressive disease progression, potentially mediated by 

glucocerebrosidase deficiency and its downstream effects on α-synuclein accumulation and 

neuroinflammation. (56) 

Taken together, our findings support the hypothesis that GBA-positive PD represents a distinct subtype with 

pronounced network alterations. The observed disruptions may contribute to the increased cognitive and motor 

impairments often reported in this patient group. Future studies integrating longitudinal imaging and clinical 

assessments are needed to determine the progression of these connectivity changes over time and their potential 

as biomarkers for disease severity and therapeutic response. 

6.2. Neurodegeneration Modelling 
The results of the AND model highlighted the importance of individualized solutions for accurately simulating 

atrophy progression in PD. The single-patient selection of seed region proved instrumental in enhancing model 

performance as individualized seed selection consistently outperformed fixed seed references, yielding 

stronger correlations across all time points. This approach fits with the expectation of heterogeneity of PD 

progression. 

The exploration of suitable parameter bounds highlighted that diffusion-related parameters (β and σdiff) play a 

central role in determining model performance, exhibiting the greatest influence on correlation outcomes. This 

dependency reinforces the hypothesis that disease propagation in PD is primarily driven by network diffusion 

mechanisms, aligning with previous studies suggesting that a key driver of α-Syn pathology is its ability to 

spread through the brain network, ultimately contributing to progressive neurodegeneration (79). The strong 

influence of diffusive parameters further supports the notion that connectivity-based transmission plays a 

fundamental role in PD pathogenesis, similar to the network-based spread observed in other prion-like 

neurodegenerative conditions, such as AD. 

A key aspect of the AND model was determining which protein forms contributed most prominently to the 

progression of atrophy. Monomeric α-Syn was the most frequently selected contributor, either alone or in 

combination with prefibrillar assemblies and mature fibrils. The consistent presence of monomers supports the 

hypothesis that the highly diffusive nature of this species of α-Syn is a major factor in disease propagation, 
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while larger aggregates may contribute locally rather than through widespread diffusion. The inclusion of high-

molecular-weight protein forms in other favoured combinations suggests that atrophy progression results from 

a combination of effects from different α-Syn forms, rather than a single toxic species.  

The presence of monomers as the primary protein form driver of PD atrophy progression is in line with the 

strong role of diffusive processes due to the properties of monomers of having the highest capabilities of 

diffusion across the network as per the model definition (83). As a consequence to this prevalence, the 

aggregation phenomena tend to play a secondary role possibly influencing in a stronger way local dynamics 

rather than whole brain mechanisms. 

Parameter optimization and the analysis of their values revealed no distinct patterns in parameter value 

selection across the two PD subgroups highlighting the heterogeneity of PD progression. Notably, many 

patients from both subgroups converged toward low diffusivity parameters while a subset of patients, required 

a wider range of parameter values to achieve optimal correlations having high diffusivity parameters. This 

suggests that standard fixed-parameter models may overlook important inter-individual differences, which 

could provide insights into previously ignored disease progression patterns. By capturing this variety, the AND 

model proves its effectiveness as a patient-specific simulation tool, allowing for a more granular understanding 

of neurodegeneration dynamics. 

The analysis of atrophy patterns in relation to the β parameter revealed clear differences in regional 

involvement. Specifically, lower β values were associated with a lateralized progression across most time 

points, a tendency that has been widely reported in the literature (103). Conversely, patients with higher β 

values exhibited early bilateral involvement, leading to widespread atrophy in both hemispheres even at the 

initial disease stages suggesting that lateralization may be a characteristic of only certain PD subtypes. The 

fact that some patients follow a lateralized trajectory, while others experience more diffuse, aggressive 

progression, underscores the need for biomarkers that can distinguish between these different disease courses. 

Given its strong association with disease spread patterns, β could serve as a key biomarker for stratifying PD 

patients based on their disease trajectory. This offers a potential means of distinguishing between slow and 

aggressive disease courses, facilitating earlier intervention strategies and allowing for targeted therapeutic 

approaches aimed at slowing neurodegeneration before significant atrophy occurs.  
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7. Conclusion 
The results of this investigation highlight critical differences in functional connectivity between GBA-

positive and GBA-negative PD patients, with more pronounced network alterations observed in GBA-

positive individuals. However, differences between GBA-positive and GBA-negative groups were not 

apparent in the simulated atrophy generated by the individualized AND model. Instead, the findings showed 

considerable variability in the choice of seed regions, individually optimized parameters, and the progression 

patterns of atrophy across individual patients.  

Despite distinct functional connectivity disruptions, the similar atrophy dynamics simulated by the AND 

model across both PD subgroups suggest that genetic distinctions alone may not fully account for differences 

in neurodegenerative trajectories. Instead, the interplay of genetic factors, disease stage, and individual 

neurobiological variability must be considered to enhance personalized prognostic accuracy and therapeutic 

targeting in PD research. 

Additionally, the individualized AND model demonstrates significant potential as a tool for early detection of 

PD by simulating disease progression based on patient-specific network properties. Future research should 

aim at integrating additional biomarkers, genetic details (particularly specific GBA mutations), and 

longitudinal clinical data to refine disease modelling. Further studies might also explore factors capable of 

better stratifying even GBA-negative patients, thus improving the precision and clinical relevance of PD 

simulations. 
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