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Abstract

Estimating lower limb joint kinematics is crucial for assessing movement

disorders, optimizing rehabilitation, and monitoring sports performance. Tradi-

tional clinical setups require marker-based systems with at least three markers

per segment. Wearable IMUs o↵er an alternative by placing sensors on proximal

and distal segments but remain bulky, time-consuming, and costly. This high-

lights the potential of a minimal sensor configuration. Selecting instrumented

segments requires careful consideration. Prioritizing the pelvis, representing

center-of-mass dynamics, and the feet, as movement end-e↵ectors, aligns with

established methods for estimating spatio-temporal parameters in free-living

conditions [1].

This thesis extends previous work on a biomechanical model that estimates joint

angles using anthropometric measurements and pelvis/feet orientations and po-

sitions. That work addressed measurement errors by applying constraints and

an optimization framework to fit segment data while limiting hip, knee, and

ankle motion. The model employs the Denavit-Hartenberg convention for stan-

dardized joint definitions and ISB-recommended rotation sequences. The SQP

optimization algorithm minimizes di↵erences between model-derived and sen-

sor data. This thesis aimed to refine the model using marker-based stereopho-

togrammetry (SP) data as a reference to evaluate the feasibility of estimating

joint kinematics with minimal input. The improved model was tested on a

healthy subject under di↵erent speeds and simulating toe walking and asymmet-

ric steps (PoliTO dataset). After that, a validation was performed in more com-

plex scenarios (Madrid dataset) featuring uneven terrains: flat, zigzag, sponge-

like, and irregular surfaces, also assessed on a mechanized tilting platform.

During model refinement, fixed anthropometric measurements introduced errors

due to marker trajectory uncertainties and soft tissue artifacts. Frame-by-frame

adaptation of segment lengths yielded Root Mean Square Error (RMSE) values

of 1.9 deg, 4.2 deg, and 2.9 deg for hip, knee, and ankle respectively, comparing

estimated joint angles with those from SP. Using fixed lengths resulted in addi-

tional errors of 1.8 deg, 3.2 deg, and 0.4 deg for the same joints. Moreover, joint

angle plots exhibited saturation. RMSE values on the Madrid dataset were: 1.4

deg (1.3 deg) for right (left) hip, 5.0 deg (3.9 deg) for right (left) knee, 5.3 deg

(6.2 deg) for right (left) ankle. Although limited di↵erences were found across

2



terrains, the presence of slope slightly decreased accuracy (errors up 0.7 deg).

Range of Motion (ROM) was computed as the di↵erence between maximum and

minimum joint angles over each gait cycle, then averaged across all cycles. A

two-way ANOVA (↵i = 0.05) revealed no significant influence of both terrain

conditions and slope on ROM estimation (p = 0.81).

This study demonstrated the feasibility of a minimal configuration for gait kine-

matics estimation, with optimization compensating for measurement errors. In-

tegrating anthropometric variability improved accuracy, though asymmetry and

experimental uncertainties persist. Since the ultimate goal remains the use of

fixed measurements, the next step will be modeling segment length uncertainty

within the optimization to enhance robustness, supporting IMU-based applica-

tions.
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1 Introduction

1.1 Context and motivations

Understanding human movement through the analysis of joint kinematics plays

a key role in the quantitative assessment of joint behavior in terms of position,

angle and velocity. “A complete understanding of joint kinematics is important

in the diagnosis of joint disorders resulting from injury or disease, in the quan-

titative assessment of treatment, in the design of better prosthetic devices, and

in the general study of locomotion” [3]. Quantitative instrumental gait analysis

provides clinicians with accurate and reliable data that are valuable for diag-

nosing motor disorders, planning surgical interventions and designing prosthetic

devices [10]. In rehabilitation, it enables the assessment of functional limb per-

formance under normal and abnormal conditions, guiding treatment strategies

and monitoring progress. For example, patients with Parkinson’s disease often

present with specific gait abnormalities, such as reduced stride width and al-

tered joint orientation, which may be difficult to detect with traditional clinical

assessments alone [11].

Despite its clinical potential, the integration of advanced kinematic analysis

methodologies into routine practice remains limited by logistical and technical

barriers. Current approaches are predominantly confined to controlled environ-

ments, such as clinics or laboratories, which restrict their ability to capture com-

prehensive movement patterns representative of daily life. Future advancements

aim to extend kinematic analysis capabilities to real-world settings, bridging the

gap between laboratory conditions and natural environments. Emerging tech-

nologies, such as inertial measurement units (IMUs), o↵er promising solutions

that are portable, cost-e↵ective, and non-invasive. These innovations could en-

able continuous gait monitoring in real-life conditions [12].

In rehabilitation, quantifying joint kinematics during therapy sessions pro-

vides valuable information on therapy dosage, which is closely linked to recovery

outcomes. For instance, in stroke rehabilitation, the extent of joint motion dur-

ing therapy has been shown to correlate with improvements in gait speed [13].

Such data facilitate the development of personalized rehabilitation plans and

allow for the ongoing adjustment of therapy strategies based on objective evi-

dence.

While current e↵orts focus primarily on clinical applications, joint kinematics

analysis has the potential to reshape the monitoring and understanding of motor
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health. By enabling precise, data-driven assessments, this field enhances patient

care and provides a foundation for broader applications in the future.

1.2 Challenge and aim of the thesis

This thesis builds upon the preliminary work conducted in a previous study

[7], which addressed the challenges of reducing the number of sensors required

for estimating lower limb kinematics in real-world applications. The prior work

focused on validating a minimal sensor configuration using three inertial mea-

surement units (IMUs), two on the feet and one on the pelvis, to estimate

spatio-temporal parameters [1]. While this configuration provided several ad-

vantages, such as lower costs, improved wearability, and reduced preparation

time, it also introduced significant challenges.

Specifically, although the reduced dataset theoretically allows for a unique

estimation of knee kinematics from a mathematical perspective, additional con-

straints were introduced. Furthermore, the validation was conducted under

controlled in-lab walking conditions to ensure consistency and reliability in the

results.

That said, this thesis work takes a step back to investigate data derived

from stereophotogrammetry (SP), acquired using the Davis protocol, to assess

the feasibility of a future integration with IMUs, highlighting the limitations of

this approach. The stereophotogrammetry-based dataset, includes the position

and orientation of the pelvis, knees, ankles, and feet. The dataset includes the

position and orientation of the pelvis, knees, ankles and feet. However, the

developed minimum input model relies only on the position and orientation of

the pelvis and feet to estimate lower limb kinematics mathematically. Despite

the reduced input, the system remains mathematically determined, ensuring a

unique solution for the kinematics estimation. The model is first built and tested

on a healthy subject under simulated and controlled normal walking conditions.

It is then tested and validated on a dataset of healthy subjects under walking

conditions on di↵erent uneven terrains. This made it possible to overcome the

constraints of flat and controlled laboratory environments. The inclusion of

irregular terrain broadens the applicability of the method, with the ultimate

goal being to integrate its use with IMUs.
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1.3 Thesis outline

The thesis is structured as follows:

• Chapter 1 introduces the context and motivation for the research, high-

lights the challenges and outlines the aims of the thesis itself.

• Chapter 2 provides a theoretical background, discussing the fundamen-

tals of lower limb kinematics, existing technologies for joint kinematic

estimation, and a detailed overview of stereophotogrammetry.

• Chapter 3 details the materials used in the study. The experimental

protocol and setup, the instrumentation and the datasets employed are

detailed.

• Chapter 4 details the methods used in the study, from the optimization

framework (cambio) to the statistical analysis.

• Chapter 5 the results obtained with the implemented optimization frame-

work (cambio) are displayed.

• Chapter 6 the results presented in Chapter 5, the limitations and the

potential improvements are critically discussed.

• Chapter 7 summarizes the work performed, discusses its impact on future

research, and explores prospects for integrating inertial sensors and other

potential applications.
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2 Theoretical background

2.1 Introduction to lower limb kinematics

Joint kinematics is the quantitative description of the relative motion between

two rigid, adjacent body segments, typically represented by bones. “The mo-

tions which occur in most anatomical joints involve three-dimensional movement

which is described by six independent coordinates or degrees of freedom. Three

are translations and three are rotations” [3].

The focus of this thesis is on the kinematics of the lower limbs, specifically

analyzing the relative motion of adjacent segments (pelvis, thigh, shank, and

foot) during walking. The motion of the main joints (hip, knee, and ankle) is

characterized using joint angles defined according to international standards. In

detail, the International Society of Biomechanics (ISB) standardized the Joint

Coordinate System (JCS) proposed by Grood and Suntay for joint motion,

defining rotation sequences and reference axes for the lower limb joints (hip,

knee, and ankle) as follows below [3][2].

Hip joint

The hip joint angle represents the relative motion between the pelvis and fe-

mur, defined by flexion/extension, abduction/adduction, and internal/external

rotation. Flexion/extension occurs in the sagittal plane around the mediolateral

axis, abduction/adduction in the frontal plane around the anteroposterior axis,

and internal/external rotation in the transverse plane around the vertical axis.

More specifically, the JCS is defined as follows:

1. Origin: at the center of the femoral head

2. e1: the axis fixed to the pelvis, parallel to the line connecting the left and

right anterior superior iliac spines (ASIS), pointing to the right

3. e3: the axis fixed to the femur, along the long axis of the femur, pointing

proximally

4. e2: the floating axis, perpendicular to both e1 and e3

The recommended rotation sequence for the hip joint is:

1. Flexion/extension around the e1 axis
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2. Ab/adduction around the e2 axis

3. Internal/external rotation around the e3 axis

Figure 1: Illustration of the pelvic coordinate system (XYZ), femoral coordinate
system (xyz) and the JCS for the right hip joint [2].

Knee joint

The knee is primarily a hinge joint, with flexion/extension as the main movement

in the sagittal plane. Minor internal/external rotation and abduction/adduction

may occur during complex movements or under significant loads.

Although not explicitly defined in Wu et al. (2002), the knee joint is typically

described using a similar JCS approach:

1. Origin: at the midpoint between the femoral epicondyles

2. e1: the axis fixed to the femur, approximately parallel to the femoral

epicondylar axis, pointing to the right

3. e3: the axis fixed to the tibia, along its long axis, pointing proximally
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4. e2: the floating axis, perpendicular to both e1 and e3

The rotation sequence for the knee follows that of the hip joint.

Figure 2: The knee joint coordinate system as defined by Grood and Suntay [3].

Ankle joint

The ankle comprises the talocrural and subtalar joints. Its primary motion,

dorsiflexion/plantarflexion, occurs in the sagittal plane around the mediolat-

eral axis. Limited inversion/eversion in the frontal plane and internal/external

rotation also occur.

Specifically, the JCS is defined as follows:

1. Origin: at the midpoint between the malleoli

2. e1: the axis fixed to the tibia, passing through the malleoli, pointing to
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the right

3. e2: the axis fixed to the foot, perpendicular to e1 and the plantar surface

of the foot, pointing anteriorly

4. e3: the floating axis, perpendicular to e1 and e2

The recommended rotation sequence for the ankle joint is:

1. Dorsi/plantarflexion around the e1 axis

2. Inversion/eversion around the e2 axis

3. Internal/external rotation around the e3 axis

Figure 3: Illustration of the JCS for the right ankle joint complex [2].

In typical gait, the following ranges of motion are observed for the main joints:

• Hip: approximately 40° of flexion/extension, 10° of ab/adduction, and

15° of internal/external rotation. These movements are essential for leg

advancement and maintaining balance.

• Knee: approximately 60° of flexion/extension. Knee motion is critical for

shock absorption during the stance phase and for foot clearance during

the swing phase.
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• Ankle: approximately 30° of dorsiflexion/plantarflexion. Ankle motion

ensures proper foot placement and propulsion during gait.

These ranges, shown graphically in Figure 4, may vary when walking on un-

even terrain or engaging in activities such as running, climbing, or navigating

slopes, where increased flexibility is needed to accommodate specific movement

demands.

Figure 4: Typical gait ranges of motion for the hip, knee and ankle. Adapted
from [4].

2.2 Technologies available for joint kinematics estimation

There are many technologies currently available for the study of joint kinemat-

ics, including both traditional methods and more innovative solutions [14][15].

However, the main operational and widely used technologies are described be-

low: stereophotogrammetric (SP) systems, inertial measurement units (IMUs)

and markerless systems.

1. Sterephotogrammetry (SP)
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Stereophotogrammetry is an accepted technique for analyzing human move-

ment, recognized as the gold standard in biomechanics. This methodology

uses multiple cameras (the number depends on the case) strategically po-

sitioned around an acquisition volume to track reflective markers applied

to specific anatomical points.

• Advantages: provides highly accurate and reliable data, ideal for

applications in controlled and clinical environments.

• Limitations: requires a controlled environment, is expensive and is

highly dependent on the correct placement and calibration of mark-

ers.

Figure 5: Components of a stereophotogrammetric system

2. Inertial measurement units (IMUs)

IMUs are wearable devices consisting of accelerometers, gyroscopes and, in

some cases, magnetometers. These sensors work together to measure lin-

ear accelerations, angular velocities and orientations, enabling 3D motion

tracking.

• Advantages: compact, inexpensive and capable of acquiring motion

data in natural, unconstrained environments.

• Limitations: sensitive to drift errors, particularly during prolonged

measurements, and require advanced algorithms for data processing
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and error correction.

3. Markerless motion capture systems

Markerless systems utilize computer vision and machine learning tech-

niques to estimate joint kinematics directly from video data. These sys-

tems analyze the movement of anatomical landmarks without the need for

reflective markers, o↵ering an accessible and non-invasive solution.

• Advantages: eliminates the need for markers, reducing setup time

and complexity, and allows for motion tracking in outdoor or uncon-

strained environments.

• Limitations: typically less accurate than marker-based methods,

with performance dependent on the quality of cameras and environ-

mental conditions.

Figure 6: Application example of a markerless motion capture system. Taken
from [5]
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2.3 Stereophotogrammetry and the Davis Protocol

The technology used in this thesis is therefore stereophotogrammetry [see pre-

vious paragraph]. Among the di↵erent protocols, this study used the Davis

protocol, developed by Roy Davis et al. in 1991, which is used to place markers

on subjects and calculate kinematic gait parameters [16]. It involves placing

markers on specific anatomical points, as shown in Figures 15-16 for the lower

body, to ensure repeatability and standardization of measurements. It assumes

a rigid body model with pre-defined anthropometric parameters and requires

specific calibration steps to estimate lower limb joint kinematics.

The key steps are as follows:

1. Marker placement: reflective markers are positioned according to Fig-

ures 15-16. These markers act as reference points for tracking segmental

motion during dynamic trials.

2. Calibration trials (static): a static trial is conducted to estimate joint

center locations relative to marker clusters. This step establishes the

segment coordinate systems and defines the spatial relationship between

markers and the underlying skeletal structure. These relationships are

crucial for accurately mapping the marker trajectories to joint motion.

3. Dynamic trials: during movement, the relative motion of markers is

recorded and processed to estimate joint kinematics. Using inverse kine-

matics, segmental rotations are calculated and decomposed into anatom-

ical planes (sagittal, coronal, transverse) to estimate clinically relevant

joint angles.

While the Davis Protocol provides robust estimates of lower limb kinematics,

its accuracy is a↵ected by factors such as marker misplacement, skin motion

artifacts, and assumptions about rigid body behavior.
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3 Materials

This chapter describes the materials, experimental setups and protocols used.

The study uses a Vicon stereophotogrammetric system, adopting the PlugIn

Gait protocol, which is an implementation of the Davis protocol, as described

in Section 2.3.

The experimental setup included both optoelectronic markers and inertial

measurement units (IMUs) for motion capture. However, it is important to

note that only data derived from the optoelectronic markers were utilized for the

analysis presented in this work. The inclusion of IMUs ensured a comprehensive

dataset, which may be considered for future studies.

The stereophotogrammetric system was prepared through masking, full cali-

bration, and the establishment of the laboratory reference frame prior to subject

preparation. The subject was equipped with optoelectronic markers and IMUs

for the walking trials. Static trials were recorded to facilitate manual labeling

of markers, ensuring precise correspondence with camera-detected points. Post-

processing was conducted using Nexus software, which included gap filling to

address marker occlusions, execution of the dynamic pipeline, and data export

in ASCII format for further analysis.

3.1 PoliTO DATASET

The dataset used for model development was sourced from [7], which reports

motion capture data collected from a healthy volunteer performing various ex-

ercises to analyze straight walking under di↵erent conditions:

• Walking at di↵erent speeds:

– Comfortable speed

– High speed

– Low speed

• Half-step walking:

– Right half-step

– Left half-step

• Toe walking
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• Walking with di↵erent step lengths:

– Short step length

– Long step length

3.1.1 Experimental setup PoliTO

Experiments were conducted in the PolitoBIOMed Lab, a facility equipped with

specialized instrumentation for movement analysis tests, as shown in Fig. 13.

Two systems were employed:

• SP system, consisting of:

– 12 Vicon infrared cameras were used to reduce artefacts caused by

natural light, ensuring accurate tracking,

– 3 RGB cameras recorded video footage of the experiments,

– An active wand aided in system calibration, featuring known geo-

metric marker configurations, represented in Fig 13

– 16 passive markers, coated with retro reflective material, were placed

on the subject according to the Vicon’s reference guide [6], as shown

in Fig. 14-15,

– Nexus software (v 2.12) was utilized for extracting files containing

joint angles and forces.

• IMU-based system: a motion tracking system using seven IMUs was

implemented, with the sensors attached to bands positioned on specific

body segments, including the feet, shanks, thighs, and pelvis.
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Figure 7: On the left the PolitoBIOMed Lab, on the right the active wand.

Figure 8: Front view of marker placement on the subject [6].
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Figure 9: Rear view of marker placement on the subject [6].

3.1.2 Experimental protocol - PoliTO

Following the protocol established in [7], the exercises described in Section 3.2.1

were acquired and analyzed using the combined SP and IMU systems, as follows:

1. 10 minutes of warm-up of IMUs,

2. preliminary acquisition in static condition of one minute of the IMUs to

estimate the bias of the gyroscope,

3. start acquisition with IMU software,

4. start recording with Nexus,

5. performance of the first exercise,

6. stop recording with Vicon,

7. stop IMUs’ acquisition,

8. repeat the steps 3-7 until reaching at least 3 trials,

9. repeat the steps 3-8 for each exercise.
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3.2 Madrid DATASET

The dataset used for model validation consists of gait recordings from five

healthy adult subjects. The study adhered to all ethical guidelines and was

approved under IRB code 218/2022. All participants provided informed con-

sent prior to data collection. The demographic and anthropometric details of

the participants are as follows:

Subject Gender Height Weight

(m) (kg)

Subject 1 F 1.66 51

Subject 2 F 1.67 52

Subject 3 M 1.87 87

Subject 4 F 1.76 72

Subject 5 M 1.85 85

Table 1: Demographic and anthropometric details of the subjects used for model
validation. The table includes information on gender, height, and weight for
each participant.

These subjects represent a diverse range of body types, enhancing the model’s

robustness when tested under di↵erent biomechanical conditions.

The dataset includes static and dynamic trials:

• Static trials: used for calibration to establish baseline anatomical models

and joint center positions.

• Dynamic trials: recorded during walking at a self-selected comfortable

speed.

3.2.1 Testing conditions

In this study, subjects were recorded walking under various surface and slope

conditions. The experimental protocol involved the following surface types:

• Flat surface: a standard, even surface designed to simulate typical walk-

ing conditions, with a uniform texture that provides consistent feedback

underfoot. This surface serves as a baseline for comparison with more

challenging terrains.
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• M: the surface M is constructed using square modules, each measuring

500 × 500 mm, with an individual inclination angle of 15 degrees. A total

of 13 such modules were used to create the zig-zag profile, alternating

between peaks and valleys. This uneven terrain simulates conditions that

require dynamic adjustments in gait and balance, as the foot transitions

between raised and lowered sections.

• MAT: a soft and spongy surface, such as rubberized flooring or padded

materials, which reduces the impact forces during walking. This surface

simulates environments like gym floors or playgrounds, where cushioning

might alter walking mechanics. The material has a density of 30 kg/m3.

• Terrasensa: an irregular surface featuring holes, varying roughness, and

an assortment of obstacles that challenge the subject’s proprioception and

adaptability. This surface mimics natural outdoor terrains like forest paths

or construction sites, where unevenness demands careful foot placement

and dynamic adjustments to maintain stability. It is constructed using

elements measuring 80 × 500 × 500 mm, each weighing 3.5 kg.

Figure 10: Condition 0 - flat surface.
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Figure 11: Condition 2 - M.

Figure 12: Condition 3 - MAT.

Figure 13: Condition 4 - Terrasensa.

Each surface condition was tested under two scenarios:

1. No slope: the surface remained horizontal, providing a neutral walking
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plane.

2. Slope: the surfaces were placed on a mechanized tilting platform capable

of inclinations up to 15 degrees, simulating uphill or downhill walking.

Figure 14: Overview of the 4 di↵erent terrains, also applied on the tilting plat-
form.

3.2.2 Experimental setup - Madrid

The experiments were conducted in the Motion Analysis laboratory of Los

Madronos Hospital, a facility equipped with specialized instrumentation for

movement analysis tests as shown in Fig. 16.

As well as for the first dataset, two systems were employed:

• SP system, consisting of:

– 12 Vicon infrared cameras were used to reduce artifacts caused by

natural light, ensuring accurate tracking,

– 2 RGB cameras (GoPro) recorded video footage of the experiments,

– an active wand aided in system calibration, featuring known geomet-

ric marker configurations,
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– 16 passive markers, coated with retro reflective material, were placed

on the subject according to the Vicon’s reference guide [6], as shown

in Fig. 14-15,

– the mechanically inclinable platform as shown in Fig. 16,

– 3 interchangeable removable platforms designed to simulate various

terrain conditions, mounted onto the inclinable platform,

– Nexus software was utilized for extracting files containing joint angles

and forces.

Figure 15: on the left the LosMadronos - MotionAnalysis Lab, on the right the
tilting platform.

3.2.3 Experimental protocol - Madrid

The study involved five healthy subjects, as described in Section 3.2.2, whose

walking was recorded under di↵erent ground conditions at a comfortable walking

speed, according to testing conditions.

These conditions were meticulously captured and analyzed using the combined

SP and IMU systems, as follows:

1. Configuration of the Vicon system, IMUs sensors,

2. two RGB cameras (GoPro) recorded video footage of the experiments,
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3. execution of Vicon static and dynamic calibration, followed by IMUs cal-

ibration procedures,

4. all systems were synchronized, and data recording was initiated,

5. subjects performed the walking exercises under the specified conditions,

6. data acquisition was stopped after trial completion,

7. repeat the steps 3-6 until reaching 6 trials,

8. repeat the steps 3-8 for each condition.

After completing the acquisition procedure for both PoliTO and Madrid dataset,

the data from the VICON system underwent processing to generate reference

outputs. The standardization process resulted in the creation of the Matlab

structures “data.mat”.

Specifically:

• The “data.mat” structure related to PoliTO dataset comprises multiple

fields representing various trials. For each trial, data from di↵erent sensors

are stored separately, as schematized in Fig. 17.
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Figure 16: Example of how the structure ”data.mat” is nested

• The “data.mat” structure related to Madrid dataset contains a field for

each subject, each of which comprises 4 trials for each of the test condi-

tions, as schematized in Fig. 18.
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Figure 17: Example of how the structure ”data.mat” is nested
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4 Methods

4.1 General description of the situation

Figure 18 presents a sagittal perspective illustrating the context of the analysis.

In particular, the process of estimating lower limb kinematics entails determin-

ing the joint angles at the hip, knee, and ankle, labeled as '1, '4, and '7,

respectively. “This is accomplished by leveraging the position and orientation

information of the feet and pelvis, without possessing knee-specific information.

The available data is incorporated into an optimization framework, aiming to

reconstruct lower limb kinematics while adhering to established relationships

among the three angles at the hip, knee, and ankle, connected by segments of

known length.” [7].

Figure 18: Sagittal view of the diagram representing the situation under anal-
ysis.

4.2 Overview of the KINEMI model

A model, named KINEMI (Kinematics with Minimum Input), was developed

to estimate the kinematics of the lower limb by integrating anatomical mod-

eling with stereophotogrammetric (SP) data, as shown in Figure 19. KINEMI

model, implemented in MATLAB, consists of a central block that receives input

from two sources: the lower limb model and the SP data. It then outputs the
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angles and positions of the a↵ected joints, enabling the reconstruction of joint

kinematics (static and dynamic).

Figure 19: Overview of the KINEMI model

4.3 Lower limb model

4.3.1 The Denavit - Hartenberg convention

The initial input block for optimization involved the lower limb model, formu-

lated as a kinematic chain based on the Denavit-Hartenberg (DH) convention, a

systematic methodology used in robotics and kinematics to describe the spatial

relationship between consecutive links in a robotic chain or kinematic structure

[8]. A representation of the model is shown in Figure 20.

In the DH convention, each link and joint in a kinematic chain is represented

using a coordinate frame. The relative position and orientation of one frame to

the next are described using a 4x4 transformation matrix. This transformation

matrix is constructed using four parameters: ai, di, ↵i, and ✓i, where i refers

to the link or joint index.

• ai (link length): the distance between zi−1 e zi axes along the xi axis.

It represents the o↵set along the common normal (perpendicular axis be-

tween two consecutive z-axes).

• di (link o↵set): the displacement along the zi−1 axis from the origin of

frame i− 1 to the intersection point with the xi axis.
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Figure 20: Frontal and sagittal views of the human lower limb model, developed
according to the DH convention and ISB guidelines. Joint numbering ranges
from 1 to 3 for the pelvis and from 1 to 9 for each lower limb. Links depicted
as thin blue lines indicate segments with zero length. Taken from [7].
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• ↵i (twist angle): the angle of rotation between the zi−1 e zi axes about

the xi axis. It defines the spatial orientation of the z-axes relative to one

another.

• ✓i (joint angle): the angle of rotation between the xi−1 e xi axes about

the zi−1 axis. For revolute joints, ✓i is a variable, as it corresponds to the

joint’s rotational motion.

Figure 21: Denavit-Hartenberg convention [8].

According to the DH convention, each joint is represented with a single degree

of freedom (DoF), where the rotation is described by '. In the case of a revolute

joint, three of the four parameters (ai, di, and ↵i) remain constant, as they are

determined by the geometric relationship between consecutive joints defined by

the ith link. The only parameter that varies over time is ✓i [7].

The transformation matrix Ai−1
i describes the pose of frame i relative to frame

i-1 and is constructed as:

Ai−1
i =

2

66664

cos(✓) − sin(✓) cos(↵) sin(✓) cos(↵) a cos(↵)

sin(✓) cos(✓) cos(↵) − cos(✓) sin(↵) a sin(↵)

0 sin(↵) cos(↵) d

0 0 0 1

3

77775
(1)
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This matrix combines the e↵ects of:

• Rotation about zi−1 by ✓i

• Translation along zi−1 by di

• Translation along xi by ai

• Rotation about xi by ↵i

The DH convention is mainly used for:

• Forward kinematics: calculating the end-e↵ector’s pose by multiplying

transformation matrices for all links in the chain.

• Inverse kinematics: determining joint parameters for a desired end-

e↵ector pose.

• Dynamic modeling: simplifying motion equations for robotic manipu-

lators.

While this convention provides a standardized and efficient framework for mod-

eling and analyzing robotic kinematic chains, it can be tough to assign consistent

frames in complex geometries and assumes idealized conditions that may not

fully represent real-world systems.

4.3.2 The developed input model

In this thesis, the Denavit-Hartenberg convention is employed to represent the

human lower limbs as a series of rigid links, incorporating the anthropometric

lengths of each segment (lthigh, lshank, ltoeankle, lfoot).

The model incorporated 3 revolute joints for the pelvis and nine revolute joints

for each lower limb. The joint definitions were established following the rotation

sequences and axis orientations outlined by the ISB guidelines [2]. Each joint,

including the pelvis, hip, knee, and ankle, was assigned three degrees of freedom

(DoFs), covering flexion-extension, adduction-abduction, and internal-external

rotation [17], as illustrated in Figure 20. Since all joints in the model are

revolute, ✓ is the only parameter that depends on '. The corresponding DH

parameters used in this work are shown in Table 2 and Table 3.
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Link ✓i di ai ↵i

1 ('1 +
⇡
2 ) 0 0

⇡
2

2 ('2 +
⇡
2 ) 0 0

⇡
2

3 ('3 +
⇡
2 ) 0 0

⇡
2

Table 2: DH parameters for the pelvis

Link ✓i di ai ↵i

1 '1 +
⇡
2 0 0

⇡
2

2 '2 +
⇡
2 0 0

⇡
2

3 '3 +
⇡
2 −lthigh 0

⇡
2

4 '4 +
⇡
2 0 0

⇡
2

5 '5 +
⇡
2 0 0

⇡
2

6 '6 +
⇡
2 −lshank 0

⇡
2

7 '7 +
⇡
2 0 0

⇡
2

8 '8 +
⇡
2 0 0

⇡
2

9 '9 +
⇡
2 −hfoot ltoe ankle 0

10 0 0 −lfoot 0

Table 3: DH parameters for the lower limbs

The developed model allowed the analysis to begin from predefined joint angle

configurations. Through direct kinematics, it provided critical data, including

the position and orientation of the pelvis, right foot, and left foot. These outputs

formed one of the two key inputs for the optimization process, as shown in Figure

22.
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Figure 22: Overview of the KINEMI model, explicitly detailing the quantities
obtained from the lower limb model.

4.4 SP - based information

The second input block for the optimization comprises data obtained from SP,

as illustrated in Figure 24. In accordance with the Davis protocol outlined in

[16], markers were positioned on key anatomical landmarks to record kinematic

data during walking trials. As detailed in the previous Section 3.4, the Vicon

output data were organized into a MATLAB structure named “data.mat”.

This structure contains the following information, on which all the processing

is based:

1. Physical marker trajectories: 3D coordinates (x, y, z) of markers

placed directly on the subject’s anatomical landmarks (metto un elenco,

o un’immagine).

2. Virtual markers: derived outputs provided by Vicon (PlugIn gait), in-

cluding both 3D trajectories (x, y, z) and axis-angle representations. These

markers represent internal joint behaviors that are calculated rather than

directly measured [6].
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Specifically, the virtual markers include:

• PEL: represents the pelvis.

• RFE and LFE: correspond to the right and left femoral ends, located

at the knee joint center.

• RTI and LTI: represent the right and left tibial ends, positioned at

the ankle joint center.

• RTO and LTO: represent the right and left toes, capturing the distal

end of the foot.

• RFO and LFO: represent the right and left forefoot markers, posi-

tioned on the dorsum of the foot closer to the ankle.

3. Joint centers: calculated positions representing the center of rotation

for each joint, respectively hip, knee and ankle joint centers, as shown in

the Figure 23 below.

Figure 23: Representation of the lower limb skeletal structure with highlighted
joint centers [6].
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4. Joint angles: gold-standard outputs for hip, knee, and ankle angles,

serving as a reference for the optimization process.

Figure 24: Overview of the KINEMI model, explicitly detailing the quantities
obtained from the SP.

4.4.1 Data pre - processing

This section outlines the pre - processing steps undertaken to prepare kinematic

data for the optimization. The initial focus is on computing rotation matrices to

describe joint kinematics (Step 1 ), followed by aligning the data to the global

reference system (Step 2 ), so to ensure consistency between local and global

coordinate systems.

Step 1: computing Rotation Matrices

The initial step involves extracting angle-axis data for virtual markers from the

dataset. This data is then converted into rotation matrices for all frames using

a dedicated transformation process. By taking angle-axis data as input, this

approach generates rotation matrices that describe the rotational behavior of

key joints: hip, knee, and ankle. Specifically:

1. For each virtual marker, a rotation matrix for every frame in the dataset

is computed. These markers correspond to the anatomical segments that

define the proximal and distal components of the joints.
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2. The computed rotation matrices are organized into three structured vari-

ables: HIP, KNEE, and ANKLE. Each structure stores the matrices for

the relevant proximal and distal segments of the joint An example is de-

picted in Figure 25.

Once the rotation matrices have been calculated, they have been used to recon-

struct the angles of interest of the joints (hip, knee, ankle), stored in the same

structures. The values obtained can then be compared with those provided by

the gold standard (Vicon output) as counter-evidence to validate the accuracy

of the step.

Figure 25: Example of the HIP structure in which both rotation matrices and
joint angles are stored. The same applies to KNEE and ANKLE.

Step 2: Alignment

This step involves applying rotations to the kinematic data to prepare it for the

optimization process.

As shown in Figure 26, the preliminar rotations applied here are used to tran-

sition from the local reference system of each body segment to the base

reference system, in accordance with the definitions provided by the Vicon

Plug-In Gait guide [6]. That said, each body segment (pelvis, femurs, tibias,

and feet) has a local reference system, which is aligned to the base reference

system using predefined rotation matrices.
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Figure 26: Overview of the first alignment step.

In the subsequent optimization process, an additional rotation equal to the

YAW angle (rotation about the vertical Z-axis) is applied to transition from

the base reference system to the Global Reference System (GRS), the one of

the laboratory, as shown in Figure 27. This ensures that the data reflects the

subject’s orientation in the laboratory space and aligns with the trajectory of

motion as defined by the GRS. In fact, according to the Vicon Plug-In Gait

guide [6]:

“The laboratory co-ordinate system is required here as a reference

for the pelvis kinematics. The lab system is also used later in the

definition of the foot co-ordinate frame. The global Z axis defines

the vertical, i.e. perpendicular to the lab floor. The global X and

Y axes are in the plane of the lab floor, with X often defining the

direction of normal walking along the laboratory walkway.”
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Figure 27: Overview of the second alignment step.

For each frame the following steps are executed:

1. Data extraction: the positions and rotation matrices of the pelvis, left

and right femur, left and right tibia, and left and right feet are extracted.

The positional data (p P, p LFE, p RFE, etc.) is in millimeters and con-

verted to meters by dividing by 1000. These data are then stored in arrays

to manage all frames collectively.

2. Rotation matrices definition

Three predefined rotation matrices are established:

• Rx: a 90° rotation around x-axis, defined as

Rx =

2

64
1 0 0

0 0 −1

0 1 0

3

75 (2)

• Rz: a -90° rotation around z-axis, defined as

Rz =

2

64
0 1 0

−1 0 0

0 0 1

3

75 (3)

• Ry: a 90° rotation around y-axis, defined as

Ry =

2

64
0 0 1

0 1 0

−1 0 0

3

75 (4)
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3. Application of rotation

The extracted rotation matrices for each segment are adjusted to align the

local reference system (red axes) with the base reference system (green

axes), as shown in the explanatory example of Figure 28. The transfor-

mations are:

• Pelvis: a 90° rotation around the x-axis using Rx

• Femurs (left and right): a 90° rotation around the x-axis using Rx

• Tibias (left and right): a 90° rotation around the x-axis using Rx

• Feet (left and right): a compound rotation. First, a 90° rotation

around the x-axis using Rx, followed by a -90° rotation around the

z-axis using Rz

Figure 28: The rotation from the local SR of the pelvis into the corresponding
base SR is shown here. The same is done for the femur, tibia and foot segments
following the rotations explained above.

4.5 Optimization cycle

The optimization process is the core step. The primary goal is to satisfy the

system’s kinematic constraints while minimizing the error between measured

and simulated data.

The following sub-chapter will discuss the main aspects of the optimization

process, including:

• the Sequential Quadratic Programming (SQP) method,

• the formulation of the objective function,

• and the main outputs coming from the cycle.
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4.5.1 The Sequential Quadratic Programming (SQP)

The optimization technique applied is based on the Sequential Quadratic Pro-

gramming (SQP) algorithm, an iterative method designed for solving non-

linear optimization problems with constraints. The SQP can be regarded as

a quasi-Newton method and is particularly suitable for problems characterized

by twofold continuously di↵erentiable objective functions and constraints.

The SQP approach is based on the iterative solving of a series of quadratic

programming (QP) subproblems, each of which minimizes a quadratic model

of the objective while linearizing the constraints. The formulation of the QP

subproblem is derived from a quadratic approximation of the Lagrange function,

and its solution is used to define the new iteration, as summarized in Figure 29.

Let us consider a non-linear programming problem in the form:

min
x

f(x)

subject to: h(x) ≥ 0,

g(x) = 0.

(5)

The Lagrange function associated with the problem is defined as:

L(x,λ,σ) = f(x)− λ>h(x)− σ>g(x) (6)

where λ and σ represent the Lagrange multipliers associated with the unequal

and equal constraints. In order to find a solution that satisfies the optimality

conditions, an attempt is made to solve:

rL(x,λ,σ) = 0 (7)

47



Figure 29: General schematic representation of the basic SQP algorithm [9].
The functions f(x), h(x), and g(x) can be nonlinear, with x potentially repre-
senting a vector of multiple optimization variables. In this case, h(x) and g(x)
correspond to systems of equations. The term r2

xx denotes the Hessian matrix.

The SQP algorithm calculates a search direction dk at a current iteration

(xk,λk,σk), solving a subproblem QP defined by:

min
d

1

2
d>Hkd+rf(xk)

>d,

subject to: h(xk) +rh(xk)
>d ≥ 0,

g(xk) +rg(xk)
>d = 0.

(8)

where Hk is an approximation of the Hessian matrix of the Lagrange function.

The implementation of SQP consists of the following steps [18]:

1. Updating the Hessian matrix

2. Quadratic programming solution: to determine the search direction dk
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3. Initialization

4. Line search and merit function

4.5.2 Objective Function

The objective function is designed to minimize the error between the observed

data and the model’s estimates, accounting for both the orientation and position

of the body segments during walking. The minimization is based on the sum

of the squares of the di↵erences, a method that assigns larger penalties to more

significant errors. The function consists of six terms, as shown in Figure 30.

Figure 30: Objective function for the SQP algorythm.

Specifically:

• Orientation: orientation terms are evaluated by calculating the di↵er-

ence between the observed and model-estimated rotation matrix. This

di↵erence was converted to Euler Angles.

Figure 31: Computation of the di↵erence between the observed rotation matrix
and that estimated by the model, with subsequent conversion to Euler Angles.
Note that the symbol “⇥” denotes standard matrix multiplication, not the cross
product.

• Position: position terms are calculated by comparing the observed coor-

dinates with the estimated ones.
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A distinctive aspect of the MATLAB implementation of the objective function,

defined as minimizeWalking bis v16 last is its flexibility, enabled by the use

of configurable parameters defined in optionsCustom, including:

• usePelvisPos, usePelvisOri

• useThighsPos, useThighsOri

• useShanksPos, useShanksOri

• useFeetPos, useFeetOri

These parameters function as Boolean flags (TRUE/FALSE) that can be set by

the user to include or exclude specific error contributions, such as the orientation

or position of various body segments. However, this flexibility was implemented

actually to ensure the versatility and scalability of the code. In the specific

configuration adopted in this thesis work, only the position and orientation

contributions of the pelvis and feet were activated, as shown in Table 4 below.

Option T/F

usePelvisPos true

usePelvisOri true

useThighsPos false

useThighsOri false

useShanksPos false

useShanksOri false

useFeetPos true

useFeetOri true

Table 4: Minimum input model.

The components of the objective function for both orientation and position are

summed after being squared. This aggregation ensures that each di↵erence

contributes positively to the total error and penalizes larger discrepancies more

significantly. The resulting function provides a single scalar value.

Figure 32 provides a summarized overview of the optimization process. The

resulting outputs included joint angles and positions, allowing for the recon-

struction of lower limb kinematics.
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Figure 32: Optimization process made explicit

4.6 Joint Angles and positions

The developed KINEMI model was applied to both the datasets, generating

joint angles and crucial positions as output. These outputs were essential for

reconstructing lower limb kinematics.

4.7 Data analysis

4.7.1 Root Mean Square Error (RMSE) and Range of Motion (ROM)

Joint Angles and positions obtained were compared with those acquired from the

SP to assess the accuracy of the estimation. To enable a quantitative assessment

of the discrepancies between the results obtained through the KINEMI model

and those recorded via the SP, Root Mean Square Error (RMSE) values were

calculated. These values quantify the deviations between the two methods. The

formula used for RMSE computation is presented below:

RMSE =

vuut 1

N

NX

i=1

(xi − x̂i)2 (9)
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where the terms xi and x̂i represent the time-series data of angles obtained

from the SP and the optimization framework systems, respectively. Removing

the mean value from the two time series was not necessary because they both

share the same reference system, as detailed above through the pre - processing

steps. That said, the di↵erence between the two series directly represents the

error without the need for a correction.

Furthermore, the range of motion (ROM) is calculated by analyzing the entire

time series and computing the ROM for each gait cycle. The final ROM is de-

termined by taking the average of all ROM values associated with the individual

gait cycles. The formula for the ROM for a single gait cycle is given by:

ROM = max(xi)−min(xi) (10)

4.7.2 Statistical analysis

The aim of the statistical analysis was to explore the influence of di↵erent terrain

conditions on the model results. To this end, a two-way ANOVA tests was used.

Terrain condition influence (Two-Way ANOVA)

This analysis was conducted to answer the question of whether the model pro-

vides comparable estimates of ROM across di↵erent terrain conditions and be-

tween the two measurement types (SP and Model). The goal is to determine

whether terrain conditions significantly influence the ROM estimation or if the

model maintains consistent performance regardless of the surface characteris-

tics. The Two-Way Analysis of Variance (ANOVA) was applied to compare the

Range of Motion (ROM) values directly, considering the measurement type and

terrain condition as independent factors. The following factors were considered:

• Factor 1: measurement type (SP vs Model)

• Factor 2: terrain condition (cond01, cond02, etc.)

This test allows us to analyze:

1. The main e↵ect of the measurement type (SP vs model)

2. The main e↵ect of the terrain condition

3. The interaction e↵ect between measurement type and terrain condition

The hypotheses for each factor and their interaction are defined as follows:
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• E↵ect of measurements type (SP - model):

– Null hypothesis H0: there is no significant di↵erence between ROM

values obtained from SP and Model.

– Alternative hypothesis H1: there is a significant di↵erence be-

tween ROM values obtained from SP and Model.

• E↵ect of terrain condition:

– Null hypothesis H0: di↵erent terrain conditions do not signifi-

cantly influence ROM values.

– Alternative hypothesis H1: at least one terrain condition signifi-

cantly influences ROM values.

• Interaction e↵ect (measurement type × terrain condition):

– Null hypothesis H0: there is no interaction between measurement

type and terrain condition.

– Alternative hypothesis H1: the di↵erence between SP and Model

ROM values depends on the terrain condition.

The methodology involves:

1. Normality assumption: as explained in the previous paragraph for the

One-Way ANOVA.

2. Variance decomposition

Here, the two-way ANOVA decomposes the total variance in the data into:

• Variance due to measurement type: how much the ROM esti-

mates di↵er between SP and model.

• Variance due to terrain condition: how much ROM estimates

vary across di↵erent conditions.

• Variance due to interaction: how the relationship between SP

and Model varies depending on the condition.

• Residual variance: unexplained variation within each group. Resid-

ual variance represents the unexplained variability within each group

after accounting for the e↵ects of measurement type, terrain condi-

tion, and their interaction. It captures random noise, subject-specific

di↵erences, and other uncontrolled factors influencing ROM estima-

tion.
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3. Significance testing

For each factor and their interaction, the F-statistic is computed as shown

in the formula 11 of the previous paragraph.

4. Decision rule

• If the p-value associated with the F-statistic is less than 0.05, H0 is

rejected, indicating a significant e↵ect.

• If the p-value is greater than or equal to 0.05, H0 cannot be rejected,

suggesting the absence of significant di↵erences.
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5 Results

Figures 34–35 illustrate an example of the flexion-extension angles of the hip,

knee, and ankle for both lower limbs over the entire time series. Figures 34

shows the results for the flat condition (right and left limb, respectively), while

Figures 35 display the most irregular condition (Terrasensa). In each figure,

the continuous blue line represents the angles estimated by the proposed model,

while the dashed red line corresponds to the SP.

To quantitatively assess KINEMI model’s performance, RMSE values and

ROM comparisons were computed, including absolute and percentage errors

between the two methods. Section 5.1 presents RMSE results for the Turin

dataset, where the model was developed, while Section 5.2 reports results for

the Madrid dataset, used for testing and validation. Finally, Sections 5.3 and

5.4 detail the results of the statistical analysis.

Figure 33: Left and right limb angles for hip, knee and ankle from the model
(in blue) and SP (in red) - flat condition
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Figure 34: Left and right limb angles for hip, knee and ankle from the model
(in blue) and SP (in red) - terrasensa condition

5.1 Dataset - Turin

RMSE results are presented in Table 5.

RMSE (deg) RHip LHip RKnee LKnee RAnkle LAnkle

dynamic01 1.1 2.3 2.7 2.3 2.4 2.3

dynamic02 1.6 2.3 3.5 5.4 3.2 3.3

dynamic03 1.5 2.7 2.4 5.4 2.7 3.7

dynamic04 1.4 2.3 3.6 5.0 3.0 2.7

dynamic05 1.9 1.6 3.3 3.6 1.7 3

dynamic06 1.6 2.1 3.8 5.2 2.9 3.3

dynamic07 2.8 1.9 5.0 4.2 3.2 3.5

Table 5: This table shows the RMSE values for each condition of walking (dy-
namic**), with values presented for each joint (RHip, RKnee, RAnkle, LHip,
LKnee, LAnkle). The data include the mean RMSE values.
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5.2 Dataset - Madrid

RMSE results are presented in Table 6 and Table 7. Table 8 and Table 9 present

ROM results.

RMSE (deg) RHip LHip RKnee LKnee RAnkle LAnkle

Subj1 mean 1.9 1.5 4.7 3.8 9.6 15.6

25th Perc 1.1 1.1 3.3 2.9 8.3 14.2

75th Perc 2.5 1.5 5.4 3.9 10.1 16.7

Subj2 mean 1.2 1.1 7.0 5.0 3.4 7.4

25th Perc 0.9 0.9 6.1 4.3 2.9 5.7

75th Perc 1.3 1.3 8.0 5.5 4.0 9.0

Subj3 mean 2.6 1.8 10.3 4.6 6.0 2.0

25th Perc 1.9 0.8 8.9 2.7 5.3 1.1

75th Perc 2.9 1.8 11.0 4.1 6.1 1.9

Subj4 mean 1.5 2.1 3.0 4.9 5.3 2.9

25th Perc 1.2 1.4 2.5 3.3 4.7 2.1

75th Perc 1.6 2.1 3.5 4.8 5.5 3.1

Subj5 mean 1.2 1.1 5.3 5.3 7.6 9.5

25th Perc 0.9 0.8 4.5 4.8 6.7 8.6

75th Perc 1.4 1.2 6.2 6.0 7.9 10.3

Table 6: Condition Averaging: This table shows the RMSE values for each
subject, with values presented for each joint (RHip, RKnee, RAnkle, LHip,
LKnee, LAnkle). The data include the mean RMSE values, as well as the 25th

and 75th percentiles for each joint across the subjects.
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RMSE (deg) RHip LHip RKnee LKnee Rankle Lankle

Cond01 2.2 1.4 5.7 4.2 5.6 6.2

Cond02 1.7 2.7 5.9 7.1 6.9 8.8

Cond03 1.4 1.4 5.7 4.1 6.1 7.2

Cond04 1.9 1.5 6.8 4.9 6.6 7.7

Cond05 1.6 1.2 5.9 4.0 6.1 7.1

Cond06 1.5 1.1 6.2 4.0 6.4 7.7

Cond07 1.6 1.2 5.9 4.0 6.2 6.9

Cond08 1.6 1.7 6.3 5.4 7.0 8.2

Table 7: (Subject Averaging): This table presents the RMSE values averaged
across subjects for each condition. The values are organized by joint (RHip,
RKnee, RAnkle, LHip, LKnee, LAnkle), showing the mean RMSE for each
joint across the di↵erent conditions.

RIGHT LOWER LIMB

ROM (deg) RHip
SP

RHip
model

|SP −
MODEL|

RKnee
SP

RKnee
model

|SP −
MODEL|

RAnkle
SP

RAnkle
model

|SP −
MODEL|

Cond01 42.9 44.9 2.0 56.3 53.5 2.8 32.0 29.8 2.1

Cond02 37.2 36.9 0.3 60.1 49.2 10.9 39.1 30.2 8.9

Cond03 45.4 46.0 0.6 60.7 56.2 4.5 32.4 27.8 4.6

Cond04 36.4 37.6 1.1 59.9 49.6 10.3 34.4 26.9 7.5

Cond05 53.4 54.5 1.1 76.7 71.0 5.5 32.7 27.7 5.0

Cond06 43.9 44.4 0.4 73.2 67.2 6.0 32.2 27.2 5.0

Cond07 48.9 48.7 0.3 63.4 60.1 3.4 30.0 24.8 5.3

Cond08 38.6 39.8 1.1 59.4 54.4 5.0 32.8 24.3 8.5

Table 8: This table presents the ROM values averaged across subjects for each
condition, along with the observed absolute errors. The values are organized by
joint (RHip, RKnee, RAnkle).
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LEFT LOWER LIMB

ROM (deg) LHip
SP

LHip
model

|SP −
MODEL|

LKnee
SP

LKnee
model

|SP −
MODEL|

LAnkle
SP

LAnkle
model

|SP −
MODEL|

Cond01 46.0 45.1 1.0 58.0 58.4 0.7 32.5 27.4 5.1

Cond02 42.9 40.1 2.9 60.3 54.4 9.7 35.0 29.1 5.8

Cond03 47.1 45.5 1.6 63.2 59.8 5.4 34.2 26.3 7.9

Cond04 39.6 36.3 3.3 53.3 50.7 4.8 35.9 27.6 8.3

Cond05 57.9 56.2 1.8 75.9 72.1 5.0 33.6 29.2 4.4

Cond06 47.3 43.2 4.1 71.7 64.6 9.9 36.3 27.4 8.8

Cond07 48.9 49.5 0.7 63.5 61.5 3.1 29.1 24.8 4.2

Cond08 41.9 38.8 3.1 59.5 56.7 4.7 34.6 26.6 8.0

Table 9: This table presents the ROM values averaged across subjects for each
condition, along with the observed absolute errors. The values are organized by
joint (LHip, LKnee, LAnkle).

5.3 E↵ect of walking condition on model estimation

Factor p-value

Type < 10
−6

Condition < 10
−16

Interaction 0.81

Table 10: This table presents p-values from the two-way ANOVA test for each
factor considered.
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6 Discussion

The aim of this study was to investigate lower limb kinematics using a minimal

input configuration. Specifically, the proposed KINEMI model estimated angles

at the hip, knee and ankle based on the position and orientation of the pelvis

and feet. This approach was developed to overcome the limitations associated

with traditional marker-based motion capture systems, seeking to provide an

efficient and practical alternative for the study of gait. To validate KINEMI

model, joint angles were reconstructed from experimental data collected in two

datasets: one from the Turin laboratory, where the model was developed, and

one from the Madrid laboratory, used for testing and validation. The recon-

structed kinematics were compared with reference values obtained through a

stereophotogrammetric system (SP), following the Plug-In Gait protocol. In

this chapter, the results obtained from the proposed model are critically ana-

lyzed. The accuracy of the estimated joint kinematics is discussed in terms of

RMSE and ROM errors. Additionally, the influence of di↵erent walking condi-

tions on model performance is explored. Finally, the statistical analysis results

are examined to determine whether significant di↵erences exist between the

proposed model and the SP system across di↵erent joints and conditions.

As shown in Figures 35-38, the hip, knee and ankle flexion-extension angles

obtained from the proposed model are superimposed on those derived from the

SP. The trends show the model’s ability to e↵ectively estimate joint motion.

For illustrative purposes, the figures present the results for the simplest (flat)

and the most irregular (terrasensa) conditions. It can be seen that the model

is able to adequately estimate joint motion in both conditions, confirming its

robustness even in the presence of terrain irregularities. There is a good match

for hip and knee. However, a more pronounced discrepancy between the two

estimates is evident for the ankle. This di↵erence is attributable to the way in

which Vicon’s Plug-in Gait protocol defines the reference systems (SRs) for the

tibial segment. Specifically, the protocol uses two separate SRs for the tibia,

both defined in the ankle center (AJC):

• Untorsioned tibia, used for calculating knee angles

• Torsioned tibia, used for calculating ankle angles

Both of these reference systems share the same Z axis, but di↵er by a rotation

around this axis due to the natural torsion of the tibia along its length. In the
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model developed in this study, only one reference system could be defined for

each body segment, and the untorsioned tibia was adopted for the tibia, as the

main focus of the analysis was the kinematics of the knee. Moreover, we do not

have access to the reference system of the torsioned tibia. The use of this SR

also for the calculation of ankle angles introduces a systematic inaccuracy, as

the natural rotation of the tibia is not correctly accounted for. This is reflected

in the discrepancy observed in the trends of the ankle angles, which are less

accurate than those of the hip and knee.

For a quantitative comparison between the trends obtained through opti-

mization and those obtained through SP, aiming to quantify the errors incurred,

the decision was made to calculate the errors between the two methodologies in

terms of RMSE for each joint. The removal of the mean value as done in [19] was

not necessary because the two systems share the same SR. The RMSE values

are presented in two tables: Table 6 shows the mean per subject, telling when

the model is accurate on average for each individual; Table 7 shows the mean

per condition, telling when the model is accurate on average for each condition.

The RMSE values show how the model appears to be more subject-dependent

than condition-dependent, suggesting the importance of anthropometric mea-

surements in the optimization process. This observation can be justified nu-

merically by analyzing the ranges of RMSE values obtained in the two di↵erent

averaging types:

• In condition averaging, the RMSE range across di↵erent conditions for a

single subject is: RHip [1.2, 2.6] deg, LHip [1.1, 2.1] deg, RKnee [3.0, 10.3]

deg, LKnee [3.8, 5.3] deg, RAnkle [3.4, 9.6] deg, LAnkle [2.0, 15.6] deg.

• In subject averaging, the RMSE range across di↵erent subjects for a single

condition is: RHip [1.4, 2.2] deg, LHip [1.1, 2.7] deg, RKnee [5.7, 6.8] deg,

LKnee [4.0, 7.1] deg, RAnkle [5.6, 7.0] deg, LAnkle [6.2, 8.8] deg.

It is evident that the RMSE ranges between subjects are generally wider than

those between conditions, indicating that the model error depends more on

individual characteristics than on variation in walking condition. This result is

consistent with the hypothesis that anthropometric di↵erences between subjects

have a significant impact on the optimization process and the estimation of joint

kinematics.

Beyond the RMSE assessment, the ROM values were computed for each

joint. The computation of the ROM served as a basis for comparing the range
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of values obtained between the two methods. The calculations were performed

for both the optimization and SP cases, along with a comparison of the two

methods, as presented in Tables 8-9.

A two-way ANOVA was performed to assess whether the model estimation

was influenced by the experimental condition. A significant e↵ect of ‘Type’

was found (p = 0.0000), indicating a di↵erence between the SP and the model.

A significant e↵ect of ‘Condition’ was also observed (p = 0.0000), indicating

that at least one condition di↵ered from the others. No significant interaction

between ‘Type’ and ‘Condition’ was detected (p = 0.8064), indicating that the

di↵erence between SP and the model was consistent across conditions.
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7 Conclusions

Accurate quantification of kinematic parameters during real-life gait conditions

is essential in human movement analysis. Their precise assessment can enhance

diagnostic approaches for motor disorders and contribute to the development

and evaluation of rehabilitation strategies. Although instrumental gait analysis

provides highly accurate measurements, its clinical integration is hindered by

logistical challenges. Emerging technologies, including wearable sensors and sen-

sor fusion techniques, o↵er promising alternatives, enabling efficient gait moni-

toring in real-world environments.

This thesis addressed the impracticality of traditional methods in real-life con-

ditions, investigating the feasibility, along with the associated limitations, of an

approach based on a minimal sensor configuration strategically placed on the

pelvis and feet.

The study employed a model called KINEMI based on the DH convention,

introducing constraints to mitigate information gaps and errors. Validation

against the SP demonstrated its e↵ectiveness, with RMSE values highlighting

the model’s accuracy, particularly for hip and knee angles, while ankle esti-

mates were a↵ected by tibial torsion considerations. RMSE distributions also

revealed that the model’s accuracy was more subject-dependent than condition-

dependent, underscoring the importance of anthropometric variability in the

optimization process. The proposed framework complies with ISB standards,

enabling its applicability in real-world settings and highlighting opportunities

for further improvement.

This work confirmed the viability of a minimal sensor configuration for estimat-

ing gait kinematics, leveraging optimization techniques to mitigate measurement

errors. Incorporating anthropometric variability enhanced estimation accuracy,

although asymmetries and experimental uncertainties remain challenges. Given

the objective of relying on fixed segment measurements, future work should fo-

cus on integrating segment length uncertainty into the optimization framework

to improve robustness and support the broader application of IMU-based gait

analysis.
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