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Abstract

Running is a widely practiced activity providing significant health benefits but also
potential injury risks. A thorough biomechanical analysis is essential for optimizing
performance and preventing running-related injuries. In running characterization,
stride length (SL) and stride velocity (SV) are key running spatio-temporal parame-
ters quantifying foot displacement and velocity within a stride. These parameters
can be assessed in indoor and outdoor conditions by wearable magneto-inertial mea-
surement units (MIMUs) through the adoption of ad-hoc algorithms. The most direct
approach to estimate spatial-related parameters is to double integrate foot accelera-
tions after gravity removal. Effective gravity removal requires to accurately estimate
the foot orientation which can be determined through a sensor fusion algorithm
(SFA) using (magneto-)inertial signals. However, to work well, these algorithms
require extensive fine-tuning of different parameters and often lack robustness to
variations in highly dynamic movements like running.
In this thesis, a comprehensive analysis of four different SFAs was conducted to
assess their impact on SL and SV estimation and their robustness to changes in their
main parameters and in running speed. Then, a novel framework for the automatic
stride-by-stride setting of SFA parameters was proposed to handle different running
conditions and speeds. The proposed method minimized a cost function based on
errors on SL and SV estimates with respect to an available reference, imposing
biomechanical constraints and measurement consistency.
A total of 20 participants were enrolled to build two datasets at different speeds.
The first dataset included both treadmill and overground running at 8-10 km/h with
pressure insoles used as reference, while the second one included treadmill running
at 14km/h with a stereo-photogrammetric system used as reference.
The parameter setting of each SFA was speed-dependent. Thus, each SFA was fine-
tuned to select a fixed optimal value of its parameter(s) minimizing SL errors across
speeds. The best performance was achieved by the SFA proposed by Madgwick et



v

al. (2011), which resulted in SL errors of 1.6% and 2.5%, and SV errors of 3.5%
and 2.6% at 8-10 km/h and 14 km/h, respectively. The proposed framework for
stride-by-stride selection of Madgwick’s parameter provided better or comparable
results with the previous approach using a fixed Madgwick’s parameter (SL error of
0.9% and 1.5%, and SV error of 0.3% and 0.2% at 8-10 km/h and 14 km/h, respec-
tively). This study demonstrated that using a SFA with a fixed optimized parameter
can provide accurate SL and SV estimates. However, the setting of SFA parameters
can be speed-dependent and usually influenced by the specific characteristics of the
used inertial sensors. Conversely, the proposed framework is a promising solution
to automatically adjust SFA parameters regardless of speed, hardware, and running
conditions, being suitable for running analysis in different and variable scenarios.
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Chapter 1

Introduction

1.1 Relevance and General Introduction

Running is a widely practiced sport across different levels, with many people today
choosing it as a leisure-time physical activity (PA). This popularity stems from
several factors, such as the perceived simplicity of the technical movement and the
relatively low initial financial investment it requires. Running offers numerous health
benefits for its practitioners [20]:

• it aids in the prevention of chronic illnesses, including type II diabetes, os-
teoarthritis, obesity, respiratory diseases and certain cancers.

• it can enhance the quality of life for individuals suffering from depression,
anxiety and dementia.

• it promotes better sleep quality and helps to alleviate stress.

Although often hailed as a “cost-effective lifestyle medicine from a public health
perspective” [20], it is important to note that this PA is not without risks [21].
Furthermore, running is not solely an independent athletic discipline; it also serves
as a core component of various dynamic sports, such as soccer, basketball, volleyball,
softball, baseball, and rugby [22].
The biomechanical characterization of running is crucial for preventing sport-specific
injuries and enhancing performance not only for elite and amateur runners but also
for athletes in other sports where running plays a central role.
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1.1.1 Biomechanical Analysis of Running

Running is characterized by a cyclic nature and differs from walking because it
involves higher velocities, higher Ground Reaction Forces (GRFs) and a "flight
phase", in which both feet are off the ground [23]. While running, our bodies combine
different actions, both articular and muscular; most of running biomechanics, in fact,
is dictated by lower limb anatomy [1]. Pronation and supination are essential triplanar
movements that involve the foot and ankle, resulting in obligate motion. Pronation
is a combination of ankle dorsiflexion, subtalar eversion, and forefoot abduction,
while supination refers to the coordination of the following joint movements: ankle
plantarflexion, subtalar inversion, and forefoot adduction. Figure 1.1 illustrates the
anatomy and rotations involved in these movements. The ligaments of the foot
provide passive stability, while the muscles of the lower leg and foot work both in a
concentric and eccentric fashion. An eccentric contraction happens when the fibers
lengthen, a concentric one happens when fibers are shortening.

Fig. 1.1 Ankle and subtalar joint axes rotation, from [1].

The running gait can be divided into two main phases (as shown in figure 1.2),
each characterized by certain key events:

• Stance: this phase determines the 40% of the running cycle and is character-
ized by an Initial Contact (IC), where the relevant foot contacts the ground; a
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Fig. 1.2 Different phases of running gait cycle, from [2].

Mid Stance (MS); and a Final Contact (FC), or propulsion phase, where the
body is pushed forward by the hip, knee, and ankle in full extension.

Fig. 1.3 Rear-, mid- and fore-foot strikes expamples, from [3].

– The IC represents 15-20% of the stance phase. As the relevant foot
strikes the ground in a supinated position [24], the body experiences
vertical deceleration. At this point, significant muscular contributions
are required to control the effects of the ground reaction forces. The hip
and knee begin the stance by extending, while the quadriceps lengthen;
meanwhile, the upper limbs counterbalance the movement of the lower
limbs, using the arms to rotate.

– MS: in this subphase (60 % of the stance), the body moves past the
supporting leg. At this point, the ankle and knee reach maximum flexion
while the quadriceps continue to lengthen, and the upper body main-
tains rotational movement. The foot is in maximum pronation, typically
transitioning from rearfoot to forefoot support. Statistics indicate that
approximately 80 % of long-distance runners are rearfoot strikers, while
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the remaining 20 % are forefoot strikers [25]. Furthermore, it’s important
to note that as speed increases (such as in sprinting), runners tend to adopt
a forefoot strike to propel the body forward as quickly as possible. In
figure 1.3, different types of foot strikes that can occur during the running
movement are shown. A rearfoot strike reduces the load on the Achilles
tendon, altering the direction of the Ground Reaction Force (GRF) but
increases the load on the anterior tibialis muscle. On the other hand, a
forefoot strike reduces the load on the anterior tibialis but increases it on
the Achilles tendon and calf.

– FC culminates in propulsion and represents the last 20 % of the stance
phase. Here, the hip, knee, and ankle are at maximum extension, in
order to push the body forward. The upper body assists in propulsion by
moving one arm forward and the other backward, in opposition to the
legs.

• Swing: it determines 60 % of the running cycle (unlike walking, where the
duration of stance and swing phases are opposite) and is characterized by the
foot being off the ground. Here, the hip rapidly flexes and swings the leg back
to the same position as at the start of the cycle. Meanwhile, the upper body
rotates in the opposite direction in preparation for the next contact phase.

To summarize, it is important to emphasize that, as speed increases, the duration
of the stance phase decreases even further, reaching a minimum of 22 % in elite
sprinters [25]. Furthermore, there are other factors that affect stride and swing
durations, such as individual characteristics and the environment in which a runner
trains, including terrain type and surface hardness.
There are several metrics that can be used to assess running performance or detect
certain patterns that can be corrected to help prevent injuries. These parameters
provide insights within either the temporal or spatial domain.
The temporal parameters used are:

• Stride Duration [s], which is the time interval between two consecutive ICs of
opposite feet.

• Step Duration [s], which is the time interval between two consecutive ICs of
the same foot.
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• Cadence [ steps
min ], which is the number of steps per unit of time.

While the spatial ones are:

• Stride Length [m], which represents the distance between two consecutive
ground ICs of the same foot.

• Step Length [m], defined as the distance between the IC points of two consecu-
tive steps made by opposite feet.

• Step Width [m], also known as base width, is defined as the perpendicular
distance from the direction of gait between the IC points of two consecutive
steps made by opposite feet. While running, stride width is reduced compared
to walking because this is more energetically efficient. A large stride width
results in higher energy costs, while a reduced one can increase hip tension;
therefore, a physiological compromise should be sought to optimize movement
[20].

Fig. 1.4 Diagram showing the spatial parameters of interest, from [4].

All the aforementioned spatial parameters are described in figure 1.4.

1.1.2 Instrumentation for Running Analysis

The biomechanical analysis of the running gait can be performed using various
technologies, depending on the needs and the means available for data acquisition.
Generally, this gesture is often analyzed through clinical observations or with the help
of specific rating scales, which provide objective information but may not be sensitive
to changes in a subject’s running performance due to injury or improvements from
training. Some of these evaluation scales include the "High-Level Mobility" and
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"Assessment Tool" [26]. Another method used for quantitative analysis of running
involves two-dimensional cameras, which allow for determining specific patterns of
the subject but remain highly dependent on the clinician analyzing the video [26].
However, to obtain and analyze more complex and objective metrics, such as spatio-
temporal, kinematic, and kinetic parameters, it is necessary to rely on more advanced
and expensive tools, often exclusively intended for laboratory use. The most popular
instrumentation used is Optoelectronic Motion Capture Systems, Force Plates
and Instrumented Treadmills.

Optoelectronic Motion Capture Systems

Human motion capture refers to the ability to record human movements [27]. In this
field, optoelectronic systems represent the gold standard due to their high accuracy
in motion estimation. These systems rely on calibrated cameras that record the
movements of interest and allow for the collection of data that, when processed,
provide valuable insights into specific spatio-temporal parameters of human motion.
Optoelectronic motion capture is inherently marker-based, as it relies on the de-
tection of markers placed on the subject’s body. These markers can be either active
(equipped with LEDs that emit light) or passive (made of reflective material). Their
presence enhances contrast in the camera-captured images, enabling specific al-
gorithms to precisely determine their spatial position and subsequently derive the
subject’s kinematics. A marker-based optoelectronic system is commonly referred to
as optical stereophotogrammetry (SP) in the field of human motion analysis [28].

Markerless Motion Capture Systems

Alternatively, there are systems that enable motion analysis using cameras without
requiring markers on the subject. markerless methods are often based on normal
video recordings and on deep-learning techniques (such as pose estimation algo-
rithms) to determine the subject orientation in space. These tools are promising
because they do not need markers, reducing the time required for experimental setup,
and facilitating their application both indoors and outdoors.
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Fig. 1.5 Example of a marker-based optoelectronical motion capture system, from [5].

Force Plates

Force platforms are mechanical sensing systems, used to measure GRFs and mo-
ments. These instruments are useful to characterize biomechanical processes, such
as walking, running or jumping [6]. Force plates are equipped with load cells, which
can contain strain gauge, piezoelectric elements or beam load cells. The working
principle is simple: when a force is applied, the sensor undergoes mechanical defor-
mation, followed by a polarization, proportional to the applied force. Several sensors
can be placed in different orientations, enabling to obtain a tri-axial force plate: this
configuration allow for determining the centre of pressure, centre of force and the
moments around the vertical, horizontal and transverse axes.

Fig. 1.6 Representative tri-axial force plate system, from [6].
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Instrumented Treadmills

Instrumented mats are increasingly common in clinical gait and running analysis, as
they enable repeatable measurements of gait cycles in confined spaces. These mea-
surements are achieved through integrated force plates and various sensors, which
allow the collection of a wide range of data on individuals’ running gait patterns
[29]. Such data include spatio-temporal parameters, information about foot rotation,
pronation, supination and gait symmetry, and vertical forces.
Although these instruments are commonly used in the study of running and walk-
ing indoors, both for rehabilitative purposes and performance improvement, it is
important to highlight that they have some limitations. A study by Alton et al.
demonstrated that walking on an instrumented treadmill can affect stride length,
reduce the range of motion of joint movements, and cause changes in EMG activation
[30]. Figure 1.7 shows an example of instrumented treadmill used in laboratory.

Fig. 1.7 Instrumented treadmill, from [7].

All the aforementioned instruments, although highly accurate, have some limi-
tations: their use in laboratory settings does not allow for representing running in
real-world scenarios but only in standardized environments. Consequently, metrics
related to an athlete’s performance are not evaluated, focusing solely on objective
measurements of their capabilities [31]. In this context, the development of wearable
sensors (such as accelerometers, gyroscopes, magnetometers and pressure insoles)
helps to overcome these limitations, providing objective and realistic evaluations of
athletes’ performance, as well as valuable insights into injury risk mechanisms.



1.1 Relevance and General Introduction 9

Magneto-Inerzial Measurement Units (MIMUs)

The development of Magneto-Inertial Measurement Units (MIMUs) based on Micro-
Electro-Mechanical Systems (MEMS) has promoted the use of these technologies
in biomedicine, particularly in the field of human motion analysis. The use of
miniaturized sensors enables the non-invasive study of human movements and frees
from the need to visit a laboratory. Their affordability and low energy consump-
tion further contribute to make these sensors a promising technology. MIMUs are
generally equipped with three different orthogonally-mounted tri-axial sensors: an
accelerometer (which measures linear and gravitational accelerations), a gyroscope
(which measures the body angular rate) and a magnetometer (which measures the
magnetic field). All these sensors perform measurements in the local reference
frame, which must subsequently be used to estimate the orientation of the sensor
(and therefore of the subject) in space. Only after estimating the orientation the
collected data can be used to determine the sensor’s position in space and perform a
spatio-temporal analysis of the athletic gesture [22]. Figure 1.8 shows an example
of MIMUs’ attachment on different body parts, as it’s generally used for running
analysis.
It should be noted that the data collected by each sensor are affected by noise and bi-
ases. This noise introduces errors in the orientation estimates, which, if not properly
handled, can lead to significant inaccuracies. To integrate the information from each
sensor and mitigate noise sources, specific sensor fusion algorithms are employed,
as discussed in 2.2.

In the following list, the aforementioned sensors are described and analyzed.

• Accelerometer
An accelerometer measures the proper linear acceleration, ap, that indicates
the difference between the sensed acceleration (as) and the gravitional force g.
The accelerometer presents one, two or three sensing axes, which define the
reference system of the sensor and the sensing directions.

ap = as −g (1.1)

An accelerometer can be modeled as a second order mass-spring-dumper
system [10], as depicted in figure 1.9.
When an acceleration (a) is applied to a proof mass (m), then the applied force
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Fig. 1.8 Example of attachment of MIMUs on different body parts with their local reference
systems, from [8].

(Fapplied) on the proof mass is defined as:

Fapplied = ma (1.2)

Moreover, the damping, defined by a constant (b), and the spring (k) act on the
proof mass:

Fspring = kx (1.3)

Fdamping = bẋ (1.4)

It’s then possible to apply Newton’s second law, according to which the
algebraic sum of all applied forces must be equal to the inertial force acting on
the proof mass :

Fapplied −Fspring −Fdamping = mẍ (1.5)

mẍ+bẋ+ kx = Fapplied = ma (1.6)
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Fig. 1.9 Mechanical model of an accelerometer, from [9].

The latter equation must be solved in the Laplace domain. The transfer function
of the non-homogeneous second order differential equation is:

ms2x(s)+bsx(s)+ kx(s) = F(s) = ma(s) (1.7)

s2x(s)+
b
m

sx(s)+
k
m

x(s) =
F(s)

m
= a(s) (1.8)

H(s) =
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=
1

s2 + b
ms+ k

m
=

1
s2 + w0

Q s+w2
0

(1.9)

Where, w refers to the resonance frequency and Q0 to the quality factor.

w0 =

r
k
m

(1.10)

Q0 =
mw0

b
(1.11)

When selecting an accelerometer, several factors must be considered. Ideally,
the largest possible bandwidth should be achieved, which translates into a
higher resonance frequency. A high w corresponds to a small proof mass
and/or a high spring stiffness. However, these parameters cannot be increased
indefinitely, as a reduction in the proof mass leads to a degradation of the
instrument’s sensitivity [10]. Sensitivity is defined as the minimum detectable
output variation corresponding to a given input change.
Furthermore, it is important to note that different types of accelerometers
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exist, based on how the displacement of the proof mass due to acceleration
is converted into a measurable signal. These include capacitive, piezoelec-
tric, piezoresistive, resonant, tunneling, thermal, and optical accelerometers.
Among these, capacitive accelerometers are the most commonly used in mo-
tion analysis applications. In these devices, the displacement of the proof mass
is converted into a proportional change in capacitance, which is then processed
and amplified into a voltage signal.
Figure 1.10 shows other accelerometers listed with pro and cons.

Fig. 1.10 Pro and cons of different accelerometers’ transduction scheme, from [10].

• Gyroscope
Gyroscopes are devices able to detect any change of position when a rotation
occurs around their sensing axis. There are different classes of gyroscopes,
depending on the principle of functioning and the technology used; some
examples include: mechanical, optical and MEMS gyroscopes [12]. When
choosing a device, it’s important to focus on the specifications needed for the
application you are interested in. The scale-factor represents the sensitivity of
the gyroscope, and minimum scale-factor stability allows for little errors, but
requires better instrumentation with higher accuracy, that leads to higher costs
of the system. For biomechanical gait analysis, where both accelerometer
and angular rate data are needed with reduced space requirements, MEMS
gyroscopes are typically used.
Gyroscopes can have one, two or three sensing axes and, therefore, three
different angular rate measurements can be done:
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– Roll: horizontal rotation of the body with a front facing perspective.

– Pitch: vertical rotation of the body with a front facing perspective.

– Yaw: horizontal rotation of the body with a top-down perspective.

Fig. 1.11 Schematic representation of roll, pitch and yaw rotations, from [11].

A MEMS gyroscope is characterized by two principles of functioning: a driv-
ing and a sensing mode. The former refers to the vibration of the proof mass
along the driving axis, while the latter refers to the detection of the movements
of vibrations [32]. All MEMS gyroscopes with vibrating elements rely on the
energy transfer between two vibration modes caused by the acceleration of
Coriolis.
If we consider a disk rotating with a constant angular velocity (W) and a
particle moving with a transverse velocity (v), then an observer fixed to the
disk reference frame would observe that the moving particle deviates from the
expected trajectory. This deviation is caused by an apparent force, defined
force of Coriolis, proportional to the angular velocity. This principle is used in
the MEMS gyroscopes, where the two sensitive axes along which the mass
can move are orthogonal (z, y) and can be modeled as spring-mass-damping
systems, as depicted in figure 1.12.

Let ky and kz be the stiffness parameters, while cy and cz the damping coef-
ficients. Then the motion of the proof mass will be governed by Newton’s
second law:
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Fig. 1.12 a) Schematic representation of a Coriolis acceleration acting on a generic moving
particle; b) Schematic representation of a model of MEMS gyroscope, from [12].

mÿ =−kyy− cyẏ+Fdrive (1.12)

mz̈ =−kzz− czż+Fsense (1.13)

The Fsense corresponds to the Coriolis’ force, defined as:

Fsense = FCoriolis = |2mW⇥ v| (1.14)

Orthogonal to the constant angular velocity (along x) and the transverse ve-
locity (along y). The displacement of the proof mass along the z axis can be
defined as:

Dz =
2WxFcoriolis
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y +w2
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+
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wywz
Qz

⌘2
(1.15)

The measurable displacement of the proof mass is proportional to the angular
velocity Wx , which is, indeed, the quantity of interest..

• Magnetometer
A magnetometer is an instrument that measures the magnetic field. A tri-axial
magnetometer allows for a univocal definition of the magnetic field where the
measurement occurs. Several devices exist, but the ones used for MIMUs are
those based on Hall effect.
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A Hall probe is defined as a plate of conductive material through which an
electric current flows. Any external magnetic field exerts a force on any
moving electric charge, known as the Lorentz force:

FL = q(v⇥B) (1.16)

Due to the Hall effect, a voltage proportional to the component of the magnetic
field perpendicular to the plate is generated at the edges of the plate.

Pressure Insoles

Pressure insoles are measuring devices that detect the changes in pressure under the
foot sole [33]. They consist of a matrix of sensing elements inserted between foot
and sole, connected to a data acquisition system that allows for analysis of the gait
pressure patterns. The system is low-cost and portable, which allows for a huge
variety of studies both indoor and outdoor [34].

1.2 Thesis Outline

The aim of this work is to contribute to the biomechanical characterization of running
by defining a method for estimating running-specific spatio-temporal parameters
through signals acquired from MIMUs, which can be applied both to the analysis of
level and constant-speed running, as well as to running in other sports contexts.
An in-depth analysis of the literature has revealed that several studies have attempted
to characterize spatio-temporal parameters related to running and various sports
gestures, using MIMUs placed on the subject’s body [22]. The most widely used
method involves several steps, starting with the definition of the initial and final
ground contact instants, followed by the correct definition of the integration instants,
estimation of the sensor orientation, removal of gravity from the accelerometric
signal, and concluding with the double integration of the signal to obtain velocity
and displacement over time.
The foot orientation estimation is particularly critical; in the present work, the
estimation of foot orientation was optimized for running analysis. The parameter
settings of different inertial-based algorithms for orientation estimation were fine-
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tuned and an automatic framework for the selection of the sub-optimal parameters
was proposed, with the ultimate goal of defining a method capable of providing
reliable results in terms of stride length despite the running speed and condition.
The thesis project is structured as follow:

• Chapter 1: provides an overview of the thesis topic and explains the main
aim of the project. This introductory chapter also discusses the biomechanics
behind the gesture and provides an explanation of the main instrumentation
used for running analysis.

• Chapter 2: explains each step of the proposed pipeline, accompanied by an
analysis of the state of the art.

• Chapter 3: provides explanations of the methods implemented, the data used,
and the methodologies employed to carry out the work.

• Chapter 4: presents the results obtained.

• Chapter 5: presents the discussion over the results obtained and presented in
chapter 4.

• Chapter 6: provides conclusions and considerations on the work.
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Computation of Level Running
Spatio-Temporal Parameters

2.1 Pipeline for Stride Length and Stride Velocity Es-
timation using foot-mounted MIMUs

The estimation of spatio-temporal parameters from magneto inertial measurement
units is typically performed through a double integration of the accelerometric signal.
The first integration yields the velocity vector in the three principal directions, while
the second integration provides the displacement over time.

To correctly integrate the accelerometric signal, however, it is necessary to per-
form several steps, as illustrated in the block diagram in 2.1. First of all, to correctly
integrate the accelerometric signal, it is necessary to remove the gravitational compo-
nent. This operation is performed after rotating the signal collected from the sensor
and making a necessary estimation of its orientation (section 2.2). Subsequently, the
signal cannot be fully integrated, as it is subject to drift caused by thermomechanical
and electronic noise, which tends to worsen over time [35]. Therefore, it is essential
to divide the signal into segments that allow for leveraging the cyclic nature of
the stride during running under known integration conditions (section 2.3). In the
following sections, these aspects will be analyzed and explained in detail.



18 Computation of Level Running Spatio-Temporal Parameters

Fig. 2.1 Block diagram of the used pipeline. At the top of the figure, the signals acquired
from the magneto-inertial units are shown: acceleration, magnetic field and quaternion
derivative obtained from the gyroscope signal. These signals are used by the sensor fusion
algorithm (SFA) to obtain a compensated quaternion (qc) , which is then employed to rotate
the accelerometric signal (accMIMU ) into the global reference frame (ag). Subsequently,
the gravitational component is removed from this acceleration, and the resulting signal is
integrated twice to obtain the displacement. "ZUPT" interval blocks refer to the selected
integration intervals.

2.2 Orientation estimation and gravity removal

An accurate estimation of the sensor orientation is a crucial component within the
proposed pipeline for estimating spatio-temporal parameters in running analysis.
Properly determining the attitude of the MIMU with respect to the Earth’s coordinate
system is vital because it enables precise alignment of the sensor’s local coordinate
system (LCS) with the global coordinate system (GCS). This alignment is essential
for correctly removing the gravitational component from the accelerometer data.
Even minor errors in the orientation estimation can lead to significant inaccuracies
in this alignment, which, in turn, can cause substantial errors in the calculated pa-
rameters [36].
Therefore, ensuring high precision in orientation estimation is critical to maintain
the overall accuracy of the parameter estimates.
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Orientation Estimation

Among all the mathematical tools that can be used to represent the orientation
of a sensor in space, quaternions are often preferred. Euler angles, for instance, can
suffer from gimbal lock, a phenomenon that causes the loss of one degree of freedom,
leading to erroneous readings. On the other hand, the Direction Cosine Matrix
(DCM), while detailed, is less commonly used because it requires nine parameters,
making its implementation complex and computationally expensive. Quaternions,
however, provide an efficient and robust way to represent three-dimensional rotations
without encountering the issues associated with the other two methods [37].
A quaternion q is a complex number that can be used to represent the orientation of
a rigid body in three-dimensional space [38]. The orientation of the local frame (L)
relative to the global frame (G) can be achieved through a rotation around an axis
defined in the global frame (Gn̂), as it is presented in figure 2.2. The notation used in
this work for the quaternion is defined as [16]:

G
L q =

h
q0 q1 q2 q3

iT
(2.1)

where:

q0 = cos(
q
2
) (2.2)

q1 = nx sin(
q
2
) (2.3)

q2 = ny sin(
q
2
) (2.4)

q3 = nz sin(
q
2
) (2.5)

Here, nx, ny and nz denote the components of the rotation axis in G, while q is
referred to the rotation angle.



20 Computation of Level Running Spatio-Temporal Parameters

In the realm of quaternion algebra, the operation known as the quaternion product,
symbolized by ⌦, is essential for representing combined orientations. If we consider
two orientations described by the quaternions q̂AB and q̂BC, the resultant quaternion
q̂AC, which represents the compounded orientation, can be formulated as:

q̂AC = q̂BC⌦ q̂AB (2.6)

The quaternion multiplication, defined between two quaternions a and b, adheres
to the Hamiltonian product rule. This rule is expressed in the equation:

a⌦b =
h
a1 a2 a3 a4

i
⌦
h
b1 b2 b3 b4

iT
(2.7)

Expanding this, we obtain:

a⌦b =

2

6664

a1b1 −a2b2 −a3b3 −a4b4

a1b2 +a2b1 +a3b4 −a4b3

a1b3 −a2b4 +a3b1 +a4b2

a1b4 +a2b3 −a3b2 +a4b1

3

7775
(2.8)

To rotate a three-dimensional vector using a quaternion, we apply the following
transformation:

vB = q̂AB⌦vA ⌦ q̂A⇤B (2.9)

The rotation matrix corresponding to the orientation q̂AB, denoted as A
BR, is given

by:

A
BR =

2

64
2q2

2 −1+2q2
1 2(q2q3 +q1q4) 2(q2q4 −q1q3)

2(q2q3 −q1q4) 2q2
1 −1+2q2

3 2(q3q4 +q1q2)

2(q2q4 +q1q3) 2(q3q4 −q1q2) 2q2
1 −1+2q2

4

3

75 (2.10)

Quaternions provide a compact and robust representation of orientation in three-
dimensional space, avoiding issues like gimbal lock that can occur with Euler angles.
However, Euler angles are often more intuitive for visualizing the orientation of a
rigid body because they describe it through successive rotations around the coordinate
axes. Thus, converting quaternions to Euler angles can be helpful for gaining a more
intuitive understanding of an object’s orientation.
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The Euler angles y , q , and f correspond to rotations around the zB, yB, and xB

axes, respectively, of a body-fixed coordinate system.

Given a quaternion q = (q1,q2,q3,q4), where q1 is the scalar part and q2,q3,q4

are the vector components, the Euler angles can be computed using the following
formulas [39]:

y = atan2(2(q2q3 −q1q4),2q2
1 +2q2

2 −1) (2.11)

q =−sin−1(2(q2q4 +q1q3)) (2.12)

f = atan2(2(q3q4 −q1q2),2q2
1 +2q2

4 −1) (2.13)

Fig. 2.2 Earth’s coordinate system (G), local coordinate system (L) and axis of rotation.

Once the mathematical tools for optimal orientation representation have been
introduced, quaternions are presented as the preferred method for defining three-
dimensional orientation in space. In the following paragraph, I will elaborate on how
this orientation is practically determined by integrating data from accelerometers,
gyroscopes, and magnetometers.
By integrating the angular velocities measured by the gyroscope, it would be possible
to estimate the sensor’s orientation, but only relative to the LCS. Furthermore,
gyroscope measurements are subject to biases [40], leading to drift in the estimates
with errors increasing linearly over time, and white noise. The latter is a stochastic
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component of disturbance whose influence can be measured with the angle random
walk (ARW), which quantifies the accumulation of random errors over time, leading
to an increasing deviation in orientation estimates as the integration time grows [41].
To overcome these limitations, it’s therefore common to use all the information
given by the MIMU to improve the accuracy in the estimates. In particular, the
accelerometer can be used to correct the tilt error (referred to roll and pitch) thanks
to the gravitational information while the magnetometer can be used to correct the
heading (referred to yaw). Both sensors present issues that must be considered:

• Accelerometer: its main limitation is that it cannot distinguish between grav-
itational and external acceleration applied to the body. This means that ac-
celerometer data can only be used to determine the sensor’s inclination when
the body is either in a static condition or moving at a constant velocity. Fur-
thermore, the axis pointing in the direction of the earth’s center cannot detect
any changes in its measurements, thus making it impossible to estimate the
yaw angle [13].

• Magnetometer: its sensitiveness to ferromagnetic and electric disturbances
can affect the correction, causing an addition of unreliable information. To
prevent this issue, it is essential to ensure that no such disturbances are present
before relying on the collected data.

The orientation of the MIMU with respect to the GCS is generally estimated
using Sensor Fusion Algorithms (SFAs), which are capable of integrating comple-
mentary data from the accelerometer, gyroscope, and magnetometer to overcome the
aforementioned limitations. It is important to note that the orientation of the MIMU
can only be computed using an SFA if the MIMU’s coordinate system coincides with
the LCS; otherwise, the relative positioning of the two reference systems must be
known.
SFAs are based on the integration of accelerometer and magnetometer data, appro-
priately weighted, to enhance the integration of the gyroscope signal (as it’s shown
in Figure 2.3). There are two main families of algorithms that fuse this information
in different ways: Complementary Filters, which are based on a deterministic
approach, and Kalman Filters, which rely on a stochastic approach. Both types are
detailed below.
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Fig. 2.3 General pipeline for orientation estimation. Qnc refers to the orientation estimate
based on gyroscope only, while Qc refers to the compensate, final quaternion.

2.2.1 Complementary filters

As mentioned before, a Complementary Filter (CF) is based on a deterministic
approach. This means that it relies on models and equations where the output de-
pends solely on the input and its initial conditions. MIMUs’ integrated sensors have
a complementary nature: the gyroscope has a good response at high frequencies but
is affected by low-frequency disturbances. In contrast, magnetometer and accelerom-
eter are sensitive to high-frequency disturbances but perform well at low frequencies
[13].
CFs leverage these specific characteristics by applying a high-pass filter (HPF) to the
gyroscope data and a low-pass filter (LPF) to the accelerometer and magnetometer
data, as shown in Figure 2.4. The key is using the same cutoff frequency for both
filters, which ensures that the entire signal bandwidth is preserved, preventing the
loss of any significant information, as shown in Figure 2.5.

Different CFs vary in the way they weight and use the information taken from
accelerometer and magnetometer. In general, this type of methods for orientation
estimation is chosen for the ease of understanding of the algorithm itself and the low
computational cost. In fact, they do not require any prior knowledge of the system or
a complex model of the system, as is the case with Kalman filters (KFs), presented
in section 2.2.2.

2.2.2 Kalman filters

Kalman filters (KFs) can be effective alternatives for sensor fusion, utilizing a
stochastic approach to address some limitations of CFs. Unlike CFs, which rely
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Fig. 2.4 General Complementary Filter block diagram.

Fig. 2.5 Amplitude and Phase for a CF [13].

on simple mathematical models, KFs are better equipped to capture the complex-
ities of the real world. This category of filters was introduced in 1960 by Rudolf
Emil Kalman [42], when an innovative sensor fusion method based on a stochastic
approach was proposed for the first time. The goal was to replace deterministic
variables with probability distribution functions.

The KF works by continuously correlating the current states of the system with
the predicted ones, as shown in Figure 2.6. To use this type of filter, it is necessary for
the process we are measuring to be approximable to a linear system and represented
by the following linear equations [43]:

xk+1 = Axk +Buk +wk (2.14)
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yk =Cxk + zk (2.15)

Where 2.14 represents the state equation, which cannot be measured, and equation
2.15 is a measurable output dependent on x but corrupted by process noise zk. The
matrices A, B and C represent the system parameters; k is the time index; x represents
the state of the system; and u is the known input.
We want to use y to obtain an estimate of x. It’s at this point that the Kalman filter is
introduced, based on two crucial requirements:

• The average value of the estimate is the same as the average value of the
system state.

• State estimates that present the smallest deviation to the real state.

Furthermore, the main requirements of the filter dictate that the mean values of the
process and measurement noise must be zero, and there should be no correlation
between them.
It’s then possible to introduce one formulation of the filter, which depends on three
main equations:

Kk = APkCT "CPkCT +Sx
#−1 (2.16)

x̂k+1 = (Axk +Buk)+Kk (yk+1 −Cxk) (2.17)

Pk+1 = APkAT +Sw −APkCT S−1
z CPkAT (2.18)

Where Sw and Sz are the process noise and the measurement noise covariances ,
respectively; P is the estimation error covariance matrix; and K is the Kalman gain,
which weights the credibility of the measurement (y) through the error covariances
and regulates whether to incorporate that information into the state estimates x̂k+1. If
the measurement error is high, the state estimation depends solely on the input and
the previous state x. Concurrently, as the measurement error decreases, the weight K
increases, thereby placing greater emphasis on the measurement.
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Fig. 2.6 Kalman Filter workflow.

KFs can also be applied to systems that are not strictly linear, as is often the case
with real-world systems. In these cases, they are referred to as Extended Kalman
Filters (EKFs). The EKF approach involves linearizing the nonlinear function
to approximate the dynamic state of the system, achieved by taking into account
the mean and covariance of the current state, typically through a Taylor series
expansion.[44].
Figure 2.7 shows the working principle of a general Kalman filter.

Fig. 2.7 Working principle of a Kalman Filter [14].

Between the two categories of filters presented in the previous sections, there are
substantial differences that must be considered when choosing the method to use
[45].
A complementary filter primarily offers two advantages: it allows for faster operation
due to its low computational cost and generally requires fewer parameters to be
set compared to Kalman filters. On the other hand, Kalman filters provide greater
flexibility, allowing the filter to be modeled in a manner more suitable to the specific
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problem at hand. Moreover, the greater comprehensibility of the functioning of
complementary filters constitutes a fundamental criterion that, along with the low
computational cost, tends to favor the use of complementary filters.

Gravity Removal

Once the sensor orientation is estimated using the most appropriate method, the
sensor data in the LCS can be transformed into the GCS. This transformation is
achieved using a rotation matrix (LCS

GCSR), derived from the quaternion estimates.
This step is crucial, as switching the reference frame allows for the removal of the
gravity vector component (~g), which in the GCS acts only along the vertical axis
with a known magnitude (9.81 m/s2) and direction. Proper removal of the gravity
component isolates the linear acceleration associated with the dynamic movement of
interest, enabling a precise analysis of the sports gesture.

aG = araw
G − [0 0 9.81] m/s2 (2.19)

Where araw
G is the acceleration rotated in the GCS before the gravity component

removal and aG is the GCS acceleration with gravity removed.

2.3 Definition of the Integration Instants

Signals acquired from MIMUs exhibit a fundamental limitation: they are affected
by artifacts that introduce an error in the displacement, known as tilt error, which is
proportional to the cube of time. To mitigate this undesired effect, the signal is seg-
mented and integrated over smaller temporal windows of only a few seconds. These
windows are not randomly selected but are defined based on specific constraints
derived from the knowledge of the dynamic system under study.
In running analysis, similarly to gait analysis, the assumption of foot stationarity dur-
ing the mid-stance phase, characterized by zero velocity and displacement, is often
employed. This specific technique, known as Zero Velocity Update (ZUPT) [46],
has proven effective in reducing errors in stride length and stride velocity estimations
during walking [47]. However, its applicability in running has been questioned [48],
due to the increased execution speed of movement, which may negate the presence
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of a stationary phase. The effectiveness of this technique for estimating integration
instants in level running trials at various speeds has been demonstrated in the master’s
thesis work proposed by Utzeri et al. [49]. The approach used in their study, and
followed in the present work, involves setting position and velocity to zero while
initializing roll, pitch, and yaw to their initial values. This technique is known as
’hard’ ZUPT.

2.4 Double Integration and Drift Removal

Once the integration instants (ZUPT instants) are correctly identified, it should be
feasible to proceed with the double integration to define the functions of interest
according to the following equations:

v(t) =
Z t2

t1
a(t)dt + v0 (2.20)

x(t) =
Z t2

t1
v(t)dt + x0 (2.21)

where t1 and t2 represent two consecutive ZUPT integration instants.
However, it should be noted that there is a drift, caused by electrical and thermo-
mechanical noise, which degrades the performance of the double integration. For
this reason, it is necessary to introduce techniques that enhance the accuracy of the
estimations. In the context of this study, there are primarily two techniques that are
commonly used:

• Linear De-drifting Techniques [50]: These techniques are based on the
estimation of velocity drift, which increases linearly over time, assuming a
constant bias on the accelerations.

• Direct and Reverse Integration (DRI) [51]: This technique, divided into
three phases, initially involves the double integration of the accelerometer
signal, accompanied by initial conditions defined by the ZUPT, to obtain a
differential d(t). Subsequently, the output signal from the previous step is
integrated again, using as initial integration conditions the final conditions
obtained from the previous step; this determines r(t). Finally, a time-dependent
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function w(t), varying between 0 and 1, is used to weight the sum of the
two differentials mentioned above. Through this method, the displacement is
defined as:

DRI(t) = r(t)w(t)+d(t)(1−w(t)) (2.22)

The weighting function, on the other hand, is defined as follows:

w(t) =
s(t)− s(t1)
s(t2)− s(t1)

(2.23)

where s(t) is defined as a function that balances the contributions of r(t) and
d(t). A “s-shaped" function is chosen for this purpose to enhance the reliability
of the calculation by symmetrically distributing the weight and reducing errors
in the original integration.

s(t) = tan
✓

1
b

2t − t2
2t2

◆
(2.24)

here the b factor controls the steepness of the "s-shaped" curve. The value
b=0.1 was suggested by the author.

Once the displacement is estimated from the gravity-free accelerometer signal in
the global reference frame, the final signal is obtained by reorienting it in the running
direction. This is achieved by applying a rotation that maximizes the antero-posterior
component [52].

2.5 Estimation of Stride Length and Stride Velocity

Once velocity and displacement have been obtained from the appropriately integrated
accelerometer signal (as presented in the previous section), it is possible to calculate
the parameters of interest, specifically Stride Velocity (SV) and Stride Length (SL).
SV is defined as the norm of the anteroposterior (AP) and mediolateral (ML) com-
ponents of velocity, obtained by integrating acceleration between two mid-stance
moments, as follows:
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SVi = Â
ni

q
(vAP(n))2 +(vML(n))2 (2.25)

where n represents the number of samples in the i-th stride considered.
SL, on the other hand, is defined as the norm of the AP and ML components of
displacement between two mid-stance moments, as follows:

SLi =
q

d2
AP,end +d2

ML,end (2.26)



Chapter 3

Materials and Methods

3.1 Datasets

For the implementation of the methods described below, no data acquisition campaign
was conducted; instead, two pre-existing datasets at different speeds were used.

3.1.1 Slow running speed dataset - 8/10 km/h

This dataset consists of data recorded from INDIP system [53], made of a 3D ac-
celerometer (±16g), a 3D gyroscope (±2000/s) and a 3D magnetometer (±50Gauss)
sampling at 100 Hz (mod. MITCH, 221e S.r.l., Italy;), placed on the dorsum of each
shoe, as shown in Figure 3.1. The gold standard used as reference for the temporal
events is a pressure insoles (PI) system (mod. YETI, 221e S.r.l., Padua, Italy; 16
sensing elements; element area = 310 mm2; fs = 100 Hz; ground reaction force
threshold = 5 N [15]). Ten recreational runners (5 males, 5 females, age: 21±1.3
years, height: 167± 7.1cm, mass: 63± 8.6kg) familiar with the treadmill system
were enrolled to run different at 8 and 10 km/h both indoor and outdoor on track in
different days. For outdoor trials, speed was kept constant by a running pacer.
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Fig. 3.1 Subject wearing the MIMUs on the shoes (a) and pressure insoles (b) [15].

3.1.2 Moderate speed dataset - 14 km/h

This dataset consists of data recorded from MIMUs, sampling at 200 Hz, placed
on the dorsum of shoes and secured with a strap (Opal v2, APDM, Portland, USA;
technical specifications: accelerometer range of ±16 g, gyroscope range up to
±2000°/s, magnetometer range of ±8 Gauss) [54]. Furthermore, SP (motion-capture
via (9)-camera Vero system, Vicon, Oxford, UK; fs = 200 Hz) was used as gold
standard, and retro-reflective markers were applied to the dorsum of the shoes. In
the same dataset, MIMUs and markers were placed on the lower leg, thigh, trunk,
and pelvis.
Ten male runners (age 32.2±9.9 years, height: 172.5±4.3 cm, weight: 69.4±4.9
kg) were enrolled to run on a treadmill for multiple 90-second trials at a constant
speed of 14 km/h while wearing different shoes. The inclusion criteria were: being
between 18 and 55 years old, being recreational rearfoot strikers with no injuries in
the three months prior to data collection, being able to run effortlessly for 55 minutes,
and being familiar with treadmill running. Figure 3.2 shows an example of setup.



3.2 Fine-Tuning of Methods for Orientation Estimation 33

Fig. 3.2 Subject wearing MIMUs (under the red tape) together with retro-reflective markers
(above the red tape).

3.2 Fine-Tuning of Methods for Orientation Estima-
tion

In this section, the initial phase of the thesis work is detailed. First, an explanation of
the state-of-the-art pipeline is provided. Subsequently, the focus shifts to an in-depth
analysis of the methods implemented to further enhance the obtained results.
In particular, various sensor fusion algorithms were tested to evaluate whether the
choice of algorithm influences the running analysis, how it does so, and whether
there exists an algorithm capable of significantly improving the estimates.
Each step of the general pipeline presented in Chapter 2 used to estimate SL and SV
is fundamental and introduces a non-negligible error. Figure 3.3 shows a schematic
overview of the base pipeline used as a starting point.
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Fig. 3.3 Schematic representation of the pipeline used as basis for this work.

Here, a brief explanation of each step is provided:

• Definition of ICs and FCs: an automatic template-based method for feet
contacts detection (ICs and FCs) proposed by Rossanigo et al. [55] is used.

• ZUPT and definition of Integration Instants: The intervals in which the
foot can be considered characterized by a null velocity are determined using a
parametric method ([56], [57]) while the integration instants are determined
as the minimum of the angular rate norm wihtin the ZUPT intervals.

• Orientation estimation: Orientation estimates are determined using Madg-
wick complementary filter [16] together with Valenti quaternion initialization
[17], with a proposed b value of 0.0085 rad/s.

• Direct and Reverse Integration: the double integration of the acceleration
deprived of gravity is corrected of the residual drift using Direct and Reverse
Integration (DRI), proposed by Zok e al. [51].

In the following sections, the methods implemented and optimized in this project
are described in detail.
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3.2.1 Orientation estimation

Among the ten algorithms proposed by Caruso et al. in 2021 [36] and shown in
Table 3.3, three different complementary filters and a Kalman filter were selected for
fine-tuning on running trials, after conducting a preliminary analysis of quaternion
stability. In fact, stability evaluation served as an inclusion criterion in this study.
Furthermore, the number of parameters characterizing each algorithm was an ad-
ditional factor in determining their suitability. Under the same quaternion stability
conditions, algorithms with fewer parameters were preferred, as they are generally
easier to fine-tune.
To select a sub-group of the analyzed algorithms for further analysis, a preliminary
exploration of the use of those method in running analysis was performed. The
chosen metrics to describe orientation stability of ground-level running at constant
speed were euler angular differences between successive Initial Contacts (ICs) and
the standard deviations of quaternions. Cyclic movements, such as running, although
highly dynamic, are expected to produce periodic, stable, and repeatable quaternions.
Consequently, the foot angle, estimated from the quaternion, should exhibit similarity
between consecutive ICs. Similarly, a low standard deviation is expected throughout
the trial in the absence of random fluctuations or drifts. Tables 3.1 and 3.2 summarize
the stability metrics obtained for the ten algorithms. Figures 3.4 and 3.5 provide
qualitative examples of quaternions for the selected filters and the rejected ones,
respectively.
The chosen algorithms were those presenting the lowest stability metrics (Madgwick,
Valenti complementary filter, Seel and Guo) and are described below.
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Fig. 3.4 Quaternions obtained from the Madgwick Algorithm (left) and the Guo Algorithm
(right) demonstrate high stability, as evidenced by their periodicity and consistent behavior.
Both examples visually highlight the absence of random fluctuations or drifts, making these
algorithms suitable for further fine-tuning.

Fig. 3.5 Quaternions obtained from the Mahony Algorithm (left) and the Valenti Algorithm
(right) exhibit instability, as evidenced by irregular patterns, random fluctuations, and visible
drifts. These characteristics make these algorithms unsuitable for further fine-tuning.

Table 3.1 Stability metrics for each Complementary Filter.

Madgwick et al. [16] Valenti et al. [17] Seel et al. [18] Mahony et al. [58] Matlab CF
Mean Angular Differences (°) -0.0590 -0.0305 0.0037 0.3057 0.1875

Mean Standard Deviation (a.u.) -0.2058 0.1342 0.2358 0.4954 0.3436

Table 3.2 Stability metrics for each Kalman Filter.

Guo et al. [59] Sabatini et al. [60] Ligorio et al. [61] Valenti et al. [62] Matlab KF
Mean Angular Differences (°) 8.5538*10−5 -0.321 -0.234 0.0230 -1.2300

Mean Standard Deviation (a.u.) 0.189 0.577 0.546 0.789 0.897
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Table 3.3 Parameters for each SFA and brief description.

SFA Filter type # Parameters Tuned parameters Parameters description
Madgwick
et al. [16]

Complementary
filter 2 b , rad/s Gyroscope weighting factor

Valenti et
al.[17]

Complementary
filter 9 th1a, a.u. Lower Threshold for gravity

error acceptance

th2a, a.u. Upper Threshold for gravity
error acceptance

gainmag, a.u. Magnetometer weighting
factor

biasal pha , a.u. Gyroscope bias removal
weight

Seel et al.
[18]

Complementary
filter 4 tmag, s Time interval before

magnetometer correction

tacc, s Time interval before
accelerometer correction

Mahony et
al.[58]

Complementary
filter 2 kp, rad/s Inverse gyroscope weighting

factor

ki, rad/s Online bias estimation
weighting factor

Matlab
Comple-
mentary

Filter

Complementary
filter 2 gmag, a.u. Magnetometer weighting

factor

Guo et
al.[59] Kalman filter 3 sgyr, rad/s Gyroscope precision weight

sacc, m/s2 Accelerometer precision
weight

smag, uT Magnetometer precision
weight

Sabatini et
al. [47] Kalman filter 6 sgyr, rad/s Gyroscope weighting factor

ath, mg Threshold for accelerometer
vector selection

Ligorio et
al. [61] Kalman Filter 6 sgyr, rad/s Inverse gyroscope weighting

factor
Valenti et al.

[62] Kalman filter 3 sgyr, rad/s Inverse gyroscope weighting
factor

sacc, m/s2 Inverse accelerometer
weighting factor

Matlab
Kalman
Filter

Kalman Filter 8 (sgyr)2, (rad/s)2 Inverse gyroscope weighting
factor

3.2.2 Madgwick et al.

This complementary filter derivation (MAD)[16] relies on two main components:
an orientation estimate derived from gyroscope readings and an estimate based on
the accelerometric and magnetometer signals. These sources of information are
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integrated using a sensor fusion approach, leveraging the strengths of each sensor
type to provide a robust orientation estimate.

• Orientation from gyroscope readings: given Sw , the vector containing the
gyroscope readings, the quaternion derivative S

E q̇ can be written as:

S
E q̇ =

1
2

S
E q̂⌦ Sw (3.1)

describing the speed of change in the orientation of the earth frame relative
to the sensor frame. The quaternion S

Eq at time t can be calculated from the
derivative by integration:

S
Eqw,t =

S
E q̂est,t−1 +

S
E q̇w,tDt (3.2)

where S
E q̂est,t−1 is the quaternion estimate at the previous integration instant

(t-1), S
E q̇w,t is the quaternion derivative, calculated as the product of the quater-

nion estimate at the previous instant (t-1) and the gyroscope signal at time t,
and Dt is the time interval between two measurements. This equation updates
the current quaternion using the information about the rate of change in the
orientation, as provided by the quaternion derivative.

• Orientation from accelerometer and magnetometer readings: For orien-
tation estimates, it can be assumed that accelerometers measure only gravity
and magnetometers measure only earth’s magnetic field, thus simplifying the
derivation of quaternion from these readings. The orientation, in this case, can
be achieved by resolving an optimization problem, based on the minimization
of an objective function. Here, the right orientation of the sensor (S

E q̂) is the
one which alings to a reference direction of the field in the global coordinate
system (E d̂) with the measured field in the local coordinate system (Sŝ).

min
S
E q̂2R4

f (S
E q̂,E d̂, ŝ) (3.3)

f (S
E q̂,E d̂,S ŝ) =S

E q̂⇤ ⌦E d̂⌦S
E q̂−S ŝ (3.4)

S
E q̂ =

h
q1 q2 q3 q4

i
(3.5)
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E d̂ =
h
0 dx dy dz

i
(3.6)

Sŝ =
h
0 sx sy sz

i
(3.7)

Here, Equation 3.3 refers to the minimization problem to solve and Equation
3.4 to the objective function to minimize.
Between all the existing optimization algorithms, the easiest to compute and to
understand is the gradient descent algorithm presented by Madgwick himself
in [16].
Equation 3.8 describes orientation updates using gradient descent algorithm
for n iterations with a step size µ . The first iteration is based on an initial
quaternion (S

E q̂0), which can be an initial guess, such as S
E q̂0 =

h
1 0 0 0

i
,

or defined using sensors specific information, as presented by Valenti et al.
in [17]. Equation 3.9 desribes the gradient, defined by the objective function
(Equation 3.10) and its Jacobian (Equation 3.11). These equations describe
the general form of the gradient descent algorithm for orientation estimation,
without making any assumptions about the direction of the specific fields
components.

S
E q̂k+1 =

S
E q̂k −µ

— f (S
E q̂k,

E d̂,S ŝ)
k— f (S

E q̂k,E d̂,S ŝ)k
, k = 0,1,2, . . . ,n (3.8)

— f (S
E q̂,E d̂,S ŝ) = JT (S

E q̂,E d̂) f (S
E q̂,E d̂,S ŝ) (3.9)

f (S
E q̂,E d̂,S ŝ)=

2

64
2dx

"1
2 −q2

3 −q2
4
#
+2dy(q1q4 +q2q3)+2dz(q2q4 −q1q3)− sx

2dx(q2q3 −q1q4)+2dy
"1

2 −q2
2 −q2

4
#
+2dz(q1q2 +q3q4)− sy

2dx(q1q3 +q2q4)+2dy(q3q4 −q1q2)+2dz
"1

2 −q2
2 −q2

3
#
− sz

3

75

(3.10)
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J(S
E q̂,E d̂)=

2

64
2dyq4 −2dzq3 2dyq3 +2dzq4 −2dxq3 −2dyq2 2dxq2 +2dyq1

−2dxq4 +2dzq2 2dxq3 −4dyq2 2dxq2 −4dyq4 −2dxq1 −4dyq3

2dxq3 −2dyq2 2dxq4 −2dyq1 −4dxq3 +2dyq4 −4dxq2 +2dyq1

3

75

(3.11)
The Jacobian and the objective function must be appropriately calculated for
each of the two fields considered, as the use of a single field does not define a
unique orientation. In any case, several simplifications can be made by leverag-
ing certain assumptions about the main directions of the components. Gravity,
for instance, acts only along the vertical axis (z), while the Earth’s magnetic
field has its components on only two axes (horizontal and vertical). The two
formulations are then combined into a single set of equations (Equation 3.13),
with the subscript — indicating the usage of gradient descent algorithm. It can
be chosen whether to use both sensors or just the accelerometric information
(Equation 3.14), in case the magnetometer is suffering from uncorrectable
ferromagnetic disturbances. Lastly, it is important to emphasize that Equation
3.8 should ideally be iterated multiple times for each new quaternion, resulting
in high computational costs. However, as specified in [16], a single iteration
per time sample is sufficient (Equation 3.12) if the convergence rate, controlled
by µt (Equation 3.15), is adjusted to be always greater than or equal to the rate
of change of orientation.

S
E q̂—,t =

S
E q̂est,t−1 −µt

— f
k— fk (3.12)

— f = JT
g,b(

S
E ˆqest,t−1,

E b̂) fg,b(
S
E ˆqest,t−1,

S â,S m̂,E b̂) (3.13)

— f = JT
g (

S
E ˆqest,t−1,) fg(

S
E ˆqest,t−1,

S ât) (3.14)

µt = akS
E ˙qw,tkDt,a > 1 (3.15)

The goal of a SFA is to combine these two orientations computed from gyrso-
scope (S

E q̂w,t) and accelerometer with magnetometer (S
E q̂—,t) separately. The fusion
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described by Madgwick et al. is described as follows:

S
E q̂est,t = gt

S
E q̂—,t +(1− gt)

S
E q̂w,t ,0 < gt < 1 (3.16)

where gt is a weight used to define whether the estimate obtained from the gyroscope
or from the other two sensors is more reliable. The optimal value of gt , as stated by
[16], is the one which ensures that the weighted divergence of S

E q̂w,t is equal to the
weighted convergence of S

E q̂—,t . This parameters is defined by Equation 3.17, where
µ
Dt defines the convergence rate of S

E q̂—,t while b refers to the divergence rate of the
orientation from gyroscope.

gt =
b

µ
Dt +b

(3.17)

Considering a high µt value allows for certain simplifications, which can be used to
derive the final equation for the fusion of the sensor-derived orientations:

S
E q̂est,t =

S
E q̂est,t−1 +Dt(S

E q̇w,t +b — f
k— fk) (3.18)

Figure 3.6 shows the block diagram of the complete filter functioning. b is
the main tunable parameter in the algorithm, representig the zero mean gyroscope
measurements errors. A low value of the parameter b indicates that the correction
of predictions based on accelerometer and magnetometer data is given less weight,
attributing greater reliability to gyroscope data. Conversely, a high value of b gives
more weight to the data collected from the accelerometer and magnetometer.

Furthermore, a ferromagnetic distortion compensation and a gyroscope bias drift
compensation were implemented to overcome the limitations of both sensors, as
shown in groups 1 and 2 of Figure 3.6. Here, an additional tunable parameter, z , is
introduced to control the rate of convergence for removing the bias drift.
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Fig. 3.6 Block diagram of the complete filter, including distortion compensation (group 1)
and gyroscope drift compensation (group 2) [16].

3.2.3 Valenti et al.

Valenti et al. (VAC) proposed a complementary filter that can be applied to both
IMUs and MIMUs [17]. The algorithm fuses attitude estimation from gyroscope
data (prediction step) with accelerometer data (correction step), which provide
adjustments for the roll and pitch components only. Additionally, if magnetometer
data are available and reliable, they can be used to correct the heading.

The general architecture is shown in Figure 3.7.

• Prediction: this step involves the angular rate measured by the tri-axial gyro-
scope. From the angular velocity described as a quaternion (Sw) multiplied
by the previous state quaternion (S

E q̂) the quaternion derivative is obtained, as
presented in Equation 3.19. The orientation of the global frame relative to
the local frame can be computed by numerically integrating as described in
Equation 3.2.

S
E q̇est,t =−1

2
Sw ⌦ S

E q̂ (3.19)
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• Correction: this step is based on a multiplicative correction approach. The
predicted quaternion is corrected as showed in the following equation:

S
Eq = S

Eqw ⌦ ˆDqacc ⌦ ˆDqmag (3.20)

Here, the first delta quaternion corrects only the roll and pitch components,
while the second corrects the yaw component if magnetometer recordings are
provided.

Accelerometer Correction
The inverse predicted quaternion (E

S qw ) can be used to rotate the measured
acceleration into the global frame.

R(E
S qw)

Sa = Egp (3.21)

The ’predicted gravity’ (Eg) will have a deviation from the real gravity vector;
therefore, the delta quaternion referred to acceleration used to rotate (Eg) into
(Egp) is computed, by using:

R(Dqacc)

2

64
0
0
1

3

75=

2

64
ax

ay

az

3

75 (3.22)

where:

Eg =
h
0 0 1

i
,Egp =

h
gx gy gz

i
(3.23)

The solution to the system presented in Equation 3.22 can be obtained by
defining an arbitrary yaw (Dq3acc = 0), thus making the system determined.
The solution is:

Dqacc =

q
gx+1

2 − gyp
2(gz+1)

gxp
2(gz+1)

0
3>

(3.24)

As the delta quaternion obtained through 3.24 is still affected by high frequency
noise, before applying it, it’s necessary to scale it down with an interpolation
with the identity quaternion qI [17]. Two different approaches are presented,
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based on the angle between qI and Dqacc (W). The angle between the identity
and delta quaternions is equal to the Dq0acc component of the same delta
quaternion. If Dq0acc > e , a Linear intERPolation (LERP) is used [63]. The
governing equations are:

Dqacc = (1−a)qI +aDqacc (3.25)

ˆDqacc =
Dqacc

||Dqacc||
(3.26)

Here, e is the threshold value used to decide wether to apply LERP or the
other interpolation method and a is the gain that defines the cut-off frequency
of the filter and must be between 0 and 1.

Otherwise, if Dq0acc  e , the Spherical Linear IntERPolation (SLERP) is used
[63]. This algorithm returs the correct estimate of the average of two points
lying on a curve. The governing equation is:

ˆqacc =
sin([1−a]W)

sinW
qI +

sin(aW)

sinW
Dqacc (3.27)

The corrected quaternion is computed as follows:

S
Eq0 = S

Eqw ⌦ ˆDqacc (3.28)

Magnetometer Correction
If magnetometer recordings are provided, then the yaw correction can be
performed the same way by computing the delta quaternion. The measured
magnetic field is firstly rotated into the global frame using E

S qw , then the
magnetic delta quaternion can be computed:

RT (Dqmag)

2

64
lx
ly
lz

3

75=

2

664

q
l2
x + l2

y

0
lz

3

775 (3.29)
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This delta quaternion rotates the ’predicted global magnetic field’ so that it
lies on the xz semiplane. This formulation does not affect the roll and pitch
components. The solution to the above system is:

Dqmag =

"q
s((l2

x+l2
y )+lx

p
(l2

x+l2
y ))p

2(l2
x+l2

y ))
0 0 lyq

s((l2
x+l2

y )+lx
p

(l2
x+l2

y ))

#T

(3.30)

The delta quaternion is scaled down using the same interpolations used for the
accelerometer. The advantage of this double procedure is that it’s possible to
use two different thresholds, since the delta quaternions are totally independent.
The final corrected quaternion formulation is:

S
Eq = S

Eq0 ⌦ ˆDqmag (3.31)

Fig. 3.7 Block diagram of the complementary filter proposed by Valenti et al. [17]. Group 1
describes the optional part of the pipeline that involves the use of magnetometer.

3.2.4 Seel et al.

Seel et al. (SEL) [18] proposed an alternative analytical solution to the minimization
problem of the same objective function proposed by Madgwick et al [16], shown in



46 Materials and Methods

Equation 3.4. This method, as for the two algorithms described before, provides a
prediction step (Equations 3.1 and 3.2) followed by two different corrections, one
for the inclination (using the accelerometer) and one for the heading (using the
magnetometer).
The minimum of the accelerometric cost function is found by determining the
quaternion qas,acc(t), that rotates sracc(t) into sa(t), where:

"
0

sracc

#
=S

E qw(t)⌦
"

0
Eg

#
⌦E

S qw(t) (3.32)

refers to the local sensor coordinate of the vertical unit vector. By determining
the angle between both vectors aerr,acc(t) = \(sa(t),s racc(t)) and the product we
obtain:

qas,acc(t) =

"
cos

"1
2aerr,acc(t)

#

sin
"1

2aerr,acc(t)
#

xcorr,acc(t)

#
(3.33)

and

xcorr,acc(t) =
sa(t)⇥s racc(t)

ksa(t)⇥s racc(t)k2
(3.34)

This correction eliminates the differences between sa and sracc by using qas,acc(t)
as a rotation matrix. By using Equation 3.32, it is then possible to conclude that the
concatenation of qas,acc(t) and S

Eqw minimizes the cost function.
The last step of the accelerometric correction is due to the need to balance drift
compensation and disturbance robustness through an adjustable sensor fusion weight,
called kacc. This parameter can be tuned between 0 and 1 and regulates the portion
of the angle used for the correction.

The overall accelerometric correction quaternion is computed as follows:

S
Eq0(t) = S

Eqw(t)⌦qcorr,acc(t) (3.35)

qcorr,acc(t) =

"
cos

"1
2kaccaerr,acc(t)

#

sin
"1

2kaccaerr,acc(t)
#

xcorr,acc(t)

#
(3.36)
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In order to correct the heading, an additional step for magnetometer-related correction
is proposed. Sracc is used to project the measured magnetic field vector into the
Horizontal plane:

Sm(t) =S m(t)− (Sm(t)Sracc)
Sracc (3.37)

and the governing equation are found by analogy:

S
Eq(t) = S

Eq0(t)⌦qcorr,mag(t) (3.38)

qcorr,mag(t) =

"
cos

"1
2kmagaerr,mag(t)

#

sin
"1

2kmagaerr,mag(t)
#

xcorr,mag(t)

#
(3.39)

aerr,mag(t) = \
"
m(t), srmag

#
(3.40)

xcorr,mag(t) =
m(t)⇥ srmag(t)

km(t)⇥ srmag(t)k2
(3.41)

The last correction step introduced by Seel et al. consists in a bias compensation,
used to reduce the drift and based on both the observed disagreements.

b(t) = b(t − ts)+ kbias,accaerr,acc(t)Xcorr,acc(t)+ kbias,magaerr,mag(t)Xcorr,mag(t)
(3.42)

Where kbias,acc and kbias,mag are weighting factors that can be set between 0 and 1,
and ts is the sampling interval. At each sampling interval, the bias is used to estimate
the corrected angular rates, which are then integrated to obtain a more accurate
gyroscope quaternion prediction (S

Eqw ). Finally, this prediction is corrected using
Equations 3.35 and 3.38.
The working principle of the method is based on the correct initialization of the
four governing parameters. Since this initialization may be rough, a parametrization
was proposed, allowing the user to select only the time scale and the level of
aggressiveness for the correction. The time scale consists in choosing two time
constants (tacc,tmag), which represent a measure of the reliability of the correction.
The higher the time constant, the less the sensor is considered reliable; therefore,
longer time intervals and averaged values are used. The last governing parameter
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is the overshoot measure z , which takes into account the bias estimation to avoid
overcompensations of the disagreements, as shown in Figure 3.8. The same value
of z must be chosen for both sensors. The relationships between the time constants
and the governing parameters shown in the previous dissertation, are given by the
following equations:

ki =
ts

1.4ti + ts
,kbiasi =

z 2

160ti
ki,8i 2 (acc,mag) (3.43)

Fig. 3.8 Graphical explanation of accelerometric corrective time constant tacc and overshoot
measure z . The same picture could work for magnetometer time constant. Picture from [18].

3.2.5 Guo et al.

The aforementioned algorithms are flexible and easy to understand but have some
drawbacks. The main issue concerns the setting of the governing parameters, which
may be accurate for a specific application but lead to poor estimates in others.
For this reason, a Kalman filter could be a suitable option, providing statistically
more accurate estimates.. Guo et al. (GUO) [59] proposed a novel MIMU-based
orientation estimation algorithm using a Fast Kalman Filter.
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Quaternion derivation from accelerometer and magnetometer readings

This section presents a method for attitude determination using accelerometer and
magnetometer data. The relationship between the body frame and the reference
frame is modeled using the direction cosine matrix (DCM), which can be expressed
in terms of quaternions.
The reference vectors for the accelerometer and magnetometer in the global frame
are defined, and it is demonstrated how the DCM can be decomposed into column
vectors that depend on the quaternion. The matrices P1,P2,P3, associated with
the quaternion, are introduced, and it is demonstrated that their Moore-Penrose
pseudoinverses are equal to their transposes.

Next, the magnetometer equation is derived and reformulated as a linear system
in terms of the quaternion. This leads to the definition of a matrix Wm that relates
magnetometer measurements to the quaternion.
Since this system cannot be directly solved, an iterative approach is proposed, where
the quaternion is estimated as the weighted average of the current and previous states.

qm,t =
1
2
(Wm,t + I4x4)qt−1 (3.44)

Where I4x4 represents the Identity matrix and qt−1 the previous quaternion estimate.
Finally, by combining the quaternion estimation from the magnetometer with that
from the accelerometer, a novel algorithm for attitude determination is introduced.

qa,t =
1
2
(Wa,t + I4x4)qt−1 (3.45)

qt =
1
4
(Wa,t + I4x4)(Wm,t + I4x4)qt−1 (3.46)

While this provides an initial estimation of the quaternion, it does not account for
sensor noise or measurement uncertainties. Therefore, a Kalman Filter is introduced
to refine the quaternion estimation by incorporating gyroscope data and modeling
the system dynamics.

Kalman Filter design

To improve the attitude estimation, a Kalman Filter is applied, which integrates
gyroscope measurements with the previously estimated quaternion. The quaternion
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kinematic equation is used as the process model, describing the evolution of the
quaternion based on angular velocity:

dq
dt

=
1
2
[W]q (3.47)

where [W] is a skew-symmetric matrix that depends on the angular velocity
components wx,wy,wz. The discretized system is given by:

qt =


I4x4 +

Dt
2
[W]

3
qt−1 +xt (3.48)

where xt represents the process noise, which accounts for uncertainties in gyro-
scope measurements and model approximations.

To incorporate external sensor information, the measurement model includes the
estimated quaternion derived from accelerometer and magnetometer data:

qmeasure,t = qacc,mag,t + vt (3.49)

where vt is the measurement noise, which represents the uncertainties associated
with the accelerometer and magnetometer readings. Since these sensors introduce
non-linearities, a first-order approximation is used to propagate their uncertainty into
the quaternion estimation. This is achieved through the Jacobian matrix J, which
maps variations in the accelerometer and magnetometer measurements to variations
in the estimated quaternion:

Sn = JSacc,magJT (3.50)

where:

• Sn is the covariance of the measurement noise in the quaternion domain;

• J is the Jacobian matrix that describes the sensitivity of the quaternion to
measurement variations;

• Sacc,mag represents the measurement noise covariance of the accelerometer and
magnetometer;
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This formulation allows the Kalman Filter to optimally fuse gyroscope, ac-
celerometer, and magnetometer data while accounting for their respective uncertain-
ties. The filtering process consists of two main steps: prediction and correction.
The prediction step uses the gyroscope measurements to estimate the next quaternion
state, while the correction step refines this estimate using the accelerometer and
magnetometer measurements. The Kalman Filter is implemented as follows:

• State prediction: Compute the predicted quaternion qt based on the process
model.

q̂t =


I4x4 +

Dt
2
[W]

3
qt−1 (3.51)

• Covariance prediction: Update the process uncertainty.

Sq̂,t =


I4x4 +

Dt
2
[W]

3
Sq,t−1


I4x4 +

Dt
2
[W]

3T
+Sx ,t (3.52)

• Kalman Gain computation: Calculate the Kalman gain Gk, which determines
how much the measurement should influence the state correction:

Gk = Sq̂,t [Sq̂,t +Sn ]
−1 (3.53)

• State correction: Update the quaternion estimate by incorporating the mea-
sured quaternion.

qt = q̂t +Gk(qmeasure,t − q̂t) (3.54)

• Covariance update: Update the state uncertainty.

Sq,t = (I4x4 −Gk)Sq̂,t (3.55)

This iterative process ensures that the final quaternion estimation is more robust
to sensor noise and provides a dynamically consistent representation of attitude over
time.

For each presented algorithm, the most relevant parameters have been selected
for fine-tuning, based on the parameters chosen by Caruso et al. [36]. Table 3.3
presents the selected parameters and provides a brief description.
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3.2.6 Quaternion initialization

Each SFA used in this thesis project requires a manual initialization of the quaternion
q0 before proceeding with the update of the quaternion itself and the orientation
estimates. As a direct consequence, it is good practice to accurately choose the
initial quaternion, using the information provided by the sensors, to ensure that the
filter converges rapidly, even when relatively short time intervals are used, as in
the running analysis (ZUPT). In this work, the initialization proposed by Valenti et
al. [17] is used, which has already been compared to other techniques by [49] and
verified as the best approach for running trials analysis.
This method consists in two different algebraic derivations of the orientation quater-
nion from two independent sensors: accelerometer and magnetometer (if present
and reliable). These sensors provide valuable information in static conditions: they
should measure gravity and magnetic field relatively. The quaternion can be obtained
through the inverse orientation, which results in this overdetermined system:

8
<

:
RT (S

Eq)La =E g

RT (S
Eq)Lm =E h

(3.56)

Each equation provides two independent constraints, this causes a lack of unique
solution if a disagreement between the sensors readings occurs. So, the system
presented in Equation 3.56 can be modified, by reducing one constraint from the
second equation:

8
<

:
RT (S

Eq)La =E g

RT (S
Eq)Lm 2E P+

zx

(3.57)

The constraint requires that all the readings from the magnetometer be confined to
the x-z plane, with x being positive.
The total initization quaternion can be seen as:

S
Eq = qacc ⌦qmag

(3.58)
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where qacc is determined by solving the following system of equations, obtained
after observing that gravity has components on the z-axis only and re-writing the
first Equation in System 3.57 as follows:

R(qacc)
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Once qacc is found, it can be used to rotate Sm into an intermediate frame, with
the z-axis pointing the same as global coordinate frame:

RT (qacc)
Lm = l (3.60)

where l is the rotated magnetic field vector. qmag is the defined as:

R>(qmag)
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where:

G = l2
x + l2

y (3.62)

Finally, Equation 3.58 can be used to obtain the initialization quaternion q0.

3.2.7 Selection of the sub-optimal parameter(s)

For each of the presented algorithms, the selection of sub-optimal set of parameters
[19] capable of minimizing errors was performed through various trials on the two
datasets. Initially, each parameter was tested at ten discrete values distributed across
its full investigation range, chosen based on its specific meaning. Subsequently, by
identifying the minima in the error distribution for SL and SV obtained, the search
windows were narrowed, and the step size was reduced. This approach allowed for
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the identification of the absolute minimum of the distribution.
For algorithms with multiple parameters, the search process was carried out itera-
tively for each defining parameter in the same manner. All trials were conducted
both with and without the magnetometer to verify whether the dataset was affected
by ferromagnetic disturbances.

3.3 Implementation of a Framework for the Stride-
by-Stride Selection of Parameter(s) in Orientation
Estimation Methods

This section introduces the second part of this thesis. In the first part, the optimal
selection of the best SFA for running analysis was successfully achieved by tuning
either a single parameter or a set of parameters. However, it was shown that this
optimization was specific to our datasets and hardware, representing a significant
limitation. To overcome this constraint, a more adaptive approach is required, one
that defines parameter values stride-by-stride without relying on prior tuning.
The goal of this step is to refine the estimation of SL and SV while maintaining
the optimized pipeline described in Section 3.1, with a particular focus on stride-
by-stride orientation estimates. To achieve this, the framework was implemented
in MATLAB and structured around a central computational module, where spatio-
temporal parameters are extracted using the same methodology described in Section
3.1. Additionally, an objective function is introduced to guide the optimization
process, alongside a set of constraints that ensure feasible and reliable solutions.
Each of these elements is discussed in detail in the following sections.

3.3.1 Sequential Quadratic Programming Algorithm

The optimization framework used is based on the Sequential Quadratic Programming
(SQP) algorithm, an iterative method designed for constrained nonlinear problems.
This algorithm belongs to the class of quasi-Newton methods, capable of solving a
sequence of subproblems by optimizing a quadratic model of the objective function
while simultaneously linearizing the constraints. The formulation of each quadratic
programming subproblem relies on the quadratic approximation of the Lagrangian



3.3 Implementation of a Framework for the Stride-by-Stride Selection of
Parameter(s) in Orientation Estimation Methods 55

function, with the obtained solution serving as the starting point for the next iteration,
thereby progressively improving the optimization.
Consider a general nonlinear optimization problem:

min
x

f (x) (3.63)

Subject to:

h(x) 0, g(x) = 0 (3.64)

The associated Lagrangian function is given by:

L (x,l ,s) = f (x)−l T h(x)−sT g(x) (3.65)

where l and s are the Lagrange multipliers associated with the inequality and
equality constraints, respectively. To find the solution —L (x,l ,s) = 0, the SQP
algorithm defines an appropriate search direction dk at each iteration (xk,lk,sk),
obtained as the solution of the QP subproblem. In the absence of constraints, the
method reduces to Newton’s algorithm, which seeks a stationary point where the
gradient of the objective function vanishes. A key feature of SQP is its ability
to preserve feasibility within bounded constraints, ensuring that each iteration
remains within admissible limits. The algorithm also exhibits robustness to numer-
ical inconsistencies, handling situations where the objective function or constraints
return undefined values (e.g., NaN or Inf) by dynamically adjusting the step size.
Additionally, SPQ algorithm employs advanced feasibility correction strategies
when constraints are violated. These characteristics make SQP a powerful and
flexible approach for constrained nonlinear optimization, balancing computational
efficiency with solution accuracy ([64],[65]).

3.3.2 Objective Function

Different combinations of objective functions and optimization variables were tested.
Initially, a single variable was optimized, specifically the parameter characterizing
the chosen SFA (b ). This parameter was chosen as the first optimization variable, as
the primary focus was to investigate its stride-by-stride variability and its influence
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on spatiotemporal parameter estimation and foot trajectory reconstruction.
Subsequently, six additional variables were introduced to assess whether the opti-
mized estimation and the subsequent removal of accelerometer and gyroscope biases
could further improve the accuracy of the estimates compared to a priori bias removal
based on values obtained from the static calibration of each sensor:

• Residual gyroscope bias along the three axes (bw,x,bw,y,bw,z).

• Residual accelerometer bias along the three axes (ba,x,ba,y,ba,z).

In this thesis, a lower and an upper limit were defined for each parameter based on
the preliminary analysis of the datasets. Specifically, the limits for the parameter b
were set to cover the entire possible range (from 0 to 1 rad/s) as a result of various
tests, while the limits for the other parameters were determined based on analyses
performed on static signals. Furthermore, b was initialized using the results of the
previous optimization phase, bw was set to the mean value of the static acquisition,
and ba was initialized as a vector of zeros. The maximum number of iterations was
set to 1000, while the number of different starting points for each stride was set to
10, the first one defined a priori and the other randomly.
Regarding the objective functions, two different formulations were implemented.
The first one was primarily designed to understand the behavior of the optimizer
and the underlying algorithm governing the process. It focused on minimizing the
errors in stride length and stride velocity with respect to those obtained from the
gold standard. This approach provided an optimal reference scenario, allowing both
the verification of the method’s feasibility and the achievement of the most accurate
possible estimates. Figure 3.9 shows the block diagrams of the framework with the
gold standard objective function.
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Fig. 3.9 Block diagrams of the framework implementation with a): one optimization variable
and b): 7 variables with the objective function that minimizes the errors compared to the
reference systems.

Subsequently, the initial objective function was replaced to achieve a formulation
independent of reference measurements. Specifically, two systematic and recurrent
conditions were exploited at each stride:

• The mean value of the gravity-compensated acceleration must be zero over
each integration interval since the integration interval was defined between
consecutive zero-velocity instants;
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• The vertical displacement between the beginning and the end of the stride
must be identical, assuming that the foot returns to the same position during
ground-level running;

This transition completely decoupled the optimization framework from reference
data, making the method more applicable to real-world scenarios where acquiring
reference measurements is neither feasible nor desirable.

Fig. 3.10 Block diagrams of the framework implementation with a): one optimization
variable and b): 7 variables with the objective function that minimizes the errors without the
gold standards.
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3.3.3 Constraints Definition

Using the objective function without constraints may result in inaccurate SL and
SV estimates. A constraint function is introduced to restrict the admissible solution
space by incorporating prior knowledge of physical and physiological limitations.
Two different constraints function were used, referred to each of the two objective
functions detailed above.
For the objective function deprived of references to the gold standard, the imposed
constraints are:

• Maximum vertical and medio-lateral displacements were constrained to 50
cm;

• Maximum SL estimate was set to 4 m;

• Minimum SL estimate was set to 1 m;

• The difference between two integration instants in the medio-lateral component
was limited to 5 cm;

Meanwhile, for the second objective function, two additional constraints have been
introduced in addition to those mentioned above. Specifically, a limitation on the
mean value of gravity-free acceleration and on the vertical displacement has been
added, as the goal is to minimize the difference between errors without including
these two additional elements in the function.

In particular, the mean value of gravity-free acceleration was constrained to 10 m
s2 ,

while the difference in vertical foot displacement between two integration instants
was limited to 5 cm.
As shown in Figures 3.9 and 3.10, the estimation of spatio-temporal parameters
implemented in the framework follows the same pipeline presented in the first part
of this thesis. Specifically, for each considered stride, the orientation of the inertial
sensor is estimated by updating the value of the parameter b and the other bias terms.
This estimation is used to compute a rotation matrix that allows the acceleration
to be transformed into the global reference frame. In this frame, gravity-related
acceleration can be removed, enabling the double integration of the gravity-free
accelerometer signal. The displacement obtained through DRI [51] is then further
reoriented stride-by-stride along the running direction [52].
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3.4 Validation Process and Metrics Computation

Slow speed dataset

The reference spatio-temporal parameters of interest (SL and SV) were computed
based on the known trial information.
Only an average SL value could be estimated, while the SV value was assumed to
be the one imposed by the treadmill or the pacer. Specifically, the average SL was
derived from the a priori known information of the distance covered (400 m) and the
number of steps taken, provided by the available pressure insoles.

Moderate speed dataset

The reference displacement was computed from the trajectories obtained from SP,
incorporating the correction for treadmill motion. For each interval between two con-
secutive integration instants (ZUPT), the foot trajectory was extracted and corrected
by subtracting the initial offset. Finally, the displacement due to treadmill speed was
added, yielding the corrected final displacement. Similarly, the reference velocity
was computed by computing the first derivative of the marker trajectories obtained
through SP.
The reference SL was computed as the norm of the antero-posterior and medio-
lateral components of the displacement obtained from markers positioned above the
MIMU, as shown in Equation 2.26. Conversely, SV was computed as the norm of
the antero-posterior and medio-lateral components of the marker-derived velocity, as
shown in Equation 2.25.

At each step of the pipeline, SL and SV errors were computed, using different
metrics, in order to decide which orientation algorithm was the best choice. The
main metrics are:

• Mean Error (ME): represents the mean of the differences between the obser-
vations (yi) and the associated reference values ( ŷi) across all samples.

ME =
1
N

N

Â
i=1

(yi − ŷi) (3.66)
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• Mean Absolute Error (MAE): represents the mean of the absolute differences
between the observations (yi) and the associated reference values ( ŷi) across
all samples. This metric is not influenced by the sign of the estimates.

MAE =
1
N

N

Â
i=1

|yi − ŷi| (3.67)

• Mean Absolute Percentage Error (MAPE): computes the MAE but expresses
the error as a percentage relative to the actual values.

MAPE =
1
N

N

Â
i=1

9999
yi − ŷi

ŷi

9999⇥100 (3.68)

• Root Mean Square Error (RMSE):measures the square root of the mean
squared differences between observations and predictions.

RMSE =

s
1
N

N

Â
i=1

(yi − ŷi)2 (3.69)

Furthermore, for the grid-search optimization, the same constraints used in the
optimization framework were introduced to assess whether the SL and SV estimates
obtained for a given stride were biomechanically plausible. Specifically, the imposed
constraints are:

• Maximum vertical displacement limited to 50 cm;

• Maximum medio-lateral displacement limited to 50 cm;

• Difference in the vertical component between two consecutive stances limited
to 5 cm;

• Difference in the medio-lateral component between two consecutive stances
limited to 5 cm;

• The absolute mean value of acceleration, after gravity removal, across all three
components must be lower than 10 m/s2.

If any of these constraints are not met, the corresponding stride is considered inaccu-
rate and therefore discarded.
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Regarding the implemented framework, if convergence is not achieved, the reference
stride is not discarded a priori. Instead, standard parameter values are used, and com-
pliance with the constraints is subsequently verified for that specific configuration.



Chapter 4

Results

This chapter presents the numerical results obtained during the development of this
thesis. For each phase of the work, the metrics described in the previous chapter
were used to assess the accuracy of the obtained results.

4.1 Stride Length and Stride Velocity Results Using
Methods for Orientation Estimation with Fixed
Fine-Tuned Parameter(s)

The first analyzed results focus on the influence of SF algorithms on the pipeline
currently used for the estimation of spatio-temporal parameters in running. The main
steps implemented in the pipeline are detailed in Chapter 2, but are reiterated here
for completeness:

• Reorientation of the vertical axis with respect to gravity;

• Identification of initial contacts (ICs) and final contacts (FCs) [55];

• Implementation of the ZUPT detector [49];

• Orientation estimation using the most suitable SFA [66];

• Quaternion initialization through Valenti’s algorithm [17];

• Double integration and drift removal using DRI [51];
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• Reorientation along the direction of progress;

• SL and SV computation;

4.1.1 Influence of the Orientation Estimation on Stride Length
and Stride Velocity Estimates

In this first optimization step, the influence of different SFAs on SL and SV is
analyzed. First, for each selected algorithm, fine-tuning was performed by varying
all the tuning parameters presented in Table 3.3 within reasonable parameter-specific
intervals. The values corresponding to the minimum error obtainable on SL were
then selected. As previously done in [66] for the error on velocities, in this case, the
focus is on minimizing the error on SL. Tables 4.2 and 4.1 show the minimum errors
achievable for each method on each dataset, along with the selected parameters.

Table 4.1 MAPE on SL (%) on both datasets, divided for speed.

SFA Sub-optimal parameters UNISS MAPE SL, % Sub-optimal parameters DIADORA MAPE SL, %
8 km/h 10 km/h 14 km/h

MAD b = 0.076 rad/s 1.87 ± 1.77 1.25 ± 0.0.75 b = 0.51 rad/s 2.55 ± 1.77
VAC ath2 = 1 a.u., gainmag = 0.1 a.u. 5.22 ± 2.44 6.20 ± 3.33 ath2 = 0.7 a.u., gainmag = 0.1 a.u. 15.90 ± 5.65
SEL tacc = 0.1 s, tmag = 0.02 s 3.67 ± 2.10 2.72 ± 2.25 tmag = 0.4 s , tacc = 0.01 7.52 ± 1.31
GUO sgyr = 0.08 rad/s, smag = 0.2 uT, sacc = 0.3 m/s2 3.82 ± 2.55 3.90 ± 2.80 sgyr = 0.1 rad/s , smag = 0.01 uT, sacc = 0.3 m/s2 3.82 ± 1.27

Table 4.2 MAPE on SV (%) on both datasets, divided for speed.

SFA Sub-optimal parameters UNISS MAPE SV, % Sub-optimal parameters DIADORA MAPE SV, %
8 km/h 10 km/h 14 km/h

MAD b = 0.076 rad/s 4.12 ± 1.89 2.98 ± 0.92 b = 0.51 rad/s 2.63 ± 1.52
VAC ath2 = 1 a.u., gainmag = 0.1 a.u. 7.86 ± 1.45 9.82 ± 2.33 ath2 = 0.7 a.u., gainmag = 0.1 a.u. 15.14 ± 7.73
SEL tacc = 0.1 s, tmag = 0.02 s 10.67 ± 3.47 5.56 ± 1.57 tmag = 0.4 s, tacc = 0.01 s 7.24 ± 2.78
GUO sgyr = 0.08 rad/s, smag = 0.2 uT, sacc = 0.3 m/s2 9.81 ± 4.56 9.95 ± 2.67 sgyr = 0.1 rad/s , smag = 0.01 uT, sacc = 0.3 m/s2 3.75 ± 1.29

Slow-Speed Dataset

For the slow-speed dataset, the graphical results of the fine-tuning process used to
define the sub-optimal parameter(s) for each SFA are shown in Figures from 4.1 to
4.4. Initially, a preliminary tuning was performed over the entire parameter interval.
After this step, the search interval and step size were progressively reduced until the
sub-optimal parameter value was obtained for the specific algorithm configuration,
speed, and hardware. To select the best algorithm for the application, the evaluation
was not limited to identifying the one that yielded the lowest SL errors. Instead,
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additional criteria were considered, such as the number of parameters required by
each algorithm and the extent to which parameter selection influenced the estimation
of the variables of interest. To achieve this, after identifying the most influential
parameter for each algorithm, its impact on the estimates was assessed through a
statistical test (Figures 4.5 and 4.6).

Fig. 4.1 Fine-tuning of the governing parameter of MAD over the Slow-Speed Dataset. The
figure on the left shows the overall view of the MAPE across different b values, covering the
whole interval. The figure on the right shows the errors varying within a smaller interval. It
can be observed that the standard deviation is lower for smaller b values, suggesting that
lower b values lead to more stable and reliable estimates.
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Fig. 4.2 Effect the governing parameters of VAC on MAPE for Stride Length estimation
in the Slow-Speed Dataset. The left figure shows the variation of MAPE across different
values of th2a for multiple gainMag settings, where a cross-tuning was performed on both
parameters, with error bars representing standard deviations. The right figure illustrates the
trend of MAPE as a function of gainMag, where the best th2a value was kept fixed, and a
zoom-in was applied to the gainMag values for a more detailed analysis.

Fig. 4.3 Effect the governing parameters of SEL on MAPE for Stride Length estimation in
the Slow-Speed Dataset. The left figure shows the variation of MAPE across different values
of tacc for multiple tmag settings, where a cross-tuning was performed on both parameters,
with error bars representing standard deviations. The right figure illustrates the trend of
MAPE as a function of tacc, where the best tmag value was kept fixed, and a zoom-in was
applied to the gainMag values for a more detailed analysis.
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Fig. 4.4 The image shows the trend of the error as stdMag varies, while the other two
parameters were previously fine-tuned using a double cross-fine tuning process, similarly to
the other algorithms.

Fig. 4.5 SL errors on the Slow-speed dataset, varying with the most relevant parameter for
each algorithm. On the left, the results of the statistical test indicate whether the chosen
parameter influences the estimates.
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Fig. 4.6 SV errors on the Slow-speed dataset, varying with the most relevant parameter for
each algorithm. On the left, the results of the statistical test indicate whether the chosen
parameter influences the estimates.

Moderate-Speed Dataset

Fig. 4.7 Fine-tuning of the governing parameter of MAD over the Moderate-Speed Dataset.
The figure on the left shows the overall view of the MAPE across different b values, covering
the whole interval. The figure on the right shows the errors varying within a smaller interval.
It can be observed that the standard deviation is lower for medium-high b values, suggesting
that medium b values lead to more stable and reliable estimates.
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Fig. 4.8 Fine-tuning of the governing parameters of VAC for the Moderate-Speed Dataset.
The gainmag parameter showed no influence on the mean absolute percentage errors; therefore,
the value proposed by [19] was used. Instead, the chosen value of th2a is 0.7 rather than 0,
as 0 has no significance given the fixed value of th1a at 0.05.

Fig. 4.9 Fine-tuning of the governing parameters of SEL for the Moderate-Speed Dataset.
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Fig. 4.10 On the left, the variation of the percentage error on SL is shown as a function of
stdGyr, using the stdMag and stdAcc values that provide the best performance. On the right,
with stdGyr and stdMag fixed, the effect of stdAcc variation on the error is analyzed. The
most influential parameter is stdGyr, while stdAcc and stdMag have a lesser impact on the
estimation of spatio-temporal parameters. The tuning of stdMag is not reported, as it was
found to be the least influential parameter.

Fig. 4.11 SL errors on the moderate-speed dataset, varying with the most relevant parameters
for each algorithm. On the left, the results of the statistical test indicate whether the parameter
influences the estimates.
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Fig. 4.12 SV errors on the moderate-speed dataset, varying with the most relevant parameters
for each algorithm. On the left, the results of the statistical test indicate whether the parameter
influences the estimates.

For these datasets, at these three constant speeds, the algorithm proposed by Madg-
wick et al. [16] was selected as the most suitable for the purpose of the study. This
choice was made both because it provides the best results in terms of error for both
spatio-temporal parameters of interest (errors equal to or lower than 2.6% for SL and
4% for SV) and because it requires only a single parameter to be tuned.
Although Figures 4.5 and 4.11 show that the results are statistically dependent on
the value of the chosen parameter, these two characteristics led to the selection of
MAD as the most valuable algorithm for further analysis.

4.1.2 Selection of a Fixed Optimal Value of the Parameter(s) of
Methods for Estimation Orientation across Speeds

Once the most suitable algorithm for estimating the parameters of interest in the
specific application was selected, in this case, the algorithm by Madgwick et al. [16],
the optimal parameters for each dataset were determined. As shown in Table 4.3, the
optimal value differs between the low-speed dataset and the moderate-speed dataset.
As already observed in the various figures illustrating the tuning process, the estima-
tion of spatio-temporal parameters varies significantly with changes in the governing
parameters of the algorithm. For all algorithms (considering intervals of 0.1 rad/s),
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at each speed, there is a statistical difference in the estimates as the parameter varies,
except for VAC at low speed, which, however, is characterized by high error and
standard deviation. The statistical test performed in this case is the Kruskal-Wallis
test, since the obtained distributions are not normal and more than three groups need
to be compared.
After making these observations, the next step is to define a range of beta parameter
values that can be used across different speeds and hardware configurations without
requiring any prior tuning. To achieve this, the two available datasets were used,
selecting an interval where the error on SL remained below 4 % and showed no
statistical difference between estimates (p-value > 0.01). The proposed and tested
range includes beta values between 0.29 and 0.34 rad/s, while the unique proposed
beta value is 0.3 rad/s.
In Figure 4.13 , the trend of the curves for different speeds can be observed, along
with the proposed range. Moreover, Figure 4.14 shows the boxplot of the mean
absolute percentage error over SL, obtained with a beta value of 0.3 rad/s, when the
distributions are not statistically different from each other. In Table 6, the results
obtained using the single proposed beta value are shown.
In general, it can be stated that for both datasets, SL errors are higher than the optimal
ones but always remain below the defined tolerance bound of 4 %.

Table 4.3 Performance evaluation for different sub-optimal beta values across datasets
expressed as median value ± InterQuartile Range (IQR).

Sub-optimal Beta Dataset MAPE SV MAPE SL Number of Unreliable Computation time
value (rad/s) (%) (%) strides strides (%) for 1 stride (s)

0.076 8 km/h 4.12 ± 1.89 1.87 ± 1.77 16911 0 0.020 ± 0.001
0.076 10 km/h 2.98 ± 0.92 1.25 ± 0.75 15372 0 0.020 ± 0.010
0.510 14 km/h 2.63 ± 1.52 2.53 ± 1.77 21430 0 0.010 ± 0.001
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Fig. 4.13 Different error distributions across various beta values for different speeds. The
vertical lines indicate the boundaries within which the error distributions show no statistically
significant difference between speeds.

Table 4.4 Performance evaluation for different datasets with the unique beta value proposed,
expressed as median value ± IQR.

Sub-optimal Beta Dataset MAPE SV, % MAPE SL, % Number of Unreliable Computation time
blue!50 value (rad/s) strides strides (%) for 1 stride (s)

0.3 8 km/h 7.11 ± 3.64 3.01 ± 1.44 16911 0 0.020 ± 0.001
0.3 10 km/h 2.50 ± 1.71 2.61 ± 1.39 15372 0 0.020 ± 0.010
0.3 14 km/h 2.85 ± 2.11 3.21 ± 1.55 21430 0 0.010 ± 0.001
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Fig. 4.14 Boxplots for MAPE SL at different running speeds with a unique beta value used.
These distributions are not statistically speed-dependent.

Through this process, the feasibility of using an automatic method for estimating
SL at different speeds and with different hardware has been verified. However, the
proposed approach consists of multiple implementation steps, each introducing an
error that propagates. At this stage, the approach was therefore evaluated without the
error propagation introduced by the automatic method for selecting the initial and
final contact instants [55] and the ZUPT method [49] for selecting the integration
instants. In this case, the contact instants obtained from stereophotogrammetry and
pressure insoles were used, and the integration instants were set at 50 % of the
interval between the detected IC and FC.
The tuning presented in Section 4.1.1 was performed again on both datasets for the
selected algorithm, using the reference instants. Figures 4.15 and 4.16 show the
tuning results compared with those presented in Section 4.1.1, while Tables 4.5,
4.6 and 4.7 present the results with the sub-optimal beta values for each method at
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different speeds.
The ultimate goal of this step was to define a wider range for different users, to be
proposed regardless of hardware, implemented methods, and speeds. To achieve
this, another interval (between 0.5 rad/s and 0.65 rad/s) was identified where SL
errors were below 4 % and showed no statistical difference (p-value < 0.01) between
estimates at different speeds from reference-determined contacts and integration
instants, as shown in Figure 4.17.
Finally, these two intervals were merged, considering, for all the obtained curves, the
area under the 4 % SL error acceptability constraint. In this case, a general interval
between b = 0.3 rad/s and b = 0.52 rad/s was selected. The result is graphically
represented in Figure 4.18.

Fig. 4.15 Tuning performed over slow-speed dataset both with contacts defined from template-
based method and from reference system.
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Table 4.5 Performance evaluation with the sub-optimal beta values both for results from
template-based (TB) ICs and FCs detection method and for pressure insoles-based (PI)
method. All the results are proposed as median value ± IQR.

Sub-optimal Beta Speed Condition MAPE SV, % MAPE SL, %
value (rad/s)

0.076 8 km/h TB 4.12 ± 1.89 1.87 ± 1.77
0.100 8 km/h PI 3.98 ± 1.43 2.02 ± 1.22

Table 4.6 Performance evaluation with the sub-optimal beta values both for results from
template-based (TB) ICs and FCs detection method and for pressure insoles-based (PI)
method.All the results are proposed as median value ± IQR.

Sub-optimal Beta Speed Condition MAPE SV, % MAPE SL, %
value (rad/s)

0.076 10 km/h TB 2.98 ± 0.92 1.25 ± 0.75
0.100 10 km/h PI 2.44 ± 1.22 1.38 ± 0.88
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Fig. 4.16 Tuning performed over moderate-speed dataset both with contacts defined from
template-based method and from reference system.

Table 4.7 Performance evaluation with the sub-optimal beta values both for results from
template-based (TB) ICs and FCs detection method and for stereophotogrammetry-based
(SP) method. All the results are proposed as median value ± IQR.

Sub-optimal Beta Speed Condition MAPE SV, % MAPE SL, %
value (rad/s)

0.51 14 km/h TB 2.63 ± 1.52 2.53 ± 1.77
0.60 14 km/h SP 3.11 ± 1.27 2.59 ± 1.50
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Fig. 4.17 Different error distributions across various beta values for different speeds for
contacts and integration instants from reference systems. The vertical lines indicate the
boundaries within which the error distributions show no statistically significant difference
between speeds.
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Fig. 4.18 Percentage errors on SL across different b values for different speeds, hardware,
and ICs/FCs detection methods. This final figure shows the acceptance area under 4 %, as
well as the lower and upper bounds within which the estimates are not speed-dependent,
both for reference detection methods (SP, PI) and for TB. Additionally, the pink dashed
lines indicate the range between 0.3 rad/s and 0.52 rad/s, chosen as a general interval to be
proposed regardless of hardware, implemented methods, and speed.

As a general statement, it can be observed that the results in term of MAPE
over SL and SV are comparable to those obtained with the template-based method
(TB) and the parametric ZUPT detector method. It can be also observed that the
optimal beta value is always higher than the one chosen with the TB method (0.08
rad/s compared to 0.1 rad/s and 0.51 rad/s compared to 0.6 rad/s). This allowed
us to conclude that increasing the accuracy in selecting integration instants does
not affect the SL error but rather impacts the optimal b values. Therefore, it was
necessary to investigate why this occurs and whether it depends on the fact that the
reference-selected instant is characterized by an acceleration closer to zero.
Indeed, this could justify the choice of a higher b value, since increasing b gives
more weight to the correction based on the accelerometer and, if present, the magne-
tometer, at the expense of the estimation based on the gyroscope.
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First, the accelerometric norm was calculated for each trial at each speed. It was ob-
served that, in general, the integration instants selected by the TB method anticipate
those from the reference system by an average of 5 samples. An example is provided
in Figure 4.19.
Furthermore, it was observed that the accelerometric norm was not lower at the
reference-selected instant. However, it was found that the mean value of the ac-
celerometric norm was instead lower when considering the average between two
consecutive integration instants. The graphical result for a specific subject and trial
is shown in Figure 4.20.

Fig. 4.19 Accelerometric norm of a subject running at 14 km/h. This figure highlights the
differences in integration instant selection between the two methods.
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Fig. 4.20 Mean of accelerometric norm stride-by-stride for a subject running at 14 km/h.

4.1.3 Influence of Quaternion Initialization

Once a suitable range for estimating SL and SV across different running speeds,
hardware, and estimation methods was defined and proposed, the influence of stride-
by-stride re-initialization, as suggested by Valenti [17], at each zero velocity instant
(or integration instant) was analyzed. This analysis aimed to determine whether the
drift introduced by the gyroscope has a greater impact on estimation errors compared
to stride-by-stride re-initialization, where selecting integration instants close to zero
can be imprecise due to the dynamic nature of the movement. The following section
presents two examples: one where drift remains limited even without re-initialization
(Figure 4.21) and another where re-initialization is crucial for reducing drift (Figure
4.23).
In the first case, stride-by-stride quaternion re-initialization appears to worsen the
quaternion estimation throughout the trial, reducing its reproducibility and peri-
odicity, as observed in Figure 4.22. Conversely, when drift is high without re-
initialization, the stride-by-stride approach helps stabilize the estimates (Figure 4.24).
To assess whether re-initialization is optimal in both cases, the computed displace-
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ments with and without stride-by-stride re-initialization were compared to reference
displacements obtained from stereophotogrammetry. It was observed that, regardless
of whether re-initialization worsened the quaternion estimation or effectively reduced
drift, the estimation of displacement and step length (SL) improved (Figures 4.25
and 4.26). This led us to conclude that, in general, re-initialization enhances the
estimates. Therefore, for the remainder of the analysis, this technique was adopted
across all datasets and proposed methods.

Fig. 4.21 Quaternion evolution without re-initialization over an entire trial.
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Fig. 4.22 Quaternion evolution without re-initialization on the left, quaternion evolution with
re-initialization on the right.

Fig. 4.23 Quaternion evolution without re-initialization over an entire trial.

Fig. 4.24 Quaternion evolution without re-initialization on the left, quaternion evolution with
re-initialization on the right.
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Fig. 4.25 Displacements along the three axes computed with (continuous line) and without
(dashed line) reinitialization, compared to the reference (dotted line). Case where whole-trial
quaternions remain stable without reinitialization.

Fig. 4.26 Displacements along the three axes computed with (continuous line) and without
(dashed line) reinitialization, compared to the reference (dotted line). Case where whole-trial
quaternions has a drift without reinitialization.
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4.2 Stride Length and Stride Velocity Results using
the Proposed Framework

In the following sections, the results obtained from the framework implementation,
which automatically selects the optimal b parameter stride-by-stride without prior
tuning, are presented. The performance variations depending on the different imple-
mented objective functions (described in Section 3.3) and the number of optimized
variables is discussed below.

4.2.1 Cost Function Minimizing Stride-by-Stride Stride Length
and Stride Velocity Errors

In this section, the results obtained using the cost function that minimizes SL and
SV errors stride-by-stride are presented. Firstly, performance across the two datasets
was evaluated using a single optimization variable. These initial tuning steps were
carried out to assess the feasibility of the method and determine the best optimization
configuration. Specifically, the maximum number of iterations per stride was set
to 1000 and the number on multistart was set to 10, as increasing these values did
not lead to significant improvements but instead worsened performance in terms of
computational time. Once the optimization framework parameters were properly set
and the results were obtained in terms of SL and SV errors, the number of discarded
strides, and the computational time for a single optimization variable, the next step
was to investigate whether increasing the number of variables (by integrating the
sensor bias parameters) could further improve performance without excessively
deteriorating computational efficiency.

One Optimization Variable

Table 4.8 shows the results obtained across different datasets. Once it was confirmed
that the performance yielded significantly better results in terms of SV estimation and
comparable results for SL, the analysis was extended to ensure that the reduction in
errors did not lead to a deterioration of the physical output in terms of displacement
signal reconstruction. Additionally, the stride-by-stride distribution of beta values
was analyzed to assess whether all assumed beta values were admissible.



86 Results

Table 4.8 Performance evaluation across different datasets with the 1 optimized variable
framework proposed. All the results are proposed as median value ± IQR.

Dataset MAPE SV MAPE SL Number of Unreliable Computation time
(%) (%) strides strides (%) for 1 stride (s)

8 km/h 0.8±0.6 2.6±2.4 16911 0 0.3±0.1
10 km/h 0.8±0.4 3.6±4.3 15372 0 0.3±0.1
14 km/h 0.8±0.3 1.6±0.5 21430 0 0.3±0.1

Slow-Speed Dataset

Figures 4.27 and 4.28 show the occurrences of beta across the entire low-speed
dataset and the distribution of beta for each subject. It can be observed that the
majority of beta values fall within the range of 0–0.1 rad/s. The distribution de-
creases progressively but increases again in the 0.9–1 rad/s range. The analysis of the
admissibility of the strides in this range is presented in Section 4.2.2. Furthermore,
it can be observed that the distribution of the governing parameter is homogeneous
across different subjects.
On the other hand, Figures 4.29 and 4.30 show the differences in error distributions
between the pipeline that uses a single beta value and the pipeline with the frame-
work. It can be observed that, for both metrics, lower errors are achieved with the
framework, while the standard deviation associated with errors in the stride-by-stride
optimization method remains high but constant.
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Fig. 4.27 Occurrences of stride-by-stride beta values for the entire slow-speed dataset.

Fig. 4.28 Beta Distribution for each subject of the slow-speed dataset.
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Fig. 4.29 The left graph shows the distributions of SL errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

Fig. 4.30 The left graph shows the distributions of SV errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

Moderate-Speed Dataset

As for the Slow-Speed Dataset, the occurrences of beta across the Moderate-Speed
dataset and the distributions divided for subject are reported in Figures 4.31 and 4.32.
In this case, the distribution of b values reaches its peak within the range of 0.3 to
0.4 rad/s. Similarly, an increase in occurrences is also observed in the 0.9 to 1 rad/s
range.
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Regarding the error distributions shown in Figures 4.33 and 4.34, this dataset also
exhibits lower errors for both metrics, with contained standard deviations.

Fig. 4.31 Occurrences of stride-by-stride beta values for the enire moderate-speed dataset.
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Fig. 4.32 Beta Distribution for each subject of the moderate-speed dataset.

Fig. 4.33 The left graph shows the distributions of SL errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.
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Fig. 4.34 The left graph shows the distributions of SV errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

Seven Optimization Variables

Table 4.9 shows the results obtained across different datasets with seven different
optimization variables. A comparison with Table 4.8 reveals that the results on
the low-speed dataset lead to a significant improvement in SL, reducing the error
by 1.7% for running at 8 km/h and 2.7% for running at 10 km/h. At 14 km/h, the
error remains comparable between the optimization with one and seven variables.
However, this comes at the cost of a significant deterioration in computational
performance, reaching up to one second of processing time per single stride.

Table 4.9 Performance evaluation across different datasets with the 7 optimized variables
framework proposed. All the results are proposed as median value ± IQR.

Dataset MAPE SV MAPE SL Number of Unreliable Computation time
(%) (%) strides strides (%) for 1 stride (s)

8 km/h 0.2±0.1 0.9±0.4 16911 0 1.18±0.12
10 km/h 0.3±0.1 0.9±0.3 15372 0 1.18±0.12
14 km/h 0.2±0.3 1.5±0.4 21430 1 0.96±0.05



92 Results

Slow-Speed Dataset

Figures 4.35 and 4.36 show the occurrences of beta values across the entire low-
speed dataset and the distribution of beta for each subject. It can be observed that
the majority of beta values fall within the range of 0–0.1 rad/s. The distribution
decreases progressively but increases again in the 0.9–1 rad/s range, reaching almost
the same number of occurrences of the range 0-0.1 rad/s. Furthermore, it can be
observed that the distribution of the governing parameter is homogeneous across
different subjects.
A further analysis was conducted on the six other variables to assess whether their
variations influence the estimates. Figures 4.37 and 4.38 illustrate their distribution
across subjects. It can be observed that the accelerometer bias (Figure 4.38) is
influential, as it is evenly distributed across subjects over the entire admissibility
range, which was defined a priori based on the observation of static acceleration
after gravity removal. In contrast, the gyroscope bias (Figure 4.37) is less evenly
distributed within the admissibility range.
On the other hand, Figures 4.39 and 4.40 show the differences in error distributions
between the pipeline that uses a single beta value and the pipeline with the framework.
It can be observed that, for both metrics, lower errors are achieved with the framework
together with lower standard deviations, ensuring more accurate estimates.

Fig. 4.35 Occurrences of stride-by-stride beta values for the entire slow-speed dataset.



4.2 Stride Length and Stride Velocity Results using the Proposed Framework 93

Fig. 4.36 Beta Distribution for each subject of the slow-speed dataset.
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Fig. 4.37 Gyroscope bias distributions across subjects for the whole slow-speed dataset.

Fig. 4.38 Accelerometer bias distributions across subjects for the whole slow-speed dataset.
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Fig. 4.39 The left graph shows the distributions of SL errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

Fig. 4.40 The left graph shows the distributions of SV errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

Moderate-Speed Dataset

As for the Slow-Speed Dataset, the occurrences of beta across the Moderate-Speed
dataset and the distributions divided for subject are reported in Figures 4.31 and 4.32.
In this case, the distribution of b values reaches its peak within the range of 0.3 to
0.5 rad/s. Similarly, an increase in occurrences is also observed in the 0.9 to 1 rad/s
range.
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The analysis conducted on the six additional variables to be optimized confirms
that, even for this dataset, the accelerometer bias has a greater influence than the
gyroscope bias.
Also in this case, it can be observed that the errors on SL and SV are lower than
those obtained with the single beta, characterized by contained and stable standard
deviations.

Fig. 4.41 Occurrences of stride-by-stride beta values for the entire moderate-speed dataset.
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Fig. 4.42 Beta Distribution for each subject of the moderate-speed dataset.

Fig. 4.43 Gyroscope bias distributions across subjects for the whole moderate-speed dataset.
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Fig. 4.44 Accelerometer bias distributions across subjects for the whole moderate-speed
dataset.

Fig. 4.45 The left graph shows the distributions of SL errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.
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Fig. 4.46 The left graph shows the distributions of SV errors as a function of beta when
using a single beta value across the entire dataset, while the right graph illustrates the error
distribution as a function of beta when using the framework.

4.2.2 Admissibility of Strides When b Reaches its Upper or
Lower Bound

This section presents the results of the exploratory analysis aimed at verifying that,
although the b values associated with each stride vary significantly, the biomechan-
ical meaning of the reconstructed displacement remains unaffected. Specifically,
the analysis focuses on the two extreme cases of the governing parameter: 0 rad/s
and 1 rad/s. Figures 4.47 and 4.49 show some specific strides over a single subject,
highlighting some strides were beta=1 rad/s and 0 rad/s.
In general, it is observed that for extreme b values, the AP component of the signal
closely matches the displacement obtained from the reference. However, the ML
and V components exhibit significant errors, both in comparison to the reference and
to the results obtained with a single b . In particular, the medio-lateral component
appears to be forced into two waveform patterns that differ significantly from the
correct ones.
In general, however, the errors obtained with the selected b values (1 rad/s for Figure
4.48 and 0 rad/s for Figure 4.50) are minimal within the framework, particularly at
critical strides, compared to the corresponding results obtained with a single b .
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Fig. 4.47 Displacement along the three axes, obtained from the SP reference (continuous
line), the calculation with a single b (dotted line), and the framework (dashed line), for a
specific trial of a single subject running at 14 km/h. This plot highlights strides where the b
value is equal to 1 rad/s.

Fig. 4.48 Mean Errors computed on a specific trial for the same subject considered in Figure
4.47. This figure highlights the significant errors reduction when the chosen b value is 1
rad/s.
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Fig. 4.49 Displacement along the three axes, obtained from the SP reference (continuous
line), the calculation with a single b (dotted line), and the framework (dashed line), for a
specific trial of a single subject running at 14 km/h. This plot highlights a stride where the b
value is equal to 0 rad/s.

Fig. 4.50 Mean Errors computed on a specific trial for the same subject considered in Figure
4.49. This figure highlights the significant errors reduction when the chosen b value is 0
rad/s.
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4.2.3 Cost Functioin Exploiting Biomechanical Constraints

The results obtained from the tests conducted on both datasets are presented below,
using the framework with one and seven variables. In this case, the objective
function is independent from the gold standard measurements and instead relies
on biomechanical constraints specific to running motion, as explained in Section
3.3.2. Tables 4.10 and 4.11 present the results obtained from tests conducted on
both datasets using the framework with one and seven variables, respectively. In
general, the errors observed in the slow-speed dataset are quite acceptable for SV,
while they increase up to 5.5% for SL. Conversely, for the moderate-speed dataset,
the error exceeds 4% for both parameters. Although these results are worse than
the best ones obtained with a single beta value, they highlight a potential margin for
improvement in the method. This is because these tests are preliminary and do not
include validation steps or alternative evaluations of the objective function.
Figures 4.51, 4.52, 4.53 and 4.54 show errors distribution for each dataset and
framework without gold standard proposed.

Table 4.10 Performance evaluation across different datasets with the one optimized variable
framework proposed. All the results are proposed as median value ± IQR.

Dataset MAPE SV MAPE SL Number of Unreliable Computation time
(%) (%) strides strides (%) for 1 stride (s)

8 km/h 1.9±2.4 5.1±6.5 16911 0 0.13±0.03
10 km/h 1.8±2.3 5.0±6.5 15372 0.03 0.13±0.03
14 km/h 4.0±1.6 4.7±2.2 21430 0 0.22±0.01

Table 4.11 Performance evaluation across different datasets with the 7 optimized variables
framework proposed. All the results are proposed as median value ± IQR.

Dataset MAPE SV MAPE SL Number of Unreliable Computation time
(%) (%) strides strides (%) for 1 stride (s)

8 km/h 1.1±0.9 3.7±3.1 16911 0 0.65±0.21
10 km/h 1.9±1.4 5.4±3.4 15372 0 0.65±0.21
14 km/h 4.1±1.7 4.9±2.2 21430 1 0.38±0.10
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Fig. 4.51 This figure shows the error distributions obtained for SL using a single beta across
the entire slow-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right) when the objective function does not involve reference
measurements.

Fig. 4.52 This figure shows the error distributions obtained for SV using a single beta across
the entire slow-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right) when the objective function does not involve reference
measurements.
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Fig. 4.53 This figure shows the error distributions obtained for SL using a single beta across
the entire moderate-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right) when the objective function does not involve reference
measurements.

Fig. 4.54 This figure shows the error distributions obtained for SV using a single beta across
the entire moderate-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right) when the objective function does not involve reference
measurements.
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Discussion

This chapter discusses the results obtained during the development of the thesis,
which were presented in Chapter 4. First, the results related to the tuning of the pa-
rameter characterizing the Madgwick algorithm will be analyzed, aiming to propose
a single optimal value for both datasets under study and a range within which the
results are speed, method, and hardware independent.
Subsequently, the results concerning the implemented optimization framework will
be discussed, with the ultimate goal of proposing a new method for estimating
spatio-temporal parameters that is fully automatic and does not require prior tuning.

5.1 Influence of Different Sensor Fusion Algorithms
over Stride Length and Stride Velocity Estimates

Initially, the influence of different sensor fusion algorithms on SL and SV estimations
was evaluated. This was done by tuning the key parameters of each algorithm
across both datasets (as shown in Figures 4.1, 4.2, 4.3, and 4.4 for the slow-speed
dataset, and Figures 4.7, 4.8, 4.9, and 4.10 for the moderate-speed dataset). The
results showed that only the algorithm implemented by Madgwick [16] achieved a
percentage error below 4 % for both metrics and across all datasets, within a very
narrow range of values.
Furthermore, Madgwick’s algorithm is the only one with a single parameter to be
set, which represents an additional advantage. The presence of a single governing
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parameter enhances the interpretability of the algorithm and simplifies the tuning
process.
However, as observed in Figures 4.5, 4.6, 4.11, and 4.12, the Madgwick algorithm,
similarly to all other tested algorithms (except for Valenti’s), is highly sensitive to
parameter selection, significantly affecting the estimations and, consequently, the
errors. The influence of parameter variation was demonstrated by performing a
statistical test on the distributions of SL and SV across different parameter values.
Specifically, the Kruskal-Wallis test was used, as the obtained distributions were not
normally distributed.
The results obtained led to the conclusion that, although MAD is highly sensitive
to parameter selection, resulting in errors ranging from approximately 2% to a
worst-case value of around 7% for SL, and from 3% up to about 13% in the worst-
case scenario for SV, its ease of parameter tuning, combined with the lower errors
compared to the other tested algorithms, makes it the most suitable choice for the
application under study.
The Valenti algorithm was discarded because, despite its low sensitivity to parameter
variation, it exhibited significantly higher errors than MAD and the other tested
algorithms.
Once it was determined that MAD was the most suitable algorithm for orientation
estimation in running applications, the optimal values were selected for each dataset.
Subsequently, a sub-optimal trade-off value was chosen to ensure errors remained
below 4% for each dataset. The results obtained are acceptable in terms of percentage
error and allow for an accurate reconstruction of the foot trajectory, as observed in
the various plots depicting the reconstructed three-dimensional displacement of the
foot in Figures 4.25 and 4.26.
In addition to the analyses conducted using a single beta value for all the datasets
under examination, the study was extended to propose a range of values that could
be adapted to different speeds, hardware, and conditions. To this end, the tuning
results from both datasets were combined, using the proposed method, which defines
the initial instants with the TB method and the integration intervals with ZUPT, as
well as the contact instants provided by the reference system (SP and PI), in order to
minimize error propagation.
From the intersection of the obtained curves (Figures 4.13 and 4.17), two distinct
intervals are identified, both yielding stride length errors below 4% and showing
no speed dependency: 0.29–0.34 rad/s for the state-of-the-art pipeline and 0.5–0.65
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rad/s for the pipeline implemented based on the reference intervals. By combining
these six curves (Figure 4.18), an acceptability range (SL error below 4%) is obtained,
spanning from 0.3 to 0.52 rad/s.

5.2 Performance of the Implemented Optimization
Framework

Since the first part of the analysis confirmed that the proposed interval remains very
narrow, given the significant influence of speed, conditions, and hardware on the
estimates, and that a single parameter for an entire dataset may be insufficient due to
the high variability of magneto-inertial signals, an alternative approach was consid-
ered. Specifically, a method was introduced to automatically select the parameter
stride by stride, eliminating the need for specific tuning (dependent on reference
measurements) and reducing dependency on speed and hardware.
A former analysis with the aim of verifying the feasibility of the method was con-
ducted using firslty one only variable to optimize (the value of the b parameter)
and then seven optimization variables with an objective function minimizing the
errors over SL and SV. Naturally, this represents an optimal yet impractical condition,
as the ultimate goal is to obtain accurate parameter estimates without relying on
reference measurements. However, it is important to highlight that this approach
introduces an innovative method, making feasibility verification a crucial step.
Results shown in Tables 4.8 and 4.9 and in Figures 5.1, 5.3, 5.2 and 5.4 demonstrate
how the introduction of an optimization framework generally improve all the esti-
mates. In particular, it was observed that for the slow-speed dataset, the estimates
further improved when using a seven-variable framework (from 2.6 % at 8 km/h and
3.6 % at 10 km/h over SL to 0.9 % and from 0.8 % over SV for both speeds to 0.3
%). Conversely, for the moderate-speed dataset, introducing additional variables had
no effect other than further increasing computational time.
However, those promising results refer only to error metrics. Therefore, the 3D
foot displacement signal output was also considered to verify the reliability of the
reconstruction. Indeed, as shown in Figures 4.27, 4.28, 4.31, 4.32, 4.35, 4.36, 4.41
and 4.42, the distribution of beta values appears homogeneous across subjects but is
also widely spread across all admissible beta values.
As previously explained in Section 4.2.2, the signal reconstruction is generally ac-
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curate for any chosen beta value, except in some cases where the anteroposterior
component is highly precise, but the mediolateral and vertical components are in-
correct. This mainly occurs because the objective function minimizes only errors,
completely neglecting constraints related to the other components.
Finally, a preliminary test of the implemented framework with an objective function
independent of reference measurements was conducted on both datasets, as this rep-
resents the final pipeline form to be proposed. The results, presented in Tables 4.10
and 4.11 and Figures 4.51,4.52, 4.53, and 4.54, show that, in general, the obtained
errors are higher than those obtained using a single beta value for the entire dataset
but remain comparable. These results should, of course, be considered as preliminary
and require further improvements and refinements.

Fig. 5.1 This figure shows the error distributions obtained for SL using a single beta across
the entire slow-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right).

Fig. 5.2 This figure shows the error distributions obtained for SV using a single beta across
the entire slow-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right).
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Fig. 5.3 This figure shows the error distributions obtained for SL using a single beta across
the entire moderate-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right).

Fig. 5.4 This figure shows the error distributions obtained for SV using a single beta across
the entire moderate-speed dataset (on the left) and with the framework with 1 variable (in the
center) and 7 variables (on the right).

5.3 Final Comparison between State-of-The-Art Op-
timized Pipeline and Implemented Optimization
Framework

At the conclusion of this work, it is essential to summarize the results obtained and
discuss their implications to assess the validity of the method and potential future
developments.
In the first part of the thesis, the effects of different orientation estimation algorithms
on the spatiotemporal parameters of running were analyzed. Among the proposed
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algorithms, MAD was identified as the most appropriate, as it not only delivers the
best performance but also requires the definition of only one parameter. However, an
incorrect setting of this parameter can lead to a significant increase in error, ranging
from a minimum of approximately 2% to a maximum of 8%. This aspect is partic-
ularly critical, as selecting the optimal parameter value is a complex process and
computationally expensive. Moreover, even when correctly chosen, the parameter
was found to be speed-, hardware-, and method-dependent, making it difficult to
define a universal value or range that could be used by third parties without the need
for fine-tuning.
To address this limitation, the second phase of the thesis focused on introducing an
innovative method capable of determining the parameter value stride-by-stride, mak-
ing it independent of speed, hardware, and method, while also eliminating the need
for an initial tuning phase. This approach yielded more accurate results, as shown in
Tables 5.1, 5.2, and 5.3. In general, the best results were obtained by applying the
seven-variable framework to both datasets. For this reason, this implementation is
proposed as the most suitable for future developments.
However, one of the main limitations of the method is its computational cost. Specif-
ically, computation time increases by approximately 15 times with the one-variable
implementation and further triples with the seven-variable framework (Table 5.4).
Although this increase is significant, it is important to note that the comparison
does not take into account the fine-tuning phase required in the single-parameter b
configuration. This phase is particularly lengthy and computationally expensive, as
it requires multiple tests across the entire dataset to determine the optimal parameter
value.
Moreover, regarding the implemented framework that does not rely on any reference
data, the results can be considered promising. Not only is this a preliminary outcome,
but it is also the only method among those presented that does not use reference mea-
surements to select the parameter to be applied. In this case, the b values are chosen
beforehand, and the reference measurements are used exclusively for computing the
performance metrics.
Finally, Figure 5.5 provides a graphical comparison of the implemented and selected
methods. Once again, it is evident that the 3D displacement reconstruction based
on the framework sometimes introduces distortions in the medio-lateral (ML) and
vertical (V) components of the signal. This issue highlights another key aspect that
should be addressed in future developments of the method.
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Table 5.1 Overall results for 8 km/h trials. All the results are proposed as mean value ± IQR.

Optimal b value b trade-off Framework 1v (GS) Framework 7v (GS) Framework 1v (no GS) Framework 7v (no GS)

MAPE SL (%) 1.9 ± 1.8 3.0 ± 1.4 2.6 ± 2.4 0.9 ± 0.3 5.1 ± 6.5 3.7±3.1
MAPE SV (%) 4.1 ± 1.9 7.1 ± 3.6 0.8 ± 0.6 0.2 ± 0.1 1.9 ± 2.4 1.1±0.9

Table 5.2 Overall results for 10 km/h trials. All the results are proposed as mean value ±
IQR.

Optimal b value b trade-off Framework 1v (GS) Framework 7v (GS) Framework 1v (no GS) Framework 7v (no GS)

MAPE SL (%) 1.2 ± 0.7 2.6 ± 1.4 3.6 ± 4.3 0.9 ± 0.3 5.0±6.5 5.4±3.4
MAPE SV (%) 3.0 ± 0.9 2.5 ± 1.7 0.8 ± 0.4 0.3 ± 0.1 1.8±2.3 1.9±1.4

Table 5.3 Overall results for 14 km/h trials. All the results are proposed as mean value ±
IQR.

Optimal b value b trade-off Framework 1v (GS) Framework 7v (GS) Framework 1v (no GS) Framework 7v (no GS)

MAPE SL (%) 2.5 ± 1.8 3.2 ± 1.5 1.6 ± 1.1 1.5 ± 0.5 4.7±2.2 5.3 ± 2.5
MAPE SV (%) 2.6 ± 1.5 2.8 ± 2.1 0.8 ± 1.0 0.2 ± 0.1 4.0±1.6 4.7 ± 2.3

Fig. 5.5 Feasibility analysis of the implemented methods. Visual comparison of the recon-
structed three-dimensional trajectory of the foot. The reconstruction from stereophotogram-
metry is shown with a solid line, the reconstruction using a single beta with a dashed line, the
reconstruction with the implemented framework using 7 variables and an objective function
leveraging biomechanical constraints with a starred line, and the same framework with an
objective function minimizing errors with a dotted line.
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Dataset Computation time for 1 stride (s)

Unique beta value Framework 1v Framework 7vs

8 km/h 0.020±0.001 0.300±0.100 1.180±0.120

10 km/h 0.020±0.001 0.300±0.100 1.180±0.120

14 km/h 0.020±0.001 0.300±0.100 0.960±0.005

Table 5.4 Comparison of different computation times referring to the optimization of a single
stride.
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Conclusions

The aim of this thesis was twofold. Firstly, to investigate whether it was possible to
reduce errors in the computation of spatio-temporal parameters in running analysis
by improving a state-of-the-art pipeline used to estimate foot displacement from
MIMUs signals. This was achieved by selecting the optimal sensor fusion algorithm
for orientation estimation and properly tuning it across different datasets. This step
led to stride length estimation errors of 1.6% and 2.5%, and stride velocity errors of
3.5% and 2.6% for the slow-speed and moderate-speed datasets, respectively.
Secondly, an alternative method was explored to further improve these estimates.
This was accomplished by implementing an optimization framework capable of
defining the optimal governing parameters of the chosen sensor fusion algorithm
(Madgwick et al. [16]) stride-by-stride, eliminating the need for a prior tuning phase.
This novel approach showed promising results, achieving errors of 0.9% and 1.5%
for stride length and 0.3% and 0.2% for stride velocity. However, these results
were obtained using reference parameters derived from stereophotogrammetry and
pressure insoles.
Further tests conducted without reference parameters yielded acceptable errors (equal
to or below 6%), though there is still room for improvement. Future work should
focus on refining the objective function by incorporating biomechanical constraints to
develop a final method for running analysis that is personalized, speed-independent,
and hardware-independent.
Moreover, to ensure the accurate reconstruction of the 3D displacement signal of the
foot, it would be appropriate to include the medio-lateral and vertical components
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within the objective function. This would allow for a precise reconstruction not only
of the anteroposterior component but of the entire displacement signal.
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Appendix A

Preliminary results of running
analysis in running-related sports:
insights from instrumented softball
players

The primary objective of extending the optimized pipelines developed in the thesis
project is to broaden their application beyond level running in standardized environ-
ments with gold-standard references.
The aim would be to study not only level running in standardized environments, but
also non-constrained settings for different applications, such as analysis during run-
ning competitions for elite and amateur runners and analysis in other running-related
sports.
A preliminary running analysis on softball players has been conducted concurrently
with the development of the optimization framework presented in Chapter 3 and is
briefly discussed below.

A.1 Dataset presentation

Several training sessions of the University of Washington’s softball team (Washington
Huskies) and a full game were recorded with inertial sensors placed on the dorsum



122
Preliminary results of running analysis in running-related sports: insights from

instrumented softball players

of the shoes and on the lower back along with X-sensors in-shoes pressures sensors
with a sampling frequency of 100 Hz [67]. Between 1 and 4 players were equipped
with sensors in each session. The placement of the sensors is depicted in Figures A.1
and A.2.
The inertial units used are OPAL MIMUs sensors, with an accelerometer range of
±16g, gyroscope range up to ±2000◦/s, a magnetometer range of ±8Gauss, and a
sampling frequency of 250 Hz [68].
Furthermore, every session was filmed with GoPro cameras (sampling rate of 30 Hz),
positioned above home plate, first base and third base. The view from the camera
above the home plate is shown in Figure A.3.

Fig. A.1 MIMUs placement on shoes dorsum, under the white tape; the black support refers
to the pressure insole system.

Fig. A.2 MIMU placement on the lower back, under the white tape.
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Fig. A.3 Home plate view from the camera used to record the analyzed session.

A.2 Analysis

Before proceeding with the gestures analysis of interest, it was necessary to synchro-
nize the videos with the signals obtained from OPAL.
Specifically, each subject was ordered to spin around their vertical axis (performing
one or more rotations depending on the session) following and preceding a standing
phase; this movements combination is easily identifiable on the gyroscope signal
(Figure A.4). Once the sequence was located on the signal, the starting point of the
video could be accurately aligned with the signal.
After temporally synchronizing the video and signal, the analysis of the running
trials could commence.
The gestures in the segmented videos were different between them, covering each
stage of the game; some involved hitting the ball, some running from one base to
another and others the rescue of the ball from the players in defense position.
For the thesis project, this preliminary analysis focuses exclusively on the runs
between different bases. For clarity, Figure A.5 provides a schematic representation
of a softball field, highlighting the locations of the bases.
The analysis was conducted using the grid search method optimized pipeline pre-
sented in Chapter 3. As a consequence of the observations conducted in this work,
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the selected SFA for orientation estimation is MAD [16], with a b value of 0.51 rad/s.
The choice of the same b value as that of the dataset at 14 km/h was dictated by
the fact that the speed reached during the softball game is higher than the velocities
analyzed in the datasets of this thesis. We selected the b value that optimized SL
estimates in the dataset with the highest speed, rather than a trade-off value.
Furthermore, after verifying the absence of ferromagnetic disturbances in the signals,
it is important to note that, unlike the dataset at 14 km/h, the magnetometer was used
to determine the orientation of the sensor.

Fig. A.4 Spin detection on the gyroscope signal of a subject for a session; the spin is located
between two short standing phases and is characterized by a major prominence in rotation
around the vertical axis.

A.3 Results and Discussion

Nine trials were analyzed: three involved running from home plate to first base,
while six focused on running from first base to second base. For each trial, strides
from both feet were considered, resulting in a total of 116 strides analyzed.
Each trial was processed to calculate velocity and displacement estimates stride by
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Fig. A.5 Schematic representation of positionings and players in the softball games, from
Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Softball_Diagram_
with_Players_Placement.svg).

stride in every direction (AP, ML,V). Furthermore, we calculated Stride Lengths
and Stride Velocities as presented in Section 2.5; however, the absence of reference
measurements made it impossible to computate error metrics.
Nevertheless, the use of videos as a reference enabled a qualitative evaluation of
velocities and displacements for each trial.
Generally, each run between two bases is characterized by an initial phase of acceler-
ation followed by a deceleration phase near the approaching base. This results in
an increase in speed, followed by a rapid decrease; the same pattern is observed for
stride lengths (SLs) [69].
All analyzed trials confirmed this trend for both velocity and displacement recon-
structions in the direction of progression. Results for a trial on the left foot are shown
in Figures A.6 and A.7.
These results, though preliminary, show that running analysis can be interestingly
used also in running-related sports. Signals from MIMUs can be used also for other
analysis and this can be an important application, both for elite and amateur players.

https://commons.wikimedia.org/wiki/File:Softball_Diagram_with_Players_Placement.svg
https://commons.wikimedia.org/wiki/File:Softball_Diagram_with_Players_Placement.svg
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Fig. A.6 Velocity Estimates for a trial, left foot; defined by 6 strides. The trend line (green
line) shows that the SV increases to a peak and then decreases.



A.3 Results and Discussion 127

Fig. A.7 Displacement Estimates for a trial, left foot; defined by 6 strides. The trend line
(green line) shows that the SL increases to a peak and then decreases.


