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"Insanity is doing the same thing over and over again
and expecting different results."

Commonly attributed to Albert Einstein



Chapter 1

Introduction

This section is designed to provide readers with the foundational knowledge neces-
sary to fully comprehend the problem addressed in this thesis work and the system
developed to solve it. Starting with a medical overview of the key themes involved,
it proceeds with a description of the physiological signals utilized. Finally, it con-
cludes with a general explanation of machine learning and deep learning techniques,
with a particular emphasis on the systems used in the presented solution.

1.1 Nervous System

The nervous system is one of the most complex and developed systems within the
human body, playing a crucial role in the acquisition, transmission, and processing
of all endogenous and exogenous stimuli[27].

In humans, it is primarily divided into the Central Nervous System (CNS), re-
sponsible for processing and interpreting sensory information, and the Peripheral
Nervous System (PNS), which serves as the communication lines that carry signals
between the CNS and the rest of the body. The CNS is divided into an anterior
part, the brain, and a posterior part, the spinal cord. The PNS is mainly composed
by nerves, anatomical structures formed by long fibers called axons with a terminal
part called dendrites; they are divided in cranial and spinal nerves and create an
interconnected network that links the body periphery with its central parts[28].

Figure 1.1: Nervous System anatomy. Source:www.my.clevelandclinic.org.
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The PNS is further divided into the somatic nervous system, which controls vol-
untary movements and sensory input, and the autonomic nervous system, which
regulates and controls involuntary body functions. To better cope with the overall
complexity and diversity, the autonomic system is composed of two complemen-
tary branches: the sympathetic and parasympathetic systems. These systems are
the result of the evolutionary mechanism of the fight-or-flight response, with the
sympathetic part preparing the body to react to imminent danger by increasing
readiness and activity levels, and the parasympathetic one focusing on conserving
resources, restoring and maintaining normal activity levels. [11, 10, 21]. A summary
diagram is shown in Figure 1.2.

As previously mentioned, nerves are essential for signal transmission within the
body. They are divided into afferent sensory nerves, which transport sensory infor-
mation from the periphery to the central nervous system, and efferent motor nerves,
which convey movement commands from the brain and spinal cord to the periphery
[29]. Interneurons, the last key category of neurons, are responsible for integrat-
ing and processing information between sensory and motor neurons, playing critical
roles in reflexes and more complex neural functions [26].

Relatively to epilepsy, the main nerve involved is the vagus nerve, one of the
most complex cranial nerves that is represented in figure 1.3. It runs from the
brainstem to the abdomen, passing through the neck and chest. It is a mixed

Figure 1.2: Nervous System diagram.
Source: https://commons.wikimedia.org/wiki/File:NSdiagram.png.
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nerve, containing both sensory and motor fibers, with parasympathetic functions.
The vagus nerve contains two sensory ganglia, the superior and inferior ganglia,
from which many different branches originate, each controlling various functions.
Among these branches is the cardiac branch, which plays a crucial role in regulating
and slowing the heart rate. As will be covered in a later section, this nerve is
fundamental for certain cardiac variations that can be used to predict an imminent
epileptic seizure[9].

Figure 1.3: Anatomy of the parasympathetic innervation.
Source: https://me-pedia.org/wiki/Vagus_nerve.

The CNS is composed of the brain and the spinal cord, as previously mentioned.
While the spinal cord, which consists of a mix of gray and white matter, serves
as a major signal pathway and plays a role in reflex responses (e.g withdrawal
reflex) [8], most information processing, storage and the management of cognitive
and emotional functions are controlled by the brain.
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The brain is composed of the cerebrum, cerebellum, and brainstem, each with
its own specific function.

• Cerebrum: makes up most of the brain volume and is divided into the right
and left hemispheres, which are interconnected by the corpus callosum. It
manages higher-level functions such as sensory interpretation, speech, motor
control and reasoning.

• Cerebellum: is located below the cerebrum and is involved in learning and
coordinating muscle activity and maintaining balance.

• Brainstem: acts as a mediator between the upper regions of the brain and
the spinal cord and is responsible for regulating many automatic functions
such as breathing, heart rate, body temperature and sleep-wake cycles.

The two sides of the cerebrum exhibit a contralateral approach to controlling
the body, meaning the left hemisphere controls the right side of the body, and
vice versa. This peculiarity provides important clues in cases of neurological issues,
as the patient’s symptoms reflect the location of the injury or lesion. To better
describe its complex structure, the cerebrum is divided into four lobes: frontal,
temporal, parietal and occipital. Each of these lobes is further divided into specific
functional areas, where there is a coherence between the functions managed by that
particular zone. However, no area or lobe operates independently; they are all deeply
interconnected through physical, temporal, and functional connectivity.

Figure 1.4: Brain functional map.
Source: https://en.wikipedia.org/wiki/Human_brain.

Independently of the lobe and areas, the cerebrum is primarily composed of
gray and white matter. Gray matter mainly consists of dendrites, somas, glial cells
and capillaries, forming the outer part of the cerebrum known as the cortex. The
gray matter is connected to the white matter, located deeper within the cerebrum
via cortical columns, with each layer of the cortex having its own function. White
matter is primarily composed of myelinated axons, glial cells and blood vessels.
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1.2 Epilepsy
Epilepsy is an umbrella term that comprises a broad group of chronic, non-communicable
disorders with diverse etiologies, presentations and outcomes [33]. They all share
a common origin in surges of hypersynchronized electrical activity involving part
or the entirety of the brain, causing a range of effects on the patient ranging from
brief absences to tonic-clonic seizures involving the whole body. With 50 million
people worldwide having epilepsy, it is one of the most common neurological dis-
eases globally, with one-third of patients having drug and surgery-resistant seizures.
Each year, 5 million new diagnoses are made, with an uneven distribution mainly
affecting children and people over 65 years old [23, 16].

1.2.1 Diagnoses and consequences

It is important to note that having a seizure does not automatically translate into
an epilepsy diagnosis, as epilepsy is diagnosed if a patient experiences more than one
unprovoked seizure separated by at least 24 hours [34]. Various factors, including
genetics, brain injuries and developmental disorders, can contribute to the onset of
epilepsy.

Seizures can lead to various complications: the most immediate are related to
trauma, drowning, suffocation and direct consequences of uncontrolled seizures in
an hazardous environment. Additionally, there are consequences for sleep quality,
memory and it can cause emotional issues that may lead to anxiety, depression and
suicidal thoughts. Finally, less common complications include status epilepticus,
a condition in which a seizure lasts more than 5 minutes or is characterized by
multiple successive seizures without the patient regaining full consciousness. In
this case, immediate medical assistance is required to avoid or reduce the risk of
permanent brain damage and death. Another uncommon but serious condition is
sudden unexpected death in epilepsy (SUDEP), a completely unexpected and still
unexplained death that occurs in some cases, possibly due to cardiac or respiratory
conditions. Because of this, the risk of premature death for a person with epilepsy
is three times higher than for the general population.

The condition can significantly impact the quality of life of affected individuals,
as seizures are usually unpredictable and leave the patient disoriented when they end.
Due to the severity of some cases, the diagnosis can also lead to the revocation of
driving privileges and other safety-related restrictions, further impacting the quality
of life of patients with this diagnosis.

1.2.2 Classification

The standard reference guidelines for diagnosing epilepsy are provided by the Inter-
national League Against Epilepsy and were reviewed in 2017. There are now three
diagnostic levels to include in the diagnosis: seizure type, epilepsy type and epilepsy
syndrome, with an emphasis on considering etiology and comorbidities at each level
[33].The complete diagram is shown in Figure 1.5, and each point is explained be-
low[22]:
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Figure 1.5: Epilepsy classification diagram.
Source: https://onlinelibrary.wiley.com/doi/10.1111/epi.13709.

• Seizure type: This is the starting point, based on the assumption that the
clinician has already formulated the epilepsy diagnosis and is now trying to
classify it with more precision. Seizures can be classified as focal, where
everything starts from a specific zone in the brain and the symptoms reflect
the affected area; generalized, where the whole brain is involved from the
start of the seizure; or unknown, when there are no clear clues about the
origin of the seizures. Without further information from EEG, video, and
other analyses, this might be the only achievable level of classification.

• Epilepsy type: This classification is based on the analysis of EEG, focusing
on the presence of specific waveforms (such as spike-wave) and their physical
extent in the brain. It is also based on patient symptoms, forming a clinical
basis for the diagnosis.

• Epilepsy syndrome: This refers to a cluster of features that include seizure
types, EEG and imaging characteristics, which usually appear together. It can
also include seizure triggers, diurnal variation, prognosis, and comorbidities,
such as functional impairments, commonly reflected in EEG and other study
results.

As clearly shown in Figure 1.5, there are many possible causes behind epilepsy,
reflecting the complexity of this disorder. It should be noted that while many cases
may have a genetic cause or result from trauma that alters brain structure, many
diagnoses still lack a clear origin (between 30-40%), leaving their etiology unknown.
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1.2.3 Treatment

The majority of epilepsy patients can be treated to achieve a seizure-free life, and in
some cases, complete remission is possible. The first approach involves personalized
medicine. There are many different anti-seizure medications (e.g., Carbamazepine,
Levetiracetam, Valproate), with the right combination that has to be tailored to
each patient. Nonetheless, about one-third of patients will not be able to control
the disease with drugs alone. Another viable solution is surgery, where the aim
is to modify the part of the brain causing the problem and its connections (e.g.
resective surgery, laser ablation). However, the risks associated with such operations,
issues of accessibility and the possible lack of an epileptogenic focus mean that
surgery may not be feasible for every patient. Finally, another opportunity could
be the vagus nerve stimulation, VNS. This solution is suitable for patient in whom
surgery is not a viable option and can lead to a reduction in the severity, length
and frequency of seizures, although it cannot stop them completely. This method is
based on a subcutaneous stimulator placed in the patient’s chest which sends regular
electrical stimulations through the vagus nerve. An example of pattern is 30 seconds
of stimulation every 5 minutes but can also be manually activated using a magnetic
switch if the patient feels an incoming seizure. [24]

For these reasons, many patients are still looking for a real solution that grants
them a better quality of life: a seizure prevention system could be a major advance-
ment, particularly if the system is portable, does not require clinician supervision
and uses minimal hardware to acquire the signal.
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1.3 EEG and ECG
Signal transmission within the nervous system relies on a biochemical process known
as the action potential. In a resting state, a neuron is negatively charged relative to
the extracellular fluid, with a typical membrane potential around -70 mV. This is
due to an ionic imbalance, characterized by a higher concentration of sodium Na+

along with a high concentration of chloride ions Cl− outside the cell and a lower
concentration of potassium K+ along with an higher concentration of organic anions
inside the cell. According to the Nernst equation, this ionic distribution generates
the negative membrane potential and this equilibrium is dynamically maintained
by voltage-dependent ion channels, which adapt their permeability based on the
membrane potential. [6]

However, when a signal is generated or propagated, sensory receptors partially
open specific protein channels leading to a substantial sodium entrance that in-
creases the membrane voltage. If this increase surpasses a critical threshold (ap-
proximately -55 mV), the proper action potential is triggered. During the initial
depolarization phase, additional sodium voltage-dependent channels open, leading
to a rapid increase in membrane potential until it reaches approximately +35 mV,
simultaneously activating adjacent regions of the membrane. After this peak, slower
potassium channels open, and along with the closing of sodium channels, this ini-
tiates the repolarization phase, where the membrane potential begins to return to
its original negative value. Due to the inertia of these ion channels, after the mem-
brane potential is restored, it briefly overshoots and becomes more negative during
the hyperpolarization phase. This phase is terminated by the sodium-potassium
pump, which finally restores the membrane potential to its resting level and allow
for the possibility of generating a new action potential. This occurs after an absolute
refractory period, during which the cell cannot respond to any stimulus, regardless
of its intensity. [30].

This biochemical activity can be detected using specific hardware first developed
in the early 20th century. Hans Berger invented the electroencephalogram (EEG)
in the 1920s, while Willem Einthoven refined the electrocardiogram (ECG) at the
beginning of the 20th century starting from earlier discoveries of bioelectric phe-
nomena. These tools enabled the first detailed recordings of the electrical signals
generated by neurons and cardiac muscle, introducing new possibilities in clinical
routine. By capturing the rapid ion exchanges that drive action potentials, these
early technologies laid the groundwork for modern neurophysiology and cardiology.
In simpler forms, this is made possible by external, cutaneous electrodes that act
as transducers between two worlds: ion-based physiology and electron-based elec-
tronic hardware. Ion fluxes cause interactions, and in some cases, exchanges, on the
surface of the electrode, altering its potential. This potential is then processed and
amplified using a specific hardware chain, finally being converted into a numerical
value.
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Even if the hardware acquiring signals share the same working principle, each
signals has its own different characteristic, also because of the anatomical structures
surrounding the zone of interest. In particular, amplitude and frequency content
can change as shown below:

Technique Amplitude range Frequency range
ECG 0.5 - 4 mV 0.01 - 250 Hz
EEG 5 - 300 µV 0.1 - 150 Hz
EMG 50 - 3000 µV 0.1 - 300 Hz

Table 1.1: Comparison of amplitude and frequency ranges for ECG, EEG, and EMG
techniques.

1.3.1 Electroencephalography (EEG)

This method focuses on the brain activity. It can be either invasive, with electrodes
placed inside the skull or deeper within the brain tissue, or non-invasive, using small
electrodes placed in a cap worn by the patient on the scalp. Clearly, the best signal
quality is obtained with the invasive method, as there is no tissue interference with
the readings and the distance from the source is smaller; however, this approach is
used only in rare and specific research cases due to the problems related with it.
Most of the time, the non-invasive method provides sufficient data to study brain
activity, despite higher level of signal noise: this is also the case for the signals used
in this project.

The signal acquired in EEG recordings is the postsynaptic potential, reflecting
membrane potential changes at a chemical synapse caused by neurotransmitters
released by the presynaptic neuron, which bind to specific receptors on the postsy-
naptic terminal. As a result, the signal generated lasts longer and can be temporally
and spatially summed, providing a better overall reading. Action potentials, on the
other hand, are too fast to be reliably captured in a stable manner.

These signals are usually acquired by 8-16 pairs of electrodes attached to a
specific cap, following the 10-20 international standard shown in figure 1.6, where
electrodes are positioned relative to two reference points (Nasion and Inion). The
resulting signal is typically calculated as a single differential between pairs of elec-
trodes or as a monopolar signal using an external reference point, usually placed on
the ear or as the mean value of all recording channels. [7, 25]

Figure 1.6: 10-20 international standard map.
Source: https://en.wikipedia.org/wiki/Electroencephalography.
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The signal acquired can then be processed dividing its frequency content in
different bands, each one with a different physiological meaning.

• Delta (δ) waves:

– Frequency range: 0.5− 4 Hz
– Characteristics: Delta waves are the slowest EEG waves and are typically

observed during deep sleep. They are also associated with unconscious
processes and certain pathological conditions, such as brain injuries.

• Theta (θ) waves:

– Frequency range: 4− 8 Hz
– Characteristics: Theta waves are commonly associated with light sleep,

relaxation, and meditation. They are also related to memory processes,
creativity and the early stages of sleep.

• Alpha (α) waves:

– Frequency range: 8− 13 Hz
– Characteristics: Alpha waves are predominantly seen in relaxed, awake

states, especially when the eyes are closed. They are linked to a state
of relaxed alertness and are most prominent in the occipital and parietal
regions of the brain.

• Beta (β) waves:

– Frequency range: 13− 30 Hz
– Characteristics: Beta waves are associated with active thinking, focus

and concentration. They are prominent during wakefulness, especially
when a person is alert and engaged in cognitive tasks.

• Gamma (γ) waves:

– Frequency range: 30− 100 Hz
– Characteristics: Gamma waves are associated with high-level cognitive

functions, such as perception, consciousness and binding of sensory in-
puts. They are thought to play a role in the integration of information
across different parts of the brain.

In an epileptic center, the neurons studied by the EEG display high membrane
potential instability, with excessive and prolonged depolarization known as parox-
ysmal depolarizing shifts. Even during the interictal phase, the EEG shows some
atypical waves with abnormal spikes. However, these become problematic and ini-
tiate a seizure only when a sufficient number of neurons are involved, allowing the
pathological activity to propagate and spread to neighboring regions. In that case,
the abnormal discharging activity started by abnormal neurons diffuses and entrain
other neurons until a critical mass is reached, which leads to the start of a seizure.
However, it’s important to note that this critical is not highly localized but appears
over different time and spatial scales and has a non-linear nature, that is the reason
why predictions are difficult. The termination of the seizure is attributed to the ac-
tivation of inhibitory mechanisms based on GABA, both cortical and extracortical.
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Overall, some examples of epileptic EEG is shown below in figure 1.7 and figure
1.8

Figure 1.7: Example of 3-Hz (typical) generalized spike-wave IED.
Source: https://www.ncbi.nlm.nih.gov/books/NBK390347/
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Figure 1.8: Example of a patient who had a generalized axial myoclonic jerk dur-
ing second 14, which coincided with the generalized spike-wave discharge and elec-
trodecremental pattern seen on EEG.
Source: https://www.ncbi.nlm.nih.gov/books/NBK390347/

1.3.2 Electrocardiography (ECG)

This section focuses on the electrical activity generated by heart tissues during their
functioning. Due to the complex pattern of electrical signal propagation through the
heart tissue, a comprehensive study of its path and characteristics usually requires
12 different leads divided into limb leads and precordial leads, as shown in figure
1.9.

Figure 1.9: 12 leads electrodes placement.
Source: Leutheuser, Heike. (2019). Wearable computing applications in eHealth.

The first group is subdivided into standard bipolar and augmented unipolar
leads, while the others are simply named V1 to V6. Limb leads provide information
in the vertical plane, while the precordial leads offer insight into the horizontal plane.
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The combination of all these data provides a precise picture of heart conditions,
including not only the heart rate but also its morphology, potential conduction
blocks, and other issues that may cause deviations from the typical ECG shape
shown in figure 1.10, whether due to amplitude differences or delays.

Figure 1.10: Physiological ECG shape.
Source: https://en.wikipedia.org/wiki/Electrocardiography

Some key information about the heart condition, however, can still be extracted
with a lower number of leads. Even with the loss of different perspectives for an-
alyzing the heart, information about heart rate will still be available. Among the
various types of information available, Heart Rate Variability (HRV), also known
as R-R variability, is one of the most important: this parameter measures the time
difference between successive heartbeats, as shown in figure 1.11. High variability
between heartbeats is a sign of good cardiovascular and nervous system condition,
as it reflects the body readiness to respond to changes in condition, with a bal-
anced interaction between the sympathetic and parasympathetic systems (through
the vagus nerve). [4]

Figure 1.11: HRV calculated on an ECG signal.
Source: https://en.wikipedia.org/wiki/Heart_rate_variability
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1.4 Machine Learning
Machine learning (ML) is a branch of artificial intelligence methods that enables
systems to learn from data and make predictions without explicit programming
using thresholds or other methods. In biomedical applications, ML is widely used
for physiological signal analysis, classification and early event detection, making it a
valuable tool for seizure prediction. By analyzing EEG and ECG data, ML models
can identify patterns that precede seizure onset, allowing for real-time intervention
strategies.

In this work, multiple supervised ML classifiers were explored to determine the
most effective approach for seizure prediction. The following classifiers were imple-
mented and tested:

• Support Vector Machine (SVM) – A supervised learning algorithm that
finds an optimal hyperplane to separate different classes. Given a dataset
{(xi, yi)}ni=1, SVM solves:

min
w,b

1

2
∥w∥2 subject to yi(w · xi + b) ≥ 1,∀i.

• Linear Discriminant Analysis (LDA) – A statistical method that projects
data into a lower-dimensional space, maximizing class separation while assum-
ing normally distributed features.

• Quadratic Discriminant Analysis (QDA) – An extension of LDA that al-
lows for non-linear decision boundaries by considering class-specific covariance
matrices.

• Decision Tree – A hierarchical structure that recursively splits data based
on feature values to form decision rules.

• Random Forest – An ensemble of decision trees, where each tree is trained
on a random subset of data. The final classification is determined by majority
voting among the trees.

• Gradient Boosting – An iterative boosting technique that corrects errors by
sequentially training weak classifiers on residual errors.

• k-Nearest Neighbors (kNN) – A non-parametric classifier that assigns a
class label based on the majority class among the k nearest data points.

• Logistic Regression – A probabilistic model that predicts class membership
using the sigmoid function:

P (y = 1|x) = 1

1 + e−(w·x+b)
.

• Naïve Bayes – A probabilistic classifier based on Bayes’ theorem, assuming
feature independence.
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1.5 Neural Networks
Neural Networks (NNs) are a class of machine learning models inspired by the bi-
ological structure and function of the human brain. They consist of multiple in-
terconnected layers of artificial neurons that process information in a hierarchical
manner. Each neuron performs a weighted sum of its inputs, applies an activation
function, and passes the output to the next layer. This layered structure allows
NNs to learn complex, nonlinear patterns in data, making them highly effective for
biomedical applications such as EEG and ECG signal analysis.

The advantage of NNs over traditional machine learning methods lies in their
ability to learn complex representations and patterns, also leveraging on improved
feature extraction. The disadvantage, however, lies in the larger number of data
that are needed to correctly train the system.

In this work, four different NN architectures were implemented to process EEG
and ECG signals and classify different time windows as preictal (before seizure) or
interictal (normal state).

1.5.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a special type of Recurrent Neural
Network (RNN) designed to capture long-term dependencies in sequential data.
Unlike traditional RNNs, which suffer from the vanishing gradient problem, LSTMs
include memory cells that selectively store and retrieve information over extended
periods. This ability makes them particularly useful for analyzing time-series data
such as EEG and ECG, where past observations influence future predictions.

LSTMs achieve this by using three types of gates:

• Forget gate ft: Decides what information should be discarded from the mem-
ory cell based on the current input xt and previous hidden state ht−1.

• Input gate it: Determines which new information should be stored in the
memory cell.

• Output gate ot: Regulates the amount of information from the memory cell
that should be passed to the next time step.

These gates operate as follows:

ft = σ(Wf · [ht−1, xt] + bf ) (forget gate) (1.1)
it = σ(Wi · [ht−1, xt] + bi) (input gate) (1.2)
Ct = ft · Ct−1 + it · tanh(WC · [ht−1, xt] + bC) (cell state update) (1.3)
ot = σ(Wo · [ht−1, xt] + bo) (output gate) (1.4)
ht = ot · tanh(Ct) (hidden state) (1.5)

The LSTM model used in this study first applies time-distributed dense layers
to extract relevant features from the input signal before passing them to the LSTM
layers. The final classification is performed by fully connected layers, with a softmax
activation function at the output.
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1.5.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a deep learning architecture originally
designed for image processing but have proven effective in time-series classification
as well. CNNs leverage spatial hierarchies by applying convolutional filters that
capture local patterns in data.

The main components of a CNN are:

• Convolutional layers: Apply filters to the input, detecting features such as
frequency patterns in EEG signals.

• Batch Normalization: Stabilizes training by normalizing activations within
each batch.

• Max-pooling layers: Reduce dimensionality while preserving essential fea-
tures by taking the maximum value from local regions.

• Fully connected layers: Aggregate extracted features and perform classifi-
cation.

The convolution operation is defined as:

yt =
k−1X
i=0

xt+i · wi + b,

where k is the kernel size, wi are filter weights, and b is the bias term.
By applying multiple layers of convolutions, CNNs progressively learn higher-

level abstractions of EEG and ECG data, making them useful for seizure detection.

1.5.3 Recurrent Neural Networks with Gated Recurrent Units
(RNN-GRU)

Gated Recurrent Units (GRUs) are an alternative to LSTMs that simplify the recur-
rent structure while retaining the ability to capture long-term dependencies. GRUs
remove the memory cell and instead use two gates:

• Update gate zt: Controls how much past information should be carried for-
ward to the next time step.

• Reset gate rt: Determines how much past information should be forgotten.

These operations are defined as:

zt = σ(Wz · [ht−1, xt] + bz) (update gate) (1.6)
rt = σ(Wr · [ht−1, xt] + br) (reset gate) (1.7)

h̃t = tanh(Wh · [rt · ht−1, xt] + bh) (candidate activation) (1.8)

ht = (1− zt) · ht−1 + zt · h̃t (final activation) (1.9)

GRUs are computationally more efficient than LSTMs since they have fewer
parameters. In this study, a GRU model was used to analyze EEG and ECG signals,
taking advantage of its ability to model temporal dependencies while maintaining
fast training times.
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1.5.4 Temporal Convolutional Networks (TCN)

Temporal Convolutional Networks (TCNs) are an alternative to RNNs for processing
sequential data. Instead of relying on recurrent connections, TCNs use 1D convolu-
tional layers with dilation to capture long-term dependencies while enabling parallel
processing.

The key features of TCNs include:

• Causal convolutions: Ensure that the model only uses past and present
information, preventing data leakage from future time steps.

• Dilation: Expands the receptive field of the convolution, allowing the network
to learn long-term dependencies.

• Residual connections: Improve gradient flow and make deeper networks
easier to train.

Unlike LSTMs and GRUs, which process sequences step-by-step, TCNs apply
filters across entire sequences simultaneously. This allows for more efficient compu-
tation, making TCNs well-suited for real-time applications.

1.6 Neural Network Intelligence (NNI)
A major challenge in deep learning is hyperparameter tuning, which traditionally
requires extensive manual experimentation or inefficient grid search methods. Neu-
ral Network Intelligence (NNI) automates this process by intelligently exploring the
hyperparameter space. Instead of performing exhaustive searches, NNI employs
adaptive techniques such as Bayesian optimization and evolutionary algorithms to
converge on optimal configurations, discarding combinations not leading to accept-
able results. This significantly reduces training time while improving model accuracy
and robustness. In this project, however, NNI has a larger adoption because it was
used to tune not only the NN and ML hyperparameters, but also many different
preprocessing parameters were treated as hyperparameters and so became objet of
optimisation. By leveraging NNI, the need for human intervention was minimized,
ensuring that hyperparameter choices were driven purely by data and final results
rather than subjective intuition or computational constraints.
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Chapter 2

State of the art

Over the past decades, there has been growing interest in the prediction of seizures
using physiological signals. This trend has been driven by advancements in infor-
matics and the increased availability of powerful hardware capable of running more
complex algorithms, including deep neural networks. Early solutions were based on
simple machine learning algorithms, such as Support Vector Machines (SVM), or
even simpler threshold methods that relied on specific features extracted from the
signals and compared them with patient tuned thresholds. Neural networks have
only started to gain attention in more recent studies, as advances in hardware and
dedicated coding frameworks have made them more accessible for applied research.

2.1 EEG based systems
This field of research started in the 1980s [15] thanks to major mathematical discov-
eries which led to advanced parameter calculations from EEG signals. This research
domain saw a significant increase at the start of the new millennium. During this
period, many interesting papers emerged claiming exceptional results by using var-
ious features calculated upon a moving time window, as summarized in [18]. The
approach underlying these systems extends beyond the introduction of new metrics
for signal characterization and is based on the hypothesis that epileptic seizures do
not emerge abruptly without warning. Rather, a preictal state exists, representing a
gradual transition from normal physiological conditions to seizure onset. However,
a milestone review published in 2007 highlighted excessive optimism in these earlier
results, as most of them were not replicable by other research groups and presented
methodological flaws that falsely inflated the final metrics presented. Moreover, this
paper suggests a common ground for future system metrics evaluation, presenting for
example the time under false alarm as an important evaluation metric. [20] Aided by
advances in both computational hardware and code, research resumed from these
new foundations, combining updated strategies, parameters [1], and technologies.
There was increasing reliance on machine learning and deep learning to improve
results, achieving sensitivity rates ranging from 70% to 90% and time under false
alarm up to 30%, with a prediction window typically ranging from 10 to 20 minutes.
[19] [36] [35][31]. In these cases, the parameters used vary widely.
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For univariate parameters, i.e. values calculated from single channels, these
include:

• Statistical moments of the signal amplitude:

• Power spectral parameters and power band ratios

• Correlation dimension and density

• Signal entropy

As for bivariate features, i.e. parameters calculated across different channels, the
most commonly used ones are:

• Maximum linear cross-correlation:

• Autoregressive measure of synchrony

• Phase synchronization

In other cases, convolutional networks were used to bypass manual feature selec-
tion and were directly used simply upon the filtered signal, and the final classification
was performed either by the network’s final layer or by an SVM utilizing the output
from the features selected by the convolutional layers. [31]. The most significant
recent advancement in this field is the ability to generate seizure forecasts with
an alert span of several days, enabling predictions across different temporal scales.
Currently, research is divided between the older deterministic approach, which offers
shorter alert periods, and the newer probabilistic approach, which provides a longer
prediction window but only offers a probability, not a definitive state. Moreover,
this approach must be trained on continuous data spanning several months in order
to follow physiological daily and multidaily trends on which these systems are based.
Despite the longer alert window, these systems are more invasive as are usually based
on intracortical electrodes and can be more confusing for patients as the output is
a probability instead of a defined value. They may also have a psychological impact
due to the extended prediction window, which still needs to be tested on subjects[5]
[2] [3]. However, this long-term approach falls outside the scope of this thesis and is
referenced solely to provide a comprehensive overview of the state of the art in this
field. In both cases, still, the generalization of these systems remains problematic
as there is no single parameter or value that can be simply universally applied to all
patients and their variability. Therefore, each system typically requires some degree
of personalization during the training phase, to varying extents. An example can
involve a simpler fine-tuning to adapt a pre-trained model to a specific patient.[17]

While recent studies have demonstrated significant advancements in seizure pre-
diction using artificial intelligence, a fundamental challenge remains in the prepa-
ration of datasets and the rigorous partitioning of training and validation data. A
critical issue is the prevention of data leakage, which occurs when information from
the validation set is inadvertently introduced into the training phase, leading to over-
estimated model performance and a lack of generalizability in real-world scenarios.
This leakage can be introduced through various mechanisms, including incorrect nor-
malization strategies where statistics are computed over the entire dataset rather
than restricted to the training set alone. A major concern highlighted in recent
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research [32] is that many high-accuracy seizure prediction results may be driven by
models learning spurious correlations or uninformative pattern rather than physi-
ologically meaningful seizure precursors. In particular, the study emphasizes that
EEG signals exhibit temporal correlations, meaning that samples close in time are
more similar than those further apart. This phenomenon poses a risk when EEG
windows from adjacent time periods are assigned to both training and validation sets,
as the model may learn to classify subtle non-physiological features, such as session-
specific noise, rather than genuine preictal biomarkers. Some studies [32] empirically
demonstrated that noise within EEG recordings, including slow-varying background
signals, can be exploited by machine learning models to achieve deceptively high
classification performance. This confounding effect is particularly problematic in
short-duration recordings and datasets with a limited number of samples, where
deep learning algorithms may inadvertently learn noise patterns rather than univer-
sal seizure precursors. Furthermore, the study introduced a controlled experiment in
which a neural network was trained on arbitrarily labeled EEG segments, completely
decoupled from actual seizure events. The model still achieved high classification
accuracy, demonstrating that non-seizure-related temporal variations could be suf-
ficient to drive successful prediction. To mitigate these issues, the study proposed
best practices for dataset preparation and model validation, including the use of
patient-independent evaluation frameworks, rigorous cross-validation strategies and
the adoption of a fully held-out test set. Importantly, they emphasized that vali-
dation procedures should prevent models from leveraging temporally adjacent EEG
samples as a surrogate feature for seizure prediction. Additionally, another solution
could employ adversarial validation techniques to assess whether models are learn-
ing physiologically meaningful patterns rather than noise-related artifacts. Without
such rigorous methodological safeguards, seizure prediction models risk producing
misleadingly high performance metrics that do not translate into clinically useful
applications. Consequently, future research in this field must prioritize not only
the development of accurate predictive algorithms but also the implementation of
robust evaluation protocols to ensure that model performance is genuinely driven
by seizure-related biomarkers. Addressing these challenges is essential for advancing
AI-based seizure prediction toward reliable and clinically deployable solutions.
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2.2 ECG based systems
To advance beyond classical EEG-based seizure prediction systems, recent studies
have increasingly focused on the electrocardiogram (ECG) signal as a viable al-
ternative for predicting seizures in epileptic patients. The primary advantage of
this approach lies in the simpler hardware required for signal acquisition. Unlike
EEG, which necessitates an array of electrodes distributed across the scalp or even
worse intracranial electrodes, ECG monitoring can be performed using only a few
electrodes placed on the patient chest.

It is important to note that in these studies, ECG data was acquired without em-
ploying a full 12-lead setup; instead, a minimal number of electrodes was used. This
choice was driven by the primary objective of identifying individual heartbeats to
derive features from the interbeat intervals rather than capturing the entire cardiac
waveform. Specifically, the key metric of interest is heart rate variability (HRV),
which quantifies the temporal fluctuations between consecutive heartbeats and in-
cludes additional parameters to enhance the characterization of cardiac dynamics.
HRV analysis is typically conducted over a moving time window of approximately
two minutes, enabling the extraction of time-domain, frequency-domain and non-
linear features.

The most commonly computed time-domain indices include:

• Mean NN: Mean value of the interval between two successive heartbeats.

• SD NN: Standard deviation of the interval between two successive heartbeats.

• RMSSD: Root mean square of the differences between successive NN inter-
vals.

• NN50: Number of adjacent NN interval pairs differing by more than 50 ms
within the specified measurement period.

Similarly, the most frequently computed frequency-domain indices are:

• Total Power: Overall spectral power of HRV across all frequency bands.

• Variance of NN Intervals: Measure of the overall HRV magnitude.

• Low-Frequency (LF) Power: Spectral power within the 0.04–0.15 Hz range,
associated with both sympathetic and parasympathetic modulation.

• High-Frequency (HF) Power: Spectral power within the 0.15–0.40 Hz
range, primarily reflecting parasympathetic activity.

• LF/HF Ratio: Ratio of LF to HF power, often used as an index of autonomic
balance.

Finally, non-linear HRV analysis provides additional insights into the complex
dynamics of heart rate variability by capturing properties that are not evident in
time or frequency-domain features. The most commonly employed non-linear met-
rics include:

• SD1: Standard deviation of Poincaré plot points perpendicular to the line of
identity, reflecting short-term HRV.
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• SD2: Standard deviation along the line of identity in the Poincaré plot, indi-
cating long-term HRV.

• CSI: Cardiac Sympathetic Index, assessing sympathetic nervous system ac-
tivity.

• CVI: Cardiac Vagal Index, related to parasympathetic modulation.

• Katz FD: Katz Fractal Dimension, a measure of the complexity of HRV.

• Recurrence Plot Features:

– Recurrence Rate: Fraction of recurrent points in the phase space.

– Determinism: Percentage of recurrence points forming diagonal struc-
tures, indicating predictability.

– Lmax: Maximum diagonal line length, related to system stability.

– Laminarity: Fraction of recurrence points forming vertical structures,
linked to autonomic control.

– Trapping Time: Average duration of laminar phases in the recurrence
plot.

– Shannon Diagonal Entropy: Entropy of the diagonal line distribution,
representing signal complexity.

In some cases, additional parameters, such as entropy-based measures or higher-
dimensional fractal metrics, may also be computed to further refine the characteri-
zation of HRV dynamics.

As previously noted, these HRV metrics are typically computed using a sliding
window approach (that could be implemented using a First-In-First-Out (FIFO)
buffer in real-time scenarios), which enhances measurement stability and reduces the
influence of transient artifacts. To further improve the robustness of the extracted
metrics, many studies also applied dedicated outlier removal techniques based on
thresholding and interpolation strategies. For frequency-domain HRV parameters,
signals are usually resampled to ensure uniform time intervals, and autoregressive
models may be employed to extract spectral components not directly discernible
from the raw data.
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Chapter 3

Methods

The core objective of this project was to develop a comprehensive and adaptable
toolbox capable of processing both EEG and ECG signals through a fully auto-
mated and generalizable pipeline. The system is designed to handle all stages of
signal processing and machine learning/neural networks training with minimal user
intervention, ensuring that key methodological choices are data-driven rather than
dependent on subjective decisions or external constraints, such as excessive number
of trials. This approach addresses one of the major limitations in traditional seizure
prediction research, where many analytical pipelines require manual parameter tun-
ing, often influenced by prior experience, computational restrictions, or practical
time constraints, thereby limiting the true extent of the parameter search space and
potentially neglecting key regions.

By minimizing the need for arbitrary a priori choices, the proposed system en-
sures that the selection of preprocessing parameters, feature extraction methods
and classification algorithms is optimized systematically based on the final out-
put results. This mitigates the risk of overlooking potentially significant parameter
configurations that might otherwise be disregarded due to human bias or feasibility
constraints. The automation of parameter selection also expands the explored search
space, allowing for a more exhaustive evaluation of different signal processing and
classification strategies, ultimately leading to improved performance and robustness
of predictive models, despite the substantial inter-individual and intra-individual
variability in physiological signals.

Beyond improving predictive accuracy, the automation of preprocessing and clas-
sification stages significantly reduces the workload required to implement and test
different models. Traditionally, the design of seizure prediction systems requires
extensive manual experimentation with various filtering techniques, feature engi-
neering approaches and machine and deep learning architectures, often demanding
extensive knowledge and substantial computational effort. By automating this pro-
cess, the proposed framework accelerates the ideation, creation and testing of new
methodologies and classifiers, enhancing both the quality of the achieved results and
the efficiency of their development.

Additionally, the systematic nature of this pipeline reduces the risk of method-
ological inconsistencies that can arise from ad-hoc adjustments and manual fine-
tuning. As mentioned earlier, many studies suffer from issues related to repro-
ducibility and bias introduced by human intervention during model development.
By enforcing a structured, automated workflow, the proposed toolbox enhances
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reproducibility, ensuring that model performance is evaluated under standardized
conditions and that results can be reliably compared across different datasets and
studies.

3.1 Dataset
The whole system was trained and tested using the Siena Scalp EEG Database. This
database consists of EEG recordings of 14 patients acquired at the Unit of Neurology
and Neurophysiology of the University of Siena. Subjects include 9 males (ages 25-
71) and 5 females (ages 20-58). Subjects were monitored with both cameras and
EEG with a sampling rate of 512 Hz,electrodes were arranged on the basis of the
international 10-20 System. Most of the recordings also contain 2 EKG signals. The
diagnosis of epilepsy and the classification of seizures according to the criteria of the
International League Against Epilepsy were performed by an expert clinician after a
careful review of the clinical and electrophysiological data of each patient.[12][13][14].

The selection of this specific dataset was driven by the availability of both EEG
and ECG signals, complemented by detailed metadata. This comprehensive data
structure enables the utilization of both signal types and facilitates the implemen-
tation of fully automated functions, ensuring the level of automation required for
the aim previously presented.

The preprocess and training pipelines were designed to be launched indepen-
dently: this ensures a faster training section that can be run on different dataset
versions that were precomputed using the different parameters, reducing redundant
calculations and by so further improving the research speed.

To further optimize model performance, the preprocessing pipeline is designed
to process each patient’s data independently, ensuring that subject-specific charac-
teristics are preserved. The decision to merge data from multiple patients or keep
them separate is made during the training phase, maximizing dataset reusability
while maintaining flexibility in cross-subject generalization and personalized model
adaptation.
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3.2 Preprocess
The preprocessing phase represents the first step of the system, during which raw
data are automatically imported, verified and processed to generate a refined and
structured dataset. This ensures that the data are optimized for classifier training,
enhancing both signal quality and model performance. The preprocessing stage
involves automated data and metadata import along with integrity checks to detect
potential inconsistencies, followed by a series of transformations aimed at improving
signal quality and features calculation.

As previously discussed, key preprocessing parameters are treated as tunable
variables during each NNI experiments, reducing the number of fixed a priori as-
sumptions and allowing for systematic optimization. This approach ensures that the
final dataset configuration is not arbitrarily constrained, enabling the exploration
of a broader search space and maximizing the likelihood of identifying optimal pro-
cessing strategies.

Import

The first function of the pipeline is responsible for correctly importing and struc-
turing data, ensuring that signals and their corresponding metadata are properly
organized for subsequent processing. Specifically, it reads EDF files containing EEG
and ECG recordings while also extracting essential metadata from an external text
file supplied in the dataset, since this information is not correctly embedded within
the EDF files. The extracted metadata includes the recording start and stop times,
the effective sampling rate and the seizure onset for each file.

During metadata extraction, minor inconsistencies were identified and manually
corrected to maintain data integrity. For example, in some recordings, seizure on-
set times were erroneously reported as precedent to the start of the corresponding
recording. These discrepancies were manually reviewed and adjusted based on plau-
sible corrections, such as shifting the timestamp by a reasonable value in cases likely
due to classical typographical errors.

At the end of this step, the system automatically flags any remaining inconsis-
tencies, allowing the user to review potential errors and ensure data quality before
proceeding. Given the importance of this stage, randomized manual verifications
were also performed, confirming that the imported data accurately reflects the orig-
inal values.

Once the signals are successfully imported and stored in the appropriate data
structure, a channel-wise mean subtraction is applied to each signal. This step,
performed before any downstream processing, removes DC offset and standardizes
baseline levels, improving the robustness of subsequent analyses.

3.2.1 Filtering

Given the distinct nature of EEG and ECG signals this filtering procedure is applied
separately to each modality, ensuring that each signal type is processed with optimal
parameters. In both cases, the primary objective is to attenuate low-frequency noise
caused by artifacts and baseline drift, suppress high-frequency noise originating from
acquisition electronics and mitigate power line interference, which was observed to
be particularly strong in these recordings.
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To achieve this, a Chebyshev band-pass zero-phase filter is applied, implemented
as a cascade of high-pass and low-pass filters. This configuration effectively isolates
the relevant frequency bands while preserving phase characteristics, ensuring mini-
mal waveform distortion. Following band-pass filtering, a notch filter is applied to
suppress power line interference at the fundamental frequency and its harmonics.
The specific filtering parameters for both EEG and ECG signals are reported in
Table 3.1.

To further enhance filtering effectiveness, the system automatically adjusts the
filter attenuation, starting from predefined parameters and incrementally increasing
suppression levels while preserving signal stability. This approach led to an attenu-
ation of 65 dB for both EEG and ECG signals, balancing effective noise suppression
with signal integrity.

Finally, the filtering function includes a visualization module, allowing users
to compare raw and filtered signals alongside their Power Spectral Density (PSD)
representations shown in 3.1, 3.2.

Parameter EEG ECG

Cut-off frequency (Hz) 0.5 - 100 0.5 - 100
Notch (Hz) 50 50
Attenuation (dB) 65 65

Table 3.1: Filtering parameters

3.2.2 Signal labeling

The preprocessing pipeline proceeds by merging EEG and ECG data into a uni-
fied matrix, where ECG values are appended as additional rows. This structure
enables the joint analysis of both signal types, leveraging their complementary in-
formation for seizure prediction. The resulting multimodal matrix is then passed to
the labeling function, a critical component that directly influences the quality and
interpretability of the final model predictions.

A key limitation in previous seizure prediction studies has been the lack of a well-
defined, medically validated threshold for differentiating normal and preictal states.
Traditionally, the alert horizon — the time window before a seizure in which the
model should detect preictal patterns — was chosen arbitrarily, without a consensus-
driven guideline. This rigid approach restricted the discovery of novel patterns, as
informative signal segments might still be considered "normal" under an arbitrarily
chosen alert threshold.

To address this, the presented system redefines the alert horizon as a tunable
hyperparameter, rather than a fixed a priori value. This means that the optimal
alert window is determined dynamically, based on the hyperparameters combination
that yields the best classification performance. This expands the parameter search
space, allowing the system to potentially identify previously overlooked but clinically
relevant preictal patterns.

Another key enhancement introduced in this function is the transition from a
binary labeling system to a multilabel approach. Instead of simply classifying each
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Figure 3.1: PSD comparison for the raw and filtered ECG signals. The raw acquisi-
tion clearly presents important power-line induced interference, succesfully removed
by the notch filter without causing an excessive information loss
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Figure 3.2: PSD comparison for the raw and filtered EEG signals. The raw acqui-
sition still show power-line induce noise, but with a lower amplitude than the ECG
case
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time segment as "normal" or "preictal," the multilabeling strategy enables the de-
tection of gradual, time-dependent preictal changes, if present. This approach could
lead to improved classification performance by capturing progressive variations in
seizure onset dynamics. The specific labels used in this system are outlined in Table
3.2.

Label Description

0 Normality (windows distant more than 3 times the alert horizon)
1 Windows distant from 3 times the alert horizon to 2 times the alert horizon
2 Windows distant from 2 times the alert horizon to 1 time the alert horizon
3 Windows distant from 1 time the alert horizon to the actual start of the event

Table 3.2: Labeling system for event prediction based on alert horizon

It is important to note that while the system is theoretically capable of labeling
seizure and post-seizure instants, these phases were excluded from the current im-
plementation to maintain a strict focus on seizure prediction. To ensure that only
normal and pre-seizure windows are retained for analysis, the recordings are trun-
cated precisely at seizure onset, preventing seizure and post-seizure activity from
influencing downstream processing, as they could become confounding factors.

In future developments, the system could be changed to allow predictions of tem-
porally close seizures, allowing it to predict multiple seizure events within a short
time frame. However, this functionality was not included in the present implemen-
tation due to dataset limitations, particularly the scarcity of recordings containing
multiple closely spaced seizures.

3.2.3 Region mean calculation

This dimensionality reduction step is applied exclusively to EEG signals, as their
multichannel nature results in high computational costs, particularly when bivariate
features such as coherence or phase synchronization are considered. EEG caps typ-
ically contain a large number of electrodes, with higher electrode density improving
spatial resolution. However, this increased precision comes at the cost of greater
computational demands, making it essential to balance signal detail and processing
requirements.

Despite the standardization provided by the 10-20 electrode placement system,
minor variations in electrode positioning can still occur across different recordings
due to inter-subject variability, cap fitting adjustments, or hardware-specific dif-
ferences. To mitigate these issues while preserving spatial information, this pre-
processing step reduces the number of channels while maintaining key topographic
features.

The dimensionality reduction process consists of two main stages. First, elec-
trodes are grouped into eight distinct scalp regions, defined based on their relative
position along the coronal and sagittal planes, ensuring that the most relevant spa-
tial information is retained. Next, a single representative channel is extracted from
each region, computed as the median value of all electrodes within that zone. The
median was chosen over the mean to reduce the impact of outlier noise and maintain
a more robust regional representation.
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The final output of this step is a reduced EEG matrix with eight channels,
representing a trade-off between spatial resolution and computational efficiency.

3.2.4 Signal windowing

The primary objective of this step is to apply windowing to the original signal,
segmenting it into fixed-length time windows for subsequent feature extraction and
classification and making this approach real-time executable with the help of a
FIFO buffer. However, in contrast to previous approaches where window length was
manually tested and selected, this system treats window length as a tunable hyper-
parameter, optimizing it alongside other processing parameters. This automation
eliminates the need for manual iterations, allowing the system to explore poten-
tial correlations between window duration and other hyperparameters, ultimately
improving model performance.

The range of possible window lengths was determined by both practical con-
straints and feature calculation requirements. The lower limit was imposed pri-
marily by the computational requirements of feature extraction algorithms. Since
AR-based spectral estimation methods used in this work rely on sufficiently long seg-
ments to provide stable low-frequency power estimates, excessively short windows
would compromise feature reliability.

In particular, among all extracted features, Heart Rate Variability (HRV) low-
frequency power (0.04-0.15 Hz) posed the strictest requirement on window length.

3.2.5 Feature extraction

Feature extraction represents the final and most computationally demanding step
of the preprocessing pipeline. The objective of this phase is to extract and compute
a diverse set of features that have been widely utilized in the literature for seizure
prediction, leveraging both EEG and ECG signals. Due to the substantial differences
between these two modalities, they are processed independently in separate sections.
However, despite this separation, the output structure remains consistent across
both modalities:

1. A matrix-based representation intended for neural network training. In
this format, each row corresponds to a specific extracted feature, each column
represents a subwindow over which the feature was computed, and the different
physical zones from which the signals originate are preserved as additional
matrix dimensions.

2. A vector-based representation for machine learning classifiers. Each ele-
ment in this vector corresponds to a feature extracted over an entire window,
providing a more compact representation for traditional classification algo-
rithms.
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EEG features

• Cross-correlation: Measures the similarity between two signals as a func-
tion of their relative time shift. It is useful for detecting synchronization and
dependencies between different signals.

• Phase Locking: Quantifies the consistency of the phase difference between
two signals across multiple time points. It is commonly used in neuroscience
to assess phase synchronization in brain activity.

• Dynamical Entrainment: Describes the process where two oscillatory sys-
tems interact and synchronize their rhythms. It is relevant in physiological
studies where external or internal factors influence neural and cardiac dynam-
ics.

• Relative Power: Represents the proportion of power contained in a specific
frequency band relative to the total power of the signal. This is crucial in EEG
analysis to assess brain activity in different frequency ranges.

• Power Band Ratio: Computes the ratio between the power of two frequency
bands, such as the theta/beta ratio, which is widely used in cognitive and
neurological assessments.

• Spectral Entropy: Measures the randomness or complexity of a signal in the
frequency domain. A higher value indicates a more irregular and unpredictable
signal, which is relevant in distinguishing normal and abnormal brain activity.

• Hjorth Parameters: A set of statistical measures including activity (sig-
nal variance), mobility (frequency variability), and complexity (higher-order
variations), used for characterizing EEG signals.

• Spectral Edge Frequency: The frequency below which a given percentage
(typically 90%) of the total power of the signal spectrum is concentrated. It is
a valuable parameter in EEG and ECG signal analysis for assessing dominant
frequency components.

• Approximated Entropy: A statistical measure that quantifies the regular-
ity and predictability of time-series data. Lower values indicate more pre-
dictable patterns, while higher values suggest increased complexity, often used
in biomedical signal analysis.
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ECG features

• Mean R-R Interval: The average time interval between successive R-wave
peaks in the ECG signal, measured in seconds. It reflects the mean heart rate
over the analyzed period.

• Standard Deviation of R-R Intervals : Measures the overall variabil-
ity of the heart rate by computing the standard deviation of R-R intervals.
Higher values indicate greater heart rate variability (HRV), which is typically
associated with better autonomic control.

• Root Mean Square of Successive Differences: Quantifies short-term
HRV by calculating the square root of the mean squared differences between
successive R-R intervals. It is particularly sensitive to parasympathetic (vagal)
activity.

• Percentage of Successive R-R Differences Greater than 50 ms: Rep-
resents the proportion of successive R-R interval differences that exceed 50
milliseconds. It is commonly used to assess vagal tone and short-term HRV.

• Low-Frequency Power: The power spectral density in the low-frequency
band (typically 0.04–0.15 Hz), which reflects both sympathetic and parasym-
pathetic influences on heart rate modulation.

• High-Frequency Power: The power spectral density in the high-frequency
band (typically 0.15–0.4 Hz), which is primarily linked to parasympathetic
activity and respiratory-driven heart rate modulation.

• LF/HF Ratio: The ratio of low-frequency to high-frequency power, often
used as an indicator of the balance between sympathetic and parasympathetic
nervous system activity.

• Variance of R-R Intervals: Measures the dispersion of R-R intervals, pro-
viding insights into overall HRV. Higher values generally indicate better auto-
nomic flexibility.

• Poincaré SD1: A nonlinear HRV metric derived from the Poincaré plot
that reflects short-term variability, primarily influenced by parasympathetic
modulation.

• Poincaré SD2: Another Poincaré plot-derived measure representing long-
term HRV. It captures both sympathetic and parasympathetic contributions
to heart rate dynamics.

• Cardiac Sympathetic Index: A measure derived from Poincaré plot anal-
ysis that provides an estimate of sympathetic nervous system dominance.

• Cardiac Vagal Index: An index that quantifies the influence of the vagus
nerve (parasympathetic activity) on heart rate regulation.

• Katz Fractal Dimension: A nonlinear metric that assesses the complexity
of heart rate time series, providing insight into fractal-like properties of HRV.
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• Recurrence Rate: A measure derived from Recurrence Plot Analysis that
quantifies how often similar patterns in the heart rate time series reappear,
reflecting system stability.

• Determinism: Indicates the percentage of recurrence points forming diagonal
structures in a Recurrence Plot, which is related to the predictability and
regularity of heart rate dynamics.

• Maximum Diagonal Line Length: Represents the longest uninterrupted
diagonal line in the Recurrence Plot, linked to the degree of deterministic
structure in heart rate variability.

• Laminarity: The proportion of recurrence points forming vertical structures
in the Recurrence Plot, associated with sustained physiological states and slow
heart rate fluctuations.

• Trapping Time: The average length of laminar (vertically structured) seg-
ments in the Recurrence Plot, providing insights into the persistence of heart
rate states.

• Shannon Diagonal Entropy: A complexity measure derived from the dis-
tribution of diagonal line lengths in a Recurrence Plot, indicating the degree
of randomness in heart rate dynamics.

After feature extraction, the resulting matrices can be considerably large, partic-
ularly due to the preservation of data from the eight different physical scalp zones as
additional dimensions. While this enhances spatial resolution, it also increases com-
putational complexity and required resources and may introduce risks of overfitting,
particularly in neural network-based models.

To mitigate these issues, an optional dimensionality reduction step can be applied
to transform the data into a more compact 2D matrix. For each extracted feature
(i.e., for each row of the original matrix), four statistical descriptors are computed
across all channels: mean, median, standard deviation, and maximum absolute de-
viation. These values are then stored as separate rows in the final representation,
ensuring that each feature is described by four distinct values while maintaining the
temporal structure of the dataset with the matrix columns.
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3.3 Dataset handling
This stage of the pipeline is executed separately from preprocessing to increase com-
putational efficiency. By allowing indipendent run, different dataset versions - each
corresponding to a unique combination of preprocessing hyperparameters — can
be computed once and stored. This significantly reduces redundant computations
during training, as the dataset can be directly loaded from storage, making the ex-
ecution time dependent solely on the model training process. This efficiency gain
enables a higher number of trials to be conducted within the same execution time.
The first step in the training preparation is the splitting of the dataset into training,
validation and test sets. Instead of keeping entire recordings within a single subset,
individual windows are randomly assigned across the three sets. This merging of
different recordings ensures that the model does not overfit to session-specific arti-
facts or learn non-physiological trends, such as baseline drift or recording-specific
noise patterns. By constructing a mixed dataset, the model is encouraged to focus
on generalizable physiological features rather than stochastic recording variations.

It is important to note that during this phase two different approaches were fol-
lowed: with the first one, patient recording were not mixed, leading to a dataset
keeping different patients separated. Following the complementary approach, a gen-
eral dataset was created were both windows and patients were mixed. This choice
follows the disputed idea that a generalizable system is feasible and achievable. Ide-
ally, once the training is terminated, this system would be able to classify even new,
unseen patient. However, even if this approach leads to decreased performance, a
general system could still be useful as it could require simple fine tuning to adapt it
to a specific patient, leading to increased performances with a lower number of data
required when compared to a complete training starting from zero.

A key advantage of this dataset split approach is its impact on algorithms training
robustness. In this implementation, each independent training iteration is conducted
on a unique dataset partition, reducing the likelihood that high accuracy is merely
the result of a favorable dataset assignment. If multiple training runs with different
dataset splits converge to similar results, this provides stronger evidence of genuine
model performance, rather than an artifact of dataset partitioning.

Following dataset partitioning, a balancing phase is applied to address the class
imbalance inherent to seizure prediction. Since seizures are rare events, the dataset
naturally contains more normal (interictal) samples than preictal samples, which can
bias model training. To mitigate this, a hybrid balancing strategy is implemented:
Oversampling of the minority class (preictal windows): Additional preictal samples
are generated by applying Gaussian noise augmentation, where the noise amplitude
is calculated relative to the original signal amplitude to preserve realistic variabil-
ity. Undersampling of the majority class (normal windows): The interictal class is
downsampled to match the number of preictal samples, ensuring class balance.

Before model training, a Z-score normalization step is applied to standardize the
dataset. To prevent data leakage, the normalization parameters (mean and standard
deviation) are computed exclusively on the training set. These same parameters are
then used to normalize the validation and test sets each channel independently,
ensuring a consistent feature distribution without introducing biases from future
data.
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3.4 Classification training
This represent the last section of the code: due to the scarcity of available data,
it was not feasible to implement a dedicated postprocessing phase, as this would
have required reusing training data, thereby introducing the risk of data leakage
and overfitting. The execution flow diverges at this stage depending on the chosen
classification approach, whether using neural networks or traditional machine learn-
ing algorithms. An important consideration in single-patient training is the need to
avoid model overfitting to session-specific artifacts. To address this, only 3 out of
the 14 original patients were selected for training, as these were the only subjects
with at least 5 different recordings. This criterion was necessary because a limited
number of recordings per patient could lead the model to learn classification based
on recording-specific noise, baseline wandering, or acquisition artifacts, rather than
true physiological patterns. By ensuring that each selected patient has at least five
independent recordings, the dataset achieves a more diverse representation of intra-
subject variability. This helps the model generalize beyond recording-specific biases
and instead focus on medically relevant seizure-related patterns, ultimately leading
to more reliable and robust classification results. In particular, the final dataset
after balancing contained recordings with the following duration:

• Patient 00: 1 hour and 15 minutes, mean preictal period of approximately
15 minutes

• Patient 06: 7 hours and 30 minutes, mean preictal period of approximately
1 hour and 30 minutes

• Patient 10: 3 hours, mean preictal period of approximately 40 minutes

3.4.1 ML training

Machine learning algorithms serve as statistical-based classifiers that typically re-
quire fewer training samples compared to neural networks. This characteristic makes
them particularly well-suited for this system, given the limited size of the dataset.
Unlike NNs, which require large amounts of data to learn hierarchical feature repre-
sentations, ML models are highly effective with structured feature vectors, making
them an ideal choice in this context.

To further enhance model reliability and robustness, a stratified k-fold cross-
validation approach was implemented, ensuring balanced class distribution across
folds. This process was performed on the merged training and validation set, max-
imizing training data availability while maintaining unbiased performance estima-
tion. Importantly, the test set was kept entirely separate to preserve an indepen-
dent final evaluation. Given the diversity of ML algorithms, multiple classifiers were
tested in each fold, and their performance was ranked based on Out-Of-Fold (OOF)
metrics.
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To further mitigate the risk of overfitting, each classifier was evaluated using two
different feature selection strategies:

1. Full Feature Set – The model is trained using all available features in the
vector.

2. Forward Feature Selection (FFS) – The model starts with a single feature
and additional features are sequentially added based on their impact on model
performance. At each iteration, the feature that improves classification metrics
the most is retained, and the process continues until performance plateaus or
drops below a predefined tolerance threshold.

Following these optimization steps, the best-performing classifier — determined
based on cross-validation performance — was selected and applied to the inde-
pendent out-of-fold samples. This final evaluation provided unbiased classification
metrics, ensuring that the model’s generalization ability was accurately assessed.

3.4.2 NN training

Differently from the ML-based approach, the dataset is not further modified in this
section; instead, it is processed according to the original assignments into training,
validation and test sets. The choices available in this phase relate to the selection
of different neural network architectures and their respective training parameters.

A key aspect of this approach is that neural networks operate on matrices rather
than feature vectors, making them more sensitive to time-dependent variations.
Each column of the input matrix corresponds to a distinct subwindow over which
the features were extracted, so the architectures are explicitly designed to exploit
this temporal structure for classification. However, it is important to note that due
to the data-intensive nature of neural networks, the performance obtained on this
dataset may not fully reflect the system potential in scenarios where larger datasets
are available.

Another critical consideration is explainability. While ML algorithms retain a
degree of interpretability — since the contribution of individual features to the
final decision can be analyzed — neural networks lack this level of transparency. In
medical applications, this lack of explainability poses a significant challenge, as both
physicians and patients may be skeptical about the classification outcome without
an interpretable rationale.

To optimize the neural network training process, Neural Network Intelligence
(NNI) played a pivotal role, aligning well with its intended purpose. Instead of
relying on manual trial-and-error or suboptimal grid search methods, the tuning
algorithm explored the hyperparameter search space adaptively. This approach
allowed the system to focus on the most promising configurations while system-
atically discarding regions of the search space that consistently led to suboptimal
performance. In particular, each trial was conducted using a Tree-structured Parzen
Estimator (TPE) optimizer to select the different hyperparameters since it offers ef-
ficient exploration-exploitation even in complex search spaces. An example of search
space can be found in the table 3.3 reported here below.
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Table 3.3: Hyperparameter Search Space

Hyperparameter Type Values

risk_window_length Choice {5, 10, 15, 20}

window_length Choice {70, 90, 110}

use_dynamic_cost_matrix Choice {false, true}

dense_units Choice {16, 32, 64}

kernel_size Choice {3, 5, 7}

dilation_rate Choice {1, 2, 4}

use_second_conv1d_block Choice {false, true}

activation Choice {tanh, sigmoid, relu}

learning_rate LogUniform [10−7, 10−4]

regularization_l2 LogUniform [5× 10−4, 5× 10−2]

loss Choice {sparse_categorical_crossentropy,
kullback_leibler_divergence}

batch_size Choice {2, 4, 6}

dropout Choice {0, 0.15, 0.3}

3.4.3 Final Classification

As previously discussed, the training phase employs a multilabel approach to en-
hance sensitivity to potential variations observed in the pre-ictal phase. However,
this classification scheme may be less intuitive for the end user. To improve usability,
the final output can be binarized by merging different classes. This simplification
not only enhances user experience but may also reduce the cognitive load and stress
associated with interpreting a multilabel system, despite its potential for higher
classification granularity. For this reason, the performance metrics presented in the
next chapter will include both multilabel and binary classification approaches.
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Chapter 4

Results

The experiments were conducted with two distinct objectives. The first aimed to
develop a system capable of correctly predicting seizures using a patient-specific
approach, where models were trained on data from multiple recordings of the same
patient. This approach ensures that the system learns individual-specific preictal
patterns, optimizing its performance for each subject.

The second objective focused on generalization, where recordings from different
patients were combined into a single dataset. This strategy allows the model to learn
more general seizure-related features that are not limited to a specific individual,
making the system compatible with new, unseen patients.

In both scenarios, EEG and ECG features were treated separately, as initial test
trials showed that different values in the hyperparameters choice are required to
achieve optimal performance. While a unified system integrating both signals is
feasible, it would require an additional classification layer, such as a Multi-Layer
Perceptron (MLP) or another machine learning model to merge the outputs from
EEG- and ECG-based classifiers into a final decision, leading to an increased amount
of training data required.

Another solution could be the direct training of a single system using both EEG
and ECG features: despite being theoretically possible, it poses a significant risk
of overfitting due to the limited dataset size. In such a scenario, the model might
learn to classify based on non-physiological patterns, relying on session- or patient-
specific artifacts rather than genuine seizure-related features. This highlights the
importance of further data collection and careful feature integration when designing
multimodal seizure prediction models.

A final consideration regarding introducing a post-processing step has to be
made: many different post-processing methods could be applied to reduce sporadic
erroneous classifications and highlight the general trend, but to properly tune this
approach an increased amount of data is required, since using the same training
set already employed to train the system would significantly increase the risk of
overfitting. A correct approach would instead require the use of entire recordings
specifically and exclusively dedicated to this step, but the limited number of record-
ings originally available made this impossible, and therefore no post-processing was
applied, despite its potential advantages.

Before presenting the results, it is important to clarify that although the sys-
tems were trained using the multilabel approach previously described to enhance
sensitivity to the temporal evolution of the signals, the final evaluation metrics were
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binarised. This binarisation involved merging the normal class and class 1 samples
into one category and similarly merging classes 2 and 3 into another. Despite its
simplicity, this strategy provided a practical starting point, avoiding the complexity
of a full multilabel system and resulting instead in a straightforward binary alarm
system.

4.1 Patient specific system

This section introduces the results obtained in the experiments focusing on a system-
specific approach, were each patient is treated independently. As previously men-
tioned, a reduced number of patients presented at least 5 recordings and therefore
were used while following this approach. EEG and ECG were treated separately,
therefore results are divided in two different subsections.

4.1.1 ECG signal

Machine Learning

Given the limited dataset size, a stratified k-fold cross-validation strategy was pre-
ferred to obtain more robust performance metrics, with k = 3. This approach en-
sured that all reported values in Table 4.1 were computed using out-of-fold samples,
thereby providing a more reliable estimate of the model generalization capability. It
is important to remember that each sample represents a single signal window which
was taken from the 5 different recordings previously mixed. The duration of those
windows, tuned for each patient, was:

• Patient 00: 90 seconds

• Patient 06: 70 seconds

• Patient 10: 80 seconds

The alert horizon represents the time threshold used to separate normal and preictal
windows while labeling. The lower horizon in patient 00 is due to the seizure starting
close to the recording start. Finally, the model selected after the training phase from
the previously presented methods was the random forest algorithm.

Patient Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)
00 82.61 81.82 83.33 8.70 6
06 79.25 82.61 77.62 5.66 20
10 66.38 68.29 65.33 11.21 14
Mean ± Std 76.08 ± 6.99 77.57 ± 6.57 75.43 ± 7.51 8.52 ± 2.27 13.33 ± 5.73

Table 4.1: Final metrics reported on the selected patients using ML on ECG signal.
Note: FA = False Alarm.

50



Neural Networks

Unlike the ML models, NN results were obtained without k-fold cross-validation
due to the higher computational request demanded by the NN during the training.
Table 4.2 presents the performance metrics reported by the system on the test set,
but the reduced size of this set results in fewer samples, leading to increased differ-
ences among the different patients. Up to 5000 independent training processes were
conducted for each patient, each one with a distinct partitioning of training, valida-
tion and test sets. The consistency observed across different training reinforced the
reliability of the reported results, mitigating concerns that performance variations
were merely caused by specific data partitioning rather than genuine indicators of
model effectiveness. It is important to note that due to the limited size in the ECG
matrices, only the LSTM architecture was tested since it can better cope with the
smaller matrices when compared to the other architectures selected in this work. As
explained in the ML section, each sample represents a single signal window which
was taken from the 5 different recordings previously mixed. The duration of those
windows, tuned for each patient, was:

• Patient 00: 90 seconds

• Patient 06: 90 seconds

• Patient 10: 100 seconds

This length was then divided in 3 subwindows with equal length to create the
final matrix used in the EEG case.

Patient Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)

00 90.00 100.00 90.00 0.00 8

06 86.79 66.67 89.36 3.77 14

10 65.62 53.33 87.50 30.43 14

Mean ± Std 80.80 ± 10.82 73.33 ± 19.63 88.95 ± 1.06 11.40 ± 13.54 12.00 ± 2.83

Table 4.2: Final metrics reported on the selected patients using an LSTM neural
network on ECG signal. Note: FA = False Alarm.

Before analyzing these results it is important to highlight a limitation in the pa-
tient 00 data, where each seizure occurs approximately 15 minutes after the start of
each recording. This significantly reduces the number of available preictal windows
for training, consequently shortening the prediction horizon for this patient and re-
ducing the number of samples available for training and testing the system. As later
discussed and frequently mentioned, the size of the available dataset represents a
critical point in the development of these systems.

Analysis and Discussion of Results

Overall, the obtained results are promising, demonstrating the feasibility of seizure
prediction and in particular of ECG-based systems. While a direct comparison with
previous research is challenging due to the different methodologies reported and
different metrics usage, the results indicate an improvement in classification perfor-
mance and enhanced system reliability. Notably, the preliminary findings suggest an
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increased sensitivity, with a 7% gain compared to [c7] and lower percentages of time
under false alarm, using the metric suggested in [c2]. This translates into a system
that could gain a higher level of trust from the final user, leading to an increased
number of predicted seizures while still achieving a reduced number of false alarms.

Comparison Between Machine Learning and Neural Networks

A comparison of ML and NN outcomes suggests that, given the limitations of the
current data set, the ML models demonstrate superior stability and have greater
intrinsic transparency in the criteria used to classify the signal, leading to better
explainability. This aligns with expectations, as traditional ML methods generally
require fewer training samples and exhibit less sensitivity to small dataset variations.
In contrast, NNs have greater learning potential potentially leading to improved
outcome, but require substantially larger datasets to fully exploit their advantages.
Given this, ML approaches may remain preferable for small datasets, while NN
techniques could achieve better performance once larger datasets become available.

4.1.2 EEG signal

Machine learning

The results reported in this subsection are obtained under the same constraints
previously explained for the ECG case, but use the EEG signal. The duration
of those windows, tuned for each patient and in the case of the best performing
network, was:

• Patient 00: 90 seconds

• Patient 06: 80 seconds

• Patient 10: 80 seconds

Finally, the model selected after the training phase from the previously presented
methods was the random forest algorithm.

Patient Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)
00 79.25 66.67 87.50 7.55 8
06 83.46 81.48 85.29 7.63 30
10 84.00 62.86 92.22 5.60 30
Mean ± Std 82.24 ± 2.12 70.34 ± 8.03 88.34 ± 2.89 6.93 ± 0.94 22.67 ± 10.37

Table 4.3: Final metrics reported on the selected patients using ML on EEG signal.
Note: FA = False Alarm.
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Neural networks

This subsection presents the final results achieved by the different architectures
tested, with a table for each of the selected patients. The duration of those windows,
tuned for each patient and in the case of the best performing network, was:

• Patient 00: 90 seconds

• Patient 06: 90 seconds

• Patient 10: 100 seconds

This length was then divided in 8 subwindows with equal length to create the
final matrix used in the EEG case. The alert horizon represents the time threshold
used to separate normal and preictal windows while labeling. The lower horizon
in patient 00 is due to the seizure starting close to the recording start. Differently
from the ECG case, EEG trials tested all the architectures since the final matrix
had higher dimension.

The table 4.4 below presents the results achieved on the patient 00:

Model Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%)
LSTM 65.49 57.86 69.23 20.66
CNN 68.88 53.77 76.00 16.31
TCN 69.48 62.14 73.08 18.08
RNN 52.40 44.33 56.90 27.68

Table 4.4: Final metrics reported on patient 00 using NN on EEG signal.
Note: FA = False Alarm.

The table 4.5 below presents the results achieved on the patient 06:

Model Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%)
LSTM 64.71 53.57 72.50 16.18
CNN 66.18 50.00 77.50 13.24
TCN 70.59 53.57 82.50 10.29
RNN 73.58 61.11 80.00 13.21

Table 4.5: Final metrics reported on patient 06 using NN on EEG signal.
Note: FA = False Alarm.
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The table 4.6 below presents the results achieved on the patient 10:

Model Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%)
LSTM 57.14 61.11 54.84 28.57
CNN 56.72 51.74 53.34 22.11
TCN 62.50 46.67 71.05 17.86
RNN 54.10 31.82 66.67 21.31

Table 4.6: Final metrics reported on patient 10 using NN on EEG signal.
Note: FA = False Alarm.

For coherence with the data representation previously used, the table 4.7 repre-
sents the performance of the best system for each patient.

Patient Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)

00 TCN 69.48 62.14 73.08 18.08

06 RNN 73.58 61.11 80.00 13.21

10 TCN 62.50 46.67 71.05 17.86

Mean ± Std 68.52 ± 4.57 56.64 ± 7.06 74.71 ± 3.83 16.38 ± 2.25 -

Table 4.7: Summary of the final metrics reported on each patient with the best NNs
on EEG signal. Note: FA = False Alarm.

Analysis and Discussion of Results

Overall, the obtained results are promising but still distant from the requirements
of clinical implementation, reflecting the complexity and variability of the EEG
signal. A direct comparison with previous research is challenging due to the different
methodologies reported, different metrics usage and the large number and variabiliy
EEG seizure prediction publications, however a general improve in the alert horizon
and other performance metrics can be noted.

Comparison Between Machine Learning and Neural Networks

ML was able to achieve higher performance metrics with reduced time under false
alarm, despite the lower complexity of the system. This difference could find its
root in different key aspects: first of all, the higher complexity of the EEG signal
would require a higher number of samples to truly leverage the advantages offered
by the neural networks. Another explanation is in the features extraction step: ML
relies on features calculated over the whole window, while NN uses a matrix where
each column is the value of the feature calculated upon a subwindow. While a
deeper focus would be required to confirm those assumptions, these test are outside
of the general, introductory overview aimed by this work, therefore they were not
conducted.

54



4.2 Generalised system
Seizures generally present a high level of variability and this is one of the main
causes that put in doubt the feasibility of a patient a-specific prediction system, but
no definitive position is generally accepted. As a consequence of this incertitude,
this system was tested on a general dataset mixing the different patients recordings,
as previously mentioned. This forces the system to look for general, universal pat-
terns that may be found in those recording and as a natural consequence, further
reduces to the minimum the risk of using non-physiological pattern to classify. As
explained in the patient-specific approach, EEG and ECG signals were still treated
independently, avoiding a multimodal approach.

4.2.1 ECG signal

Machine learning

Even if the creation of a mixed dataset led to an increased number of available
samples, the same k-fold strategies was implemented to grant metrics homogeneity
and the possibility of a direct comparison with the patient specific case. In this
case a single window duration was selected with a length of 70 seconds. Finally, the
model selected after the training phase from the previously presented methods was
the random forest algorithm.

Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)
69.17 32.69 89.24 6.94 40

Table 4.8: Final metrics reported on general dataset using ML on ECG signal. Note:
FA = False Alarm.

Neural networks

As explained in the ECG section, the same criterion used for the patient-specific
approach was used also in this section. In particular, the matrix dimension restricted
the test to the LSTM architecture only, since the window used - lasting 80 seconds
- was divided in 3 subwindows with equal length to create the final matrix used in
the EEG case.

Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)
64.71 44.00 71.96 20.76 40

Table 4.9: Final metrics reported on general dataset using NN on ECG signal. Note:
FA = False Alarm.
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Analysis and Discussion of Results

The results obtained are clearly reflecting the complexity of generalizing these sys-
tems, with reduced metrics when compared to single patient solutions. However, the
level of performance reached is still highlighting the presence of some pattern, even
if not strong and stable enough to obtain acceptable results. Another confounding
factor that may have impacted the results is the use of the ECG signals: the metrics
extracted are influenced by many factors, first of all the activity of the patient. The
dataset contains data of both sleeping and awake patient, their mix can therefore
introduce noise that further improve the difficulty of the problem.

Comparison Between Machine Learning and Neural Networks

The creation of a general system has greatly improved the number of available
training samples and this has clearly impacted the final results, with an emerging
trend reflecting what was expected in this case: the use of a general system has
increased the complexity of the problem, but the larger number of samples have
led the neural networks to improve specificity, leveraging on their higher complexity
level better coping with the differences in the present pattern.

4.2.2 EEG signal

Machine learning

Even if the creation of a mixed dataset led to an increased number of available
samples, the same k-fold strategies was implemented to grant metrics homogeneity
and the possibility of a direct comparison with the patient specific case. In this case
a single window duration was selected with a length of 80 seconds.

Finally, the model selected after the training phase from the previously presented
methods was the random forest algorithm.

Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)

82.20 76.30 86.98 7.20 40

Table 4.10: Final metrics reported on general dataset using ML on EEG signal.
Note: FA = False Alarm.
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Neural networks

Model Accuracy (%) Sensitivity (%) Specificity (%) Time Under FA (%) Alert Horizon (min)
LSTM 64.35 59.43 66.67 22.66 40
CNN 64.65 60.38 66.67 22.66 40
TCN 57.31 38.33 64.10 24.91 30
RNN 55.16 40.71 62.24 25.35 40

Table 4.11: Final metrics reported on general dataset using NN on EEG signal.
Note: FA = False Alarm.

Analysis and Discussion of Results

This experiments lead to interesting results, in particular when considering the ma-
chine learning solution: the training metrics have reached the highest level when
compared with all other solutions, with a quality that is near what could be started
to be considered interesting in clinical routine. This is particularly true once a
larger dataset becomes available, allowing for improved training and the creation of
a post-processing technique.

Comparison Between Machine Learning and Neural Networks

Differently from the results obtained in the ECG case, NN have reached significantly
lower results than the best ML algorithm trained, as already observed in the EEG,
patient specific systems. There may be different reasons behind this outcome: firstly,
ML could better cope with the higher complexity level reached in this case combined
with the number of data, with NN suffering the lack of more data needed to reach this
higher level result. Secondly, there is a difference in the feature extraction section:
ML receives a vector where each element is the value of the feature calculated upon
the complete window, while NN receives a matrix where each column represent the
feature value upon a subwindow. In this case, with all the variabilities coming from
the different patients, the smaller dimension could increase the noise present in the
matrix and therefore impact the classification quality.
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4.3 Final discussion and conclusion

All the results presented above highlight several important aspects and open inter-
esting perspectives for future testing and exploration. The first observation is that
in all different scenarios, this project actually produced promising results despite
some variability depending on specific conditions. This demonstrates the reusability
of the overall pipeline across the various tested situations, regardless of differences
in signals and other parameters used. Additionally, the general performances also
show the feasibility and potential advantages of a data-driven approach, allowing
specifically tuned parameters for each scenario and thus increasing the quality of
the final outcomes. Another implicit advantage was that manual interventions and
subjective decisions were almost completely removed during the training phase.

A deeper focus is now shifted toward the obtained results themselves: as recent
studies indicate, ECG has confirmed its potential in seizure prediction, paving the
way for seizure prediction systems with significantly enhanced portability and com-
fort for the patient. The previously presented tables for patient-specific systems
show that ECG-based systems generally achieved better metrics compared to their
EEG counterparts. This could be explained by the physiological changes preceding
a seizure, such as imbalances in the parasympathetic nervous system, but it might
also be due to technical reasons like higher noise and acquisition challenges present
in EEG signals. Beyond the comfort advantages of ECG over EEG acquisition,
another important implication arises: since the features were extracted exclusively
from heart rate variability, without requiring information from the actual ECG wave-
form itself, a simple PPG-based smartwatch with appropriate preprocessing could
potentially be used as a simplified acquisition interface. This approach would sig-
nificantly enhance ease of use and patient comfort, providing greater freedom while
still reliably alerting them to incoming seizures. However, the situation reverses in
the general system scenario: here, EEG systems achieved significantly better per-
formance, likely due to differences in wakefulness and other physiological factors
across patients, indicating a need for some personalization to enhance classification
accuracy.

Another significant finding concerns the feasibility of a generalized system: al-
though metrics were lower when compared to patient-specific experiments, perfor-
mance still reached a level that suggests further research could obtain valuable re-
sults. In particular, having a larger number of recordings could help achieve two
separate objectives. First, the creation of a truly generalized system capable of accu-
rately predicting seizures in new, unseen patients without individual customization.
Alternatively, a hybrid approach could leverage the expanded dataset to create a
robust baseline model, subsequently fine-tuned using a limited number of patient-
specific recordings to incorporate individual-specific seizure patterns along with gen-
eralized ones. These results also highlight an important difference between machine
learning techniques and neural networks. As expected due to the limited dataset
size, machine learning generally showed better performance, except in the general
system using ECG signals, where neural networks demonstrated higher sensitivity.
This could be explained by the increased complexity arising from mixing patient
recordings in varying states of wakefulness, which might be better addressed by the
more complex neural network models. Machine learning techniques remain prefer-
able for developing medical applications due to their greater interpretability com-
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pared to the more "black-box" neural network models. Although the performance
difference observed is likely influenced by dataset size limitations, the current results
are still acceptable. Nevertheless, the dataset size represents the primary limitation
of this study; therefore, future work should prioritize acquiring larger and longer
datasets, including a higher number of recordings per patient accompanied by de-
tailed metadata. Addressing this limitation is expected to enhance performance
and significantly increase the robustness of the system, finally leading the long and
winding road of seizure prediction to an end.
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