
POLITECNICO DI TORINO

Master Degree course in Biomedical Engineering

Master Degree Thesis

Inferior vena cava tracking in ultrasound
videos

Supervisors
Prof. Luca Mesin
Ing. Piero Policastro

Candidate
Giulia Cinicola

Academic Year 2024-2025

Abstract

The inferior vena cava (IVC) is the largest vein in the human body that carries oxygen-
poor blood from the lower part of the body to the right atrium of the heart. The objective
of this study is to assess and compare tracking algorithms of OpenCV library to deter-
mine the most effective approach for tracking IVC in ultrasound (US) videos. Tracking is
used to follow the movement of the vein, providing a complete view of the IVC’s position,
leading to the identification of respiratory movements and the assessment of diameter
variations induced by them. The algorithms chosen for tracking are Lucas-Kanade, KCF,
MIL, TLD, MOSSE, Median Flow, Mean Shift, Block Matching, Boosting, ORB and
CSRT. These algorithms are widely used for pedestrian and vehicle tracking in traffic
surveillance and people recognition in crowded environments. Here, they were applied to
US videos for the specific task of IVC tracking. The algorithms were tested on 13 US
videos showing a longitudinal view of the IVC, with different length and resolution to
increase variability. The experiments were conducted on a MacBook Air equipped with
an Apple M1 chip featuring an 8-core CPU and 8 GB of RAM. The 11 algorithms selected
were implemented using Python, and the tracking results for each frame were compared
with the ground-truth regions (GT-ROI). The GT-ROIs for each frame were created by
manually selecting points on the upper and lower borders of IVC. Based on the extreme
points, ROI was defined as a rectangle, which is used to evaluate each tracker’s perfor-
mance. The algorithms were tested on videos by initiating tracking from the location of
the GT-ROI in the first frame of each video analyzed. To assess the trackers’ ability to
correctly locate the IVC, the Intersection over Union (IoU) and the Euclidean distance
between the center of the algorithm’s resulting ROI and the GT-ROI were calculated.
Two other parameters used to evaluate performance are the percentage of failed frames
and the percentage of false positives, which, using a 0.6 IoU threshold, indicate frames
where the IVC position is inaccurately identified. For each pair of successive frames, the
distance between the centers of the tracked ROIs was compared with the corresponding
distance in the GT-ROIs. If the discrepancy exceeds 0.5 cm, the tracking is considered
unreliable, as it indicates that the tracker fails to accurately follow the movement of the
IVC. The best performing trackers are KCF, Block Matching and Median Flow which
demonstrate good execution speed (KCF: FPS = 32.84, Block Matching: FPS = 47.05,
Median Flow: FPS= 55.0). Median Flow achieved an IoU value of 0.82 ± 0.08, KCF
obtained an IoU of 0.79 ± 0.09 while Block Matching has an IoU of 0.80 ± 0.08. The false
positive rate is 1.84 ± 0.06% for Median Flow, 6.03 ± 0.11% for KCF and 6.50 ± 0.10%

3

for Block Matching. The Euclidean distance is 0.44 ± 0.21 cm for Median Flow, KCF
and Block Matching show a value of 0.57 ± 0.30 cm and 0.49 ± 0.23 cm respectively.
All three trackers show good ability to track the movement of the IVC in the various
frames of the video, with the percentage of unreliable distances ranging from 0.61% for
KCF to 1.02% for Block Matching. The difference between the best trackers lies in the
percentage of failed frames: Median Flow in some video is unable to detect the position
of IVC in any frame. In contrast, KCF and Block Matching show no errors in detection.
In conclusion, to ensure reliable tracking of IVC and follow its movements, KCF turns
out to be the best tracker.

4

Contents

List of Figures 7

List of Tables 10

1 Introduction 11

1.1 Ultrasounds . 11

1.1.1 Ultrasound generation principle . 13

1.1.2 Ultrasound imaging . 14

1.2 Cardiovascular system . 16

1.2.1 Heart . 16

1.2.2 Arteries . 18

1.2.3 Capillaries . 20

1.2.4 Veins . 21

1.2.5 Inferior Vena Cava . 23

2 Materials and methods 27

2.1 Dataset . 27

2.2 Tracking algorithms . 29

2.2.1 Lucas-Kanade algorithm . 29

2.2.2 Kernelized Correlation Filters algorithm 31

5

2.2.3 Multiple Instance Learning algorithm 32

2.2.4 Tracking- Learning - Detection algorithm 33

2.2.5 Minimum Output Sum of Squared Error algorithm 35

2.2.6 Channel and Spatial Reliability Tracker algorithm 37

2.2.7 Block Matching algorithm . 37

2.2.8 Mean Shift algorithm . 38

2.2.9 Boosting algorithm . 39

2.2.10 Median Flow algorithm . 40

2.2.11 Oriented FAST and Rotated BRIEF 41

2.3 Metrics . 43

2.4 Python implementation . 44

3 Results and discussion 47

4 Conclusion 58

6

List of Figures

1.1 Acoustic interfaces according to reflected ultrasound intensity (in decibels)
and various tissue types and body interfaces [1]. 12

1.2 Types of arrays made of piezoelectric elements, used to emit ultrasounds
and receive reflected echoes [2]. 14

1.3 On the top of the image the B-mode acquisition and on the bottom of the
image the M-mode acquisition. 15

1.4 Color Doppler acquisition. 16

1.5 Placement of the heart between the second and fifth intercostal spaces,
in the thoracic cavity. Valves: 1 = aortic valve; 2 = pulmonary valve; 3
tricuspid valve; 4 = mitral valve [9]. 17

1.6 Internal view fo heart [10]. 17

1.7 Main arteries of the human body [11]. 18

1.8 Representation of elastic artery, muscular artery and arteriole. Arteriole
diameter is measured in micrometers while that of elastic and muscular
artery is measured in millimeters [12]. 19

1.9 Capillaries representation, connection between arterioles and venules [10]. 20

1.10 Three main types of capillaries: continuous, fenestrated and sinusoidal [12]. 21

1.11 Main veins of the human body [11]. 22

1.12 Vein wall structure, on the right, and venule, on the left [12]. 23

1.13 Position of the IVC, shown in blue. 23

1.14 Curve defining the relationship between the volume of the venous blood
vessel (volume V) and the Ptm [16]. 25

7

2.1 Example of an ultrasound scan, frame 0 of video long 1.mp4. 27

2.2 Frame 1 of video long 9.mp4. In the figure on the left, the manual choice
of points delimiting the upper (blue points) and lower (green points) part
of the vena cava. In the figure on the right, the ROI obtained from the
identified points. 28

2.3 Illustration of MIL tracker operation [23]. 32

2.4 Three components of TLD framework [27]. 34

2.5 Block diagram of the detection phase in the TLD algorithm [27]. 35

2.6 The workflow of MOSSE tracking. a = frame, b = search region, c =
correlation filter, d = respond output, e = target in green box [29]. 36

2.7 Steps of Boosting algorithm. Given the initial position of the object (a) in
frame t, the classifier is evaluated at various candidate positions within a
surrounding search area in frame t + 1. The confidence map (c) obtained is
analyzed to identify the most probable location, and the tracker (classifier)
is then updated based on this estimation (d) [36]. 40

2.8 The component diagram of ORB, which include FAST and BRIEF [42]. . 42

2.9 Metric visual representation [31]. 44

2.10 Flowchart for the calculation of the cm/pixel conversion factor. In blue,
steps performed by the clinician. 45

2.11 Frame 0 of video long 1.mp4. The distance (in yellow) between the red
points, identified by the clinician, is equal to 10 mm, in this case 45.045
pixels. Calculation of conversion factor: 1 cm/ 45.045 pixels = 0.0222 cm
/ pixels . 45

2.12 Flowchart for calculating center, width and height coordinates of the ROI
for each frame of the video and for calculating metrics. 46

2.13 Flowchart for comparing the ground truth ROI (in orange) with the ROI
identified by the algorithm (in yellow) and subsequent calculation of metrics. 46

3.1 Scatter plot representing for each video the execution time of the algorithms. 47

3.2 Bar plot of average FPS values for each algorithm. 48

3.3 Scatter plot of the Median Flow algorithm showing the percentage of failed
frames for each video. 49

8

3.4 Scatter plot of the Mosse algorithm showing the percentage of failed frames
for each video. 49

3.5 Scatter plot of the Lucas-Kanade algorithm showing the percentage of
failed frames for each video. 50

3.6 Box plot showing the distributions of the IoU values for the different algo-
rithms used for tracking the IVC. 51

3.7 Bar plot with errors showing the dispersion of IoU values around the mean
for the different algorithms. 52

3.8 Bar plot of mean values of FPP values. 53

3.9 Box plot showing the distributions of Euclidean distance values for the
different algorithms used for tracking the IVC. 54

3.10 Bar plot with errors showing the dispersion of Euclidean distance between
centroids around the mean for the different algorithms. 55

3.11 Bar plot showing the mean value of unreliable distance for the different
algorithms used for tracking the IVC. 56

9

List of Tables

2.1 Name of videos with their number of frames, resolution and duration. . . 28

3.1 IQR of IoU of each algorithm . 51

3.2 IQR of Euclidean distance between centers of ROI for each algorithm . . 54

10

Chapter 1

Introduction

Ultrasound (US) is a safe and generally non-invasive medical imaging and diagnostic tool
that uses high-frequency sound waves. It enables the visualization of tissues or organs
within the human body and the monitoring of their changes. In this context, tracking
allows to follow the specific movement of an area over time, analyzing tissue deformation
and stiffness across a series of frames. The set of tracking algorithms applied to ultrasound
imaging is valuable for assessing the functionality of dynamic organs, such as the heart,
or the stiffness of tissues, which may indicate conditions such as tumors or fibrosis.

The goal of this thesis project is to analyze tracking algorithms available in the Open
Source Computer Vision (OpenCV) library, evaluate their performance on ultrasound
videos of the inferior vena cava (IVC), and identify the most effective technique. Specifi-
cally, the first chapter describes the physics of ultrasound imaging and its application in
the medical field. Additionally, it includes an explanation of the cardiovascular system
and its components, with a focus on the geometry and function of the vessel of interest in
the study. The second chapter focuses on presenting the materials and methods employed,
then tracking algorithms used and metrics adopted to evaluate their performance. It also
provides a description of the dataset utilized and pipeline implemented with Python pro-
gramming language in order to achieve the objective. Finally, the obtained results are
presented.

1.1 Ultrasounds

Ultrasound images are diagnostic images generated using ultrasound, which are high-
frequency sound waves. Sound waves, which can propagate through various materials
such as fluids, soft tissues, and solids, are longitudinal mechanical waves. They can be
described in terms of particle displacement or pressure variations [1]. Ultrasound waves
are characterized by the following properties:

11

Introduction

• frequency (f): defined as the number of waves per second, it depends on the
sound source. Ultrasound devices operate within a range of 2 MHz to 15 MHz [2].

• propagation speed (v): is determined by the medium’s density and stiffness.
The density (ρ) represents the amount of mass contained in a given volume, denser
blood slows the propagation of the wave, in contrast for less density. The stiffness
(K) reflects the material’s resistance to deformation under an applied force, stiffer
vessels allow the pressure wave to travel faster because they don’t dilate easily. For
human soft tissues, the propagation speed is typically approximated as 1540 m/s
[3].

• wavelength (λ): represents the distance between two consecutive wave crests or
similar points on the wave. It is equal to the ratio of the propagation speed to the
frequency [2].

• acoustic impedance (z): defined as the product of the medium’s density and the
propagation speed of the wave, acoustic impedance represents the resistance to the
propagation of sound waves. Depending on the variation in acoustic impedance, the
tissue produces a stronger or weaker return echo. A smaller impedance difference
results in a weak echo, which appears gray on the ultrasound image; conversely, a
larger impedance difference between tissues generates a strong echo, displayed as
white on the image [1]. Figure 1.1 illustrates a series of interfaces between different
tissues, highlighting variations in acoustic impedance. The intensity scale in decibels
(dB) shown in the image indicates how the impedance difference between tissues
affects the strength of the reflected echo.

Figure 1.1. Acoustic interfaces according to reflected ultrasound intensity (in decibels)
and various tissue types and body interfaces [1].

12

1.1 – Ultrasounds

• resolution and penetration depth: depend on the ultrasound frequency. The
resolution is directly proportional to the frequency, while the penetration depth
decreases as the frequency increases [2].

• attenuation: is proportional to frequency; an increase in frequency results in a
loss of signal power. It is considered to be 0.5 dB/(MHz·cm) for soft tissues [4].
A high-frequency ultrasound beam will experience greater attenuation compared to
a low-frequency one. As a result, deeper structures require low-frequency probes,
while superficial structures require high-frequency probes [2].

1.1.1 Ultrasound generation principle

Ultrasound machines generate US waves and receive the reflected echoes. The ultra-
sound beam originates from a transducer placed in contact with the skin, which converts
electrical energy into high-frequency sound waves. Short bursts of ultrasound pulses are
sent into the patient, each lasting about 1 ms, and several thousand pulses are emitted
per second [1]. When these waves encounter variations in acoustic impedance between
different materials, part of the energy is reflected back to the transducer, while the rest is
transmitted to the second tissue. The amplitude of the reflected and transmitted waves
depends on the impedance variation.
A gel is used between the transducer and the patient’s skin to eliminate air [3], since
at the interface between tissue and air, the impedance difference is high, and the wave
energy cannot penetrate further.

Transducers consist of disk-shaped crystals, known as piezoelectric elements, with diam-
eters of a few millimeters and thicknesses ranging from 1.8 mm for a 1 MHz transducer
to 0.18 mm for a 10 MHz transducer [1]. These crystals utilize the piezoelectric effect
to generate sound waves when an electric field is applied, and conversely, to produce an
electric field when impacted by a sound wave. By analyzing the propagation speed and
the return time of each echo, the distance between the transducer and the tissue bound-
ary is calculated by the scanner. These calculated distances are then used to construct
two-dimensional images of tissues and organs.

Ultrasound probes consist of a single piezoelectric element, but most modern transducers
are made up of arrays containing dozens or even hundreds of small piezoelectric elements.
Various types of probes exist, as shown in Figure 1.2.

The linear array is characterized by small piezoelectric elements arranged in a straight
line. Typically, it consists of 256 elements, each measuring 1 mm x 10 mm [3]. This
configuration produces high-resolution rectangular images and is used for superficial areas
of the body.

13

Introduction

Figure 1.2. Types of arrays made of piezoelectric elements, used to emit ultra-
sounds and receive reflected echoes [2].

In the convex or curvilinear array, the piezoelectric crystals are arranged in a curved line.
This configuration generates fan-shaped images, which broaden the field of view. The
convex array requires fewer elements than the linear array to achieve a wider field of view,
especially with increasing penetration depth [2]. It is commonly used for examining deep
structures.
The sector or phased array is characterized by a smaller transducer area, which is useful
for analyzing heart and cardiac structures. This configuration makes imaging of the tho-
racic structures between the ribs possible; the ultrasound passes through the intercostal
spaces and diverges, increasing the depth field [3].

1.1.2 Ultrasound imaging

There are several main ultrasound imaging modes, defined based on the type of ultrasound
emission. Continuous emission produces Doppler-mode images, while pulsed emission
generates B-mode (Brightness mode) images. The M-mode (Motion mode) is based on a
single line of ultrasound emitted continuously along a direction.

The B-mode (on the top of Figure 1.3) [3] is based on echoes generated by the reflection of
ultrasonic waves at tissue boundaries and internal irregularities. Each echo is displayed
as a bright dot, positioned in the image at the relative location of the structure that
generated the echo within the body. Dot’s brightness depends on the amplitude of the
echo: structures that reflect a larger amount of ultrasound appear brighter than those
that reflect a smaller percentage.

14

1.1 – Ultrasounds

The B-mode system requires precise information on the target’s distance from the trans-
ducer, as well as the position and orientation of the ultrasound beam. After the emission
of an ultrasound pulse, the transducer operates in receive mode. Echoes from structures
closer to the transducer return faster, resulting in brighter and more visible points on
the image. Echoes from greater depths take longer. The distance of each echo from
the transducer is correlated with its depth. This process, known as pulse-echo sequence,
generates a single B-mode line. A complete ultrasound image is made up of 100 or more
B-mode lines, each obtained from the sequential processing of reflected echoes [3].

The M-mode (on the bottom of Figure 1.3) is used in conjunction with the B-mode to
show the real-time movement of structures, such as heart walls and valves. It provides
a temporal image that shows how a given structure moves over time. In the M-mode
image, the vertical axis represents depth, that is the distance between the body position
and the echo recording point, while the horizontal axis defines time [5].

Figure 1.3. On the top of the image the B-mode acquisition and on the bottom of the
image the M-mode acquisition.

Doppler imaging leverages the Doppler effect [6] to measure the motion of fluids within
the body, capturing their direction, velocity, and flow rate. The Color Doppler mode
(Figure 1.4), through the phase shift of the ultrasound, is used to define the direction of
fluid movement, thus approaching or moving away from the transducer. Different colors
are used (typically red and blue), the color hue is defined by the frequency shift of the
waves [7]. The result is a velocity map: velocity is measured by repeated measurements,
8 to 16 lines of data are acquired in one direction and the velocity along it is calculated.

15

Introduction

The process is repeated for different directions [4].
Power Doppler mode, attaching different color intensities, is used to define the magnitude
of fluid flow: brighter areas represent higher flow rates [8].

Figure 1.4. Color Doppler acquisition.

1.2 Cardiovascular system

The cardiovascular system is a complex system composed of organs and vessels responsible
for controlling the speed and the amount of blood transported throughout the body,
providing oxygen and nutrients to the tissues and removing waste products. It allows the
maintenance of homeostasis and the proper functioning of organs. It includes the heart,
arteries, veins, and capillaries.

1.2.1 Heart

The heart is an organ located in the thoracic cavity, positioned between the lungs. It
extends downward and slightly to the left, between the second and fifth intercostal spaces,
as shown in the Figure 1.5. In an adult male, the heart weighs approximately 350 grams
[9] and pumps an average of 5 liters of blood per minute [10].

16

1.2 – Cardiovascular system

Figure 1.5. Placement of the heart between the second and fifth intercostal
spaces, in the thoracic cavity. Valves: 1 = aortic valve; 2 = pulmonary valve; 3
tricuspid valve; 4 = mitral valve [9].

Anatomically, the heart is divided into four chambers [10]: 2 atria and 2 ventricles,
separated by heart valves that ensure unidirectional blood flow. Specifically, the tricuspid
valve separates the right atrium from the right ventricle whereas left atrium and left
ventricle are separated by the mitral valve or bicuspid valve . The atria are the upper
chambers of the heart, which receive incoming blood, while the ventricles are the lower
chambers responsible for pumping blood. At the base of the large vessels emerging from
the ventricles, there are the pulmonary valve, located between the right ventricle and the
pulmonary trunk, and the aortic valve, located between the left ventricle and the aorta.
An internal view of the heart is shown in the Figure 1.6.

Figure 1.6. Internal view fo heart [10].

17

Introduction

The cardiovascular system is organized into two main circuits: the pulmonary circulation,
in which oxygenation of blood from the right ventricle to the lungs takes place. The second
circuit is called the systemic circulation, where blood, thanks to the pumping of the left
ventricle, reaches the tissues through capillaries. After delivering oxygen and nutrients,
the de-oxygenated blood returns to the heart.

1.2.2 Arteries

Arteries are blood vessels that carry blood to the tissues and organs of the body from
the heart, playing a crucial role in delivering oxygen and nutrients to the tissues and
maintaining adequate blood flow. The major arteries in the body are shown in the
Figure 1.7.

Figure 1.7. Main arteries of the human body [11].

18

1.2 – Cardiovascular system

Designed to withstand the high pressure generated by the heart, arteries are characterized
by thick, elastic walls that allow for continuous blood flow between heart contractions.
The pulmonary arteries carry oxygen-poor blood to the lungs, while the systemic arteries
carry oxygen-rich blood from the left ventricle to the tissues of the body [10].

The wall of an artery consists of three layers [12]:

• tunica intima: simple squamous epithelium covered by endothelium, which is in
direct contact with the blood. The endothelium allows for regulation of the muscular
tone of the arterial wall, influencing smooth muscle constriction and relaxation, and
contributes to increasing blood pressure. This layer is connected to the connective
tissue by the basal membrane.

• tunica media: the thickest layer that contains smooth muscle cells and elastic
fibers. Because of this layer, arteries are able, through dilation and constriction, to
regulate blood flow and maintain arterial pressure. In larger arteries, the external
elastic membrane separates the tunica media from the tunica externa.

• tunica externa: a connective tissue sheath containing groups of smooth muscle
fibers and collagen fibers. It provides strength and support to the arterial wall.

The arteries closest to the heart are called elastic arteries. These vessels, with diameters
greater than 10 mm, are thicker, and all three tunics contain a high percentage of elastic
fibers. As arteries move further from the heart, the percentage of elastic fibers in the
tunica media decreases, and the amount of muscle increases. Arteries of this type, with
diameters ranging from 0.1 to 10 mm, are called muscular arteries [12].
Arteries branch into smaller vessels called arterioles, which are critical in regulating blood
flow through the vessels via constriction and dilation mechanisms. Arterioles are not as
elastic as larger arteries, they are stiffer because they are subjected to lower pressure [13].

The Figure 1.8 shows the three types of arteries and their wall structures.

Figure 1.8. Representation of elastic artery, muscular artery and arteriole. Ar-
teriole diameter is measured in micrometers while that of elastic and muscular
artery is measured in millimeters [12].

19

Introduction

1.2.3 Capillaries

Capillaries are the smallest blood vessels in the human body, with a diameter ranging
from 5 to 10 micrometers [12]. Distributed in an intricate and branching network, they
ensure that every cell in the body receives the necessary oxygen and nutrients. In certain
areas, such as the heart, liver, kidneys, and skeletal muscles, capillaries form particularly
extensive networks due to the high demand for oxygen and nutrients in these tissues. In
contrast, the skin has a lower density of capillaries [11].
Capillaries serve as a bridge between veins and arteries (Figure 1.9) and are composed of
a single layer of endothelial cells that allow the passage of oxygen and nutrients into the
tissues, as well as the transport of metabolic waste from the tissues to the blood.

Figure 1.9. Capillaries representation, connection between arterioles and venules [10].

As shown in the Figure 1.10, capillaries can be of three main types [11]:

• continuous: a continuous layer of endothelial cells with some spaces between them.
The basal membrane is uninterrupted. Only small molecules, such as water and
gases, can pass through them.

• fenestrated: these capillaries have small openings or fenestrations in the endothe-
lial cells. They allow the passage of small molecules, such as hormones and nutrients.

• sinusoidal: between the endothelial cells, there are wide intercellular gaps, and the
basal membrane is incomplete. The passage of whole cells, such as red and white
blood cells, is permitted.

20

1.2 – Cardiovascular system

Figure 1.10. Three main types of capillaries: continuous, fenestrated and sinusoidal [12].

1.2.4 Veins

Veins are blood vessels responsible for transporting blood from the body’s tissues to the
heart. The main veins are shown in the Figure 1.11. A distinctive feature of veins,
particularly those in the lower limbs, is the presence of unidirectional valves, which are
folds of the tunica intima. These valves prevent blood from flowing backward and help
counteract the force of gravity, ensuring blood flows toward the heart [13].

Oxygenated blood from the lungs to the left atrium of the heart comes through the
pulmonary veins. There are four pulmonary veins: two from the right lung and two from
the left lung. The systemic veins transport de-oxygenated blood from the body’s tissues
to the right atrium of the heart. The main systemic veins include the superior vena cava,
which collects blood from the upper part of the body and the inferior vena cava, which
collects blood from the lower part of the body [10].

The walls of veins are composed of the same three layers as arteries, as described in the
Section 1.2.2. However, there are some significant differences [12]:

• tunica intima: in veins, it is smoother and contains fewer smooth muscle cells and
elastic fibers compared to that of arteries, which appears more undulated.

• tunica media: it is much thinner in veins than in arteries, reflecting the lower
pressure to which veins are subjected.

• tunica externa: it is thicker in veins to provide structural support.

Overall, the walls of veins are thinner than those of arteries because the blood pressure
in veins is lower. However, veins have a greater capacity to carry larger volumes of blood
(approximately 70% of total volume [14]).

21

Introduction

Figure 1.11. Main veins of the human body [11].

Veins with a diameter between 8 and 100 micrometers are called venules. Blood flows
from the capillaries into the venules and then into progressively larger veins. The walls
of venules are thinner than those of veins and vary depending on their diameter. They
are composed of endothelium, a thin layer of smooth muscle cells and elastic fibers and
a layer of connective tissue fibers [12].

The Figure 1.12 illustrates the structure of veins and venules.

22

1.2 – Cardiovascular system

Figure 1.12. Vein wall structure, on the right, and venule, on the left [12].

1.2.5 Inferior Vena Cava

The IVC, illustrated in Figure 1.13, is the largest blood vessel in the human body, that
carries oxygen-poor blood from the lower part of the body to the heart. The inferior vena
cava begins at the level of the fourth and fifth lumbar vertebrae, where the common iliac
veins merge. Each of the common iliac veins is formed by the joining of the internal and
external iliac veins. The internal iliac veins collect de-oxygenated blood from the pelvis,
genital region, gluteal area, and the upper thigh, while the external iliac veins drain de-
oxygenated blood from the lower limbs and abdominal wall [15]. The IVC consists of four
segments: hepatic, suprarenal, renal and infra-renal [14], and is connected to the superior
vena cava via lumbar veins, spinal venous plexuses and the azygos vein.

Figure 1.13. Position of the IVC, shown in blue.

23

Introduction

The IVC is typically about 22 cm long and has a diameter range from 1.8 cm to 3.2 cm
[14]. Larger or smaller diameters indicate pathological conditions such as hypovolaemia
or constrictive pericarditis in the former case and heart failure or liver cirrhosis in the
latter.

Expiration and inspiration cause movement of the IVC due to changes in intrathoracic and
abdominal pressure. During inspiration, the thoracic cavity expands and the diaphragm
lowers. As a result, the intrathoracic pressure decreases while the intra-abdominal pres-
sure increases. The IVC undergoes a reduction in diameter and shifts toward the tho-
rax. In contrast, during expiration the intrathoracic pressure increases while the intra-
abdominal pressure decreases, resulting in the expansion of the IVC and a slight shift
toward the abdomen.
Dynamic changes in IVC diameter are influenced by the respiratory cycle and cardiac
activity. Pulsatility refers to changes related to heartbeat, while collapsibility concerns
changes during respiration.

Typical analysis of IVC performed by physicians is done manually by calculating the
caval index (CI), which is defined as the change in vessel diameter during one breathing
cycle relative to the maximum diameter and is calculated as:

CI = max(D) − min(D)
max(D) (1.1)

where max(D) and min(D) represent the maximum and the minimum diameters of
the vessel during a breathing cycle. This approach is not standardized, is operator-
dependent—affected by the operator’s experience—and prone to measurement errors.
The caval index provides information about the collapsibility of the investigated blood
vessel, tissue compliance and transmural pressure [14].

The transmural pressure Ptm is defined as the difference between the internal (Pint) and
external (Pout) blood pressure across the vessel wall, allows variations in vessel size to be
assessed :

Ptm = Pin − Pout (1.2)

Vessel dimensions increase with rising Ptm. The change in Ptm in the IVC is influenced
by the change in Pout. The relationship between vessel dimensions, expressed in terms
of volume V, and Ptm is typically represented by a pressure-volume curve, as shown in a
simplified manner in Figure 1.14.

As shown in the Figure 1.14, if the average Ptm is low (as in the case of the IVC), size
variations will be large, whereas with higher Ptm values, the vessel dimensions will be
greater and the pulsatility will be lower. The slope of the curve defines vessel compliance,

24

1.2 – Cardiovascular system

which is a measure of how easily a blood vessel can dilate when internal pressure increases.
An increase in Ptm implies a decrease in compliance.

Figure 1.14. Curve defining the relationship between the volume of the venous blood
vessel (volume V) and the Ptm [16].

An additional factor must also be considered is the extravascular compliance, which is the
ability of extravascular tissues to adapt to vessel expansion. Thus, when measuring vessel
volume variations in response to specific arterial pressure changes, the total compliance
(Ctot) is evaluated. This accounts for both vascular compliance (Cv) and extravascular
compliance (Cev), according to the formula:

Ctot = 1
1

Cv
+ 1

Cev

(1.3)

Low extravascular compliance can lead to an underestimation of the actual vessel com-
pliance.

The analysis of ultrasound images involves not only simple visualization but also tissue
tracking, which is crucial in clinical contexts such as lesion assessment, cardiac dynamics
monitoring, or observing moving structures during surgical procedures. Tracking in ultra-
sound imaging allows for monitoring tissue movements to evaluate their overall position,
allowing identification of useful parameters for clinical analysis.

Over the years, various object tracking algorithms have been developed. These algorithms
differ in complexity and accuracy, and their effectiveness depends on factors such as image
quality, the presence of artifacts, and the object’s motion dynamics. Comparing these

25

Introduction

algorithms is essential to identifying the most promising methods for the chosen purpose.
In this work, several algorithms have been analyzed for tissue monitoring in ultrasound
videos. The research is based on the implementation of algorithms available in OpenCV,
leveraging their ease of use and robustness. These algorithms, originally designed for
different purposes, such as tracking people in crowded squares or train stations [17],
recognition people walking in different directions [18], have been implemented and tested
on ultrasound videos for tracking the IVC. Their comparative analysis allowed for the
evaluation of performance in terms of accuracy, robustness, and speed, aiming to identify
the most suitable algorithm for automatic tracking of the inferior vena cava in ultrasound
videos.

26

Chapter 2

Materials and methods

2.1 Dataset

The dataset used consists of 13 videos in .mp4 format, containing ultrasonic scans of
the inferior vena cava in longitudinal section. To increase the variability of the dataset,
the scans come from different sources: specifically, different ultrasound probes were used,
and the videos represent inferior vena cava from different subjects. An example of an
ultrasound scan is shown in Figure 2.1.

Figure 2.1. Example of an ultrasound scan, frame 0 of video long 1.mp4.

The 13 videos are composed of a different number of frames, a total of 3054, and are
characterized by different resolutions and durations, as shown in the Table 2.1.

27

Materials and methods

Video Number of frames Resolution Duration (s)
long 1 189 1172x608 9
long 2 300 640x480 10
long 3 173 1172x608 9
long 4 217 1172x608 10
long 5 155 1172x608 10
long 6 125 1172x608 8
long 7 200 1172x608 9
long 8 116 1172x608 6
long 9 95 1172x608 6
long 10 398 1172x608 21
long 11 136 800x800 7
long 12 190 1172x608 9
long 13 758 800x800 15

Table 2.1. Name of videos with their number of frames, resolution and duration.

Each algorithm is tested on all videos, and performance is evaluated by comparison with
ground-truth ROIs. For the construction of the ground-truth, the user manually selects
the points that delimit the upper and lower edges of the vena cava. Based on these
extreme points, the ROI is defined in the first frame, recording the coordinates of its
center, width, and height. The point selection is repeated at regular frame intervals,
allowing the ROI position to be updated and the new coordinates to be saved. The
process is shown in Figure 2.2.

Figure 2.2. Frame 1 of video long 9.mp4. In the figure on the left, the manual choice of
points delimiting the upper (blue points) and lower (green points) part of the vena cava.
In the figure on the right, the ROI obtained from the identified points.

Considering the uniformity of the inferior vena cava movement, which changes little
between consecutive frames, it was decided to keep the ROI unchanged for intervals of 10
frames. However, in the case of video long 13.mp4, due to the large number of frames
compared to the other videos, the ground truth update interval was set to 30 frames.

28

2.2 – Tracking algorithms

2.2 Tracking algorithms

Tracking algorithms are used to follow the movement of the IVC in ultrasound videos
to obtain a complete view of the vein. They can be useful in assessing the inferior vena
cava, allowing the study of vein movements caused by breathing and cardiac activity.
Furthermore, it is possible to analyze the mechanical response of the IVC to changes in
transmural pressure. These changes provide insights into venous compliance, which is
crucial for understanding how veins respond to different filling conditions and how they
expand, acting as a reservoir for venous return [16]. Therefore, tracking allows for the
automatic analysis and monitoring of the variations in the diameter of the blood vessel,
overcoming the limitations of static measurement and operator dependence.

The tracking algorithms used to monitor the IVC in ultrasound videos belong to the
OpenCV library, which is widely used in various fields such as image and video processing,
and object recognition. These are semi-automatic algorithms that require input. In the
case at hand, starting from the ground truth ROI position identified in the first frame of
each video, various tracking algorithms are applied to compare their performance using
temporal, accuracy, and precision metrics.

2.2.1 Lucas-Kanade algorithm

The Lucas-Kanade algorithm is one of the most widely used techniques for calculating
optical flow, which measures the apparent motion of objects or surfaces between two
consecutive frames in a video. It is assumed that the pixel intensity of the object of
interest does not change between consecutive frames and neighboring pixels exhibit similar
motion.

This method, as described in [19], uses a subsection of a video frame, T (x), and aligns it
with a target image, I(x). Specifically, it aims to find the corresponding position of T (x)
in the next frame. This is done using the parameterized warp matrix W (x; p), which
allows the calculation of the new position of the pixel x in the next image after applying
the transformation. p is a parameter vector that describes the transformation. The goal
of the algorithm is to determine the parameters p that minimize the sum of squared errors
between T (x) and the warped image I(x):

error =
∑︂

x

|T (x) − I(W (x; p))|2 (2.1)

where T (x) is the pixel intensity of the model and I(W (x; p)) is the pixel intensity of
the deformed image. The transformation is not linear; at each iteration, the parameter
vector p is updated incrementally [19].

The OpenCV adaptation of the library simplifies this method by minimizing the sum of

29

Materials and methods

squared errors between a model T (x) and the subsequent image in a video I, without
considering deformations. Considering a pixel I(x, y, t) in the first frame, in the next
frame it will have moved by an amount equal to (∆x, ∆y) after a time ∆t. The idea
is that if a point moves slightly from one position to another between two consecutive
images, its light intensity remains constant, thus [20]:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (2.2)

The algorithm uses the Taylor expansion to expand the image intensity:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) + ∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t (2.3)

By removing the common terms and dividing by ∆t, the optical flow equation is obtained:

fxu + fyv + ft = 0 (2.4)

fx, fy and ft are the image gradients in the x, y and time directions, respectively. To
solve this, the Lucas-Kanade algorithm can be used in order to track objects or ROI
within videos.

To track the inferior vena cava within ultrasound videos, the function
cv2.calcOpticalFlowPyrLK(prev_Img, next_Img, roi, winSize=(15, 15),
maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 15,
0.02)) [20] is used, where:

• prev_Img is the first grayscale frame used as a reference to calculate the movement
of the points.

• next_Img is the second grayscale frame where the position of the points, which have
moved relative to the previous frame, is to be found.

• roi is an array of coordinates representing the initial points to be tracked in the
previous frame.

• winSize=(15, 15) represents the size of the search window for each level of the
pyramid, which is used to calculate the optical flow. The pyramid is a data structure
used to represent an image at different resolutions, with the full image at the base
and progressively smaller images as as the levels of the pyramid advance.

• maxLevel=2 represents the maximum number of levels in the pyramid used by the
algorithm.

30

2.2 – Tracking algorithms

• criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 15, 0.02))
defines the stopping criteria of the algorithm; in this case, a maximum number of
iterations equal to 15 and a minimum change between iterations of 0.02.

2.2.2 Kernelized Correlation Filters algorithm

The Kernelized Correlation Filters (KCF) algorithm is available in OpenCV and is used
for object tracking in videos. It employs a correlation filtering approach where a model
of the object to track is identified in the first frame and then used to detect its position
in subsequent frames [18].

The algorithm is based on the use of a trained classifier capable of distinguishing between
positive examples (region of interest) and negative examples (background). The classifier
is based on features derived from the calculation of the Histogram of Oriented Gradients
(HOG). Specifically, the HOG features are identified through the following steps [21]:

• Color space normalization to reduce lighting and shadow effects. The gamma
correction technique is used.

• Calculation of horizontal and vertical gradients.

• Construction of local histograms based on gradients. The frame is divided
into cells, and a local histogram describing the distribution of gradient directions
within the cell is constructed for each.

• Normalization and combination of histograms to obtain a feature vector.
Cells are overlaid and histograms combined. Normalization helps to reduce the
impact of local lighting variations.

The global HOG vector represents the input for the KCF classifier. To improve accuracy,
circulant matrices [21] are used to cyclically shift the tracking area in order to generate
synthetic samples. They are computationally expensive to manipulate, so to speed up
the correlation calculation, the Discrete Fourier Transform (DFT) is applied.
The algorithm uses HOG features to construct the correlation filter, whose response
provides a probability map of where the object is located in the analyzed frame. Each
candidate region is compared with the target model, and the position of the target in the
next frame corresponds to the region with the highest correlation.

KCF [18] may be subject to undesirable edge effects, which can compromise accuracy.
However, for tracking the inferior vena cava in ultrasound images, the vein is almost al-
ways positioned at the center, significantly reducing the impact of edge-related problems.

The Python function cv2.TrackerKCF [22] is employed to track objects in US videos.
After the tracker has been created, the method init() is used to set the initial ROI ,

31

Materials and methods

and the update() method is used to track the object in subsequent frames. This approach
allows for the tracking of the object as it moves through the video, leveraging the KCF
tracking algorithm’s features for robust tracking even in challenging conditions.

2.2.3 Multiple Instance Learning algorithm

The Multiple Instance Learning (MIL) tracker is part of the OpenCV library and allows
tracking of the inferior vena cava in ultrasound videos. The workflow is illustrated in the
Figure 2.3.

Figure 2.3. Illustration of MIL tracker operation [23].

The image is divided into patches, each represented by a set of Haar-like features [23]. To
obtain an overall estimate of the features in a patch, the weight values of all the rectangles
into which the patch is divided are summed. Each rectangle has a weight that reflects
importance relative to the whole patch.

The MIL tracker is based on a supervised learning approach, where a classifier returns a
probability function p(y|x), where x is a patch into which the image is divided and y is
a binary value indicating the presence of the object of interest in x [23]. The probability
function p(y|x) takes continuous values between 0 and 1. Starting from the manual
identification of the ROI, a set Xs of patches is defined to be analyzed in the new frame
to search for the object within a radius s. Specifically, Xs is defined as:

Xs = {x | s > ∥l(x) − l∗t−1∥} (2.5)

where l∗t−1 is the estimated position of the object in the previous frame, and l(x) is the
position of the patch in the image. For each new frame, p(y|x) is calculated for all x
belonging to Xs.

32

2.2 – Tracking algorithms

The patches containing the object are labeled as positive. A radius r < s is considered
to identify the set of positive patches:

Xr = {x | r > ∥l(x) − l∗t ∥} (2.6)

The patches that do not contain the object are labeled as negative. A region with a
radius between r and β is considered to identify the set of negative patches:

Xr,β = {x | β > ∥l(x) − l∗t ∥ > r} (2.7)

The patches are collected into two bags: the positive bag contains at least one positive
patches, while the negative bag contains the negative patches. MIL operates on bags of
patches.

During tracking [23], the trained MIL classifier is used to predict the position of the
object in subsequent frames. The tracker analyzes a series of positions within the frame,
each of which is evaluated by the classifier, which returns the probability of belonging to
the object or the background. For each new frame, the tracker identifies the maximum
value of the probability function as the position of the object.
It is an iterative process, where the classifier is updated when the patch with the highest
score is identified.

To track the IVC, the cv2.TrackerMIL function [24] is used similarly to cv2.TrackerKCF,
as described in Section 2.2.3. This tracker relies on a multiple instance learning approach,
where the object is tracked by distinguishing between positive and negative bags.

2.2.4 Tracking- Learning - Detection algorithm

The Tracking - Learning - Detection (TLD) framework is an object tracking algorithm for
videos, composed of three independent components [25]: tracking, learning, and detection.
These three phases operate independently but interact with each other as shown in the
Figure 2.4. These three phases can be performed simultaneously on separate processors
or as separate tasks [26].

33

Materials and methods

Figure 2.4. Three components of TLD framework [27].

In the tracking phase, it is assumed that the object is always visible and its movement is
limited. Based on information from previous frames, the system can detect the motion of
the object of interest [25] using the Lucas-Kanade algorithm [27]. However, if the object
moves out of the field of view, tracking may fail.

The learning phase [27] improves the system by assuming that the other two phases may
fail in certain situations. It identifies and learns from cases where the tracker makes
errors, such as when it incorrectly labels positive or negative patches. Positive samples
are patches where the object is actually present whereas negative samples are patches
where the object is absent. When the tracker identify incorrect negative samples, which
the algorithm adds to the training set with a positive label, thereby refining the classifi-
cation model. Conversely, when the tracker incorrectly identifies a patch as positive, the
algorithm labels it as negative and adds it to the training set.

The detection phase is responsible for locating the object when it is either occluded or
completely absent from the frame, performing a full scan [25]. Detection relies on three
cascading classifiers [27], as shown in the Figure 2.5 and described below:

• Variance Classifier: compares the variance of a candidate window with that of the
initial target window. If the variance of the candidate window is greater than half
of the initial target’s variance, the window proceeds to the second classifier. This
step helps remove background regions, which are characterized by low variance.

• Random Forest Classifier: the object model is extracted and compared with
previously stored models in the pool (a collection of target models). If the similarity
exceeds a certain threshold, the window is labeled as positive; otherwise, it is labeled
as negative. At this stage, if the similarity between the current model and those in
the pool exceeds a second threshold, the window is considered as the target by the
detection system.

34

2.2 – Tracking algorithms

• Nearest Neighbor Classifier: a classification algorithm that stores existing cases
and classifies new data based on a similarity measure. If the similarity is high, the
window is considered as belonging to the same class as the target.

Figure 2.5. Block diagram of the detection phase in the TLD algorithm [27].

From an implementation perspective for tracking the IVC in ultrasound videos, the
Python function cv2.TrackerTLD is used [28]. The process begins with the creation
of the tracker: cv2.TrackerTLD_create(). Then is performed its initialization using
the init() method, applied to the initial frame of the video where the tracking starts.
Subsequently, the update() method is used to update the tracker in the following frames,
allowing continuous monitoring of the ROI’s position throughout the video.

2.2.5 Minimum Output Sum of Squared Error algorithm

The Minimum Output Sum of Squared Error (MOSSE) tracker is based on the correla-
tion between the object model and the analyzed frame in order to determine its position.
It uses adaptive correlation filters [29]; to perform tracking, a filter is created that rep-
resents the object’s appearance. This filter is trained so that, when convolved with the
object’s image, the analysis of the filter’s response allows the identification of the target’s
position in the frame. To train the filter, MOSSE generates 8 affine transformations of
the template, resulting in a total of 9 input images. Each image corresponds to an output
response that takes the shape of a two-dimensional Gaussian, with the peak indicating
the object’s position. The convolution operation between the filter and the object’s image
is expressed as:

fi ⊗ h = gi (2.8)

The symbol ⊗ denotes the convolution operation.
To optimize tracking, the tracker uses the Fast Fourier Transform (FFT). The convolution
operation is transformed into point-wise multiplication, as stated by the convolution
theorem:

35

Materials and methods

Fi ⊙ H∗ = Gi (2.9)

The symbol ⊙ indicates the dot product of the elements and the symbol ∗ represents the
complex conjugate of the filter.
The goal in training the filter is to minimize the sum of squared errors between the
convolution output and the specific response image:

H = min
H

∑︂
i

|Fi ⊙ H∗ − Gi|2 (2.10)

Once the target is located, the filter is dynamically updated to adapt to changes in the
object’s appearance. The workflow of the MOSSE algorithm is illustrated in Figure 2.6.

Figure 2.6. The workflow of MOSSE tracking. a = frame, b = search region, c =
correlation filter, d = respond output, e = target in green box [29].

This tracking algorithm is robust to variations in lighting, scale, and deformations. It is
capable of following objects that change shape over time, making it suitable for dynamic
scenarios such as tracking the inferior vena cava. It is also useful for detecting occlusions,
by analyzing the ratio between the peak of the correlation and the lateral lobe [18], the
algorithm works even when the object is not visible.

The Python function cv2.TrackerMOSSE [30] is used for the purpose of this thesis project.

36

2.2 – Tracking algorithms

2.2.6 Channel and Spatial Reliability Tracker algorithm

The Channel and Spatial Reliability Tracker (CSRT) is a tracker that combines learning
techniques based on spatial features and channels to track an object in a video. It builds
a representation of the object to be tracked using a grid of channels, each describing
a different feature of the object, such as color, texture, or contours. These features are
combined with spatial information to create a representation that includes both the shape
and the position of the object in the frame.

The CSRT tracker not only uses the filter but also relies on two types of reliability that
allow it to adapt to changes in the appearance of the object [18]:

• Spatial reliability: the spatial reliability map dynamically adapts the filter to
the shape and position of the object, and is used to determine the filter’s size.
Additionally, the map adjusts the filter so that it is not bound by the object’s
periodic movement, allowing it to search within an unconstrained area in the frame
[31].

• Channel reliability: each channel is weighted according to its importance for
tracking. The algorithm measures the reliability of each channel with a score.
These scores allow the proper weighting of the various channels when calculating
the object’s position.

The filter’s response is a correlation map that represents the probability that a particular
area in the frame contains the object. The peak of this map indicates the most probable
position of the object within the frame.
After each frame, the filter is updated by combining the spatial and channel features.
This continuous update process allows the tracker to maintain high performance even
when the object undergoes deformations or scale variations.

To track the IVC, the tracker is created using the Python function
cv2.TrackerCSRT_create() [32]. It is then initialized with the bounding box in the first
frame of the video and updated as the subsequent frames are analyzed.

2.2.7 Block Matching algorithm

The Block Matching Algorithm (BMA) is based on dividing the frames into non-overlapping
blocks and searching for correspondences between the pixel blocks of consecutive frames.
Each block in the current frame is compared with blocks in the subsequent frame by
shifting it within a predefined search area. For each possible shift of the block, a measure
of the distance between the intensity values of the pixels in the two blocks is calculated.
The position that results in the smallest distance is identified as the best match [33].

37

Materials and methods

In the context of IVC tracking, normalized cross-correlation (NCC) was used to identify
the best match between the blocks, as indicated in the Formula 2.11.

NCC =
∑︁

i,j(I1(i, j) − µ1)(I2(i, j) − µ2)√︂∑︁
i,j(I1(i, j) − µ1)2 ∑︁

i,j(I2(i, j) − µ2)2
(2.11)

Where:

• I1 and I2 are the two blocks being compared,

• µ1 and µ2 are the mean values of the blocks I1 and I2 respectively.

The NCC value returns a number between -1 and 1. 1 indicates perfect correlation,
that is, the two blocks have exactly matching pixels, and -1 indicates perfect negative
correlation.

The BMA is very fast and suitable for real-time applications, but its accuracy can de-
crease in the presence of object deformations, lighting changes, noise, occlusions, or the
appearance of new objects.

In the specific case of IVC tracking, starting with the ROI in the first frame of the video
Block Matching is update to track the movement of the ROI. The NCC coefficient is used
to measure the similarity between the examined block and the ROI in previous frames.
A higher value indicates a better match, helping to identify the most probable position
of the object.

2.2.8 Mean Shift algorithm

Mean Shift is a probabilistic method based on a probability distribution, used to find the
optimal position of an object through an iterative process of shifting the search window
towards the region of highest density.

First, the histogram of the intensity values of the ROI identified in the first frame of the
video is built, which represents the target model to be tracked. For the subsequent frame,
the histogram of the region where the object is presumed to be located is calculated, and
the similarity between the target model and the candidate model is measured using the
Bhattacharyya coefficient [34], defined by the Formula 2.12:

ρ(p, q) =
m∑︂

i=1

√
pi · qi (2.12)

38

2.2 – Tracking algorithms

where p is the histogram of the target model, q is the histogram of the candidate model
and m is the number of the bins in the histogram.

To reduce the influence of pixels far from the center of the ROI, the Epanechnikov function
[34] is employed, assigning greater weight to pixels closer to the center of the search
window compared to those farther away.
The maximum value of the Bhattacharyya coefficient guides the Mean Shift vector, which
determines the direction and magnitude of the shift needed to center the ROI on the
object. The algorithm is iterative and updates the target’s position by calculating the
Mean Shift vector at each iteration. The process ends when the vector becomes very
small or zero, indicating that the object has been correctly located. The new position
of the ROI represents the object’s position in the current frame. For subsequent frames,
the process is repeated.

The Mean Shift algorithm has been implemented to perform tracking of the IVC within
the ultrasound videos. The ROI in the first frame is used to extract color features by
calculating the histogram in the HSV (Hue Saturation Brightness) color space. After
applying a mask to exclude overly dark or bright values, the tracking begins. For each
subsequent frame in the video, a back-projection of the histogram is performed on the
current frame, producing a probability map that allows us to understand which areas are
most likely to be where the object is located.

To apply the algorithm, the Python function cv2.meanShift(back_proj, track_window,
term_crit) [35] is used, where:

• back_proj is the probability map calculated using the histogram of the ROI defined
in the first frame.

• track_window is a rectangle that defines the search window in the current image.
It is the starting point of the tracking and is updated at each iteration of the
algorithm.

• term_crit is the termination criteria that determines when the algorithm should
stop. In this case, the algorithm stops when the position of the window changes by
less than 1 and after 10 iterations.

2.2.9 Boosting algorithm

The Boosting algorithm in OpenCV is based on AdaBoost with a HAAR cascade classifier
[31]. AdaBoost is a machine learning algorithm that combines multiple weak classifiers
into a strong classifier, thus increasing the overall accuracy of the model. Tracking is
performed as illustrated in the Figure 2.7.

39

Materials and methods

Figure 2.7. Steps of Boosting algorithm. Given the initial position of the object
(a) in frame t, the classifier is evaluated at various candidate positions within a
surrounding search area in frame t + 1. The confidence map (c) obtained is analyzed
to identify the most probable location, and the tracker (classifier) is then updated
based on this estimation (d) [36].

During initialization phase, it is assumed that the target object has already been detected.
The region containing the IVC is considered a positive sample for the tracker. To enable
the model distinguish the object from the background, negative samples are extracted
from non-overlapping regions around the target area [18].

Each weak classifier [36] is trained to evaluate the visual features of the target area and
determine whether each pixel belongs to the tracked object or not. When analyzing a
new frame, for each position of the ROI, the response of each weak classifier is evaluated,
which returns a confidence map. This map assigns a score to each position in the image
based on its similarity to the target object.
Each weak classifier is assigned a weight based on its accuracy. A classifier with a lower
error rate receives a higher weight. The final combination of weak classifiers to form the
strong classifier is based on the weights assigned. The confidence values from all the weak
classifiers are combined using a weighted sum, in order to select the area with the highest
confidence value. Then, the tracking window is moved to the position corresponding to
the maximum confidence value.

In every frame, the tracker updates the position estimate of the object by analyzing the
ROI based on the output of classifiers trained in the previous frame.

The Python function cv2.TrackerBoosting_create() [37] is used to create the tracker.
Starting from the ROI identified in frame 0, tracking begins and the tracker is updated
in subsequent frames.

2.2.10 Median Flow algorithm

Median Flow is a visual tracking algorithm implemented in OpenCV, designed to follow
the movement of an object between frames of a video. It is based on the principle

40

2.2 – Tracking algorithms

of bidirectional optical flow consistency, using the points tracked in previous frames as
references to estimate the movement of the object [38].

In the current frame, the ROI containing the object to be tracked is identified, and a
grid of points is initialized within it. These points serve as references for calculating the
object’s movement, with each point being tracked through the Lucas-Kanade algorithm
[38]. The quality of the optical flow predictions for each point is evaluated through two
filtering processes [39]:

• filtering via normalized cross-correlation (NCC) : points are excluded if the
correlation between pixel blocks in the two frames is below a certain threshold.

• filtering via Forward-Backward (FB) error : points with excessive propa-
gation error are discarded. The FB error is the Euclidean distance between the
tracked points in the forward direction (from the current frame to the next) and in
the reverse direction.

The worst 50% of the predictions are discarded [38], while the remaining ones are used
to estimate the displacement of the entire ROI. This estimate is calculated by computing
the median of the displacements of each point.

To describe how the tracked object changes in size or deforms over time, the scale variation
[38] is used, defined as the ratio between the medians of the distances between pairs of
points across frames. If the value is greater than 1, it indicates magnification, while if it
is less than 1, it indicates reduction.
The algorithm assumes that the object to be tracked consists of small rigid patches [38],
in fact flexible parts or edges of the object are excluded from the process as they could
compromise the accuracy of tracking.

To track the IVC using the Median Flow algorithm, the Python function
cv2.TrackerMedianFlow [40] is used. After creating and initializing the tracker, tracking
continues with monitoring the position of the object in the subsequent video frames.

2.2.11 Oriented FAST and Rotated BRIEF

The Oriented FAST and Rotated BRIEF (ORB) algorithm belongs to the OpenCV li-
brary, used to detect, describe and compare image features, which are useful for tracking
objects in videos.

ORB combines two techniques [41], as shown in Figure 2.8:

• FAST (Features from Accelerated Segment Test): allows to detect points of interest,
known as corners, within an image.

41

Materials and methods

• BRIEF (Binary Robust Independent Elementary Features): generates binary de-
scriptors that enable the comparison of the corners detected.

Figure 2.8. The component diagram of ORB, which include FAST and BRIEF [42].

The first step involves applying the FAST algorithm to identify corners. This algorithm
analyzes an imaginary circle around each candidate point and compares the intensity of
the pixels along the circle with that of the central pixel. A point is classified as a corner
if at least a certain number of pixels in the circle have intensities significantly higher or
lower than that of the central pixel. A corner is determined using Formula 2.13 [41]:

N =
∑︂

A∈circle(p)
fCR(I(p), I(x)) (2.13)

where:

fCR =
{︄

1 |I(x) − I(p)| > ϵd

0 others
(2.14)

I(x) is the gray value of any point in the circle, I(p) is the gray value of the center of the
image, p is the center point, and ϵd is the minimum threshold given. With the Formula
2.13 the number N of pixels is calculated, if N > ϵd then the point will be a corner.

To define the dominant angle around the corner ORB uses the intensity centroid [42]:

θ = atan2(m01, m10) (2.15)

where moments are defined as:

mpq =
∑︂
x,y

xpyqI(x, y) (2.16)

I(x, y) is the pixel intensity in the patch surrounding the keypoint.

42

2.3 – Metrics

The BRIEF algorithm randomly selects a number of pairs of points around the identified
corners [41]. The goal is to obtain a binary descriptor for each identified corner, it is
constructed by comparing the pixel intensities for each pair. If one pixel is brighter than
the other, 1 is recorded otherwise 0.

To associate points between successive frames, the obtained descriptors are compared
using the Hamming distance [41], defined as the sum of the results of the XOR operation
between the corresponding bits of the two descriptors:

D(K1, K2) =
n∑︂

i=1
K1[i] ⊕ K2[i] (2.17)

K1 and K2 are the descriptors and n is the descriptor length.

Additionally, ORB ranks the keypoints based on the Harris score [41], to reduce the
number of keypoints to compare in different frames. The Harris score identifies how
much a point is a corner: a point is defined as such if a shift in any direction around it
causes a significant change in pixel intensity.

From the implementation point of view [43], starting from the ROI in frame 0 of the video,
the keypoints in it are identified. For each subsequent frame, the ROI corresponding to
the updated position of the precedent frame is extracted, taking into account the observed
movements. ORB is used to detect the keypoints in the new ROI, and the descriptors
computed in the first frame are compared with those obtained in subsequent frames
through Hamming distance.

2.3 Metrics

To determine which of the algorithms described in Section 2.2 is best suited for tracking
the inferior vena cava in ultrasound videos, several evaluation metrics are considered.

For each video, the execution time of the algorithms is calculated, defined as the time
taken by the tracker to track the object throughout the video. Consequently, frames
per second (FPS) is used to determine how many frames the algorithm is capable of
processing per second. Another metric used is the percentage of failed frames, which is
used to understand whether the tracker is able to track the object of interest within all
frames of the video.

The area of the ROI resulting from the tracking of each algorithm is then compared with
the one containing the IVC, defined as the ground truth. To this end, the Intersection
over Union (IoU) is calculated, defined as the ratio between the intersection area and the
union area of the two ROIs. The IoU takes values between 0 and 1, where 1 indicates
perfect overlap. By setting a threshold of 0.6 for the IoU, the percentage of false positives

43

Materials and methods

(FPP) is calculated for each algorithm. The FPP indicates how many times the tracking
algorithm incorrectly detects an ROI that does not match the ground truth, so it does not
recognize the area containing the IVC. Additionally, considering the centers of both the
predicted and ground truth ROIs, their Euclidean distance was calculated. Finally, the
Euclidean distance between the ROI centers in successive frames is calculated, both for
the tracker-detected and ground truth ROIs. The corresponding distances are compared
and, by applying a threshold of 0.5 cm, the number of cases where the distance exceeds
this value is determined.

Mean values and standard deviations (std) of IoU, FPP and Euclidean distance are cal-
culated for each algorithm. An example of the calculation of some of these parameters is
shown in the Figure 2.9.

Figure 2.9. Metric visual representation [31].

2.4 Python implementation

The objective of this thesis project is to evaluate the tracking algorithms described in
Section 2.2, in order to determine which is the most effective for tracking the inferior
vena cava in ultrasound videos. The evaluation is carried out by calculating the metrics
described in Section 2.3.
To achieve this goal, a step-by-step approach was adopted, dividing the flowchart into
three main phases.

First phase Starting from the initial frame of the video (frame 0), the first phase
involves (Figure 2.10) the identification of points to define the conversion from pixel to
cm: the physician selects two points on the scale present in frame 0 to define a distance
equal to 1 cm, allowing calculation of the conversion factor cm/pixels. Using the distance
between these points, the conversion factor is calculated as the ratio between 1 cm and
the corresponding length measured in pixels in frame 0. The conversion factor is used to
limit the area of tracker movement in the video to calculate some metrics.

44

2.4 – Python implementation

Figure 2.10. Flowchart for the calculation of the cm/pixel conversion factor. In blue,
steps performed by the clinician.

An example of the conversion factor calculation is illustrated in Figure 2.11.

Figure 2.11. Frame 0 of video long 1.mp4. The distance (in yellow) between the red
points, identified by the clinician, is equal to 10 mm, in this case 45.045 pixels. Calculation
of conversion factor: 1 cm/ 45.045 pixels = 0.0222 cm / pixels

Second phase As illustrated in the flowchart in Figure 2.12, starting from the position
of the ROI ground truth determined in the first frame of the video, the tracking algo-
rithms described in Section 2.2 are applied. For each algorithm, the following metrics
are calculated: execution time, frame rate (FPS), and the number of frames where the
tracker fails. These parameters are stored in a file named temporal_metrics.txt (green
in the Figure 2.12). Additionally, for each frame, the center coordinates of the ROI, along
with its width and height in pixels, are saved in a .txt file.

45

Materials and methods

Figure 2.12. Flowchart for calculating center, width and height coordinates of the ROI
for each frame of the video and for calculating metrics.

Third phase To evaluate the performance of each algorithm, the data of the ROI
considered as ground truth (shown in orange in Figure 2.13) is compared with the data
of the ROI obtained from the tracking algorithm (shown in yellow in Figure 2.13). The
accuracy metrics calculated include IoU, FPP, Euclidean distance of the centroids and
the percentage of unreliable distances, as specified in Section 2.3. These metrics are saved
in the metrics_results.txt file, reporting the average values and std for each video.

Figure 2.13. Flowchart for comparing the ground truth ROI (in orange) with the ROI
identified by the algorithm (in yellow) and subsequent calculation of metrics.

46

Chapter 3

Results and discussion

The 11 algorithms described in Section 2.2 were tested on the videos from the dataset.

For each video, the time interval between the start of the tracking (corresponding to
frame 1 of the video) and its conclusion is measured. The results show that the fastest
algorithms in completing the tracking are Mean Shift, Lucas-Kanade, Median Flow, and
MOSSE, while the slowest algorithm is MIL. Considering the total number of frames
that make up the video, it can be observed that the greater the number of frames, the
longer it will take for the algorithm to perform the tracking. The execution times are
consistent across the videos. The Figures 3.1 shows the execution time graphs of the
various algorithms for all the videos.

Figure 3.1. Scatter plot representing for each video the execution time of the algorithms.

47

Results and discussion

To assess how quickly the algorithms can process each frame of the video, the FPS value
is calculated, defined as the ratio between the total number of video frames and the
execution time of the tracking. The average results are shown in Figure 3.2.

Figure 3.2. Bar plot of average FPS values for each algorithm.

In IVC tracking, the FPS value of an algorithm is a crucial indicator for assessing its use-
fulness in different applications. A high FPS ensures smooth and real-time monitoring,
allowing physicians to observe the overall position of the IVC in the videos. The average
FPS values were calculated for each algorithm.
The Figure 3.2 shows the results: the Mean Shift tracker achieves the highest FPS (ap-
proximately 59 frames per second), followed by Lucas-Kanade, MOSSE, Median Flow,
Feature ORB, Block Matching and KCF. The MIL tracker stands out negatively, pro-
cessing only 15 frames per second.

Based on the dataset videos, the percentage of failed frames is calculated for each al-
gorithm, indicating the inability of the tracker to detect the vein in all the frames of
the video. The algorithms affected by this issue are Median Flow, MOSSE and Lucas-
Kanade, while the remaining ones successfully detect the IVC in all frames.
For the algorithms with this metric not equal to zero, a scatter plot is created to show
the value of this percentage for each video. The reference Figures are 3.3, 3.4 and 3.5.

48

Results and discussion

Figure 3.3. Scatter plot of the Median Flow algorithm showing the percentage of
failed frames for each video.

Figure 3.4. Scatter plot of the Mosse algorithm showing the percentage of failed
frames for each video.

49

Results and discussion

Figure 3.5. Scatter plot of the Lucas-Kanade algorithm showing the percentage
of failed frames for each video.

From the reference figures it is clear that:

• The Median Flow algorithm (Figure 3.3) shows a high percentage (greater than
90%) in video long4.mp4 and a lower percentage for the video long12.mp4, it is
about 9%.

• The MOSSE algorithm (Figure 3.4) is unable to detect the IVC in any frame of
the long1.mp4 video. The most problematic video is that mentioned above, along
with long5.mp4, long7.mp4 and long10.mp4, where the detection rate is 18,83%,
8.54% and 23.43% respectively.

• The Lucas-Kanade tracker (Figure 3.5) has zero detection rates only for a lim-
ited number of videos, specifically long3.mp4, long4.mp4, long5.mp4, long7.mp4,
long10.mp4, long11.mp4 and long13.mp4. The long9.mp4 video exhibits the worst
tracking performance with this algorithm.

The overlap between the ROI identified by the tracking algorithm in each frame of the
video and the corresponding ROI defined as ground truth is calculated using IoU. The
distribution of values of all the frames is shown through box plot in Figure 3.6.

50

Results and discussion

Figure 3.6. Box plot showing the distributions of the IoU values for the different algo-
rithms used for tracking the IVC.

The IoU has values between 0 and 1; values close to the maximum value are preferred
to identify which algorithm most accurately selects the area containing the IVC. The
standard deviation, on the other hand, measures the variability of the overlap in the
frames of the video; a low value is preferred as it indicates greater stability, thus avoiding
sudden errors.

For each tracker, the IoU is calculated for all frames of the video. Through the box plot,
the median and inter-quartile range (IQR) are calculated for each algorithm. The IQR
represents the dispersion of data around the median. The goal is to identify the algorithm
that exhibits a high IoU value with narrow IQR and a low standard deviation, ensuring
both accuracy and stability in IVC tracking.

The IQR values are shown in Table 3.1.

Algorithm IQR
Lucas - Kanade 0.244
KCF 0.149
MIL 0.162
TLD 0.164
MOSSE 0.143
CSRT 0.182
Mean Shift 0.195
Block Matching 0.167
Boosting 0.173
Median Flow 0.13
ORB 0.129

Table 3.1. IQR of IoU of each algorithm

51

Results and discussion

The bar graph with errors (Figures 3.7) shows the average IoU value for each algorithm
calculated over the entire dataset and the std value that measures the dispersion of IoU
values around the mean.

Figure 3.7. Bar plot with errors showing the dispersion of IoU values around the
mean for the different algorithms.

It can be observed that Median Flow, KCF and Block Matching are the algorithms with
the highest median IoU values: 0.813, 0.8 and 0.799 respectively. MIL, Boosting, and
MOSSE have a slightly lower median IoU of about 0.79. As shown in Table 3.1, KCF,
MOSSE, and Median Flow have narrow IQRs (between 0.13 and 0.149), indicating that
their performance is fairly consistent across video frames. These algorithms, along with
Block Matching, also show a low standard deviation, with values ranging from 0.075 to
0.088.

In conclusion, the best trackers for this selection method are:

• Block Matching: median IoU = 0.799, IQR = 0.167, std = 0.082

• Median Flow: median IoU = 0.813, IQR = 0.13, std = 0.075

• KCF: median IoU = 0.8, IQR = 0.149, std = 0.088

The least performing tracker is Mean Shift, whose median IoU is 0.38. The standard
deviation and IQR, respectively 0.066 and 0.195, show that the tracker is stable in making
errors, indicating its incompatibility with the thesis objectives.

The percentage of false positives is calculated based on the IoU value. For each frame
of the video, the IoU was calculated, using a threshold of 0.6 to define the number of

52

Results and discussion

frames in which the tracker cannot correctly identify the location of the ROI. For each
algorithm, considering all frames of the videos, mean valor and mean standard deviation
are calculated. The Figure 3.8 illustrates the results obtained, it shows only the mean
values, as the standard deviations are very low (on the order of 0.1%).
The best tracker will be the one with a combination of low average value and low standard
deviation. In fact, a low percentage of false positives indicates that the tracker can
identify the position of IVC in most frames, and a low standard deviation value reflects
high tracking stability over time, suggesting the absence of random errors.

Figure 3.8. Bar plot of mean values of FPP values.

The results show that the Mean Shift tracker performs the worst, with an FPP of 89.22%,
indicating poor IVC detection. The best tracker, on the other hand, is Median Flow which
records a false positive rate of 1.84%.
Other algorithms with good performances in detecting the IVC across video frames in-
clude KCF, MIL and Block Matching (FPP between 5.41% and 6.5%).

The Euclidean distance between the centers of the ROIs drawn by each algorithm and
the center of the ROI ground truth is calculated to evaluate the accuracy with which the
algorithm follows the center of the ROI between frames. The distance is measured in
cm using the conversion factor cm/pixels. This calculation is done for each frame of the
video; the distribution of values for each algorithm is shown in Figure 3.9.

53

Results and discussion

Figure 3.9. Box plot showing the distributions of Euclidean distance values for the
different algorithms used for tracking the IVC.

IQRs are calculated and described in Table 3.2. The standard deviation shows the distri-
bution of Euclidean distance values with respect to the mean value, the reference Figure
is 3.10.

Algorithm IQR
Lucas - Kanade 0.98
KCF 0.505
MIL 0.55
TLD 0.848
MOSSE 0.544
CSRT 0.595
Mean Shift 0.799
Block Matching 0.479
Boosting 0.658
Median Flow 0.43
ORB 0.466

Table 3.2. IQR of Euclidean distance between centers of ROI for each algorithm

54

Results and discussion

Figure 3.10. Bar plot with errors showing the dispersion of Euclidean distance between
centroids around the mean for the different algorithms.

The Euclidean distance is used to quantify the spatial error between the IVC position
obtained by the tracker and its actual reference position. The goal is to prioritize lower
values of Euclidean distance, IQR, and standard deviation to achieve higher tracking
accuracy and avoid fluctuations or unexpected errors.

The references figures show that Median Flow, Block Matching, MIL, and KCF present
lower values for median Euclidean distance. In particular, Median Flow records a median
of 0.455 cm with an IQR of 0.43 cm. Block Matching has a median of 0.539 cm and an
IQR equal to 0.479 cm. KCF presents a median of 0.5 cm and an IQR of 0.505 cm and
finally, MIL has a median distance equal to 0.531 cm with a IQR of 0.55 cm.
Considering the distribution of the Euclidean distance values with respect to the mean
value, the algorithm that is characterized by the lowest std is MOSSE (std = 0.196 cm).
It is followed by Median Flow (std = 0.21 cm), Block Matching (std = 0.233), MIL and
KCF (std about 0.30 cm).

In conclusion, considering the values above, the best algorithms are KCF, Block Match-
ing, Median Flow, and MIL, as they demonstrate more stable and precise performance
compared to the other algorithms:

• KCF: median distance = 0.5 cm, IQR = 0.505 cm, std = 0.30 cm.

• Block Matching: median distance = 0.539 cm, IQR = 0.479 cm, std = 0.233 cm.

• Median Flow: median distance = 0.455 cm, IQR = 0.43 cm, std = 0.21 cm.

• MIL: median distance = 0.531 cm, IQR = 0.55 cm, std = 0.294 cm.

55

Results and discussion

Mean Shift is the tracker that has the greatest difficulty following the center of the ROI,
as evidenced by a median of 1.95 cm and IQR of 0.799 cm, indicating constant errors.

Euclidean distances between ROI centers were calculated between consecutive frame
pairs, both for tracker-detected and ground-truth ROIs. Comparison of corresponding
distances within the same video allows evaluating the tracker’s ability to correctly follow
the object over time. Differences greater than a threshold of 0.5 cm indicate tracker
instability. These distances have been defined as unreliable. The bar plot describing the
mean value of the percentage values of the unreliable distances are shown in Figure 3.11.

Figure 3.11. Bar plot showing the mean value of unreliable distance for the different
algorithms used for tracking the IVC.

The percentage of unreliable distances shows that all algorithms are able to track the
object of interest across different frames of the video, as indicated by the values in the
Figure above. The best algorithm is KCF, while TLD proves to be the worst in this
regard.

The objective of this thesis project is to identify the best algorithm for tracking the
inferior vena cava in ultrasound video. Tracking the vein is essential to follow the overall
movement of the vessel and therefore to monitor the parameters that characterize it.
The results show that algorithms such as Mean Shift, Lucas-Kanade, Median Flow, and
MOSSE have proven to be the fastest, while MIL is the slowest. It is crucial for the
selected tracker to process a high number of frames per second, ensuring smooth tracking,
especially in dynamic environments. The number of frames in the video affects the
tracker’s speed, as a higher frame count results in longer processing times. Considering the
different videos analyzed for each tracker, it can be observed that the speed performance
of the algorithms remains consistent.

In terms of precision the best-performing trackers are Median Flow, KCF and Block

56

Results and discussion

Matching, which stood out for their high IoU values and low Euclidean distance values
between the ROI center obtained by the algorithm and that of the ground truth. These
algorithms are capable of accurately tracking the ROI associated with the IVC and fol-
lowing the center in the video frames. Although MIL is accurate in detecting the presence
of the IVC, it is slow and therefore not suitable for this purpose.
The algorithms that are less suitable for tracking the IVC in ultrasound videos are Mean
Shift and Feature ORB. Both are characterized by low accuracy, as evidenced by low IoU
values and a high Euclidean distance between the centers of the tracked ROI and the
ground truth ROI. Additionally, the low standard deviation indicates systematic errors.

To consistently monitor the vena cava in videos, the tracker must be able to identify the
IVC in all frames. Based on the calculation of the percentage of failed frames, Median
Flow, MOSSE, and Lucas-Kanade encounter difficulties in tracking the IVC in some
videos. The error occurs in some or all frames. Tracking blood vessels is challenging for
certain algorithms due to the low contrast between surrounding tissues and, in this case,
the IVC. The trackers described above use optical flow models, which may not perform
well when the movement of the IVC is barely visible. Additionally, ultrasound images
are subject to artifacts that can further complicate tracking. Some algorithms, such as
MOSSE, are more effective at tracking objects with a stable shape and may struggle to
follow the dynamic movement of the IVC.

The false positive rate indicates how much the algorithm fails to correctly detect the IVC
position in the frames. The rate is calculated by imposing a threshold of 0.6 on the IoU,
frames that detect a lower value contribute to the calculation of this metric. The Mean
Shift tracker showed the worst FPP, failing to maintain stable tracking of the IVC in the
frames. On the contrary, Block Matching, Median Flow and KCF stood out as the best,
with low false positive rates.

For each pair of successive frames, the Euclidean distance between the centers of the
tracked ROIs was compared with the corresponding distance in the ground-truth ROIs.
If the difference exceeds 0.5 cm, it indicates a poor ability of the tracker to follow the
object movement in the video. Among all the analyzed algorithms, TLD shows the worst
performance. The calculation of the distance between the centers of the ground-truth
ROIs and those obtained by the tracker allows to evaluate the overall accuracy of the
tracking in each frame, measuring the precision with which the algorithm identifies the
position of the IVC. Instead, the comparison of the distances between the centers of the
ROIs in successive frames provides an indication of the ability of the tracker to follow the
object over time, evaluating the consistency of the tracking along the video.

57

Chapter 4

Conclusion

The aim of this thesis project is to perform tracking of the inferior vena cava in ultrasound
videos to analyze vessel movements induced by the respiratory cycle and cardiac activity.
The analysis is conducted on a dataset consisting of 13 videos, characterized by differ-
ent lengths and resolutions. The OpenCV library is the starting point for the selection
of tracking algorithms: specifically, 11 trackers are employed to track the blood vessel.
These algorithms, commonly used in different fields, belong to different categories, in-
cluding optical flow, adaptive classifiers, correlation filters, block matching, feature-based
tracking, and brightness histogram analysis. The location of the ROI ground truth in the
first frame of the video is the start point for tracking. Precision, accuracy, and speed are
evaluated for each algorithm using different metrics.
The results show that Mean Shift is not suitable for the use case because the identified
ROI is often out of position with the ground truth and generates a very high number
of false positives. The tracker, despite being one of the fastest in terms of FPS, tends
to frequently lose the object during the video. Mean Shift, therefore, cannot correctly
detect the position of the IVC and track its movements.
Analyzing the different metrics, the algorithms with the best performance are Median
Flow, KCF, and Block Matching. However, Median Flow proves to be unreliable, as it
fails to track the vessel for most frames in some videos. Block Matching offers slight
superiority in precision and accuracy over KCF, but the latter makes fewer errors in ROI
identification and is more stable.
The choice of the most suitable tracking algorithm for tracking the IVC is made through
a statistical test on the calculated metrics. Significant differences emerge in performance,
such as the FPS and the percentage of unreliable distances. The FPS of the methods
considered allows for real-time tracking, but the KCF algorithm shows a lower percentage
of unreliable distances, indicating greater stability in detecting the IVC in video frames.
The goal is to identify a robust algorithm that can perform correctly on all videos without
failure, consequently KCF is the best choice for tracking the inferior vena cava due to its
balance of accuracy, stability, and reliability.

58

Bibliography

[1] J. E. Aldrich. «Basic physics of ultrasound imaging». In: Critical Care Medicine
35.5 Suppl (May 2007), S131–S137. doi: 10.1097/01.CCM.0000260624.99430.22.

[2] F. M. Abu-Zidan, A. F. Hefny, and P. Corr. «Clinical ultrasound physics». In:
Journal of Emerg Trauma Shock 4.4 (Oct. 2011), pp. 501–503. doi: 10.4103/0974-
2700.86646.

[3] Kevin Martin. «Introduction to B-mode imaging». In: Diagnostic Ultrasound: Physics
and Equipment. Ed. by Peter R. Hoskins, Kevin Martin, and Abigail Thrush. Cam-
bridge University Press, 2010, pp. 1–3.

[4] J. A. Jensen. «Medical ultrasound imaging». In: Progress in Biophysics and Molec-
ular Biology 93.1-3 (Apr. 2007). Epub 2006 Aug 15, pp. 153–165. doi: 10.1016/j.
pbiomolbio.2006.07.025.

[5] John S. Mattoon and Thomas G. Nyland. Principi fondamentali di ecografia di-
agnostica. CAPITOLO 1: Principi fondamentali di ecografia diagnostica. Milano:
Elsevier, 2011. Chap. 1.

[6] H.F. Routh. «Doppler ultrasound». In: IEEE Engineering in Medicine and Biology
Magazine 15.6 (1996), pp. 31–40. doi: 10.1109/51.544510.

[7] W. D. Foley and S. J. Erickson. «Color Doppler flow imaging». In: AJR Am J
Roentgenol 156.1 (Jan. 1991), pp. 3–13. doi: 10.2214/ajr.156.1.1898567.

[8] R. S. Moorthy. «Doppler ultrasound». In: Med J Armed Forces India 58.1 (Jan.
2002), pp. 1–2. doi: 10.1016/S0377-1237(02)80001-6.

[9] S. Jarvis and S. Saman. «Cardiac system 1: anatomy and physiology». In: Nursing
Times [online] 114.2 (2018). [Online], pp. 34–37.

[10] National Cancer Institute Surveillance Epidemiology and End Results (SEER) Pro-
gram. Cardiovascular System Anatomy. https://training.seer.cancer.gov/
anatomy/cardiovascular/. Accessed January 22, 2025.

[11] SimpleMed. Anatomy of the Cardiovascular System. Accessed: 2025-01-22. 2025.
url: https://simplemed.co.uk/subjects/cardiovascular/anatomy-of-the-
cardiovascular-system.

59

https://doi.org/10.1097/01.CCM.0000260624.99430.22
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.1016/j.pbiomolbio.2006.07.025
https://doi.org/10.1016/j.pbiomolbio.2006.07.025
https://doi.org/10.1109/51.544510
https://doi.org/10.2214/ajr.156.1.1898567
https://doi.org/10.1016/S0377-1237(02)80001-6
https://training.seer.cancer.gov/anatomy/cardiovascular/
https://training.seer.cancer.gov/anatomy/cardiovascular/
https://simplemed.co.uk/subjects/cardiovascular/anatomy-of-the-cardiovascular-system
https://simplemed.co.uk/subjects/cardiovascular/anatomy-of-the-cardiovascular-system

BIBLIOGRAPHY

[12] Lumen Learning. Structure and Function of Blood Vessels. https://courses.
lumenlearning.com/suny-ap2/chapter/structure-and-function-of-blood-
vessels/. Accessed January 22, 2025.

[13] R. Chaudhry, J.H. Miao, and A. Rehman. Physiology, Cardiovascular. Updated
2022 Oct 16. StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.
gov/books/NBK493197/. Treasure Island (FL): StatPearls Publishing, 2025.

[14] P. Policastro and L. Mesin. «Processing Ultrasound Scans of the Inferior Vena
Cava: Techniques and Applications». In: Bioengineering 10.9 (2023), p. 1076. doi:
10.3390/bioengineering10091076.

[15] Humanitas. Vena Cava Inferiore. Accessed: 2024-11-22. 2024.
[16] Luca Mesin et al. «Assessment of Phasic Changes of Vascular Size by Automated

Edge Tracking-State of the Art and Clinical Perspectives». In: Frontiers in Cardio-
vascular Medicine 8 (Jan. 2022), p. 775635. doi: 10.3389/fcvm.2021.775635.

[17] D. Džigal N. Dardagan A. Brđanin and A. Akagic. «Multiple Object Trackers in
OpenCV: A Benchmark». In: 2021 IEEE 30th International Symposium on Indus-
trial Electronics (ISIE). 2021, pp. 1–6. doi: 10.1109/ISIE45552.2021.9576367.

[18] Olfa Haggu, Agninoube Tchalim, and Baptiste Magnier. «A Comparison of OpenCV
Algorithms for Human Tracking with a Moving Perspective Camera». In: 2021
European Conference on Visual Information Processing (EUVIP) (2021). doi: 10.
1109/EUVIP50544.2021.9483957.

[19] Simon Baker and Iain Matthews. «Lucas-Kanade 20 Years On: A Unifying Frame-
work». In: International Journal of Computer Vision 56.3 (2004), pp. 221–255. doi:
10.1023/B:VISI.0000011205.11775.fd.

[20] OpenCV. Lucas-Kanade Optical Flow - OpenCV Documentation. https://docs.
opencv.org/4.x/db/d7f/tutorial_js_lucas_kanade.html. Accessed: November
30, 2024. 2024.

[21] Zhang Nana and Zhang Jin. «Optimization of Face Tracking Based on KCF and
Camshift». In: Procedia Computer Science 131 (2018), pp. 158–166. url: https:
//api.semanticscholar.org/CorpusID:67214540.

[22] OpenCV. cv::TrackerKCF Class Reference. https://docs.opencv.org/3.4/d2/
dff/classcv_1_1TrackerKCF.html. Accessed: 2024-11-30. 2015.

[23] B. Babenko, M.-H. Yang, and S. Belongie. «Visual Tracking with Online Multiple
Instance Learning». In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. Miami, FL, USA, 2009, pp. 983–990. doi: 10 . 1109 / CVPR . 2009 .
5206737.

[24] OpenCV. cv::TrackerMIL Class Reference. https://docs.opencv.org/4.x/d0/
d26/classcv_1_1TrackerMIL.html. Accessed: 2024-12-07. 2024.

[25] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. «Tracking-Learning-Detection».
In: IEEE Transactions on Pattern Analysis & Machine Intelligence (2012).

60

https://courses.lumenlearning.com/suny-ap2/chapter/structure-and-function-of-blood-vessels/
https://courses.lumenlearning.com/suny-ap2/chapter/structure-and-function-of-blood-vessels/
https://courses.lumenlearning.com/suny-ap2/chapter/structure-and-function-of-blood-vessels/
https://www.ncbi.nlm.nih.gov/books/NBK493197/
https://www.ncbi.nlm.nih.gov/books/NBK493197/
https://doi.org/10.3390/bioengineering10091076
https://doi.org/10.3389/fcvm.2021.775635
https://doi.org/10.1109/ISIE45552.2021.9576367
https://doi.org/10.1109/EUVIP50544.2021.9483957
https://doi.org/10.1109/EUVIP50544.2021.9483957
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://docs.opencv.org/4.x/db/d7f/tutorial_js_lucas_kanade.html
https://docs.opencv.org/4.x/db/d7f/tutorial_js_lucas_kanade.html
https://api.semanticscholar.org/CorpusID:67214540
https://api.semanticscholar.org/CorpusID:67214540
https://docs.opencv.org/3.4/d2/dff/classcv_1_1TrackerKCF.html
https://docs.opencv.org/3.4/d2/dff/classcv_1_1TrackerKCF.html
https://doi.org/10.1109/CVPR.2009.5206737
https://doi.org/10.1109/CVPR.2009.5206737
https://docs.opencv.org/4.x/d0/d26/classcv_1_1TrackerMIL.html
https://docs.opencv.org/4.x/d0/d26/classcv_1_1TrackerMIL.html

BIBLIOGRAPHY

[26] Peter Janků et al. «Comparison of tracking algorithms implemented in OpenCV».
In: 20th International Conference on Circuits, Systems, Communications and Com-
puters. 2016. url: https://api.semanticscholar.org/CorpusID:62907943.

[27] H. Moridvaisi, F. Razzazi, M. Pourmina, et al. «An extended TLD tracking algo-
rithm using co-training learning for low frame rate videos». In: Multimedia Tools
and Applications 82 (2023), pp. 24743–24769. doi: 10.1007/s11042-022-14106-1.
url: https://doi.org/10.1007/s11042-022-14106-1.

[28] OpenCV. cv::TrackerTLD Class Reference. https://docs.opencv.org/3.4/dc/
d1c/classcv_1_1TrackerTLD.html. Accessed: 2024-12-04. 2023.

[29] K. Han. «Image object tracking based on temporal context and MOSSE». In: Clus-
ter Computing 20 (2017), pp. 1259–1269. doi: 10.1007/s10586-017-0800-0.

[30] OpenCV. cv::TrackerMOSSE Class Reference. https://docs.opencv.org/3.4/
d0/d02/classcv_1_1TrackerMOSSE.html. Accessed: 2024-12-04. 2023.

[31] A. A. Levin, D. D. Klimov, A. A. Nechunaev, et al. «Assessment of experimen-
tal OpenCV tracking algorithms for ultrasound videos». In: Scientific Reports 13
(2023), p. 6765. doi: 10.1038/s41598-023-30930-3. url: https://doi.org/10.
1038/s41598-023-30930-3.

[32] OpenCV. cv::TrackerCSRT Class Reference. https://docs.opencv.org/3.4/d0/
d02/classcv_1_1TrackerCSRT.html. Accessed: 2024-12-04. 2023.

[33] A Gyaourova, C Kamath, and S Cheung. «Block Matching for Object Tracking».
In: (Oct. 2003). doi: 10.2172/15009731. url: https://www.osti.gov/biblio/
15009731.

[34] Xiang Xiang, Wenhui Chen, and Du Zeng. «Intelligent Target Tracking and Shoot-
ing System with Mean Shift». In: 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications. 2008, pp. 417–421. doi: 10.1109/
ISPA.2008.167.

[35] OpenCV. MeanShift Tutorial. https://docs.opencv.org/3.4/d7/d00/tutorial_
meanshift.html. Accessed: 2024-12-05. 2017.

[36] Helmut Grabner, Michael Grabner, and Horst Bischof. «Real-Time Tracking via
On-line Boosting». In: vol. 1. Jan. 2006, pp. 47–56. doi: 10.5244/C.20.6.

[37] OpenCV. cv::TrackerBOOSTING Class Reference. https://docs.opencv.org/3.
4/d1/d1a/classcv_1_1TrackerBoosting.html. Accessed: 2024-12-12. 2023.

[38] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. «Forward-Backward Error:
Automatic Detection of Tracking Failures». In: 2010 20th International Conference
on Pattern Recognition. 2010, pp. 2756–2759. doi: 10.1109/ICPR.2010.675.

[39] A. Varfolomieiev and O. Lysenko. «An improved algorithm of median flow for visual
object tracking and its implementation on ARM platform». In: J Real-Time Image
Proc 11 (2016), pp. 527–534. doi: 10.1007/s11554-013-0354-1.

[40] OpenCV. cv::TrackerMedianFlow Class Reference. https://docs.opencv.org/3.
4/d7/d86/classcv_1_1TrackerMedianFlow.html. Accessed: 2024-12-12. 2023.

61

https://api.semanticscholar.org/CorpusID:62907943
https://doi.org/10.1007/s11042-022-14106-1
https://doi.org/10.1007/s11042-022-14106-1
https://docs.opencv.org/3.4/dc/d1c/classcv_1_1TrackerTLD.html
https://docs.opencv.org/3.4/dc/d1c/classcv_1_1TrackerTLD.html
https://doi.org/10.1007/s10586-017-0800-0
https://docs.opencv.org/3.4/d0/d02/classcv_1_1TrackerMOSSE.html
https://docs.opencv.org/3.4/d0/d02/classcv_1_1TrackerMOSSE.html
https://doi.org/10.1038/s41598-023-30930-3
https://doi.org/10.1038/s41598-023-30930-3
https://doi.org/10.1038/s41598-023-30930-3
https://docs.opencv.org/3.4/d0/d02/classcv_1_1TrackerCSRT.html
https://docs.opencv.org/3.4/d0/d02/classcv_1_1TrackerCSRT.html
https://doi.org/10.2172/15009731
https://www.osti.gov/biblio/15009731
https://www.osti.gov/biblio/15009731
https://doi.org/10.1109/ISPA.2008.167
https://doi.org/10.1109/ISPA.2008.167
https://docs.opencv.org/3.4/d7/d00/tutorial_meanshift.html
https://docs.opencv.org/3.4/d7/d00/tutorial_meanshift.html
https://doi.org/10.5244/C.20.6
https://docs.opencv.org/3.4/d1/d1a/classcv_1_1TrackerBoosting.html
https://docs.opencv.org/3.4/d1/d1a/classcv_1_1TrackerBoosting.html
https://doi.org/10.1109/ICPR.2010.675
https://doi.org/10.1007/s11554-013-0354-1
https://docs.opencv.org/3.4/d7/d86/classcv_1_1TrackerMedianFlow.html
https://docs.opencv.org/3.4/d7/d86/classcv_1_1TrackerMedianFlow.html

BIBLIOGRAPHY

[41] Meng Fanqing and You Fucheng. «A tracking algorithm based on ORB». In: Pro-
ceedings 2013 International Conference on Mechatronic Sciences, Electric Engineer-
ing and Computer (MEC). 2013, pp. 1187–1190. doi: 10.1109/MEC.2013.6885245.

[42] Shuang Wu et al. «Object tracking based on ORB and temporal-spacial constraint».
In: 2012 IEEE Fifth International Conference on Advanced Computational Intelli-
gence (ICACI). 2012, pp. 597–600. doi: 10.1109/ICACI.2012.6463235.

[43] OpenCV. cv::TrackerORB Class Reference. https://docs.opencv.org/3.4/d1/
d89/tutorial_py_orb.html. Accessed: 2025-02-09. 2023.

62

https://doi.org/10.1109/MEC.2013.6885245
https://doi.org/10.1109/ICACI.2012.6463235
https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html
https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html

	List of Figures
	List of Tables
	Introduction
	Ultrasounds
	Ultrasound generation principle
	Ultrasound imaging

	Cardiovascular system
	Heart
	Arteries
	Capillaries
	Veins
	Inferior Vena Cava

	Materials and methods
	Dataset
	Tracking algorithms
	Lucas-Kanade algorithm
	Kernelized Correlation Filters algorithm
	Multiple Instance Learning algorithm
	Tracking- Learning - Detection algorithm
	Minimum Output Sum of Squared Error algorithm
	Channel and Spatial Reliability Tracker algorithm
	Block Matching algorithm
	Mean Shift algorithm
	Boosting algorithm
	Median Flow algorithm
	Oriented FAST and Rotated BRIEF

	Metrics
	Python implementation

	Results and discussion
	Conclusion

