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ABSTRACT

Brain-Computer Interfaces (BCIs) enable direct communication between the brain and external
devices by interpreting neural signals. BCIs can utilize both invasive signals, such as
electrocorticogram (ECoG), and non-invasive signals, like electroencephalogram (EEG). This
work aims to compare EEG and ECoG signals during repeated finger flexion-extension.

First, it examines CorticoKinematic Coherence (CKC) at low frequencies, analyzing Low
Motor Potentials (LMPs). Then, it assesses neural decoding for BClIs by predicting finger
trajectories, comparing LMPs and higher frequency bands, as well as a basic (Multiple Linear
Regressor, MLR) and a more complex model (Temporal Convolutional Network, TCN).

ECoG data comes from the publicly available Stanford ECoG dataset, which includes
recordings from nine subjects performing repeated self-paced, single-finger flexion-extension.
For EEG data, an experiment was designed, recording signals during repeated finger flexion-
extension at 1 Hz and 3 Hz, with movement frequency guided by a shrinking circle. Six
subjects’ EEG signals were recorded using a 64-electrodes cap, while finger movements
through a sensor glove. ECoG data were provided already preprocessed, with only an additional
Common Average Reference (CAR) applied. For the EEG data, preprocessing included
removing noisy intervals, applying Notch filters, bandpass filtering, removing eye movement
artifacts, and re-referencing with CAR.

CKC was then calculated for both datasets.

ECoG showed an average coherence of 0.45 + 0.2, consistent across fingers but varying
between subjects, ranging from 0.15 (Subject 5) to over 0.6 (Subjects 2, 3, and 6). EEG
exhibited lower coherence, with a mean of 0.02 = 0.01 across subjects, and 0.03 for Subject 2.
Additionally, while CKC frequency trends and topographic distributions for ECoG matched
expectations, with EEG, it happened only in a few instances. These results suggest that
achieving optimal frequency stability in repeated movements is crucial for analyzing CKC with
EEG, while this issue is less impactful with ECoG, highlighting the need for high-quality
signals.

For the decoding, signals were lowpass filtered at 4 Hz for LMPs, 40 Hz for full-band EEG,
and 200 Hz for full-band ECoG. Finger trajectories were predicted using a 0.5 second-brain
signal time window preceding the corresponding time instant. Results are reported for the best-
performing subject for conciseness. As regards ECoG, the best correlation values between
original and predicted trajectories were obtained with the LMPs (0.56 to 0.78 across fingers),
with no significative difference using the MLR or TCN. Using the full band, MLR exhibited
correlations of 0.44-0.68, while TCN between 0.54 and 0.73. EEG, as expected from the
coherence analysis, showed generally low decoding performances with LMPs, with MLR
correlations ranging from 0.04 to 0.07 across fingers. TCN did not provide a notable
improvement (0.05-0.10). However, some discrete results have been reached by applying TCN
to full band data, with correlations between 0.08 and 0.31, while MLR failed. Results suggest
that LMPs provide valuable decoding information, with even a simple MLR performing well
1



when the LMPs are clear. If they are unclear, TCN can be useful using instead raw signals with
higher frequencies.

Future works could focus on ensuring consistent movement frequency during repeated finger
movements when analyzing CKC. Moreover, for both signals there seems to be a positive
correlation between CKC and decoding performance.
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1 Introduction

1.1 Brain electrical activity

Brain electrical activity refers to the ensemble of electrical signals generated by neurons in the
brain, essential for communication, information processing, and the execution of cognitive,

motor, and sensory functions.

This electrical activity is part of the broader functioning of the nervous system, which is
responsible for processing and transmitting information throughout the body. The nervous
system is primarily divided into two main parts: the central nervous system (CNS) and the
peripheral nervous system (PNS). The CNS, consisting of the brain and spinal cord, serves as
the main control center for integrating and interpreting neural signals. The PNS comprises the
network of nerves that extends from the CNS to the rest of the body, enabling communication

between the brain, spinal cord, muscles, and sensory organs.



At the core of this system are neurons, the fundamental units of neural communication. Each
neuron consists of a cell body (soma), which contains the nucleus and essential organelles;
dendrites, which receive signals from other neurons; and an axon, a long projection that
transmits electrical impulses away from the cell body to other neurons or muscles. These
electrical impulses, known as action potentials, are generated through the rapid opening and
closing of voltage-gated ion channels along the neuron's membrane, causing rapid changes in
membrane potential. This process enables neurons to efficiently transmit signals across neural

networks, allowing for complex functions such as movement control, perception, and cognition.

Figure 1: Visualization of neuronal electrical activity.

When groups of neurons fire synchronously, they produce rhythmic oscillations known as brain
waves, which form the basis of brain electrical activity, that can be recorded and analyzed to
study brain function and diagnose neurological disorders [1]. The ability to measure brain
electrical activity was pioneered by Hans Berger, who, in 1929, recorded the first

electroencephalogram (EEG). This breakthrough opened new avenues for research in brain



function and neurological disorders. Nowadays, the electrical activity of the brain can be
recorded by different types of electrical signals, which can be classified as invasive or non-
invasive, or by magnetic signals. Non-invasive methods, such as EEG, record brain activity
from electrodes placed on the scalp, while invasive techniques, such as Electrocorticogram
(ECoG) and intracortical recordings, involve electrode implantation at different depths inside
the head, ranging from the brain surface to deep within the cortex [2] (Figure 2). Magnetic
signals, such as the non-invasive Magnetoencephalogram (MEG), record the magnetic field
accompanying the electrical activity of the brain. In this work, the signals that were analyzed

and compared are EEG and ECoG.
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Figure 2: Types of electrical signals recorded from the brain cortex. From [2].

1.2 EEG signal

EEG is an electrical recording of brain electrical activity, by which we mean the just described
voltage fluctuations resulting from ionic current flows within the neurons of the brain [3]. EEG
is an essential tool for diagnosing conditions such as epilepsy and sleep disorders, while also
providing insights into cognitive processes, learning, and memory [4]. This signal is recorded

using electrodes placed on the scalp, which detect the small voltage fluctuations generated by
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neuronal activity. This technique is non-invasive, meaning it does not require surgical
procedures or direct access to brain tissue, making it safe and widely applicable for clinical and
research purposes. The electrodes used for EEG recordings can be of different types, including
wet electrodes, which require conductive gel to reduce impedance and enhance signal quality,
and dry electrodes, that eliminate the need for conductive gel and allow for faster and more
comfortable setup, although they may have slightly lower signal quality compared to gel-based

electrodes.

The amplitude of the EEG signal ranges between 10 - 200 mV with a frequency falling
approximately in the range 0.5 Hz - 60 Hz. EEG waves are classified into five frequency bands
(alpha, beta, theta, delta, and gamma bands). Delta (8) waves (0.5 - 4 Hz) are the slowest EEG
waves, normally detected during deep and unconscious sleep. Theta (0) waves (4 - 8 Hz) are
observed during some states of sleep and quiet focus. Alpha (a) band (8 - 14 Hz) originates
during periods of relaxation with eyes closed but still awake. Beta (B) band (14 - 30 Hz)
originates during normal consciousness and active concentration. Finally, Gamma (y) waves
(over 30 Hz) are known to have stronger electrical signals in response to visual stimulation [5].
However, each frequency band also contains a wide range of other information and can be
observed during various brain activities beyond those typically associated with them. Different

cognitive, sensory, and motor processes can modulate these oscillations.

EEG signals are affected by the various tissues and fluids in the head, which introduce
distortions and attenuations as the electrical activity propagates from its cortical origin to the
scalp. This phenomenon, known as volume conduction, causes the signals detected by scalp
electrodes to be influenced by multiple overlapping neural sources rather than reflecting purely
localized activity. As a result, each EEG electrode typically captures a mixture of signals from

different brain regions, while the activity of a single neural source is often recorded by multiple



electrodes [6], as it is possible to see in Figure 3. This results in a low spatial resolution of

approximately 6 - 9 cm [7].
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Figure 3: Sketch showing how signals generated at different dipole generators are captured by the EEG electrodes.
Activity at the three generators is drawn in blue, red, and green. Each electrode records a mixture of the three
generators. (Top) Spatial activation patterns produced by the generators are shown as rectangles with different
color intensities. (Bottom) Temporal activation patterns of the generators are shown as curves in different colors.
The black curve represents the summation of these patterns as captured by a single EEG electrode. From [6].

Additionally, it leads to a weaker signal-to-noise ratio (SNR), making it more challenging to
extract relevant brain activity from background noise. Furthermore, artifacts from non-neuronal
sources, such as muscle activity, eye movements, and environmental noise, further contaminate

the EEG signal, requiring careful preprocessing and filtering techniques to improve data quality.
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1.3 ECoG signal

ECoG is recorded with electrodes on the surface of the cerebral cortex (Figure 2) and represents
the cerebral activity just beneath the electrodes. Since this technique requires electrodes to be
implanted, it is considered invasive, which greatly limits its use to specific medical and research
applications. ECoG is typically used in clinical contexts where high spatial and temporal
resolution is essential, such as pre-surgical epilepsy monitoring to precisely locate seizure foci,
or in certain Brain-Computer Interfaces applications for patients who already require electrode
implantation. On the other hand, ECoG presents with much better spatial resolution (<1 cm)
and comparable temporal resolution (ms) as compared to EEG, as it does not require the signal
to pass through the scalp and skull [8]. For example, Agrita Dubey et al. [9] calculated the
spatial resolution of the ECoG signal, obtaining a spatial spread surprisingly local (diameter ~3
mm). This higher spatial resolution allows for better differentiation of neuronal sources,
minimizing the signal mixing and volume conduction effects that affect EEG recordings. The
frequency bands of ECoG signals are generally similar to those of EEG (delta, theta, alpha,
beta, and gamma). However, ECoG provides access to higher-frequency components, including
higher frequencies in the gamma band (60—-100 Hz), and the high-gamma band (100-300 Hz)
[10], which is often not detectable in scalp EEG due to attenuation and noise. This high-gamma
activity is particularly relevant as it is closely related to local neuronal population activity and

is commonly used in motor and cognitive research.

1.4 BClIs

Brain-Computer Interfaces (BCls) are systems that establish a direct communication pathway

between the brain and an external device, bypassing traditional neuromuscular output channels.
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BCIs function by detecting and interpreting neural activity, recorded through non-invasive
methods like EEG or invasive techniques such as ECoG. Depending on their purpose, BCIs can
be classified into different categories, including communication BCIs, which enable individuals
with severe disabilities to convey messages; neurofeedback BCls, used for cognitive training
and rehabilitation; and motor BClIs, designed to restore or assist movement in individuals with
motor impairments [11]. Motor BCIs, which are the focus of this study, aim to decode
movement-related brain signals to control external devices such as robotic limbs, exoskeletons,
or computer interfaces. These systems hold significant potential for individuals with neuro-
motor disorders, such as spinal cord injuries or stroke. The effectiveness of motor BCIs depends
on accurately extracting relevant features from brain activity, particularly from the motor and
somatosensory cortices, where movement-related information is encoded. Understanding the
neural signatures associated with voluntary movement is therefore crucial for enhancing the

reliability and precision of motor BCls.

Despite significant advancements, BClISs still face several challenges that limit their widespread
adoption. Non-invasive BCIs, such as those based on EEG, suffer from low spatial resolution
and susceptibility to noise, reducing accuracy. Invasive BCls, like ECoG-based systems, offer
higher signal quality but pose surgical risks and long-term stability concerns. Additionally, the
high inter- and intra-subject variability in neural signals presents a major hurdle, requiring
extensive calibration and individualized training for each user [12]. In many cases, the user
must also learn how to interact with the BCI correctly, which is not always intuitive and can
require prolonged training. Other limitations include the need for real-time processing with
minimal latency, the difficulty of decoding complex movements with high accuracy, and the

influence of cognitive and physiological states on BCI performance.
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1.5 Sensorimotor cortex activity

The present study focuses on the activity of the sensorimotor cortex, as it is responsible for
encoding movement-related information within brain signals. Different parts of the brain are
associated with distinct motor and sensory functions, as represented by the homunculus of
Wilder Penfield. This mapping, first published in 1937, achieved through direct electrical
stimulation of the brain, reveals a distorted human figure known as the homunculus, where each
body part corresponds to a specific cortical area dedicated to its motor or somatosensory
function (Figure 4). The distortions in the homunculus reflect the varying density of neural
representations, with body parts requiring finer motor control or greater sensory sensitivity,

such as the hands and lips, occupying disproportionately larger cortical areas.
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Figure 4: Representation of the somatosensory and motor homunculus by Wilder Penfield, illustrating the cortical
areas dedicated to different body parts.

The somatosensory cortex is located in the postcentral gyrus of the parietal lobe, directly

posterior to the central sulcus, while the motor cortex resides in the precentral gyrus of the
13



frontal lobe, anterior to the central sulcus (Figure 5). The primary motor cortex (Ml) is
responsible for initiating voluntary movements, whereas the primary somatosensory cortex (S1)
processes sensory feedback such as proprioception, touch, and kinesthetic information, all of
which are part of movement execution and control. These regions are highly interconnected,
allowing for continuous sensorimotor integration. Given their role, activity within sensorimotor

cortex is particularly relevant for BCIs designed for motor decoding.
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Figure 5: Major divisions of the human cerebral cortex in dorsal (from above) and lateral views.
Somatosensory cortex is shown in the postcentral gyrus, while motor cortex in the precentral gyrus.
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Neural activity in these regions manifests in various electrophysiological patterns that have
been extensively studied for their role in motor decoding. In this work, we specifically analyzed
Low/Slow Motor Potentials (LMPs) related to active movement execution, which are slow
cortical potentials (low-frequency components) associated with the preparation and execution
of voluntary movements. They reflect shifts in the cortical electrical activity lasting from
several hundreds milliseconds to several seconds [13] and they share similarities with readiness
potentials, which are explained below, but persist throughout the movement, reflecting
sustained neural engagement. LMPs are often used in scientific literature for motor decoding
applications, as they provide valuable information on movement-related brain activity and have
been successfully employed in both invasive and non-invasive BCIs [14] [15] [16] [17].
Furthermore, They appear to be particularly suited for tracking slow movements but are less

effective in distinguishing movement from a no-movement state [18] [19].

Other relevant features extracted from ECoG and EEG signals that are usually exploited for

BClIs include:

e Sensory-motor rhythms, characterized by two distinct neural phenomena: event-related
desynchronization and event-related synchronization. Desynchronization refers to a
decrease in the amplitude of oscillatory activity in the alpha (8—12 Hz) and beta (1330
Hz) bands during movement execution or motor imagery. Conversely, synchronization
represents an increase in oscillatory power in these frequency bands, typically occurring
during movement cessation or rest.

e Readiness potentials, that are slow cortical potentials that precede voluntary
movements. They typically appear as a gradual negative shift in electrical activity,

beginning up to one second before movement onset.

15



e High-gamma activity (100-300 Hz), observable only in ECoG, that correlates strongly
with active movement and motor imagery. Unlike low-frequency oscillations, high-
gamma power increases during voluntary movement and is spatially localized to motor-
relevant cortical areas [20]. Unlike LMPs, high-gamma activity seems to be more
effective in distinguishing movement from a no-movement state but is less suited for

accurately tracking movement trajectories [18] [19].

1.6 CorticoKinematic coherence as a reflection of low frequency

activity

Coherence is a quantitative indicator to measure the phase coupling between two signals [21],
reflecting the degree of synchronization between their oscillatory components at a given
frequency. It can be defined also as the degree of linear dependence between two signals at a
specific frequency [22]. It can range from O (i.e., no correlation at a given frequency) to 1 (i.e.,

perfect correlation), following this formula:

|Gy ()

G = ¢ e,

Equation 1

e The numerator |ny (f)|2represents the shared power (square of cross-spectrum) between
the two signals at frequency f, capturing how much they co-vary in the frequency domain.
o The denominator Gy, (f)G,, (f) normalizes this shared power by the total power of each

individual signal at the same frequency, ensuring coherence values range from 0 to 1.
16



For coherence to be high (close to 1), the two signals must share the same frequencies and also
maintain a consistent relationship in phase over time. If they contain different frequency

components, or their phase relationship fluctuates randomly, coherence will be low (close to 0).

CorticoKinematic coherence (CKC), instead is defined as the coherence calculated between
limb kinematics and cortical neurophysiological signals [21]. The concept of CorticoKinematic
coherence (CKC) was first introduced by Jerbi et al. (2007) [23], who investigated the
coherence between magnetoencephalographic (MEG) signals and hand velocity. Their finding
suggested a role for slow (<5 Hz) oscillations in motor cortex in the neural mechanisms
underlying the neural control of limb speed, that may also be interpreted as evidence for the
existence of a neural representation of low-frequency components of limb kinematics. Later,
Bourguignon et al. (2011) [24] further explored this phenomenon, demonstrating a strong
coherence between cortical activity recorded with MEG and hand acceleration during rhythmic
movements. These pioneering studies provided fundamental insights into CKC, highlighting
the coupling between primary sensorimotor cortex activity and movement kinematics.
Subsequently, most studies on CKC have been conducted using the MEG signal, with in
particular Bourguignon and Piitulainen extensively studying this phenomenon over the years
[22] [23] [24] [25] [26] [27] [28]. In this work, however, we will focus on EEG and ECoG
signals to investigate this phenomenon. Some studies about CKC were done using EEG,
obtaining lower coherence values respect to the MEG [21] [29] [30] [31]. Indeed, CKC is
widely known to be reproducible when estimated with MEG, while feasibility and
reproducibility of CKC based on EEG is still unclear [21]. However, using these different
signals to calculate the same metrics (CKC) is justified by the fact that all three signals reflect
brain activity, although it is important to consider the differences between them, which also
influence the observed CKC. MEG is a non-invasive technique that measures magnetic fields

generated by neuronal activity in the brain, providing high temporal resolution and good spatial
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localization of brain signals [32]. Unlike EEG, which is affected by the conductivity of the
skull, MEG directly detects magnetic fields, avoiding this issue. Similarly, ECoG, which
involves direct cortical electrode placement, avoids this problem. While all the signals measure
neuronal activity, ECoG provides higher spatial resolution [8] [9], as it captures the electrical
signals closer to the source. This suggests that we could obtain better coherence values with
ECoG, because the signal detected from an electrode placed on the sensorimotor cortex is more

likely to stronger detect the activity of the region of interest.

2 Materials

To investigate the two signals used in this work during the repetitive fingers flexion-extension,

two different datasets were used:

e For the ECoG signal a public dataset provided by the Stanford University [33].
e Asregards the EEG signal, data were recorded during an experiment conducted at the

Computational Neuroscience Laboratory of the KU Leuven (Belgium).

2.1 ECoG Stanford Dataset

ECoG data used are from the public ECoG Stanford Dataset. It contains both finger flexion
kinematic data and the corresponding ECoG data from 9 healthy subjects (mean age of 26.8
with a standard deviation of 9.2, 4 males and 2 females), details of which are summarized

below (Table 1).
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Age Sex Handedness Array location
Subject 1 18 F R L Fronto-parietal
Subject 2 21 M R R Fronto-temporal
Subject 3 27 F R L Fronto-temporal-parietal
Subject 4 35 F R L Fronto-temporal
Subject 5 26 M R L Parietal - Temporal - Occipital
Subject 6 45 F R L Fronto-temporal
Subject 7 32 M R L Fronto-temporal-parietal
Subject 8 19 F R R Fronto-parietal
Subject 9 18 F R L Frontal

Table 1: subjects details of the Stanfod ECoG dataset

19




Each subject had a different number of electrodes implanted in varying positions, but always
covering at least part of the left sensorimotor cortex (that corresponds to the contralateral cortex
side respect to the right hand moved). Figure 6 shows an example of electrodes placement for

Subject 1 of Stanford ECoG dataset.

Subject 1

Figure 6: Electrodes placement for Subject 1 of Stanford ECoG dataset.

Ethics statement: All patients participated in a purely voluntary manner, after providing
EASYinformed written consent, under experimental protocols approved by the Institutional
Review Board of the University of Washington (12193). All patient data was anonymized
according to IRB protocol, in accordance with HIPAA mandate. These data originally appeared
in the manuscript “Human Motor Cortical Activity Is Selectively Phase- Entrained on

Underlying Rhythms” published in PLoS Computational Biology in 2012 [33].

During the finger flexion task, subjects were cued with a word displayed on a bedside monitor
indicating which finger to move during 2- second movement trials. The subject performed self-

paced movements in response to each of these cues, and they moved each finger at least 2—5
20



times during each trial, but some trials included many more movements. A 2-second rest trial
(blank screen) followed each movement trial. There were 30 movement cues for each finger,
and trials were interleaved randomly. The total recording time of each subject varies from
around 3 minutes to around 10 minutes. Finger positions were recorded using a 5 degree-of-

freedom dataglove sensor (5 dt, Irvine, CA).

2.2 EEG experiment

2.2.1 Participants

We recruited 6 healthy students participants (mean age of 26.2 &+ 2.6, 4 males and 2 females).

All subjects are right-handed.

2.2.2 Paradigm for EEG

The experiment was designed on the one hand to have data comparable with the ECoG dataset
and on the other hand, so that they could be used for decoding and to investigate the role of the
movement frequency. For the first purpose the experiment paradigm was organized so that it
had the same conditions as in the ECoG dataset. Participants again consisted of 9 healthy

subjects, whose details are given in the table:

Also in this experiment, finger flexions were performed, but in this case the movement wasn’t
totally self-paced. In particular, there were two different target frequencies of movement: 1 Hz
and 3 Hz. These frequencies were selected since studies in literature demonstrated that among

slow motor potentials frequencies, 3 Hz is appropriate and efficient for robust CKC estimation
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[28]. Furthermore, only the Thumb and Index were moved independently, while the movement
of the other three fingers was merged into two movement classes: the ‘Point’ movement, which
includes flexion of the third finger, Ring finger and Little finger and the ‘Fist’ flexion of all
fingers. In total there were therefore 4 types of movement, all performed at 2 different speeds,
bringing the total number of classes to 8. Subjects were helped to flex their fingers at the correct
frequency by projecting a shrinking circle on the screen in front of them (Figure 7). This circle
contained a cross on whose axes there were dashes. Dashes were at such a distance that the
circle, as it tightened, touched each consecutive dash at a frequency equal to the required

frequency of movement.

AFFINGERS

Figure 7: Layout of the experimental setup that was showed on the screen to the subjects during the experiment.
Dashes on the cross were at such a distance that the circle, as it tightened, touched each consecutive dash at a
frequency equal to the required frequency of movement. ‘All fingers’ refers to the type of movement to perform,
always written below the circle.
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Figure 8: Experimental setup during the explanation of the experiment to a subject. A screen in front of subjects
showed the instructions of the experiment, while the screen on the right was turned off during the recording and
used only to assess signal quality before the recordings.

The number of trials performed by each subject ranged from 12 to 15. From the twelfth trial
onwards, the subject could decide whether to end the experiment by pressing a button at the
end of each trial. Each trial consisted of 8 blocks of 20 seconds each, comprising a movement
class. The block included an initial fixation of the screen of 1 second, a task cue of 1 second, in
which the movement class to be performed was projected on the screen, a preparation period of
3 seconds, the task that lasted 15 seconds, and a final rest of 2 seconds (Figure 9). Before all
recordings, a glove calibration phase was done, required for the acquisition of kinematic signals

with the glove.
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Figure 9: EEG experiment paradigm scheme. For the correctness, there were also dashes within the circle relating
to the flexion-extension period, not shown in the figure for visual clarity.

The first difference from the ECoG dataset then concerns the frequency/speed of finger flexion.
The ECoG data presents self-paced movements, but actually looking at the data, each subject
maintained an almost constant movement frequency, in a wide range of about 1-2 Hz. This
happened in the same way with the EEG experiment, having a similar and sometimes smaller
range around the main movement frequency, even if in this case the movements were not self-
paced. Subsequently the main difference is just that in the EEG case two different frequency of
movement were performed. This decision was made to study whether there were differences in
the results according to the speed of movement. The layout to help the subject perform
movements at the correct frequency was designed to give only a reference to the subject,
avoiding the introduction of stimuli that could cause variations in the EEG signal due to the

stimuli themselves. For example, using a repeated visual or sound stimulus at the frequency of

24



movement would certainly have led to movements at more precise frequencies, but it would

also have introduced variations in the EEG signal due to the perception of such stimuli.

The second difference from the ECoG dataset relates to different movements class. Indeed,
flexion-extensions of each finger were performed individually for the ECoG dataset. The choice
of combining the flexion of the third finger, Ring finger and Little finger in the ‘Point’
movement was made because it is physiologically impossible to move these three fingers
individually. For this reason, the ECoG dataset contains periods in which theoretically only one
of these three fingers had to move, but in the end the others were also flexed to a greater or
lesser extent. In addition, the simultaneous flexion of all fingers (‘Fist”) was included, under

the hypothesis that such a movement could enhance the motor task's impact on the signal,

making it more suitable for decoding.

During the acquisition, specific markers were sent from the execution code as input to the
recorder device. These markers were numbers designed to be unique identifiers of the various
relevant intervals in the experiment: the entire acquisition interval, the intervals of each trial,
those of each block, and those of each interval within a block following the initial preparation
and preceding the final rest. Thanks to the markers, it was possible to define each interval in

the subsequent data processing.

2.2.3 Instrumentation

The instrumentation used for the acquisitions was the same for each subject and included:

e AnEEG cap ofthe easycapM11 type, designed for 64 electrodes (Figure 10) that follows

the standard 10-10 electrodes configuration. The 10-10 electrode system is an extension

25



of the internationally recognized 10-20 system used for EEG. In the 10-10 system,
additional electrodes are placed between those of the 10-20 system, reducing the
distance between adjacent electrodes to 10% of the total front-back or right-left distance
of the skull. This results in a higher density of electrodes, allowing for more detailed
spatial resolution of brain activity [34]. The abbreviated names used for the electrodes
are based on their anatomical location on the scalp and their position relative to the brain
regions they measure. Each abbreviation includes a letter indicating the brain region and
a number representing the electrode's position:

o F: Frontal region

o T: Temporal region

o C: Central region

o P: Parietal region

O

O: Occipital region

o Fp: Frontopolar (most anterior frontal region)

o Z: Midline electrodes (central axis)
Numbers indicate the position of the electrodes relative to the midline (Z). Even
numbers are in the right hemisphere, and odd numbers are in the left hemisphere. Then,
with EEG signals there was a common electrodes setup for all participants, unlike ECoG

dataset in which electrodes were implanted in different positions.
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Figure 10: 64 electrodes configuration of the EEG cap.

A ViewPixx stimulator device, that also included the monitor placed in front of the
subject. It transmitted the outputs of the code executed to conduct the acquisition, i.e.
everything that was projected on the screen and the various markers. Matlab software
was utilized to write and execute the code for the experiment. The script was designed
to display instructions and the layout for the task on the screen, guiding the participant
during the experiment. Additionally, the code was responsible for sending event markers
to the recording system through the stimulator, to ensure synchronization between the
experimental events and the recorded data. The ViewPixx monitor is a screen used to
perform this kind of experiments due to the high RGB (red, green and blue) channels

resolution refresh rate
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e An EEG recorder that was the Neuroscan SynAmps RT device (Compumedics). It also
received as input the various markers with their time instant, in addition to the EEG
signals. It includes a SynAmps RT 64-channel Amplifier, details of which are given in

the table below:

Specifications SynAmps RT 64-channel Amplifier

Max Number of Channels 70

EEG Channels a4

Bipolar Channels 4

Analog Inputs (HLI) 2

DC/AC DC, AC (2 modes)

Max Sampling Rate 20 kHz

sampling Rate (Hz) 100, 200, 250, 500, 1000, 1250, 2000, 2500, 5000, 10000, 20000
Bandwidth DC-3500 Hz

Resolution 24-bit

Input Range 400 mvV (DC mode), 1.9 mV (AC mode)
Sensitivity 24 nV (DC mode), 3 nV (AC mode)
Input Impedance *»10 GOhm

Common Mode Rejection (CMRR) >»110 dB

Moise (peak-to-peak) =0.5 uV (DC mode)

Impedance Check Yes

Trigger 16-bit TTL

Table 2: Specifications of the EEG recorder amplifier used.

o 64 Ag/AgCl (silver/silver chloride) wet electrodes (easycap), connected to the recorder,
with a conductive gel (Signagel, highly conductive, multi-purpose electrolyte). By using
wet electrodes, a gel or saline liquid is applied to increase the conductivity value [35]
(and therefore decrease the impedance value). The ground electrode was set at AFz, and
the reference electrode was at FCz.

e A digital data glove (5 Ultra MRI, 5DT, Irvine CA, USA) connected to the stimulator.

This glove consists of 5 Fiber Optic based sensors (one per finger). Other details are
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showed in Figure 11. The glove used a variable sampling frequency that depended on

the speed of the movement detected. The management of this issue is explained in the

data processing section.

Specifications

SDT Data Glove 5 Ultra

SDT Data Glove 14 Ultra

Material
Sensor Resolution
Flexure Sensors

Computer Interface

Power Supply
Sampling Rate

Black Stretch Lycra

12-bit A/D (typical range 10 bits)

Fiber Optics Based

5 Sensors in total

1 Sensor per finger, measures average of
knuckle and first joint.

Full-speed USB 1.1

RS-232 (via optional serial interface kit)
Via USB Interface

Minimum 75Hz

Black Stretch Lycra

12-bit A/D (typical range 10 bits)
Fiber Optics Based

14 Sensors in total

2 Sensors per finger, one sensor
for knuckle and one for first joint.
Abduction sensors between fingers.
Full-speed USB 1.1

RS-232 (via optional serial interface kit)
Via USB Interface

Minimum 75Hz

Figure 11: Data glove specifications. The model used for recording kinematic data is the 5DT Data Glove 5 Ultra

(second column of the table).

2.2.4 Acquisition steps

Before each recording, the following steps were followed:

1. The size of the subject's head was measured, so that the cap was as similar in size as

possible.

2. Electrodes were mounted on the cap, according to the easycapM11 layout.

3. The glove was connected to the stimulator, while electrodes were connected to the

recorder. All the electronic devices were turned on.

4. The conductive gel was applied to the holes of each electrode using a syringe, first trying

to move the hairs below the hole to reach the skin. This was done by monitoring the

impedance value measured on each electrode using the software Curry 7. This software

allows to visually check the impedance value of each electrode through both a color
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map and showing the value of each impedance. The process continued until an
impedance below 5 kQ was achieved for all electrodes, also making sure that there were
no impedances equal to 0 Q caused by electrodes shorting/bridging. In addition, the
trend of EEG signals themselves were also monitored, visually ensuring that they had a
reasonable time course, identifying noisy channels. For example, two tests were usually
performed: the eye blinking, which was supposed to cause a spike if the signal was
correct, and keeping the eyes closed, which should have caused a frequency increase in
alpha rhythms (8 Hz -12 Hz) especially between the occipital and parietal electrodes.

5. Finally, the paradigm was explained to the participant and a trial run was performed to
allow the participant to become familiar with the task.

6. During the recording, the signal was visually monitored, noting electrodes that showed
noisy signals and intervening with conductive gel in the case of serious problems with

some electrodes. The sampling rate was set at 1000 Hz.

3 Methods

3.1 Analysis Software

Two software were used for data processing and analysis:

1. Matlab: it is a high-level programming language and a numeric computing environment
developed by MathWorks [36]. It is designed for scientists and engineers to work with
matrix manipulations, data-plotting, develop algorithms and create models. The data

analysis was carried out using various Matlab toolboxes, which will be mentioned later.

30



2. Python on Google Colab: Python is a high-level, general-purpose programming
language that supports object-oriented programming and is widely used for data
analysis, scientific computing, and machine learning due to its simplicity, readability,
and extensive libraries [37]. Only the part concerning the Temporal Convolutional
Neural Network (TCN) decoder was realized with Python. The code was not actually

executed by software, but within Google Colab's cloud-based online platform [38].

3.2 Data Preprocessing ECoG

An initial preprocessing was applied to ECoG and EEG data, previously to both coherence

analysis and decoding.

ECoG data from the Stanford dataset were provided already preprocessed. Specifically, a
bandpass filter from 0.15 Hz to 200 Hz was applied. This filter consisted of a single pole, so
there was no sharp corner at 200 Hz. The sampling frequency was equal to 1000 Hz and the

data were provided with a scale factor such that 1 amplifier unit = 0.0298 pV.

The only preprocessing operation that was carried out consisted of a Common Average
Reference (CAR). This method re-references each electrode's potential to the average potential
of all electrodes, reducing noise and highlighting local brain activity. CAR is commonly used

in EEG, where it is necessary to identify small signal sources in very noisy recordings [39].

1 N
ViCAR — VL _ Z V]
j=1

=|

Equation 2
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Where:

CAR.
VAR,

potential referring to the common average for electrode .

e V; : original electrode potential.

e N: total number of electrodes.

. %Z?’:l V;: average value of the potential calculated on all electrodes.

3.3 Data Preprocessing EEG

EEG data were recorded at a frequency of 1000 Hz and subsequently preprocessed using the
FieldTrip toolbox. It is an open-source software for advanced analysis of MEG, EEG, and

Invasive Electrophysiological data [40]. The preprocessing included the following steps:

1. Firstly, for each subject noisy intervals were removed. These could include periods
that were noted as noisy during the acquisition itself, or that were later deemed noisy by
a visual inspection of the signals.

2. After, all data were down sampled to 250 Hz.

3. Two Notch filters were applied: the first had cut-off frequencies of 49.5 Hz and 50.5
Hz to remove the first harmonic line noise, while the second one had cut-off frequencies
0f 99.5 Hz and 100.5 to remove the second harmonic line noise. Both the filters were

Butterworth type of 3™ order.
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4. Then a bandpass filter between 0.2 Hz and 120 Hz was applied to remove a part of
the signal that is not included in the signal band. Once again, both the filters used were
of the 3™ order Butterworth type.

5. After these steps, signals were visually inspected to remove channels that showed noisy
behavior, also according to the notes taken during the measurements.

6. Subsequently an Independent Component Analysis (ICA) algorithm was used to
identify and remove eye movement components. The ICA is a computational method
for finding additive and statistically independent components from multivariate/multi-
dimensional statistical data. It is based on the assumption that the observed signals are
linear mixtures of non-Gaussian source signals. ICA is widely applied in fields like
signal processing, particularly for tasks such as artifact removal and blind source
separation. For performing ICA, the ‘runica’ algorithm was used, which implements the
Infomax ICA algorithm by Bell and Sejnowski [41] with the natural gradient feature
introduced by Amari, Cichocki, and Yang [42], and the Extended-ICA algorithm of Lee,
Girolami, and Sejnowski [43]. Additionally, it applies also PCA (Principal Component
Analysis) dimensionality reduction, and the spectrogram preprocessing, as suggested by
Zibulevsky [44]. The algorithm was used to extract a number of components equal to
the number of channels. Then, these components were visually analyzed in order to find
two particular components:

e One component related to the eye blink, that usually appears as in Figure 12 in
the 4" row (component runica004), showing a peak in correspondence with the
eye blink [45]. The topographic map of this component over the scalp shows
that it appears mostly in the central frontal area of the head.

e The other eye movement component, caused by horizontal eye movement
performed by the subject. It appears as in Figure 12 at about 132 seconds, with

a rising or falling front maintained for a longer period respect to the eye blink.
33



This component is instead located in one of the two lateral regions of the scalp,
therefore corresponding to one temporal lobe, with a symmetrical distribution

with respect to the two temporal lobes, as can be seen from the topographic map.
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Figure 12: ICA components of an EEG signal of one subject. Each row represents a time window of one of the components
extracted. The components 4 and 6 show respectively the component related to eye blinks and the ones caused by horizontal
eye movements.

7. Subsequently all the signals of each electrode were referenced again using CAR
referencing (Equation 2).
8. Finally, a visual inspection was carried out again to check whether there were noisy

channels after the preprocessing.

3.4 Coherence analysis

Firstly, a coherence analysis was performed on ECoG and EEG data. Both the data were still

processed in order to properly calculate the coherence for different cases.
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3.4.1 Kinematics data preprocessing and labelling

Both the kinematic data from the ECoG Stanford dataset and the acquired ones were processed
following the same method, as the purpose was a comparison of the coherences obtained with

the two types of brain signals. Sometimes there was some slight difference, as shown below.

- Preprocessing: The kinematic data from the dataglove were acquired already normalized
between 0 and 1, thanks to the calibration phase that preceded every recording. Kinematic
data of the ECoG dataset were also provided normalized. The only preprocessing applied
was an offset removal. The operation was done because in the non-movement pashes the
subjects kept their fingers relaxed and fully extended, so the kinematic signal is supposed
to have an almost constant 0 value, but sometimes the kinematic signal in these resting
phases showed values slightly different from 0. The offset was calculated as the median
value of the data of each finger. Using the median instead of the mean allows for a value
less influenced by peak movements, as we are interested in obtaining an average value of

the non-movement periods only.

- Segmentation and labelling: This procedure was done in order to correctly identify the
movement intervals. In fact, the actual movement intervals differed from those defined by
the theoretical cues in the ECoG dataset. This difference was not of the same magnitude for
the EEG data, but the same processing was nevertheless applied because it was important
to select precisely these intervals in view of the coherence analysis. The labelling was done
based on the method used in the work of Yao (2022) [46], with some modifications. They
used the same data from the Stanford ECoG dataset. Basically, a threshold-based signal

segmentation was performed, following these steps:
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1. First threshold: a threshold was applied, therefore values higher than the threshold were
identified. This parameter was chosen to select almost only the movement intervals and
exclude the effect of fluctuating noise during the rest state.

2. Second threshold: another threshold, based only on previously identified intervals. was
applied, obtaining the start and end of a finger movement. In the work of Yao (2022) [46],
they set the first threshold at 0.2 times the maximum amplitude of each trajectory, and the
second one at the half of the average amplitude of the preselected values. The same
approach was used for the ECoG dataset, while for EEG data the threshold values changed
between subjects. This choice was done by analyzing the segmentation results and
adjusting the value retrospectively to get more accurate results, however starting from the

same values just mentioned.
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Figure 13: Example of kinematic data of a subject’s finger with relative thresholds.

3. Union of too close intervals: intervals that were too close were joined, because in these

cases the division into different intervals was caused by fluctuations. For the ECoG data
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4,

5.

intervals below 0.8 seconds of distance were joined, while for the EEG data the ones that
were less than 2 seconds apart. Indeed, by knowing that there was much more temporal
distance between the end of one movement block and the beginning of the next one, it was
impossible to have intervals that close.
Higher threshold: another threshold was applied to remove any remaining false activation
intervals. In fact, movements were sometimes carried out in periods where movement was
not required, for several possible reasons.
Labelling: Each identified interval was labelled with its movement class number.
With regard to the ECoG data, the label numbers simply correspond to the number of the
moved finger (1: Thumb, 2:Index, 3:Middle, 4:Ring, 5:Little fingers).
With the EEG data there were 4 different movements performed at 2 different frequencies.
Subsequently, the first 4 classes correspond to the different movements executed at 1 Hz,
while the classes from 5 to 8 include the same movements at 3 Hz (1: Thumb 1 Hz, 2:Index
1 Hz, 3:Point 1 Hz, 4:Fist 1 Hz, 5: Thumb 3 Hz, 6:Index 3 Hz, 7:Point 3 Hz, 8:Fist 3 Hz).
There were, however, periods when several fingers were moved at the same time. Two
different approaches were used for the two datasets:

- With the ECoG data, there were individual flexions of each finger. Then to correctly

classify each movement, the relative amplitude maximum was extracted in each

obtained interval, calculated as:

Max(movement interval)

Max(whole finger trajectory)

Equation 3
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6.

7.

The finger with the highest relative amplitude maximum was treated as the moving
finger in these intervals.

- In the EEG experiment there were instead two classes involving the simultaneous
movement of several fingers (Point and Fist flexion). When one of these movements
was performed, we expected to have more than one finger above the threshold, while
in the other two classes we wanted to have just one finger labelled as activated. For
this reason, the initial thresholds had been optimized, as reported above, to avoid
having fingers that exceeded the threshold in intervals where they should not have
been flexing. By detecting all the fingers activated in each interval, labelling was
initially done using only four classes for the four movements, without considering
the frequency of flexion: class 1 if only the Thumb was above the threshold, class 2
if only the Index was, class 3 if Middle, Ring and Little fingers exceeded the
threshold and class 4 if all fingers were above the threshold.

Removal of too short intervals: intervals shorter than 0.2 seconds for the ECoG data and
shorter than 1 seconds for the EEG data were removed, while they were caused by
oscillations that didn’t belong to the repetitive finger flexion.

Labelling based on the frequency (only for EEG data): At this point, ECoG related
trajectories were fully labelled, while each class of the EEG kinematic data were still split
into 2 different classes depending on the frequency of flexion-extension performed. To do
this, the Power Spectral Density (PSD) of each interval was calculated. The PSD
represents how the power of a signal is distributed over different frequencies [47]. It can
be estimated through two main approaches: parametric methods, which assume a
predefined model for the data, and non-parametric methods, which rely on the discrete
Fourier transform (DFT) or the signal’s autocorrelation function. According to the Wiener-
Khintchine theorem, it can be obtained by taking the Fourier transform of the

autocorrelation function (correlogram method). However, PSD can also be directly
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computed from the Fourier transform of the signal itself by squaring its magnitude, which
is the basis of the periodogram method. In this case, it was calculated through the Welch
periodogram method, using 0.5 overlapped Hamming windows. If the PSD in the 0.5-1.5
Hz band was greater than the PSD in the 2-3.5 Hz band, then the movement was classified
as flexion-extension at 1 Hz, otherwise at 3 Hz. These asymmetrical extremes were chosen
by observing that often the movement theoretically at 1 Hz was performed somewhat
faster, while that at 3 Hz slightly slower. The final classes are those listed above in the
‘Labelling’ section.

. Manual corrections: The labeling process was designed to be as automated as possible,
following the steps described above. However, any errors were manually corrected
through visual inspection of the data. An example of the final EEG dataset labelling is
shown in Figure 14, where the black line corresponds to the theoretical movement
intervals, while the blue lines to the obtained. When these lines are equal to 0 it means
there is no movement, while the value of the step in the movement intervals equals the

number with which the class was labelled divided by 10.
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Figure 14: Kinematic data segmentation and labelling. Black line corresponds to the theoretical movement
intervals, while the blue lines to the obtained. When these lines are equal to 0 it means there is no movement, while
the value of the step in the movement intervals equals the number with which the class was labelled divided by 10.

3.4.2 Synchronization with brain data

The intervals of the different types of movements were then paired with the corresponding

intervals of the brain signals (EEG and ECoG respectively).

For the ECoG dataset, this operation was simpler, while the sampling frequency of the
kinematic data was the same as the ECoG signal (1000 Hz), therefore the intervals of the

kinematic and ECoG signals were easily matched.

Concerning the EEG, however, the sampling frequency was different from that of the dataglove.
A simple conversion between the two frequencies was not sufficient to align the kinematic and
EEG intervals in time, as the dataglove recorded kinematic data with a variable sampling
frequency. This variability primarily occurred between periods of relevant movement and those
where no significant motion was recorded, while in movement intervals (where CKC was
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calculated), the sampling frequency was about constant. As a result, a more complex
synchronization process was required. Having the markers corresponding to each interval,
along with their respective sample indices for the two signals, the theoretical movement
intervals of the kinematic signals and those of the EEG were first matched. Subsequently,
knowing the temporal duration of these theoretical intervals (as defined during the experiment),
the sampling frequency within each theoretical interval of the kinematic data was calculated as

follows:

frinematic Number of samples of the interval

s ~ Temporal duration of the interval

Equation 4

Then, having obtained the kinematic sampling frequency, it was possible to interpolate the
Dataglove intervals to obtain signals with the same sampling frequency as the EEG. A cubic
interpolation was used, ensuring a smoot transition and preserving the continuity of the first

and second derivative.

3.4.3 Coherence calculation

All the intervals belonging to a movement class were concatenated into a single signal.
CorticoKinematic coherence was then calculated for each class of movement, splitting
concatenated data into 2 s epochs with 1.6 s epoch overlap, leading to a frequency resolution of
0.5 Hz. A significant overlap was used as this allows for a more stable coherence, with a lower
variance and bias [48]. Regarding EEG, since the Point and Fist movements involve the flexion-

extension of multiple fingers, coherence was calculated using the kinematic signal of the Middle
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and Ring fingers, respectively, as only one trajectory could be used. However, additional

attempts were made using other moving fingers to ensure the reliability of the results.

3.5 Decoding

The second aim of this work, beyond the coherence analysis, was to decode movements from
brain signals. By "decoding," we refer to reconstructing finger trajectories using ECoG or EEG
signals. This reconstruction relies on segments of cerebral signals preceding the corresponding
finger position; therefore, it is more accurate to describe it as a prediction of the upcoming
movement rather than a reconstruction. Having analyzed the coherence within the low
frequencies, the approach was to use the low frequency band (Low Motor Potentials) of the
signals for decoding. The goal was to investigate whether Low Motor Potentials, that are
responsible for the CKC, enable the decoding of repetitive movements from ECoG and/or EEG
signals. The finger trajectory prediction from brain signals was first performed using a Multiple
Linear Regression (MLR) model. Subsequently, a Temporal Convolutional Network (TCN)
model was also employed to investigate whether a more complex model could achieve better
performance. However, given the poor coherence and decoding results obtained with EEG, it
was decided to further explore it using the TCN with a broader frequency band that included
the entire spectrum for both ECoG and EEG signals. Using almost raw signals with Deep
Learning models makes sense because these models are capable of automatically extracting
relevant features from the data, eliminating the need for manual feature extraction beforehand.
In addition, the use of additional frequency bands is justified by various characteristics of brain
signals that could help for the decoding, such as Movement-Related Potentials in EEG and High

Gamma activity (both described in Section 1.5). Therefore, the idea was that, since these models
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can autonomously extract features, incorporating higher frequency bands might help the model

uncover new useful information for decoding.

In addition, decoding was performed using both the entire original dataset and a "corrected"
version, in which intervals where subjects moved fingers other than the target finger for training
were removed. This means that, for instance, when training the model to decode the thumb
trajectory, intervals where other fingers were moving were excluded, retaining only the
segments where the thumb was moved or no movement was performed at all. This approach
was used because, in both the ECoG and EEG datasets, movements of different fingers were
performed sequentially. As a result, when using the full cerebral signal, intervals were included
where the trajectory of the target finger (the one being decoded) remained nearly flat, while
other fingers were actually moving. The idea was that such movements of other fingers were
detectable in the brain signals but not in the kinematic signals, leading the model to associate
characteristic movement patterns with the target finger even when its trajectory showed no
movement, increasing prediction errors. The underlying hypothesis is that repeated movements
of different fingers are represented similarly in brain signals, making it likely that the model
would recognize these same patterns when other fingers were moved. This assumption is also
supported by findings in the literature, which highlight the challenges of classifying movements
between different fingers [18]. Furthermore, this idea was confirmed by the results reported in
results Section 4.2, which showed improved performance when using these “corrected data”. A
0.5-second window of brain signals was used as input for decoding to simulate a BCI with

feasible real-time (or near real-time) application.

To evaluate the decoding performance, the Pearson correlation coefficient was used as the

primary metric.
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The Pearson correlation measures the linear relationship between two variables, in this case,

the predicted and actual finger trajectories. It ranges from -1 to 1, where:

e A value of 1 indicates a perfect positive correlation, meaning the predicted trajectory

closely follows the actual movement.

e Avalue of -1 represents a perfect negative correlation, where the predicted trajectory is

the inverse of the actual one.

e A value close to 0 suggests no linear relationship between the predicted and original

trajectories.

The Pearson correlation coefficient r is defined as:

. 2 — X)W — )
VEG — )2 X (v — §)?

Equation 5

where x; and y; are the two variables, that correspond to predicted and actual trajectory in this

case, while X and y are their respective means.

This metric provides an intuitive way to assess how well the model captures the temporal

variations of finger movements, and can be written also as:

Oy
050y

Equation 6
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Where oy, is the covariance between the two variables, while o, and o,, are the standard

deviations of the two variables, corresponding to the square root of their variances. This
formulation shows that correlation is a normalized measure of covariance, making it possible

to compare linear relationships between variables regardless of their scales.

3.5.1 Preprocessing

Both ECoG and EEG data had previously undergone the initial preprocessing described in
Sections 3.2 and 3.3. Subsequently, the two data filtered differently were extracted, in order to

compare the decoding performance in the two cases:

e LMPs: Data were further filtered to extract the Low Motor Potentials. A 7" order
Butterworth lowpass filter with a cutoff frequency of 4 Hz was applied to both ECoG
and EEG signals. Subsequently, data were downsampled in an integrative way to 25 Hz
to reduce computational load. According to the Nyquist-Shannon sampling theorem, the
sampling frequency must be at least twice the maximum frequency present in the signal
to avoid aliasing. Since we had previously removed frequencies above 4 Hz,
downsampling at 25 Hz was sufficient, as this is well above the Nyquist frequency of 8
Hz. In this case, downsampling was performed by integrating multiple consecutive
samples into one, where instead of selecting a single sample every 'n' samples, we
summed the 'n' samples and used their sum as the new sample (Equation 7). This method
helps retain the signal's key characteristics while reducing its dimensionality for

computational efficiency

Nn

yINl = > xlk]

(N-D)n+1

Equation 7
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where:

- y[N] is the resampled signal.

- x[k] is the original signal.

- nis the downsampling factor, calculated as original sampling frequency / new
sampling frequency.

- N is the index of the new resampled signal.

-k is the index of the original signal.

Whole band: To retain the entire frequency range of interest of the EEG signals, the
same type of lowpass filter used for LMPs was applied, but with a different cutoff
frequency. Specifically, a 40 Hz cutoff frequency was chosen, as the EEG band typically
ranges from approximately 0.1 to 40 Hz [5]. (frequencies below 0.1 Hz had already been
removed during initial preprocessing). This range includes important bands for
Movement Related Potentials, such as the Alpha (8-13 Hz) and Beta (14-30 Hz) bands.
Regarding ECoG signals, they were initially provided filtered between 0.15 and 200 Hz,
so the full available band up to 200 Hz was retained. In fact, the High Gamma band can
extend beyond 200 Hz, reaching up to 300 Hz [10]. Once again, both EEG and ECoG
data were downsampled to reduce computational load while adhering to the Nyquist-
Shannon theorem. EEG signals were downsampled to 83.3 Hz, ensuring a sampling rate
above the Nyquist frequency of 80 Hz. This specific frequency was chosen due to the
integrated downsampling approach, which requires an integer downsampling factor.
Given that the data had been previously downsampled to 250 Hz during initial
preprocessing, a factor of 3 was the smallest integer that resulted in a sampling

frequency above the Nyquist limit.
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These data were given as input to the model that performed the decoding. Specifically, the two

models mentioned before were tested:

- A Multiple Linear Regressor (MLR)

- A Temporal Convolutional Network (TCN)

Both the models can be used to perform a regression problem like this one. Regression involves
predicting continuous numerical values and must be distinguished from classification, where
the goal is to assign discrete labels or categories. However, these models differ significantly in
complexity and approach. Linear Regression is one of the simplest and most fundamental
models for regression problems. It is often considered the foundation of predictive modeling,
serving as a core concept in both machine learning and artificial intelligence. On the other hand,
the Temporal Convolutional Network is a Deep Learning model, meaning it is designed to
automatically extract relevant features from raw data during training, rather than relying on
manually selected input features, as is common in traditional machine learning approaches. The
rationale behind using these two models is to compare a simple and interpretable model with a
more complex one, in order to assess the contribution of the model itself to decoding
performance. Meanwhile, the influence of the input features is analyzed by comparing Low

Motor Potentials and the whole band signals, as described above.

The same training approach was applied to both models, utilizing a 3-Fold Cross-Validation
technique. This method involves splitting the dataset into three subsets (folds). In each iteration,
two folds are used for training, while the remaining fold is reserved for model selection and
evaluation. This process is repeated three times, ensuring that each subset is used for validation
once. This approach allows for both hyperparameter tuning and an unbiased estimation of the
model's generalization performance [49]. A separate training was performed for each fold of a

finger of a subject, resulting in distinct models trained for each specific case.
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3.5.2 Multiple Linear Regression

Linear Regression establishes a relationship between a dependent and one or more independent
variables through a linear function and serves as the foundation for more complex predictive
models [50], as mentioned in the previous section. The accuracy of the regression then depends
on how well the relationship between the dependent and independent variables can be
approximated by a linear model. Mathematically, a simple linear regression model is expressed

as:

y=a+ bx+ €

Equation 8

where:

e yis the dependent variable (output).

e x is the independent variable (input).

e a is the intercept of the straight line.

e b is the slope coefficient of the straight line.

e € represents the residual error, the difference between the predicted and the actual

values.

Linear Regression is based on the Least Squares Error method, which aims to find the best-
fitting line that approximates a given set of points by minimizing the sum of squared differences
between the predicted and actual values. The Least Squares method finds the optimal values of

a and b by minimizing the Mean Squared Error (MSE), defined as:
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N
1
MSE(a,b) =~ ) (i = 5
i=1

Equation 9

where:
e N is the number of data points.
o y; are the actual values.
e 7, are the predicted values from the model.

Equation 9 refers to a traditional linear regression model, where a single independent variable
is used to predict a dependent variable. However, in this study the regression was performed
using a Multiple Linear Regression, which involves multiple independent variables to predict a
single dependent variable. Specifically, a temporal window approach combined with a channel
selection was exploited. In this method, each sample of the predicted trajectory was obtained
by feeding the model with a time window of 0.5 second of the cerebral signal, prior to the target
sample, from a certain number of selected channels. This approach transforms the input into a
matrix, where each row corresponds to a specific time instance, and contains the 0.5 second
windows of brain data from all the selected channels preceding that time instance. This model

can be described by the following modified version of the Equation 9 [51]:

ZL: bixi(t—k)+e

1 k=0

II
||M2

y=XW+ €

Equation 10
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where:

e vy is again the vector of predicted trajectory values (output).

e ais again the intercept.

e N is the number of channels used to predict the dependent variable.

e L corresponds to the number of signal lags used to predict the dependent variable.

e D, is the weight of the model that multiplies the independent variable x;.

e X is the input matrix of independent variables, with dimensions N x (T'C). N refers again
to the number of samples of the predicted trajectory, T represents the number of samples
in the 0.5 second window (equal to 0.5fsqmpie ), While C is the number of selected
channels.

e IV is the weight vector, that includes all the coefficients of each independent variable.

The estimation of the optimal weight vector W, which represents the model training process
and involves the minimization the Mean Squared Error, as described in traditional Linear

Regression, is obtained using the following equation:

W= (XTX)"1XTy

Equation 11

The channels to give as input to the model were instead selected based on a modified Sequential
Forward Selection. This method follows a bottom-up search strategy, starting with an empty
feature set and progressively adding features based on an evaluation function that minimizes
the Mean Square Error. At each iteration, the next feature is selected from the remaining

available ones, but it is added to the set only if its inclusion leads to a lower prediction error
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compared to any other possible addition [52]. This ensures that each newly added feature
contributes to improving the model's performance. In this case, the evaluation function used to
add new channels was the correlation between the original and predicted trajectories of the
validation set. At each iteration, all remaining channels were tested one by one, computing the
correlation for each and selecting only the channel that led to the greatest improvement in
coherence. The process continued until a maximum of 10 channels was reached or until no

further improvement was observed.

Given the very low decoding performance with EEG signals, a permutation test was conducted
on the best-performing participant. The purpose of this test is to assess whether the observed
decoding results exceed what could be expected by chance. This test was applied to determine
whether decoding results in this case were above chance level, that corresponds to the results
obtained with the permutation test. There are different ways to perform a permutation test, but
since the data consists of time series representing finger trajectories, it was important to
preserve the temporal structure of the samples. To achieve this, the permutation was performed
by circularly shifting the predicted trajectories by a random amount while keeping the overall
sequence intact. This approach disrupts the direct alignment between the predicted and actual
trajectories while maintaining the temporal dependencies within each trial, making it a suitable

way to estimate the chance level [53].

3.5.3 Temporal Convolutional Network

Temporal Convolutional Networks are powerful Convolutional Neural Network-based
architecture for modeling sequential data, exploiting causal and dilated convolutions. As

mentioned previously, being a Deep Learning architecture, they automatically extract relevant
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features from raw data that are useful for prediction. Originally, Convolutional Neural Networks
(CNNs) were developed primarily for image processing, as their convolutional operations are
well-suited for capturing spatial patterns. However, by adapting these operations to process
temporal dependencies instead of spatial ones, CNN-based architectures like TCNs have been
successfully applied to time-series analysis and other sequential data tasks. For years, the most
commonly used models for time series analysis have been Recurrent Neural Networks (RNN5s)
and their variants, with TCNs that have emerged as an alternative. Compared to RNNs, TCNs
offer advantages such as parallel processing, a flexible receptive field size (which determines
how many past time samples influence the current prediction), stable gradients that avoid the
vanishing/exploding gradient problem (where weights either shrink to near zero or grow
uncontrollably during backpropagation), and lower memory requirements during training [54].
The mathematic operation underlying this model is the convolution, that for discrete

bidimensional data can be mathematically expressed as following [55]:

ig—1jq—1

Alig.ja] * Blin.jp] = Clicjel = ) > Al 1]Bli = 13,] = 7]

T1=0 T2=0

Equation 12

where:

e Cli., j.] is the resulting element in the output matrix C after convolving matrices A and
B. Each element of matrix C is calculated as a weighted sum of the corresponding

elements from matrices A and B at indices i, j..
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o Alig jg] is the element from the input matrix A that is convolved with matrix B. The
indices i, and j, represent the positions (row and column) of the elements of A being
combined with elements from matrix B.

e Blip,jp] is the filter or kernel matrix applied to the input matrix A, with indices i, and
Jp represent the positions of the elements of kernel matrix B.

e T,,T, are the parameters used to iterate over and multiply the elements of matrices A

and B during the convolution operation.

This formulation can be seen as one matrix sliding over the other one unit at a time, with the
sum of the element-wise products of the two matrices as the result. Figure 15 [55] shows the
convolution of a matrix (4) and a kernel (B) at a single coordinate of the matrix: A[i,, j,]. The
complete convolution is found by repeating this process until the kernel has passed over every

possible pixel of the source matrix

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

Figure 15: Convolution of a matrix and a kernel at a single coordinate [55].
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A TCN exploits this operation in a more complex architecture, that includes dilated
convolutions and residual connections. In the case of a TCN, the input matrix A consists of
sequential data structured in a way that preserves temporal dependencies. Specifically, each row
of A represents a time window, while columns correspond to different features extracted from
the input signal over time. A simple causal convolution can only access a limited history
proportional to the network’s depth, which can be restrictive for tasks requiring a longer
memory. To overcome this limitation, TCNs employ dilated convolutions, a technique that
exponentially increases the receptive field, the range of input data influencing each output. A
dilated convolution introduces gaps between sampled input points, controlled by a dilation
factor d, allowing the network to model long-range dependencies without significantly
increasing the number of layers. The effective receptive field of a TCN layer depends on both
the filter size k and the dilation factor d. There are several layers, each with its own dilation
factor, with an exponential increase of d at deeper layers (d = 2 at layer i). In this way, the
network ensures that every relevant input within the receptive field is captured without passing
through too many layers and maintaining computational efficiency. To further improve
performance and stability, TCNs incorporate residual connections, where each residual block
contains a certain number of layers of dilated causal convolutions followed by nonlinear
activation functions, typically ReLU. This block contains a direct link that takes the initial block
input and adds it directly to the final output. If the output has a different dimension respect to
the summed input, because of the previous convolutions, a 1x1 convolution is added before the
sum to ensure that the tensors have the same form. Additionally, techniques such as weight
normalization and spatial dropout can be applied for regularization. This architectural design
allows TCNs to efficiently capture long-term dependencies while maintaining stable gradients

during training [55]. A schematic representation of a generic TCN is shown in Figure 16.
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Figure 16: Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and
filter size k = 3. (b) TCN residual block. An 1x1 convolution is added when residual input and output have different
dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual function, and
the green lines are identity mappings.

In this work, the TCN model implemented by Philippe Remy was utilized [56]. This model is
available in Python as part of the Keras library, a widely used deep learning framework built on
top of TensorFlow. Some hyperparameters were optimized for this task, while others were
left as default. Specifically, the number of convolutional filters per layer (nb_filters), the kernel
size used in each convolution (kernel size), and the dilation rates for the dilation levels
(dilations) were tuned to achieve the best performance. The default values for the other
parameters are documented in the Keras-TCN GitHub repository [56], considering that the three
parametres just cited were settled as described. Note that, unlike Figure 16, in this model there
are 2 sequential convolutional layers for each dilatation level, with the output of the first
convolutional layer that is the input of the second one. The optimization was performed using
the GridSearchCV function in Python, which systematically tested all possible combinations
within a predefined set of values for the three parameters, finding the best combination based
on the Mean Squared Error on the Validation Set. Given the four different types of signals

considered: ECoG with LMPs, ECoG up to 200 Hz, EEG with LMPs, and EEG up to 40 Hz,
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this optimization process was repeated separately for each signal type. However, due to the high
computational cost of evaluating all combinations across all subjects and conditions, the
optimization was conducted using data from only one finger of a single subject, keeping the
obtained parameter values to train also other subjects data. This approach aimed to provide an
initial indication of the best-performing parameters, acknowledging that optimal values could
vary across subjects due to the high intra-subject variability of neural signals. Additionally, it
was observed that slight variations in these parameters did not lead to significant differences in

performance. Table 3 shows the values of the hyperparameters for each type of signal:

ECoG LMP EEG LMP ECoG 200 Hz EEG 40 Hz
nb_filters 64 128 32 32
kernel_size 3 3 3 3
dilations (1,2, 4] (1,2, 4] [1,2,4,8,16,32] [1,2,4,8]

Table 3: TCN hyperparameters used for each type of data.

The approach was to consistently use a 0.5-second signal window to ensure a fair comparison
of results across different datasets while maintaining the same temporal window for prediction.
To achieve this, the kernel size and dilation layers were selected so that the receptive field would
always cover 0.5 seconds of input signal. The receptive field is determined by the formula [56]:
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L-1
Receptive Field = 1 + 2(kernel size — 1) Z d;

i=0
where L is the number of layers, d; represents the dilation rate at layer i. The factor ‘2’ comes
from the two sequential convolutions per layer. If the calculated receptive field exceeded the
required time window, zero-padding was applied to the missing samples, as the input signal

length remained fixed at 0.5 seconds.

Training was conducted with an early stopping criterion using a patience of 6, meaning that if
the loss function (MSE) on the validation set did not improve for 6 consecutive epochs, the
training was stopped. Although the maximum number of training epochs per fold was set to 50,
this limit was never reached. Furthermore, a learning rate annealing strategy was applied,
halving the learning rate when the validation loss did not improve for 3 consecutive epochs
(patience = 3). The annealing method helps to adjust the learning rate during training, gradually
reducing it to allow the model to converge more smoothly and avoid getting stuck in local
minima of the loss function gradient, which can happen when the learning rate is too low. On
the other hand, if the learning rate is too high, there is a risk of skipping local minima. Therefore,
this strategy helps to avoid both these issues and can lead gradient descent to minima with better

generalization than using a small learning rate throughout [57].

Regarding channel selection, a Sequential Forward Selection approach would have been
impractical for TCN due to its high computational cost and time. Therefore, all channels
covering the contralateral sensorimotor cortex (always corresponding to the left hemisphere)
were included in the input tensor, based on the knowledge that finger movement-related
information originates from this region. Specifically, for ECoG signals, the electrodes included

in decoding varied across subjects, as the number and location of electrodes differed between
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individuals. For EEG signals, the selected channels were FC5, FC3, FC1, C5, C3, C1, CP5,

CP3, and CP1.

4 Results and Discussions

4.1 Coherence results and discussions

4.1.1 ECoG

Below are the results of the coherence analysis obtained from the ECoG data. Figure 17, Figure
18, Figure 19, Figure 20 and Figure 21 show the coherences computed for all subjects. Each
figure is related to the results of each subject obtained for a specific finger flexion-extension,
as it was not possible to calculate an average coherence across subjects and fingers. This
limitation arises because the frequency of flexion-extension movements was not consistent
across cases, as the movements were self-paced. For this reason, coherence peaks are located
at different frequencies in different cases, making an overall averaging meaningless. The black
line represents the PSD of the kinematic signal. It was added in order to be aware where the
coherence peak is expected, i.e. at the peak of the PSD. This peak represents the main frequency
at which the subject performed the movement of that finger. Given that the movement frequency
was not perfectly controlled, there is actually a certain frequency band where the flexion-
extension occurred, with a corresponding peak. Furthermore, since coherence was computed
for each electrode, for each case (Subject and Finger), the channel showing the highest

coherence value within the movement frequency band was selected. This band was defined as:
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Movement Band = PSD Peak + Frequency Resolution

Equation 3

Each plot corresponds to a different subject. Specifically, the plots are arranged in a 3x3 grid,

where each row represents three subjects in order. For example, the plot in the first row, first

column corresponds to Subject 1, the second column to Subject 2, and so on.
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Figure 17: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Thumb. Each plot corresponds to a different subject. Specifically, the plots are arranged in a 3 X3 grid, where
each row represents three subjects in order. For example, the plot in the first row, first column corresponds to
Subject 1, the second column to Subject 2, and so on.
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Figure 18: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Index finger. Each plot corresponds to a different subject. Specifically, the plots are arranged in a 3 %3 grid,
where each row represents three subjects in order. For example, the plot in the first row, first column corresponds
to Subject 1, the second column to Subject 2, and so on.
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Figure 19: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Middle finger. Each plot corresponds to a different subject. Specifically, the plots are arranged in a 3 %3 grid,
where each row represents three subjects in order. For example, the plot in the first row, first column corresponds
to Subject 1, the second column to Subject 2, and so on.
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Figure 20: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Ring finger. Each plot corresponds to a different subject. Specifically, the plots are arranged in a 33 grid,
where each row represents three subjects in order. For example, the plot in the first row, first column corresponds
to Subject 1, the second column to Subject 2, and so on.

1

0.5

0

Coherence of all subjects for the Little

M/\AM—_ D]
0 5 10

15 20
Frequency [Hz]

0.5
0
0 5 10 15 20
Frequency [Hz]
1
0.5
0 -
0 5 10 15 20

Frequency [Hz]

1

0.5
0 o
0 5 10 15 20
Frequency [Hz]
1
0.5
0 e o
0 5 10 15 20
Frequency [Hz]
1
0.5
0 _A/\__I\_ .
0 5 10 15 20
Frequency [Hz]

—Psd
! —Coherence
0.5
0 — P
0 10 15 20
Frequency [Hz]
1
0.5
0
0 10 15 20
Frequency [Hz]
1
0.5
0
0 10 15 20

Frequency [Hz]

Figure 21: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Little finger. Each plot corresponds to a different subject. Specifically, the plots are arranged in a 3%3 grid,
where each row represents three subjects in order. For example, the plot in the first row, first column corresponds
to Subject 1, the second column to Subject 2, and so on.
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It can be observed that high coherence values are present at the expected movement frequencies
for almost all subjects, except for Subject 5. Coherence follows the expected trend in almost all
cases, i.e. a peak at the movement frequency and much lower values at other frequencies. This
indicates that the ECoG signal indeed follows, at least partially, the oscillations of the flexion-
extension movements. It is sometimes possible to notice peaks around the second harmonic of
the motion frequency, usually smaller in magnitude than the main peak. This aligns with
findings in the literature, where CKC analyses consistently report peaks at the second harmonic
and, in some cases, at higher-order harmonics. These harmonics likely reflect specific aspects

of movement kinematics, such as sudden variations or discontinuities in finger position [24].

Boxplots were used to represent the distribution of coherence values across different
experimental conditions. All boxplots in this work were generated following the same structure:
the red line in the center of each boxplot represents the median of the distribution. The size of
the box is determined by the interquartile range (IQR), spanning from the first to the third
quartile, indicating where the central 50% of the data lies. The outer lines extend to the most
extreme values within 1.5 times the IQR, while any data points beyond this range are considered
outliers and are shown as individual dots. A general overview of the maximum coherence values
in the movement band obtained for each subject is shown in Figure 22. Each boxplot contains
these coherence values for all 5 fingers of the subject. Similarly, in Figure 23 the coherence
between the different fingers was compared. In this case, each boxplot contains the values of

all subjects for that finger.
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Figure 22: Coherence peak values for each subject with ECoG. The coherence peak is the higher coherence value
of the electrode with the higher coherence in the movement frequency band.
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Figure 23: Coherence peak values across subjects for each finger with ECoG. The coherence peak is the higher
coherence value of the electrode with the higher coherence in the movement frequency band.
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These results show that, in general, good coherence values are obtained between the ECoG and
kinematic signals. There are differences between subjects, particularly Subjects 5 and 7, who
exhibit average values respectively of 0.15 and 0.22 (Figure 22). On the other hand, considering

all the subjects, the average value is 0.45, with coherence reaching up to 0.80.

No significant differences were observed between the movements of different fingers (Figure

23), suggesting that CKC is generalizable to all fingers.

The obtained coherence results are fairly consistent with findings reported in the literature,
although most studies have analyzed it using the magnetoencephalographic (MEG) signal. For
example, Piitulainen et al. (2013) reported a mean coherence of 0.25 between the MEG signal
and hand acceleration during self-paced flexion—extension movements of the right-hand fingers
[25]. Since the experimental condition (active and self-paced flexion—extension) is about the
same as in the present study, we can hypothesize that ECoG may yield higher coherence values
compared to MEG. The only difference is that their experiment included a touch between the
Thumb and the other fingers at the end of each flexion. However, the effect of touch on
coherence remains controversial, as two different studies have reported conflicting results. In
Piitulainen et al. (2013) [26], the presence of touch did not significantly affect coherence,
suggesting that the two conditions (with and without touch) could be considered equivalent. In
contrast, Bourguignon et al. [27] found significantly higher coherence in the active-touch
condition compared to the active-no-touch (self-paced) condition, likely due to increased tactile
input. Specifically, they reported group-level coherence values of 0.55 for the touch condition
and 0.31 for the no-touch condition. Regardless of which hypothesis holds true, the fact that the
experimental conditions of the present study did not involve touch, suggests again that the

coherence values obtained with ECoG are superior to those reported with MEG. This is because
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results of this current work exceed the no-touch condition in both studies and are comparable

to the touch condition reported by Bourguignon et al.

In order to identify the brain regions where greater coherence was observed, topographic maps
are presented in Figure 24, Figure 25, Figure 26, Figure 27 and Figure 28. The plots for each
subject are arranged as in Figure 17, illustrating the coherence distribution over the scalp during
fingers flexion-extension. The maps follow the colormaps shown on the below, with colors
representing the peak coherence values in the motion band for each electrode. As previously
mentioned, each subject has a different number of electrodes implanted in varying positions,
but always covering at least part of the left sensorimotor cortex. Additionally, the graphical

representation of each brain (provided with the dataset) also differs across subjects.

Coherence topographic maps for the Thumb

Figure 24: Coherence topographic maps of the ECoG of each subject for the Thumb finger. Each electrode shows
the coherence in the movement band. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %3 grid, where each row represents three subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence topographic maps for the Index

Figure 25: Coherence topographic maps of the ECoG of each subject for the Index finger. Each electrode shows
the coherence in the movement band. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %3 grid, where each row represents three subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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Figure 26: Coherence topographic maps of the ECoG of each subject for the Middle finger. Each electrode shows
the coherence in the movement band. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %3 grid, where each row represents three subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence topographic maps for the Ring

Figure 27: Coherence topographic maps of the ECoG of each subject for the Ring finger. Each electrode shows
the coherence in the movement band. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %3 grid, where each row represents three subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.

Coherence topographic maps for the Little
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Figure 28: Coherence topographic maps of the ECoG of each subject for the Little finger. Each electrode shows
the coherence in the movement band. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %3 grid, where each row represents three subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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It can be observed that, in almost all cases, the highest coherence values are located in the
electrodes over the left sensorimotor cortex, which corresponds to the hemisphere contralateral
to the moving hand. This is expected and reasonable, as this region is responsible for controlling
the movement ofthe contralateral limb [58]. Moreover, this finding is consistent with the results

of all previously cited studies on CKC.

4.1.2 EEG

Here are the same coherence analysis results, but this time obtained using the EEG signal.

In Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, Figure 35 and Figure 36
the coherence obtained from all six subjects is shown, one figure for each movement class. As
in the previous case, calculating an average coherence across subjects and fingers was not
feasible for the same reasons mentioned earlier. Once again, the coherence of the electrode with

the highest coherence within the movement frequency band is shown.

Coherence of all subjects for the Thumb 1 Hz
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Figure 29: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Thumb flexion-extension at 1 Hz. Each plot corresponds to a different subject. Specifically, the plots are arranged
in a 3x2 grid, where each row represents two subjects in order. For example, the plot in the first row, first column
corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence of all subjects for the Index 1 Hz
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Figure 30: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Index flexion-extension at 1 Hz. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %2 grid, where each row represents two subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.

Coherence of all subjects for the Point 1 Hz
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Figure 31: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Point flexion-extension at 1 Hz. Each plot corresponds to a different subject. Specifically, the plots are arranged
in a 3x2 grid, where each row represents two subjects in order. For example, the plot in the first row, first column
corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence of all subjects for the Fist 1 Hz —psd
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Figure 32: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Fist flexion-extension at 1 Hz. Each plot corresponds to a different subject. Specifically, the plots are arranged
in a 3X2 grid, where each row represents two subjects in order. For example, the plot in the first row, first column
corresponds to Subject 1, the second column to Subject 2, and so on.

Coherence of all subjects for the Thumb 3 Hz
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Figure 33: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Thumb flexion-extension at 3 Hz. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 %2 grid, where each row represents two subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence of all subjects for the Index 3 Hz
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Figure 34: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Index flexion-extension at 3 Hz. Each plot corresponds to a different subject. Specifically, the plots are
arranged in a 3 X2 grid, where each row represents two subjects in order. For example, the plot in the first row,
first column corresponds to Subject 1, the second column to Subject 2, and so on.
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Figure 35: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Point flexion-extension at 3 Hz. Each plot corresponds to a different subject. Specifically, the plots are arranged
in a 3x2 grid, where each row represents two subjects in order. For example, the plot in the first row, first column
corresponds to Subject 1, the second column to Subject 2, and so on.
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Coherence of all subjects for the Fist 3 Hz
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Figure 36: Coherence of the electrode with higher coherence in the movement frequency band for each subject for
the Fist flexion-extension at 3 Hz. Each plot corresponds to a different subject. Specifically, the plots are arranged
in a 3X2 grid, where each row represents two subjects in order. For example, the plot in the first row, first column
corresponds to Subject 1, the second column to Subject 2, and so on.

It can be observed that, with the EEG signal, coherence does not always follow the expected
pattern, and in some cases, the peak at the movement frequency is not clearly detectable respect
to the other frequencies. This is likely due to the generally lower maximum coherence values
within the movement frequency band, which prevents the peak from standing out. Indeed,
looking at the Figure 37 and Figure 38, the peak coherence values within the movement band

are very low compared with the previous ones of ECoG.
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Coherence values of EEG for each subject
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Figure 37: Coherence peak values for each subject with EEG. The coherence peak is the higher coherence value
of the electrode with the higher coherence in the movement frequency band.

Coherence values of EEG for each class of movement

0.04 - *

0.035

0.03

0.025

—_
I
I
1
I
I
1
I
1

0.02
| [

0.015 - . L | t -
|
—1

0.01F - | i

Coherence Values

0.005 4 —

J

0r 1 I 1 I I 1 I 1 I

1 s s - s - 1 1
o - \oée*@ ecsxv"“\ = w@“"‘“ \(\e@*ﬂ“‘\A 96\0‘"“‘“ ¥

Figure 38: Coherence peak values across subjects for each movement class with EEG. The coherence peak is the
higher coherence value of the electrode with the higher coherence in the movement frequency band.

Figure 38 shows that the coherence doesn’t change considerably between the different subjects,

apart from the Subject 2, who shows a higher coherence compared with the other subjects.
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However, the values are much lower than with ECoG, with a mean value across subjects of
about 0.02 and of 0.03 for Subject 2. Observing these results, an effort was made to further
investigate the causes of such low values by comparing and analyzing similar studies in
literature. In particular, it was expected that CKC values obtained from EEG would be lower
than those measured with ECoG in this study and also lower than those reported in studies using
MEG. However, the coherence in the movement band is even lower than one might have
hypothesized when compared to previous EEG-based CKC studies. For instance, Piitulainen et
al. (2020) [21] investigated the coherence between the Index finger acceleration during a
passive flexion-extension task and the EEG. Their aim was to examine the reliability and
reproducibility of CKC estimated from EEG signals using passive index finger movements,
which remains uncertain. They employed a pneumatic artificial muscle to ensure precise
movement frequency and found CKC values approximately half of those obtained with MEG,
with a mean coherence of 0.10 for the dominant hand using a CAR reference (as in our case).
Notably, they demonstrated that coherence improved with different referencing methods,
reaching mean values of 0.19 and 0.22 using Bipolar and Laplacian references, respectively.
Based on these findings, an attempt was made to enhance coherence values by applying Bipolar
and Laplacian references. However, this did not lead to any improvement, which is why these
attempts are not reported in this thesis. A further comparison can be drawn with the study
conducted by Giangrande et al. (2024) [29], which evaluated CKC using ankle kinematics.
Similar to the previous study [21], ankle-joint rotations at 2-Hz were induced via a movement
actuator. They examined two conditions: one in which subjects kept their foot completely
relaxed, resulting in a mean coherence of 0.03, and another where a constant 5-Nm plantar
flexion was exerted during movement, which improved coherence to a mean value of 0.13.
Finally, Wei et al. [30] analysed CKC during active rhythmic flexion-extension with the index
and middle fingers following three task frequencies (0.7 Hz/1.7 Hz/2.5 Hz). They investigated

the MotionWithAudio condition, in which a metronome was used to guide the movement
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rhythm, and the MotionOnly condition, where the metronome was played only during the first
5 seconds of each 25 seconds trial. In both conditions, peaks at the movement frequency and

its harmonics were detectable.

I sought to understand the reasons behind the differences between these studies and the present
work, particularly by examining the experimental conditions and the dynamics influencing
CKC. The most evident distinction from the first two cited studies [21] [29] is that they
employed passive movements controlled by actuators, whereas in this work the movement was
active. However, this should not significantly affect coherence, as Piitulainen et al. (2013) [26]
demonstrated in a CKC study using MEG. The use of an actuator instead of voluntary
movement serves a key purpose: ensuring a perfectly constant movement frequency. A similar
goal was pursued in the third study [30] using the metronome, particularly in the
MotionWithAudio condition but also in the MotionOnly condition, where the metronome was
played only during the first 5 seconds of each trial. While this likely resulted in a movement
frequency that was less stable than in the passive movement condition, it was still more
consistent than in this work. This consistency in movement frequency is likely the primary
factor contributing to the lower coherence values observed. This is reasonable, considering that
the coherence formula includes the cross-spectral density of the two signals at each frequency
divided by the product of their auto-spectral densities Equation 1. As a result, the ratio between
the spectral power at the frequency of interest and the total spectral power (for both signals) is
a key determinant of coherence at that frequency. Notably, even in the ECoG data, movement
frequency was not perfectly constant due to the self-paced nature of the task. However, the
stronger cortical signals provided by ECoG may have mitigated the effects of movement
irregularity, as ECoG more directly reflects the activity of the specific motor cortex region
involved in the task, which is the one expected to follow the motor movements and,

consequently, provide high coherence. In fact, it is widely known that signal-to-noise ratio
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of ECoG is superior compared to EEG [59]. In addition to the issue just discussed, signals may
not generally have a high signal-to-noise ratio, impacting on the coherence values obtained. All
these hypotheses on the causes of the results were also confirmed by Professor Piitulainen,

author of most of the studies in the literature on CKC (cited in Section 1.6).

Also in this case, the topographic maps based on the coherence peaks within the movement
band of each channel were examined for each subject and movement class. While EEG
electrode localization followed the 10-10 system precisely (as in Figure 10), this time it was
possible to generate average maps. Specifically, average topographic maps were obtained for
each subject, averaging across all subjects (Figure 39), for each movement class, averaging
across movement fingers (Figure 40), and a final map representing the mean CKC across all
subjects and movements (Figure 41). As before, the coherence of each channel is the peak

coherence within the movement band.
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Figure 39: Coherence topographic maps of the EEG for each subject. Each electrode shows the mean coherence
across all movement classes of the subject in the movement band. Each plot corresponds to a different subject.
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Figure 40: Coherence topographic maps of the EEG for each movement class. Each electrode shows the mean
coherence across all subjects of the movement class in the movement band. Each plot corresponds to a different
movement class.
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Figure 41: Coherence topographic map of the EEG averaged across all
subjects and movement class.

As expected, given the low coherence values, the topographic maps generally do not show a
clear increase in coherence over the contralateral sensorimotor cortex, often lacking
distinguishable spatial patterns. This region should be primarily responsible for finger

movement, as cited before [58] and as observed in the ECoG topographic maps (Figure 24 for
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example). If the coherence results had been more consistent, a more physiologically plausible
distribution would likely have emerged, as in the ECoG case. Instead, the observed patterns
appear more random. This is reasonable, as having relatively low coherence peaks, the values
of the contralateral motor cortex area are covered by other channels. Among the topographic
maps of different subjects (Figure 39), none exhibit a clear physiological distribution. However,
Subject 2, who had the highest coherence values, shows relatively higher coherence near the
left motor cortex compared to other channels, even if with elevated values in unrelated areas as
well. Similarly, Subjects 5 and 6 present slightly higher coherence near the expected region,
though their distributions remain suboptimal. When considering the topographic maps averaged
across different movement classes, the spatial patterns remain usually unclear, except for the

“Thumb 3 Hz’ movement, which exhibits the physiological distribution.

4.2 Decoding results and discussions

4.2.1 Multiple Linear Regression results with LMPs

Below are the decoding results obtained with the Multiple Linear Regression using LMPs. By
‘results’, we mean the Pearson correlation between the original and predicted trajectories,
metric used to evaluate the goodness of the decoding, as discussed in Section 3.5. Each boxplot
below includes the correlation values between the predicted and actual trajectory of all fingers
of'a subject, each obtained as the average of the correlations across 3 folds of the corresponding

finger and subject.
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ECoG LMPs correlations with MLR

Pearson correlation
© o o o o o
w E-N [&)] D =~
Hrri- T T T
1+
HT *H
- T
1
Y
—— Tk
HCh
N
——
T
T
| | | |

o

N

I
ol I I
T
1]

-

|

Figure 42: Results of the decoding of ECoG LMPs using the MLR. Each boxplot includes the correlations between
the predicted and actual trajectory of all fingers of a subject. For each subject, the boxplot ‘all data’ refers to the
results of the model the trained with the entire trajectories, while ‘corrected’ refers to the models trained with
trajectories without the movement intervals of other fingers.
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Figure 43: Results of the decoding of EEG LMPs using the MLR. Each boxplot includes the correlations between
the predicted and actual trajectory of all fingers of a subject. For each subject, the boxplot ‘all data’refers to the
results of the model trained with the entire trajectories, while ‘corrected’ refers to the models trained with
trajectories without the movement intervals of other fingers.
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Figure 42 shows the results obtained with the ECoG dataset, while Figure 43 refers to the
decoding with EEG. For each subject, the boxplot ‘all data’ refers to the results of the model
trained with the entire trajectories, while ‘corrected’ refers to the models trained with
trajectories without the movement intervals of other fingers (as detailed in Section 3.5).
Notably, the performance was consistently better with corrected data, again as already discussed
in Section 3.5. For ECoG, good performance was achieved, with a median correlation of 0.46
across subjects. In contrast, EEG yielded poor results, with a median correlation of 0.02. It is
interesting to note that these decoding results exhibit a similar ranking of subjects as observed
in the coherence analysis. Specifically, the subjects who performed better or worse in terms of
coherence values tend to show comparable performance trends in decoding correlation. This
consistency suggests a potential relationship between coherence measures and decoding
performance, reinforcing the findings discussed earlier. This can be observed by comparing
Figure 42 and Figure 43 with Figure 22 and Figure 37 respectively, which show coherence
results for each subject. In particular, with ECoG, Subject 2 is the best-performing participant,
with correlations ranging between 0.57 and 0.73 across fingers, while with EEG the best
performance was obtained with EEG dataset Subject 2, exhibiting correlations between - 0.02

and 0.07.

The permutation test, discussed in Section 3.5.2, was performed only for EEG Subject 2, the
best performing participant, to assess whether his decoding performance was above chance
level. For the other subjects, the performance was so low that conducting the test would not
have been meaningful. Results were often above chance level, indicating that the MLR model
still captured some meaningful information in its predictions from EEG LMPs, but the p-value

was equal to 0.23, indicating that this result do not have statistical significance.
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As previously discussed, a relationship was observed between the CKC analysis results across
subjects and their respective decoding performance. To further investigate this relationship, a
linear fit was performed between the decoding results (correlations) obtained for each channel
in a decoding attempt using a single channel as input and the corresponding coherence values
for each of these channels. This linear fit is shown in Figure 44, which clearly illustrates a strong
linear relationship between coherence and decoding performance. This finding is further
supported by a p-value of 0.00 and a correlation coefficient of 0.72 between the two variables,

confirming the statistical significance of this relationship.

Relationship between ECoG decoding results and CKC

Correlation: r = 0.72, p = 0.0000
Linear interpolation slope = 0.60
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Figure 44: Linear relationship between the results of the MLR using just one channel with LMPs of ECoG, and
the correspondent CKC values of the channels.

This provides a quantitative and statistical confirmation of the previously discussed observation
that higher CKC values are associated with better decoding performance. However, this
analysis does not explain the underlying causes of this relationship or whether one variable

directly influences the other. The observed linear relationship could simply result from the fact

81



that higher-quality LMPs signals lead to both stronger CKC and more accurate decoding. The
causality between these variables is challenging to interpret, as multiple factors may contribute
to their relationship. For instance, previous studies [28] suggest that CKC is primarily driven

by proprioceptive feedback rather than direct motor-related cortical activity.

The correlation between the original and predicted trajectories was then calculated by
considering only the finger movement intervals, aiming to investigate how well the model

specifically tracks the movement.

ECoG LMPs correlations only in movements with MLR
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Figure 45: Results of the decoding of ECoG LMPs using the MLR only in the movement intervals. Each boxplot
includes the correlations between the predicted and actual trajectory of all fingers of a subject calculated by
considering only the finger movement intervals. For each subject, the boxplot ‘all data’refers to the results of the
model trained with the entire trajectories, while ‘corrected’refers to the models trained with trajectories without
the movement intervals of other fingers.
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EEG LMPs correlations only in movements with MLR
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Figure 46: Results of the decoding of EEG LMPs using the MLR only in the movement intervals. Each boxplot
includes the correlations between the predicted and actual trajectory of all fingers of a subject calculated by
considering only the finger movement intervals. For each subject, the boxplot ‘all data’refers to the results of the
model trained with the entire trajectories, while ‘corrected’ refers to the models trained with trajectories without
the movement intervals of other fingers.

Figure 45 and Figure 46 show the results of the decoding only in the movement intervals
respectively for ECoG and EEG. Again, for each subject, there are two boxplots: one
representing the results of the model trained with all data and the other for the model trained
without the movement of other fingers. It is important to note that these results come from the
same models trained in these two ways; the only difference compared to the previous two
figures is the portion of the trajectories considered for the correlation calculation. Figure 45
shows that ECoG performance is consistently better for ‘all data’ models respect to the results
of ‘all data’ considering the whole trajectory in the correlation in Figure 42, with an
improvement of about 0.15 - 0.20 in correlation. Unexpectedly, the models trained with
‘corrected’ data performed worse than those considering also no-movement intervals (Figure
42). Additionally, their performance was lower than the correlations of the ‘all data’ models

when calculated only within the movement intervals (boxplots ‘all data’ of Figure 45). Also for
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EEG, results improved in this case, considering only movement intervals, while the

performance remained quite similar between the ‘all data’ and ‘corrected data’ conditions.

Overall, these findings suggest that MLR with LMPs is more effective in tracking ongoing
movements (as indicated by the correlation calculated including no-movement portions) than
in precisely distinguish movement events from rest (as reflected in the correlation computed
only within movement intervals). These results align with previous findings reported in the

literature [18] [19].

ECoG LMPs predicted trajectory with MLR —original

d —Predicted

4t A i
af 1 \ |
£ ny |

0 ‘ il f ’ir‘u,l L."‘J,“ ”l' i'L | I '“\»M_"‘H.‘Lﬂ ”‘"-“{ “

-1 i

) ! | 1 | |

0 5 10 15 20 25

Time (s)

Figure 47: Example of reconstructed trajectory with MLR from ECoG LMPs.

Figure 47 shows an example of a trajectory predicted using MLR from ECoG data. This
example is provided to show one of the best cases obtained with this model. As previously
discussed, it can be observed that the predicted trajectory follows the movement phases

relatively well, while it struggles to remain stable during the no-movement intervals.
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4.2.2 Temporal Convolutional Network results with LMPs

Below are the results of the decoding performed using the TCN model with LMPs signals as
input. Again, the results are also shown for both version of data for each subject in Figure 48
for ECoG, and in Figure 50 for EEG, while Figure 49 and Figure 51 show a comparison
between MLR and TCN results for each subject considering only the ‘corrected’ version,

respectively for ECoG and EEG data.
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Figure 48: Results of the decoding of ECoG LMPs using the TCN. Each boxplot includes the correlations between
the predicted and actual trajectory of all fingers of a subject. For each subject, the boxplot ‘all data’refers to the
results of the model the trained with the entire trajectories, while ‘corrected’ refers to the models trained with
trajectories without the movement intervals of other fingers.
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ECoG LMPs correlations with MLR vs TCN
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Figure 49: Comparison of decoding performances of ECoG LMPs using the MLR or TCN. Each boxplot includes
the correlations between the predicted and actual trajectory of all fingers of a subject for the ‘corrected’ version
(models trained with trajectories without the movement intervals of other fingers).

An improvement in decoding performance using the TCN can be observed, as highlighted in
Figure 49. In particular, considering all subjects in the 'corrected' condition, the MLR model
achieved a median correlation of 0.46, with a range from 0.02 to 0.73, whereas the TCN model
slightly improved the performance, reaching a median correlation of 0.47, ranging from 0.04 to
0.78. To compare the different models more effectively, it is more informative to focus on the
best-performing subject (who is the same across models). When considering all subjects, the
overall performance is heavily influenced by the lowest-performing cases, which tend to mask
the differences between models. For this reason, from this point forward, comparisons will be
made based on the best-performing subject for each dataset (ECoG and EEG). For
completeness, at the end of this section, a summary is included in Table 4, reporting the results
for all subjects, alongside a separate table specifically for the best-performing subject in both
datasets (Table 5). In this case, with the TCN model, Subject 2 (the best performer) achieved a

median correlation of 0.70, with a range from 0.56 to 0.78, whereas with MLR, the median was
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0.67, ranging from 0.57 to 0.73. Overall, TCN provided a slight improvement for ECoG LMPs,

even if not particularly substantial.

The same boxplots are shown below for EEG LMPs with TCN.

EEG LMPs correlations with TCN
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Figure 50: Results of the decoding of EEG LMPs using the TCN. Each boxplot includes the correlations between
the predicted and actual trajectory of all fingers of a subject. For each subject, the boxplot ‘all data’ refers to the
results of the model the trained with the entire trajectories, while ‘corrected’ refers to the models trained with
trajectories without the movement intervals of other fingers.
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EEG LMPs correlations with MLR vs TCN
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Figure 51: Comparison of decoding performances of EEG LMPs using the MLR or TCN. Each boxplot includes
the correlations between the predicted and actual trajectory of all fingers of a subject for the ‘corrected’ version
(models trained with trajectories without the movement intervals of other fingers).

Observing the results for EEG LMPs, a slight improvement with the TCN model compared to
MLR can also be noticed in Figure 51. However, despite this minor enhancement, the
correlation values between predicted and original trajectories remain very low, with a median
correlation of 0.06 and a range from 0.05 to 0.10 for the best-performing subject ‘corrected’
data (Table 5). Due to these low decoding performances, it was then decided to further
investigate the use of brain signals that also included higher frequency bands, as previously

discussed in Section 3.5, attempting to achieve better results.
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4.2.3 Results with full-band signals

EEG TCN correlations with LMPs vs full-ban
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Figure 52: Comparison of decoding performances of EEG using LMPs or full-band signals with TCN. Each
boxplot includes the correlations between the predicted and actual trajectory of all fingers of a subject for the
‘corrected’ version (models trained with trajectories without the movement intervals of other fingers).

Figure 52 shows the results obtained using EEG signals that included frequencies up to 40 Hz
as input to the TCN model, compared to the results obtained using EEG LMPs with the same
model (both from ‘corrected’ trajectories). A clear improvement in performance can be
observed, particularly for Subject 2 (the best-performing subject) and Subject 3. The correlation
with the original trajectories reaches a median value of 0.24, ranging from 0.08 to 0.31 of the

best-performing subject (Table 5).
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ECoG TCN correlations with LMPs vs full-band
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Figure 53: Comparison of decoding performances of ECoG using LMPs or full-band signals with TCN. Each
boxplot includes the correlations between the predicted and actual trajectory of all fingers of a subject for the
‘corrected’ version (models trained with trajectories without the movement intervals of other fingers).

Figure 53 presents the same comparison as the previous one, but for ECoG signals. In this case,
while using full-band signals led to an improvement over LMPs, the difference was not as

substantial as with EEG.

These results suggest that, in the case of ECoG signals, where we already observed strong CKC
and good decoding performance using LMPs, retaining the entire signal bandwidth does not
provide additional useful informations to the decoder. Conversely, for EEG signals, LMPs
appeared to be less informative, as they resulted in poor performance both in terms of CKC at
the movement-related frequencies (1 Hz and 3 Hz, which fall within the LMPs range) and in
terms of trajectory decoding. The significant improvement obtained using full-band EEG
signals with the TCN model suggests that a deep learning model like TCN is capable of
extracting relevant information from these signals that was not accessible when using only
LMPs. In particular, these additional features led to a notable performance increase, indicating

that when LMPs are unclear or less informative (as in our case with EEG), incorporating a TCN
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with full-band signals can enhance decoding. On the other hand, when LMPs are more distinct
and interpretable (as seen with ECoG), they contain the most relevant frequency band for

decoding, and adding higher frequencies does not further improve trajectory reconstruction.

The decoding process was also repeated using MLR with full-band signals, even though these
signals were originally intended for the TCN model. This is because feeding raw signals directly
into a Deep Learning model like TCN is more common, whereas with a simpler model like
MLR, a prior feature extraction step is typically performed. This attempt was made only to
confirm that including additional frequency bands in the input signals does not inherently
improve decoding performance. This hypothesis is supported by results in Figure 54 (for ECoG)

and Figure 55: Comparison of decoding performances of EEG using LMPs or full-band signals with MLR. Each
boxplot includes the correlations between the predicted and actual trajectory of all fingers of a subject for the
‘corrected” version (models trained with trajectories without the movement intervals of other fingers). Figure 55

(for EEG), which show that MLR did not benefit from the full-band signals. These results

further confirm that LMPs are an effective feature for decoding and that adding higher
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frequency bands only makes the signals less interpretable for MLR, without providing

additional useful information.
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EEG MLR correlations with LMPs vs full-ban
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Figure 55: Comparison of decoding performances of EEG using LMPs or full-band signals with MLR. Each

boxplot includes the correlations between the predicted and actual trajectory of all fingers of a subject for the
‘corrected’ version (models trained with trajectories without the movement intervals of other fingers).

Two tables summarizing the results obtained for each case study are shown below, with Table
4 containing the performances referring to all subjects, and Table 5 referring to the best subject
of the two datasets. Additionally, Figure 56 and Figure 57 provides another summary
comparison for ECoG and EEG respectively, allowing for an easier visual assessment of

performance across the different cases.
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All subjects ECoG LMP ECoG full band EEG LMP EEG full band

MLR Range 0.02-0.73 -0.02 - 0.68 -0.02-0.07 -0.01 -0.05
Median 0.46 0.42 0.02 0.01

TCN Range 0.04-0.78 0.01-0.73 -0.04-0.10 -0.03 -0.31
Median 0.47 0.53 0.03 0.07

Table 4: Comparison of the different decoding cases. The table shows the correlation results across all subjects

and fingers with models trained on data without other movements intervals (‘corrected’). The blue part is about
ECoG, the red is about EEG.

Best subject ECoG LMP ECoG full band EEG LMP EEG full band
MLR Range 0.57-0.73 0.44—0.68 0.04-0.07 0.00 - 0.05
Median 0.67 0.63 0.04 0.01
TCN Range 0.56-0.78 0.54-0.73 0.05-0.10 0.08 —0.31
Median 0.70 0.69 0.06 0.24

Table 5: Comparison of the different decoding cases for the best subject. The table shows the correlation results of
ECoG Subject 2 and EEG Subject 2 across all fingers with models trained on data without other movements
intervals (‘corrected’). The blue part is about ECoG, the red is about EEG.
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EEG correlations with each case
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Figure 56: Comparison of all four decoding cases for each subject of EEG dataset. Each boxplot includes the
correlations between the predicted and actual trajectory of all fingers of a subject for the ‘corrected’ version
(models trained with trajectories without the movement intervals of other fingers).
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Figure 57: Comparison of all four decoding cases for each subject of EEG dataset. Each boxplot includes the
correlations between the predicted and actual trajectory of all fingers of a subject for the ‘corrected’ version
(models trained with trajectories without the movement intervals of other fingers).
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5 Conclusion

This study examined the role of low-frequency activity in motor decoding for Brain-Computer
Interfaces (BClIs), comparing invasive ECoG and non-invasive EEG signals during repetitive
finger movements. The analysis focused on CorticoKinematic Coherence (CKC) and finger
trajectory decoding, utilizing both Multiple Linear Regression (MLR) and Temporal

Convolutional Networks (TCN).

- CKC analysis:

The CKC analysis revealed a stark difference between ECoG and EEG signals. ECoG exhibited
strong coherence values, consistently reflecting the expected frequency patterns and showing a
clear relationship with movement dynamics. In contrast, EEG demonstrated significantly lower
CKC at movement-related frequencies (1 Hz and 3 Hz), with weak and inconsistent coherence
patterns. One of the main reasons for this could be the poor frequency stability of the movement.
Additionally, the poor CKC performance in EEG can likely be attributed to weaker signal-to-
noise ratio (SNR), volume conduction effects, and lower spatial resolution, which made it
difficult to capture clear movement-related cortical activity. These factors likely contributed to
the observed inconsistencies. On the other hand, with ECoG, the higher SNR, better spatial
resolution, and reduced volume conduction effects made the impact of frequency instability in
movement-related frequencies less pronounced, highlighting how signal quality is very
impactful for CKC calculation. Given that CKC at 1 Hz and 3 Hz serves as a metric describing
the LMPs, these results led to the assumption that the LMPs in EEG signals were not as clear

and informative as those observed in ECoG.
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- Decoding analysis:

The decoding analysis further reinforced these findings. ECoG signals allowed for reliable
movement trajectory reconstruction, particularly when using LMPs. The inclusion of higher
frequencies did not enhance decoding performance, suggesting that LMPs contain the most
relevant information. Conversely, EEG decoding performance was generally poor when using
LMPs alone, aligning with the weak CKC results. However, an improvement was observed
when using full-band EEG signals, particularly with the TCN model, indicating that higher-
frequency EEG components might contain movement-related information that was not evident

in LMPs alone.

The results from the comparison of the two decoding models showed that, for ECoG, both MLR
and TCN performed well using only the LMPs, with only a slight improvement from TCN
compared to MLR. This suggests that the information provided by the LMPs is easily decodable
even with a simple model like MLR. As specified before, with both models the inclusion of
higher-frequency bands did not improve decoding performance. For EEG, however, MLR
performed poorly both with LMPs and full-band, while TCN showed a significant improvement
with full-band signals, highlighting how a Deep Learning approach can extract useful

information from higher-frequency components that were not evident in the LMPs.

Implications for BCI Applications:

The results of this study highlight the challenges in developing BCIs based on ECoG or EEG
for real-world applications, such as enabling finger movements for individuals with neuro-
motor impairments or for rehabilitation following neuro-motor injuries like strokes. In
particular, accurately predicting finger trajectories appears to be a significant challenge, making

it difficult for these systems to be used in real-world applications. Even with ECoG signals,
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which offer better signal quality, various issues related to their invasiveness would make them
unfeasible for clinical use. Regarding EEG signals, which have greater applicability due to their
non-invasive nature, this challenge remains more difficult to overcome—at least with the
methods employed in this study. Moreover, existing literature suggests that continuous
decoding of finger movements from EEG signals is still a difficult task, while classifying a

limited set of predefined movements seems more achievable.

Notably, using only 0.5-second windows allows for real-time applications, provided the
predictions are accurate. The inference time for both models was always lower than the
sampling period of the resampled data at 25 Hz and 83.3 Hz for EEG and 25 Hz for ECoG,
ensuring real-time feasibility. The only exception was the TCN with ECoG data resampled at
200 Hz, which took 1.09 seconds to predict one second of trajectory, potentially slightly

retarding real-time applications.

The results suggest a potential relationship between CKC value and decoding performance,
indicating that higher coherence may be associated with improved decoding accuracy. This
connection suggests that CKC likely reflects neural signal information that is also relevant for
decoding, indicating its potential role as a marker of movement-related features in motor BCls
(at least for repeated movements). However, further investigation is needed to determine
whether stronger CKC directly enhances decoding performance or if both are influenced by

common factors such as signal quality.
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