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Summary

In recent years, the need to enhance interaction between therapists and patients
during rehabilitation sessions has grown, leading to the increasing use of engineering
systems that incorporate algorithms for movement recognition. This work focuses
on developing a classifier for finger gestures, as hand rehabilitation is crucial for
post-stroke patients with motor impairments that may prevent or hinder their
movements.

This thesis proposes the development of a classifier that uses an Artificial Neural
Network (ANN) to recognize and differentiate hand movements. Specifically, the
study focuses on finger movements, such as counting, which are essential for hand
functionality and rehabilitation. A preliminary study was conducted using the
publicly available GRABMyo and Hyser datasets to extract valuable information
for constructing a custom dataset. The GRABMyo dataset provided insights into
inter-subject variability. The Hyser dataset was used to generate power maps,
highlighting major activation points for different movements, which were then used
to develop a protocol for positioning the acquisition devices.

The acquisition system consisted of six acquisition devices developed by the
eLiONS research group. These devices simultaneously acquire surface ElectroMyo-
Graphy (sEMG) and Average Threshold Crossing (ATC) signals using dedicated
Python software.

A total of seven different movements (Hand Close, Thumb up, One, Two, Three,
Four, Five), along with the idle state, were recorded. The recording process was
supported by a user-friendly GUI for real-time monitoring and control, along with
a dedicated interface to guide the subject and improve recording quality.

After a pre-processing step, the features for the classification were extracted,
and feature selection was performed using PCA, identifying 10 features sufficient
to explain 95% of the variance in the sEMG signal. The final dataset includes
24 healthy subjects, 21 of which were used for training and 3 for testing. Two
classifiers were built: one including all previously introduced movements and one
excluding the two most difficult movements to classify.

The classifier, considering all the movements, yielded an average per-class
accuracy of 92.88% and an F1 score of 71.84%. A separate classifier was developed
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by excluding the two most challenging movements to discriminate, resulting in
significant improvement across all metrics, among which an accuracy of 95.53%
and F1 score of 86.86%.

A final test was performed using only one subject for both training and testing,
with acquisitions on different days to assess the classifier’s performance with a
single subject. For the classifier considering all movements, the accuracy was
96.82% and the F1 score was 87.30%. For the classifier excluding the two most
challenging movements to recognize, the accuracy increased to 98.53%, and the F1
score reached 95.60%. The performance difference between the classifier trained on
all subjects and the single-subject classifier is attributed to the well-documented
inter-subject variability in the literature. Consequently, the relatively small number
of subjects may affect generalization.

In conclusion, the proposed method represents a robust approach for developing
a hand gesture recognition classifier, without the need for a high-density acquisition
device, achieving high performance across the evaluation metrics. The classifier
effectively discriminates finger movements using an acquisition setup that relies on
features extracted from sEMG signals.
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Chapter 1

Introduction

The anatomy of the hand plays a pivotal role in distinguishing Homo sapiens from
other species and has contributed significantly to our evolutionary development.
The opposition of the thumb is of particular importance, as it enables manipulating
and grasping objects, thereby facilitating the development of manual dexterity. The
human hand exhibits 19 degrees of freedom, comprising synchronized structures to
enable precise and intricate movements [1]. Key components include the thenar
muscles, which are responsible for critical functions in thumb movement and
opposition and are located at the base of the thumb [2]. Additionally, the intrinsic
muscles, intricately woven within the hand, play pivotal roles in fine motor control
and grip strength. Furthermore, the extensor and flexor muscles of the forearm,
spanning across the wrist joint, contribute significantly to wrist stability and
coordinated movement. The MetaCarpoPhalangeal (MCP) joint, a pivotal hinge
joint connecting the metacarpal bones to the proximal phalanges, enables crucial
movements such as flexion, extension, abduction, and adduction, thus contributing
significantly to hand function and mobility. Together, these anatomical elements
form a sophisticated network, facilitating the remarkable range of motion and
precision of human hand function [2]. Moreover, the presence of the median, ulnar,
and radial nerve, and their respective branches, orchestrates sensory and motor
innervation, ensuring optimal sensory feedback and motor coordination throughout
the hand and wrist.

The development of classifiers for hand gesture recognition using artificial intel-
ligence plays a pivotal role in the field of rehabilitation engineering. Such systems
are essential for controlling prosthetic devices, exoskeletons, and other assistive
technologies, offering individuals with motor impairments a means of regaining
functionality and independence. Artificial Intelligence (AI)-based classifiers, par-
ticularly those utilizing machine learning and deep learning algorithms, allow for
precise and adaptable gesture recognition, crucial for tailoring rehabilitation pro-
cesses to the specific needs of each patient. By analyzing biosignals such as surface
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electromyography, these systems can interpret subtle muscle activations, enabling
real-time feedback that is vital for effective neurorehabilitation and improving
patient outcomes.

This thesis, of which the pipeline is shown in Figure 1.1, focuses on the develop-
ment of a classifier for hand gesture recognition, specifically designed to classify fine
motor movements such as finger counting. These movements are often associated
with more complex hand functions, which are crucial for rehabilitation, particularly
after neurological impairments such as stroke. The research is part of a larger
project that integrates both movement recognition and neuromuscular stimulation
using the Rehastim2 device. The overarching goal of this project is to create a
comprehensive acquisition and feedback system that not only recognizes gestures
in real-time but also provides appropriate stimulation in response.

Figure 1.1: Thesis work complete pipeline.

The proposed system is built around a setup that includes sensors to capture
surface ElectroMyoGraphy (sEMG) signals from a healthy therapist performing
specific hand movements. These signals are processed to identify distinct patterns
associated with each gesture. Once a movement is recognized, the system triggers
the Rehastim2 device to deliver a stimulation profile to the patient, specifically
designed to induce the corresponding movement. This stimulation profile is deter-
mined through a calibration process that adapts to the patient’s neuromuscular
characteristics, ensuring personalized and effective stimulation.

The real-time functionality of the classifier allows the therapist to actively guide
the rehabilitation session by executing predefined movements, while the system
continuously monitors and recognizes these gestures. The corresponding stimulation
is then applied to the patient, reinforcing neuromuscular pathways and promoting
functional recovery. By integrating gesture recognition from the therapist and
neuromuscular stimulation in the patient, the system provides immediate and
adaptive feedback, enhancing the rehabilitation experience.

The ultimate goal of the project is to support individuals with motor impairments,
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particularly stroke survivors, by offering a personalized and adaptive rehabilita-
tion approach. The combination of real-time gesture classification and tailored
stimulation aims to optimize therapy effectiveness, facilitating motor recovery by
dynamically adapting to the patient’s progress.

1.1 Thenar muscles

Figure 1.2: Thenar muscles [3].

The thumb’s thenar muscles [4] are intrinsic muscles of the thumb situated at its
base as it showed in Figure 1.2, lying on the palmar side along the first metacarpal
bone [5]. Three thenar muscles form that so-called "thenar eminence," which is the
bulge on the palmar side; those three muscles are:

• Abductor pollicis brevis;

• Flexor pollicis brevis;

• Opponens pollicis.

Abductor pollicis brevis: it extends along the radial side of the hand; it is involved
in the abduction of the thumb, which is the movement of the thumb away from
the other fingers.

Flexor pollicis brevis: it is primarily involved in the thumb flexion at the
metacarpophalangeal joint. Additionally, it assists in opposition and adduction
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of the thumb, helping to bring the thumb across the palm and toward the other
fingers. These movements are essential for grasping and manipulating objects.

Opponens pollicis: it is primarily responsible for opposing the thumb and moving
the thumb toward the other fingers of the hand. This action is crucial for grasping
objects between the thumb and fingers, a movement known as precision grip.
Additionally, the opponens pollicis stabilizes the thumb during pinch and grip
activities.

1.2 Hypothenar muscles

Figure 1.3: Hypothenar muscles [3].

The hypothenar muscles (Figure 1.3) primarily regulate little finger movements
and play essential roles in diverse hand functions. Situated on the ulnar side of the
hand [6], they constitute a prominence on the medial palmar surface known as the
hypothenar eminence, although less conspicuous than the thenar eminence. The
hypothenar muscles consist of four key muscles:

• Abductor digiti minimi;

• Flexor digiti minimi brevis;

• Opponens digiti minimi;

• Palmaris brevis.

The abductor digiti minimi functions similarly to the abductor pollicis brevis
muscle, directing the little finger away from the midline.
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The flexor digiti minimi brevis facilitates flexion of the little finger at the
metacarpophalangeal joint.

The opponens digiti minimi muscle enables opposition movement of the little
finger, allowing it to move towards the thumb.

The palmaris brevis muscle contributes to the wrinkling of the skin on the hand’s
palmar surface and protects the ulnar nerve.

1.3 Extrinsic muscles on the forearm

1.3.1 Muscles on the anterior side

Figure 1.4: Anatomic representation of the extrinsic muscles on the anterior side
of the forearm [7].

The muscles in the anterior forearm (Figure 1.4)can be divided into superficial,
intermediate, and deep groups [8] [2]. The superficial group of muscles comprises:

• Flexor carpi radialis;

• Palmaris longus;

• Flexor carpi ulnaris.
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The flexor carpi ulnaris is innervated by the ulnar nerve, while the palmaris
longus and the flexor carpi radialis are innervated by the median nerve. Flexor
carpi radialis: it is involved in wrist flexion and wrist abduction.

Palmaris longus: it is involved in wrist flexion; notably, this muscle is less
prominent or as strong as other forearm muscles.

Flexor carpi ulnaris: it is involved in wrist flexion and ulnar deviation.
In the intermediate group, only the flexor digitorum superficialis, which is

involved in the flexion of the wrist, metacarpophalangeal, and proximal interpha-
langeal joints of digits 2-5. The median nerve innervates this muscle.

The deep group of muscles includes the flexor digitorum profundus and the
flexor pollicis longus. The flexor digitorum profundus plays a crucial role in flexing
the fingers. Its primary function is to flex the distal interphalangeal joints (DIP),
the joints closest to the fingertips. It also has a small role in wrist flexion. The
flexor pollicis longus is responsible for thumb flexion

1.3.2 Muscles on the posterior side
The muscles on the posterior side of the forearm can be divided into superficial
and deep groups [8] [5]. The muscles in the superficial group are:

• Extensor carpi radialis longus;

• Extensor carpi radialis brevis;

• Extensor digitorum;

• Extensor digiti minimi;

• Extensor carpi ulnaris.

Extensor carpi radialis longus: its primary function is wrist stabilization and is
involved in wrist extension and radial deviation.

Extensor carpi radialis brevis: its primary function is wrist straightening and
stabilization during power grasp, but it is also involved in wrist extension and
radial deviation.

Extensor digitorum: It provides the ability to straighten the index, middle, ring,
and small finger, thus involved in finger extension and wrist extension.

Extensor digiti minimi: It is used during the extension of the little finger.
Extensor carpi ulnaris: Its primary function is wrist straightening and stabi-

lization, and it also provides the ability to move the wrist away from the thumb.
Therefore, it is involved in wrist extension and adduction.

The deep group includes:

• Abductor pollicis longus;
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Figure 1.5: Anatomic representation of the extrinsic muscles on the posterior
side of the forearm [9].

• Extensor pollicis longus;

• Extensor pollicis brevis;

• Extensor indicis.

Abductor pollicis longus: it is involved in thumb abduction.
Extensor pollicis longus: it extends the thumb at the interphalangeal joint, and

the metacarpophalangeal joint is responsible for thumb straightening.
Extensor pollicis brevis works with the longus to extend the thumb.
Extensor indicis extends the index finger at the metacarpophalangeal and

interphalangeal joint, providing the ability to independently straighten the index
finger, as it has no junction connecting it to other extensor tendons.
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Figure 1.6: Anatomy of finger joints, including metacarpophalangeal, proximal
interphalangeal, and distal interphalangeal joints [10].

1.4 Finger joints
1.4.1 The metacarpophalangeal joint
It connects the metacarpal bones to the fingers and is classified as synovial. There
are five separate MCP joints, each connecting a metacarpal bone to the corre-
sponding proximal phalanx of the finger. The primary movements supported by
the MCP joint include flexion, extension, abduction, adduction, circumduction,
and limited rotation. These joints contribute to the stability and flexibility of
the fingers, a function facilitated by the presence of ligaments, joint capsules, and
adjacent musculotendinous structures.

The metacarpophalangeal joint is surrounded by a fibrous capsule firmly anchored
along the edges of the articular facets. This capsule exhibits greater thickness and
reinforcement on its medial and lateral aspects through collateral ligaments, that
are the major stabilizers of the MCP. Additionally, anteriorly, the joint capsule is
supplemented by the palmar metacarpophalangeal ligament, while posteriorly, it
receives contributions from the tendons of the forearm’s long extensor muscles.

There are two collateral ligaments: The proper collateral ligaments originate
from the posterior tubercles positioned on the dorsolateral aspect of the metacarpal
head, extending towards the palmar aspect of the adjacent proximal phalanx, just
distal to its base. Their primary function is constraining excessive MCP joint
flexion, ensuring stability during movement.

In contrast, the accessory collateral ligaments originate closer to the metacarpal
head and extend distally to attach onto the distal third of the palmar, or volar,
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plate. These ligaments exert tension during extension, effectively restricting such
movement within the joint and contributing to its overall integrity and functionality.

The palmar ligament, also known as the volar plate, constitutes a dense fibro-
cartilaginous structure that forms a robust thickening along the palmar aspect
of the MCP joint capsule. While loosely attached to the palmar aspect of the
metacarpal neck, it exhibits firm adherence to the palmar surface of the base of
the adjacent proximal phalanx. Its lateral margins seamlessly integrate with the
collateral ligaments, enhancing joint stability and functionality.

Within the thumb, the palmar ligament houses two sesamoid bones, establishing
articulations with palmar facets on the metacarpal head. The principal role of
this ligamentous structure is to counteract hyperextension of the MCP joint,
thereby safeguarding against excessive joint movement and ensuring optimal hand
biomechanics.

The deep, transverse metacarpal ligaments are slender fibrous bands extending
across the palmar aspect of the second to fifth metacarpophalangeal joints, effec-
tively linking them. Positioned anteriorly to the interossei muscles and posteriorly
to the lumbricals, these ligaments exhibit connections with the palmar surfaces of
the digital slips associated with the central palmar aponeurosis. Primarily, their
function revolves around bolstering the stability of the metacarpophalangeal joints
during manual gripping maneuvers.

Muscle acting on the metacarpophalangeal joints

Thumb flexion primarily involves the flexor pollicis brevis, supported by the flexor
pollicis longus muscle. For digits 2 to 5, flexion is orchestrated by the flexor
digitorum superficialis, flexor digitorum profundus, lumbricals, and flexor digiti
minimi brevis. Thumb extension, particularly from a flexed position, is chiefly
executed by the extensor pollicis brevis, with supplementary assistance from
the extensor pollicis longus muscle. The extension of digits 2 to 5 is managed
by the extensor digitorum, extensor indicis (second digit), and extensor digiti
minimi (fifth digit). The adductor pollicis facilitate adduction of the thumb,
while the palmar interossei muscles accomplish adduction of the remaining four
digits.Thumb abduction relies on the coordinated action of the abductor pollicis
longus and abductor pollicis brevis muscles, whereas the abductor digit minimi
governs the abduction of the fifth digit. Abduction of fingers 2-5 is attributed to
the dorsal interossei muscles. Axial rotation is actively induced by the simultaneous
contraction of the flexor pollicis brevis and abductor pollicis brevis muscles.
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1.4.2 Interphalangeal joints of the hand
They are classified as synovial joints. They are subdivided into proximal Inter-
phalangeal joints, situated between the proximal and middle phalanges, and distal
interphalangeal joints, found between the middle and distal phalanges. These joints
primarily facilitate fine digit movements, primarily flexion and extension. Like the
MCP joints, each interphalangeal joint is encapsulated by a joint capsule, internally
lined with a synovial membrane. Reinforcing these capsules are two collateral
ligaments and a palmar ligament. The collateral ligaments originate from the head
of the proximal phalanx and extend to the palmar aspect of its distal counter-
part. Additionally, each collateral ligament gives rise to an accessory ligament
anteriorly, limiting excessive adduction-abduction motions of the interphalangeal
joints. The palmar ligament, also known as the palmar or volar plate, presents a
robust fibrocartilaginous structure on each interphalangeal joint’s palmar surface.
Characterized by its inverted "U" shape, this ligament contributes significantly to
joint stability and functionality.

1.4.3 The carpometacarpal joints
They are located between the carpal and the metacarpal bones, contributing
significantly to the hand’s dexterity and functionality. Comprising five distinct
CMC joints, the trapeziometacarpal joint of the thumb stands out as the pinnacle
of adaptability and precision. In contrast, the remaining four CMC joints operate
as synovial joints with functional plane characteristics, connecting the inner four
metacarpal bones to the distal row of carpal bones. Surrounded by a robust
fibrous capsule, these joints benefit from structural integrity and protection against
external stresses. The fibrous capsule’s inner lining, composed of a synovial
membrane, secretes a lubricating synovial fluid, ensuring smooth and frictionless
joint movement. The joint surfaces of the CMC joints are covered by hyaline
cartilage. Three distinct sets of ligaments come into play to fortify stability: the
dorsal carpometacarpal ligaments, the palmar carpometacarpal ligaments, and the
interosseous ligaments. The dorsal carpometacarpal ligaments, situated dorsally,
provide robust reinforcement to the CMC joints. Consisting of seven ligamentous
bands extending obliquely between the dorsal surfaces of the distal carpal bones and
the medial metacarpal bases, these ligaments offer substantial support. However,
the fifth metacarpal deviates from this pattern, receiving only a single ligamentous
band from the hamate bone. Similarly, the palmar carpometacarpal ligaments,
positioned on the palm side, mirror their dorsal counterparts in structure and
function. They contribute to joint stability by linking the palmar surfaces of the
distal carpal bones with the medial metacarpal bases. Lastly, the interosseous
ligaments, though diminutive, play a pivotal role in stabilizing the CMC joints.
Comprising two robust fibrous bands, these ligaments extend between the lower
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aspect of the distal margins of the capitate and hamate bones and the bases of the
third and fourth metacarpals, providing additional reinforcement and structural
integrity to the joint complex.

1.4.4 Wrist anatomy and movements

Figure 1.7: Proximal and distal rows of the bones in the wrist [11].

There are eight carpal bones as depicted in Figure 1.7 , and they are irregularly
shaped; these bones connect the long bones of the forearm with the metacarpal
bones of the hand. They are organized in two rows: the proximal row and the distal
row. The scaphoid, lunate, triquetrum, and pisiform bones are in the proximal row.
The bones in the distal row are trapezium, trapezoid, capitate and hamate. Every
carpal bone is multifaceted, meaning that it articulates with several surrounding
bones, and this gives flexibility.

Proximal row

• The largest bone is the scaphoid; it articulates with the trapezium, trapezoid,
lunate, and capitate bones.

• The lunate, triquetrum, and pisiform are bones of the proximal row of the
carpus, each with distinct features and articulations. The lunate, located
between the scaphoid and triquetrum, articulates proximally with the radius
and the articular disc of the distal radioulnar joint and distally with the
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capitate. The triquetrum, a pyramid-shaped bone, is positioned medially in
the carpus, articulating laterally with the lunate and distally with the hamate.
The pisiform, a small sesamoid bone embedded in the tendon of the flexor
carpi ulnaris, articulates with the triquetrum and is easily palpable due to its
superficial location in the palm.

• The lunate bone is a central structure in the proximal row of the carpus,
identifiable by its crescent or moon-shaped appearance, which is the origin
of its name. It is strategically situated between the scaphoid and triquetrum
bones. The lunate’s proximal surface forms an essential part of the wrist joint
by articulating with the head of the radius and the articular disc associated
with the distal radioulnar joint. This articulation is crucial for the complex
movements of the wrist. Distally, the lunate connects with the capitate bone,
contributing to the stability and mobility of the carpal structure.

• The triquetrum bone, named for its three-cornered, pyramid-like shape, occu-
pies a medial position in the carpus. This bone articulates laterally with the
lunate and distally with the hamate, playing a pivotal role in the structure
of the wrist. An exciting feature of the triquetrum is its isolated oval-shaped
facet on the distal palmar surface. It is an articulation point with the pisiform
bone, a unique sesamoid wrist bone.

• The pisiform bone is a small, pea-shaped structure that is distinct within
the carpus due to its sesamoid nature, being entirely embedded within the
tendon of the flexor carpi ulnaris muscle. This bone’s primary function is to
act as a fulcrum for tendon movement, enhancing the mechanical advantage
of the flexor carpi ulnaris. The pisiform’s dorsal surface articulates with the
triquetrum, and due to its superficial position on the palmar surface, it is
easily palpable, making it an accessible landmark in clinical examinations of
the wrist.

Distal row

• The trapezium, trapezoid, capitate, and hamate bones are critical components
of the distal row of carpal bones, each with unique anatomical features
and articulations. The trapezium, positioned laterally, articulates with the
scaphoid, trapezoid, and first and second metacarpals. The trapezoid, wedge-
shaped and smaller from a palmar view, connects with the scaphoid, trapezium,
capitate, and the second metacarpal. The capitate, the largest carpal bone,
primarily articulates with the third metacarpal and surrounding carpal bones.
The hamate, the most medial bone of the distal row, features the hamulus,
which plays a critical role in the structure of the carpal tunnel and Guyon’s
canal.
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• The trapezium bone is the most lateral in the distal row of the carpus and is
crucial for wrist and thumb movements. Also known as the more significant
multangular bone, it articulates with the scaphoid proximally, the trapezoid
medially, and the first and second metacarpals distally. Its palmar surface
features a tubercle and groove, which are essential for tendon and ligament
attachments and aid in the functional anatomy of the hand. The dorsal surface
is closely related to the radial artery, highlighting its importance in skeletal
and vascular anatomy.

• The trapezoid bone, though small, plays a vital role in the distal carpal row.
This wedge-shaped bone is situated medially to the trapezium. It appears
small from a palmar view but is broader dorsally. The trapezoid articulates
with the scaphoid proximally, the trapezium laterally, the capitate medially,
and the second metacarpal distally, making it essential for wrist stability and
the connection between the carpal bones and the metacarpals.

• The capitate bone is the most prominent carpal bone centrally located in the
distal row. It primarily articulates distally with the third metacarpal, which
is crucial for wrist movement. The capitate also connects with the trapezoid
laterally, the scaphoid and lunate proximally, and the hamate medially, serving
as a central axis for the carpal structure and supporting hand function.

• The hamate is the most medial bone in the distal carpal row, distinguished
by its wedge shape and the prominent hamulus, a hook-like projection on its
palmar surface. It articulates distally with the fourth and fifth metacarpals,
laterally with the capitate, and proximally with the triquetrum. The hamulus
is significant for forming the medial wall of the carpal tunnel and the lateral
wall of Guyon’s canal, as well as serving as an attachment point for essential
muscles and ligaments, including the flexor retinaculum, making the hamate
key to both the mechanical and neurovascular functions of the wrist.

Mechanical movement of the wrist

The wrist joint, while anatomically complex, can also be understood from a
mechanical perspective, particularly in terms of the forces, torques, and movement
patterns it generates during functional tasks. The wrist operates as a biaxial joint,
allowing motion in two primary planes: the sagittal plane for flexion and extension,
and the frontal plane for radial and ulnar deviation. These movements are critical
for both precision tasks and load-bearing activities [1], as they contribute to the
wrist’s ability to adapt to varying functional demands.

Wrist flexion and extension are fundamentally hinge-like movements, where
the hand moves about a horizontal axis through the radiocarpal joint. From a

13



Introduction

Figure 1.8: .
Schematic representation of wrist movements. The top portion (a) illustrates wrist

flexion (downward movement towards the forearm) and extension (upward
movement away from the forearm) around the transverse axis. The bottom

portion (b) depicts ulnar flexion (movement towards the ulna) and radial flexion
(movement towards the radius) around the sagittal axis [12].

mechanical standpoint, flexion is characterized by a positive torque generated by
the wrist flexor muscles, which overcome external resistance to rotate the hand
toward the forearm. Flexion typically allows for a range of motion up to 90° [2],
depending on factors such as ligament tension and joint congruence. In tasks
requiring a strong grip, wrist flexion is limited due to the necessity of stabilizing
the hand in a more extended position, optimizing force transmission through the
forearm and hand.

In contrast, wrist extension involves a negative torque applied by the extensor
muscles. Extension generates mechanical stability in tasks like pushing or sup-
porting loads, as the wrist locks into a more rigid configuration at the extremes
of motion, typically up to 70° [2]. Extension is biomechanically favorable for
tasks requiring strength and stabilization because the mechanical advantage of the
extensor muscles improves the hand’s ability to resist external forces.

Radial and ulnar deviation represent lateral wrist movements along the frontal
plane. Mechanically, radial deviation moves the hand toward the thumb side,
involving a torque generated by the radial deviator muscles. This movement is
typically more limited in range, around 20° [2], due to the bony structures of the
radial styloid process, which acts as a constraint. Radial deviation is advantageous
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in fine motor tasks where precise lateral positioning of the hand is required, such as
turning a key or manipulating small objects. The limited range of motion in radial
deviation, however, means that large force generation is less efficient compared to
other wrist movements.

Conversely, ulnar deviation allows for a greater range of motion, typically around
30° [2]. This movement enables medial hand positioning, useful in tasks that require
gripping or lifting heavy objects. Ulnar deviation involves significant torque, as the
ulnar deviator muscles work against the resistance of both the load and the passive
tension in the radial ligaments. The mechanical advantage in ulnar deviation arises
from the broader range of motion and the capacity to generate larger forces, making
it integral to load-bearing and grip-intensive activities.

From a mechanical efficiency standpoint, wrist movements rely on the interplay
between active muscular forces and passive elements such as ligamentous tension
and joint surfaces. The wrist’s ability to distribute forces across its articulations
minimizes stress concentrations, particularly in repetitive or high-load tasks. The
combination of flexion / extension and radial / ulnar deviation allows a high degree
of adaptability, allowing the hand to maintain stable contact with objects, adjust
its orientation, and modulate grip force according to task demands.

1.5 Surface electromyography signal

Surface electromyography is a non-invasive method employed to measure and
quantify the electrical activity generated by skeletal muscles during voluntary
contractions [13]. It can be measured by placing electrodes on the skin surface
directly above the muscles of interest; sEMG captures the summation of action
potentials emitted by motor units within the muscle. These action potentials
generate a voltage signal that is detected by the electrodes. The resulting sEMG
signal is a complex waveform that reflects muscle activation’s temporal and spatial
characteristics, including the recruitment of motor units, the synchronization, and
the firing rate. Depending on various factors, the sEMG signal’s amplitude typically
ranges from a few microvolts (µV) to several millivolts (mV). These factors include
the size and type of the muscle, the level of muscle contraction, the distance between
the electrodes and the active muscle fibers, and the thickness of the subcutaneous
tissue. The quality of the sEMG signal is influenced by the type of electrodes
used, the electrode placement, and the skin preparation to minimize impedance
[14]. Proper skin preparation, which involves cleansing the skin to remove oils and
dead skin cells, is crucial for reducing impedance and enhancing the accuracy of
the recordings.

sEMG is widely applied across various disciplines, including clinical diagnostics,
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Figure 1.9: Representation of an sEMG signal with resting period and burst
activations [15].

rehabilitation, ergonomics, biomechanics, and sports science [13]. In clinical set-
tings, sEMG assesses neuromuscular disorders, monitors muscle activity during
rehabilitation, and guides physical therapy and surgery interventions. It is particu-
larly valuable for diagnosing conditions like muscle dystrophy, nerve injuries, and
motor control abnormalities. In rehabilitation, sEMG can track progress, optimize
therapeutic exercises, and provide biofeedback to patients, helping them improve
muscle coordination and strength. In ergonomics and occupational health, sEMG
is utilized to evaluate muscle load and fatigue in workers, aiming to prevent muscu-
loskeletal disorders by designing ergonomic interventions. For instance, sEMG can
assess the risk of repetitive strain injuries by monitoring muscle activity during
tasks that involve prolonged or repetitive movements. In sports science, sEMG
is critical in analyzing athletic performance, optimizing training regimens, and
preventing injuries. It helps understand the muscle activation patterns during
different sports activities, allowing coaches and athletes to tailor their training
programs for maximum efficiency and safety.

The analysis of sEMG signals can be performed in both the time and frequency
domains, offering a variety of metrics for interpreting muscle function. Time-domain
analysis involves parameters such as the root mean square (RMS) amplitude, which
measures the signal’s power and is correlated with the force produced by the
muscle. Other time-domain metrics include the mean and peak amplitudes, which
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provide insights into the intensity of muscle activation, and the onset/offset timing,
which indicates when a muscle begins and ceases to contract. In this work, several
features were extracted in the time domain, including the previously mentioned
RMS. Conversely, frequency-domain analysis focused on metrics such as the median
and mean power frequency, which provide insights into muscle fatigue and fiber
type composition. A detailed description of these features is provided in section 1.8.
The sEMG signal is also subject to various sources of noise and artifacts that can
complicate its interpretation [14]. External electrical interference from devices
such as power lines and electronic equipment can introduce noise into the signal,
particularly at frequencies close to 50 Hz or 60 Hz. Motion artifacts, which occur
due to the movement of the electrodes relative to the skin, can distort the signal
and obscure actual muscle activity. Cross-talk from adjacent muscles is another
challenge [13]; it occurs when the signal recorded is not only the target muscle’s
signal but also has some components from other muscles near the acquisition site,
leading to inaccurate assessments.

Skin electrode interface

Figure 1.10: Schematic representation of the skin-electrode interface, illustrating
the epidermis, dermis and the corresponding electrical model components. On the
left gelled electrode, on the right dry electrode. [16].

The skin-electrode interface dramatically influences the quality of the sEMG
signal acquisition, as it directly mediates the transmission of electrical potentials
generated by muscle activity through the skin to the recording electrodes [17]. The
effectiveness of this interface hinges on several factors, including the biophysical
properties of the skin, electrode material, preparation techniques, and the precision
of electrode placement. The skin presents a variable impedance barrier, as shown
in Figure 1.10, influenced by factors such as epidermal thickness, hydration levels,
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and the presence of hair or sweat, that can introduce noise. To optimize the
skin-electrode interface, skin preparation is essential. This procedure typically
involves cleaning the skin with alcohol to remove oils and debris [18], followed by
light abrasion to reduce the stratum corneum’s impedance. These steps minimize
the impedance at the interface, thereby enhancing the signal-to-noise ratio (SNR)
of the recorded sEMG signals. The material of the electrodes also influences the
quality of the recording, with silver/silver chloride (Ag/AgCl) electrodes being
preferred due to their superior electrochemical properties and common use. These
electrodes facilitate a more consistent and low-noise signal transmission, making
them the gold standard in sEMG applications.

The placement of electrodes is another critical factor. An accurate positioning
over the muscle belly [19], with alignment parallel to the muscle fibers, ensures
maximal signal amplitude, which helps to reduce the cross-talk and enhance
the specificity of the recording. The skin-electrode interface is also susceptible to
dynamic changes during data recording, such as those caused by movement artifacts
and skin deformation. These issues can alter the impedance at the interface, leading
to potential signal distortion and artifacts and an electrode detachment, making
it impossible to acquire the signal. In order to enhance the quality of the signals
it is expected to utilize signal processing techniques, including adaptive filtering,
artifact rejection algorithms, and impedance monitoring, are often employed to
mitigate these effects and preserve the integrity of the sEMG data.

Influence of noise, movement artifacts and power line noise

Noise and artifacts significantly impact the acquisition quality and therefore the
analysis of sEMG signals, often complicating the accurate interpretation of muscle
activity [13]. These unwanted influences can arise from various sources and signifi-
cantly degrade the quality of the recorded data. One of the primary contributors
to noise in sEMG is the inherent electrical activity of the skin, known as the
baseline noise, which is influenced by the skin’s impedance and can fluctuate due to
factors like temperature, humidity, and movement. Additionally, muscle cross-talk,
where signals from adjacent muscles overlap with the target muscle’s activity, can
introduce artifacts that obscure the actual signal of interest.

Movement artifacts are another common issue, often resulting from electrode
displacement or changes in the skin-electrode interface due to limb movements.
These artifacts manifest as low-frequency disturbances that can mask the underlying
sEMG signal. Proper electrode placement and secure attachment are essential to
minimize these artifacts, although they cannot be eliminated, especially during
dynamic activities.

Power line interference, typically at 50 Hz or 60 Hz [13], is a prevalent external
noise source in sEMG recordings. This interference can be introduced into the sEMG
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signal through the environment, mainly when, during the acquisition, there is a
significant presence of electrical devices or poor grounding. Differential amplification
is often used to mitigate this, which amplifies the difference between two electrode
signals while rejecting common-mode noise, including power line interference.
Another method usually employed to eliminate the power line noise is the notch
filters. They are specifically designed to target the power line frequency to reduce
this interference’s impact [20].

Managing noise and artifacts in sEMG acquisition is crucial for obtaining reliable
and accurate data. Achieving this requires a combination of proper electrode setup,
careful experimental design, and the application of advanced signal-processing
techniques.

1.6 Motor Unit Action Potential (MUAP)
The Motor Unit Action Potential (MUAP) is a key electrical signal that underpins
the function of muscles, reflecting the activity of motor units (MUs). Each motor
unit is composed of a motor neuron and all the muscle fibers it innervates, forming
the smallest functional unit of muscle contraction. When an action potential travels
down the axon of a motor neuron, it reaches the NeuroMuscular Junction (NMJ),
where acetylcholine is released, triggering an action potential in the muscle fibers
associated with that motor unit. This muscle fiber action potential propagates along
the fibers, and the sum of these propagating potentials forms the MUAP, which can
be detected as a voltage distribution on the skin using surface electromyography.
The sEMG signal represents the cumulative activity of multiple MUs, with each

Figure 1.11: Schematic representation of a MUAP generation [21]
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MUAP contributing to the overall signal. The MUAPs propagate bidirectionally
from the motor unit’s innervation zone toward the muscle-tendon junctions, and
their characteristics are shaped by factors such as the size and histological type of the
muscle fibers within each motor unit. These factors ensure that the action potentials
from the fibers of a single motor unit travel at roughly the same conduction velocity
(CV), allowing their contributions to sum coherently on the skin’s surface. As a
result, each MUAP provides a distinctive characteristic for its respective motor
unit, which can be captured by electrodes placed parallel to the muscle fibers.

The recruitment of motor units and their firing rates are controlled by the central
nervous system and are directly related to the force produced by the muscle. As
muscle contractions intensify, more motor units are recruited, and the discharge
rate of each motor unit increases. This modulation is reflected in the sEMG signal,
with higher force levels producing more complex patterns due to the increased
number of contributing MUAPs. However, with progressively stronger voluntary
contractions, distinguishing individual MUAPs becomes more challenging, as the
interference pattern generated by the overlapping action potentials from many
active MUs increases.

The propagation velocity of MUAPs depends on the ionic dynamics of the
muscle fiber membranes, with action potentials traveling from the NMJ to the
muscle-tendon junction at a speed that varies according to the fiber type and
condition. This velocity is a critical parameter in understanding muscle function,
as it influences both the timing and the amplitude of the MUAPs detected on the
skin. The depth and orientation of the muscle fibers also affect the strength of
the detected MUAPs, with superficial fibers contributing more significantly to the
sEMG signal compared to deeper fibers.

One of the fundamental distinctions between sEMG and other bio-electric
signals, such as those from electrocardiography (ECG) or electroencephalography
(EEG), lies in the spatial arrangement and directionality of the detected signals.
In sEMG, the electrodes capture the bidirectional propagation of MUAPs along
the muscle fibers, a phenomenon not observed in ECG or EEG. This unique
characteristic allows sEMG to provide detailed information about muscle activity,
including insights into motor unit recruitment strategies and neuromuscular control
mechanisms.

The ability to interpret sEMG signals in terms of MUAP dynamics is essential
for a wide range of applications [13], from clinical diagnostics to motor control
research. By analyzing the summation of individual MUAPs, researchers and
clinicians can gain valuable information about muscle performance, neuromuscular
health, and motor function. Moreover, understanding the factors that influence
MUAP propagation such as muscle fiber type, motor unit recruitment, and action
potential conduction velocity can help in the development of more accurate models
of muscle activity and in designing more effective interventions for rehabilitation
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and motor control training.
As muscles contract voluntarily or involuntarily, the MUAPs detected via sEMG

provide a window into the underlying neuromuscular processes. The sum of
these action potentials reflects the combined activity of the recruited motor units
and offers a means to quantify muscle force output, track fatigue, and assess
neuromuscular coordination. With its ability to non-invasively capture real-time
information about muscle activation patterns, sEMG has become a critical tool in
the study of human movement, biofeedback, and rehabilitation.

1.7 Single differential acquisition

Figure 1.12: Single differential acquisition schematic representation [13].

The single differential configuration is a technique in the acquisition of sEMG
signals aimed at improving signal quality by reducing noise and, therefore, enhancing
the accuracy of muscle activity detection [13]. It involves using two electrodes
placed on the skin over the target muscle. The potential difference between the
signals detected by the two electrodes is computed in the differential acquisition.
This differential measurement effectively cancels out common-mode signals, such
as external electrical noise or signals from distant sources, that are present equally
on both electrodes. The result is a signal that more accurately reflects the true
activity of the target muscle, with significantly reduced interference from external
noise sources, improving the SNR.

One of the advantages of the single differential configuration is its heightened
sensitivity to localized muscle activity[13]. Because the output signal represents the
difference in electrical potential between two closely spaced points on the muscle,
it is more responsive to small changes in muscle activity between these points. In
these cases, the single differential method is beneficial for applications requiring
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precise muscle dynamics monitoring, which is particularly important in this thesis
work. The signal obtained from this configuration is typically bipolar and exhibits
positive and negative values. This bipolar nature arises from how the muscle’s
electrical potentials vary spatially across the two electrodes.

However, there are some challenges associated with the single-difference approach.
The signal amplitude is generally lower than the one obtained from monopolar
configurations, where a single electrode’s potential is referenced against a distant,
relatively inactive electrode. The accuracy of the single differential signal is highly
dependent on the precise placement of the electrodes. Incorrect placement can lead
to contamination from signals by cross-talk.

The single differential configuration is often used in the literature as a method
for sEMG recording due to its ability to isolate and accurately measure specific
muscle activities while minimizing the impact of external noise.

1.8 sEMG features overview

Features in the time domain
Mean Absolute Value (MAV)

MAV = 1
N

NØ
i=1

|x(i)| (1.1)

The mean absolute value, represents the average of the absolute values of the signal.
It is calculated as the arithmetic mean of the absolute signal amplitudes over a
given time window. The MAV serves as an indicator of the overall intensity of the
signal, facilitating the distinction between periods of muscular contraction and rest.
Its simplicity and effectiveness make it a widely used metric in sEMG analysis.

Root Mean Square (RMS)

RMS =

öõõô 1
N

NØ
i=1

x(i)2 (1.2)

The root mean square, which is computed as the square root of the mean of the
amplitudes of the squared signal. RMS provides a robust estimation of the muscle
force, as it is directly proportional to the recruitment of motor units. This feature
is particularly valuable in quantifying the strength of muscle contractions while
being less sensitive to transient variations in signal amplitude.
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Zero Crossing (ZC)

ZC =
N−1Ø
i=1

sgn
1
x(i) · x(i + 1) < 0 ∧ |x(i) − x(i + 1)| > ∆

2
(1.3)

The zero crossing metric quantifies the number of times the signal amplitude
crosses zero within a specified time window. To ensure robustness, ZC incorporates
a threshold (∆) that excludes crossings caused by noise or minimal amplitude
fluctuations. This feature highlights the frequency content of the signal and is
particularly useful for detecting rapid transitions in muscle activation patterns

Slope Sign Changes (SSC)

SSC =
N−1Ø
i=2

sgn
1
(x(i) − x(i − 1))(x(i) − x(i + 1)) > 0 ∧ |x(i) − x(i + 1)| > ∆

2
(1.4)

The slope sign changes evaluates the number of times the slope of the signal
changes direction. This features identifies points of inflection in the signal while
incorporating a threshold (∆) to eliminate minor variations. This feature is
indicative of dynamic changes in the signal, making it suitable for detecting rapid
muscle contractions and transitions.

Simple Square Integral (SSI)

SSI =
NØ

i=1
x(i)2 (1.5)

The simple square integral measures the energy of the signal over time by summing
the squared amplitudes of all samples within a time window. This metric provides
a cumulative measure of the signal’s power, reflecting the total intensity of muscle
activity during the analyzed period.

Integrated EMG (IEMG)

IEMG =
NØ

i=1
|x(i)| (1.6)

the integrated EMG calculates the sum of the absolute values of the signal am-
plitudes over a given window. Similar to MAV, the IEMG serves as a cumulative
measure of muscle activation, often used to estimate the overall workload experi-
enced by the muscle.
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Wave Length (WL)

WL =
N−1Ø
i=1

|x(i + 1) − x(i)| (1.7)

The WL calculates the total variation between consecutive samples of the signal.
It is commonly used to assess the frequency content of a signal and the amount of
fluctuations within a given window.

Variance (VAR)

V AR = 1
N − 1

NØ
i=1

(x(i) − µ)2 (1.8)

The VAR measures the dispersion of the signal values around the mean. It provides
insight into the signal’s variability and is used to evaluate the consistency of the
muscle activation over time.

Willison Amplitude (WAMP)

WAMP =
N−1Ø
i=1

sgn
1
|x(i) − x(i + 1)| > ∆

2
(1.9)

The Willison amplitude represents the number of times the difference in amplitudes
between consecutive samples exceeds a predefined threshold (∆). This feature
emphasizes rapid changes in signal amplitude, capturing high-frequency components
associated with muscle activation bursts or transient movements.

Legend

• x(i): Signal value at the i-th sample

• N : Total number of samples

• ∆: Threshold value

• sgn(condition): Indicator function, equals 1 if the condition is true, otherwise
0
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Feature Extraction in Frequency Domain
Mean Frequency (MNF)

The Mean Frequency represents the centroid of the power spectrum and is calculated
as:

MNF =
qN

i=1 f(i)P (i)qN
i=1 P (i)

(1.10)

where f(i) is the frequency at the i-th bin and P (i) is the power spectral density
at the same bin.

Median Frequency (MDF)

The Median Frequency divides the power spectrum into two equal halves, such
that: Ú fMDF

0
P (f) df = 1

2

Ú fmax

0
P (f) df (1.11)

where fMDF is the median frequency and P (f) is the power spectral density.

Total Power (Ptot)

The Total Power represents the total energy of the signal in the frequency domain
and is computed as:

Ptot =
NØ

i=1
P (i) (1.12)

where P (i) is the power spectral density at the i-th bin.

Legend
• f(i): Frequency at the i-th bin

• P (i): Power spectral density at the i-th bin

• fmax: Maximum frequency in the signal

• fMDF: Median frequency

• ∆: Threshold value (not used in these features but included for consistency)

• N : Total number of frequency bins
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1.9 Skeletal muscles

1.9.1 Muscle structure and sarcomere organization

Skeletal muscles differ significantly in size, shape, and fiber arrangement as rep-
resented in Figure 1.13. They are richly supplied with blood vessels and nerves
directly connected to their primary function: contraction. Skeletal muscle is a
dynamic and adaptable tissue capable of responding to stress and generating force.
In humans, skeletal muscle accounts for approximately 50% of the total body weight
and constitutes around 70% of all body proteins. Muscle mass is regulated by the
balance between protein synthesis and degradation, processes that are influenced by
various factors such as nutrition, hormonal status, physical activity or exercise, and
conditions such as injury or disease. From a mechanical perspective, the primary
function of skeletal muscle is to convert chemical energy into mechanical energy,
facilitating force production, power generation, postural support, and movement.
These functions are essential for performing daily activities, participating in social
and occupational settings, promoting health, and maintaining functional indepen-
dence. From a metabolic point of view, skeletal muscle plays a critical role in the
regulation of energy metabolism. It serves as a reservoir for essential substrates
such as amino acids and carbohydrates, contributes to thermo-regulation through
heat production, and consumes most of oxygen and fuel during physical activity
and exercise.
Skeletal muscle is a tissue of myofibers, each containing hundreds to thousands
of myofibrils [23] [24]. These myofibers are grouped and wrapped in a connective
tissue covering. These myofibrils are the contractile elements of the muscle, orga-
nized into repeating units called sarcomeres, which are the fundamental units of
contraction. Sarcomeres are delineated by Z-discs, protein structures that anchor
the thin filaments of actin at each end of the sarcomere. The central region of the
sarcomere contains thick filaments of myosin, which overlap with the thin filaments.
This arrangement of filaments within the sarcomere creates the striated appearance
of the skeletal muscle under a microscope and is crucial for its contractile function.
The sarcomere is composed of several regions: the I-band, which contains only thin
actin filaments; the A-band, where actin and myosin overlap; the H-zone, containing
only thick myosin filaments; and the M-line, which stabilizes the central region
of the myosin filaments. These structures work together to ensure coordinated
contraction of the muscle.
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Figure 1.13: Structure of a skeletal muscle sarcomere [22].

1.9.2 The sliding filament theory and calcium ions
The sliding filament theory describes muscle contraction at the molecular level
[27], detailing the interaction between actin and myosin filaments within each
sarcomere. The Figure 1.13 show how these filaments are partially overlapped
in a resting muscle, with tropomyosin blocking myosin-binding sites on actin.
Upon stimulation by a nerve impulse, calcium ions (Ca2+) are released from the
sarcoplasmic reticulum into the cytoplasm of the muscle fiber. These Ca2+ ions
bind to troponin C, a subunit of the troponin complex on actin filaments, causing
a conformational change that shifts tropomyosin away from the myosin-binding
sites. This exposure allows the myosin heads, energized by ATP hydrolysis to bind
to actin, forming cross-bridges. The myosin heads then execute a power stroke,
pulling the actin filaments toward the center of the sarcomere, resulting in the
shortening of the sarcomere. As multiple sarcomeres contract in unison, the entire
muscle fiber shortens, generating force and movement.

The regulation of muscle contraction is intricately linked to the concentration
of Ca2+ in the muscle fiber as it is represented in Figure 1.15. In the absence
of Ca2+, tropomyosin remains in a position that blocks myosin-binding sites on
actin, preventing cross-bridge formation and thus keeping the muscle in a relaxed
state. Upon an action potential, Ca2+ is rapidly released from the sarcoplasmic
reticulum, binds to troponin C, and induces the necessary conformational change
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Figure 1.14: The Sliding Filament Theory of muscle contraction. This diagram
illustrates how myosin heads bind to actin filaments, undergo a power stroke, and
release, driven by the hydrolysis of ATP and the presence of Ca2+ ions, leading to
the shortening of the sarcomere [25].

in the troponin-tropomyosin complex, enabling myosin heads to attach to actin and
initiate contraction. The precise timing and regulation of Ca2+ release and re-uptake
are critical for proper muscle function. After contraction, Ca2+-ATPase pumps in
the sarcoplasmic reticulum actively transport Ca2+ back into storage, decreasing
cytoplasmic Ca2+ concentration and allowing the muscle to relax. Disruptions in
this Ca2+ cycling can impair muscle function, potentially leading to muscle stiffness
or weakness.

Role of the ATP in the cross-bridge formation

ATP plays a central role in muscle contraction by providing the energy necessary
for the cross-bridge cycle illustated in Figure 1.16. The cycle begins when ATP
binds to the myosin head, causing it to detach from the actin filament. The myosin
head then hydrolyzes ATP into ADP and inorganic phosphate (Pi) [29], which
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Figure 1.15: Sliding filament theory process illustrating the chemical compo-
nent[26].

remains attached to the myosin head. This hydrolysis reaction energizes the myosin
head, allowing it to return to its high-energy. In this state, the myosin head is
ready to bind to a new site on the actin filament.

Pi is released when the myosin head binds to actin, triggering the power stroke.
During the power stroke, the myosin head pivots, pulling the actin filament to-
wards the M-line of the sarcomere, resulting in muscle contraction. Following the
power stroke, ADP is released, and a new molecule of ATP binds to the myosin
head, causing it to detach from actin and allowing the cycle to repeat. This
cross-bridge formation and release cycle is repeated many times during a single
muscle contraction, and the availability of ATP is crucial for sustaining this process.
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Figure 1.16: Cross bridge cycle representation [28].

Relaxation and replenishment of calcium stores

Muscle relaxation is as carefully regulated as contraction. Once the nerve im-
pulse ceases, Ca2+ channels close, and Ca2+ is actively pumped back into the
sarcoplasmic reticulum by Ca2+-ATPase pumps, a process requiring ATP. As the
concentration of Ca2+ in the cytoplasm decreases, Ca2+ dissociates from troponin,
leading to tropomyosin re-blocking of the myosin-binding sites on actin. Without
Ca2+, cross-bridge formation is inhibited, and the muscle returns to its resting state.
Restoring Ca2+ levels in the sarcoplasmic reticulum is essential for muscle readiness
and preventing muscle fatigue. During prolonged or intense activity, the muscle’s
ability to quickly re-sequester Ca2+ can be compromised, leading to decreased force
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production and endurance. The regulation of intracellular Ca2+ is a critical fac-
tor in muscle physiology, influencing both the strength and duration of contractions.

1.9.3 Regulation of muscle force
The coordinated contraction of sarcomeres within a muscle fiber results in the
generation of force and movement. The ability of a muscle to generate varying
degrees of force is influenced by several factors, for instance, the frequency of neural
stimulation, the number of motor units recruited, and the initial length of the
muscle fibers. Muscles can perform both quick, powerful contractions for rapid
movements and sustained contractions for posture maintenance, depending on
the pattern of neural activation and the metabolic pathways engaged. Efficient
ATP utilization and rapid Ca2+ cycling are essential for muscle-sustained activity,
whether during short bursts of high-intensity activity or prolonged low-intensity
exercise.

1.10 Functional Electrical Stimulation (FES)
Functional Electrical Stimulation (FES) is an electric stimulation technique that
utilizes electrical currents to activate muscles in order to restore or improve function
in individuals with neurological or musculoskeletal impairments [30]. The principle
behind FES is to bypass damaged or malfunctioning neural pathways by directly
stimulating the target muscles, thereby eliciting controlled contractions or responses.

One of the primary applications of FES is in rehabilitation, where it is used
to assist individuals with paralysis or weakness due to conditions such as spinal
cord injury, stroke, or multiple sclerosis. By providing electrical stimulation to
specific muscles, FES can help restore movement, improve muscle strength, prevent
muscle atrophy, and enhance circulation. This can lead to increased independence
in activities of daily living and improved quality of life for individuals with mobility
impairments. FES is also utilized in various other fields, including sports medicine,
where it can be used for muscle conditioning and performance enhancement, and
in research settings, where it is employed to study neuromuscular function and
motor control. Additionally, FES has shown promise in treating conditions such
as urinary incontinence [31], chronic pain, and cardiovascular disorders. It can be
utilized in two main ways:

The first application aims to recover muscle mass and volume. In this scenario,
the stimulator is used on a patient lying on a treatment table, where electrical
stimulation increases muscle mass. This application is typically used for bedridden
patients to prevent muscle atrophy or for the rehabilitation of elderly patients with
low muscle mass.
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The second application uses electrical stimulation to induce muscle contractions
in paralyzed or weakened muscles. The primary goal is to assist the patient
in performing a function that has been compromised due to trauma or medical
conditions. While maintaining muscle volume can be a secondary objective, the
primary focus of FES is always to enable the performance of a specific function.

FES is traditionally categorized into three types based on their specific objectives:
FES Neuroprosthesis: This type of FES involves neuroprosthetic devices that

allow individuals to perform functions they otherwise could not. Without FES, the
person would be unable to carry out that specific action.

FES Training: The goal of FES training is to induce neuromuscular and car-
diovascular conditioning through muscle activation and movement. This form of
FES aims to improve the general physical condition of the subject. While the
devices used may be the same as those for neuroprosthesis, the objective differs.
In FES training, the emphasis is on enhancing neuromuscular and cardiovascular
conditioning rather than solely performing a specific function.

FES Therapy: This approach focuses on stimulating motor learning to improve
the performance of a function that the patient can already perform, albeit with
difficulty. For example, if a patient can grasp an object but struggles due to
significant muscle weakness or neuromuscular impairment, FES therapy aims to
facilitate the grasping action while also promoting neuroplasticity in the central
nervous system. The therapeutic goal is to enhance central plasticity by stimulating
the muscle and its afferent pathways.

Figure 1.17: Example of a FES stimulation for hand movements [32].
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FES stimulation may lead to a tingling sensation on the skin, commonly referred
to as a ‘pins and needles’ feeling [30]. Although this sensation is usually not
bothersome for most people, those with multiple sclerosis might be more sensitive
to sensory changes and could find it uncomfortable. Typically, a brief session of
low-intensity stimulation can help alleviate this discomfort. However, there are
times when, despite thorough evaluation, the treatment might not be effective, or
individuals may have difficulty using the device properly. Additionally, in some
cases, the stimulation or electrodes might cause skin irritation.

The versatility and effectiveness of FES make it an important tool in the realm
of rehabilitation and healthcare. Its non-invasive nature, combined with its ability
to target specific muscle groups or nerves, offers personalized treatment options for
individuals with diverse conditions and needs. Moreover, advancements in FES
technology continue to expand its applications and improve its efficacy, paving the
way for further advancements in rehabilitative medicine and functional restoration.

1.11 Muscle fatigue in stimulation
Muscle fatigue represents one of the major challenges in the application of Func-
tional Electrical Stimulation (FES). Fatigue can occur at multiple levels of the
neuromuscular system, ranging from the motor cortex and spinal levels to the
mechanical excitation-contraction coupling in muscle fibers. However, in the con-
text of FES, the focus is primarily on peripheral fatigue, as electrically induced
contractions directly stimulate muscles or nerves. Neuromuscular fibers can be
broadly classified into two categories: type I fibers, which are fatigue-resistant
and recruited first, and type II fibers, which generate greater tension but are
more prone to fatigue. Type I fibers are typically involved in endurance activities,
such as long-distance running, while type II fibers are essential for high-intensity,
short-duration tasks.

During voluntary contractions, the neuromuscular system follows Henneman’s
size principle, activating type I fibers before recruiting type II fibers as the need
for force increases. When fatigue occurs during voluntary contractions, the neuro-
muscular system implements several strategies to maintain motor performance and
force generation. These include increasing the firing rate of motor units, recruiting
additional MUs, and occasionally alternating active MUs to allow fatigued ones to
recover. These mechanisms allow the system to compensate for reduced muscle
fiber capacity and delay the onset of fatigue.

In contrast, none of these compensatory mechanisms are available during electri-
cally stimulated contractions. In FES, the recruitment of motor units is fixed and
determined by the stimulation parameters, such as the frequency and amplitude
of the electrical stimulus. The spatial distribution of active motor units is also
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dependent on electrode placement, and no rotation of MUs can occur. Additionally,
the order of recruitment does not follow the physiological pattern described by
Henneman’s principle. Instead, recruitment may be random or reversed, both of
which are suboptimal for efficient force generation.

Furthermore, electrically stimulated contractions typically require higher stimu-
lation frequencies than voluntary contractions to achieve sustained force output.
Unlike the asynchronous activation of MUs seen in voluntary contractions, FES-
induced contractions result in synchronous MU activation. This synchronous
pattern produces greater force variability and rhythmic fluctuations, necessitating
higher frequencies to maintain a steady force output. As a result, FES-induced
contractions often lead to faster fatigue compared to voluntary contractions, em-
phasizing the need for optimized stimulation strategies to minimize fatigue and
prolong functional performance.

1.12 Average Threshold Crossing (ATC) tech-
nique

This method generated threshold crossing events from the amplified and filtered
sEMG signal to monitor muscle activation, minimizing processing and data trans-
mission loads, optimizing power consumption, and extending operating time [33].

ATC = #TCevents

Twindow
(1.13)

#TCevents represent the number of Threshold Crossing (TC), that is, the number
of times the sEMG is above a selected threshold. The ATC value, represented in
Figure 1.18, is the number of TC events divided by the length of the observation
window (Twindow). The value of the window in this thesis work is 130ms. Based
on the number of ATC values, it is possible to determine different force levels; a
higher value of ATC means a higher value of the sEMG signal above the threshold
during the window.

The ATC approach significantly reduces data transmission volume, decreasing
from approximately 2 kB/s for sEMG to just 8 bytes/s [34]. These properties allow
for efficient bandwidth management, making communication more effective. By im-
plementing ATC directly in the hardware, threshold events can be counted without
the need for complex analog-to-digital conversions or subsequent computational
processing. This reduces the load on the microcontroller’s resources and enhances
the system’s responsiveness. The system is designed for energy efficiency, operating
at a voltage of 1.8 V and using Bluetooth Low Energy (BLE) for communication
[34]. This combination further reduces power consumption, with ATC optimizations
enabling extended operation, reaching up to 230 hours in specific configurations.
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Figure 1.18: ATC calculus framework representing the Event-Based (EB)
paradigm. The TC points are identified as the events above the selected threshold
represented in the image as a continuous blue line. On the bottom there is the
TC signal representation where every TC event is a time-distribution of electrical
spikes. In this framework, the Information Synthesis (IS) is carried out by applying
the time window Twindow to the TC distribution. This enables the calculation of
the ATC parameter, which encapsulates the state of muscle contraction [34].

The ATC method can also dynamically adapt to variable muscle activity, ensuring
effective monitoring even under frequent signal changes.

Threshold calibration

The threshold calibration determines the appropriate voltage value based on the
environment and the subject’s condition to obtain a TC signal that reflects only
muscle activations. This ensures the signal is not affected by physiological fluctua-
tions and adapts to the subject’s current state during acquisition [34]. In addition,
a hysteresis of 30 mV was applied to minimize the occurrence of false spikes caused
by signal fluctuations near the threshold. Ideally, the threshold should be 16 mV
above the signal baseline, considering only the lower half of the hysteresis. However,
due to noise in real-world situations, the baseline might fluctuate, necessitating
threshold calibration when the system powers on.

The calibration process involves a firmware routine that operates as a finite-state
machine. The steps of the calibration behavior are represented in Figure 1.19 and
described as follows:

• The threshold is decreased by 150 mV every second until an event is detected.
When an event occurs, the state advances without altering the threshold.
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• Another event is awaited to confirm the detection. If confirmed, the threshold
increases by 200 mV and the process moves to the next state; otherwise, it
returns to state 1.

• The refinement phase begins by decreasing the threshold by 10 mV each time,
following a similar behavior to state 1.

• Each time, a new event is awaited to confirm detection. If positive, the process
advances to state 5; if negative, it returns to state 3.

• In the final state, the baseline detection is definitively verified. If no event is
detected, the process returns to state 3; if confirmed, the threshold is increased
by 40 mV, and the routine concludes.

This process is designed to accurately detect muscle activation, isolating genuine
signals from spurious noise spikes.
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Figure 1.19: Firmware routine for threshold auto calibration. The threshold is
initialized to a value much higher than the expected signal baseline, and lowered
step by step until one or more events arise. The calibration is divided in a first
course phase, together with a check for spurious spikes, and a second fine tuning,
which includes a double spike check, to ensure the final result is correct [34].
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1.13 Machine learning and deep learning in the
clinical field

1.13.1 Machine learning

Figure 1.20: Comparison between traditional programming and machine learning
workflows. Traditional programming involves feeding data and a program into a
computer to produce an output, whereas, in machine learning, data and the desired
output are used to train the computer to generate the program. The right side
illustrates the machine learning lifecycle, including data collection, pre-processing,
model training, testing, deployment, and ongoing maintenance. [35]

In traditional programming, data and the program are provided as inputs to
produce a desired output. In contrast, machine learning (ML) reverses this process:
we input the data and the desired output, and the computer identifies the underlying
patterns or correlations to "learn" the program. ML techniques are thus employed
to discover the function that maps the data to the output, effectively extracting
knowledge from the data. The process begins with data collection, followed by
feature selection and, if necessary, feature normalization. After identifying the
relevant features, a model is selected and trained. Subsequently, various metrics
are computed to evaluate whether the model has successfully achieved the desired
performance in predicting the expected output. This approach requires a substantial
amount of data, including clinical data, images, and more, and a critical step is
determining which features should be used as inputs for the algorithm. The
development of ML is not a linear process. It typically involves several key stages:
data collection, preprocessing, model training, and validation, and finally, testing
the model on an unseen set of patients. If the model does not achieve the expected
performance on the first attempt, the training and validation phase can be revised

38



Introduction

to adjust and retrain the model. Additionally, it may be necessary to revisit
the preprocessing stage, make further adjustments, and re-evaluate the model’s
performance. This iterative process continues until the desired performance level is
achieved. We can identify three main groups of ML algorithms. The first group is
supervised machine learning, where both input data and the corresponding
output are provided. The classification model and regression model are supervised
methods. The second is unsupervised machine learning, where only the input
data is provided without the corresponding output. The k-means and hierarchical
clustering are unsupervised methods. The third group is reinforcement learning.
Additionally, there are semi-supervised approaches, which fall between the first two
groups, using a combination of labeled and unlabeled data.

1.13.2 Deep learning
Deep learning (DL) operates differently from traditional machine learning because
it combines feature extraction and the learning process into a single phase. This
allows DL to work directly with raw data, eliminating the need for preprocessing.
Manual feature extraction is necessary when performing a classification task with
ML. However, with DL, feature extraction is automated due to the design of the
neural network. DL has become popular only in recent years. The primary reason
is that DL models are computationally intensive and require Graphics Processing
Unit (GPUs), unlike ML models, which can be trained on Central Processing
Unit (CPUs). As GPUs became more widespread, DL gained popularity. We can
distinguish two main approaches in DL: deep network supervised learning and deep
network unsupervised learning. In supervised learning, we work with both data
and labels that are the desired output. In contrast, in unsupervised learning, the
class or category of the data is unknown.

As illustrated in Figure 1.21, when working with a small amount of data,
machine learning tends to deliver better performance. However, as the amount
of data increases, deep learning outperforms significantly, providing much higher
performance. Deep learning models can handle complex solutions, making them
more effective with large datasets.

1.13.3 Artificial Neural Network
Artificial Neural Networks (ANNs) are a machine learning method inspired by the
structure and function of the human brain [37]. They are designed to recognize
patterns, make predictions, and solve complex problems through a network of
interconnected nodes, or "neurons," that process information in layers. Each neuron
receives input, processes it using a mathematical function, and then passes the
output to other neurons in subsequent layers. The network is organized into
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Figure 1.21: Performance comparison between Machine Learning and Deep
Learning as a function of data quantity. Deep Learning models typically outperform
traditional Machine Learning models as the amount of data increases, illustrating
their ability to scale with large datasets [36]

layers: an input layer where features are fed into the network, one or more hidden
layers where processing occurs, and an output layer where the final prediction or
classification is made as depicted in Figure 1.22. ANNs are particularly effective
for tasks involving categorization and time-series analysis.

Unlike traditional statistical methods, such as multiple regression and discrimi-
nant analysis, which require specific assumptions about the data (e.g., normally
distributed errors or multivariate normality of predictor variables), ANNs do not
rely on these assumptions. This flexibility is due to the nonparametric nature of
ANNs [37], allowing models to be developed without prior knowledge of the data
distribution or potential interactions between variables. ANNs can handle both
linear and nonlinear relationships, making them applicable to a broader range
of problems than traditional methods constrained by their specific assumptions.
Essentially, ANNs provide a more versatile and adaptable solution for various types
of problems.

Features selection
Feature selection is a crucial step in the development of predictive models, particu-
larly in machine learning and pattern recognition tasks. It involves the identification
and selection of a subset of relevant features from the original set, aiming to re-
tain the most informative variables while discarding redundant or irrelevant ones
[39]. This process enhances model performance and efficiency, particularly in
machine learning tasks where the number of input features must be manageable.
Although there are various feature selection methodologies, no single approach can
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Figure 1.22: Schematic representation of the architecture of an artificial neural
network (ANN), illustrating three layers: input layer, hidden layer, and output
layer. Each node (neuron) in one layer is connected to all nodes in the subsequent
layer, forming a fully connected network [38].

be universally deemed superior to the others [40].
Feature selection techniques can be categorized into four main types: filters,

wrappers, embedded methods, and hybrid methods [41].
Filters select individual features or groups of features based on their statistical

properties or relevance, without considering the underlying data distribution or
the algorithm used. These methods typically rely on measures such as correlation,
mutual information, or statistical tests to rank features, ensuring a fast and
computationally efficient selection process.

Wrappers evaluate feature subsets based on their performance within a specific
model, treating the model as a black box. In classification tasks, wrappers em-
ploy classifiers such as Support Vector Machines (SVM) to identify features that
maximize model performance [42].

Embedded methods perform feature selection during the model training process,
integrating it directly into the algorithm’s operation. These methods assess feature
relevance throughout the learning process, considering both individual feature
importance and interactions with other features within the model [41].

Hybrid methods combine the strengths of filter and wrapper approaches. These
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methods typically start with a filter to reduce the feature space by eliminating
irrelevant or redundant features, often generating multiple candidate subsets [41].
These subsets are then refined using a wrapper method, which evaluates and selects
the optimal subset based on model performance, thus achieving a balance between
computational efficiency and accuracy.

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to reduce the
dimensionality of large datasets, making them easier to analyze while retaining as
much variability as possible. The primary goal of PCA is to transform the original
variables into a new set of uncorrelated variables called principal components
[43], which are linear combinations of the original features. These components
are ordered by the amount of variance they capture from the data, with the first
principal component accounting for the largest variance. This transformation
simplifies the analysis by reducing the number of variables while maintaining
essential information. PCA is widely used in fields such as machine learning, data
visualization, and pattern recognition for feature reduction and noise filtering [43].
By focusing on the most significant components, PCA allows for more efficient
analysis and interpretation of complex data.
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State Of The Art

2.1 sEMG acquisition device

The sEMG acquisition devices are employed in many applications such as muscle
activity monitoring and rehabilitation. Focusing on the latter, the EMG signals
can reveal the subjects’ health and fitness conditions, which can be achieved with a
real-time system. These systems generally acquire and process the signal with the
sensor device and transmit it to monitoring equipment. Typically, the main issues
in these systems are slow data acquisition and transmission and limited versatility.
The latest sEMG acquisition device technologies are primarily wireless, allowing
freedom of movement for the patient and preventing potential signal alterations
caused by cable connections. These devices rely on a battery to function, but the
batteries do not support highly long recordings to monitor the patient throughout
the day.

The single-channel sensors are advantageous when targeting a specific portion of
the muscle for recording. They are typically used with other single-channel sensors
to establish a multi-channel acquisition system [44].

The high-density (HD) sEMG sensors can capture spatial and temporal data
from the recording area. These electrode arrays comprise over a dozen electrodes
[44]. A notable example of such a device is the Myo armband, which is extensively
applied in hand gesture recognition based on sEMG tasks. The medical applications
of sEMG devices are diverse.

The Cometa srl [45] has designed sEMG sensors for various purposes. The
Pico EMG is a compact sEMG acquisition device that enables selective recording
targeting a specific muscle or muscle region. This device is compatible with both
gelled electrodes and plated-gold electrodes. The Mini Wave Infinity retains the
same features as the Pico sEMG while offering cables to modify the inter-electrode
distance. The Mini Wave Waterproof is designed for data acquisition in aquatic
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environments, and they have been utilized in research related to swimming.

(a) Pico EMG device. (b) Mini Wave EMG device. (c) Mini Wave Waterproof
device.

Figure 2.1: Acquisition sEMG devices developed by Cometa srl.

Another commercial sEMG device is the DataLITE sEMG sensor [46] developed
by Biometrics Ltd company. As with Cometa’s devices there are two variants:
one featuring a fixed inter-electrode distance and the other incorporating cables
that enable the user to adjust the inter-electrode spacing; both devices operate
wirelessly with a transmission range of up to 30m from their interface. With an input
impedance exceeding 100 MW these sensors do not necessitate skin preparation and
offer a battery lifespan of 8 hours. All components are enclosed within a compact
casing measuring 42x24x14 mm and weighing 17 g.

(a) DataLITE device with cables. (b) DataLITE device with electrodes on
the bottom.

Figure 2.2: Acquisition sEMG devices developed by Biometrics Ltd company.
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2.2 ATC technique
Crepaldi et al. [47] introduced the use of ATC as a feature strongly correlated
with contraction force as illustrated in Figure 2.3. To validate the ATC method,
Crepaldi et al. compared the number of TC events generated within a specific
time window to the force level. The results reported a correlation of 0.95 ± 2,
demonstrating that ATC can be reliably used as a parameter for muscle force
assessment. Rossi et al. utilized the ATC technique to control an FES system. The

Figure 2.3: Plot of ATC, Absolute Rectified Values (ARV), and applied force
during a grip movement [47].

hardware system comprised four analog front-end channels and a microcontroller
unit. Additionally, the system featured a Bluetooth communication module to
transmit data to the control workstation.

The power consumption of the acquisition board, which included the four analog
front-end channels and the microcontroller unit, amounted to 5.125,6 mW in low-
power mode. Considering wireless transmission, the consumption increased to
20.23 mW for TC transmission and 23.47 mW for sEMG transmission.

An ATC-controlled FES system was developed with two operating modalities.
The first is self-administered stimulation, while the second is two-subject stimulation,
where two individuals are involved; in a medical context, this typically refers to
the therapist and the patient.

The system consists of three main components:

• The acquisition unit, which extracts features to generate the ATC signal.

• The actuation unit, which serves as the FES stimulator.

• The control unit, which manages and integrates the other two components
while running the graphical user interface.

The experimental results were evaluated using the median value of the correlation
coefficient between the voluntary movement and the stimulated one. This value
was found to be above 0.9 across four different movements.

45



State Of The Art

In another study Rossi et al. [48], the previously described system was imple-
mented as an embedded solution using a Raspberry Pi. The system was developed
in Python, adopting an object-oriented and multi-threaded approach.

The experimental results, evaluated on five healthy subjects specifically three
males and two females, reported a correlation coefficient of 0.86 ± 0.07.

Figure 2.4: Similarity analysis of the cross-correlation coefficient between the
limb motion angular signals of the therapist and the subject [48].

Mongardi et al. [49] developed a low-power bio-inspired armband designed for
hand gesture recognition. The armband, illustrated in Figure 2.6 consisted of seven
channels and could be applied in various fields, such as serious gaming control,
rehabilitation, and sign language recognition.

This system generated the ATC signal using a 130 ms window. By exploiting
the event-based nature of the ATC, the armband achieved onboard prediction with
low power consumption.

The experimental results, obtained from 26 subjects performing 8 different hand
gestures illustrated in Figure 2.5, reported an average accuracy of 91.9%.

Prestia et al. [50] evaluated an event-driven approach for FES control based
on the ATC technique. The system extracts ATC events from sEMG signals
and modulates the stimulation intensity accordingly, eliminating the need for
complex feature extraction. The proposed system was developed for a two-subject
stimulation framework, where the therapist performs a movement, and the patient
is stimulated accordingly to replicate the same movement.

Experimental validation on 17 healthy subjects performing six different move-
ments demonstrated a high replication accuracy of therapist-induced movements.
The system achieved a median cross-correlation coefficient of 0.910 and a median
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Figure 2.5: Movements performed in the study [49], wrist extension, wrist flexion,
radial deviation, ulnar deviation, hand grasp, pinch using thumb and index finger,
pinch using thumb and middle finger, hand open, resting state.

response delay of 800 ms, with a movement replication success rate of 97.39%.

2.3 State of the art in hand gesture recognition
The pattern recognition can be performed both with machine learning (ML) and
deep learning (DL) algorithm [51]. The ML algorithms usually need processed data
because they struggles with inconsistent or noisy data. They can also manage a
limited number of data compared to the DL algorithms. The DL is characterized
by its hierarchical model architecture, which automatically learns features from
data. Usually the DL algorithms have several layers and the features are extract
at different depth. For a task of complex hand gesture recognition the use of
DL is more indicated [52]. Parajuli et al. [53] found that most data used in
ML algorithms are steady-state signals. However, in real-world scenarios, signals
are often non-stationary. Analyzing transient-state signals presents significant
challenges but is well-suited for DL processing.

In literature usually there are two types of acquisitions [52], the multi channel
sEMG and the high density sEMG. Both approaches come with their pros and
cons. Sparse multi channel sEMG generates less data, reducing the need for data
transfer and minimizing hardware costs. However, it is highly sensitive to variations
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Figure 2.6: On the left, the architectural diagram illustrates the system structure:
the master, represented in blue, handles the major workload, while the slave,
depicted in gray, is responsible for counting the TC events. Additionally, CH-7 is
designated for ANN predictions. On the right, the physical prototype is shown,
consisting of an elastic band that holds together the power and case components
while electrically connecting the boards [49].

in sEMG signals, which are a natural characteristic of these signals. In contrast,
high-density sEMG employs a two-dimensional grid of electrodes to capture the
spatial and temporal distribution of motor unit action potentials within the muscles.
Although this method results in a larger volume of data, it offers higher recognition
accuracy and better control quality.

Feature selection is an important step in constructing a DL or ML classifier.
Feature extraction aims to enhance the information content within sEMG signals,
thereby improving the distinction between different gestures. If the differences
between gestures are more pronounced and there are fewer common features, the
classifier’s performance will improve, leading to fewer uncertain cases. As Li et al.
[52] reported there are four different types of features that can be extracted from
the sEMG signal.

Time domain (TD) features are derived directly from the raw sEMG signals,
which vary over time. These TD features are simpler to compute compared to other
sEMG features and are commonly used. However, incorporating a large number
of time-domain features may not improve performance. In fact, it can sometimes
degrade it due to the redundancy of these features.

Frequency domain (FD) features are obtained by applying the Fourier trans-
form to the autocorrelation function of the sEMG signal. These features are
then estimated using methods such as the periodogram or parameter estimation
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Figure 2.7: The therapist (on the left) is connected to the acquisition device,
while the patient (on the right) is connected to the electrical stimulator. At the
bottom, the elbow flexion trajectories are plotted using the Vicon system [50].

techniques.
Time-frequency domain features capture how the energy of the sEMG signal

is distributed across both time and frequency. This approach is interesting for
effective feature extraction. A common method for time-frequency analysis is the
wavelet transform.

The parameter model consider the raw sEMG signal as a time series, focusing
on its sequential information. The coefficients of the fourth-order autoregressive
model can be used as important features for short periods of the signal.

The study conducted by Yu et al. [54] presents a method for recognizing six
hand gestures, illustrated in Figure 4.7, using only two sEMG channels. Their
aim was to enhance rehabilitation and human-machine interaction while reducing
the number of sensors required. The authors developed a comprehensive system
for data acquisition and processing, which includes filtering, endpoint detection,
feature extraction, and classification employing a neural network. The experimental
results demonstrated a recognition accuracy ranging from 96.41% to 99.70%.

Ding et al. [55] proposed a multi-scale Convolutional Neural Network (CNN)
architecture for hand gesture recognition using sEMG signals. They used the
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Figure 2.8: Movements executed in the study conducted by Yu et al. [54].

second database from the Ninapro project [56], 17 hand and wrist movements were
analyzed. The proposed method accounts for muscle independence and employs
filters of varying sizes to enhance classification accuracy, achieving a recognition
accuracy of 78.86

Wang et al. [57] developed a Deformable Convolutional Network (DCN) to
enhance gesture recognition using sEMG signals. The signals were recorded from
ten electrodes on 27 subjects. These signals were transformed into feature maps for
effective information extraction. The DCN combines traditional and deformable
convolutional layers, resulting in a significant accuracy improvement over standard
CNNs. The final accuracy was 81.8% for the first group, which includes 12 finger
movements; 78.94% for the second group, which includes 20 gestures compris-
ing both finger movements and hand postures; and 79.54% for the third group,
consisting of a total of 29 gestures.

It is observed that in studies with a larger number of gestures, performance tends
to decrease because some gestures share similar components, and inter-subject
variability also plays a significant role.

Tam et al. [58] developed a real-time embedded system leveraging HD-sEMG
to design a classifier for hand gesture recognition focused on finger counting. The
gestures used for the classification corresponded to those illustrated in Figure 2.9a.
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(a) A collection of six hand gestures, modeled after the movements commonly
found in commercial hand prostheses, was employed for gesture recognition.
Each gesture was designated a unique label and used as input for training the
convolutional neural network [58].

(b) Acquisition devices utilized in the study by Tam et al.

Figure 2.9: Hand gestures used for gesture recognition and the acquisition devices
utilized in the study [58].

Inter subject variability, post-processing, and feature extrac-
tion

It is established in the literature that one of the main challenges is inter-subject
variability, which represents an important limiting factor in the performance of
classifiers [59]. An interesting study conducted by Zhan et al. investigated inter-
subject and intra-subject variability using muscle synergies of the upper limb. The
study found that inter-subject variability was greater than intra-subject variability,
and both significantly exceeded the random level [60].

Post-processing techniques are often performed when working with sEMG signals,
and particularly with sEMG during fine finger movements. Post-processing helps
prevent the prosthesis controller from being overwhelmed by excessive information
and can improve classifier performance by filtering out errors caused by unintended
movements. [52]. Another technique that helps reduce inter-subject variability is
the normalization. To address this challenge, Lin et al. developed a subject-specific
normalization method, illustrated in Figure 2.10, aimed at improving classification
performance [61]. The proposed approach involved a min-max scaling normalization,
tailored individually for each subject. Specifically, for every new participant, a
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calibration trial was conducted to determine the minimum and maximum values of
the recorded signals. These values were then used to normalize the data for that
specific individual.

Figure 2.10: Pipeline of the project by Lin et al., highlighting and dividing the
process into four distinct steps [61].

2.4 State of the art FES stimulation
The FES has been developing in the last years in neurorehabilitation with the goal
to restore motor functions in individuals with neurological impairments. Peroneal
nerve stimulation is one of the most common uses of FES in rehabilitation; it is
particularly helpful to address foot drop in post-stroke patients. It uses electrical
impulses to activate the tibialis anterior muscle, facilitating dorsiflexion during gait
and improving walking patterns.

Although peroneal stimulation remains a benchmark for FES applications,
research has also extended its scope to other areas, such as upper-limb rehabilitation.
These advancements aim to leverage FES for functional hand recovery, addressing
the complexities of fine motor control and muscle coordination required for activities
of daily living.

Kottink et al. [62] conducted a randomized controlled trial investigated the effects
of an implantable 2-channel peroneal nerve stimulator on footdrop in 29 chronic
stroke patients. Over six months, participants using FES were compared to those
using conventional walking aids, with assessments at multiple intervals. While no
functional improvements in walking speed were observed, FES significantly increased
the voluntary muscle output of the tibialis anterior and gastrocnemius muscles,
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suggesting neuromuscular plasticity. This study highlights the potential of peroneal
nerve stimulation to enhance muscle activation in chronic stroke rehabilitation,
even in the absence of functional gait improvements.

2.4.1 FES in upper-limb rehabilitation
In the study conducted by Kapadia et al. [63], FES was applied using a four-channel
surface stimulation device to retrain upper-limb function in individuals with Spinal
Cord Injury (SCI) and stroke. The FES system used by Kapadia et al. consisted
of a four-channel surface stimulation device managed by software, allowing for
a portable and user-friendly stimulator. The stimulator housed a programmed
chip card and managed the delivery of electrical impulses to the target muscles,
self-adhesive stimulation electrodes that were thin and flexible, designed for direct
application to the skin to deliver electrical stimuli to the targeted muscles, and
various man-machine interfaces.

Participants performed the following movements:

• Grasp: Practice gripping various objects of different sizes and weights to
improve fine motor skills essential for daily tasks.

• Reach: Extend their arms to reach for objects placed at various distances.
The main goal was to improve the range of motion and the coordination of
the patient.

• Lift: Raise an object from a flat surface to help develop upper limb strength
and control.

• Hold: Maintain a grip on objects for extended periods of time with the aim to
improve endurance and stability.

• Release: Performed exercises focused on letting go of objects after grasping
them, critical for completing everyday activities.

The results of the randomized trial indicated significant improvements in both
grasp and reach functions in the FES group compared to the control group. Specifi-
cally, participants receiving FES demonstrated enhanced dexterity and control over
their movements, which contributed to increased independence in daily activities.

The implemented FES system aimed to enhance hand movements in hemiplegic
patients by using sEMG signals from contralateral hand muscles to control continu-
ous power grasp and hand opening in the right hand via two stimulation channels.
The system comprised a finite state machine, movement classifier, proportional
mapping, and biofeedback control. Offline assessments with a healthy volunteer
yielded an average classification accuracy of 81.72% for the movement classifier.
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Successful online trials involved participants executing a six-step functional task,
integrating power grasp and hand opening movements, with an average delay of
2.3 ± 0.35 seconds between the control signal onset and stimulation activation.
The electrical stimulation device employed was the RehaStim 2 depicted in Fig-
ure 2.11 (HASOMED GmbH, Magdeburg, Germany). This sEMG-FES system
demonstrated promise as an effective alternative for mirror therapy rehabilitation,
aimed at improving motor function and independence among stroke patients by
providing enhanced control over daily activities.

Figure 2.11: Rehastim 2 device produced by HASOMED [64].

FES using electrodes array
For FES stimulation, electrode arrays of multiple small electrodes arranged in
specific configurations allow for more precise and selective muscle stimulation.
However, this introduces an additional challenge in identifying the optimal electrode
configuration for effective stimulation [65] [66].

Several studies have employed varying methodologies to explore the use of
electrode arrays in FES for hand rehabilitation. One study utilized the Fesia
Grasp system [67], a commercial FES device integrated with a garment containing
a multi-field electrode that comprised 32 cathodes and 8 anodes. This system
delivered biphasic pulse trains to stimulate wrist and finger movements. Five
patients post-stroke participated in the study, where movements were analyzed
based on activated cathodes, revealing the ability to generate multiple wrist and
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finger movements, with significant findings regarding extension and flexion rates
[68].

Figure 2.12: Fesia Grasp system [67].

Another study investigated an array of 24 electrodes configured in two blocks for
neuromuscular electrical stimulation. The study assessed the kinematic responses of
eight healthy subjects to identify optimal stimulation patterns. The researchers used
a combination of single-pulse scanning and telemetry recording. This combination
reveals that specific activation patterns can be identified and applied to generate
wrist and finger movements, demonstrating variations in responsiveness between
stimulation patterns [69].

In a distinct study [70] investigating stroke patients, researchers developed a
method using a 24-pad surface electrode array to create EMG maps of the paretic
and non-paretic arms. This technique allowed for the selective targeting of muscles
that displayed significant differences in EMG activity, enabling asynchronous
stimulation that varied in intensity based on the degree of muscle involvement.
This approach showcased the potential for improved functional grasp through
targeted electrical stimulation [70].

Across these studies, implementing electrode arrays in FES demonstrated positive
outcomes. The Fesia Grasp device confirmed the capability to generate diverse
movements with high repeatability in both inter-subject and intra-subject terms.
It achieved wrist extension more frequently than flexion, and the inter- and intra-
subject variability was minimal, indicating that multi-field configurations could
effectively adapt to individual anatomical differences [68].

The second study revealed that optimal stimulation patterns could be established,
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allowing for significant finger and wrist motion enhancement in healthy subjects.
These selectivity measures were emphasized, with a direct comparison of behavioral
outcomes indicating that targeted patterns resulted in superior movement execution
[69].

In the third study, using EMG mapping provided insights into muscle activity
variations, establishing stimulation zones determined by EMG differences between
the healthy and affected extremities. This approach also yielded substantial
functional improvements in grasping ability assessed through joint angles and force
measurement [70].

(a) Mapping of the EMG activity for non-
paretic and paretic forearm muscles during
hand opening [70].

(b) Identification of the regions where sig-
nificant differences can be observed. Those
areas indicate where the outputs from the
stimulator should be applied [70].

Figure 2.13

The integration of electrode array technologies in functional electrical stimulation
has emerged as a promising strategy for individuals with neurological impairments.
The advancements in multi-field electrode systems provide improved selectivity
and facilitate individualized rehabilitation approaches, supporting the execution of
complex hand movements.

Innovative FES implementations
Novel and innovative approaches are present in the literature, exploring new appli-
cations to enhance the effectiveness of FES or to combine this type of stimulation
with other tools. For instance, the study by Lypunova et al. [71] proposed a hybrid
robotic rehabilitation system that integrated FES, triggered by sEMG, to improve
early rehabilitation for stroke patients. The system included a rehabilitation robot
named ROBERT, which facilitated leg press and dorsiflexion exercises, enabling the
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activation of partially or fully paralyzed muscles through FES. The results showed
a high completion rate for the exercises, with 97% for the leg press and 100% for
dorsiflexion. The FES current levels required to activate the muscles ranged from
20 to 53 mA for the leg press and 10 to 30 mA for dorsiflexion, generating forces
between 43.0–141.2 N and 5.4–17.6 N, respectively.
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Chapter 3

Preliminary Datasets Study

3.1 Hyser dataset
The High-Density Surface Electromyogram Recordings (Hyser) dataset was utilized
to obtain This dataset comprises recordings from 20 healthy subjects. Before
placing the electrodes, the skin was first prepped with an abrasive gel followed by
cleaning with an alcohol pad. The instrumentation involved four electrode arrays,
each consisting of 64 gelled elliptical electrodes arranged in an 8x8 layout. The
inter-electrode distance was 10 mm, and the dimensions of each electrode were
5.8 mm along the major axis and 2.8 mm along the minor axis. The array were
numbered as shown in Figure 3.1. For every subject they obtained 5 different
datasets.

3.1.1 PR dataset
It is one of the 5 datasets and it includes 34 distinct movements. Each subject
completed two repetitions of each gesture before progressing to the next. During
each repetition, participants performed three dynamic tasks, each lasting 1 second,
transitioning from a relaxed state to the specified gesture. Additionally, they
completed a maintenance task, which required transitioning from a relaxed state
to the target gesture and holding it for 4 seconds. To reduce the impact of muscle
fatigue on sEMG signals, subjects were provided with a 2-second rest period
between tasks and a 5-second rest period between repetitions. For each subject, a
maximum of 204 dynamic tasks were recorded, with any erroneously performed
movements being excluded from the dataset. On average, 2.30 ± 2.71 tasks were
excluded per subject.

The movements showed in Figure 3.2 are: (1) thumb extension, (2) index finger
extension, (3) middle finger extension, (4) ring finger extension, (5) little finger
extension, (6) wrist flexion, (7) wrist extension, (8) wrist radial, (9) wrist ulnar, (10)
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Figure 3.1: Setup used in the creation of the Hyser dataset, consisting of four
electrode arrays, each containing 64 electrodes. Arrays 1 and 2 are positioned on
the posterior side of the forearm, with array 1 placed distally and array 2 proximally.
Arrays 3 and 4 are placed on the anterior side, with array 3 positioned distally and
array 4 proximally.[72].

Figure 3.2: Representation of all the 34 movements performed in one trial [72].
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wrist pronation, (11) wrist supination, (12) extension of thumb and index fingers,
(13) extension of index and middle fingers, (14) wrist flexion combined with hand
close, (15) wrist extension combined with hand close, (16) wrist radial combined
with hand close, (17) wrist ulnar combined with hand close, (18) wrist pronation
combined with hand close, (19) wrist supination combined with hand close, (20)
wrist flexion combined with hand open, (21) wrist extension combined with hand
open, (22) wrist radial combined with hand open, (23) wrist ulnar combined with
hand open, (24) wrist pronation combined with hand open, (25) wrist supination
combined with hand open, (26) extension of thumb, index and middle fingers, (27)
extension of index, middle and ring fingers, (28) extension of middle, ring and little
fingers, (29) extension of index, middle, ring and little fingers, (30) hand close, (31)
hand open, (32) thumb and index fingers pinch, (33) thumb, index and middle
fingers pinch, (34) thumb and middle fingers pinch.

3.1.2 Power maps
The script processes sEMG signals to identify active portions while ensuring the
data quality necessary for accurate power calculation. Initially, a threshold based
on the standard deviation of the signal is used to detect activation regions. For
each identified point above the threshold, a moving window of 30 samples before
and after the point is examined to confirm consistent activation. If any sample
within this window exceeds the threshold, the corresponding segment is retained as
part of the active signal.

To ensure data quality, only signals with a sufficient number of valid samples
are considered. A larger moving window of 70 samples is applied to the signal to
ensure consistent activity within the window. Only samples meeting this criterion
are marked as valid. Signals with fewer than 50 valid samples are excluded from
further analysis. Additionally, signals with a maximum amplitude exceeding 1.5V
are discarded, as this indicates channel saturation or insufficient data quality.

The resulting signal is processed to remove its mean value, and its power spectral
density (PSD) is then calculated using the Welch method. The calculated power
values are stored in a structured format, with a dedicated field for each patient.
These power values are used to generate color maps, which help determine the
optimal placement of the Apollux devices. After calculating the power for each
signal and patient, the average power across repetitions for each movement is
computed.

These averages were then summed across patients to obtain a single value for each
movement. This process resulted in a structure containing 34 fields, corresponding
to each movement. Each field comprises four matrices, one for each electrode array.
Each matrix is 64x8, representing the single differential electrodes by the columns
of electrodes.
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Sum of the color maps to obtain the recording sites

The graphical representation of the color maps was achieved by visualizing all
four arrays, with each array depicted as an 8x8 grid to represent the individual
electrodes.

Figure 3.3: Power maps obtained as described: on the left, the map corresponds to
middle finger extension, while on the right, it corresponds to index finger extension.

The processing pipeline begins by organizing the power values for each partici-
pant, gesture, and electrode array into a structured format. This step ensures that
the data is consistently stored and accessible for subsequent analyses.

To provide a comprehensive view of the data, the average power across all
participants for each gesture and electrode array were computed. In this step
only the non-zero values very considered, ensuring that missing or invalid data
does not skew the results. The average power values are then reshaped into 8x8
grids to reflect the physical layout of the electrodes, allowing for intuitive spatial
interpretation.

Subsequently the maximum power value for each gesture across all arrays was
used in a thresholding step, setting all values below 70% this maximum to zero.
The purpose of this approach was to highlight the most significant activations while
suppressing noise or less relevant activity.

To further contextualize the data, the script determines the overall maximum
and minimum power values for each gesture. These extrema are used to normalize
the visual representation of the power distributions.

Finally, the processed data is visualized using color maps. Each array is displayed
as a heatmap, with gridlines overlaid to delineate individual electrode positions.
The maps are annotated with color scales representing the range of power values.
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3.2 GRABMyo Dataset
The dataset was created by Pradhan et al. [73]; 43 patients were enrolled, 23
females and 20 males. The study took place across three separate days: the first,
eighth, and twenty-ninth days. The participants consisted of students and staff
members from the University of Waterloo. The average participant was 26.35 years
old. Additionally, the average forearm length, measured from the styloid process of
the wrist to the olecranon of the elbow, was 25.15 cm, with a standard deviation
of 1.74 cm.

The sEMG signals were captured using the EMGUSB2+ amplifier (OT Bioelet-
tronica, Italy), with a gain of 500 and a sampling rate of 2048 Hz. Monopolar
sEMG electrodes (AM-N00S/E, Ambu, Denmark) were pre-gelled and adhered
to the skin. Prior to the experiment, the length of the participants’ forearm was
measured from the olecranon process to the ulnar styloid process. The forearm
circumference was taken one-third of the way down from the olecranon, while wrist
circumference was measured 2 cm from the ulnar styloid. The skin was prepared

Figure 3.4: The setup used to record the GRABMyo dataset includes two rings
placed on the wrist and, proximally, on the forearm, considering the centerline of
the elbow crease as the anatomical landmark [73].

by shaving, cleaning with alcohol, and lightly abrading the surface. Sixteen sEMG
electrodes were placed around the forearm in two rings, as represented in Figure 3.4,
each with eight electrodes forming eight bipolar pairs, spaced 2 cm apart. Sim-
ilarly, twelve electrodes were arranged in two rings around the wrist, each with
six electrodes forming six bipolar pairs, also spaced 2 cm apart. Altogether, 28
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electrodes were used per session, creating four electrode rings for both the forearm
and wrist. 16 gestures, illustrated in Figure 3.5, were performed in a randomized
order for every recording, those movements were: Lateral prehension (LP), thumb
adduction (TA), thumb and little fnger opposition (TLFO), thumb and index fnger
opposition (TIFO), thumb and little fnger extension (TLFE), thumb and index
fnger extension (TIFE), index and middle fnger extension (IMFE), little fnger
extension (LFE), index fnger extension (IFE), thumb extension (TE), wrist fexion
(WF), wrist extension (WE), forearm supination (FS), forearm pronation (FP),
hand open (HO), and hand close (HC). Each participant completed seven runs,

Figure 3.5: Representation of the 16 movements performed by the subjects in the
GRABMyo dataset [73].

totaling 119 contractions (17 per run). If any accidental gestures occurred or there
were instances of no activity or delayed responses, replacement contractions were
performed after each run to ensure accuracy. Participants were also allowed to take
additional breaks whenever needed. The entire process was repeated on day 8 and
day 29. The participants were instructed to perform the gestures at a normal force
level, or similar to how they would normally do it during daily activities, and all
the sEMG recordings are 5s in duration.

The sEMG signals were processed using a fourth-order Butterworth filter with
a bandpass range of 10Hz to 500Hz. Additionally, a 60Hz notch filter was applied
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to eliminate any power line interference.

3.2.1 Signals of the GRABMyo dataset

Figure 3.6: sEMG signals recorded from forearm electrodes (F1–F8) during
hand closure movement for Subject 1, Session 1, Run 1. Each subplot represents
the amplitude of the signal over time for individual electrodes, highlighting the
varying signal intensities across different channels. Notably, electrodes F4 and F6
show stronger muscle activations compared to others, suggesting varying muscle
contributions during the movement.

As shown in Figure 3.6, the signals do not exhibit clearly defined activation
moments. This is due to the higher baseline values observed in the electrodes
with greater activation, such as channels F4, F5, and F6, making it challenging
to distinctly identify the onset and termination of muscle effort. I then developed
a MATLAB script to replicate the threshold calculation and consequently obtain
the ATC signal, enabling a comparison with the original sEMG signals. As shown
in Figure 3.7, it is evident that, as expected, the onset and termination of the
contraction are not clearly discernible in the ATC signal, similar to what was
observed with the sEMG signal.
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Figure 3.7: Superimposed plot of the sEMG signal (blue) and the calculated
ATC signal (red) for Participant 1 during hand closure, recorded from electrode
F4. The sEMG signal represents the electrical activity of the muscles over time
(left y-axis), while the ATC signal, derived from the sEMG, shows the estimated
torque exerted by the muscles (right y-axis). The use of separate y-axes allows for
a clear comparison between the muscle activation and the resulting torque across
the same time interval.

3.2.2 Radar Plots

To analyze the dataset, radar plots and similarity matrices were generated. The
radar plots represent the movement of individual subjects across different runs,
providing a visualization of intra-subject variability. Specifically, each radar plot
captures the variability of muscle activation for a given movement by illustrating
the 40th percentile, median, and 60th percentile of ATC values for each channel
(F1–F8) across the runs of the same subject. This analysis was performed using
MATLAB to assess how consistent the muscle activation patterns are between
repeated trials of the same gesture within each subject.

These radar plots provide insight into which channels are most activated and also
indicate the intensity of activation. As mentioned, a higher ATC value corresponds
to a greater intensity of muscle activation.

Radar plots were used to assess the activation intensities using the ATC signal,
as well as to identify the muscle regions most engaged during a given movement.
Figure 3.8 clearly illustrates how the activation level differs between wrist flexion
and extension, and how the regions of greatest activation are located on channels
positioned opposite to each other. This is consistent with expectations, as wrist
flexion predominantly engages the flexor muscles, while wrist extension recruits
the extensor muscles.
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Figure 3.8: Comparison of muscle activation during wrist flexion (left) and wrist
extension (right) for Subject 1. The radial plots display the 40th percentile, median,
and 60th percentile activation levels across the eight channels on the forearm. The
plots highlight distinct activation patterns between flexion and extension, with
opposite regions showing higher activation, corresponding to the engagement of
flexor and extensor muscles.

3.2.3 Similarity matrices
Similarity matrices are employed to analyze two key aspects of muscle activation:
intra-subject similarity, which assesses consistency across different runs of the
same subject, and inter-subject similarity, which evaluates the coherence of muscle
activation patterns between different participants. In this context, the analysis
aims to measure how consistently subjects perform specific gestures across multiple
runs and how comparable these performances are between individuals.

For intra-subject analysis, the goal is to determine the stability and repeatability
of muscle activation during repeated executions of the same movement by a
single subject. Low variability between runs indicates that the subject is able to
perform the gesture consistently, suggesting good motor control. Conversely, higher
variability could signal difficulties in motor coordination or the onset of muscle
fatigue, as the pattern of muscle activation changes across runs.

In the inter-subject comparison, the similarity matrices allow for the assessment
of muscle activation patterns across different subjects performing the same gesture.
This comparison highlights commonalities or differences in the motor strategies
employed by individuals, which can be particularly informative when comparing
groups with different characteristics, such as healthy subjects versus patients with
motor impairments.

Thus, similarity matrices provide a comprehensive view of both intra- and inter-
subject variability, offering insights into the consistency and variability of muscle
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activation during task performance. This information is crucial for evaluating
motor control strategies, identifying potential issues with gesture reproducibility,
and distinguishing between typical and atypical patterns of muscle activation.

Calculation of Similarity Matrices

To evaluate the similarity between subjects and their movement patterns, similarity
matrices were computed using muscle activation data recorded via ATC signals
from the forearm. For each participant and gesture, movement matrices were
constructed by aggregating data from multiple repetitions of hand gestures across
different runs. A correlation-based approach was employed to compare the muscle
activation profiles between subjects and epochs.

The norm values of the recorded signals were computed for each trial to quantify
the magnitude of muscle activity using the following equation:

NormValue =

öõõôNchannelsØ
i=1

1
XSubjnrun,participantidx,i

22
(3.1)

In this equation, XSubjnrun,participantidx,i
represents the ATC values recorded from the

i-th channel during a specific trial (nrun) for a particular participant (participantidx).
The summation is performed over all channels, where Nchannels denotes the total
number of channels utilized in the acquisition system.

Trials with norm values falling below a predefined threshold were relabeled
as ’rest’ to distinguish them from active gestures. Specifically, if the calculated
NormValue was less than the defined threshold (e.g., 5), the label of the trial
was changed to indicate ’rest.’ This approach was essential for eliminating false
activations, ensuring that only trials exhibiting significant muscle activity were
considered in subsequent analyses.

The similarity between pairs of subjects was evaluated by extracting movement
matrices corresponding to specific gestures (e.g., wrist flexion). For each pair, a
channel correlation matrix CCxytot was calculated to assess the degree of similarity
between the muscle activations from each forearm channel. This was done by
computing the cross-correlation between corresponding channels in the movement
matrices of two subjects. Specifically, for each channel c, the cross-correlation
between the signals xc and yc of the two subjects was calculated using:

CCxyc = xcorr(xc, yc)
max (∥xc∥2, ∥yc∥2) (3.2)

where xcorr(xc, yc) is the cross-correlation of the signals, and ∥ · ∥ denotes the
Euclidean norm.

Next, a weight vector Wxytot was computed to quantify the relative contribution
of each forearm channel to the overall movement similarity. For each channel c,
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the weight Wxyc was determined based on the sum of the signal amplitudes from
both subjects:

Wxyc =
q

xc + q
ycq matrixx + q matrixy

(3.3)

where q
xc and q

yc represent the sum of the signal amplitudes for the given
channel, and q matrixx and q matrixy are the total sums of all channels’ signals
for both subjects.

Finally, the similarity index SIxyvalue for each subject pair was calculated by
multiplying the transposed correlation matrix CCxy⊤

tot by the weight vector Wxytot,
and selecting the maximum value:

SIxy = max
1
CCxy⊤

tot · Wxytot

2
(3.4)

These similarity indices were then used to populate a similarity matrix, where
rows and columns represent different subjects and runs, with diagonal elements
set to zero to focus on inter-subject comparisons. Visual representations of the
similarity matrices were generated using heatmaps, with color intensity indicating
the degree of similarity between subjects.

Figure 3.9: Similarity matrix for wrist flexion movement across 12 subjects. The
matrix represents the correlation of muscle activation patterns recorded from the
forearm during wrist flexion, with each cell indicating the similarity between two
subjects. High similarity is shown by warmer colors (yellow/red), while lower
similarity is represented by cooler colors (blue).

In Figure 3.9 and Figure 3.10, a significant difference in variability is evident
between different subjects compared to within the same subject across different
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Figure 3.10: Similarity matrix for wrist extension movement across 12 subjects.
The matrix represents the correlation of muscle activation patterns recorded from
the forearm during wrist flexion, with each cell indicating the similarity between
two subjects. High similarity is shown by warmer colors (yellow/red), while lower
similarity is represented by cooler colors (blue).

runs for distinct movements. This suggests that certain movements are easier
and more repeatable. The underlying causes may be a lower number of muscles
involved or the contribution of stronger muscles, which makes their activation
more evident, thereby facilitating the discrimination of the movement. In general,
as shown in Figure 3.10, intra-subject variability is generally low, whereas inter-
subject variability is notably high. This makes accurate classification challenging,
as subjects produce different muscle signals despite performing the same movement.

3.3 Dataset study consideration
Subsequently, the power maps obtained using the Hyser dataset were used to
determine the correct placement of the acquisition devices during the recording
session. The high-density array-electrode approach used in this dataset allows
for power maps with high spatial resolution, enabling precise identification of the
region with the greatest activation.

The GRABMyo dataset was useful for assessing the high inter-subject variability,
a well-known issue in this kind of research. This finding reaffirms what has already
been reported in the literature and in section 2.3, where, although subjects may
exhibit clear activations, differences between individuals are evident.
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Chapter 4

Acquisition System

4.1 Hardware components
Six Apollux devices were used for the data acquisition, every device was equipped
with a battery and gold-plated electrodes. These devices recorded signals and
transmitted data to the computer via Bluetooth Low Energy using USB BLE
dongles, specifically the Nordic Semiconductor nRF52840 [74] that is illustrated in
Figure 4.1. The nRF52840 dongle, is designed for efficient wireless communication.
The proposed setup enabled seamless communication between the Apollux devices
and the computer, ensuring efficient data transfer that will be used for subsequent
analysis.

Figure 4.1: Front and rear view of the Nordic Semiconductor nRF52840 device.

The Apollux devices, including batteries and electrodes, are shown in Figure 4.3.
The electrodes had an Inter-Electrode Distance (IED) of 1.5 cm and a diameter of
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0.8 cm. The Apollux device consists of two components: the Analog Front End
(AFE) and the digital processing unit [33].

• The AFE, illustrated in Figure 4.2, is responsible of the detection of the raw
sEMG signals and the generation of the TC events from it. The AFE is
designed for differential signal acquisition using two sensing electrodes and
a reference electrode. It is offers a transfer function between 70 Hz and 400
Hz with a default gain of 500 V/V, adjustable through multiplication factors
such as ×2, ×3, ×5, or ×6. The final stage of the AFE includes a voltage
comparator that applies a calibrated threshold to the analog sEMG signal to
generate a quasi-digital TC signal.

• The digital processing unit is based on the Apollo3 Blue microcontroller;
because one of its strength is the ultra-low power consumption, making it
suitable for portable and battery-powered devices [33]. This unit is responsible
for the computation of ATC values and also facilitates efficient data trans-
mission. Together, the AFE and the digital processing unit enable accurate
signal acquisition and real-time processing.

Figure 4.2: Schematic representation of the proposed Analog Front End, which
amplifies the sEMG signal by a variable gain (×500–×2500) within the 30 Hz–400
Hz bandwidth. The final stage extracts the Threshold Crossing signal [34].
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(a) Apollux bottom view. (b) Gold-plated electrode. (c) Frontal view recording
device.

Figure 4.3: Apollux device used for recording: on the left, the bottom side of
the Apollux where the electrode should be placed; in the middle, the gold-plated
electrode with IED of 1.5 mm. On the right, the frontal view of the device showing
the electrode and the battery.
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4.2 Acquisition software
The signal acquisition software, developed by the research group, is built using the
Python programming language and incorporates several key features that aim to
improve its functionality and usability. One of the most important components of
the system is the Blatann library, which facilitates the connection between Apollux
devices and USB BLE dongles, specifically the Nordic Semiconductor nRF52840.

The software’s standout characteristic lies in its modular framework, which is
achieved through an architectural strategy centered around autonomous components
that interact seamlessly via Application Programming Interfaces (APIs). This
modularity is a direct result of employing the Object-Oriented Programming (OOP)
paradigm.

The software is designed with the following key characteristics to ensure its
robustness and adaptability:

• scalability: The software is capable of supporting both single-device and
multi-channel acquisition while maintaining real-time functionality.

• modularity: This characteristic is achieved thank the system structure based
on independent modules that interact through APIs, a result of using OOP
principles.

• extensibility: The software is built to be maintainable and it has structured that
easily allows to implements updates or expansions. This includes the ability to
replace system components (e.g., BLE dongles) without disrupting the overall
system, by simply modifying the corresponding module to accommodate new
APIs.

• reliability: Ensuring data integrity is very crucial. In order to achieve this
the software incorporates checks on both received and transmitted data to
minimize errors and notify the user of any issues, thus guaranteeing reliable
data acquisition.

4.2.1 Acquisition software structural layer
The control software is structured in an OOP paradigm, consisting of three main
components that interact with each other, as illustrated in Figure 4.4: the BLE
module, the Apollux object, and the GUI.

At the lowest level there is the BLE module, which serves as the direct interface
to the antenna. When a BLE dongle is used on a laptop, communication is managed
through the Pyserial module [75]. This implementation maintains a consistent set
of properties and functions to enable BLE operations. The most important features
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of this modules are: detecting broadcasting devices, establishing wireless links,
and facilitating data transmission through client-server interactions or real-time
notifications.

The second, intermediate layer is the Apollux object, which serves as a custom
module replicating the functionalities of the corresponding device. It acts as an
intermediary between the BLE module and the GUI, handling bidirectional packet
management between these two layers. Each connected acquisition board is paired
with a unique Apollux object, enabling parallel processing across multiple devices.

The topmost layer is the Graphical User Interface (GUI). The GUI was developed
using the Kivy framework, which is compatible with Python. The GUI was designed
to guide the user during the recordings and simplify the interaction between the
user and the acquisition system. The GUI includes specialized widgets like buttons,
graphs, pop-ups, and spinners.

Figure 4.4: The diagram illustrates the three-layered structure of the control
unit. The bottom layer consists of the BLE module, which manages wireless
communication with Apollux boards. The middle layer is represented by the
Apollux object. The top layer is the GUI. Different types of data transmission are
depicted in the figure.

The data flow is managed using queues. The top-down functions of the software
are activated through method callbacks, while data communication is handled
via internal queues that manage data transmission between the three previously
described layers.

Specifically, the BLE module forwards incoming packets from the Apollux boards
to the appropriate queue, tagging them based on message type. The Apollux object
retrieves these packets, processes the data, and either passes them to internal
methods or directly to the GUI for display such as ATC or sEMG values. Once
the data is processed, the GUI either displays or saves it accordingly.
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4.3 Graphical user interface and acquisition soft-
ware modifications

The GUI used to guide the user during the recording phase, shown in Figure 4.5,
was developed using the Kivy Python-compatible framework, like the one used in
the initial software. The ’Initialize’ button starts the connection process for the

Figure 4.5: The initial screen of the GUI upon launching the software for data
recording, where all buttons are disabled except the one for connecting the Apollux
devices.

dongles and scans for available Apollux devices. A popup window is then displayed,
allowing the user to select the devices to connect.

After the devices are connected, the user can select the preferred recording
modality. By pressing the ’Mod’ button, a popup window opens, allowing the user
to choose the modality to be recorded. As represented in Figure 4.6, multiple
modalities can be recorded simultaneously. The system uses a queue structure
(queue.Queue in Python) to ensure asynchronous and efficient management of the
acquired data, avoiding the risk of packet loss. Real-time data is received and
inserted into dedicated queues for each device, enabling parallel processing of the
information.

When recording two or more signals, the queue management follows the same
approach as when recording a single modality. However, in this case, a dedicated
queue is assigned to each signal, allowing simultaneous management of multiple
queues without relying on a single queue, which could lead to congestion and
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potential data loss. This approach ensures the effectiveness of using separate
queues, as the initial synchronization process aligns all data queues across signals
and devices. The acquisition also relies on a threading mechanism, where each
BLE device is associated with a separate thread responsible for the continuous
reading of incoming packets and their storage in structured text files. Each packet
contains information such as the timestamp, signal value, and the corresponding
movement class. The system allows the simultaneous management of multiple
devices, synchronizing the acquired data and ensuring continuous recording until
manual process termination.

Figure 4.6: Checkbox to selected the modalities to save during the recording.

The ’Threshold Calibration’ button is used to start the threshold calibration
process for each connected device. This threshold calibration is described in
section 1.12. During this calibration, it is important that the subject must remain
still and avoid any movement to ensure an accurate threshold calculation, which is
a crucial step, as the ATC signals were used in the subsequent classification phase.
In the GUI, there are buttons identifying each Apollux device, which are used to
manage individual properties, such as the gain, labeled as ’Gain Settings’. The gain
can be configured differently for each device. The Start and Stop buttons are used
to begin and end the recording, respectively. When the Start button is pressed,
the system initializes the acquisition mode (which can include sEMG, RMS, TC,
and ATC) and performs device synchronization, including threshold calibration for
TC or ATC signals if required. During initialization, any inactive or disconnected
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Figure 4.7: GUI after selecting the recording modalities during the session.

devices are removed from the list, and dedicated files for each active acquisition
mode are created when the ’Save Mode’ is activated via the checkbox in the top
right corner. In ’Save Mode’, the recorded signals are saved in .txt files, with each
file corresponding to a different modality and each device maintaining its own file
to prevent data congestion.

Pressing the Stop button halts the acquisition process by stopping the data
management thread, stopping the data recording on each device, while handling
any potential failures in stopping a device, and closing any open data files. The
system then clears all data queues and removes any disconnected devices, ensuring
a clean termination of the recording session.

The Feature plot button allows the user to choose which modality to display
among the recorded options. In this way, the user can decide whether to plot an
ATC signal to evaluate the accuracy of the threshold calculation, or, for example,
view the sEMG signal.

4.4 Protocol Interface
The protocol interface was designed to help and guide the subject throughout the
recording process. A secondary screen displays the protocol interface, illustrated
in Figure 4.8. This interface shows the current gesture that the subject must
perform, also a visual representation of the name of the movement is displayed on
the bottom. To help to perform the movement with the right timing, the "next
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Figure 4.8: GUI guiding the subject during acquisition, displaying the current
gesture to perform, the next gesture, and a timer for the duration of the current
movement.

gesture" is displayed on the right side of the screen, ensuring a correct transition
between gestures. Additionally, a timer is provided to indicate the duration for
which the subject needs to perform the current gesture. Additionally, on the left,
the recording session in progress is displayed, with numbers ranging from 1 to 3.

At the end of the protocol, an image is displayed on the screen to indicate the
successful completion of the procedure. The final message on the screen is shown
in Figure 4.9.

The protocol was interrupted and repeated if, during the recording, the Apollux
devices started to lose data packets, resulting in the loss of signal values and the
generation of NaN (Not A Number) values. This was done to ensure the creation
of a more robust dataset.
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Figure 4.9: Message of successful protocol completion.
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Chapter 5

Protocol and Device
Positioning

The adoption of this protocol ensures a standardized and systematic approach,
using anatomical proportions such as the subject’s forearm length and the wrist
circumference. The protocol was designed to target in a selective manner muscles
or muscle regions associated with specific hand gestures, enhancing the precision
and selectivity of the measurements.

The information used to design the device placement protocol was based on the
anatomical considerations outlined in chapter 1. Specifically, attention was given
to the selectivity in muscle activation of certain muscles as well as the mechanical
coupling characteristics inherent to human anatomy. These anatomical insights
were combined with the information obtained from the data from the Hyser dataset
discussed in section 3.1, as illustrated in Figure 5.1 , utilizing Power Maps to
identify points of maximum activation within the presented setup. This approach
allowed for the integration of new information or the validation of anatomical
considerations, thereby ensuring a more precise and informed protocol design.

5.1 Apollux positioning
Six Apollux devices were employed to simultaneously record sEMG and ATC
signals. The device were numbered from 79 to 84 in order to have a different label
for each device. The positioning of the devices was guided by anatomical landmarks
and informed by the dataset characteristics previously outlined in chapter 3. The
devices were placed on the dominant upper limb of each participant following
a standardized placement protocol designed to ensure consistency and accuracy
across subjects.

The anatomical reference measurements to be used are the wrist width, taken
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Figure 5.1: Power maps of index finger extension overlaid on the forearm on the
left using the figure from [72], and in on the right the arm of the subject used to
develop the placement protocol.

using the ulnar styloid process as the anatomical landmark, and the forearm length,
which was calculated from the center of the wrist. This approach ensured that each
sensor was optimally positioned to capture the most relevant muscle activity, while
minimizing variability introduced by anatomical differences among participants.
These measurements are taken on the posterior side of the forearm, and the same
procedure is repeated on the anterior side.
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The first Apollux device, labeled as "Apollux 83", was positioned at 85% of the
forearm length, and at this location, the circumference of the arm was measured.
The 7.1% of this circumference was then calculated. The device was placed to the
right for right-handed subjects or to the left for left-handed subjects, based on this
measurement.

This placement, illustrated in Figure 5.2, aimed to selectively measure the
activation of the middle, little, and ring fingers, as it was positioned over the most
proximal and lateral portion of the extensor digitorum muscle.

Figure 5.2: Apollux 83 placed to target selectively the activation of middle finger,
ring finger, and little finger.
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The second Apollux device, labeled as "Apollux 82", was placed at 55% of the
length of the forearm, centrally aligned. This placement, illustrated in Figure 5.3
aimed to selectively measure the activation of all fingers except the thumb, as it
was positioned directly over the extensor digitorum muscle.

This Apollux device is designed to record activity from the same muscle as
Apollux 83 but targets a different portion of it. Specifically, it aims to capture the
movements associated with the index and middle fingers. While it can still detect
the sEMG signals generated by the contraction responsible for the extension of the
ring and little fingers, these signals are expected to have lower amplitude.

Figure 5.3: Apollux 82 placed to target selectively the activation of indez finer,
middle finger, ring finger, and little finger.
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The third and fourth Apollux devices, represented in Figure 5.4, labeled respec-
tively as "Apollux 80" and "Apollux 81", were positioned to record the sEMG
signals from the extensor pollicis brevis and extensor indicis, respectively. Both
devices were placed at 28.6% of the forearm length. The device targeting the thumb
extension was located 1 cm to the left of the midline of the arm, while the device
for index finger extension was positioned 1 cm to the right.

Due to their close proximity, these two Apollux devices may not always reliably
distinguish between the activation of the thumb and index finger in all subjects.

Figure 5.4: Apollux 80 and 81 placed to target selectively the activation of pollicis
brevis and extensor indicis.
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The fifth Apollux device, labeled as "Apollux 79", was positioned on the anterior
side of the forearm at 35% of its length to record the sEMG signal from the flexor
digitorum muscle. It was then shifted by 6% of the arm circumference at that
point, toward the left for right-handed subjects and toward the right for left-handed
subjects. The positioning is illustrated in Figure 5.5.

This Apollux device was positioned in this location to capture the muscular
activation associated with the hand close movement, as it specifically targets
the flexor digitorum muscle, which is highly engaged during this action. In some
subjects, this channel also exhibited activation during movements where, in addition
to finger extension, finger flexion was also present. This response was less frequent,
as the signals generated by finger flexion were generally of lower amplitude.

Figure 5.5: Apollux 79 placed to target selectively the activation of the flexor
digitorum.
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The sixth Apollux device, labeled as "Apollux 84", was placed over the first dorsal
interosseous muscle on the hand as illustrated in Figure 5.6.

This Apollux recorded a high-amplitude signal during the hand closure move-
ment, as the first dorsal interosseous muscle exhibits significant activation when
contributing to wrist stabilization. This stabilization is particularly crucial during
the final phase of hand closure, when the fingers make contact with the palm.

Figure 5.6: Apollux 84 placed to target selectively the activation of the first
dorsal interosseous muscle on the hand.
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The complete acquisition set-up with the six Apollux devices, each representing
a single acquisition channel, is illustrated in Figure 5.7. The Apollux devices are
secured to the subject’s skin using extensible TNT adhesive patches. Employing
a biocompatible adhesive patch enhances both adhesion and durability, which is
critical during recording since electrode detachment can compromise the quality of
the acquired signals.

Figure 5.7: View of the complete acquisition set-up. On the left, the rear view; in
the middle, the frontal view; and on the right, the lateral view. The identification
codes for each Apollux device are also labeled.
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5.2 Protocol
The protocol consisted of seven distinct movements and a rest position. The
movements included are illustrated in Figure 5.8 :

• Zero

• One thumb

• One index

• Two

• Three

• Four

• Five

Each movement was executed three consecutive times, with a rest interval between
repetitions to minimize fatigue. The active phase of each movement was standard-
ized to last 3 seconds, immediately followed by a resting phase of 4 seconds. During
the recording process, movements were systematically labeled using numerical
values from 0 to 6 corresponding to the predefined gestures, while the resting phase
was assigned a value of 7 to distinguish it from active movements.

The participants were told to perform each gesture with the same level of
intensity making sure to use consistent force for every repetition. They were also
reminded to keep their force steady throughout the gesture to ensure the data
recorded was reliable and could be reproduced.

All participants were provided with an explanation of the objectives of the study
and the procedure to be carried out. Informed consent was obtained from each
participant in written form, in accordance with established ethical guidelines. The
confidentiality and anonymity of their personal and recorded data were guaranteed,
with all data processed and stored in strict compliance with ethical standards and
applicable data protection regulations.

During the positioning of the devices, the Python-based script described in
section 4.3 was utilized to evaluate the quality of the acquired sEMG signals,
ensuring proper placement and adhesion of the sensors. The positioning phase also
served to help the participants as they were able to familiarize themselves with the
system and the required movements. During the positioning phase the participants
were encouraged to perform the gestures multiple times to self-calibrate their level
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Figure 5.8: Movements performed by the subjects during recordings.

of force, thereby enhancing the consistency and repeatability of their movements
throughout the experiment.

Once all the Apollux devices were positioned, the recording session began, lasting
for a total of 152 seconds. The protocol included an initial 5-second rest phase,
followed by 3 seconds dedicated to each gesture, repeated three times per gesture.
The resting phase was allocated between consecutive hand gestures to ensure proper
separation and recovery, the duration of this phase was 4 seconds.

During the acquisition, participants were instructed to perform each gesture
with consistent intensity across the three repetitions. They were also asked to
return to the resting position slowly to minimize unintended muscle activations.

The data acquired during these acquisitions adhere to the ethical guidelines
established by the Bioethics Committee of the University of Turin [76].

The protocol was performed three times for each subject, ensuring three record-
ings per subject. Subsequently, recordings were discarded if they were affected by
electrode detachment, if they included resting phases with constant activation, or
if the subjects performed the wrong movement instead of the intended one.
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The sEMG and ATC signals recorded during the protocol were saved in .txt
format for each device; then they were transferred to a dedicated directory con-
taining all participants’ data, anonymized to ensure confidentiality. The .txt files
were then converted into .mat format, making them compatible with MATLAB,
the primary environment used for further signal processing, analysis, and classifier
development.

Table 5.1: Device and Muscle Targeting

Apollux Device Muscle Targeted
84 First dorsal interosseous of the hand
83 Extensor digitorum (middle finger, ring finger, and little finger)
82 Extensor digitorum
81 Extensor indicis
80 Extensor pollicis brevis
79 Flexor digitorum
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Chapter 6

Signals Pre-Processing and
Classifier

6.1 Signal processing and features extraction
After the ATC and sEMG signals were acquired a subsequent pre-processing were
applied in order to extract the features from the sEMG, these features are described
in section 1.8. The raw sEMG signal recorded during a protocol session is illustrated
in Figure 6.1.

The signal is first processed using a band-pass filter to isolate the frequency
components of interest. Specifically, a high-pass filter with a cut-off frequency of 20
Hz and a low-pass filter with a cutoff frequency of 400 Hz are applied sequentially.
Both filters are designed using a 5th-order Butterworth filter, ensuring a smooth
frequency response. The effect of the filter is represented in Figure 6.2

The handling of NaN segments within the signal is performed through a combi-
nation of linear interpolation and noise augmentation. Initially, the positions of
NaN values are identified, and for each segment of consecutive NaN values, the
following approaches are adopted:

• For NaN segments at the beginning or end of the signal, the missing values
are replaced by the nearest valid value. Specifically, if the NaN segment starts
at the first index, it is extended from the first valid value occurring afterward.
Conversely, if the NaN segment occurs at the end of the signal, it is filled with
the last valid value preceding it.

• For NaN segments located in the middle of the signal, linear interpolation is
employed to estimate the missing values. The interpolation is performed using
the values surrounding the NaN segment, which are located 130 samples before
and after the NaN region. Noise is subsequently added to the interpolated
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Figure 6.1: Plot of sEMG signals from multiple Apollux devices, with each signal
color-coded based on its respective class. The x-axis is synchronized across all
subplots, showing the signals up to the shortest signal length, while the y-axis
represents the amplitude in volts.

values to make the signal more realistic. The added noise is proportional to
the average amplitude of the values in the intervals before and after the NaN
segment.

The addition of noise simulates the natural fluctuations of the sEMG, making
the interpolation more realistic and avoiding overly smooth or artificial-looking
transitions in the signal. An example of interpolation that preserves the natural
sEMG behavior is shown in Figure 6.3b.

Subsequently, the features presented in section 1.8 were extracted. A 150 ms
observation window was employed for feature extraction, with an overlap of 100 ms
between consecutive windows. This parameter was selected based on a preliminary
evaluation, as it yielded the highest signal quality and classification performance.

After feature extraction, subject-wise normalization was performed. This type
of normalization is performed because subjects have specific physiological charac-
teristics that influence the sEMG signal. Normalization for each subject allows the
characteristics not to be distorted and the subject-specific information to be pre-
served. This step was crucial due to inter-subject variability which is an important
factor in physiological signals such as sEMG [77].

This method avoids potential issues due to the global normalization, where
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(a) PSD raw sEMG signal.

(b) PSD filtered sEMG signal.

Figure 6.2: Comparison between the PSD of the raw signal in (a) and the PSD
of the filtered signal shown in (b).

extreme values from certain subjects could dominate the feature distribution.
Normalizing the features per subject ensures that the relevant subject-specific
information was taken into account, so that the model can generalize more easily
and consider the subject specific characteristics.
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(a) Example of a sEMG signal with NaN values.

(b) sEMG signal after filtering and interpolation.

Figure 6.3: Comparison of the sEMG befor and after the signal interpolation

6.2 Active threshold and Idle threshold
After the normalization process, the label correction was performed, particularly in
instances where the assigned label does not align with the signal activation. This
issue is often present in cases where the subject’s timing for the start and end of a
movement is not accurate, resulting in activation segments being mislabeled as rest
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or vice versa.
To correct the first scenario, where activation is mislabeled as rest, a threshold-

based approach is employed, leveraging a parameter referred to as the Active
Threshold. Using the slope sign change, identified as the most significant feature
during feature extraction, the algorithm examines 25 samples to the left and right
of the interval labeled as activation. For each sample in this range, the norm is
calculated. If the computed norm exceeds the Active Threshold, the sample is
reassigned the label corresponding to the activation interval.

The second scenario involves correcting segments labeled as activation that
correspond to rest. For this case, the process is similar but applied across all
samples. Specifically, the norm is calculated for each sample, and if the norm falls
below a predefined Idle Threshold, the sample is reassigned the label of rest.

NormValue =

öõõôNchannelsØ
i=1

Ch2
i

if NormValue < IdleThreshold Class = 7
(6.1)

The example of the threshold correction effect is shown in Figure 6.4.
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(a) Example of an SSC signal with color-coded labels to distinguish different
movements.

(b) Example of an SSC signal, after normalization and threshold corrections,
with color-coded labels to distinguish different movements.

Figure 6.4: (a) Example of an SSC signal with color-coded labels to distinguish
different movements. (b) Example of an SSC signal after normalization and
threshold corrections, with color-coded labels to distinguish different movements.
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6.3 Data concatenation and class balancing
After the data were processed and saved for each patient as described in section 6.1,
the features for each subject were concatenated along the columns, with the class
column placed last, resulting in a single matrix per subject. These matrices were
then concatenated along the rows to create a unified matrix containing all the
features and subjects, which was subsequently used to train the classifier.

After obtaining the consolidated matrix, the class distribution was balanced.
Balancing the classes is crucial during training to prevent the model from being
biased in favor of the majority class. The number of samples from the feature with
the fewest samples was taken, and this number was used for all classes by randomly
excluding the excess samples.

6.4 Artificial Neural Network Architecture and
Training Strategy

The ANN employed in this study is a fully connected feed-forward network, trained
using the Adam optimization algorithm. The input layer consists of N neurons,
corresponding to the number of features in the dataset. The network configuration
allows for a variable number of hidden layers (L), ranging from two to four, with
each layer containing a fixed number of neurons (H) between 10 and 200, as
specified in the model parameters. Every hidden layer utilizes a Rectified Linear
Unit (ReLU) activation function to introduce non-linearity, enhancing the network’s
ability to capture complex feature relationships.

The final classification stage consists of a fully connected output layer with C
neurons, where C represents the number of target classes. This is followed by a
softmax activation function, which transforms the network’s outputs into class
probabilities. The classification layer then assigns each input sample to the class
with the highest probability.

Training Strategy
To enhance generalization and prevent overfitting, the network is trained using
a k-fold stratified cross-validation approach, with k = 5, ensuring that class
distributions are preserved across folds. The training process is repeated twice
(R = 2) to reduce performance variance.

The optimization process of the neural network employ the Adam optimizer and
a learning rate of α = 0.03. The training of the neural network is then performed
using the mini-batch gradient descent, where the batch size is calculated as the
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total number of training samples divided by 100, ensuring adaptability to different
dataset sizes while maintaining stability.

To further improve training efficiency, a piecewise learning rate schedule is
implemented, adjusting the learning rate dynamically based on performance. Ad-
ditionally, early stopping is applied, where training halts if no improvement in
validation loss is observed for five consecutive epochs. The model was trained for a
maximum of 1000 epochs.

During training, the target labels are converted into categorical format, ensuring
compatibility with the classification framework. Inference is performed on test
data using the same mini-batch size as in training, maintaining consistency across
evaluation phases. Once trained, the final ANN model is stored for subsequent
analysis and deployment.

6.5 Summary of Model Hyperparameters
In this section is provided a structured summary of the neural network hyperpa-
rameters, which were previously discussed in detail. These parameters define the
network architecture and training process, influencing its learning dynamics and
performance.

• Hidden layers (L): 2 to 4

• Neurons per layer (H): 10 to 200

• Activation functions:

– Hidden layers: ReLU
– Output layer: Softmax

• Cross-validation: k-fold stratified, with k = 5

• Training repetitions: R = 2

• Optimizer: Adam

• Learning rate (α): 0.03

• Mini-batch size: total training samples / 100

• Early stopping: Yes, patience = 5 epochs

• Maximum epochs: 1000
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Chapter 7

Results and Discussions

7.1 Metrics
In machine learning and classification tasks, model performance is typically assessed
using standard metrics such as Accuracy, Precision, Recall, and F1-score.

Accuracy measures the proportion of correctly classified instances relative to
the total number of samples, providing a general indication of model performance.
The formula is given by:

Accuracy = TP + TN

TP + TN + FP + FN
(7.1)

• TP = Number of true positives (correctly predicted positive instances)

• TN = Number of true negatives (correctly predicted negative instances)

• FP = Number of false positives (incorrectly predicted positive instances)

• FN = Number of false negatives (incorrectly predicted negative instances)

However, when dealing with imbalanced datasets, Accuracy alone may not be
sufficiently informative.

Precision quantifies the proportion of instances predicted as positive that are
indeed positive, reflecting the reliability of the model’s positive predictions. Its
mathematical representation is:

Precision = TP

TP + FP
(7.2)

The Recall measures the model’s ability to correctly identify all actual positive
instances, making it particularly critical in contexts where minimizing false negatives
is essential:
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Recall = TP

TP + FN
(7.3)

Finally, the F1-score represents the harmonic mean of Precision and Recall, offering
a balanced measure that considers both metrics simultaneously:

F1-score = 2 × Precision × Recall

Precision + Recall
(7.4)

This metric is especially useful when a balance between Precision and Recall is
required to evaluate overall classification performance effectively.

In addition, per-class accuracy provides further insight by evaluating the accuracy
for each class individually. For each class, the per-class accuracy is computed by
considering that class as positive and all others as negative, using the same formula
as for the Accuracy:

Per-class Accuracy = TP + TN

TP + TN + FP + FN
(7.5)

• TP = Number of true positives (instances correctly classified as belonging to
the class).

• TN = Number of true negatives (instances correctly classified as not belonging
to the class).

• FP = Number of false positives (instances incorrectly classified as belonging
to the class).

• FN = Number of false negatives (instances of the class incorrectly classified
as not belonging to it).

7.2 Features selection
After compiling the dataset of all subjects, feature selection was performed. To
determine the number of features to select, PCA was conducted based on explained
variance, which represents the proportion of the dataset’s total variance captured
by each principal component. The number of principal components was determined
by selecting those that contributed to a cumulative explained variance above the
set threshold of 95%. The contribution of each feature to the selected principal
components was then quantified by summing the absolute values of its corresponding
PCA loadings. As reported in Figure 7.1 the number of principal component needed
to exceed the threshold was 10, the subsequent training phases were conducted
considering these features.
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Figure 7.1: Explained variance analysis of the dataset’s features using PCA. It
represents the cumulative explained variance, showing the total variance retained
as more components are included. The black dashed line indicates the 95% variance
threshold, which determines the minimum number of principal components required
to retain most of the dataset’s information.

To evaluate the relevance of each selected feature, the sum of the absolute
contributions of each feature across the first selected principal components was
computed. The most relevant feature, based on its overall contribution to the
principal components, was the SSC as illustrated in Figure 7.2:

Figure 7.2: Bar plot representing the importance of the top 10 features based on
their contribution to the selected principal components. The ranking is determined
by summing the absolute values of the PCA loadings for the principal components
that cumulatively explain at least 95% of the variance. Features with higher
importance values have a stronger influence on the transformed feature space.
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7.3 Classification results

The results presented in this section were obtained from 3 subjects, using a
training dataset consisting of 23 subjects. The results showed high accuracy
for the movements Hand close, Thumb up, Two, and Idle. Lower accuracy was
observed for the movements Three, Four, and Five. This discrepancy can be
attributed to the similarity in muscle activation patterns between these specific
movements. The protocol was designed with the assumption that, although the
same muscles are involved in both movements, the Five gesture would elicit a
higher activation of the extensor digitorum, leading to increased signal intensity in
channels 83 and 82. However, this pattern was not consistently observed across
all subjects. In individuals with stronger and more distinct muscle activation, the
signals corresponding to Three and Five were nearly identical as it is represented
in Figure 7.3.

Figure 7.3: SSC normalized signal showing a clear similarity in activations between
the Three and Five movements across all six channels.

This behavior was predominantly observed in subjects with smaller forearm
circumferences, where the signal was detected accurately, but the smaller forearm
size led to less selective signal acquisition due to the fixed electrode placement.

o further investigate this aspect, an additional classification test was performed
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by removing both the Five and Four movements, which exhibited the poorest per-
formance. This allowed for an assessment of their combined impact on classification
performance.

7.3.1 Classifier performance all movements
The optimal neural network architecture consisted of 4 hidden layers with 200
neurons, delivering the best performance. As represented in Figure 7.4, the results
were quite promising, showing excellent classification for most movements. The
ones with the worst performance are the Five and Four movements, which, as
previously described, are more problematic for classification.

Figure 7.4: Confusion matrix for the finger movement classifier considering all
the movements. The matrix shows the correspondence between true and predicted
classes. Each row represents the actual class, while each column indicates the
predicted class. The diagonal elements contain the correctly classified instances,
while off-diagonal elements represent misclassifications. Darker blue cells indicate
higher values, while lighter shades highlight lower occurrences.

The classification results demonstrated strong average performance, with par-
ticularly high accuracy for the majority of the movements. The model excels
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Table 7.1: Classification performance metrics per movement

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 98.11 92.39 92.53 92.46

Thumb up 89.84 55.81 90.11 68.93

One 92.70 74.19 63.81 68.61

Two 91.12 60.60 82.71 69.95

Three 91.58 68.28 61.03 64.45

Four 88.15 54.11 34.21 41.92

Five 88.17 54.33 33.55 41.49

Idle 99.51 97.33 98.83 98.07

Average 92.88 72.18 71.50 71.84

in recognizing the Hand close and Idle state, achieving near-perfect accuracy of
98.11% for Hand close and 99.51% for Idle, along with consistently high precision
and recall values. Additionally, movements such as Thumb up and Two exhibit
solid recall scores of 90.11% and 82.71%, highlighting the classifier’s ability to
correctly identify these gestures.

However, the classification of Four and Five movements shows lower performance
compared to the others. The relatively low recall rates of 34.21% for Four and
33.55% for Five suggest that these movements are often misclassified.

Despite these limitations, the average F1 score confirm a well-balanced classifi-
cation performance across most gestures, reinforcing the system’s suitability for
practical applications.

The misclassification results are due to inter-subject variability, as the movements
between subjects are not always similar. Sometimes, a movement from one subject
can exhibit the same activation pattern as a different movement from another
subject as will be described later in section 7.5.
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7.3.2 Classifier subset of movements evaluation
The architecture for the neural network featured 4 hidden layers, with 190 neurons
per layer. As stated before, to verify that the classification is done correctly and
that the issue lies in the high similarity of activation patterns between different
movements for the same subject, a classifier was trained by removing the Four and
Four movements from the initial set of movements. By removing these movements,
the performance improves as represented in Figure 7.5, particularly noticeable in
the F1 score, which increases from 71.84% to 86.86%, highlighting a significant
improvement in classification.

Notably, the movements Hand close and Thumb up exhibit the highest F1 score
values, indicating a strong ability to correctly identify these gestures, while the
Idle class maintains the highest average classification performance.

Figure 7.5: Confusion matrix for the finger movement classifier discarding the
two most challenging movements. The matrix shows the correspondence between
true and predicted classes. Each row represents the actual class, while each column
indicates the predicted class. The diagonal elements contain the correctly classified
instances, while off-diagonal elements represent misclassifications. Darker blue cells
indicate higher values, while lighter shades highlight lower occurrences.
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Table 7.2: Classification Performance Excluding Movements Four-Five.

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 97.26 89.43 94.80 92.03

Thumb up 95.81 81.04 97.73 88.61

One 94.16 90.65 72.45 80.54

Two 93.25 76.16 86.59 81.04

Three 93.21 86.81 69.89 77.44

Idle 99.46 98.75 98.02 98.38

Average 95.53 87.14 86.58 86.86
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7.4 Single subject classifier evaluation
To evaluate the network’s classification ability, it was trained using data from
a single subject, focusing on its capacity for accurate classification rather than
generalization. A key aspect of this evaluation was that the recordings were
conducted on two different days, as a robust classifier must reliably classify data
even when faced with varying noise levels, changes in the subject’s physiological
state, and different sensor placements. Three repetitions of the acquisition protocol
were used for the training phase, and the same number of repetitions was used for
the testing phase.

7.4.1 Performance evaluation considering all movements
Using a dataset that includes all seven movements and the idle state, the ANN
was trained following the method described in chapter 5. The best-performing
architecture consists of 3 hidden layers with 160 nodes.

The classifier demonstrated excellent performance on the Hand Close movement,
with both accuracy and F1 score reaching 100%. The Thumb Up movement also
achieved high results, with an accuracy of 99.02% and an F1 score of 96.01%. As
illustrated in Figure 7.6 Movements such as One, Two, and Four displayed strong
performance with accuracy ranging from 96.64% to 98.29%, and corresponding F1
score varying from 81.74% to 93.20%. However, the classifier struggled more with
Three and Five, achieving lower accuracy rates of 92.34% and 93.63%, respectively,
and F1 score of 66.59% and 74.85%.
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Figure 7.6: Confusion matrix for the finger movement classifier across all move-
ments. Diagonal elements represent correct classifications, while off-diagonal ones
indicate misclassifications.

Table 7.3: Classification Performance Single Subject.

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 100.00 100.00 100.00 100.00

Thumb up 99.02 97.44 94.62 96.01

One 98.29 92.81 93.58 93.20

Two 96.64 85.09 88.61 86.82

Three 92.34 73.20 61.08 66.59

Four 95.11 76.63 87.58 81.74

Five 93.63 73.94 75.78 74.85

Idle 99.56 99.36 97.10 98.22

Average 96.82 87.31 87.29 87.30
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7.4.2 Single subject classifier subset of movements evalua-
tion

The optimal neural network architecture was based on 4 hidden layers, each having
150 neurons. For movements like One and Two, as represented in Figure 7.7, the
classifier demonstrated very high performance, with accuracy values of 97.31% and
97.96%, and F1 scores of 91.99% and 94.05%, respectively.

The Three gesture, while still showing strong performance, presented a slightly
more challenging classification, achieving an accuracy of 96.93% and an F1 score of
90.54%. Nevertheless, the classifier excelled in recognizing the Idle state, with an
accuracy of 99.45% and an F1 score of 98.32%, further emphasizing the robustness
of the model in handling both finger movements and the idle condition. These
results indicate that the classifier can achieve remarkably high performance.

Figure 7.7: Confusion matrix for the finger movement classifier after removing the
two most challenging movements. Diagonal elements represent correct classifications,
while off-diagonal ones indicate misclassifications.
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Table 7.4: Classification Performance Single Subject, Excluding Movements Four -
Five.

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 99.72 98.37 100.00 99.18

Thumb up 99.79 99.58 99.17 99.38

One 97.31 91.24 92.75 91.99

Two 97.96 91.73 96.48 94.05

Three 96.93 93.01 88.20 90.54

Idle 99.45 99.79 96.89 98.32

Average 98.53 95.62 95.58 95.60

7.5 Analysis of Signals for Inter-Subject Differ-
ences

As shown in Figure 7.8, the SSC signal profiles are remarkably similar between
the two subjects for two different movements: specifically, the One movement of
the subject 24, depicted in Figure 7.8a, and the Five movement of the subject 25.
In general, it can be observed that activation patterns vary significantly, not only
are there highly similar activations for different movements, but also substantial
differences for the same movements. For instance, the Thumb up movement in the
subject 24 exhibits a clear activation in the acquisition channel corresponding to
Apollux 79, whereas no activation is present for the subject 25.

These evident differences in activation patterns highlight the considerable inter-
subject variability. Although the acquisition devices were positioned according to an
anatomically guided protocol, muscle activations can still vary, making classification
more challenging. This issue can be mitigated by increasing the number of subjects
in the training dataset, thereby exposing the model to a wider range of activation
patterns and improving its generalization capabilities.
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(a) SSC signal of subject 24.

(b) SSC signal of subject 25.

Figure 7.8: SSC signal of subject 24 and subject 25. Each subplot represents
a single acquisition channel. The samples are labeled to highlight the activation
zones, with a color code assigned to each movement. The x-axis represents time,
while the y-axis shows the normalized SSC events.
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7.6 ATC and multi-features classification com-
parison

A comparison between the method utilizing a multi-feature classification approach
and the classifier based solely on the ATC signal, as employed in previous studies
by the research group, reveals notable differences in performance.

The classifier built using only the ATC signal achieved optimal performance
with a neural network architecture consisting of four hidden layers, each containing
140 neurons.

It is observed that the ATC-based classification exhibits inferior performance;
however, both approaches consistently show the poorest results for the Four and
Five movements, as it is shown in Figure 7.9.

Figure 7.9: Confusion matrix of the ATC signal testing phase.
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Table 7.5: Classification Performance Using ATC signals.

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 97.23 86.12 92.83 89.35

Thumb up 89.73 55.40 91.39 68.99

One 89.75 59.13 58.40 58.76

Two 88.99 54.59 70.70 61.61

Three 88.70 54.77 55.33 55.05

Four 85.68 34.08 15.57 21.38

Five 88.93 62.07 29.51 40.00

Idle 97.26 87.28 91.39 89.29

Average 89.92 61.68 63.14 62.40

7.6.1 ATC subset movements performance
Eliminating the movements Four and Five, as previously described in subsec-
tion 7.3.2, results in a significant improvement in performance for both cases.
Specifically, for ATC signals-based classification, the accuracy, as shown in Ta-
ble 7.6, increases from 89.92% to 93.95%, and the F1 score improves from 62.40%
to 81.86%.

This demonstrates that, although the classifier based on ATC signals achieves
good performance, the incorporation of a multi-feature approach yields superior
results by providing the classifier with a more comprehensive set of information.
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Figure 7.10: Confusion matrix of the ATC signal testing phase removing Four
and Five.

Table 7.6: Classification Performance Using ATC signals without Four and Five.

Movement Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Hand close 95.59 82.94 92.62 87.51

Thumb up 95.46 82.81 91.80 87.07

One 91.50 74.44 74.59 74.51

Two 92.69 77.51 79.10 78.30

Three 91.36 81.50 62.30 70.62

Idle 97.13 91.91 90.78 91.34

Average 93.95 81.85 81.86 81.86
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Chapter 8

Conclusion and Future
Developments

The thesis project proposed a wearable system and a setup designed to develop
a classifier for finger movement recognition using sEMG signals, acquired from
both intrinsic and extrinsic muscles. The system builds upon a previous prototype
developed by the research team, incorporating its ANN-based classifier.

The acquisition system introduces a novel structure that enables the simul-
taneous recording of multiple modalities, including RMS, ATC, sEMG, and TC.
This modification allows real-time extraction of different signals within the same
recording session, providing the user with a broader dataset and greater flexibility
for analysis.

Software improvements also included enhancements to the GUI, facilitating user
interaction with the acquisition system. Additionally, a second GUI was developed
to guide the subject during the recording process, thereby improving the quality of
the acquired data.

To enhance signal quality, essential preprocessing steps were performed, including
interpolation of NaN values, which can be lost during acquisition due to temporary
disconnections between the Apollux device and the BLE dongle. Furthermore, a key
processing step involved refining the labeling of the acquired signals, accounting for
potential human errors. By correcting the labels associated with muscle activations,
an optimized labeling process was achieved, significantly improving classification
performance.

This was highlighted through the trial in which a classifier was built using a single
subject, demonstrating that classification with this setup is optimal. Furthermore,
it confirms that the electrode positioning protocol, designed to selectively target
muscles so that they activate with a specific pattern for each movement, was
effectively implemented.

115



Conclusion and Future Developments

The developed classifier demonstrates excellent performance. Moreover, it has
been shown that the multi-feature approach achieves higher performance compared
to the use of the ATC signal alone, as it provides a broader spectrum of information
for classification.

However, classification challenges were observed for certain movements, primarily
due to the well-known inter-subject variability in muscle activation patterns for
hand movements. This issue is further emphasized by the limited number of
subjects in the dataset. As noted in [78], having a sufficiently large dataset is
crucial for improving the model’s ability to generalize effectively.

The acquisition setup could be reconsidered, particularly the channels 80-81,
which are very close to each other and therefore prone to cross-talk, especially in
subjects with a thinner forearm. In this case, the activation signals of the extensor
indicis and extensor pollicis brevis are recorded without being able to discriminate
between them, which undermines the initial hypothesis of achieving selective muscle
placement.

The classifier has been evaluated only in an offline setting. Future developments
include implementing real-time prediction, enabling sample-by-sample movement
classification.

In a real-time implementation, an initial calibration phase is required, during
which the subject performs the target movements while relevant features are ex-
tracted. These features are used to compute the maximum and minimum values,
which are subsequently employed for signal normalization. This approach ensures
subject-specific normalization, preventing excessive distortion that could arise from
a global normalization strategy. Specifically, a global approach could lead to an
undesired flattening effect, where subjects with higher activation levels dispropor-
tionately influence the normalization of others. Once real-time classification is
integrated, the complete development of the Two-Subject Stimulation system can
be pursued.
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