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Summary

The World Health Organization (WHO) has included burnout in the International
Classification of Diseases. Consequently, real-time monitoring of an individual’s
stress levels and mental load while performing a task is crucial to assess whether the
person is actually able to complete the assigned task. The analysis of physiological
signals is the best strategy for real-time monitoring of mental workload, which
have distinctive characteristics related to the individual’s physiological state. In
particular, the cardiac and respiratory signals have characteristic features, such
as heart rate (HR), heart rate variability (HRV), and respiratory rate (RR),
that are highly dependent on mental workload levels. However, the necessity of
acquiring each signal with a dedicated system gives rise to issues concerning the
footprint, which hinders the task to be performed. In order to overcome these
limitations, recent wearable devices can be utilised for the purpose of acquiring the
photoplethysmographic (PPG) signal from which the extraction of both cardiac
and respiratory characteristics is possible. This development has the potential
to significantly reduce the user’s bulk associated with conventional acquisition
systems. The aim of this study is to extract the respiratory signal from the PPG
signal. This is achieved by focusing on the detection of the respiratory frequency
and on the morphology of the signal itself. A novel algorithm on the Matlab®

platform that employs a diversified strategy for the extraction of respiratory signal,
depending on the quality of the signal, has been developed. The first step in
extracting the respiratory signal involves implementating a low-pass filter with a
cutoff frequency of 0,65Hz. After the filtering phase, a statistical analysis to verify
the cleanliness of the signal is conducted. In the event that the filtered signal
is clear, the algorithm employs a spectral analysis method in order to identify
the respiratory frequency. Conversely, when noise is present, the Empirical Mode
Decomposition (EMD) for signal decomposition is applied. This solution ensures
enhanced computational efficiency and is particularly well-suited to a real-time
context, offering a sophisticated and expeditious methodology for monitoring the
respiratory signal. The efficacy of the algorithm was tested on the Capnobase
data set, consisting of 42 physiological signals including respiration and PPG,
acquired at rest for 8 minutes. The results are compared with the respiration
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rate values obtained on the same dataset using the Smart Fusion algorithm. The
comparison demonstrated that the former led to superior results, especially for
very noisy signals on which the latter was unable to perform. The validation
of the algorithm was achieved by creating an experimental data set using the
BiosignalplusX device, which is capable of acquiring the ECG, respiratory signal,
and PPG signal simultaneously. Patients firstly underwent a resting phase and
subsequently an N-Back test, the purpose of which was to stimulate cognitive
function. The algorithm demonstrated remarkable efficacy in identifying respiratory
and heart rate by directly comparing the extracted data with the acquired references.
In the assessment of mental load, the extracted feature distribution were compared
with the results of subjective questionnaires, which investigated the perception of
cognitive effort during the test.
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Chapter 1

Introduction

In the modern society, people often face challenging situations, whether in their
work or everyday life. These challenges can lead to increased stress and mental
exhaustion. According to the World Health Organization (WHO), mental stress
has become a global epidemic in the 21st century [1].

The situation has worsened since the Covid-19 pandemic. One of the main
causes of increased stress levels is the social isolation caused by thepandemic, which
has limited people’s ability to work and actively participate in their communities.
The intensification of these factors has led to a significant increase in burnout.
Research shows that 25% of workers have health problems due to psychological
stress related to work [2]. Burnout is a state of physical, emotional and mental
exhaustion resulting from prolonged and excessive stress, usually related to a
work environment or tasks that require intense and continuous commitment. It
occurs when an individual faces persistent stress over an extended duration without
sufficient time for proper recovery [3]

The WHO acknowledges burnout as a condition associated with inadequately
managed chronic stress at work and has included it in the International Classification
of Diseases. This state of exhaustion can reduce a person’s ability to perform their
tasks or daily responsibilities efficiently [4].

For this reason, monitoring of stress and mental workload parameters is becom-
ing increasingly important. Over the years, various methods to assess stress levels
have been proposed which can be divided into subjective assessment, behavioral
assessment, and physiological assessment. However, the first two methods pro-
vide a subjective evaluation of the parameters, relying on questionnaires or direct
observation of the patient’s behavior. These methods do not allow for real-time
monitoring, for instance, of individuals engaged in precision-demanding tasks. Con-
sequently, efforts are focused on improving physiological assessment. Physiological
assessments analyze physiological signals. The most commonly studied are heart
activity, skin activity, eye activity, brain activity, respiration, body temperature,
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muscle activation and voice patterns. It is evident that each of these corresponds to
a signal from which a specific feature can be derived. These features are influenced
by stress and cognitive load; therefore, they can be studied in order to monitor
stress and mental workload parameters. Obviously, simultaneous monitoring of all
these signals would lead to a much more accurate and reliable analysis of cognitive
workload status. However, it is important to highlight that capturing each of these
signals necessitates a specialized detection system that interacts with the patient
through carefully positioned electrodes. This would inevitably result in evident
bulk issues, consequently leading to constrained mobility and a state of discomfort,
especially in situations where the application is meant for individuals performing
specific tasks or work-related activities. A solution can be obtained by extracting
as much information as possible from a single biological signal. The redundant
sensors can then be removed. The primary illustration of this phenomenon is the
observed correlation between respiratory and cardiac activity. Respiration has
long been shown to correlate with certain aspects of the electrocardiogram,such as
respiratory sinus arrhythmia (RSA). RSA is a natural and physiological variation
in heart rate that occurs in response to respiratory cycles. For example, during
inhalation the heart rate tends to increase (tachycardia), while during exhalation it
tends to decrease (bradycardia). This phenomenon is known as respiratory bow or
respiratory synchrony. This implies that the heartbeat and breathing are naturally
synchronised [5]. To exploit the full potential of this system, it is necessary to look
for a signal with the most convenient sensor system. One of the most studied signals
in this sense, due to its ease of acquisition, is the photoplethysmographic (PPG)
signal. Traditional photoplethysmographs that measure blood volume saturation
are usually worn on the finger. However, in some cases it is placed on the head, i.e.
the ear, nasal septum and forehead [2]. In recent years, advancements in technology
have led to the development of wereable devices capable of reliably acquiring the
photoplethysmographic signal. The PPG sensor measures changes in blood volume
under the skin using light emitted by the sensor and reflected by the blood vessels.
As the heart beats, the amount of blood flowing through the vessels changes,
causing the amount of reflected light to change [6]. The photoplethysmography
(PPG) sensor is capable of detecting changes in light intensity and translating them
into a signal. Consequently, the most direct and immediate analysis is that of
cardiac feature extraction. However, over the years, many studies have focused on
understanding the influence of respiration on the PPG signal by trying to identify
the correct respiratory rate.

The objective of this thesis is to examine the feasibility of deriving the respiratory
signal from the photoplethysmographic (PPG) signal. This effort involves not only
the identification of the correct respiratory frequency, but also the emphasis on the
appropriate waveform to ensure the accurate extraction of respiratory features. It
is important to note that a significant number of respiratory features depending
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on the positioning of peaks and valleys. Observations concerning the influence of
stress and cognitive load on features such as the time and volume of inhalation and
breathing are made using the position of signal peaks and valleys. Consequently,
enhancing this aspect would result in more precise and reliable analyses. Once
validated, the use of one of the new sensors integrated into wearable devices to
extract cardiac and respiratory data could becomes feasible, thus greatly improving
the comfort of the monitored individual. When thinking about wearable devices,
people often associate them with gadgets such as smartwatches.; however, recent
advancements in research have led to the development of other devices, such as the
Oura Ring [7] in Figure 1.1 and On Ear [8] in Figure 1.2.

Figure 1.1: Image of a commercial smart ring, the Oura ring, showing the LEDs
used to emit light and detect the PPG signal

Figure 1.2: Representation of the custom-built PPG ear tip inside the ear canal

These innovations, characterized by enhanced adhesion to the body region
or incorporation of accelerometers and gyroscopes, have enabled a substantial
reduction in movement artifacts that are prevalent in photoplethysmographic
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(PPG) signals, thus broadening their practical applications. Consequently, the
study and analysis of the PPG signal are currently more important than ever, given
the potential of the signal itself.
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Chapter 2

Background

2.1 Stress
The word ’stress’ originates from the latin term ’strictus’, meaning ’tight’. Stress
is described as a mental state of preoccupation triggered by a challenging circum-
stance or a gap between environmental demands and personal resources. The
environmental phenomena that cause an individual’s state of stress are desig-
nated stressors. The term ’stressor’ is employed to denote events, causes and
harmful agents that have the potential to induce a General Adaptation Syndrome
(GAD). These stressors can be categorised into four distinct classifications: physical,
metabolic, psychological, and psychosocial stressors. The response to stressors is
entirely subjective and varies from individual to individual [9]. As a result, it is
not guaranteed that individuals with varying personal backgrounds, experiences,
and psychophysical conditions will experience the same degree of mental distress
in response to a particular situation. Hans Selye, a pioneering figure in the field
of stress research, proposed a two-category system to categorise stress: eustress,
also known as positive stress, and distress, also known as negative stress. Eustress
is essential for achieving goals, as it facilitates the optimal utilisation of energy
to accomplish the objective. This is facilitated by the body’s ability to counter
external stimuli with effective mechanisms that enable adaptation to the prevailing
circumstances [10]. Distress gradually accumulates within an individual, activating
compensatory hormonal responses. Over time, this can lead to a breakdown of
psychophysical defenses, either preventing the person from deploying protective
mechanisms against the stressor or causing the activation of ineffective coping
strategies [10]. Hans Selye originated a model of GAD which consists of three
phases as shown in Figure 2.1:

1. Alarm: The first phase is known as the alarm phase. During this phase, the
individual is in contact with a stressor, which causes physiological dysfunction.
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Figure 2.1: General adaption syndrome. The following is a description of the
physical response according to the stressful phase in which the individual is currently
situated.

In response, the neurovegetative system triggers a counter-shock reaction. As
a result, the body begins to generate energy to adapt to the challenge. More
significant physiological changes occur during this phase, caused primarily by
the activation of the sympathetic nervous system, which mobilizes additional
resources to effectively manage the stressor.

2. Resistance: during the resistance phase, physiological changes continue to
allow the individual to adapt to stressors. However, if these external stimuli are
removed while the sympathetic nervous system is active, prolonged stimulation
can have detrimental effects on the body. Prolonged physiological tension can
contribute to the development of stress-related diseases

3. Exhaustion: If resistance to stressors fails to produce a favorable outcome,
one enters the exhaustion phase. The effects accumulated so far lead to
functional impairment.

2.1.1 Work related stress
Work-related stress is a physiological and emotional response that arises when job
demands exceed the capabilities of the individual. In the domain of theoretical
models of work stress, a seminal contribution was made by Cooper and Marshall
(1978) [11] who developed a model, subsequently refined in 1988 by Sutherland and
Cooper [12], which categorizes the sources of work stress into [13]:

• Sources intrinsic to the ‘job’: Physical and environmental factors that
can negatively impact workers’ concentration, performance, and efficiency.
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Noise, inadequate or overly bright lighting, and poor environmental hygiene
are included.

• Organization: A distinction is made between role ambiguity, which refers
to a lack of clarity regarding job tasks, and role conflict, which arises not
from excessive demands but from mutually incompatible expectations. This
concept can be further divided into four categories: role-person conflict, where
the individual prefers tasks different from those assigned; role overload, where
the workload exceeds the individual’s capacity; intramandatory conflict, where
the available staff is insufficient to complete the task; and inter-mandatory
conflict, where a task is acceptable to some but undesirable to others.

• Career development: It can become a major source of stress for people
with strong aspirations to attain a high socioeconomic status, especially when
these aspirations remain unfulfilled.

• Work relationships: The following challenges may arise in relation to col-
leagues, superiors, or subordinates. Four distinct relational stressors have
been identified: position inconsistency, where the role an individual occupies
differs from the one they desire; social density, referring to inadequate living
or working space; abrasive personality, where individuals exhibit insensitive
behavior towards others’ emotions, creating stress in relationships; and lead-
ership style, which refers to how a superior interacts with subordinates. For
example, an authoritarian style may lead to less employee engagement, foster-
ing apathy or tension, while a democratic style encourages greater involvement
and motivation among workers.

• Organizational structure and climate: The way an individual perceives
the company climate and how they evaluate the demands made by superiors
greatly influences their ability to develop socialization and work motivation.

Monitoring work-related stress has been shown to have a significant impact on
an individual’s health and job performance. It is critical to recognize that high
levels of work-related stress can lead to burnout.

2.2 Mental Workload

2.2.1 Introduction
Despite various attempts over the years, a consensus on the definition of mental
workload has yet to be reached. However, it is widely accepted that cognitive
load, and therefore mental effort, is acknowledged and valued to the same degree
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as physical effort, as long as it is measurable and real [14]. Mental workload
can be defined as the interaction between the operator and the task assigned to
them, in the presence of repetitive operations [15]. Mental workload refers to the
cognitive demand that a task or group of tasks places on the limited processing
capacity of the human brain, similar to how physical exertion uses the body’s
resources. It is important to emphasize that the term ’limited’ in this context
does not suggest infinite capacity [16]. The human mind, similar to computers, is
subject to structural limitations that delineate its capacity. The vast area can be
represented by the operator workload into three subgroups [15]: Input workload,
Operator Effort, Performance (or result of the work performed) as in Figure 2.2.
The feedback given by the operator after the tasks have been performed is also
important.

Figure 2.2: The following schematic representation illustrates the mental workload
of an operator

The input workload consists of external events that are not directly controllable
by the operator. The major sources of input load can be separated into three main
classes:

• Environmental: These include noise, vibration, and temperature, along with
various stimuli from the external environment that are difficult to manage or
control

• Induced by design or situation: This encompasses the characteristics of
the displays and devices used, the layout of the work area, and the dynamics
of the machinery. It refers to everything that forms the physical "framework"
upon which tasks are built

• Procedural: This involves the briefing and instructions, the sequence of
tasks to be completed and the expected duration. The operator’s effort is
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determined by several factors, including the input load and the performance
demands of the task assigned

The concept of effort pertains to the mental and emotional energy expended
by an operator in order to engage in a given activity. Effort functions not only as
an indicator of performance, but also as a metric that quantifies the intensity and
nature of mental and emotional endeavor. This is contingent upon a multitude of
complex and interrelated factors inherent within the individual. In particular, a
distinction is made between:

• Stable factors: These characteristics remain relatively stable over time and
play a fundamental role to defining an individual. They include psychophysical
attributes (e.g., health status and cognitive capacities), personal background
(such as education and past experiences), and personality traits (e.g., resilience
or predisposition to stress)

• Fluctuating factors: These variables are subject to change over time and
exert a more dynamic influence on effort. They include prior experience
accumulated in similar contexts, momentary motivation (the extent to which
an individual is engaged or driven to complete a task) and attentional focus
(the degree of concentration directed toward the task at hand)

While an operator may achieve a comparable level of performance in disparate
situations (e.g. in systems designed differently but with analogous purposes), it is
imperative to consider the effort expended to attain that result [17]. This is due
to the fact that the end result alone does not provide a complete understanding
of the extent of mental or physical effort expended by the individual. In essence,
the effort expended can vary significantly between tasks that yield the same
outcome, underscoring the necessity for quantifiable metrics in comparative analyses,
particularly in contexts involving diverse physical and mental workload demands.
Performance is generally classified as the set of useful data generated as an output
of the work performed by the operator.

2.2.2 Effective and ineffective workload
Cognitive load can be classified as either effective or ineffective. Effective load refers
to the minimal workload necessary to complete a task and represents the portion
of effort that directly contributes to task accomplishment. Conversely, ineffective
load encompasses the extraneous effort that does not facilitate task completion
and could be reduced through learning and training. From the perspective of
task execution strategies, effective load is characterized by swift and accurate
performance, whereas ineffective load is associated with errors and reduced precision
[18]. The effective workload requires fewer cognitive resources as it is linked to
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efficiency. In contrast, the ineffective portion of mental workload demands greater
cognitive resources to manage each stage of information processing. Recognizing
mental workload is a crucial factor in the design and development of occupational
tasks [19]. The interaction between the operator and the assigned task serves
as a critical metric, providing insight into areas where task demands can be
increased without compromising performance and identifying situations where such
an adjustment could negatively affect human efficiency. It has been demonstrated
that an increase in task difficulty, or a decrease in the time allocated for completion,
results in an increase in workload. Task demands must be carefully calibrated
to prevent both overload and underload, thereby promoting safety, well-being,
comfort, and sustained productivity. The latter aspect is of particular significance
in the context of developing valuable human resources. It is evident that extended
periods of elevated cognitive load can result in suboptimal processes, diminished
performance, and even potential repercussions on the worker’s mental well-being
[20]. It can thus be concluded that cognitive load can be adjusted either by
increasing the available cognitive resources of the individual or by decreasing task
demands. Measuring mental workload is essential for optimizing these processes.

2.2.3 Burnout
The condition characterized by prolonged chronic stress and excessive workload,
leading to a state of exhaustion, is known as burnout. It is characterized by physical,
emotional, and mental exhaustion resulting from prolonged and excessive stress,
most commonly in work-related environments [21]. This condition is characterized
by three main symptoms: emotional exhaustion, depersonalization, and a reduced
sense of personal accomplishment [22]. The World Health Organization (WHO)
has officially recognized and classified burnout as a syndrome within the framework
of occupational health. According to the WHO, burnout is defined as "a syndrome
conceptualized as a consequence of chronic stress in the workplace that has not
been successfully managed." This indicates that work-related stress is regarded
as a condition that can impact an individual’s health and well-being. While the
WHO has provided diagnostic guidelines for burnout, it has not established specific
treatment or cure protocols. The symptoms of burnout are as follows (Figure 2.3):

• State of exhaustion,both mental and physical, which may be accompa-
nied by symptoms of anxiety, depression, or other psychological disorders.
These symptoms may also be accompanied by a range of physical disorders,
including headaches, gastrointestinal disorders, sleep disturbances, chronic
fatigue, and an increased vulnerability to stress-related physical illnesses, such
as cardiovascular or immune system disorders.

• Increased mental distance from one’s work, negativity and cynicism
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related to one’s occupation/role.

• Reduced professional effectiveness consisting in lack of concentration
and motivation can adversely can negatively impact work performance by
leading to errors. Additionally, decreased mental and physical energy may
result in a general decline in the quality of work, with less attention to detail
and diminished overall output.

Figure 2.3: Burnout symptoms that an individual may experience

2.2.4 Why measure mental workload?
The concept of mental workload refers to the cognitive demands an individual
must manage while performing a task or a series of tasks. This concept primarily
originates from the field of performance measurement, which focuses on assessing
an individual’s ability to complete specific tasks. The core assumption of this
concept is that humans function as ’one-channel’ systems, implying a limited
capacity to process information or handle tasks simultaneously. This theoretical
approach has significantly influenced workload research, leading to the belief that
an individual’s cognitive capacity is constrained during a single task, potentially
resulting in reduced performance. However, this ’single-channel’ model is considered
insufficient, as it overlooks the complexity and variability inherent in tasks. For
example, measures of effort in a single task may not fully capture the workload,
as different tasks have unique characteristics that affect the individual in distinct
ways. Furthermore, there is an absence of universal metrics with which to compare
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workload across tasks of a significantly different nature. As a result, research
is increasingly focusing on understanding cognitive workload in a more detailed
way, recognizing that humans aren’t just one-task beings. Instead, people are
capable to manage multiple tasks at the same time, as long as the tasks fit together
and the conditions are right. For instance, certain activities may be executed
in parallel without inducing cognitive overload, while others might necessitate
exclusive attention, .

The measurement of mental workload and, in a related manner, stress, especially
in critical work contexts, has become critical for several reasons:

• Performance optimisation: Determining whether the individual being
analyzed is overloaded can offer valuable insights into their performance.
Overload typically results in a decline in work performance, significantly
increasing the likelihood of errors, while an excessively low workload may
suggest that the task is insufficiently stimulating to fully engage the individual
and harness their full potential(Figure 2.4)

Figure 2.4: Performance trend as a function of the pressure the operator is
subjected to

• Burnout prevention: keeping cognitive load and stress levels under control
is important to avoid burnout with the consequences in terms of physical and
mental exhaustion that it entails

• Safety: in critical work environments, making mistakes due to mental overload
can lead to catastrophic consequences. Preventing this condition would increase
the safety of workers and the environment

• Designing the work environment: understanding how a task is perceived
at the level of the mental resources involved is useful for designing work
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environments that are more efficient and suited to human capabilities. One
of the initial applications of mental workload research was in the design of
user interfaces, with the goal of simplifying tasks and making them more
understandable and user-friendly

• Effectiveness in strategic decisions: For human resources managers,
measuring workload provides valuable insights for making informed decisions
regarding the planning, delegation, and monitoring of activities. With precise
data, more effective strategies can be implemented to enhance overall efficiency
and achieve business goals

Finally, although it is important to predict workload, it is equally crucial to develop
measurement methods that do not interfere with the performance of the tasks
themselves. This is to enable the effective monitoring of workload without adversely
affecting the individual’s performance or experience during the task.

2.2.5 Methods for measuring MWL
In measuring workload, a fundamental distinction is made between experimental
(laboratory) and operational (real-world) environments. In experimental environ-
ments, measurement are often more comprehensive and offer different methods for
to analyze empirical conditions and collect detailed data. The application of these
techniques in operational settings presents challenges, including concerns about
ecological validity (i.e., how well the laboratory environment reflects real-world
conditions) and the influence of individual differences. In contrast , measuring
workload in real-world situations is further complicated by complexity of the oper-
ational context, variability in individual differences of operators, and the difficulty
of accounting for how changes in strategies may impact both performance and
measurement results.[23].

A set of criteria for selecting or developing suitable techniques for measuring
mental workload [23] are reported:

1. Sensitivity to changes in the task: the measurement method must be
sensitive to changes in the difficulty of the task or in the demand for resources,
being able to distinguish between significant changes in the workload

2. Diagnosis of sources of variation: the method must be able to identify
the source of variations in workload, such as the type of task or resources
required.

3. Non-invasive: the measurement technique must not interfere with the op-
erator’s activity, either mentally or physically, and must not itself become a
source of mental workload

13



Background

4. Acceptability by practitioners: It must be a technique that subjects easily
accept, without being too intrusive.

5. Simplicity of tools: The technique should require a minimum of equipment
so that it does not adversely affect performance

Additionally, other criteria have been suggested, such as the ability to respond
quickly to fluctuations in workload and the capacity to demonstrate reliability and
consistency over time. Furthermore, it is crucial that the technique is specifically
sensitive to changes in mental workload, while remaining highly resistant to external
factors, such as emotional stress or unrelated physical stresses, that may not be
relevant to the measurement. In general, workload measurement techniques must be
designed to meet these criteria so that they can be successfully applied in operational
environments, where conditions are less controllable than in experimental settings.
The accuracy of measurement is contingent on the ability to consider individual
differences between operators, adapting techniques to adequately reflect the different
capabilities and resources available to each individual.

It is generally accepted that mental workload can be estimated using three
main types of measures: self-report measures, primary performance measures, and
physiological measures.

2.2.6 Self-report measures
Subjective measures collect direct feedback from workers about the mental effort
they experience while performing certain tasks. These tools are considered non-
intrusive and easy to use, and they are supported by strong theoretical foundations
due to their ability to offer valuable insights into a worker’s workload and cognitive
demands. In numerous self-report-based measurements, subjects are invited to
respond to a questionnaire before and/or after a task [24]. This strategy aims
to identify possible performance biases that a worker might exhibit due to their
mental state before the task. The majority of subjective measures are administered
after the task has been completed and can be further subdivided into:

• One-dimensional

• Hierarchical

• Multidimensional

Unidimensional self-reports usually provide a single overall value, expressed through
a numerical or categorical scale with varying ranges, either in written or verbal form.
While this approach is unquestionably straightforward in terms of data acquisition
due to its non-invasive nature, it has been argued by some that these assessments
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lack a structured framework and provide limited or poor information for diagnostic
purposes [25]. One-dimensional scales are predicated on the conceptualisation
of workload as a continuum, with the Rating Scale Mental Effort [26] and the
Instantaneous Self-Assessment Workload [27] being notable exemplars.

In hierarchical evaluations, operators make a series of decisions, with each
response leading to a new choice or a final numerical evaluation [25]. Examples of
hierarchical ratings include the Modified Cooper Harper Scale [28] and the Bedford
Scale [29].

Multidimensional assessments are based on the idea that evaluating individ-
ual components offers greater reliability for practitioners than a single, overall
assessment. Unlike unidimensional assessments, these measures provide diagnostic
insights into specific sources of workload, along with an overall summary. An
example of a multidimensional assessment is the NASA-TLX, [30], the Workload
Profile [31] and the Subjective Workload Assessment Technique (SWAT) [32].

The NASA-TLX is the most commonly used tool for assessing mental workload,
followed by the SWAT, the Rating Scale Mental Effort, and the Workload Profile.
These multidimensional scales have been applied across a wide range of disciplines,
sectors, and fields of application, largely due to their ease of use and the strong
recognition they have gained within this area of research. [33]. Multidimensional
assessments are widely regarded as having high sensitivity and diagnostic capacity,
with low levels of intrusiveness and convergent validity [32]. However, it is important
to note that some issues have been identified with these scales. For example, the
SWAT scale, which is based on the assumption of joint analysis, deviates from this
assumption in several cases [34]

National Aeronautics And Space Administration – Task Load Index
(NASA-TLX) The NASA-TLX is a subjective workload assessment instrument.
Its origins lie in the US civil and military aerospace field (where it was developed
by NASA), yet it has found applications in numerous other domains, including
nuclear, automotive and manufacturing. It is used as a benchmark for evaluating
and assessing new MWL measures. On the technical side, NASA-TLX utilizes a
multidimensional scale to measure an operator’s performance while completing a
task. The scale consists of six sub-scales, which are as follows:

1. Mental demand: measures whether the perceptual activity is easy or complex

2. Physical demand: measures whether the physical activity performed during
the task is exhausting or relaxing

3. Time demand: measures the amount of pressure felt by the operator in
relation to the pace of execution required by the task

4. Effort: measures the difficulty of the work done in order to complete the task
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5. Performance: measures the subject’s satisfaction with the execution of the
task

6. Frustration levels: measures the subject’s mood in performing the task

There are seven steps for implementing the NASA-TLX, as outlined in Figure
Figure 2.5:

1. Definition of the activity subject to analysis.

2. Hierarchical Task Analysis (HTA) to define and better understand the charac-
teristic steps of each task.

3. Participants are selected in such a way as to meet the needs of the experimental
design.

4. Briefing to explain the NASA-TLX and the purpose of the study the partici-
pants are taking part in.

5. Task execution.

6. Implementation of the NASA-TLX itself. Fifteen pairwise combinations are
shown to the participants, who are asked to identify which ones, in their
opinion, had the most significant impact on their cognitive workload during
task performance. Following this, the evaluation questionnaire is administered,
incorporating the six steps previously outlined.

7. The final step involves processing and analyzing the results obtained.

The most prevalent modification to the NASA-TLX is the elimination of the section
pertaining to pairwise comparisons, which results in what is termed the RAW
NASA-TLX.

Workload profile The workload profile is a multidimensional subjective
measurement tool based on the multiple resources model proposed by Wickens in
1987. This method uses eight dimensions to gather data on the cognitive demands of
tasks, including perceptual/central processing, selective response execution, spatial,
visual, verbal, and auditory processing, as well as manual and discursive outputs.
The method provides an overall rating for each task, along with individual ratings
for each workload dimension. These multidimensional ratings are thought to offer
a comprehensive understanding of the level of MWL, helping to categorize tasks
based on their relative demand for effort. Below are the steps that make up the
test, also shown in the image Figure 2.6:

1. Specify the task or scenario under analysis.
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Figure 2.5: Workflow representing the various steps in the NASA-TLX test

2. Perform Hierarchical Task Analysis (HTA) to better understand the process
that characterizes the task.

3. Creation of a pro forma workload, which consists of a list of task activities in
random order, displayed in a column. The other columns of the table to be
created should contain the different dimensions of the MRT, namely:

(a) Processing state (perceptual/central vs. response)
(b) Input modality (visual vs. auditory)
(c) Output modality (manual vs. vocal)
(d) Processing code (verbal vs. spatial)

Selection of participants.
Participants attend a briefing, during which the method and purpose of the
experiment are explained. It is recommended that participants undergo a workshop
on MWL, its recognition, the theory of multiple resources, and the dimensions
that define the workload profile prior to the study, to enhance their understanding
of the process. This preparation is crucial, as the actions and conclusions of the
operators serve as the foundation for the validity of the measurements
A pilot run of the experiment should be conducted using a fictitious task to test
the procedure and demonstrate to participants how to fill out the pro-forma profile
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Execution of the task under analysis.

Complete the pro-forma profile created earlier. Participants assign a rating between
0 and 1 for each of the MWL dimensions hypothesized by the Wickens model.

The analyst is responsible for extrapolating the overall workload of each task by
analyzing the collected data.

Figure 2.6: Workflow representing the various steps in the Workload Profile test

2.2.7 Performance Measures
Performance and behavioral measures are commonly used to assess mental workload
by evaluating the efficiency with which an operator completes a task. Although
the precise relationship between operator performance and workload has yet to
be definitively established, it is generally acknowledged that optimizing mental
workload can enhance overall performance.

These measures are typically categorized into primary and secondary task
measures. Primary task measures serve as a direct indicator of performance and
demonstrate high accuracy in assessing mental workload over extended periods [24].
They are closely linked to an operator’s ability to execute the primary task [35].
However, a key limitation of these measures is their inability to identify the specific
sources of workload variations when multiple tasks are performed concurrently. Due
to this shortcoming, some researchers regard primary task measures as somewhat
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unreliable when used in isolation [24]. Furthermore, primary task performance can
be influenced by factors unrelated to workload [36].

To address this issue, secondary task measures are often employed as an indicator
of an operator’s available cognitive capacity [37]. These measures help differentiate
variations in mental workload arising from different factors. However, secondary
task measures also have limitations, as they may interfere with primary task
performance and are typically sensitive only to substantial changes in mental
workload.

2.2.8 Physiological measures
Physiological indicators of mental effort are employed to evaluate the body’s
physiological responses, based on the premise that as task demands increase,
corresponding changes in physiological activity become evident. These responses
can be assessed through various physiological systems, including cardiovascular,
neurological, respiratory, oral, and ocular functions. The growing sophistication
of sensor technology and advancements in stress-related signal processing have
contributed to the increasing use of physiological measurements in experimental
research.

Electrocardiac and cardiovascular measures
The signals most commonly used for physiological assessment are those related

to the heart and cardiovascular system, particularly heart rate (HR), heart rate
variability (HRV), and blood pressure (BP). It is generally understood that heart
rate increases as mental workload rises. Heart rate variability measures the fluctu-
ations in time intervals between consecutive heartbeats. Blood pressure is used
less frequently than other cardiac measures, primarily due to its intrusive nature
[35]. In contrast, heart rate and heart rate variability have been shown to be less
intrusive and more responsive to changes in mental workload.

Respiratory measures
For respiratory signals, the most commonly used feature to assess correlations

with mental workload is respiratory rate, which represents the number of breaths per
unit of time. Typically, respiratory rate increases as mental workload rises. Similar
to heart rate and heart rate variability, it is easy to measure and minimally invasive.
Another reported indicator is oxygen consumption, which generally exhibits a
positive linear relationship with mental workload.

Ocular Measures
The category of ocular measurements relies on indicators of ocular activity,

including blink rate, blink duration, gaze angle, pupil size, pupil diameter, and
pupillary responses [38]. Blink rate refers to the number of eye closures within
a given time frame, while blink closure rate represents the total duration spent
blinking [39].
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A key challenge associated with these measures is the difficulty in distinguishing
the effects of visual workload from those of mental workload [40]. Some studies
suggest that ocular measures are primarily effective for assessing visual workload
and are highly sensitive to environmental influences. For instance, pupil diameter
tends to increase with higher mental workload but is also affected by various
cognitive demands and emotional states. However, a significant limitation is that it
becomes unresponsive under extreme cognitive overload and is highly susceptible
to changes in lighting conditions.

Another widely utilized method is electrooculography (EOG), which measures
the electrical potential between electrodes placed on facial muscles involved in eye
movement control, providing valuable insights into ocular activity.

Oral measures
Salivary cortisol has frequently been linked to mental workload assessment and

has been experimentally demonstrated to reliably reflect mental workload levels
[41]. However, its use remains limited due to its primary drawback—its sensitivity,
which tends to respond only to significant increases in task demands. In general,
salivary cortisol exhibits low sensitivity, with minimal variation, particularly in the
context of simple tasks.

Mental measures Monitoring brain activity has always been crucial in assessing
MWL. Understanding how the brain works during task performance is essential
because as cognitive workload increases for a particular task, the brain resources
available for other, non-primary tasks diminish [42].The cognitive processing of
other tasks may be delayed or impaired if brain resources fall below a certain
threshold [43]. Over time, brain activity related to mental workload (MWL)
has been commonly assessed using techniques such as electroencephalography
(EEG), functional magnetic resonance imaging (fMRI), and functional near-infrared
spectroscopy (fNIRS) [44]. However, EEG and fNIRS have gained wider adoption
due to advancements in sensor technology, which have made them more portable,
user-friendly, and reliable [45]. These methods offer two distinct approaches to
monitoring MWL:

• EEG i s a technique that measures the electrical potential of the brain and
represents electrically sensed signals over time that can be decomposed in the
frequency domain. This signal is typically divided into four frequency bands:
∆ (< 4 Hz)), Θ (4 Hz to 8 Hz), α (8 Hz to (13 Hz) and β (13 Hz to 30 Hz) [46].
A key feature of the EEG signal is represented by event-related potentials
(ERPs), which represent small changes in brain electrical activity recorded
from the scalp, triggered by internal or external events [47].

• fNIRS is a non-invasive tool for continuous bedside monitoring of regional
tissue oxygenation. It leverages the transparency of the scalp and skull to
infrared light, as well as the differing absorption spectra of oxyhemoglobin and
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deoxyhemoglobin, to quantify local hemoglobin oxygen saturation in brain
activity. This enables the detection of activation or deactivation in specific
brain regions. [48].For instance, fNIRS assessments of the prefrontal cortex
(PFC) are directly associated with working memory, decision-making, and
executive control, all of which are closely linked to MWL.

Skin measures Measuring temperature across different regions of the body
is another established method for assessing mental workload. For example, the
Nasal-Forehead (N-F) temperature has been suggested as an effective indicator
for evaluating a navigator’s mental workload [49]. Ohsuga observed a decrease in
skin temperature and an increase in heart rate when participants were exposed
to stressful task conditions. Skin temperature serves as an indicator of peripheral
sympathetic nervous system activity, which is activated by mental strain, making
it a potential measure for assessing mental workload. However, a major limitation
is its susceptibility to environmental temperature fluctuations. Additionally, the
skin on the forehead is less responsive to different types of strain compared to the
skin on the nose [50]. In addition to skin temperature, various other physiological
measures have been explored as potential indicators of mental workload, including
electrodermal activity (EDA) and galvanic skin conductance response. EDA can
be divided into phasic and tonic components, where the tonic element represents
the baseline skin conductance, while the phasic component reflects temporary
increases above this baseline during task performance. Phasic signals can be further
categorized into specific and non-specific responses. Specific signals arise from
exposure to a distinct stimulus, whereas non-specific EDA signals exhibit a weaker
association with mental workload. Some studies have observed correlations between
non-specific EDA signals and operator response time. Due to these limitations,
EDA has been adopted as a physiological measure in only a limited number of
applications.

2.3 Photoplethysmographic signal

Among the various techniques available is photoplethysmographic (PPG) signal
analysis. PPG is a particularly noteworthy optical measurement because of its
noninvasive nature, which not only provides high user comfort but also allows the
simultaneous acquisition of features belonging to different physiological signals.
This feature minimizes the need for numerous sensors, thus improving the comfort
and efficiency of data collection [51].
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2.3.1 Introduction
The term "plethysmography" originates from the Greek words "plethysmos," mean-
ing "increase," and "graph," meaning "writing." This diagnostic technique measures
volume changes in blood flow within an organ or body region. Photoplethysmog-
raphy, a specific form of noninvasive and cost-effective optical plethysmography,
detects variations in blood volume in the skin’s microvascular bed. This method re-
lies on photometric principles, utilizing the interaction between light and biological
tissue to generate a measurable signal. The system includes a light-emitting diode
(LED) that illuminates the tissue and a photodiode that captures the light after it
passes through the area of interest, Figure 2.7. As the emitted light interacts with
the tissue, it is absorbed to varying extents by different components, such as skin
pigments, bone, and venous and arterial blood. The fundamental principle is that
blood absorbs more light than the surrounding tissues, enabling the assessment of
hemodynamic changes.

Figure 2.7: Representative diagram of how a PPG signal is acquired: light is
emitted at a given wavelength and then reflected from the tissue of interest

2.3.2 Physical principles
The PPG signal is governed by the Lambert-Beer law, which describes the attenua-
tion of light as it passes through an absorbing medium. When a monochromatic
light beam with an initial intensity I0 travels through a homogeneous material,
its intensity I at the output is reduced due to absorption by the medium. If
no absorption occurs, the intensity remains equal to I0. Each material has a
unique absorption spectrum, defining how it interacts with different wavelengths of
electromagnetic radiation.

However, biological tissues are not homogeneous; they are composed of multiple
layers with distinct and proper optical properties. Different types of tissues absorb
and scatter light in unique ways, depending on their composition. The photo-
plethysmographic (PPG) signal can be understood by applying the Lambert-Beer
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law to biological tissues, modeling them as a sequence of N optical segments,
each with its own absorption characteristics. This variation in absorption enables
PPG to detect dynamic changes in blood volume, which forms the foundation for
physiological monitoring.

The Lambert-Beer law is expressed as in Equation 2.1:

I = I0e
−εlc (2.1)

The relationship between these variables can be expressed as follows: the
intensity of the light transmitted (I) through a medium will decrease exponentially
in relation to the intensity of the initially irradiated monochromatic light (I0), the
molar absorption coefficient (ε), the optical path length (l) and the concentration of
the medium (c). The molar absorption coefficient, expressed in units of M−1 cm−1,
depends on the sample, the wavelength of light used and the chemical species
determining the absorption. In the case of arterial blood, the molar absorption
coefficient is modelled as a linear combination of that of oxygenated haemoglobin
(HbO2) and deoxygenated haemoglobin (Hb), as in Equation 2.2:

ελ = Sελ,HbO2 + (1 − S)ελ,Hb (2.2)

In this context, S represents the oxygen saturation in the blood, while λ denotes
the light’s wavelength. The molar absorption coefficients for both oxygenated and
deoxygenated hemoglobin at various wavelengths can be determined experimentally.
It is the subtle difference in the absorption of light by these two forms of hemoglobin
that enables the calculation of blood oxygen saturation levels.

The concentration of the sample refers to the number of moles of a substance
dissolved in a liter of solution, whereas the optical path length indicates the distance
the light travels through the sample. This is essentially the thickness of the material
through which the light passes, measured in centimeters. The exponential term in
Lambert-Beer’s law is referred to as absorbance (A), which is given by Equation 2.3:

A = −εlc (2.3)

However, the direct application of this law to calculate light absorption in
biological tissues requires modifications. It is essential to account for the fact that
the tissues through which the light passes are not homogeneous and exhibit varying
degrees of optical scattering. These tissues contain multiple absorbers (such as
blood, water, and melanin) and diffusers (like collagen and keratin). As a result,
the Lambert-Beer law is not directly applicable to biological media, as it does
not incorporate the effects of scattering. Additionally, in a medium where only
absorption occurs, the sample thickness d is equivalent to the optical path length l.
However, in biological tissues, which involve both absorption and scattering, the
optical path length differs from the material thickness. It is instead linked to a
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factor known as the ’differential pathlength factor’ (DPF), which is dependent on
both the optical wavelength and the tissue’s anatomical properties. A DPF value
greater than 1 indicates that the optical path length within the tissue is always
longer than the direct distance between the light source and the detector. The
modified Lambert-Beer law, Equation 2.4 which accounts for both absorption and
scattering in a medium like biological tissue, defines the absorbance (A) of light at
a specific wavelength (λ) using the following equations:

Aλ = ελlλC + Gλ (2.4)

where ε and C represent the extinction coefficient and the concentration of the
absorber, respectively, d denotes the distance between the source and detector, l is
the optical path length, DPF refers to the ’differential path length factor,’ and G
is a diffusion-dependent parameter that remains constant throughout the cardiac
cycle, implying that it does not change during a PPG measurement with a fixed
wavelength and geometry. In the case of a heterogeneous medium containing n
absorbers, the total light absorbance can be determined by summing the absorbances
across the different layers, Equation 2.5:

Aλ =
nØ

i=1
ελ,iCilλ + Gλ (2.5)

where ελ,i and Ci represent the extinction coefficient and concentration of the
i-th absorber, respectively, while lλ is the total optical path length through the
medium.

The amount of light transmitted through the skin can then be expressed as in
??:

I = I0e
−
q

k
Ak (2.6)

In this context, total absorbance is affected by the composition and properties of
the skin layers. Each skin layer contributes differently to total absorbance based on
factors such as its composition, the concentration of absorbing components, light
scattering properties, and thickness. The Equation 2.6 summarizes how light inter-
acts with the skin during photoplethysmographic (PPG) measurements. Therefore,
understanding the structure of the skin and how it impacts light transmission is
crucial for the accurate interpretation of PPG signals, Figure 2.8. Other factors that
may influence the detected light intensity include blood volume at the measurement
site, arterial diameter, hemoglobin concentration, and the direction of blood flow
relative to the cardiac cycle.

Light is an electromagnetic wave that is visible within the wavelength range of
400 to 700 nm. PPG devices typically utilize both visible and infrared wavelengths.
Longer wavelengths are able to penetrate deeper into tissue. Red (640−660 nm)
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Figure 2.8: Pattern of light transmitted from one side of a portion of fabric to
the other according to Lambert-Beer’s law

and infrared (880−940 nm) wavelengths, in particular, offer the greatest tissue
penetration, reaching subcutaneous layers, arterioles, and arteries. This makes
them ideal for use in transmitters that need to pass through tissues such as a finger
or earlobe. In contrast, green light (565 nm) has limited penetration, primarily
passing through arterioles. As a result, green light is commonly used in reflectance-
based systems. The pulsatile nature of arterial blood flow, which correlates with
the heartbeat, is most pronounced with green light, making it particularly effective
for heart rate detection in wearable reflectance devices.

Figure 2.9: Light spectrum with the characteristic absorption wave frequencies of
oxygenated and deoxygenated hemoglobin

As might be expected, the most commonly used frequencies are around 660 nm
(red light) and 940 nm (infrared) Figure 2.9. This choice is made because these
are the two ranges in which oxygenated and deoxygenated blood have a clearly
distinguishable absorption.

In that area, the absorption is almost flat, so if there is a small inaccuracy in
the wavelength of the emitter, it does not cause a large measurement error.
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Figure 2.10: Trend of absorbance of oxygenated and deoxygenated hemoglobin
as the wavelength changes

As shown in the image Figure 2.10:

• For λ < 600 nm, the light is completely absorbed by the skin.

• For λ ≈ 660 nm, deoxygenated hemoglobin absorbs most of the light.

• For λ ≈ 950 nm, oxygenated hemoglobin absorbs more light.

In that area, the absorption is almost flat, so if there is a small inaccuracy in
the wavelength of the emitter, it does not cause a large measurement error.

2.3.3 Acquisition modes
There are two modes of operation: transmittance and reflectance. These modes
depend on the relative position of the LED and the photodiode. As seen in

Figure 2.11: PPG signal acquisition mode: on the left, transmission mode, LED
and photodiode are in opposite positions of the finger clip; on the right, reflection
mode, photoemitter and photoreceptor are on the same side of the finger clip

Figure 2.11, in transmittance mode, the LED and photodiode are positioned on
opposite sides of a clip. The light emitted by the LED passes through the tissue
and is detected by the photodiode on the other side. This setup is generally less
sensitive to motion artifacts and is commonly used in healthcare applications to
measure oxygen saturation. However, a limitation is that measurements can only
be taken at sites where the clip can be applied, such as the finger, toe, or earlobe.
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In contrast, reflection mode involves placing the LED and photodiode on the
same side, just a few millimeters apart. The LED illuminates the fabric and the
photodiode detects its scattered light. Reflective devices can be applied to a wider
range of body parts, making them ideal for use in wearable devices offering greater
flexibility for continuous monitoring in various body regions.

2.3.4 PPG signa waveform
The PPG signal is composed of two main components: the pulsatile (AC) component
and the non-pulsatile (DC) component.

1. Pulsatile (AC) Component reflects how blood volume changes in sync
with each heartbeat and is mainly associated with the systolic phase of the
cardiac cycle, when the heart contracts and pumps blood into the arteries.
The alternating current (AC) component is crucial for providing insights into
heart rate, heart rate variability, and other cardiovascular parameters, offering
valuable information for assessing cardiovascular health and performance.

2. Non-pulsatile (DC) Component The DC component reflects the baseline
level of light absorption, which is associated with static blood volume and
the inherent properties of the tissue. This component depends from factors
such as the average blood volume in the tissue, skin pigmentation, and the
presence of other tissues and bone. While the direct current (DC) component
is less dynamic compared to the AC component, it still provides valuable
information about overall tissue perfusion, offering insights into the general
health and circulation of the tissues.

The PPG signal is periodic and synchronized with the ECG, as each heartbeat
generates a pressure wave that propagates through the blood vessels, resulting in an
increase in their volume. The rise in blood volume during systolic contraction leads
to greater light absorption, which causes a decrease in the light intensity detected
by the photodiode. For more effective analysis, it is often preferred to work with a
PPG waveform that mirrors the corresponding arterial pressure waveform, with a
peak during systole and a trough during diastole. To achieve this, the light intensity
signal detected by the photodiode is inverted so that it becomes proportional to
light absorption. Figure 2.12.

This results in a waveform, as shown in figure Figure 2.13, which can be divided
into an anacrotic (upstroke) and dicrotic (downstroke) limb. The waveform is
characterized by two key phases: the systolic phase,when the heart pumps blood
out from the left ventricle following the opening of the aortic valve, marked by a
rapid pressure increase followed by a decline, and the diastolic phase, during which
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Figure 2.12: Difference in morphology between a signal in transmittance and one
in absorbance. It is preferred to have a signal synchronous to the ECG signal

Figure 2.13: Typical waveform of the PPG signal, with the division between the
systolic and diastolic components

blood flows into the peripheral circulation. These two phases are separated by the
dicrotic notch, which indicates the closure of the aortic valve.

By examining the specifics of the pulse wave, the shape of the PPG signal can
be studied to extract different physiological parameters. As shown in Figure 2.14 a
typical PPG waveform consists of the following main components:

• Systolic upstroke:The systolic upstroke represents the initial, rapid rise in
the pulse waveform, which corresponds to the quick increase in arterial pressure
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as the left ventricle ejects blood into the aorta during systole. This phase
is marked by a steep incline in the waveform, signifying robust ventricular
contraction and effective blood flow.

• Systolic peak: The systolic peak is the highest point of the pulse waveform,
reflecting the maximum arterial pressure reached during systole. This peak
serves as a vital indicator of cardiac output and vascular health, as it marks
the point of maximal blood ejection from the heart.

• Systolic decline: Following the systolic peak, the systolic decline marks the
phase where arterial pressure begins to drop. This downward trend indicates
the gradual reduction in pressure as the heart transitions from contraction to
relaxation, signaling the end of blood ejection.

• Dicrotic notch: the dicrotic notch is a small, distinct downward deflection
limb of the pulse waveform on the descending. It results from the closure of
the aortic valve, signifying the transition from systole to diastole. This feature
plays a crucial role in accurately identifying the timing of valve closure.

• Diastolic decay (or runoff): diastolic decay refers to the progressive decline
in arterial pressure following the dicrotic notch, As blood flows into the
peripheral circulation, this phase of the waveform illustrates the progressive
decrease in pressure during the heart’s relaxation period, eventually returning
to baseline levels.

• End-diastolic pressure: End-diastolic pressure is the lowest point on the
pulse waveform, occurring immediately before the onset of the next cardiac
cycle. It represents the minimum arterial pressure within the cardiac cycle and
serves as a key indicator of baseline vascular tone and overall cardiovascular
health.

Figure 2.14: PPG wave with all its characteristic points
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The frequency content of the PPG signal is similar to that of blood pressure, al-
though the waveform exhibits different characteristics. It is generally recommended
to use a sampling frequency of at least 100 Hz with a resolution of 10 bits or greater.
The waveform can vary depending on factors such as the measurement location,
the subject’s age, heart rate, ejection volume, and pressure levels.

The signal can be degraded by sudden movements (common when measuring at
the fingertip), as in the examples shown in the figure below.

2.3.5 Interaction between respiration and circulation
Respiration and circulation are intricately linked. Variations in intrathoracic
pressure caused by breathing directly influence the central veins. During inspiration,
venous pressure decreases, leading to an increase in venous return. This results in
a rise in the filling pressure of the right ventricle, which, in turn, increases the right
ventricular ejection volume. As blood accumulates in the lungs, the left ventricular
ejection volume decreases. Consequently, systolic blood pressure drops, as does
diastolic pressure, although to a lesser extent, while heart rate increases. During
expiration, the flow of blood to the left side of the heart rises, leading to an increase
in left ventricular ejection volume. At the peripheral level, both arterial and venous
pressures increase.

In the case of positive pressure ventilation, the effects on circulation are reversed.
Respiratory-induced variations in blood volume are observed both at the arterial
and venous levels, with the changes being more pronounced in the right heart
and, especially, in left ventricular ejection volume. These variations can also be
detected in the pulmonary circulation. For example, the transmural pressure in the
right heart varies by 32%, whereas the mean arterial pressure in the carotid artery
fluctuates by only 2%. The venous side of the circulatory system, which contains
the largest volume of blood and is under low pressure, is particularly sensitive to
small pressure changes. Most of the blood in the skin’s circulation is stored in
the venous plexus, and blood flow in the dermis is regulated by vasoconstriction,
mediated by the sympathetic nervous system.

Arteriovenous anastomoses, located at distal points, are densely innervated
by the sympathetic nervous system. Sympathetic efferent activity in the skin
remains synchronized with respiration, even during periods of apnea. Although the
sympathetic contribution to the respiratory PPG signal is relatively small compared
to the more dominant changes in venous return and cardiac ejection volume, it
still plays a role. Another noteworthy phenomenon in the interaction between
respiration and circulation is "entrainment" or "phase locking." This refers to the
process where an oscillating system synchronizes with the frequency of another
oscillator. In this context, changes in blood flow driven by respiration can align
with the heartbeat, resulting in periodic fluctuations in the PPG signal that are
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tightly coupled to the respiratory cycle.

2.4 Estimation of respiratory rate from PPG sig-
nal: State of the art

The methods used to extract respiratory rate from the PPG signal can broadly be
categorized into digital filter-based techniques and decomposition-based
techniques. The primary distinction between these approaches is that digital
filter-based techniques are relatively straightforward to implement and, due to their
minimal impact on the signal, they incur lower computational costs. This makes
them a suitable choice for real-time data acquisition and processing. In contrast,
decomposition-based techniques tend to be more resilient to common challenges in
PPG signals, such as motion artifacts.

The following outlines the techniques associated with each type of frequency
extraction method for PPG signals.

2.4.1 Digital Filter-Based Techniques
• IIR and FIR Filters [52]:

– FIR Filter: The output of an FIR filter depends solely on the current
and previous inputs. This characteristic enables FIR filters to maintain
a linear phase response, meaning they do not alter the waveform of the
signal, thereby ensuring minimal distortion. As a result, FIR filters tend
to be more stable, Equation 2.7.

y[n] =
MØ

k=0
h[k] x[n − k] (2.7)

where:
∗ y[n] is the filter output at the time n

∗ x[n] is the filter output at the time n

∗ h[k] is the filter impulse response (the filter coefficients)
∗ M is the filter order, which determines the number of coefficients

– IIR Filter: An IIR filter incorporates feedback, meaning that the output
depends not only on the current and previous inputs but also on past
outputs. This feature allows for more efficient responses with a lower
filter order, thus requiring fewer coefficients than an FIR filter to achieve
similar results. However, the use of feedback can introduce distortion into
the signal, potentially compromising stability. As a result, FIR filters are

31



Background

typically preferred when signal stability is crucial, while IIR filters are
often chosen when computational resources are constrained and higher
frequency precision is needed, Equation 2.8.

y[n] =
MØ

k=0
b[k] x[n − k] −

NØ
k=1

a[k] y[n − k] (2.8)

where:
∗ y[n] is the filter output at the time n

∗ x[n] is the filter intput at the time n

∗ b[k] are the self-response coefficients (for inputs)
∗ a[k] are the output response coefficients (for past outputs)
∗ M is the filter order for the input section
∗ N is the filter order for the output part

• Autoregressive Filter (AR): An autoregressive (AR) filter is a statistical
model commonly used for analyzing and forecasting time series data. In an
AR filter, the current value of a variable is linearly dependent on its previous
values and an error term. AR filters are particularly useful for signals that
display short-term linear dependencies, making them ideal for modeling and
predicting such patterns in time-series data, Equation 2.9 [53]

x(n) =
pØ

k=1
akx(n − k) + e(n) (2.9)

where:

– ak is the coefficient for each term in the summation,
– x(n − k) is the delayed input signal at time n − k,
– e(n) is the error or disturbance term at time n.

• Adaptive IIR Notch Filter: An adaptive IIR (Infinite Impulse Response)
notch filter is a specialized IIR filter designed to attenuate or eliminate specific
unwanted frequencies from a signal. This filter is particularly effective when
the interfering frequency fluctuates over time and is not predetermined. Using
adaptive algorithms, such as the Least Mean Squares (LMS) method, the
filter continuously adjusts its coefficients to track the variations in the signal.
Once the undesired frequency is detected, it is either removed or significantly
reduced, creating a "notch" in the frequency spectrum [54]
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2.4.2 Techniques based on signal decomposition
Decomposition techniques are methods used to break down a signal into its individ-
ual components, making it easier to analyze and extract information from each part.
These techniques are particularly useful for analyzing noisy signals, as they allow
for the separation of noise from the underlying signal. However, it is important
to note that decomposition methods generally come with a higher computational
cost, which makes them less suitable for real-time processing compared to digital
filter-based techniques. This is because decomposition techniques tend to be slower
in processing the signal.

• Wavelet Transform
The wavelet transform is a signal analysis method that enables the simultaneous
examination of both frequency and amplitude variations of a signal in the
time-frequency domain. This approach is particularly effective for analyzing
non-stationary signals, which are signals whose frequency content changes over
time. A wavelet is a waveform of finite duration, characterized by concentrated
oscillations over time, a zero mean value, and non-zero energy.
The continuous wavelet transform is defined as in Equation 2.10:

T (a, b) = 1√
a

Ú +∞

−∞
x(t)Ψ∗

A
t − b

a

B
dt (2.10)

where:

– Ψ∗ is the complex conjugate of the wavelet function,
– b is the location parameter of the wavelet,
– a is the dilation parameter of the wavelet.

The dilation parameter a has the following properties:

– If a < 1, the wavelet is compressed, and details change rapidly, corre-
sponding to high frequencies.

– If a > 1, the wavelet is dilated, and details change slowly, corresponding
to low frequencies.

By applying the wavelet transform, two bands are obtained, Figure 2.15:

– Band B, which contains the information of interest, is called the primary
band.

– Band A contains relevant features.
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Figure 2.15: Visualization of A and B bands after decomposition by wavelet
Transform

If the signal contains noise or other erroneous characteristics with spectra
similar to those of the B-band, it may obscure the information within the
B-band.
To improve the analysis, a second wavelet transform is applied to Band A.
This band is then decomposed into the RAP and RFP signals. From the RFP
signal, the period of its variations is determined and subsequently converted
into the corresponding respiratory frequency [55].

• Principal Component Analysis (PCA) Principal Component Analysis
(PCA) is a statistical technique used to analyze datasets where multiple
dependent variables are used to describe each observation. The primary goal
of PCA is to represent these variables with a new set of orthogonal variables,
known as principal components, which highlight the significant underlying
information within the dataset [56].
An additional advantage of PCA is that it allows for the compression of the
dataset size while preserving much of its information content, thereby simpli-
fying subsequent processing. The foundation of PCA is based on maximizing
variance and ensuring orthogonality. The first principal component is selected
to capture the maximum variance and, therefore, the most significant amount
of information. Each subsequent component is chosen to be orthogonal to
the preceding components, with the aim of capturing the maximum possible
variance that remains [57]. It is important to highlight that techniques such
as PCA have been thoroughly explored in the field of signal processing for
extracting key variables from a given signal or multiple signals. These meth-
ods have also found applications in the biomedical domain, particularly for
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extracting vital parameters from radar data, as outlined in [58].

2.4.3 Empirical Mode Decomposition (EMD)

Similar to wavelet analysis, Empirical Mode Decomposition (EMD) is a method
used to decompose non-stationary and non-linear signals into a series of intrin-
sic mode functions (IMFs), which are mono-component signals representing
oscillations at various resolution scales.
An IMF is a function that captures the oscillation mode inherent in the data
signal. Unlike wavelet analysis, where a predefined mother wavelet is chosen
before the analysis, EMD extracts the basis functions (IMFs) directly from
the data. This feature allows the IMFs to more accurately represent the local
characteristics of the signal and adapt to its oscillatory patterns over time.
A signal y(t) can be represented as the sum of a set of IMFs plus a residual,
Equation 2.11:

y(n) =
NØ

k=1
sk(n) + rk(n), k = 1, 2, . . . , N (2.11)

where:

– sk(n) are the resulting IMFs,
– rk(n) is the residual term.

For each intrinsic mode function (IMF), the frequency peak with the highest
power is identified. Respiratory modulation is then estimated by summing
the IMFs whose peak frequencies fall within the respiratory frequency range.
A significant challenge in Empirical Mode Decomposition (EMD) is the phe-
nomenon known as mode mixing. This occurs when different signals, which
should ideally be separated into distinct modes (IMFs), are instead combined
into a single mode, or conversely, when a single mode contains oscillations
from multiple time scales or frequencies.
To address these issues, several improvements and variations of the EMD
have been proposed, such as the Extended EMD (EEMD) and Complete
EEMD (CEEMD). These methods aim to reduce the impact of mode mixing
by introducing Gaussian noise or altering the decomposition process, thereby
enhancing the accuracy of signal separation.
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Chapter 3

Materials

3.1 BiosignalplusX

Biosignalsplux is a versatile, multi-sensor platform designed specifically for biosignal
acquisition in research and development (RD) environments. One of the primary
challenges in RD projects is obtaining high-quality biosignal data from various
sensors simultaneously, and Biosignalsplux addresses this need by providing a
comprehensive solution for gathering diverse physiological measurements, ensuring
both accuracy and reliability in data collection [59].

3.1.1 Biosignalplus Platform

The BiosignalPlux device supports the simultaneous acquisition of multiple biosig-
nals through its 8-channel toolkit, allowing the use of up to eight sensors con-
currently. This capability ensures the collection of high-quality, wireless signals
without limitations. With a sampling rate of 3,000 Hz and a resolution of 16 bits
per channel, the device can record up to 10 hours of data. Additionally, the video
synchronization add-on allows for the recording of video during data acquisition,
providing a synchronized view of all captured signals alongside the video. This
feature is particularly useful for post-acquisition analysis, such as motion analysis,
enabling a comprehensive assessment of the data, Figure 3.1
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Figure 3.1: 8-Channel biosignalsplux hub dimensions

3.1.2 Sensors
The following sensors can be utilised by the device. The technical specifications
of these sensors, which are directly concerned with the cardiac and respiratory
analysis of the sensors with their respective biosignals, will also be explained. In
addition, the main function of the other sensors will be described.

• ECG Sensors:
This sensor, Figure 3.2 is designed to extract heart rate data and other ECG
characteristics, making it suitable for research in fields such as biomedicine,
biofeedback, psychophysiology, and sports science. Its low-noise ECG local
differential triode configuration allows for quick implementation and non-
invasive single-lead ECG data acquisition, ensuring efficient and reliable signal
capture for a variety of applications.
The raw digital sensor values received from the biosignalsplux device ranged
between 0 and 2n − 1 where n denotes the sampling resolution), must subse-
quently be converted to the original unit of measurement (mV) of the sensor
using the transfer function described in equation (3.1):

ECGmV =
3

ADC

2n
− 1

2

4
× VCC

GECG
× 1000 (3.1)

where,

– ECG(V ): ECG signal in Volt (V)
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Figure 3.2: Biosignalsplux Electrocardiography (ECG) sensor

– ECG(mV ): ECG signal in milli-Volt (mV)
– ADC: aw digital value from the sensor
– n: bit resolution (default: 16-bit resolution (n = 16), although 12-bit and

8-bit may also be found in older versions)
– VCC: Operating voltage (3V when used with biosignalsplux)
– GECG: Sensor gain (1019)

Table 3.1 shows the technical specifications of the ECG sensor:

Parameter Value
Gain 1019

Range ±1.47mV (@ VCC = 3V)
Bandwidth 0.5-100Hz

Consumption 0.5mA
Input Impedance [Typical] 100GOhm

CMRR 100dB

Table 3.1: ECG Sensor Specifications

The illustration shown in Figure 3.3 show the recommended electrode place-
ment for the acquisition of ECG signals in Einthoven configurations with
electrode cable lenghts of 1.5cm (+ -) and 3 cm (reference) as those used for
the experimental set-up used

• Inductive Respiration (RIP) Sensor:
This sensor is particularly well-suited for dynamic environments, providing
accurate measurements of respiratory parameters in various conditions. Its
design helps minimize motion artifacts, making it a reliable tool for applica-
tions such as ambulatory monitoring and stress testing. By measuring the
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Figure 3.3: Enter Electrode placements for ECG acquisitions in Einthoven
configurations using the standard ECG sensor with electrode cable lenghts of 1.5cm
(+ -) and 3 cm (reference)

displacement of the chest or abdomen, it gives insight into respiratory patterns,
which is valuable for evaluating respiratory health, cycle regularity, and other
related parameters, Figure 6.4, the sensor output is dimensionless and varies
between ±50% and indicates how far the sensor shifts from full scale. The
transfer function is given in Equation 3.2.

RIP(%) =
A

ADC
2N

× 1
2

B
× 100% (3.2)

Description:

– RIP(%): Displacement value in percentage (%) of full scale
– ADC: Value sampled from the channel
– N : Number of bits of the channel1

Table 3.2 shows the technical specifications of the RIP sensor:

• Blood Volume Pulse (BVP) Finger Clip Sensor: The Blood Volume
Pulse (BVP) sensor is an optical, non-invasive device designed to monitor
cardiovascular dynamics by detecting changes in arterial transparency, Fig-
ure 6.5. As blood is pumped through the arteries, they become more opaque,
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Figure 3.4: Inductive Respiration (RIP) Sensor.

Type Inductive
Output 0−3V
Consumption 1mA
Cable Length 100cm±0 5cm (customizable)
Connector Type UC-E6 (male)
Max sensor belt length 103cm
Min sensor belt length 44cm

Table 3.2: RIP Sensor Specifications

reducing the amount of light that passes through the sensor. The BVP sensor
typically features a plastic clip-on housing, making it suitable for placement on
the finger. This housing contains both the light emitter (LED) and the light
detector (photodiode), and it also helps minimize interference from external
light sources. In transmittance mode, the BVP system operates by aligning
the emitter and receptor so that the photons travel perpendicular to the
photodiode’s surface, ensuring accurate measurement of blood volume changes.

Table 3.3 shows the technical specifications of the BVP sensor:

• Electrodermal Activity (EDA) Sensor:
The biosignalsplux EDA sensor is designed to accurately measure the electrical
properties of the skin, specifically focusing on electrodermal activity (EDA),
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Figure 3.5: Blood Volume Pulse (BVP) Finger Clip Sensor.

Gain 34
Wavelength 670nm
Bandwidth 0 02−2 1Hz
Consumption 4 8mA

Table 3.3: BVP sensor specification

also known as Galvanic Skin Response (GSR). EDA is a physiological measure
that reflects the activity of sweat glands in the skin, which is influenced by
the autonomic nervous system. The sensor’s low-noise signal conditioning
and amplification circuit ensures optimal performance, enabling the detection
of even the most subtle electrodermal responses. This capability makes the
sensor highly effective for monitoring autonomic nervous system activity and
stress responses (Figure 3.6).

• Functional Near-Infrared Spectroscopy (FNIRS) Sensor:

The FNIRS (Functional Near-Infrared Spectroscopy) sensor is a user-friendly
device that utilizes two emitting LEDs, one in the red region and the other in
the infrared region of the light spectrum, to measure light reflectance in cortical
tissue. This non-intrusive and non-invasive sensor is designed to estimate
local oxygen saturation levels in the blood, providing insights into the activity
of perfused tissue. It is particularly useful for tracking brain activity by
measuring variations in oxygen saturation levels within specific brain regions.
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Figure 3.6: Electrodermal Activity (EDA) Sensor

Typically, the sensor is applied to the forehead for these measurements. The
reflected light from each LED is absorbed by a photodiode, and the resulting
current is converted into a digital value, which is then transmitted via SPI for
further analysis (Figure 3.7).

Figure 3.7: fNIRS sensor
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3.1.3 Open Signals (r)evolution Software
OpenSignals is a comprehensive software platform designed for real-time visual-
ization of biosignals, fully compatible with all PLUX devices. It offers essential
features such as simultaneous sensor data acquisition from multiple channels and
devices, real-time visualization, and data logging. Additionally, OpenSignals pro-
vides a suite of tools for data analysis, enabling users to generate reports directly
from the recorded data and extract features from the signals without the need for
programming. This makes it an ideal solution for researchers and practitioners in
various fields who require efficient biosignal processing and analysis.

Among the various features the software offers users:

• Reliable acquisition and visualisation of biosignals.

• Offline visualisation of data.

• Automatic sensor detection.

• Export of sensor data in .TXT, .H5 and .EDF formats (example signals and
files available).

3.2 Capnobase Dataset
The following section describes the dataset ’Capnobase’ used to test the algorithm
and provides an initial assessment of its performance against the respiratory rate
obtained by the research team using the Smart Fusion algorithm. Details of the
dataset from an engineering perspective are examined in the next section.

3.2.1 Capnobase Dataset
The method used for the test phase is ’Capnobase’, a benchmark which can be
downloaded from the online database CapnoBase.org [60]. The dataset comprises
physiological recordings collected from a total of 42 individuals, including 29
pediatric patients (average age: 4.8 ± 5.4 years, weight: 18.5 ± 23.4 kg) and 13
adult participants (average age: 46.3 ± 9.0 years, weight: 73.5 ± 24.2 kg). These
measurements were obtained while the subjects were under general anesthesia at
British Columbia Children’s Hospital and St. Paul’s Hospital in Vancouver, BC.
The signals are available in both .mat and .csv format, making it easy and quick
to import them into the MATLAB software framework (Mathworks, Natick,MA,
USA) on which the algorithm was then developed.All participants were assessed
following a study protocol approved by the institutional Ethics Committee. The
recorded signals included ECG at a sampling frequency of 300 Hz, CO and airflow
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at 25 Hz, and PPG at 100 Hz. Data acquisition was carried out using the S/5
Collect software (Datex-Ohmeda, Finland) with an overall sampling rate of 300 Hz,
where signals originally sampled at lower frequencies (PPG, CO, and airflow) were
automatically upsampled. For each patient, an 8-minute segment of high-quality
recording was selected, capturing either spontaneous or controlled breathing. The
CO waveform was used as the gold standard reference for determining respiratory
rate (RR). A research assistant manually labeled each breath in the capnogram
(with airflow support) and identified the pulse peaks in the PPG (in conjunction
with the ECG). This process allowed for the validation of the derived instantaneous
reference RR and heart rate (HR).
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Description of the Algorithm

The subsequent section delineates the algorithms implemented for the extraction
of cardiac and respiratory features from the PPG signal acquisition, Figure 4.1.
The initial step in this process entails the separation of respiratory and cardiac
information from a given signal through the application of filtering techniques
at specific and suitable frequencies. Subsequent to the separation of the signals,
a processing procedure is initiated, which continues until the identification of
features that are deemed to be pertinent for the study of cognitive load levels. The
robustness of the algorithms is then compared with respect to the features extracted
by processing the reference signals, i.e. the cardiac and respiratory signals.

45



Description of the Algorithm

Figure 4.1: Flowchart illustrating the processing pipeline for PPG signal acquisi-
tion and processing.

4.1 Respiratory algorithm: Preprocessing

4.1.1 Filtering:
To isolate the respiratory component from the raw PPG, a low-pass butterworth
filter with a cutoff frequency set at 0.7 Hz is applied, Figure 4.2. The order selection
is optimised through the MATLAB function ’buttord’, with a cutoff frequency
set to 0 7, a stopband frequency of 1 2, a maximum allowable attenuation in the
passband set to 1 dB, and a minimum attenuation in the stopband set to 20 dB.

Due to the too low frequencies of interest, it was decided not to use a high-pass
filter to avoid distorting the signal

4.1.2 Smoothing function
The fenestration of the signal into smaller segments can lead to distortion of the
signal in transients (at the beginning and end of the window), ?? - 4.4. This
occurs because the implemented filter fails to function properly due to the sudden
variations in the truncated signal. Outlier detection is performed by setting a
threshold based on the mean and standard deviation of the signal. The identified

46



Description of the Algorithm

Figure 4.2: Magnitude response of the filter, showing how the amplitude varies
across different frequencies

outliers are then replaced with the threshold value.

Figure 4.3: Filtered PPG with out-
liers problem in transients

Figure 4.4: Smoothed PPg signal

4.1.3 Amplitude modulation function
Subject movement can introduce artefacts into the signal, altering the signal with
peaks much higher than normal. Recognizing these changes is important to avoid
errors in data interpretation, Figure ?? - Figure 4.6. An exponential amplitude
modulation function is applied to selectively adjust the highest and most isolated

47



Description of the Algorithm

peaks in the signal. The exponential factor, determined empirically, is set to 0.3.

Figure 4.5: Filtered PPG with out-
liers problem in transients

Figure 4.6: Smoothed PPg signal

4.2 Respiratory algorithm: Processing
4.2.1 Signal Quality Index (SQI)
In order to achieve signal diversification, a signal quality index is employed to
determine the most appropriate processing strategy. This index returns an output
value of 0, 1, or 2, depending on the signal’s conformity. These values are derived
through statistical analysis of the signal, specifically by calculating the kurtosis
and Shannon entropy for each window using Equation 4.1:

H(X) = −
Ø

p(x) log2 p(x) (4.1)
where:

• p(x) is the probability of each event x in the distribution.

• The logarithm is base 2 (log2), so the unit of measurement for entropy is the
bit.

Kurtosis is a measure of the peakedness of a unimodal distribution curve. That
is to say, it indicates the extent to which the values within a dataset cluster around
the mean, as well as the frequency of occurrence of values that are either extremely
high or low. The kurtosis is defined as in Equation 4.2:

κ = E[(X − µ)4]
σ4 (4.2)
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where µ is the mean of X, σ is the standard deviation of X, and E represents the
expected value of the quantity (X − µ). When the curve is high, this indicates that
the data are concentrated around the mean, with the presence of extreme values
(i.e. heavy tails). Conversely, when the curve is low, this indicates that the data
are more dispersed around the mean, but that extreme values are low (i.e. light
tails).

Shannon Entropy (SE) serves as a quantitative measure of uncertainty or
information content within a random variable. It evaluates the divergence of a
signal’s probability density function (PDF) from a uniform distribution, thereby
offering an objective assessment of the uncertainty embedded in the signal.

In statistical mechanics, entropy is a fundamental concept representing the
degree of randomness or disorder within a system. Higher entropy indicates greater
unpredictability in observed events, reflecting an increased level of randomness in
the data distribution. Conversely, when entropy is low, the system exhibits greater
predictability due to the dominance of specific events that shape the distribution,
effectively reducing overall uncertainty.

The kurtosis and shannon entropy values calculated for each segment are com-
pared with threshold values taken from the literature. In the study by n. Selvaraj,
the optimal threshold values were identified by testing on 350 clean signal segments
and on corrupted segments with varying levels (10-50%) of added artefacts. the
values are considered optimal by comparing the specificity and sensitivity of the
analyses performed with these same values. For kurtosis the optimal value is 3.5
and for Shannon entropy the optimal value is 0.8 [61]. Once the thresholds have
been identified, it is possible to assess how clean the signal is or is not by initialising
a variable, count, equal to 0, and setting the conditions:

if K > 3.5 then
count = count + 1

end if
if SE < 0.8 then

count = count + 1
end if
where K is the kurtosis value of the analysed segment and SE is the Shannon

entropy value.
The value of the count variable corresponds to the SI index at the output of the

function.

• A value of 0 corresponds to a situation where the signal is very clean

• A value of 1 means that the signal is generally clean

• A value of 2 means that the signal is distorted by noise and it is not easy to
determine which is the correct respiratory frequency
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4.2.2 Respiratory Rate evaluation
The processing phase involves a different analysis depending on the resulting quality
index.

• SQI=0 The frequency is identified by parametric spectral estimation. this is
carried out using the matlab pwelch function. A half-segment long window
with 50% of overlap is used. For the correct spectral resolution the adequate
number of point is calculated using Equation 4.3 - Equation 4.4:

NFFT = Fc/2
1
60

× 2 (4.3)

exp = ⌈log2(NFFT)⌉ (4.4)

• SQI=1 A noisy signal can be expected. A decomposition tecnique called
Empirical Mode Decomposition (EMD) is used to process the analized segment.
The EMD decomposes the signal into Intrinsic Mode Functions(IMFs) plus a
residual, Equation 4.5:

x(t) =
nØ

i=1
IMFi(t) + rn(t) (4.5)

where:

– x is the surrogate signal
– IMF is the single oscillation
– r is the residual

Intrinsic Mode Functions (IMFs) represent the fundamental oscillatory compo-
nents of a signal, providing the most intuitive and interpretable decomposition.
Spectral analysis, performed using the pwelch algorithm, is employed to iden-
tify IMFs that encapsulate respiratory-related information. By summing these
selected IMFs, a reconstructed approximation of the respiratory signal is
generated. A further Spectral analysis to select the adequate respiration rate
is needed

• SQI=2 When the SQI is 2, the signal is expected to be heavily corrupted,
making it difficult to determine whether respiratory information is present.
To prevent inaccurate respiratory rate estimations, the corresponding time
window is excluded from analysis
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For a quality index of 0 or 1, the respiratory frequency is determined through
frequency analysis. Relevant peaks within the respiratory band (0.1 Hz to 0.7 Hz
are identified, and among them, the lowest frequency peak is selected. This choice
is based on the assumption that the fundamental respiratory frequency typically
corresponds to the lowest component in this range, while higher frequency peaks
are likely due to harmonics or noise.

4.2.3 Frequency check system
To enhance the robustness of the algorithm and prevent inaccurate estimations,
data recording begins only after detecting two consecutive windows with an SQI of
0.

Given the quasi-periodic nature of the respiratory signal, each subsequent window
is analyzed in comparison with the previous one. If the identified frequency is within
an acceptable range, it is considered valid. Conversely, if it deviates significantly
from the previous value, the presence of a peak close to the expected frequency
is checked. If such a peak exists, it is selected as the correct one; otherwise, the
estimate is deemed unreliable, and the value is replaced with NaN. If NaN values
are present in the two preceding windows, the comparison is performed using the
frequency calculated in the initial two windows.

4.3 Respiratory algorithm: Feature Extraction
After the correct frequency evaluation, features correlated with the level of mental
workload are individuated. The respiratory features selected for the mental workload
monitoring are:

• Respiratory Rate : the respiratory rate represents the total number of
breaths taken per minute;

• Inhalation time : the inhalation time refers to the time taken to inhale air
into the lungs. It is determined as the difference in sample positions between
a peak (end of inhalation) and the preceding valley (beginning of inhalation);

• Exhalation time : the exhalation time indicates the duration of exhalation,
or the time required to expel air from the lungs.It is calculated as the difference
in sample positions between a valley (end of exhalation) and the preceding
peak (beginning of exhalation);

• Amplitude : the amplitude describes the intensity or volume of air inhaled
or exhaled. After normalizing the signal between 0 and 1, the amplitude is
calculated as the difference in magnitude between a peak and the subsequent
valley;
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• Ventilation : the ventilation denotes the total volume of air inhaled or
exhaled by the lungs over a specific time period. It is defined as the product
of amplitude and respiratory frequency.

For each feature except for Respiratory rate, statistical measures such as mean,
and standard deviation were computed (Table 4.1):

Signal Feature Expected trend

rPPG

Respiratory Rate ↑
Mean Inhalation time ↓
St. Dev. Inhalation time -
Mean Exhalation time ↓
St. Dev. Exhalation time -
Mean Amplitude ↓
St. Dev. Amplitude -
Mean Ventilation ↑
St. Dev. Ventilation ↑

Table 4.1: Respiration feature extracted from PPG and Expected Trends
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Description of the
Algorithm: Cardiac
Component

5.1 Preprocessing
5.1.1 Filtering
After segmenting the signal, a band-pass filter is applied to isolate the cardiac
component while attenuating high-frequency noise and low-frequency interference.
The band-pass filter is implemented as a cascade of a high-pass Butterworth filter
with a cutoff frequency of 0.5 Hz and a low-pass Butterworth filter with a cutoff
frequency of 1.5 Hz. Both filters are designed with a third-order configuration.

5.1.2 Processing: Wave extraction
The subsequent step, prior to extracting cardiac features, involves identifying the
correct waveform components in 10 seconds windows. This process is based on
detecting the positions of local minima. By analyzing these points (Figure 2.14),
it is possible to assess whether a waveform is free from artifacts and suitable for
further processing or if it is corrupted and should be excluded from subsequent
analyses (Figure 5.1 - Figure 5.2).

From the selected waves, characteristic features are extracted to identify the
relevant cardiac properties, which are outlined below:

• Peak position

• Peak height (mV)
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Figure 5.1: An example of the waveform extraction, where correctly identified
waves are highlighted in dark blue, indicating their suitability for further processing

Figure 5.2: An example of the waveform extraction. Corrupted waves, deemed
unsuitable for analysis, are marked in red

• Duration (s)

• Rise time(s)

5.2 Cardiac algorithm: Feature Extraction
The information extracted from artifact-free waves undergoes further processing
to derive cardiac features, which enable the assessment of mental workload levels.
During this phase of post-processing, a total of 19 features were derived. These
features, outlined in Table 5.1-Table 5.2 - ??, capture various characteristics of the
PPG waveform, of the heart rate and of the heart rate variability, specifically its :

• Amplitude: the amplitude corresponds to the variation between the peak
and trough values of the PPG signal within a single cardiac cycle;

• Duration: the duration refers to the complete time span of a PPG cycle,
measured as the interval between the onset of one PPG wave and the beginning
of the subsequent wave;
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• Rise time: the rise time represents the duration required for the signal to
transition from its minimum to its maximum value within a single PPG cycle;

• Beats per minute(BPM): BPM (Beats Per Minute) represents the count
of heartbeats occurring within a one-minute interval;

• pNN50: the pNN50 is the percentage of consecutive RR intervals (the time
between two successive heartbeats) where the difference from the previous
interval exceeds 50 ms;

• Power of low-frequency band (PLF): the PLF reflects the spectral energy
within the frequency range of 0.04 Hz to 0.15 Hz;

• Power of high-frequency band (PHF): The PHF denotes the spectral
energy within the frequency range of 0.15 Hz to 0.4 Hz;

• PLF-to-PHF ratio: It is the ratio of the power observed in the low-frequency
band (PLF) to that in the high-frequency band (PHF).

For each feature, statistical measures such as mean, median, and standard
deviation were computed.

Signal Feature Expected trend

PPG

Mean amplitude ↑
St. Dev. amplitude -
Median amplitude ↑
Mean duration ↓
St. Dev. duration -
Median duration ↓
Mean rise time ↑
St. Dev. rise time -
Median rise time ↓

Table 5.1: PPG Features and Expected Trends
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Signal Feature Expected trend

HR
Mean BPM ↑
St. Dev. BPM -
Median BPM ↑

Table 5.2: HR Features and Expected Trends

Signal Feature Expected trend

HRV

pNN50 ↑
Mean PLF IBI ↓
St. Dev. PLF IBI -
Mean PHF IBI ↓
St. Dev. PHF IBI -
Mean PLF/PHF IBI ↑
St. Dev. PLF/PHF IBI -

Table 5.3: HRV Features and Expected Trends
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Chapter 6

Experimental Dataset

The aim of this section is to present the population, tests, and procedure charac-
terizing the small experimental dataset used for code validation.

6.1 Test
The N-Back test is used to assess various levels of cognitive workload. It consists
of two phases: the Visual Mode and the Dual Mode, each performed three times
(1-Back, 2-Back, and 3-Back), with increasing difficulty at each stage. A number
of 80 trials are set for each step.

In the Visual mode, Figure 6.1, a grid of nine squares is displayed on the
screen, with a gray square moving to a different position every 2.25 seconds. The
participant is required to press a button labeled "Position" whenever the square
returns to the same location as in 1, 2, or 3 previous steps.

Figure 6.1: N-Back visual test graphical interface

The Dual Mode integrates both visual and auditory stimuli, Figure 6.2. In
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addition to the visual task, participants listen to a sequence of letters and must
press a button labeled "Audio" when they recognize the same letter that appeared
1, 2, or 3 steps earlier. This phase challenges users to process and respond to both
modalities simultaneously, further increasing cognitive demand.

Figure 6.2: N-Back dual test graphical interface

6.2 Partecipants
The procedure was authorized by the Politecnico di Torino ethics committee
(protocol number 1606). the dataset comprises 8 voluntarily selected participants
divided into 9 males and 2 famales. the age range is from 21 to 27.

6.3 Equipment
8-Channel biosignalsplux Kit with its sensors is used for the acquisition of the
physiological signals. In particular, the sensors used in this setup are:

• Electrocardiography (ECG) Sensor placed left rib (Figure ??);

• Inductive Respiration (RIP) Sensor with the breathing band positioned below
the pectoral line (Figure 6.4)

• Blood Volume Pulse (BVP) Finger Clip Sensor on the tip of the index finger
(Figure 6.5)

Real-time visualisation and monitoring of signals is possible with Open Signals
(r)evolution Software.
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Figure 6.3: Demonstra-
tion figure of ecg sensor po-
sitioning.

Figure 6.4: demonstra-
tion figure of respiratory
band and sensor position-
ing

Figure 6.5: demonstra-
tion figure of PPG sensor
positioning

6.4 Procedure
This section outlines the methodology used to collect physiological signals from each
participant. The entire testing process took approximately one hour to complete.

The entire procedure is divided into two phases:

• Resting Phase : The acquisition starts connecting the three sensors to the
off-hand of the subject . Then, the volunteer is asked to sit at the desk in
front of the computer and relax, avoiding unnecessary and abrupt movements
to avoid corrupting the signal with movement artifacts. The rest phase lasts 5
minutes with the aim to acquire the three physiological signals that will serve
as a baseline for comparison with the mental load levels under effort.

• Testing Phase: Before the test phase begins, participants receive a brief
explanation of the procedure they will undergo, followed by a short training
session in DEMO mode to familiarize themselves with the task. Six N-back
tests of 80 trials each are involved in this phase. Three of them (1/2/3 Back)
are only in visual mode while the others are in dual mode, visual plus audio
(1/2/3 Back). A 3-minute rest phase between each test is set. The purpose of
testing is to stimulate the user’s mental workload by getting him involved in
completing a task.

The test concluded with a final rest phase, during which participants were asked
to complete two self-assessment questionnaires evaluating their perceived mental
workload and stress levels. In the first form, it is asked to assign a low-medium-high
level as a rating for the mental effort made.
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In the second one, a ten point scale is used to classify the effort . The value it
is obtained following the Bedford Scale.

The Bedford Scale is a one-dimensional assessment tool designed to measure an
operator’s available mental capacity while performing a task. As shown in figure
Figure 6.6, it utilizes a structured decision tree to guide individuals through a
ten-point rating system, with each level accompanied by a description indicating
the corresponding workload intensity [62].

Figure 6.6: Bedford Workload Rating Scale.

Figure Figure 6.7 presents a flowchart illustrating the complete procedure
followed during the test execution.
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Figure 6.7: Flowchart representing the test procedure adopted for each participant.
The different colours highlight the Rest and N-Back phases
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Chapter 7

Results

This section presents the obtained results. Initially, the algorithm was evaluated
using the Capnobase dataset, focusing solely on respiratory rate analysis. The
extracted values were then compared with those reported by the researchers who
developed the dataset, using the Smart Fusion algorithm.

After confirming that, the proposed algorithm outperforms the previously intro-
duced approach, it was subsequently tested on an experimental dataset acquired
with BiosignalplusX. In this case, in addition to respiratory rate, other features
associated with mental workload levels were also assessed. Furthermore, a parallel
analysis was conducted on the cardiac component of the signal.

7.1 Capnobase results
The signals in the Capnobase dataset consist of 8-minute recordings. They are
segmented into 32-second windows with no overlap, resulting in 15 segments per
signal. Before analyzing the extracted PPG signal, the Signal-to-Noise Ratio (SNR)
of the reference respiratory signal is computed to prevent inaccurate estimations
caused by a corrupted reference. To ensure a conservative estimation, the SNR
threshold is set at 20 dB. With 15 analyzable segments per signal, the dataset
contains a total of 630 sub-signals. Of these, 251 (40%) were excluded from the
analysis due to having an SNR value that was too low. For the remaining 379, the
number of "Not a Number" (NaN) occurrences were evaluated and compared with
those identified by the Smart Fusion (SF) algorithm. NaN represents cases where
the algorithm fails to estimate the respiratory frequency. This comparison allows
for an evaluation of the success rates of both methods. The proposed method
results in 62 failures out of 379, which accounts for approximately 17% (Figure 7.1)
;the Smart Fusion (SF) algorithm shows 61 NaN occurrences, representing 17% of
the total analyzed data too(Figure 7.2).
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Figure 7.1: Pie chart showing the success rate of the proposed method. In blue
the successes, in orange the failures

Figure 7.2: Pie chart showing the success rate of the Smart Fusion algorithm. In
blue the successes, in orange the failures

Regarding the successful cases, these are directly compared with the reference
respiratory rate. This allows for an estimation of the error in terms of breaths per
minute.

Below are the graphs illustrating the distribution of the observed errors. Specifi-
cally, as shown in Figure 7.3, out of 317 analyzed cases, the respiratory rate was
accurately estimated in 270 instances, accounting for approximately 85% of the
cases. In 35 occurrences (11% of total cases), the estimation error was 1 breath
per minute, while in 5 cases, the respiratory rate was incorrectly assessed with an
error of 2 breaths per minute. The remaining errors, along with their respective
frequencies, are presented in Table 7.1. As observed, the highest recorded error is
17 breaths per minute, while the average error is 0.32 breaths per minute.

As seen in Figure 7.4, for the Smart Fusion algorithm, although the success rate
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Errors(Breaths per minute) Frequency
0 270
1 35
2 5
3 1
6 2
7 2
9 1
17 1

Table 7.1: Table presenting the errors in terms of breaths per minute observed
for the proposed method and their respective frequencies

Figure 7.3: Distribution of error frequency for the proposed algorithm. The
histogram illustrates the occurrence of different error values (in breaths per minute),
showing a concentration of errors close to zero, with a decreasing frequency for
larger errors

remains virtually identical, the distribution of errors varies significantly. Among
the 318 analyzed cases, the respiratory rate is accurately estimated in 182 segments,
accounting for approximately 57% of the total. An error of one breath per minute
occurs 70 times (22% of the total), while an error of two breaths per minute is
observed in 20 instances (5%). The remaining errors, along with their respective
frequencies, are presented in the following Table 7.2: In this case, the mean error
is approximately 1.4214 breaths per minute, while the maximum error reaches 30
breaths per minute.

For the results obtained on the online dataset, a comparison can be made
between the outcomes of the proposed method and the ’Smart Fusion’ algorithm,
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Figure 7.4: Distribution of error frequency for the Smart Fusion (SF) algorithm.
The histogram illustrates the occurrence of different error values (in breaths per
minute), showing a concentration of errors close to zero, with a decreasing frequency
for larger errors

implemented by the same research group that created the database. Although the
algorithm is quite conservative, featuring multiple control systems at various scales,
the success rate is nearly identical to that achieved using SF. This is attributed to
the preprocessing phase, which allows us to work with a cleaner signal, thereby
reducing errors. The most notable improvement is in the quality of the errors, as
the number and percentage of instances with a ’0’ error value are significantly higher
compared to the reference algorithm. This trend is further supported by the average
and maximum error values, which demonstrate a clearly superior performance for
the proposed method.

7.2 Experimental data results
The data acquired during the experimental tests were processed using the algo-
rithms described in the previous chapters, both for the cardiac and respiratory
components. The signals of eight subjects were analyzed across seven phases: ’rest’,
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Errors(Breaths per minute) Frequency
0 182
1 70
2 20
3 6
4 10
5 10
6 1
7 3
8 2
9 4
10 3
11 2
14 1
17 1
18 1
24 1
30 1

Table 7.2: Table presenting the errors in terms of breaths per minute observed
for the Smart Fusion Algorithm and their respective frequencies

’1-back visual’, ’2-back visual’, ’3-back visual’, ’1-back dual’, ’2-back dual’, and
’3-back dual’. Before processing the results, several tests were conducted using
different configurations to determine the most effective approach. The two key
parameters adjusted were the observation window length and the overlap. Specif-
ically, experiments were carried out with observation windows of 20, 25, and 30
seconds, where the shorter windows yielded less accurate results. For the overlap,
trials with 20, 25, and 28 seconds of overlap were performed. A 25-second overlap
was ultimately chosen as the optimal balance between result accuracy and data
reliability. A smaller overlap led to poorer performance, while a larger overlap
introduced redundancy in the analyzed data.

The test data were processed using 30-second windows with an overlap of approx-
imately 80%, simulating real-time processing. Feature extraction was performed
for each window, provided that the signal quality was deemed sufficient. To elim-
inate inter-subject variability, the data from each participant were subsequently
normalized between 0 and 1. This process resulted in the construction of a dataset
containing all extracted features associated with the different subjects, along with
the mental workload ratings provided by the participants at the end of the test.
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After confirming that the variable distributions did not follow a normal distribu-
tion, a statistical analysis was conducted to examine the relationship between the
normalized variable values and the subjective workload ratings. The Kruskal-Wallis
test was selected for this evaluation, as it is a non-parametric test that does not
assume normality. The output of this statistical test is the p-value, which, if below
0.05 (considering a 95% confidence level, standard in biomedical research), indicates
that the two variables belong to statistically distinct populations. The test was
performed on the dataset under both binary classification (rest vs. altered state)
and multiclass classification scenarios.

7.2.1 Binary Analysis
The binary analysis was conducted by assigning all data from the ’rest’ phase to
Class 0, while all data from the altered-state phases (’1-back visual’, ’2-back visual’,
’3-back visual’, ’1-back dual’, ’2-back dual’, and ’3-back dual’) were assigned to
”Class 1”. For each cardiac and respiratory feature, the Kruskal-Wallis test was
performed, and if the resulting p-value was below 0.05, the feature was considered
statistically significant. Table 7.3 presents the number of cardiac and respiratory
features that passed the test. It can be observed that 6 out of 19 cardiac features
and 4 out of 7 respiratory features exhibited statistically significant differences
between the two conditions. The 10 features that met the significance threshold
are as follows:

1. Average respiratory rate

2. Average inspiration time

3. Average expiration time

4. Average ventilation

5. Average PPG amplitude

6. Standard deviation of PPG amplitude

7. Median PPG amplitude

8. Standard deviation of PPG duration

9. Median PPG rise time

10. Standard deviation of BPM

67



Results

Cardiac(#/19) Respiratory (#/7)
Feature Significance 6 4

Table 7.3: Number of features that passed the Kruskal-Wallis test in the compar-
ison between a resting condition and an altered state.

7.2.2 Multiclass analysis
The analysis across different classes was conducted by comparing all four mental
workload conditions: ’rest’ (0), ’low’ (1), ’medium’ (2), and ’high’ (3). The Kruskal-
Wallis test was initially applied at a global level to determine whether a specific
feature exhibited statistically significant differences in at least one of the classes
compared to the others. Subsequently, pairwise comparisons were performed,
specifically:

1. rest vs low

2. rest vs medium

3. rest vs high

4. low vs medium

5. low vs high

6. medium vs high

Table 7.4 presents the number of features that passed the test across different
comparisons. As observed, the number of cardiac and respiratory features exhibiting
statistically significant differences decreases as the number of compared classes
increases, with only one feature maintaining statistical significance across nearly
all comparisons. The most significant features identified are:

1. Average respiratory rate

2. Average inspiration time

3. Average expiration time

4. Average ventilation

5. Average PPG amplitude

6. Median PPG amplitude

7. Standard deviation of PPG duration
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8. Standard deviation of BPM

Notably, these features are the same as those that demonstrated statistical sig-
nificance in the binary analysis, further reinforcing their relevance. The most
significant feature identified is the average respiratory rate.

Cardiac(#/19) Respiratory (#/7)
Feature Significance 13 7

Feature Significance (>1) 12 7
Feature Significance (>2) 7 6
Feature Significance (>3) 4 4
Feature Significance (>4) 0 1
Feature Significance (>5) 0 1

Table 7.4: Number of features that passed the Kruskal-Wallis test in the compar-
ison between all states.
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Chapter 8

Conclusions

The goal of this thesis is to investigate whether it is possible to leverage the
photoplethysmographic (PPG) signal to simultaneously extract both cardiac and
respiratory features in real-time, relative to the acquisition, for monitoring stress
levels and mental workload. If successful, the study would enable the use of
wearable devices that could replace traditional acquisition systems, providing
greater convenience for the operator. Since the relationship between the cardiac
component and PPG has been well-explored over the years, this work focused
on developing an algorithm for extracting a surrogate respiratory signal, from
which the respective features could be derived. The challenge here was not only to
extract the respiratory frequency but also to attempt to reconstruct a signal that
is morphologically similar to the original one.

Since respiration manifests almost as a low-frequency motion artifact within the
PPG signal, an algorithm was developed with multiple verification mechanisms at
different scales, prioritizing estimation quality over the sheer number of estimates
obtained for the analyzed segments.

The respiratory algorithm was first tested on the publicly available ’Capnobase’
dataset to evaluate the estimation quality of respiratory rate against a reference
signal. The 8-minute signals are first segmented into 32-second windows without
overlap before being processed. The results were compared with those obtained
using the Smart Fusion algorithm, which was employed by the same research group
that collected the data. The comparison included success rate, error distribution
and frequency, mean error, and maximum reported error.

Despite being a highly conservative method, the proposed approach achieved the
same success rate as Smart Fusion (17%). However, in terms of error quality, the
proposed algorithm demonstrated superior performance, achieving a significantly
higher percentage of perfect estimates (80% vs. 57%), a lower mean error (0.31
breaths per minute vs. 1.42 breaths per minute), and a lower maximum error (17
breaths per minute vs. 30 breaths per minute).
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The recorded PPG signal was subsequently processed under simulated real-time
conditions using 30-second windows with an 80% overlap. For each window meeting
the required quality standards, cardiac and respiratory features were extracted.
Statistical analyses were then performed to assess the effectiveness of these features
in discriminating between different levels of mental workload. Given the non-normal
distribution of the extracted features, the Kruskal-Wallis test, a non-parametric
statistical method, was applied. If the p-value obtained from this test was below
0.05, it indicated a statistically significant difference between distributions.

The analyses were conducted in two distinct scenarios. In the binary classifica-
tion, data were categorized into two groups: rest and altered state, leading to the
selection of approximately 10 out of 19 analyzed features. In the multiclass classifi-
cation, all six possible output conditions were compared, and the frequency with
which a feature met the statistical significance threshold across comparisons was
assessed. The results revealed that the features identified as statistically relevant in
the binary case were also those most frequently selected in the multiclass analysis.

The findings from these tests confirm the feasibility of using PPG not only for
extracting cardiac features but also for deriving respiratory features. The ability
to utilize PPG as an alternative to more specialized physiological signals enhances
its applicability across a broader range of scenarios, benefiting from its greater
wearability and reduced physical constraints.
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