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ABSTRACT 

Glass is one of the oldest materials known to humankind, and currently, the demand for its use in the modern 

construction field is steadily increasing due to its aesthetic, design versatility and energy efficiency. With the 

advancement of scientific and technological knowledge about this material, glass has now the opportunity to 

be employed for structural elements, such as stairs, walls, façades, and even floors. 

Since glass exhibits brittle behaviour, in view of enhancing its structural performance, certain specialized glass 

types are used, among which laminated glass. Laminated glass consists of a stack of glass panes held together 

by thermoplastic interlayers and the resultant laminated glass unit, as is the case for glass fins and columns, 

is typically very slender such that it could be subjected to buckling phenomena. 

This thesis is aimed at investigating the buckling behaviour of laminated glass panels subjected to in-plane 

compressive loads by means of a parametric analysis, wherein different variables, among which, the interlayer 

shear modulus and geometrical parameters of the panes, have been included and varied in pre-established 

ranges. 2D and 3D models are built up in the commercial Finite Element (FE) software LUSAS, and eigenvalue 

buckling and geometric nonlinear analyses are carried out. In addition to that, some relevant features such 

as the effective thickness for calculating out-of-plane bending deflection and bending stress, and the initial 

geometric imperfection of the panels are considered in the development of numerical models, in compliance 

with the Technical Specifications for glass structures CEN/TS 19100:2021. 

The critical buckling loads and critical buckling stresses coming from parametric analyses are analysed to 

understand the buckling response of slender laminated glass elements. Also, the dependency on the 

slenderness ratio and on the stiffness of the interlayer are investigated. 

It was found that 2D models, having effective thickness for bending deflection and characterised by geometric 

nonlinearity, provide critical buckling loads which are lower than those of 2D, having no initial imperfections. 

3D models, representing laminated glass by way of the real thickness of each layer, show buckling loads that 

are in between those of 2D, with and without initial imperfections, for low values of slenderness ratio. 

Conversely, for large slenderness values, nonlinear analyses on 3D models provide buckling loads similar to 

those provided by 2D models with initial imperfections. To achieve more accurate results, by limiting 

transversal displacements and considering the effective thickness for bending stress, additional nonlinear 

analyses are performed on 2D models with initial imperfections, resulting in the lowest buckling loads 

compared to all the others.  

Lastly, FE-models show that critical buckling load in laminated glass elements strongly depends on the 

interlayer shear modulus, whose value must be carefully chosen during the design process. 

KEYWORDS: Laminated glass, Buckling, Glass columns, Equivalent thickness, Finite Element Method, 

Parametric analysis, Geometric nonlinear analysis. 
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A Cross-sectional area of the element. 
A1 Cross-sectional area of glass ply 1. 
A2 Cross-sectional area of glass ply 2. 
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1 INTRODUCTION 

1.1 Preface  

Glass is a very ancient material which has been used since the very beginning from stone-age civilizations in 

the regions of Egypt and Mesopotamia to produce objects and weapons such as knives, cups, and jewellery. 

Glass production was subsequently developed in Roman times and soon it was diffused to all the countries 

ruled by the Roman Empire, but nevertheless during the Gothic Era, the use of colourfully and finely 

decorated stained glass windows grew strongly, and it created greater interest and new studies on glass 

technology and manufacturing processes were performed. Further applications of glass were accomplished 

in the Modern Age, during which, thanks to the knowledge and the increasing use of structural steel and then 

reinforced concrete technology, there was the possibility to create large floors and walls with relatively small 

columns. This represented a sort of turning point, since architects and engineers realized that they could close 

wall openings using large glass panels providing better thermal and acoustic insulation as well as natural 

lighting. Nowadays, glass is frequently used for many applications such as windows, façades, roof lights and 

in some cases floors and staircases. 

However, the use and the scientific knowledge of glass in terms of structural material is fairly new, and for 

that reason, the following thesis is devoted to enlarging the awareness about structural glass, in particular 

regarding the problem of instability. 

1.2 Objective and methodology 

The objective of the present thesis is to investigate buckling behaviour of slender laminated glass panels, 

taking into account geometric nonlinearities, which could strongly affect load-carrying capacity. To this end, 

a parametric study is performed by varying the length of the panes, the geometric properties of the laminated 

cross-section and the interlayer shear modulus in pre-established ranges. To this end, 2D and 3D models, with 

and without initial geometric imperfections, are modelled in the Finite Element (FE) software, LUSAS, taking 

advantage of the Enhanced Effective Thickness Theory (EET) for the case of 2D. After modelling process, 

eigenvalue analyses (LBA) and geometrically nonlinear buckling analyses (GNA) are carried out in order to 

determine the critical buckling loads for each typology of model and for the two different types of analysis.  

Finally, numerical findings are analysed and discussed, also through the use of graphs and diagrams. 

1.3 Overview 

The document is organized in seven chapters, following the next format: 

Chapter 2, Literature Review, presents an overview regarding the use in the architectural context and the 

evolution of glass throughout history. Physical and mechanical properties, as well as different typologies of 

glass, are described. And lastly, a brief introduction on the current Standard for glass in buildings and on the 

buckling phenomena is presented. 

Chapter 3, Glass Design and Buckling Calculation, describes some relevant features and formulas of glass 

design process according to the Standard CEN/TS 19100:2021. 

Chapter 4, Second-Order Theory and Buckling Analysis, explains the different types of buckling analysis 

performed and the topic of initial imperfections. 

Chapter 5, Methodology, illustrates the characteristics of the numerical models developed in the Finite 

Element software. 
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Chapter 6, Results and Discussion, describes the significant outcomes obtained by parametric study. 

At last, Chapter 7, Final Conclusions, presents a summary of the numerical findings and some improvements 

for the analysis of buckling in laminated glass. 

Six annexes are also included in this document, which illustrate supplementary calculations and tables with 

numerical results. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Glass is one of the most versatile materials known to humankind. It has been closely associated with 

architectural design for centuries [1]. It offers numerous features allowing the designer to meet aesthetic and 

structural needs, making it attractive in buildings. Even if glass is defined as a brittle material, some types of 

glass, e.g. laminated glass, are characterized by a high compressive strength and are able to bear various kinds 

of loads. This material has been used for windows, roofs, stairs, as well as in glazing of façades, providing 

sufficient brightness inside the building, protection from atmospheric agents and chemical resistance.  

However, Europe has implemented strategies and actions capable of reducing emissions and energy 

consumption. Buildings in the European Union are responsible for 40% of energy consumption and 36% of 

greenhouse gas emissions. One important area for improvement is the heating and cooling of buildings and 

domestic hot water, which account for 80% of households' energy consumption [2]. By means of certain 

treatments and/or coatings, glass can offer great thermal and acoustic insulation enhancing the performance 

of the building and reducing energy consumption [1]. Furthermore, design versatility of glass is another 

benefit to be considered, in fact, glass elements, thanks to the manufacturing process, can be shaped into a 

lot of forms, enamelled, textured and coated, meeting the needs of the client [1].  

Nowadays, glass must meet high standards of safety for the users, so glass elements are made resistant to 

shocks and sudden temperature changes, and if they are damaged or shattered, they will not break in [3]. At 

last, glass can be considered as a recyclable material: when a building is refurbished, end-of-life façade glass 

can be crushed and used as aggregates in construction, or the most effective use is to turn glass into new 

glass products with a view to circular economy and sustainability [4]. 

At last, an important topic worth clarification is the definition of “structural glass”: structural glass is 

considered to be applications involving an element or system that supports other element(s) or system(s) 

and/or has consequences of collapse, safety or function in the event of failure other than the cost of 

repair/replacement. ‘Non-structural’ describes an element or system that has little or no consequence in the 

event of failure (other than the cost of repair/replacement) [5]. 

2.2 History and Architectural Context 

The origin of glass has its roots in remote times. Glass objects have been found in Syria that date to 2500 BCE, 

and by 2450 BCE, glass beads were believed to be plentiful in Mesopotamia (situated in the valleys between 

the Tigris and Euphrates rivers) [6]. It is generally thought that introduction of glass technology into Egypt 

occurred during the reign of Tuthmosis III (1479-1425 BCE), with glass objects and ingots being imported as 

tribute [6]. In these early periods, two types of techniques were used to produce glass objects: core-forming 

or casting. 

The core-forming procedure involved the shaping of a form or core onto the end of a wooden or metal rod, 

after which it could then be heated to help set its shape. Then, glass layers were built up around the central 

set core, as shown in Figure 2-1 [4]. 



Buckling resistance of laminated glass members in compression 

4 
 

 

Figure 2-1: Core-forming technique 1. 

The casting involved melting glass pieces into a mold which provided the simple, crude shape of the desired 

object. After the glass had cooled, the mold could then be removed and carved or polished to give the final 

product, as shown in Figure 2-2 [6]. 

 

 

Figure 2-2: Casting technique 2. 

It was the Romans who introduced additional methods to create glass objects, and they were able to develop 

new techniques, among which the most innovative and still used today is the “glassblowing”. Invented in 

about 40 B.C., it was the most important innovation in Roman glassmaking technology [7]. This method 

consists of shaping a mass of glass that has been softened by heat by blowing air into it through a tube, i.e. 

the blowpipe [8], as illustrated in Figure 2-3. 

 

Figure 2-3: Glassblowing technique 3.  

 
1,2 Figures from: Seth C Rasmussen, ‘A Brief History of Early Silica Glass: Impact on Science and Society’, Substantia 3(2) Suppl. 5, pages: 
125-138, 2019, DOI: 10.13128/Sub-stantia-267 (Accessed Nov. 26, 2024). 
 
3 Figure from: https://www.classicalchandeliers.co.uk/history-of-glassworks (Accessed Nov. 28,2024). 

https://www.britannica.com/art/glassware
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In addition, the Romans were the first to use glass for windows: early window panes were fabricated via a 

variety of different processes, the oldest of which was the production of cast glass. This process produces 

panes of uneven thickness, with one side exhibiting a smooth texture and the other side a pitted, rough finish 

[6].  

Then, with the coming of Gothic style - born in France in the middle of the 12th century - stained glass began 

to be more used in Gothic cathedrals and churches, that could be coloured. The production method was a 

complex process, that required the addition of various metal oxides during the melting process; for example, 

cobalt oxide gave the glass a blue tint, while copper oxide coloured it green [9]. Stained-glass windows 

illustrated the stories of the bible and the lives of saints. But since the size of glass panes was limited, artists 

were able to develop a new system to cover large areas with small glass panes: to assemble the window, 

pieces of coloured and painted glass are laid out on the design board, with the edges of each piece fitted into 

H-shaped strips of lead (also called cames). These cames were soldered to one another so that the panel was 

secure. When a panel was completed, putty was inserted between the glass and the lead cames for 

waterproofing. The entire composition was then stabilized with an iron frame (armature) and mounted in the 

space for window [10]. 

For illustration, Notre-Dame de Chartres Cathedral, in France, is a good example. Built and decorated between 

1134 and 1260, registered by UNESCO as a World Heritage Site, it is the most complete and best preserved 

of the Gothic cathedrals [11]. Chartres Cathedral is renowned for its large number of stained-glass windows 

aimed at telling the story of the Virgin Mary and one of the most stunning windows inside the Cathedral is 

presented in Figure 2-4. 

 

Figure 2-4: Chartres' Belle-Verrière, example of stained-glass window in Notre-Dame de Chartres Cathedral 4. 

In the 18th and 19th centuries, some innovative glass production techniques such as the plate process and the 

cylinder process were introduced, making it possible to produce large and transparent glass panes. The 

cylinder process can be seen as the evolvement of the glass blowing technique, and indeed a blowing 

technique was in fact used in the first version of the method. But since it may take some time and effort at 

the hands of the glassmakers, then, a machine was designed by William Pilkington, and a later version was 

mechanized and could create cylinders 13 meters high. 

 
4 Figure from: https://www.britannica.com/topic/Chartres-Cathedral (Accessed Dec. 2,2024). 



Buckling resistance of laminated glass members in compression 

6 
 

This was done by dipping a round metal bait into a bath of molten glass which was then raised to create a 

long cylinder of clear glass. An advantage of this version of the process was that bigger panes could be made, 

and less human energy went into it [12]. 

In the plate process, molten glass is rolled to create a flat plate of glass. At this stage, it could be done on a 

table with a mobile roller, but the rollers would leave the surface of the glass rough and marked, so would be 

opaque after this phase. The plate of glass is then ground to create two parallel and smooth surfaces, and in 

the final stage the glass plate is polished at one surface at a time, in order to leave glass transparent and 

distortion-free [12]. Both processes are shown in Figure 2-5. 

       

Figure 2-5: On the left the Cylinder process and on the right the Plate process 5. 

In the late 19th and early 20th centuries, glass became more widely available and affordable, leading to its 

widespread use in buildings. This period marked the beginning of the modern era of glass in building design. 

Architects began experimenting with different shapes and sizes of glass, and the use of metal frames and 

connectors allowed for larger, more intricate window designs [13]. 

Evidence of the 19th century is represented by the iconic Crystal Palace designed by the architect Joseph 

Paxton and built in London in 1851 to host in a temporary international exhibition of industry. It was also 

called the Great Exhibition of the Works of Industry of All Nations. 

At the time, the Royal Commission set up to oversee the announced project agreed that the building to house 

the exhibition should have a target net area of 800'000 square feet and the upper limit of the contract budget 

for construction was set at £100,000. The complexity of the building was set: not only it would have to be the 

largest building ever constructed, it would also have to be cheaper than any building previously built [14]. The 

Commission received 245 entries but none of them were approved, and the time to build it was running out. 

So, Sir Joseph Paxton took a step forward showing interest in this challenging project. Paxton’ design was 

based on a 0,25 m x 1,24 m module, the size of the largest glass sheet available at the time. The modular 

system consisted of right-angled triangles, mirrored and multiplied, supported by a grid of cast iron beams 

and pillars [15]. 

The building, as shown in Figure 2-6, was rectangular in plan, with some minor single-story additions along 

the south front. At ground floor level it was laid out as 77 × 17 bays, with columns at 7,3-meter centres. The 

overall length of the building, depending on how you measure it, was between 563,58 meters and 563,88 

meters.  

 

 
5 Figures from: https://www.pilkington.com/en-gb/uk/about/heritage/cylinder-process (Accessed Dec. 3,2024). 
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The second tier of the building was 11 bays wide and the third tier, just 5 bays [16]. The structure, covering 

approximately an exhibition area of 70’000 m2 and using nearly 84’000 m2 of glass, is made of cast iron 

columns, cast iron girders, walls composed of timber and glass, laminated timber arches and glazing. To speed 

up the construction process, all the structural elements were precast, ready to be simply assembled on site 

and the construction was concluded within only five months. 

       

Figure 2-6: Illustration of the transept of the Crystal Palace on the left and the exterior of the Crystal Palace at 
Sydenham in 1854 on the right 6,7. 

The 20th century came across great innovations in glass field, when, in 1900 the patent for toughened glass 

was filed by the Austrian chemist Rudolph A. Seiden and in the mid-20th century Pilkington developed the 

float glass process [17] – both are going to be more broadly discussed in the following sections. The float 

process is still used and also the most commonly used today to produce a large variety of specialized glass 

products, including safety laminated glass, toughened glass, acoustic glass etc. 

Always in the same century other pioneering developments occurred in glass sheet drawing manufacturing 

processes, such as the American Colburn Process and the Belgian Fourcault Process, which made it possible 

to produce glass windows in large quantities.  

The Fourcault procedure was developed in Belgium by the homonymous inventor Émile Fourcault (1862-

1919) and it can be defined as a vertical drawn process. In this process molten glass is “pulled” through a 

ceramic extrusion die in the upward direction, against gravity, to form a rectangular ribbon of glass which is 

immediately after cooled to preserve the rectangular section. The novelty of this process lies in the fact that 

molten glass is not pulled in the literal sense, but the pressure is obtained thanks to the difference of pressure 

in height during the process. 

Regarding the American Colburn Process, Irving W. Colburn was an experienced machinist really interested in 

developing a mechanized continuous process to produce glass sheets. In September 1909, Colburn produced 

the world’s first glass sheet using his revolutionary new horizontal sheet draw process [18]. This process is 

very similar to the previous one and the only difference is that molten glass is drawn vertically and then is 

actually pulled through rollers in the horizontal direction to produce a glass sheet. 

As a consequence, large glass panes were used in buildings, and in fact modernist architects made extensive 

use of glass in their projects. 

 
6 Figure from: https://www.britannica.com/topic/Crystal-Palace-building-London (Accessed Dec. 3,2024). 
7Figure from: https://www.paul-mellon-centre.ac.uk/whats-on/past/the-crystal-palace-at-sydenham/year/2004 (Accessed 

Dec. 3,2024). 
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The use of glass in modern buildings comes from the architectural philosophy that questions how we integrate 

the interior and exterior of a building to create spaces that best reflect natural states of work, rest and play 

[19].  

The modernist movement is an architectural and artistic style that emerged in the early 20th century as 

expression of a renewed society and new technologies in opposition to classicism. In 1927, the pioneer of 

modern architecture Le Corbusier conceived his “Five Points of a New Architecture” which are the 

fundamental ideological principles to be followed during the design of a structure: pilotis, free design of the 

ground plan, free design of the façade, horizontal windows and roof garden.  

Furthermore, functionalism was another founding idea of the movement, implying that every element 

designed in a building must be firstly functional, only secondarily aesthetic. In addition, modernist architects 

widely employed reinforced concrete and steel as structural materials and glass for large glass windows. 

Ludwig Mies van der Rohe (1886-1969) was a German architect and a leading exponent of the modern 

architecture in the USA. Fundamental to Mies’s design philosophy and one of the driving forces behind his 

use of glass was the concept of fluid space. He believed that architecture should embody a continuous flow 

of space, blurring the lines between interior and exterior. Glass was seen as a quintessentially modern 

material that also had the ability to reconnect humans to nature and even change how we perceive it [20]. 

One remarkable example of his works is the Neue Nationalgalerie, an iconic modern art museum located in 

Berlin that was designed and built from 1963 to 1968. Mies van der Rohe realized a minimalist two-story 

temple of steel and glass which rests on a 105x110 meters granite basement, in accordance with his “skin 

and bone” philosophy. To create wide open spaces, eight cruciform steel columns were used along the façade 

and large single glazed panes to enclose the room between the columns, establishing a seamless visual 

experience. Around the perimeter of the building, eight massive steel columns carry a cantilevered suspended 

roof with coffer ceiling which spans 18 meters, resulting in a large space between the façade and the external 

columns. The building does not require any additional wall or partition thanks to the presence of the steel 

columns, which allows for a large open space, creating a flexible and adaptable environment. 

 

Figure 2-7: Exterior of the Neue Nationalgalerie in Berlin 8. 

 
8 Figure from: https://www.theplan.it/architettura/lintervento-di-ripristino-e-ristrutturazione-della-neue-nationalgalerie-
di-berlino (Accessed Dec. 28,2024). 



Buckling resistance of laminated glass members in compression 

9 
 

 

Figure 2-8: Details of the glass façade and the suspended roof of the Neue Nationalgalerie 9. 

As the research and knowledge in the use of glass has been proceeded, glass to be used as a structural 

material has been more recently employed in creating almost invisible walls, stunning staircases and floors, 

and even bridges. One example could be the Hangzhou’s Apple Store in China designed by the British 

Foster+Partners Studio, whose team conceived a 15-metre-high volume creates a sense of space and calm 

within the busy store and city. It is divided horizontally by a dramatic cantilevered floor, which extends 12 

meters from the rear wall like a diving board to create a 9-metre-high piano nobile. The façade comprises 11 

double-glazed panels, each rising 15 meters [21]. In addition, inside the building an impressive, laminated 

glass staircase is present. In Figure 2-9 it is possible to look at these ingenious designs.  

        

Figure 2-9: The Hangzhou's Apple Store. On the left, the façade and on the right the “floating” glass staircase 10. 

  

 
9 Figure from: https://architectuul.com/architecture/new-national-gallery (Accessed Dec. 28,2024). 
10 Figure from: https://www.archipanic.com/hangzhous-apple-store/ (Accessed Jan. 3,2025). 

https://www.archipanic.com/hangzhous-apple-store/
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2.3 Glass properties 

Glass is an inorganic product of fusion, that was cooled to a rigid condition without crystallization [22]. 

Depending on the chemical composition, it is possible to obtain a broad range of glass types, but generally 

they have in common some basic chemical compounds such as silica sand (SiO2), calcium oxide or lime (CaO) 

and sodium oxide or soda (Na2O). Usually some specific glass families - soda lime silica glass (SLSG) and 

borosilicate glass (BSG) - are commonly available on the market. 

Most of the glass used in construction is soda lime silica glass (SLSG). For some special applications , e.g. 

scientific lenses, reagent vials and lighting, borosilicate glass (BSG) is used, since it offers very high resistance 

to temperature changes as well as a very high hydrolytic and acid resistance [22]. Table 2-1 shows the chemical 

compositions, in terms of mass percentage, of SLSG and BSG according to the European specifications EN 

1748-1-1:2004 Part 1-1 [23] regarding BSG properties and EN 572-1:2004 Part 1 [24] regarding SLSG 

properties. 

Table 2-1: Chemical composition of soda lime silica glass and borosilicate glass 11. 

Components Notation 
Soda lime 
silica glass 

Borosilicate 
glass 

Silica sand SiO2   69-74 %    70-87 % 

Lime (calcium oxide) CaO     5-14 % / 

Soda Na2O   10-16 %      0-8 % 

Boron-oxide B2O3 /      7-15 % 

Potassium oxide K2O /      0-8 % 

Magnesia MgO     0-6 % / 

Alumina Al2O3     0-3 %      0-8 % 

Others /     0-5 %  0-8 % 

 

Since glass is an amorphous solid, it implies that the atoms are not arranged in an orderly and regular manner. 

In fact, glasses do not consist of a geometrically regular network of crystals, but of an irregular network of 

silicon and oxygen atoms with alkaline parts in between (Figure 2-10) [22]. 

 

Figure 2-10: Irregular crystal lattice of soda lime silica glass 12. 

 
11, 12 Table and Figure from: M. Haldimann, A. Luible, M. Overend, ’Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
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The chemical composition has an important influence on the viscosity, the melting temperature Ts and the 

thermal expansion coefficient of glass αT [22]. Generally, since the melting temperature of pure silica oxide is 

approximately 1710 °C, it is convenient to introduce alkaline molecules to reduce the melting temperature 

that will be about 1300-1600 °C. 

Another important parameter which characterizes glass and its processes is viscosity. In this regard, four 

standard temperature points are used to define its viscosity: the working point is the viscosity at which a melt 

is delivered to a forming device[25]. The Softening point, which is the minimum viscosity, can prevent the 

glass from deforming under its own weight [25]. The Annealing point is defined as the temperature where 

stress is substantially relieved within a few minutes [25]. Finally, the temperature at solidification is called 

glass transition temperature Tg and is about 530 °C for SLSG [22] and it represents the transition between 

liquid and solid states. 

Table 2-2: Viscosity of glass at different states and respective temperatures for SLSG and BSG 13. 

Viscosity  
(dPa s) 

State 
Temperature SLSG 

(°C) 
Temperature BSG 

(°C) 

105 Working point 1040 1280 

108.6 Softening point 720 830 

1014 Annealing point 540 570 

1014.3 
Transition 

temperature Tg 
530 560 

1015.5 Strain point 506 530 

 

Table 2-3 shows glass physical properties according to the European specifications [23] regarding BSG 

properties and [24] regarding SLSG properties. 

Table 2-3: SLSG and BSG physical properties 14. 

Property Notation 
Unit of 

measurement 
Soda lime 
silica glass 

Borosilicate glass 

Density ρg kg/m3 2500 2200-2500 

Young's 
modulus 

Eg MPa 70000 4,5-6 

Poisson's 
ratio 

ν / 0,23 0,2 

Coefficient 
of thermal 
expansion 

αT 10-6 K-1 9 
Class 1: 3,1-4,0  
Class 2: 4,1-5,0  
Class 3: 5,1-6,0 

 

 
13 Table from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
14 Table adapted from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
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2.4 Glass behaviour 

Glass shows an almost perfectly elastic, isotropic behaviour and exhibits brittle fracture. It does not yield 

plastically, which is why local stress concentrations are not reduced through stress redistribution as in the 

case for other construction materials like steel [22]. Since glass lacks plasticity, when tensile strength is 

reached, cracks will start to fastly propagate and then it will suddenly break without prior notices. 

In this context, one disadvantage of glass is represented by the significant discrepancy between glass 

compressive strength and its tensile strength. The theoretical tensile strength (based on molecular forces) of 

glass is exceptionally high and may reach 32 GPa [22]; the reason why it is so high could be found in silica-

oxygen bonds which are very strong. But the actual tensile strength, used in engineering, is lower and is about 

one tenth of the compressive one because in brittle materials the tensile strength depends on many factors 

such as load duration, concentration of stresses, size of the element and mechanical defects on the surface. 

While the surface of glass panes generally contains a large number of relatively severe flaws, the surface of 

glass fibres contains less and less deep surface flaws; this explains the much higher strength of glass fibres 

when compared to glass panes [22]. 

Steel can be defined as an isotropic, linear elastic material characterized by a symmetrical behaviour in 

tension and compression. Its constitutive law, i.e. the relationship between stress σ and strain ε, for 

engineering purposes can be schematized with an elastic perfectly plastic model, not considering a possible 

hardening effect. Since steel is characterized by a large plastic branch, entailing an ability in the redistribution 

of stresses, it is able to withstand large forces and deformations going beyond its elastic limit. Structural 

engineers, designing steel structures, have typically concentrated their attention on limiting stresses at places 

of maximum bending and shear. However, localised yielding is rarely considered during design of steel 

elements [17]. Glass lacks plasticity and is not able to redistribute stresses, therefore it is not possible to 

neglect possible stress concentrations. For this reason, connection design is a core component when 

designing structures made from glass (see Figure 2-11) [17]. 

 

      

Figure 2-11: Comparison between steel and glass constitutive laws 15. 

 

 

 
15 Figure from: C. O’ Regan and Institution of Structural Engineers, ‘Structural Use of Glass in Buildings (2nd edition)’, IStructE Ltd, 2015. 
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2.5 Float glass production process 

Glass elements can be produced by means of several processes nevertheless the main production steps are 

always similar: firstly, the raw material is melted at a temperature of about 1600-1800 °C, then the melted 

material is formed at a temperature range of 800-1600 °C and, lastly, glass is cooled at temperatures between 

100-800 °C. In Figure 2-12, the main glass production processes are shown together with the possible 

treatments, post-processing methods and finished products. 

 

Figure 2-12: Glass production processes, treatments and corresponding final products 16. 

Currently the Float process is the most popular primary manufacturing process and accounts for about 90% 

of today’s flat glass production worldwide [22]. 

Sir Alastair Pilkington (1920-1995) was a British engineer and inventor who conceives in the early 1950s the 

innovative Float Process which deeply transformed glass industry, so much that it is still the most widely used 

process for producing high-quality glass elements. Sir Pilkington’s final purpose was to get flat glass sheets 

which must also be translucent and without optical imperfections. When he started work on his process, the 

target was to make, more economically, the high-quality glass essential for shop windows, cars, mirrors and 

other applications where distortion free glass was necessary.  At that time this quality of glass could only be 

made by the costly and wasteful plate process and because of glass-to-roller contact, surfaces were marked  

[26].  

The Float Process basically consists of three main stages which are: melting, float bath in tin and cooling 

(annealing). In Figure 2-13, the principal stages of the Float Process are depicted in a schematic way: 

 

Figure 2-13: Main stages of the float process 17. 

 

 
16, 17 Figures from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
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First, raw materials (mainly silica sand, soda and lime) are mixed and heated inside a furnace which can melt 

them at temperatures up to 1550 °C. The molten glass is then poured onto the mirror-like surface of molten 

tin bath in an inert atmosphere consisting of hydrogen and nitrogen. During this phase, due to the higher tin 

melting temperature compared to the glass one, glass can float above the tin bath surface and a flat surface 

of thickness between 6 and 7 mm will be formed [22].  

In the last phase, in order to relieve the stresses, the rigid glass ribbon enters inside the, so called, annealing 

lehr in which the glass temperature gradually decreases and in the meanwhile the glass ribbon is flattened 

through the presence of rollers. By acting on the speed of rollers, it is possible to regulate the thickness of 

the glass plate. After annealing and a subsequent inspection, the glass edges are trimmed to give a constant 

width to the emerging sheet, which is then cut into jumbo sheets that are normally 3m x 6m in size [17]. 

Because of this production process, and in particular, as a result of floating onto the tin bath, the top and 

bottom glass surfaces are not identical: the upper surface in contact with the inert atmosphere (air side) is 

completely smooth with no defects whereas the bottom surface (tin side) that is in contact with the rollers 

will be flaw-free because these rollers can cause surface flaws that reduce the strength [22]. 

2.6 Glass types 

Thanks to the Float Process, four glass variants can be produced and each of them are different in terms of 

strength. These types are, in ascending order of strength: annealed, heat strengthened, fully tempered and 

chemically toughened [17]. 

2.6.1 Annealed glass 

Annealed glass (ANG) is also known as ordinary, or float glass and it is produced from Float Process without 

being subjected to further manufacturing processes. It is characterized by a smooth surface and no optical 

defects, but it is the weakest type in terms of bending strength. 

It is not only impact damage that causes brittle fracture of basic annealed glass but also bending stresses, 

thermal stresses and imposed strains all cause elastic deformation that could also lead to fracture [17]. 

As regards the fracture pattern, it is a function of the energy stored inside the glass, i.e. of the residual stress 

and the stress due to loads [22].  

Since residual stresses inside annealed glass are low, during the event of fracture, the number of cracks will 

be limited and then it will break into large and sharp-edged shards. Having large fragments implies a good 

post-failure performance and safety. Generally, the use of annealed glass as monolithic pane in buildings is 

restricted to small applications such as small windows, table tops and mirrors. 

2.6.2 Heat strengthened glass 

Heat strengthened glass (HSG) is also known as partially toughened or semi-tempered. It is basic annealed 

glass which is subjected to the tempering process: it consists of heating and a subsequent quenching phase. 

The tempering process, in the case of HSG, occurs with a lower cooling rate compared to the case of fully 

tempered glass, which will be discussed in the next paragraph.  

The tempering has the effect of cooling and solidifying first the external surface of the pane and only after 

the interior part of the glass. As the interior cools it tries to shrink and then as a result, a parabolic stress 

profile is obtained through the thickness of the pane (see Figure 2-14).  
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More specifically, the external glass surfaces will be subjected to compressive stresses, where superficial flaws 

are present, while tensile stresses arise through the core of the glass pane. This has a beneficial effect because 

compressive residual stresses on the two glass surfaces can prevent the opening of superficial flaws. 

Furthermore, since the cooling rate affects residual stresses - the higher is the cooling rate, the higher will be 

the residual stresses inside glass- it results in residual compressive stresses varying between 40 MPa and 80 

MPa in HSG [22], [17]. 

Heat strengthened glass could be a good compromise between structural capacity, because of its tensile 

strength that is higher than annealed glass, and post-failure performance. The fracture pattern of heat 

strengthened glass is similar to annealed glass with much bigger fragments than for fully tempered glass [22]. 

 

Figure 2-14: Residual stress profile through the thickness of heat strengthened glass 18. 

Figure 2-15 shows the different fracture patterns of specimens loaded in a coaxial double ring test setup for 

different types of glass [22]. 

 

Figure 2-15: Comparison of the fracture pattern for different glass types: on the left annealed glass, in the middle heat 
strengthened glass and, on the right, fully tempered glass 19. 

2.6.3 Fully tempered glass 

The creation of fully tempered glass (FTG) follows a similar tempering process to that for heat-strengthened 

glass, with the major difference being that it is cooled more rapidly than heat-strengthened glass [17]. As said 

before, the external glass surfaces will solidify first, and only then the internal core of the pane, leading to 

compressive residual stresses on the external surfaces and a tensile state of stress through the thickness. In 

this regard, the difference with respect to heat strengthened glass lies in the compressive zone which is more 

extended rather than in heat strengthened glass (see Figure 2-16). The typical residual compressive surface 

stress varies between 80 MPa and 170 MPa for fully tempered soda lime silica glass [22].  

 
18 Figure from: K. C. Datsiou, M. Overend, ‘The Strength of Aged Glass’, Glass Struct. Eng., Vol.2, pages:105–120, 2017, 
DOI:10.1007/s40940-017-0045-6. 
19 Figure from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
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Figure 2-16: Stress distribution in fully tempered glass 20. 

The tempering process confers two benefits. Firstly, glass is stronger in bending because, both the thermally 

induced compressive stress and the inherent strength of basic annealed glass, must be overcome before 

failure occurs. Secondly, due to a higher cooling rate with respect to heat strengthened glass, fully tempered 

glass can store more elastic energy. So, in case of fracture, the high amount of stored energy is released in 

the form of many cracks, which can rapidly progress and repeatedly bifurcate, causing complete 

fragmentation in small and rounded pieces [17]. Own for such reason, fully tempered glass is also called 

“safety glass”, meaning that the small fragments could be theoretically less dangerous for people. Even small 

glass fragments falling from great heights can actually cause serious injury. In conclusion, while fully tempered 

glass has the highest structural capacity among all glass types, its post-failure performance is inadequate due 

to tiny fragments. 

At last, a topic worth consideration is nickel sulfide-induced spontaneous failure: fully tempered glass 

elements show a small but not negligible risk of spontaneous breaking within a few years of production. The 

cause of it could be attributed to nickel-sulfide (NiS) inclusions, which cannot be avoided during the 

production of glass. These particles are particularly present in the internal core of the glass pane and, by 

increasing the temperature, they are able to expand in volume due to a change of phase. The combination of 

tensile stresses in the core of the glass pane and the volume expansion of NiS inclusions could lead to the 

spontaneous failure of fully tempered glass.  

The risk of spontaneous failure cannot be totally eliminated, but only reduced, by means of the heat-soak test 

which can show the presence of nickel-sulfide particles by slowly heating glass and maintaining the 

temperature for several hours. If NiS inclusions are present inside, the glass will break [22]. 

 

2.6.4 Chemically toughened glass 

Chemically toughened glass is a typology of glass that is rarely used in structural applications, which has not 

undergone thermal tempering process but chemical tempering. This alternative process involves the use of 

potassium ions, which are 30% bigger than sodium ions present on the surface of the glass pane, and during 

this process glass is submerged in a bath of potassium salt or potassium nitrate at 300°C. The bath is not hot 

enough to melt the glass, but the relatively high temperature allows the potassium nitrate to react with the 

surface of the glass, causing an exchange on the surface of sodium ions by potassium ions. 

 
20 Figure from: N. Pourmoghaddam, M. A. Kraus, J. Schneider, G. Siebert, ‘Relationship between strain energy and fracture pattern 
morphology of thermally tempered glass for the prediction of the 2D macroscale fragmentation of glass’, Glass Struct. Eng., Vol.4, 
pages:257-275, 2019, DOI:10.1007/s40940-018-00091-1 
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As previously said, since potassium ions are bigger in volume than sodium ions, they are able to “compact” 

the crystal lattice, thereby strengthening the glass and creating large compressive stresses on both the 

surfaces [27]. 

The compressive state in chemical tempering affects only a very thin depth zone near the glass surface 

compared to thermal tempering process, as shown in Figure 2-17 [22]. This also implies that superficial 

microcracks can easily reach the glass zone subjected to tensile stresses, leading to failure.  

Since the compressive state of stress affects only a very shallow zone through the thickness, the contribution 

of strain energy that could be stored is scarce. Considering that, rather than shattering into many small pieces, 

chemically toughened glass will break into larger shards that are not as sharp as untreated glass [27].  

 

Figure 2-17: Comparison between thermal tempering stresses and chemical tempering one 21. 

2.7 Laminated glass 

Monolithic glass panes, due to their brittle behaviour after failure, cannot be used to make structural 

elements [28]. So, to improve post-breakage performance, the idea behind laminated glass is to take 

advantage of an assembly of glass panes and some polymeric interlayers which, in case of glass failure, are 

still able to keep together the glass fragments without spreading. Another advantage is related to the 

presence of several glass plies: if one ply were to break, there would be at least another one to carry the 

loads, still ensuring sufficient load-carrying capacity. 

Laminated glass (LG) consists of two or more glass panes of equal or unequal thickness bonded together by 

some transparent plastic interlayer (see Figure 2-18) [22]. A particular manufacturing process, called 

lamination process, is needed to produce it. Glass panes and interlayers are introduced in an autoclave which 

can create vacuum, allowing it to develop a perfect adhesion between glass and interlayer. Then, the laminate 

is heated and pressed, achieving an edge seal, in order to prevent ambient air to enter again into the laminate 

[29].  

 

Figure 2-18: Cross section of laminated glass 22. 

 
21 Figure from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 
22 Figure from: https://dynamicfenestration.com/laminated-glass-benefits/ (Accessed Jan. 12,2024). 
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2.7.1 Typology and properties of polymeric interlayers 

Six types of polymeric material are typically used to produce interlayers: Polyvinyl Butyral (PVB) which is the 

most common for laminated glass, Ionoplastic polymers, Thermoplastic Polyurethane (TPU), Ethylene Vinyl 

Acetate (EVA) and Polyester (PET).  

Regarding PVB, the thickness of a single foil is 0,38 mm but, normally, two (0,76 mm) or four (1,52 mm) foils 

form one PVB interlayer [22]. In addition, in case of heat strengthened glass, it is possible to use even more 

than four PVB foils because of the non-perfectly flatness of the glass surface. 

As mentioned before, polymeric interlayers can be categorized as a viscoelastic material. This type of material 

exhibits mechanical properties intermediate between those of viscous liquid and those of elastic solid. When 

a viscoelastic material is subjected to an applied stress, the response is composed of an elastic deformation 

(which stores energy) and a viscous flow (which dissipates energy) [30]. The physical properties of viscoelastic 

materials are not constant over the time, but they could strongly vary according to the load duration and the 

temperature. For instance, at room temperature, PVB is comparatively soft with an elongation at breakage of 

more than 200% [22]. 

Some typical physical properties of PVB interlayer can be read in Table 2-4. 

Table 2-4: Physical properties of PVB interlayer 23. 

Property Notation 
Unit of 

measurement 
PVB 

Density ρPVB kg/m3 1070 

Shear modulus G GPa 0-4 

Poisson's ratio ν - ≈ 0,50 

Coefficient of 
thermal 

expansion 
αT 10-6 K-1 80 

Tensile 
strength 

ft,PVB MPa ≥ 20 

Elongation at 
failure 

εt % ≥ 300 

 

The most important mechanical parameter characterizing PVB interlayer is undoubtedly its shear modulus G, 

which varies within a range between 0 GPa and 4 GPa. The large variability of shear modulus is attributable 

to the physical properties, which in turn, depend on load duration and temperature. Figure 2-19 shows the 

evident dependency of the shear modulus G from the load duration time for two different temperatures, in 

the case of PVB and ionoplast interlayers. 

The knowledge of the shear modulus is fundamental in the design of laminated glass, since it affects the 

bonding between the layers, and consequently, the stress profile through the thickness of the entire pane. 

 

 
23 Table from: M. Haldimann, A. Luible, M. Overend, ‘Structural Use of Glass’, IABSE - AIPC – IVBH, 2008. 

https://www.sciencedirect.com/topics/materials-science/viscous-flow
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Figure 2-19: Shear modulus variation as function of the load duration for PVB (Butacite®) and ionoplast (SentryGlas®) 
interlayers 24. 

2.7.2 Structural behaviour of laminated glass 

The structural behaviour of laminated glass depends on the type(s) of glass used and on the properties of the 

interlayer [17]. Depending on the coupling degree between the glass plies, provided by the interlayer, it is 

possible to distinguish between two limit behaviours: monolithic limit and layered limit. 

In the case of monolithic limit behaviour, the interlayer is characterized by a high- tending to infinity - value of 

the shear modulus G, which implies full bonding between the layers, and so the interlayer is able to 

completely transfer shear stresses from the top layer to the bottom one. In this case, the laminated glass 

element behaves as a monolithic body in which no sliding between the layers is allowed. The stress profile 

through the thickness of the layers will be therefore unique and bi-triangular. Generally, for PVB and resin 

interlayer materials, short-term out-of-plane loads can be resisted by both laminates acting compositely, 

achieving a monolithic behaviour [17], as shown in Figure 2-20. 

 

Figure 2-20: Stress profile due to bending stresses in case of monolithic limit 25. 

In the case of layered limit behaviour, on the other hand, the shear stiffness of the interlayer is considered so 

low, such that, there is no connection at all between layers and interlayer, i.e. no shear coupling, thereby each 

glass ply behaves as if it was alone. The stress profile through the thickness of the layers is bi-triangular, but, 

no longer unique for the entire element: each layer is featured by its own stress profile (see Figure 2-21). 

 
24 Figure from: C. O’ Regan and Institution of Structural Engineers, ‘Structural Use of Glass in Buildings (2nd edition)’, IStructE Ltd, 2015. 
25 Figure from: K. Langosch and M. Feldmann, ‘Design of Pane-Like Laminated Glass Columns’, Structures and Buildings Vol. 169, Jun. 

2016, pages:403–415, DOI:10.1680/jstbu.13.00117. 
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Figure 2-21: Stress profile due to bending stresses in case of layered limit 26. 

The actual structural behaviour of laminated glass is however in between these two limit conditions, namely 

partial composite effect, since the polymeric interlayer is not able to provide a full adhesion between the 

layers (see Figure 2-22). 

 

Figure 2-22: Stress profile due to bending stresses in case of partial composite effect 27. 

2.8 Material properties 

The basic soda lime silica glass properties used in design process are specified in UNI CEN/TS 19100-1: 2021, 

Section 5.1 Technical Specifications [31] and are shown in Table 2-5. 

Table 2-5: Physical and mechanical properties of soda lime silicate glass 28. 

Property Notation 
Unit of 

measurement 
Soda lime silica 

glass 

Glass density ρg kg/m3 2500 

Young's modulus E MPa 70000 

Poisson's ratio ν - 0,23 

Coefficient of 
linear thermal 

expansion 
αT 10-6 K-1 9 

 

 

 

 

 
 
27 Figure from: K. Langosch and M. Feldmann, ‘Design of Pane-Like Laminated Glass Columns’, Structures and Buildings Vol. 169, Jun. 

2016, pages:403–415, DOI:10.1680/jstbu.13.00117. 
28 Table from: UNI CEN/TS 19100-1: 2021, page:18, 2021. 
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In addition, the Standard UNI CEN/TS 19100-1: 2021 [31] also recommends, in the aforementioned 

paragraph, the values of characteristic bending strength for different typologies of glass, presented in Table 

2-6. 

Table 2-6: Characteristic strength of different glass types 29. 

Type of glass Notation 
Unit of 

measurement 
Characteristic 

strength 

Annealed 
(ANG) 

fg,k MPa 45 

Heat 
strengthened 

(HSG) 
fb,k MPa 70 

Thermally 
toughened 

(FTG) 
fb,k MPa 120 

Chemically 
toughened 

fb,k MPa 150 

 

2.9 Glass Standards 

In the last decades, glass has been used further and further in construction field as load-bearing element such 

as fins, glazing façades, walls and roofings. Structural applications of glass have led Competent Authority to 

initially develop and publish technical guidelines and manuals to allow engineers to perform structural 

verifications, but only later, some Technical Standards with the aim of guarantee certain levels of safety.  

A brief overview of the glass Standard used in this thesis is presented in this section. 

The European Technical Specifications UNI CEN/TS 19100-1: 2021 – “Design of glass structures” is subdivided 

into three parts. The first part introduces the basis of glass design and material such as glass properties, design 

limit states, design bending strength resistances and general structural provisions. The second and third parts 

aim to address the definition of the effective thickness, resistance and verifications at limit states of glass 

elements, respectively for, out-of-plane and in-plane loads. 

Historically, the presence of numerous national regulations about glass in buildings (see Figure 2-23)  - some 

of which are incomplete or contradictory – has often resulted in structural glass designs which can only be 

realised with special approvals [32]. It encouraged a more pan-European approach in structural glass design, 

similar to what has existed for other construction materials since the 1990s [32]. To harmonize the Standards 

and the design methods about glass, the European Commission gave a mandate to create a new generation 

of Eurocodes, including the creation of a new Eurocode for the Design of Glass Structures named CEN/TS 

19100 [32]. 

 

 
29 Table adapted from: UNI CEN/TS 19100-1: 2021, page:19, 2021. 
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Figure 2-23: General view of current European Standards related to glass in buildings 30. 

2.10 Global instability of in-plane loaded slender elements: flexural 

buckling phenomena 

The compressive strength of glass, as already mentioned, is significantly higher than its tensile strength and 

this has paved the way for glass structural applications in being used as columns, shear panels, beams and 

fins. Since glass elements are generally very slender, at least in one direction, they could undergo buckling 

phenomena and collapse by reaching earlier tensile strength rather than compressive one. 

The loss of stability of elastic equilibrium is commonly referred to as buckling and it is one of the three 

fundamental phenomena of structural collapse, the other two are general yielding and brittle fracturing [33].  

Buckling can be defined as the behaviour in which a structure or a structural element suddenly deforms in a 

(buckling) plane different to the original (pre-buckling) plane of loading and response [34].  

It should be emphasized that, unlike steel, in glass members buckling verification must be checked on the 

tension side. Buckling, in fact, can lead to failure because of tensile stresses which could overcome its bending 

strength. Conversely, buckling verification in steel members must be checked on the compressive side. 

According to bifurcation buckling models which are based on linear elastic stability theory, a geometrically 

straight and perfectly elastic member subjected to an increasing in-plane load will suddenly fail when the 

critical load is reached. The name bifurcation model stems from the fact that, at the beginning, the element 

is perfectly straight (without imperfections) and by increasing the in-plane load, no lateral displacement 

occurs. Keeping increasing the compressive load, bifurcation suddenly occurs when the critical load is reached 

and, after bifurcation, an instable path, i.e. buckling, is followed (see horizontal path n° 2 in Figure 2-24). 

Real members are not perfectly straight, but they are always characterized by geometric initial imperfections 

due to the industrial production processes. Therefore, in displacement vs axial load diagram, instead of 

starting from null initial deformations, the analysis of real members has to start from an initial displacement 

w0. It is possible to observe that the behaviour of a real member, in the aforementioned diagram, is non-

linear, asymptotically tending to the ideal behaviour of a perfect element (Figure 2-25). 

 
30 Figure from: M. Feldmann, M. Laurs, J. Belis et al., ‘The New CEN/TS 19100: Design of Glass Structures’, Glass Struct. Eng., Vol.8, 

pages:317-337, 2023, DOI: 10.1007/s40940-023-00219-y. 
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Figure 2-24: Behaviour of perfect and imperfect members under compressive loads. Based on [34]31. 

 

 

Figure 2-25: Non-linear behaviour of a real member in compression (solid curve) 32. 

2.10.1  Euler’s buckling theory 

Historically, analysing the problem of elastic equilibrium of a perfectly straight slender beam, the solution was 

derived by the mathematician Leonhard Euler in 1744 and is the elastic critical buckling load Ncr,EU ,also named 

Euler’s critical load. 

The Euler’s critical load is the load at which a member suddenly buckles in another plane with respect to the 

loading one. 

The Euler’s theory is based on some key assumptions: the material must be isotropic, homogeneous and 

linear elastic; the member must be perfectly straight, and the cross-section must be very small compared to 

the length of the member.  

Under these hypotheses, the Euler’s critical load reads: 

 
𝑁𝑐𝑟,𝐸𝑈 =  

𝜋2𝐸𝐼

𝐿𝑏
2     (2.1) 

 

 
31 Figure from: D. Sonck, ‘Global Buckling of Castellated and Cellular Steel Beams and Columns’, Ph.D. Thesis at Ghent University, page: 

51, 2014. 
32 Figure adapted from: A. Carpinteri, ‘Advanced Structural Mechanics’, CRC Press Taylor & Francis Group, 2016. 
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Where: 

Ncr,EU is the Euler’s buckling load. 
E is the Young’s modulus of the member. 
I is the moment of inertia. 
Lb is the free length of deflection of the member or buckling length. 

 

Lb is the distance between the deflection points and depends on the static scheme assumed for the member, 

as shown in Figure 2-26. 

 

Figure 2-26: Free length of deflection for different static schemes 33. 

It is possible to define the Euler’s critical pressure or critical stress (σcr) as: 

 
𝜎𝑐𝑟 =  

𝑁𝑐𝑟,𝐸𝑈

𝐴
   (2.2) 

Where A defines the cross-sectional area of the element. 

Then, by substituting (2.1) in (2.2), the equation holds in other form: 

 
𝜎𝑐𝑟 =

𝜋2𝐸𝐼

𝐿𝑏
2𝐴

= 𝜋2𝐸
𝜌2

𝐿𝑏
2 =

𝜋2𝐸

𝜆2
 (2.3) 

Where: 

𝜌 = √𝐼 𝐴⁄  is the radius of gyration of the cross-section. 

𝜆 = 𝐿𝑏 𝜌⁄  is the slenderness ratio. 

 

 
33 Figure from: A. Carpinteri, ‘Advanced Structural Mechanics’, CRC Press Taylor & Francis Group, 2016. 
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By plotting the Equation (2.3) for different values of slenderness ratio on a graph λ - σcr , the Euler’s hyperbola 

is obtained (see Figure 2-27) and it can be observed that, for very large values of slenderness ratio, the critical 

stress tends to zero – as expected for slender members – whereas for very low values of slenderness ratio, 

the critical stress tends to infinity. The critical stress, obviously, cannot tend to infinity since there is a limit 

represented by the material strength, thereby a cut-off must be introduced, and it corresponds to the yielding 

stress (fy). 

Figure 2-27 also shows the presence of two different failure zones: in the yielding zone, failure occurs when 

the yielding strength is exceeded whereas, in the buckling zone, failure occurs only if the slenderness ratio of 

the member is larger than the critical one, i.e. λlim, and at the same time, the critical pressure is smaller than 

the yielding stress. 

 

Figure 2-27: Euler's buckling curve and failure zones 34. 

As already stated, Euler’s hyperbola provides the theoretical behaviour of an element which is perfectly 

straight, without any initial geometric imperfection. But the effect of the imperfections has a relevant impact 

on the critical load, since real members buckle before reaching the Euler’s critical load. So, the actual 

behaviour of imperfect members is provided by the Johnson’s parabola, which represents a smooth transition 

between the two critical curves: Euler’s hyperbola and cut-off. Figure 2-28 shows the Johnson’s parabola 

(dotted curve) and the Euler’s buckling curve (solid curve). 

 

Figure 2-28: Buckling behaviour of imperfect members  35. 

 
34 Figure adapted from: https://fgg-web.fgg.uni-lj.si/~/pmoze/esdep/master/wg07/l0510.htm (Accessed Jan.30, 2025) 
35 Figure from: A. Carpinteri, ‘Advanced Structural Mechanics’, CRC Press Taylor & Francis Group, 2016. 

 

https://fgg-web.fgg.uni-lj.si/~/pmoze/esdep/master/wg07/l0510.htm
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3 GLASS DESIGN AND BUCKLING CALCULATION 

In this chapter, some peculiar features of glass design, such as the design strength and the concept of effective 

thickness are outlined, and subsequently, the problem of buckling for laminated glass. 

3.1 Design bending strength of glass 

According to the Standard UNI CEN/TS 19100-1 [31], the determination of glass bending strength (fg,d) is 

through a stress-based criterion and not applying fracture mechanics failure criteria, since the latter one is 

complex, and the size of the most critical cracks is currently unknown. 

The design value of glass strength fg,d is thus defined as: 

 
𝑓𝑔,𝑑 =  𝑘𝑒 ∙ 𝑘𝑠𝑝 ∙ 𝜆𝐴 ∙ 𝜆1 ∙ 𝑘𝑚𝑜𝑑 ∙

𝑓𝑔,𝑘

𝛾𝑀
+  𝑘𝑝 ∙ 𝑘𝑒,𝑝 ∙

𝑓𝑏,𝑘  −  𝑓𝑔,𝑘 

𝛾𝑝
 (3.1) 

Where: 

ke is the edge or hole finishing factor. 
ksp is the surface profile factor. 
λA is a factor which considers size effect. 
λ1 is another factor which considers size effect. 
kmod is the modification factor. 
fg,k is the characteristic bending strength of annealed glass. 
γM is the material partial safety factor. 
kp is the pre-stressing process factor. 
ke,p is the edge or hole pre-stressing factor. 
fb,k is the characteristic value of glass strength after a strengthening treatment. 
γp is the partial factor for pre-stress on the surface. 

 

It is noteworthy that the abovementioned formula is composed of a first term that is related to the 

characteristic bending strength of annealed glass (fg,k) and a second term which refers to the characteristic 

value of glass strength after a strengthening process (fb,k). Furthermore, the presence of various material and 

surface treatment factors is due to the brittle nature of glass. All the factors and their values present in the 

glass design bending strength formula are available in the Annex A of this document. 

3.2 Enhanced Effective Thickness Theory 

With the purpose of design, at least in a preliminary design stage, it could be convenient and simple to use 

the Enhanced Effective Thickness approach (EET) which was developed by L. Galuppi and G. Royer-Carfagni 

[35], and suggested in the Standard CENT/TS 19100. The effective thickness of a laminated glass plate is 

defined as the (constant) thickness of a monolithic plate that, under the same boundary and load conditions, 

presents a similar maximum stress or maximum deflection [35]. 

The Standard CEN/TS 19100-2 [36] provides two different formulas to compute the equivalent thickness for 

calculating out-of-plane bending stress of ply “i” (hef,σ,i)  and the equivalent thickness for calculating out-of-

plane bending deflection (hef,w). 
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The effective thickness for out-of-plane bending deflection hef,w  can be calculated as: 

 
  ℎ𝑒𝑓,𝑤 =  

√

1

𝜂

∑ ℎ𝑖
3 + 12 ∙ ∑ (ℎ𝑖 ∙ 𝑑𝑖

2)𝑛
𝑖=1

𝑛
𝑖=1

+
1 − 𝜂

∑ ℎ𝑖
3𝑛

𝑖=1

3       
(3.2) 

Where: 

η is the coupling parameter coefficient. 
hi is the nominal thickness of the i-th glass ply. 
di is the distance of the mid-plane of the i-th glass ply from the mid-plane of the laminated glass. 

 

For further details concerning coupling parameter η, please refer to Annex B. 

The effective thickness of the ply “i” of the laminated glass pane for out-of-plane bending stress calculation 

hef,σ,i can be calculated as follows: 

 
hef,σ,i =  

√

1

2 ∙ η ∙ |𝑑𝑖|

∑ hi
3 + 12 ∙ ∑ (hi ∙ di

2)n
i=1

n
i=1

+
ℎ𝑖

ℎ𝑒𝑓,𝑤
3

2  
(3.3) 

Where all the parameters have been already defined above. 

The geometrical parameters (hi and di) presented in the effective thickness formulas are shown in Figure 3-1: 

 

 

Figure 3-1: Geometrical parameters of a laminated glass cross-section 36. 

 

 

 

 

 

 

 
36 Figure from: UNI CEN/TS 19100-2: 2021, page:19, 2021. 
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3.3 Buckling load for laminated glass 

The elastic buckling load for laminated glass (Ncr,LG), as stated in Annex A of the Standard CEN/TS 19100-3 [37], 

can be computed using the Euler’s formula as: 

 
𝑁𝑐𝑟,𝐿𝐺 =  

𝜋2𝐸𝑔𝐼𝑧,𝑒𝑓𝑓

𝐿𝑏
2     (3.4) 

Where: 

Ncr,LG is elastic critical buckling load for laminated glass. 
Eg is the Young’s modulus of glass. 
Iz,eff is the effective moment of inertia about the minor or weak axis (z-axis). 
Lb is the buckling length. 

 

The buckling length (Lb) depends on the restraints of the glass element, e.g. for a simply supported static 

scheme, the buckling length corresponds to the entire length of the element itself, as shown in Figure 3-2: 

 

Figure 3-2: Buckling length of a simply supported glass element in compression 37. 

It is also necessary to compute the effective moment of inertia about the minor axis (Iz,eff) , whose formula is 

presented in Annex B of the Standard CEN/TS 19100-3 [37]. 

If the shape of the lateral deflection component is sinusoidal, the effective moment of inertia may be 

calculated for a symmetric double or triple layered laminated cross-section as follows [37]: 

 
𝐼𝑧,𝑒𝑓𝑓 =

∑ 𝐼𝑖

1 −
𝛹 ∙ 𝛽 ∙ 𝐾𝑠

(
𝜋
𝐿)

2
+ 𝛼2

 
(3.5) 

 

 

 

 

 
37 Figure from: UNI CEN/TS 19100-3: 2021, Annex A, page:29, 2021. 
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All the parameters inside equation (3.5) are given in Table 3-1. 

Table 3-1: Parameters necessary to compute the effective moment of inertia Iz,eff 
38. 

Parameter Formula 

Ks 
𝐺𝐿

𝑡
 𝐵 

α2 
𝐾𝑠

𝐸
(

(𝑧1 + 𝑧2)2

𝐼1 + 𝐼2
+

1

𝐴1
+

1

𝐴2
) 

β 
(𝑧1 + 𝑧2)

𝐸𝑔(𝐼1 + 𝐼2)
 

Ψ (𝑧1 + 𝑧2) 

 

Finally, the parameters z1 and z2 can be seen in Figure 3-3: 

 

Figure 3-3: Geometrical parameters of a double-layered laminated glass cross-section 39. 

It is worth pointing out that, in the Standard UNI CEN/TS 19100, there are sometimes some inconsistencies 

between symbols used in formulas and those used in figures. To dispel the doubts, the parameters contained 

in Table 3-1 are the following: 

GL is the shear modulus of the interlayer and corresponds to G in this document. 
t is the thickness of the interlayer (most frequently it is denoted as hint). 
B is the width of the glass pane and corresponds to the symbol “b” of Table 3-1. 
Eg is the Young’s modulus of glass. 
z1 is the distance of the mid-plane of the glass ply 1 from the mid-plane of the laminated glass and 

corresponds to the symbol “d1” of Table 3-1. 
z2 is the distance of the mid-plane of the glass ply 2 from the mid-plane of the laminated glass and 

corresponds to the symbol “d2” of Table 3-1. 
I1 is the moment of inertia of glass ply 1. 
I2 is the moment of inertia of glass ply 2. 
A1 is the cross-sectional area of glass ply 1. 
A2 is the cross-sectional area of glass ply 2. 

 
38 Table from: UNI CEN/TS 19100-3: 2021, Annex B, page:31, 2021. 
39 Figure from: UNI CEN/TS 19100-3: 2021, Annex B, page:31, 2021. 
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4 SECOND-ORDER THEORY AND BUCKLING ANALYSIS 

This chapter is devoted to provide notions regarding initial imperfections of glass members, geometric 

nonlinearity and buckling analysis. 

4.1 Effect of initial imperfections 

Glass, similar to other materials, is characterized by having initial imperfections due to manufacturing 

processes. For this reason, some specific tolerances, in terms of thickness of the pane, must be respected. 

For instance, the tempering process used to produce heat strengthened and fully tempered glass induces a 

small curvature of the external surface of the plate. The size of deformations depends on type of glass (coated 

glass, patterned glass etc.), on glass dimensions and aspect ratio, on nominal thickness and on type of 

tempering process (vertical or horizontal) [38]. As shown in Figure 4-1, thermal treatments can result in four 

types of imperfections: global bow that is the overall curvature of the pane (a), roller wave distortion in which 

the surface is not perfectly flat, but some “waves” are present (b), deformation of edges (c) and local bow (d). 

 

Figure 4-1: Types of initial imperfections affecting glass elements 40. 

Furthermore, an extended experimental campaign performed by Belis et al. [39] on 312 glass beams with 

variable length, height, thickness and glass type highlighted that the sinusoidal shape describes the initial 

imperfection in monolithic or laminated glass beams with a good level of accuracy [40]. 

The Standard for glass structures CEN/TS 19100-3:2021 requires that for in-plane loaded glass components, 

in the structural analysis, the effects of imperfections must be considered since the buckling behaviour may 

be influenced by geometrical and material imperfections [37]. So, according to the aforementioned Standard, 

initial imperfections can be replaced by one basic imperfection e0, whose formula reads: 

 

𝑒0 = √𝑒0,𝑙𝑒𝑛𝑔𝑡ℎ
2 + 𝑒0,𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

2  (4.1) 

Where: 

e0,length considers the imperfection concerning the length of the element. 
e0,installation considers the deviation of the glass pane from unexpected eccentric loads. 

 
40 Figure from: Ondrej Pesek et al., ‘On the Problem of the Imperfections of the Structural Glass Members Made of Flat Glass’, IOP 

Conf. Ser.: Mater. Sci. Eng. 471 052042, pages:2-3, 2019, DOI: 10.1088/1757-899X/471/5/052042. 

 

http://dx.doi.org/10.1088/1757-899X/471/5/052042
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The two parameters e0,length and e0,installation assume different values according to the type of buckling 

phenomena, and for flexural buckling, it holds: 

Table 4-1: Calculation of basic imperfection parameter e0 
41. 

Type Buckling length Lb e0,length e0,installation 

Flexural buckling 
and plate buckling 

Distance of inflexion points 
in the relevant critical 

mode in direction of the 
applied load 

𝐿𝑏

333
 

ℎ𝑒

2
 

 

4.2 Geometric nonlinearity 

As basic assumption, Technical Specifications UNI CEN/TS 19100 -1 states that the structural analysis of a glass 

element must be performed using an appropriate structural model with adequate boundary conditions and 

loads and that is able to reflect glass structural behaviour [31]. One relevant aspect characterizing glass 

behaviour is geometric nonlinearity (also called second-order effects), which could affect its structural 

performance.  

Three different forms of nonlinearity exist: material, geometric and finally boundary (or contact) nonlinearity. 

In this paragraph, only geometric nonlinearity is going to be explained, as it is of interest regarding the 

problem of global instability affecting structural glass. The term geometric nonlinearity refers to the deviation 

from linearity in the geometry of a structure when subjected to significant loads or displacements, and this 

deviation arises due to the large rotations, translations, and strains experienced by the structure [41]. This is 

the case of glass, in fact, glass elements are generally slender, at least in one dimension, and the polymeric 

interlayer is quite compliant such that they can undergo large deflections.  

4.3 Linear buckling analysis (LBA) 

Linear buckling analysis (LBA) or Eigenvalue analysis is a technique that can be applied to relatively "stiff" 

structures to estimate the maximum load that can be supported prior to structural instability or collapse [42]. 

It is indeed defined as materially linear to mean that the stress-strain law is linear and also geometrically 

linear, i.e. no imperfections.  

In this kind of analysis, it is only possible to predict the theoretical value of the elastic buckling load, which 

will coincide with that obtained by means of Euler’s formula, as it does not take into consideration any sort 

of material and geometric imperfection or nonlinear behaviour.  

A benefit of using linear buckling analysis consists in lower computational costs compared to nonlinear 

analysis. However, on the other hand, it must be recalled that LBA is less conservative, as it will overestimate 

the overall structural capacity by not accounting for imperfections. 

 

 

 

 
41 Table from: UNI CEN/TS 19100-3: 2021, page:17, 2021. 
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Linear buckling analysis is an eigenvalue problem which can be stated as: 

 

([𝐾] + 𝐵𝐿𝐹𝑖[𝐾𝑔]){𝛷𝑖} = {0} (4.2) 

Where: 

 [K]  is the stiffness matrix. 

 BLFi is the eigenvalue, also named buckling load factor multiplier. 

[Kg] is the stress stiffness matrix. 

{Φi} is the eigenmode or buckling mode shape, i.e. normalised displacement. 

 

The basic assumptions of linear buckling analysis are the following: the linear stiffness matrix [K], which relates 

the applied forces to the nodal displacements, does not change prior to buckling and the stress stiffness 

matrix [Kg] is simply a multiple of its initial value. Accordingly, LBA can only be used to predict the load level 

at which a structure becomes unstable, considering that pre-buckling displacements have negligible influence 

on the structural response (i.e. hypothesis of small displacements is still valid) [42]. Since displacements are 

small, changes in the geometry can be considered negligible, and therefore it is possible to impose equilibrium 

equations considering the undeformed configuration of the element. 

In every buckling analysis on a FE software, both linear and nonlinear, an iterative algorithm is used to extract 

eigenvalues and eigenmodes [43] , and so, the critical buckling load Ncr,FEA can be also defined as follows: 

 

𝑁𝑐𝑟,𝐹𝐸𝐴 = 𝑃0 ∙ 𝐵𝐿𝐹 (4.3) 

Where: 

Ncr,FEA is the buckling load obtained from FE analysis. 

P0 is the initial applied compressive load. 

BLF is the eigenvalue or buckling load factor multiplier. 

 

The eigenvalue is, in effect, a safety factor for the structure against buckling. An eigenvalue less than 1,0 

indicates that a structure has buckled under the applied loads, conversely an eigenvalue greater than 1,0 

indicates that the structure will not buckle [43]. 
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4.4 Geometrically nonlinear buckling analysis (GNA) 

In nonlinear analysis there is the possibility of accounting for material and/or geometric nonlinearity (second-

order effects), which are always present in reality. In real and slender members, due to nonlinearity, buckling 

occurs earlier than classic Euler’s buckling load predicts because the strength of the member is reduced (see 

Figure 4-2).  

 

Figure 4-2: Linear vs nonlinear buckling 42. 

In nonlinear problems the relationship between load and displacement is usually nonlinear and the stiffness 

matrix is not constant, but it is continuously updated at each step. Since displacements, in nonlinear analysis, 

may be large - the assumption of small displacements or similarly small rotations is no longer valid- then 

equilibrium equations must be imposed in the deformed state and by doing so, additional bending moments, 

called second-order moments, will arise with the effect of reducing internal stresses (see Figure 4-3). This is 

beneficial, since the actual stress will be less if compared to the one computed with linear analysis and also 

allows to optimize the design, avoiding being too overly conservative. 

 

 

Figure 4-3: Second order bending moments in a compressed cantilever beam 43. 

 

 

 

 
42 Figure from: https://www.researchgate.net/post/Arc-length-method-for-non-linear-buckling-Nonlin-FEM-in-ANSYS-Is-
there-any-way-I-can-continue-the-Simulation-beyond-the-critical-point (Accessed Jan. 28, 2025). 
43 Figure from: https://axisvm.eu/docs/sources-of-non-linearity/ (Accessed Jan. 19,2025). 

https://www.researchgate.net/post/Arc-length-method-for-non-linear-buckling-Nonlin-FEM-in-ANSYS-Is-there-any-way-I-can-continue-the-Simulation-beyond-the-critical-point
https://www.researchgate.net/post/Arc-length-method-for-non-linear-buckling-Nonlin-FEM-in-ANSYS-Is-there-any-way-I-can-continue-the-Simulation-beyond-the-critical-point
https://axisvm.eu/docs/sources-of-non-linearity/
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4.4.1 Geometrically nonlinear problem in monolithic glass 

Let’s consider the problem of buckling in monolithic glass columns (1D element) introducing second-order 

effects, as illustrated in Figure 4-4. 

 

Figure 4-4: Simply supported column with initial imperfection and subjected to compressive force  44. 

The total deflection in the middle of a bar of length Lb pinned at both ends, with an initial sinusoidal 

imperfection at midspan einitial and axial compressive load N, can be written as: 

 

𝑤𝑡𝑜𝑡𝑎𝑙(𝑥) = 𝑤(𝑥) + 𝑒(𝑥) =  𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙
1

1 −
𝑁

𝑁𝑐𝑟,𝑀𝐺

∙ sin (
𝜋𝑥

𝐿𝑏
) 

(4.4) 

Where: 

wtotal (x) is the total deflection along the length of glass column. 
w(x) is the bending deflection along the length of glass column due to the axial force. 
e(x) is the initial (effective) imperfection along the length of glass column. 
einitial is the initial (effective) imperfection in the middle of glass column. 
N is the applied compressive load. 
Ncr,MG is the Euler’s critical buckling load for monolithic glass. 
Lb is the buckling length of glass column. 
x is the coordinate along length of glass column. 

 

By enforcing the equilibrium in the deformed configuration between the reactive moment, which is the 

bending moment due to curvature of the glass column w(x), and the external moment that considers the 

contributions of einitial and w(x), a 2nd order differential equation is obtained: 

 

𝐸𝑔𝐼𝑀𝐺

𝑑2𝑤(𝑥)

𝑑𝑥2
+ 𝑁 [𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 sin

𝜋𝑥

𝐿𝑏
+ 𝑤(𝑥)] = 0 (4.5) 

 
44 Figure adapted from: K. Langosch and M. Feldmann, ‘Design of Pane-Like Laminated Glass Columns’, Structures and Buildings, Vol. 

169 Issue SB6, pages:403–415, 2016, DOI: 10.1680/jstbu.13.00117. 
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Where: 

Eg is the Young’s modulus of glass. 
IMG is the moment of inertia of monolithic glass cross-section.  

 All the other parameters have been previously defined. 

It is now possible to compute normal stresses σ(x) by means of Navier’s formula: 

 

𝜎(𝑥) =  
𝑁

𝐴𝑀𝐺
±

𝑁

𝑊𝑀𝐺
∙ (𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑤(𝑥)) =  

𝑁

𝐴𝑀𝐺
± [

𝑁 ∙ 𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑊𝑀𝐺
∙

1

1 −
𝑁

𝑁𝑐𝑟,𝑀𝐺

∙ sin (
𝜋𝑥

𝐿𝑏
)] (4.6) 

Where: 

AMG is the cross-sectional area of monolithic glass. 
WMG is the elastic section modulus of monolithic glass.  

All the other parameters have been already defined. 

Buckling verification must be then checked for both compressive and tensile cases: it is possible to compute 

two acting maximum stresses by means of Navier’s formula: one positive (σ+), due to the positive contribution 

of bending moment, and one negative (σ–), due to the negative contribution of the compressive load. 

Immediately after, the two maximum stresses can be compared with respect to glass tensile strength (fg,d) 

and glass compressive strength (fu,c). If the two acting maximum stresses σ+ and σ– are lower than the tensile 

and compressive glass strength, then, buckling verification is fulfilled, as shown in Table 4-2. 

Anyway, since the compressive glass strength is much higher than the tensile one, the attention is usually 

addressed to the buckling verification towards tensile glass strength. 

Table 4-2: Buckling verification. 

Buckling verification 

Tensile case Compressive case 

𝜎+ ≤  𝑓𝑔,𝑑 |𝜎−| ≤  𝑓𝑢,𝑐 

4.4.2 Geometrically nonlinear analysis in FEA 

In the Finite Element software, LUSAS, four different geometrically nonlinear formulations are available: Total 

Lagrangian formulation, Updated Lagrangian formulation, Eulerian formulation and finally Co-rotational 

formulation. 

In Total Lagrangian formulation all the variables are referred to the undeformed configuration while in the 

Updated formulation they are referred to the configuration obtained at the last converged solution. Both are 

based on Green-Lagrange strains which are only applicable to small strains. 

A Lagrangian approach tends to be preferred in structural problems where it is required to monitor the path 

of a particular particle through space.  

In the Eulerian formulation all variables are referred to the deformed configuration and is currently only 

available with 2D and 3D continuum elements. It is applicable for large direct strains but is less accurate if 
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large shear strains are present. In the past, this has been preferred for fluid problems where it is required to 

monitor the path of fluid through a particular control volume and not the path of one particle in its entirety. 

Finally, in the co-rotational formulation, all strains are computed in the co-rotational local coordinate system 

which follows the element as it deforms. This approach, used in nonlinear analyses performed in this thesis, 

is generally applicable but is especially useful in geometrically nonlinear problems involving large rotations. 

At present, this formulation is available for beam elements (1D) and for all 2D and 3D continuum elements 

including the solid composite elements [42]. 

Nonlinear analysis is defined as an iterative procedure in which, differently from linear analysis, the external 

load is not applied all at once but for incremental steps and this is basically attributable to the stiffness. The 

geometric stiffness is expressed as a function of the displacement, which is then affected by the geometric 

stiffness again [43]. So, the stiffness matrix may change at each load increment and must be repeatedly 

updated. For that reason, to comply with static equilibrium between the external load and the internal stress 

and strain fields, the load has to be applied gradually over a certain number of increments. Within each load 

increment a linear prediction of the nonlinear response is initially made and subsequent iterative corrections 

are performed in order to restore equilibrium by the elimination of "out of balance" forces. The iterative 

corrections refer to various convergence criteria and such a solution procedure is commonly referred to as an 

incremental-iterative (or predictor-corrector) method [44]. 

In nonlinear analysis, the widely used iterative procedure to reach convergence is the so-called Newton-

Raphson Iteration Method. This procedure uses tangent stiffness (KT) to compute for each load step the 

incremental displacement (Δa) and the corresponding iterative out-of-balance residual force (Ψa) to restore 

the equilibrium with the given external load (R). Being an iterative process, it will end when, within each load 

increment, the load level remains constant. In that sense, this iteration method is also named as constant 

load level incrementation procedure [44]. An illustration of how this kind of iteration procedure works is given 

in Figure 4-5. 

 

Figure 4-5: Newton-Raphson Iteration Method 45. 

 
45 Figure from: https://www.lusas.com/user_area/theory/Nonlinear_Iterative_Procedures.html (Accessed Jan. 30,2025). 
 

https://www.lusas.com/user_area/theory/Nonlinear_Iterative_Procedures.html
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5 METHODOLOGY 

This section presents the basics of Finite Element Method (FEM), and the characteristics of two-dimensional 

(2D) and three-dimensional (3D) glass models, built up in the Finite Element software LUSAS. 

5.1 Basics of Finite Element Method (FEM) 

Every phenomenon in nature can be described with the aid of the laws of physics, in terms of algebraic, 

differential or integral equations. While the derivation of governing equations for most problems is not unduly 

difficult, their solution by exact methods of analysis is a formidable task [45].  

To simplify the problem and for the purpose of deriving approximate but at the same time accurate solutions, 

a numerical solution method can be used and the most frequently used in various types of engineering 

problems is the Finite Element Method. 

The first step is to know which are the governing equations and the boundary conditions of the physical 

problem, then it is necessary to discretize the entire domain into smaller elements and this essential process 

is called meshing (see Figure 5-1). In fact, a continuum body is characterized by an infinite number of degrees 

of freedom (DoFs) in real life and this results in the impossibility of solving all the equations. The meshing 

technique allows the body to be subdivided into finite elements, each of them is connected to the others by 

means of specific points, called nodes. Each node can have different displacements, and then nodal 

displacements are the unknowns of the problem. While performing the meshing process, care should be 

taken to make sure that enough elements are included to capture the behaviour of the solution over the 

entire domain. Areas of particular interest and care are located where critical values are expected, locations 

with large gradients, locations where the geometry changes suddenly and locations where boundary 

conditions and loads are applied [46]. 

As a general rule, the more refined is the mesh size, the more the solution will be accurate but, on the other 

hand, by considerably increasing the mesh size it will result in longer computational time.  

 

Figure 5-1: Meshing process of a Finite Element Model 46. 

  

 
46 Figure from: https://it.mathworks.com/discovery/finite-element-analysis.html (Accessed Jan. 30,2025). 
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Another key aspect in meshing is represented by the choice of the appropriate element type depending on 

the type of body to be modelled (1D, 2D or 3D) and the prevalent mechanical behaviour of it. 

Once the meshing process is completed, the finite equations are developed for each individual element by 

using a shape function which is able to approximate the value of the unknown variable in each element. The 

form of the algebraic equations for every element will be the same and differences from one element to the 

next will be due to changes in element size and properties [46]. 

The next step is the assemblage: it is necessary to move from element equations to global equations and to 

this end, element equations are assembled to form a global system of equations. Then, it is possible to enforce 

the boundary conditions of the problem which is helpful for reducing the assembled global equations into 

solvable size, since it involves substituting some known values of the parameter under consideration at some 

known points into the assembled global equations [46]. At the very end, the global system of equations is 

solved in specific points of the domain, called Gauss points, in which the numerical integration is performed. 

5.2 2D Finite Element models 

In order to simulate the buckling behaviour of laminated glass panels subjected to compressive in-plane 

loading, 2D Finite Element models were built in the commercial Finite Element software, LUSAS, in the 

undeformed configuration (perfectly flat) to perform eigenvalue analysis (LBA) and in the deformed one (with 

an initial geometric imperfection) to perform geometrically nonlinear buckling analysis (GNA). 

5.2.1 2D models: element types 

Each 2D model consists of semiloof curved thin shell elements (QSL8), which are useful in modelling the 

response of elements that are characterised by a thickness that is considerably smaller than the other two 

dimensions. Shell elements are, able to describe the real flexural stiffness of a bidimensional element and the 

effective thicknesses of the layers constituting the laminated glass beam [40]. 

QSL8 elements can be used for both flat and curved shell geometries. This type of quadrilateral elements 

consists of eight nodes (see Figure 5-2) and the interpolation order was selected as quadratic. The degrees of 

freedom (DoF) at the nodes are the displacements at corner nodes and the displacements and loofs at the 

mid-side nodes. The element formulations are based on the Kirchhoff hypothesis for thin shells, namely that 

transverse shear is negligible. 

This kind of element type is also compatible with geometrically nonlinear formulations, in order to perform 

geometrically nonlinear buckling analysis (GNA). 

  

Figure 5-2: Semiloof curved thin shell elements (QSL8) 
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5.2.2 Geometric characteristics of flat and curved 2D models 

The laminated glass panels to be modelled have width (b) equal to 500 mm and buckling length (Lb) which is 

varied within a predetermined range: Lb = 2000 mm, 4000 mm, 6000 mm, 8000 mm. 

Also, three different thicknesses of laminated glass are considered in modelling process, as shown in Table 

5-1: 

Table 5-1: Different thicknesses of laminated glass plies under consideration in modelling stage. 

Case 

Thickness 
glass ply 1 

h1 

Thickness 
PVB 

interlayer 

hint 

Thickness 
glass ply 2  

h2 

Acronym 

(-) (mm) (mm) (mm) (-) 

A 10 1,52 10 10/1,52/10 

B 12 1,52 12 12/1,52/12 

C 14 1,52 14 14/1,52/14 

 

In Figure 5-3 it is possible to observe the different geometry of each laminated glass unit under consideration: 

 

Figure 5-3: Different arrangement of laminated glass units under analysis. From the left to the right: case A, B and C 47. 

Immediately after, for each case A, B and C, the shear modulus G of PVB interlayer is varied within the range: 

G = 0,01 MPa, 0,1 MPa, 1 MPa, 10 MPa. 

 
47 Figure adapted from: C. Amadio, C. Bedon, ‘Buckling verification of laminated glass elements in compression’, JCES, Vol. 1 Issue 3, 

pages:90-101, 2012, DOI: N/A. 
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5.2.3 Effective thickness calculation for flat and curved 2D models 

The thickness to be assigned as attribute in 2D numerical models is precisely the effective thickness for 

bending deflection hef,w  (see Section 3.2), since it can provide an accurate description of the element flexural 

stiffness under analysis.  

The effective thickness for calculating out-of-plane bending deflection (hef,w) is the same for both flat and 

curved 2D-FE models and can be computed, for each aforementioned case and for each shear modulus G 

(see Annex C).  

5.2.4 2D models: material parameters 

As regards material parameters, for all 2D models , glass has been considered as an isotropic material which 

behaves linearly elastic. So, it is characterized by a modulus of elasticity Eg = 70000 MPa and Poisson’s ratio ν 

= 0,23 MPa. Poly Vinyl Butyral (PVB) is a viscoelastic material, i.e. its shear modulus G strongly depends on 

many factors, such as load duration time and temperature. 

Nevertheless, also PVB has been described as a linear elastic material, characterized by “equivalent” 

mechanical properties able to take into account for the degradation of its shear stiffness G. In each simulation, 

Poisson’s ratio for PVB was fixed as ν = 0,498 [40]. 

Material parameters used for all the 2D numerical simulations are summarized in Table 5-2 and Table 5-3. 

Table 5-2: Material properties of annealed glass for 2D-FE models. 

Parameter 
Unit of 

measurement 
Annealed 

Glass 

Young’s 
modulus Eg 

MPa 70000 

Poisson’s ratio ν - 0,23 

Characteristic 
strength fg,k 

MPa 45 

 

Table 5-3: Material properties of PVB for 2D-FE models. 

Parameter 
Unit of 

measurement 
PVB 

Shear modulus 
G 

MPa 0,01 ≤ G ≤ 10 

Poisson’s ratio ν - 0,498 
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5.2.5 Meshing process 

As already said, mesh size is a prominent factor, because the more refined is the mesh size, the more the 

solution will be accurate and reliable but, at the same time, by considerably increasing the mesh density it 

will result in longer computational time.  

To be accurate, the mesh size is varied according to the buckling length (Lb) of the model.  

All data are reported in Table 5-4: 

Table 5-4: Mesh size selected for each 2D model. 

2D Model - 
Case 

Width model 
b 

Length model 
Lb 

Mesh size  
(along b - along Lb) 

(-) (m) (m) (m x m) 

2D_A 
 
  

0,5 2   0,1 x 0,06 

0,5 4   0,1 x 0,13 

0,5 6 0,1 x 0,1 

0,5 8 0,1 x 0,1 

2D_B 
 
  

0,5 2   0,1 x 0,06 

0,5 4   0,1 x 0,13 

0,5 6 0,1 x 0,1 

0,5 8 0,1 x 0,1 

2D_C 
 
  

0,5 2   0,1 x 0,06 

0,5 4   0,1 x 0,13 

0,5 6 0,1 x 0,1 

0,5 8 0,1 x 0,1 

 

As an example, in Figure 5-4 it is possible to take a look to the mesh used for a 2D model having length Lb = 4 

m. 

 

Figure 5-4: Mesh (0,1m x 0,13m) of a 4-meter length 2D model. 
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5.2.6 Boundary conditions and loading 

2D laminated glass models has been developed in the plane X-Y, on which shorter edges are set along X-axis 

while longer edges along Y-axis. The thickness of the model is defined along Z-axis. 

As regards boundary conditions (BCs), 2D Finite Element models are simply supported along shorter edges 

and free along longer edges. 

 

 

Figure 5-5: Simply supported boundary conditions along the shorter edge on which the compressive load is applied.      

 

    

Figure 5-6: Simply supported boundary conditions along the opposite shorter edge. 

A brief resume of the applied boundary conditions is available in Table 5-5: 

Table 5-5: Boundary conditions for 2D models. 

Edge Boundary conditions (BCs) 

Shorter (on which the load is applied) Fix ux , fix uz 

Shorter (the opposite one) Fix uy, fix uz 

Longer Free 

Longer Free 
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As regards loading conditions, a compressive linear load P0 = 5 kN/m = 5 N/mm is applied in the midplane of 

the plate model, as shown in Figure 5-7. 

 

Figure 5-7: Applied compressive load P0 = 5 kN/m. 

5.2.7 Overview of 2D flat models 

A general overview of 2D flat models (case C), built in the FE software LUSAS, is presented from Figure 5-8 to 

Figure 5-11. 

 
Figure 5-8: 2D flat model having length Lb= 2m (case C). 

 

Figure 5-9: 2D flat model having length Lb= 4m (case C). 
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Figure 5-10: 2D flat model having length Lb= 6m (case C). 

 

Figure 5-11: 2D flat model having length Lb= 8m (case C). 

5.2.8 2D curved models: initial geometric imperfection 

In order to carry out geometrically nonlinear buckling analysis (GNA), 2D FE-models with initial geometrical 

imperfection have been modelled. The initial or basic imperfection e0  is calculated for each case A, B and C 

in compliance with the Standard for glass structures CEN/TS 19100-3:2021 [36] (see Paragraph 4.1). 

Table 5-6: Basic imperfection e0 for case A. 

2D curved 
model – Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

(-) (mm) (mm) (mm) (mm) (mm) 

2D_A 

500 2000 6,01 10,76 12,32 

500 4000 12,01 10,76 16,13 

500 6000 18,02 10,76 20,99 

500 8000 24,02 10,76 26,32 
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Table 5-7: Basic imperfection e0 for case B. 

2D curved 
model – Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

(-) (mm) (mm) (mm) (mm) (mm) 

2D_B 

500 2000 6,01 12,76 14,10 

500 4000 12,01 12,76 17,52 

500 6000 18,02 12,76 22,08 

500 8000 24,02 12,76 27,20 

Table 5-8: Basic imperfection e0 for case C. 

2D curved 
model – Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

(-) (mm) (mm) (mm) (mm) (mm) 

2D_C 

500 2000 6,01 14,76 15,94 

500 4000 12,01 14,76 19,03 

500 6000 18,02 14,76 23,29 

500 8000 24,02 14,76 28,20 

 

All the other model characteristics – effective thickness, material parameters, mesh density, boundary 

conditions and applied compressive load – are the same as for 2D-FE flat models.  

5.2.9 Overview of 2D curved models  

A general overview of 2D curved models (case B), modelled in the FE software LUSAS, is presented from Figure 

5-12 to Figure 5-15. 

 

 

 

Figure 5-12: 2D curved model having length Lb= 2m (case B e0= 14,10 mm). 

 



Buckling resistance of laminated glass members in compression 

46 
 

 

Figure 5-13: 2D curved model having length Lb= 4m (case B e0= 17,52 mm). 

 

 

Figure 5-14: 2D curved model having length Lb= 6m (case B e0= 22,08 mm). 

 

Figure 5-15: 2D curved model having length Lb= 8m (case B e0= 27,20 mm). 

  



Buckling resistance of laminated glass members in compression 

47 
 

5.3 3D+shell Finite Element models 

In order to understand if there could be any considerable discrepancy in buckling behaviour compared to 2D 

models, also 3D+shell Finite Element models were set up in the Finite Element software LUSAS, considering  

since the beginning an initial geometrical imperfection (e0). 

Each 3D model consists of a PVB interlayer that is modelled by means of three-dimensional (3D) elements 

and a top and bottom glass ply, which can be described through bidimensional (2D) shell elements. In fact, 

shell elements are capable to properly simulate bending behaviour of glass panels, instead, PVB interlayer is 

only able to transfer shear stresses thus 3D elements are more suited. 

Since laminated glass panels to be modelled are characterized by the same boundary conditions at both the 

shorter edges, to simplify the modelling process and to reduce computational time, it is possible to model 

only a half of the panel by exploiting the symmetry of the problem. 

5.3.1 3D+shell model: element types 

To describe PVB film, three-dimensional elements with eight nodes (HXM8) as well as linear interpolation are 

chosen in LUSAS. HXM8 elements are characterised by three degrees of freedom (DoF) at each node: 

displacement along X-axis, along Y-axis and, finally, along Z-axis (see Figure 5-16). This kind of element type is 

also compatible for geometrically nonlinear formulations in order to perform geometrically nonlinear buckling 

analysis (GNA). 

The HXM8 element is chosen since it does not suffer from locking due to parasitic shear or when the material 

approaches the incompressible limit. 

 

Figure 5-16: 3D Solid Continuum Element with Enhanced Strains (HXM8). 

Glass plies are modelled by means of semiloof curved thin shell elements (QSL8), which have been already 

discussed in Section 5.2.1 of this document. 

5.3.2 Geometric characteristics of 3D+shell models 

3D FE-models are built up, as formerly done, for different lengths in a range: Lb = 2000 mm, 4000 mm, 6000 

mm, 8000 mm. In addition, three different thicknesses of glass plies (h1=h2 = 10mm, 12mm, 14mm) are 

considered during the modelling process of 3D+shells models, as shown in Table 5-9: 
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Table 5-9: Different thicknesses of glass plies to be considered in modelling process. 

Case 

Thickness 
top glass 

ply  

h1 

Thickness 
PVB 

interlayer 

hint 

Thickness 
bottom 
glass ply 

h2 

Acronym 

(-) (mm) (mm) (mm) (-) 

A 10 1,52 10 10/1,52/10 

B 12 1,52 12 12/1,52/12 

C 14 1,52 14 14/1,52/14 

 

Then, for each case study, the shear modulus G of PVB interlayer is varied within the range: G = 0,01 MPa, 0,1 

MPa, 1 MPa, 10 MPa.  

The creation of the 3D+shell model starts with the realization in the plane X-Y of a volume (PVB) having 

thickness (hint) , and then, the thickness of top and bottom glass ply is assigned to the top and bottom surfaces 

of the volume, respectively (see Figure 5-17).  

 

 

Figure 5-17: Cross-section of 3D+shell models. 

The assignment of the thickness for top and bottom glass plies is performed by setting in the FE software 

LUSAS an eccentricity along the Z-axis , ez , that is equal to half the thickness of the glass ply itself, as shown 

in Figure 5-18. 

         

Figure 5-18: Assignment of the eccentricity to the top glass ply on the left and to the bottom ply on the right, for case A. 
(Units of measurement are in meters in this figure). 
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Additionally, in order to properly apply the compressive load P0 = 5 kN/m on the midplane of top and bottom 

glass plies and also the boundary conditions, owing to modelling reasons, there was the need for “vertical” 

plate elements in the plane Y-Z, located at both the shorter edges of PVB volume, as illustrated in Figure 5-19. 

 

 

Figure 5-19: "Vertical" plates located at the shorter edges of the model. 

The “vertical” plates have been conceived to be significantly stiff, so that, they are made of glass and have the 

same thickness of the top and bottom glass plies, as illustrated in Figure 5-20. 

 

Figure 5-20: Thickness of vertical plates for case A. (Units of measurement are in meters in this figure). 

5.3.3 Meshing process 

As regards mesh size, it is crucial to have a sufficiently adequate mesh density, especially in 3D models, in 

order to provide convergence during linear and nonlinear buckling analyses and to capture as best as possible 

the behaviour of the element that is modelled. 

The mesh size, for 3D+shell models, is varied according to the buckling length Lb of the model.  

All data concerning the mesh density for each element of 3D models are reported in Table 5-10. 
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Table 5-10: Mesh size for each element constituting 3D+shell models. 
3

D
 M

o
d

el
 -

 C
as

e 

Width 
model 

b 

Length 
model 

Lb 
(half due to 
symmetry) 

Mesh size Mesh size Mesh size Mesh size 

Top glass ply Bottom glass ply  “Vertical” plates PVB 

(along b-along Lb) (along b-along Lb) (along b-along Lb) (along b-along Lb-through hint) 

(-) (m) (m) (m x m) (m x m) (m x m) (m x m x m) 

3D_A 
 
  

0,5 1 0,016 x 0,01 0,016 x 0,01 0,005 x 0,01 0,016 x 0,01 x 1,52e-3 

0,5 2 0,016 x 0,02 0,016 x 0,02 0,005 x 0,01 0,016 x 0,02 x 1,52e-3 

0,5 3 0,025 x 0,03 0,025 x 0,03   0,005 x 0,025 0,025 x 0,03 x 1,52e-3 

0,5 4   0,025 x 0,026   0,025 x 0,026   0,005 x 0,025   0,025 x 0,026 x 1,52e-3 

3D_B 
 
  

0,5 1 0,016 x 0,01 0,016 x 0,01 0,005 x 0,01 0,016 x 0,01 x 1,52e-3 

0,5 2 0,016 x 0,02 0,016 x 0,02 0,005 x 0,01 0,016 x 0,02 x 1,52e-3 

0,5 3 0,025 x 0,03 0,025 x 0,03   0,005 x 0,025 0,025 x 0,03 x 1,52e-3 

0,5 4   0,025 x 0,026   0,025 x 0,026   0,005 x 0,025   0,025 x 0,026 x 1,52e-3 

3D_C 
 
  

0,5 1 0,016 x 0,01 0,016 x 0,01 0,005 x 0,01 0,016 x 0,01 x 1,52e-3 

0,5 2 0,016 x 0,02 0,016 x 0,02 0,005 x 0,01 0,016 x 0,02 x 1,52e-3 

0,5 3 0,025 x 0,03 0,025 x 0,03   0,005 x 0,025 0,025 x 0,03 x 1,52e-3 

0,5 4   0,025 x 0,026   0,025 x 0,026   0,005 x 0,025   0,025 x 0,026 x 1,52e-3 

 

5.3.4 3D+shell models: initial geometric imperfections 

In order to carry out geometrically nonlinear buckling analysis (GNA), 3D+shell models have been modelled 

taking into account the initial imperfection of the panel. The initial or basic imperfection (e0)  is calculated for 

each case A, B and C in compliance with the Standard for glass structures CEN/TS 19100-3:2021 [36] (see 

Paragraph 4.1). 

Table 5-11: Basic imperfection e0 for case A. 

3D model – 
Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

(-) (mm) (mm) (mm) (mm) (mm) 

3D_A 

500 2000 6,01 10,76 12,32 

500 4000 12,01 10,76 16,13 

500 6000 18,02 10,76 20,99 

500 8000 24,02 10,76 26,32 
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Table 5-12: Basic imperfection e0 for case B. 

3D model – 
Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

(-) (mm) (mm) (mm) (mm) (mm) 

3D_B 

500 2000 6,01 12,76 14,10 

500 4000 12,01 12,76 17,52 

500 6000 18,02 12,76 22,08 

500 8000 24,02 12,76 27,20 

Table 5-13: Basic imperfection e0 for case C. 

3D model – 
Case 

Width model 
b 

Length model 
Lb 

e0,length e0,installation e0 

- (mm) (mm) (mm) (mm) (mm) 

3D_C 

500 2000 6,01 14,76 15,94 

500 4000 12,01 14,76 19,03 

500 6000 18,02 14,76 23,29 

500 8000 24,02 14,76 28,20 

5.3.5 3D+shell models: boundary conditions and loading 

3D laminated glass models are developed in the plane X-Y, on which shorter edges are set along Y-axis while 

longer edges along X-axis. The thickness of the model is defined along Z-axis. As already mentioned, taking 

advantage of the symmetry of the problem, only one half of the 3D models has been built up in the Finite 

Element software LUSAS. Boundary conditions are applied along each longer side of the “vertical” plates, 

since it represents the midplane of top and bottom glass plies, and then, it is as if boundary conditions are 

directly applied to the midplane of the plies. 

So, the shorter edge of the 3D model, on which the compressive load is applied, is simply supported (see 

Figure 5-21). On the opposite edge of the model, symmetry boundary conditions are defined, i.e. a slider is 

introduced, which only allows vertical displacements along Z-axis (see Figure 5-22). 

 

 

Figure 5-21: Simply supported boundary conditions along the shorter edge, on which the compressive load is applied. 
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Figure 5-22: Symmetry boundary conditions (slider) along the opposite shorter edge. 

A brief resume of the applied boundary conditions is available in Table 5-14: 

Table 5-14: Boundary conditions for 3D models. 

Edge Boundary conditions (BCs) 

Shorter (on which the load is applied) Fix uy , fix uZ 

Shorter (symmetry BCs) Fix uX, fix uy, fix φy 

Longer Free 

Longer Free 

 

As regards loading conditions, two compressive linear loads P0,1 = P0,2 = 2,5 kN/m = 2,5 N/mm are applied 

along the longer sides of the “vertical” plates, which accounting for the midplane of two glass layers, as shown 

in Figure 5-23. 

 

Figure 5-23: Applied compressive loads P0,1 = P0,2 = 2,5 kN/m on 3D models. 

5.3.6 3D models: material parameters 

In each 3D model, glass has been considered as an isotropic material which behaves linearly elastic. So, it is 

characterized by a modulus of elasticity Eg = 70000 MPa and Poisson’s ratio ν = 0,23 MPa. Poly Vinyl Butyral 

(PVB) is a viscoelastic material, i.e. its shear modulus G strongly depends on many factors, such as load 

duration time and temperature. 

Nevertheless, also PVB has been described as a linear elastic material, characterized by “equivalent” 

mechanical properties able to take into account for the degradation of its shear stiffness G. In each simulation, 

Poisson’s ratio for PVB was fixed as ν = 0,498 [40]. 
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Glass and PVB properties used for 3D models are summarized in Table 5-15 and Table 5-16. 

Table 5-15: Glass parameters used in 3D models. 

Parameter 
Unit of 

measurement 
Annealed 

Glass 

Young’s 
modulus Eg 

MPa 70000 

Poisson’s ratio ν - 0,23 

Characteristic 
strength fg,k 

MPa 45 

 

Table 5-16: PVB parameters used in 3D models. 

Parameter 
Unit of 

measurement 
PVB 

Shear modulus 
G 

MPa 0,01 ≤ G ≤ 10 

Poisson’s ratio ν - 0,498 

 

5.3.7 Overview of 3D models 

A general overview of 3D+shell models (case A), modelled in the FE software LUSAS, is presented from Figure 

5-24 to Figure 5-27. 

 

 

Figure 5-24: 3D model having length Lb= 2m (case A e0= 12,32 mm). 

 

Figure 5-25: 3D model having length Lb= 4m (case A e0= 16,13 mm). 
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Figure 5-26: 3D model having length Lb= 6m (case A e0= 20,99 mm). 

 

 

Figure 5-27: 3D model having length Lb= 8m (case A e0= 26,32 mm). 
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6 RESULTS AND DISCUSSION 

This chapter introduces the results derived from numerical simulations on 2D and 3D Finite Element models, 

using the Finite Element software LUSAS. 

6.1 Overview of numerical analysis 

6.1.1 Solution strategies 

Three laminated glass units, having different thickness of glass plies, are chosen to be analysed (see Table 5-1) 

through linear and nonlinear buckling analysis. In order to investigate buckling behaviour, a parametric study 

involving different values of interlayer shear modulus and lengths of glass panels is conducted. The interlayer 

shear modulus G is varied within a pre-established range: G = 0,01 MPa, 0,1 MPa, 1 MPa, 10 MPa while the 

length of glass panel (Lb) ranges between 2m and 8m by multiples of two. 

From each buckling analysis, the buckling load factor (BLF) is obtained, then critical buckling loads (Ncr,FEA)  and 

critical buckling stresses (σcr,FEA) must be computed. 

Eigenvalue analysis (LBA), providing the theoretical elastic buckling load, is performed on FE-2D flat models. 

To validate models, numerical buckling loads are compared with those obtained by means of analytical 

approach, based on the calculation of buckling load according to Annex A of glass Standard CEN/TS 19100-3 

[37]. 

Geometrically nonlinear buckling analysis (GNA) later is carried out on FE-2D curved (i.e. with an initial 

geometric imperfection) and on 3D models. In this type of analysis, a constant load level incrementation is 

chosen with the aim of seeking nonlinear solution: starting load factor, maximum total load factor and 

maximum change in load factor must be introduced in nonlinear and transient LUSAS controls. The analysis 

procedure is iterative and requires reaching convergence at each load incrementation. 

As regards 2D-FE curved models, two approaches are engaged in nonlinear analysis. To derive critical buckling 

loads, the first solution strategy requires stopping the analysis at a specific load factor, when the characteristic 

bending strength of annealed glass (fg,k) is reached in one of the most stressed points of the panel. In the first 

approach, 2D models are characterized by the effective thickness for out-of-plane bending deflection (hef,w).  

The second solution strategy is based on limitation of transversal displacement on 2D models, having 

thickness equal to hef,w. To derive buckling loads, nonlinear analysis is stopped when a specific value of 

maximum displacement is reached and then buckling stresses can be calculated, considering the effective 

thickness for out-of-plane bending stresses (hef,σ,i). This second strategy solution is explained in Chapter 6.4 in 

detail.  

Following this, several buckling curves are plotted and compared for the abovementioned three different 

laminated glass units, as a function of interlayer shear modulus and slenderness ratio of the panel. And, in 

conclusion, design buckling curves are proposed with a view to assisting the pre-design stage of laminated 

glass columns. 
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6.1.2 2D and 3D models: detailing on analysis results 

This subsection is devoted to explain some specifics about critical buckling loads (Ncr,FEA)  and critical buckling 

stresses (σcr,FEA) ,obtained from linear and nonlinear buckling analyses conducted in the Finite Element 

software LUSAS, for each case study. All the findings are tabulated and presented in the Annex D of this 

document. 

Critical buckling loads are calculated according to Eq. (4.3) of Section 4.3. In the case of eigenvalue analysis 

(LBA), they are also compared against analytical buckling loads (Ncr,LG), calculated by means of analytical 

Euler’s formula (Eq. (3.4) Section 3.3).  

Then, critical buckling stresses σcr,FEA  are calculated according to Eq. (2.2) of Section 2.10.1, where Ncr,FEA is 

used instead of Ncr,EU  and the entire cross-sectional area Afull is introduced, accounting for the presence of top 

and bottom glass plies, as well as PVB interlayer. 

From tables shown in Annex D, it is noteworthy that numerical buckling loads Ncr,FEA , obtained through linear 

buckling analysis on 2D models, are completely aligned with those calculated by means of Euler’s formula 

adapted for laminated glass elements (Ncr,LG). In addition, for each buckling length of the panels (Lb), as the 

interlayer shear modulus G increases from 0,01 MPa to 10 MPa, the buckling load Ncr,FEA increases. And it was 

expected, since the structural behaviour of laminated glass panel tend to the monolithic limit when the 

interlayer shear modulus assumes large values. 

6.1.3 Introduction to buckling curves 

Numerical results are also compared in the form of graphs, where the so-called buckling curves σcr,FEA vs λpanel 

have been plotted: σcr,FEA denotes critical buckling stress obtained from FEA and λpanel the slenderness ratio of 

the laminated glass panel.  

The aforementioned slenderness ratio is conveniently defined as follows: 

 
𝜆𝑝𝑎𝑛𝑒𝑙 =  

𝐿𝑏

𝜌𝑓𝑢𝑙𝑙
 (5.1) 

Where: 

Lb is the buckling length. 

ρfull is the radius of gyration, considering the entire LG cross-section. 

 

The radius of gyration ρfull can be calculated according to this formula: 

 
𝜌𝑓𝑢𝑙𝑙 =  √

𝐽𝑓𝑢𝑙𝑙

𝐴𝑓𝑢𝑙𝑙
 (5.2) 

Where: 

Jfull is the moment of inertia of the entire cross-section (also including PVB interlayer). 

Afull is the cross-sectional area of the laminated glass pane (also including PVB interlayer). 

 

Both λpanel and ρfull are solely function of the geometric characteristics of the laminated glass pane cross-

section, they are thus shown for each typology of cross-section (i.e. case study A, B and C) from Table 6-1 to 

Table 6-3. 
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Table 6-1: Calculation of the slenderness ratio of each laminated glass panel (case A). 

Model 
types & 

case study 

Length 
model 

Lb 

Moment of 
inertia 

Jfull 

Radius of 
gyration 

ρfull 

Slenderness 
ratio  
λpanel 

(-) (mm) (mm4) (mm) (-) 

2D_A 
and 

3D_A 

2000 415255,66 6,21 321,94 

4000 415255,66 6,21 643,89 

6000 415255,66 6,21 965,83 

8000 415255,66 6,21 1287,77 

 

Table 6-2: Calculation of the slenderness ratio of each laminated glass panel (case B). 

Model type 
& case 
study 

Length 
model 

Lb 

Moment of 
inertia 

Jfull 

Radius of 
gyration 

ρfull 

Slenderness 
ratio  
λpanel 

(-) (mm) (mm4) (mm) (-) 

2D_B 
and 

3D_B 

2000 692517,52 7,37 271,48 

4000 692517,52 7,37 542,96 

6000 692517,52 7,37 814,44 

8000 692517,52 7,37 1085,93 

 

Table 6-3: Calculation of the slenderness ratio of each laminated glass panel (case C). 

Model type 
& case 
study 

Length 
model 

Lb 

Moment of 
inertia 

Jfull 

Radius of 
gyration 

ρfull 

Slenderness 
ratio  
λpanel 

(-) (mm) (mm4) (mm) (-) 

2D_C 
and 

3D_C 

2000 1071819,39 8,52 234,70 

4000 1071819,39 8,52 469,39 

6000 1071819,39 8,52 704,09 

8000 1071819,39 8,52 938,78 
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6.2 Effect of slenderness ratio on critical buckling stress (1st  

solution strategy)  

The thermoplastic interlayer plays a significant role in the determination of the structural behaviour of 

laminated glass, as its shear modulus G varies, so does the shear coupling degree between the glass plies, 

thus affecting its ability to transmit stresses and also the resistance against fracture. 

In this parametric study, the shear modulus of the polymeric film is changed within the following range: G = 

0,01 MPa, 0,1 MPa, 1 MPa and 10 MPa. The smallest G-value identifies an extremely soft interlayer, conversely, 

the largest one accounts for a particularly stiff interlayer. 

The following first set of buckling curves, illustrated from Figure 6-1 to Figure 6-3, expose the effect of 

increment in the slenderness ratio of the panels on critical buckling stress, for several LG panels with different 

thickness of glass layers (cases A, B and C) and for each interlayer shear modulus G. 

Case A : 

         

          

Figure 6-1: Buckling curves for case study A (1st solution strategy). 
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Case B : 

           

           

Figure 6-2: Buckling curves for case study B (1st solution strategy). 
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Case C : 

           

           

Figure 6-3: Buckling curves for case study C (1st solution strategy). 

From the previous graphs, it is possible to highlight the decreasing relationship between critical buckling 

stress and  slenderness ratio of the panel. By increasing the slenderness ratio of the member, which 

represents the sensitivity to buckle, it is indeed easier to reach the critical load and then failure for buckling.  

The blue curve is obtained through eigenvalue analysis on 2D-FE models, therefore it is the theoretical 

buckling curve to which the other two tend for high values of slenderness, since it assumes a perfectly straight 

element which behaves linearly elastic, and it is not able to capture any nonlinear behaviour. Buckling curves 

related to geometrically nonlinear analysis on 2D and 3D curved models are always located below the 

theoretical one, since geometric nonlinearity affects buckling behaviour by reducing the buckling load. It is 

worth pointing out that the rate of decrement in critical buckling stress is larger, moving between panels 

having length equal to 2 meters and 4 meters, and then it greatly reduces between 4 meters and 8 meters. 

In addition, buckling curves derived from nonlinear buckling analysis, are almost entirely overlapped ranging 

from a 4-meters length to an 8-meters length panel. 
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It entails that the two different typologies of Finite Element models, two-dimensional and three-dimensional, 

behaves in like manner for large values of slenderness. But an exception is present for the first branch of the 

orange (2D GNA) and green (3D GNA) curves, since critical buckling stress assumes different values, when 

analysing the 2D and 3D model having length of 2 meters, by means of nonlinear buckling analysis. In 

particular, in this specific case, nonlinear analysis performed on three-dimensional model always provide a 

higher critical buckling stress as compared with that coming from nonlinear analysis on the two-dimensional 

one. Nevertheless, this trend tends to vanish by increasing the value of the interlayer shear modulus G, in 

fact, it is quite evident that critical stresses derived from nonlinear analysis, and carried out on 2D and 3D 

models, are very close when the shear modulus equals 10 MPa. 

6.3 Effect of shear modulus on critical buckling load  

The effect of shear modulus decay on the critical buckling load Ncr,FEA is evaluated for different thicknesses of 

glass plies, while taking as fixed variable the length of each laminated glass pane ( Lb = 2m, 4m, 6m, 8m), as 

shown from Figure 6-4 to Figure 6-6. 

Case A : 

         

         

Figure 6-4: Effect of shear modulus G on the critical buckling load Ncr,FEA (case A). 
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Case B : 

         

 

          

Figure 6-5: Effect of shear modulus G on the critical buckling load Ncr,FEA (case B). 
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Case C : 

         

         

Figure 6-6: Effect of shear modulus G on the critical buckling load Ncr,FEA (case C). 

From the presented graphs, it can be noticed that geometrically nonlinear analysis (GNA) on 2D models only 

provides the lowest critical buckling loads for a buckling length Lb= 2m, and occasionally for Lb= 4m. Buckling 

loads, corresponding to nonlinear analysis on 3D models, as a whole are larger than 2D, even though are 

sometimes lower (e.g. Lb= 4m for cases A, B and C). Nevertheless, by increasing the value of shear modulus, 

nonlinear analysis on both 2D and 3D models provide similar buckling loads within the range 4 m < Lb < 8 m. 

Also, geometrically nonlinear analysis provides lower critical loads with respect to those of eigenvalue analysis 

(2D LBA, i.e. blue curve), as expected. 

The interlayer shear modulus has a direct impact on the buckling load, since in case of adequate shear 

coupling effect and by increasing G, the flexural stiffness of the laminated glass pane increases; thus, it will 

be subjected to lower stresses and, as a consequence, it is possible to apply larger compressive loads (critical 

buckling load increases) prior to buckling occurring. Additionally, for Lb = 6m and 8m, once the value G = 1 

MPa is overcome and up to 10 MPa, the increment in shear modulus no longer provides a significant benefit 

in terms of critical load increase, reaching a sort of plateau.  
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This behaviour may be associated to the shear coupling degree. Full shear coupling requires a certain span to 

be thoroughly exerted and once reached, it cannot increase more, resulting in a buckling load stand-off. 

6.4 2D curved models: geometrically nonlinear buckling analysis 

results (2nd solution strategy) 

2D Finite Element models, in the first solution strategy of this work, were set up using shell elements (QSL8) 

and the thickness to be assigned was the effective thickness for calculating out-of-plane bending deflection 

(hef,w) (Eq. 3.2 Section 3.2), since it is defined as the thickness of a fictitious monolithic glass element, 

characterized by equivalent bending properties in terms of deflection compared to the original multi-layered 

glass element [47]. It was required, since in nonlinear analysis it is crucial to accurately compute deflections 

rather than stresses. After that, geometrically nonlinear buckling analyses were conducted on 2D curved 

models: the first solution strategy required stopping the analysis at a specific load factor, when the 

characteristic bending strength of annealed glass (fg,k) is reached in one of the most stressed points of the 

model. 

The first approach implies that stresses are checked on 2D-FE models having thickness equal to hef,w, instead, 

in the second solution strategy that is going to be illustrated, stresses are checked on 2D models using a more 

appropriate thickness, that is the effective thickness for calculating out-of-plane bending stresses (hef,σ,i) . 

To be more accurate, it is necessary to derive buckling load factors (BLF) by means of nonlinear analysis on 

2D curved models, having thickness defined by hef,w. 

Subsequently, true stresses, denoted as σ̅, can be computed using Navier’s formula (see Eq. (6.1)), in which 

the contribution of hef,σ,i is considered through the section modulus W(hef,σ,i). 

 

�̅� =  
𝑃0 ∙ 𝐵𝐿𝐹

𝐴𝑓𝑢𝑙𝑙
+

𝑃0 ∙ 𝐵𝐿𝐹 ∙ (𝛿𝑚𝑎𝑥 + 𝑒0)

𝑊(ℎ𝑒𝑓,𝜎,𝑖)
 (6.1) 

Where: 

δmax is the maximum transversal displacement read on 2D curved models, having thickness equal to 
hef,w. 
 

W(hef,σ,i) is the section modulus of laminated glass with stress-equivalent effective thickness. 

All the other parameters have already been defined. 

The abovementioned section modulus, for a rectangular cross-section, can be determined as: 

 

𝑊(ℎ𝑒𝑓,𝜎,𝑖) =
𝑏 ∙ ℎ𝑒𝑓,𝜎,𝑖

2

6
 (6.2) 

Where all the other parameters have already been specified. 

Once obtained σ̅, it is possible to evaluate the limit transversal displacement (δlim) , which must be used as 

threshold in order to stop nonlinear buckling analysis on 2D curved models, and reads: 
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𝛿𝑙𝑖𝑚 =
𝑓𝑔,𝑘

�̅�
∙ (𝛿𝑚𝑎𝑥 + 𝑒0) (6.3) 

By knowing δlim , additional geometrically nonlinear buckling analyses were performed on 2D curved models 

for each case study. But currently, to determine critical buckling loads, the second solution strategy requires 

stopping the analysis at a specific load factor, when the limit transversal displacement δlim is reached in the 

midspan of the panel. The calculation of the variables necessary to obtain critical buckling loads and stresses 

and themselves are tabulated and presented in Annex E. 

6.4.1 Effect of slenderness ratio on critical buckling stress (2nd solution strategy) 

As shown from Figure 6-7 to Figure 6-9, in this second set of buckling curves, the effect of increment in the 

slenderness ratio of the panels on critical buckling stress is assessed, for several LG panels' with different 

thickness of glass layers (cases A, B and C) and for each interlayer shear modulus G. 

Case A : 

         

 

          

Figure 6-7: Buckling curves for case study A (2nd solution strategy). 
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Case B : 

         

 

          

Figure 6-8: Buckling curves for case study B (2nd solution strategy). 
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Case C : 

         

          

Figure 6-9: Buckling curves for case study C (2nd solution strategy). 

Using this second approach, that is more rigorous, the latest buckling load factors (BLF) obtained by means 

of geometrically nonlinear analysis on 2D curved models, are always lower than the previous one (see 

Annex D), resulting in lower buckling stresses σcr,FEA. It is beneficial, since it allows to be on the safe side 

during design process and also to face the possibility to build up 2D-FE models, which require less 

computational costs compared to 3D-FE models.  

In this solution strategy, buckling stresses obtained by means of 2D GNA are lower than those coming from 

3D GNA, and it becomes mostly visible for lower slenderness ratios, i.e. within the range 2 < Lb < 4 meters. It 

must be also observed that, in the same range, 3D-FE models tend to overestimate the critical buckling 

load. Finally, critical buckling stresses, provided by geometrically nonlinear analyses on 2D curved and 3D 

models, are similar thus the corresponding curves tend to be aligned for large slenderness ratios (i.e. 4 < Lb 

< 8 meters).  
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6.5 Buckling load -displacement curves 

This paragraph is dedicated to illustrate the critical load vs displacement curves for in-plane loaded LG panels, 

which involve only 3D-FE models (case A), since it is reasonable to assume that they can be regarded as the 

most accurate and reliable. Also, the effect of interlayer shear modulus G is taken into account (G = 0,01 MPa, 

0,1 MPa, 1 MPa and 10 MPa) in the development of the curves. 

The graphs, shown in Figure 6-10, are built up for each models’ length (Lb) by collecting the critical buckling 

load (Ncr,FEA) and corresponding maximum transversal displacement (δmax) of each 3D model, for different glass 

bending strengths: annealed glass as-is (fg,k = 45 MPa), annealed glass considering long-term loads (fg,d = 20 

MPa) and fully tempered glass considering long-term loads (fg,d = 80 MPa).  

 

      

 

       

Figure 6-10: Buckling load vs displacement curves for different lengths Lb (case A). 
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It is possible to notice that, for the same shear modulus G and different buckling lengths Lb, the decreasing 

trend of buckling load Ncr,FEA is not linear. It tends to decrease less rapidly while the maximum transversal 

displacement increases consistently. For instance, in the case G= 0,01 MPa and considering the two different 

glass typologies (ANG and FTG) with long-term loading conditions, along each curve there is not a noticeable 

increment in the buckling load for different buckling lengths. In this respect, it is visible that, when the design 

bending strength of annealed glass considering long-term loads (fg,d = 20 MPa) is reached, the curves for G= 

0,01 MPa and G= 0,1 MPa attain a sort of plateau in terms of buckling load. The other curves, related to G= 1 

MPa and G= 10 MPa, are keeping increasing in buckling load, albeit with different rates. 

So, different glass typologies, for extremely low values of interlayer shear modulus, do not play a prominent 

role in the determination of buckling load, even though their use could be favourable in order to withstand 

larger transversal displacements until failure. In fact, moving from ANG with long-term loading to FTG under 

the same loading conditions, each glass panel may experience greater transversal displacements within a 

range of 3-4 times. Rationally, with reference to buckling performance, the choice of a specific glass type for 

LG units and the definition of loading term conditions, must be made jointly to the expected interlayer shear 

modulus. The critical buckling load assumes ever-increasing values as the shear modulus increases, regardless 

of the length of the glass pane. 

Additionally, increasing the span of the model, the curves related to G= 1 MPa and G= 10 MPa tend to move 

closer. In particular, as regards the case Lb= 8m, the branches of the two different curves are even almost 

overlapped up to fg,d = 20 MPa and then they branch out. As a conclusion, with the approaching of the curves, 

the buckling load “reserve” for the aforementioned curves is steadily decreasing, indicating that full shear 

coupling behaviour is rapidly achieved for large values of both interlayer shear modulus and bucking length. 

6.6 Design buckling curves for in-plane compressed LG panels 

In this section, some design buckling curves for laminated glass elements subjected to in-plane compressive 

loads are proposed, as illustrated in Figure 6-11. This plot is realised by collecting, for each interlayer shear 

modulus G, the critical buckling stress (σcr,FEA) obtained from geometrically nonlinear analysis and the 

corresponding slenderness ratio of the panel (λpanel) for each 3D-FE model. A curve fitting process is then 

required to find an analytical relationship between the series of data points. To get the best approximate fit, 

which is able to minimise the error on data, different types of regression functions (polynomial, logarithmic, 

exponential, power) have been tested. Power law turned out to be the best function in fitting the outcomes, 

supported by the coefficient of determination R2 which is always closer to the unit. 

The obtained design buckling curves provide a practical tool during the pre-design phase of in-plane loaded 

glass elements, against buckling phenomena. By knowing the geometric characteristics of the element to be 

designed (i.e. slenderness ratio of the panel) and the interlayer shear modulus, it is possible to get into the 

plot and read the critical buckling stress. 

The same buckling curves can be also visualized in bi-logarithmic scale, as shown in Figure 6-12. Since 

regression curves are described by means of power functions, they turn into regression lines using bi-

logarithmic scale. In the present diagram, it is possible to note that design buckling curves, related to G= 0,01 

MPa and G= 10 MPa, are characterised by the same slope (see the exponent of power laws). Starting from G= 

0,01 MPa and increasing the shear modulus, the slope of the lines increases up to G= 1 MPa whereas, from 

this point on, slope begins to decrease approaching G=10 MPa. It entails that full shear coupling is 

progressively reached within 1< G <10 MPa. Also, the points of intersection between the different lines 

evidence that, for different G-values but same slenderness ratio, the behaviour of 3D models is the same 

(critical buckling stresses are equal). 
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Figure 6-11: Design buckling curves for in-plane loaded LG elements 

 

 

Figure 6-12: Design buckling curves for in-plane loaded LG elements in bi-logarithmic scale 
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6.7 Design buckling curves for in-plane compressed LG panels 

based on Eurocode approach 

This paragraph is conceived to introduce design buckling curves for laminated glass members subjected to in-

plane compressive loading, in compliance with the framework provided by Eurocode 3 [48]. 

EC3-1-1 for design of steel buildings [48] proposes five design buckling curves (named a0, a, b, c, d) for in-

plane compressed steel members. Each buckling curve is associated to a specific imperfection factor and 

consequently, the selection of the appropriate buckling curve must be made taking into consideration the 

typology of cross-section, the steel grade and the axis about which buckling could occur. Rationally, the 

approach for steel cannot be applied to LG members in its entirety. 

The aforementioned Eurocode, to plot the buckling design curves, introduces two nondimensional 

parameters: nondimensional slenderness (λ̅) and buckling reduction factor (χ). These last ones can also be 

used for laminated glass and should be defined as follows: 

 

�̅� = √
𝐴𝑓𝑢𝑙𝑙 ∙ 𝑓𝑔,𝑘

𝑁𝑐𝑟,𝐿𝐺

2

 (6.1) 

Where fg,k is the characteristic bending strength for float glass. If strengthening processes are involved, in 

place of fg,k , the characteristic bending strength for pre-stressed glass after processes must be used (fb,k). 

 

 

𝜒 =
1

𝛷 + √𝛷2 − �̅�2
2

 (6.2) 

Where: 

 

𝛷 = 0,5 ∙ [1 + 𝛼𝑖𝑚𝑝 ∙ (�̅� − 𝛼0) + �̅�2] (6.3) 

αimp and α0  are imperfection coefficients, appropriately calibrated, and based on numerical, experimental 

tests and data available in literature on monolithic and laminated glass beams. More specifically, the 

coefficient α0 identifies the values of nondimensional slenderness associated to a buckling reduction factor 

(χ) equal to 1, while the value of the coefficient αimp individuates the maximum allowable imperfection for the 

compressed member [40].  

Considering that, the imperfection coefficients for glass can be set as: αimp = 0,71 and α0 = 0,60 [40]. 

In addition, for the purpose of plotting numerical results coming from geometrically nonlinear analysis on 3D-

FE models, it is also convenient to define the buckling reduction factor as: 

 

𝜒𝐹𝐸𝑀 =
𝑁𝑐𝑟,𝐹𝐸𝐴

𝐴𝑓𝑢𝑙𝑙 ∙ 𝑓𝑔,𝑘
 (6.4) 

Where fg,k is the characteristic bending strength for float glass. If strengthening processes are involved, in 

place of fg,k , the characteristic bending strength for pre-stressed glass after processes must be used (fb,k). 

All the other parameters have already been defined. 
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The Eurocode-based design buckling curves can be easily used during pre-design phase of in-plane loaded 

glass elements, against buckling phenomena. By knowing the geometric characteristics of the member and 

the type of glass constituting the LG pane (i.e. area of laminated glass and glass characteristic bending 

strength), it is possible to compute the non-dimensional slenderness (λ̅). Subsequently, by computing the 

factor Φ, the reduction factor for the relevant buckling mode (χ) can be obtained by graphical approach.  

By knowing the buckling reduction factor, the design buckling resistance of compressed laminated glass 

member should be taken as: 

 
𝑁𝑏,𝑅𝑑 =

𝜒 ∙ 𝐴𝑓𝑢𝑙𝑙 ∙ 𝑓𝑔,𝑑

𝛾𝑀1
 (6.5) 

Where γM1 is a buckling safety factor (γM1 = 1,40) [40]. The other terms have already been defined. 

Then, buckling verification should be checked: 

 
𝑁𝐸𝑑 ≤ 𝑁𝑏,𝑅𝑑 (6.6) 

Where: 

NEd is the design compressive load. 
Nb,Rd is the design buckling resistance of the laminated glass member. 

 

All the calculations regarding buckling parameters are tabulated and presented in Annex F. 

As shown from Figure 6-13 to Figure 6-16, several design buckling curves, consistent with EC3 approach [48], 

are obtained and plotted. They are mapped out for the three main glass types: annealed (ANG), heat 

strengthened (HSG) and fully tempered (FTG). 

Firstly, the graphs are realised using analytical calculations: calculating and collecting the nondimensional 

slenderness (λ̅) using Eq. (6.1), and the corresponding buckling reduction factor (χ) using Eq. (6.2), for each 

model length (case studies A, B and C). To validate analytical buckling curves, the same approach is used to 

plot design buckling curves by making use of 3D-FEM numerical results, with the only difference being that 

the reduction factor (χFEM) shall be computed with Eq. (6.4). 

A curve fitting process is then required to find an analytical relationship between the series of data points. 

Even then, power law turned out to be the best function in fitting the outcomes, supported by the coefficient 

of determination R2 which is always closer to the unit. In addition, to better visualize the results and since 

regression curves are described by means of power functions, bi-logarithmic scale can be used. 

It is possible to note that nondimensional slenderness values for laminated glass are typically larger (within a 

range 3-25) compared to those of design buckling curves for steel (within a range 0,2-3). Laminated glass 

panes are commonly characterised by large values of area as compared to critical buckling load, resulting in 

large nondimensional slenderness values. Furthermore, in glass design buckling curves, the limit regarding 

the reduction factor (χ = 1) is quite difficult to be attained. This limit would imply having stubby LG panes but, 

normally, glass plies have small thickness, which, compared to the length of the panels, makes them really 

slender.  

The graphs show similar results for both analytical design buckling curves and those obtained by means of 

numerical simulations on 3D models. In detail, bi-logarithmic graphs, illustrating the comparison between 

analytical and numerical buckling regression lines, indicate that numerical simulations tend to slightly 

underestimate buckling reduction factors for low values of nondimensional slenderness, while they marginally 

overestimate them for large values. 
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And lastly, Figure 6-16 presents the final EC-based design buckling curve for laminated glass members in 

compression, obtained by combining all the analytical design buckling curves for different glass types. 

   

           

 

 

Figure 6-13: Design buckling curves based on Eurocode for annealed glass (ANG). 
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Figure 6-14: Design buckling curves based on Eurocode for fully tempered glass (FTG). 
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Figure 6-15: Design buckling curves based on Eurocode for heat strengthened glass (HSG). 

 

 

Figure 6-16: Final Eurocode-based design buckling curve for laminated glass members in compression 
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6.7.1 Practical implementation of EC-based design buckling curve for laminated glass 

Let’s consider a double laminated glass member which must bear a portion of the roof. The glass column is 

pinned along short edges and free along longer sides. The panel has width b = 400 mm and length Lb = 3000 

mm and it is subjected to a design compressive load NEd = 10 kN/m. The resultant of the design load is equal 

to 4000 N. The laminated glass unit consists of two glass plies (fully tempered FTG), having thickness h1 = h2 

= 16 mm, held together by two PVB foils. Each foil has nominal thickness t = 0,76 mm (total thickness hint = 

1,52 mm). Let’s consider an unfavourable case, in which the interlayer shear modulus (G) is characterised by 

a low value: G = 0,1 MPa. It is required to evaluate the design buckling resistance of the laminated glass 

member, using the EC-based design buckling curve.  

Firstly, it is necessary to calculate the elastic critical buckling load (Ncr,LG) according to Eq. (3.4): 

𝑁𝑐𝑟,𝐿𝐺 =  
𝜋2𝐸𝑔𝐼𝑧,𝑒𝑓𝑓

𝐿𝑏
2   = 28235,63 𝑁 

Then, it is necessary to compute the nondimensional slenderness (λ̅), using Eq. (6.2): 

�̅� = √
𝐴𝑓𝑢𝑙𝑙 ∙ 𝑓𝑏,𝑘

𝑁𝑐𝑟,𝐿𝐺

2

= 7,549 ≅ 7,5 

Where: 

 
𝐴𝑓𝑢𝑙𝑙 =  2(400 ∙ 16) 𝑚𝑚 + (400 ∙ 1,52) 𝑚𝑚 = 13408 𝑚𝑚2 

 𝑓𝑏,𝑘 = 120 𝑀𝑃𝑎 

Subsequently, the buckling reduction factor (χ) can be calculated analytically, by means of Eq. (6.2) or derived 

by getting into the EC-based design buckling curve. Let’s apply both the analytical and graphic approach. 

Analytical approach: 

 

𝛷 = 0,5 ∙ [1 + 𝛼𝑖𝑚𝑝 ∙ (�̅� − 𝛼0) + �̅�2] =  31,460 

Where the imperfection coefficients can be set as: αimp = 0,71 and α0 = 0,60 for glass members [40]. 

 

𝜒 =
1

𝛷 + √𝛷2 − �̅�2
2

= 0,0161 
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Graphical approach: 

 

 

Figure 6-17: Practical implementation of EC-based design buckling curve for glass. 

It can be noted that the buckling reduction factor, obtained by means of the two approaches, is very similar. 

Once the buckling reduction factor is known, the design buckling resistance of compressed laminated glass 

member should be computed with Eq. (6.5): 

 
𝑁𝑏,𝑅𝑑 =

𝜒 ∙ 𝐴𝑓𝑢𝑙𝑙 ∙ 𝑓𝑔,𝑑

𝛾𝑀1
= 8827,49 𝑁  

Where γM1 is a buckling safety factor (γM1 = 1,40) [40]. 

The design bending strength of glass (fg,d) has been calculated using Eq. (3.1): 

 
𝑓𝑔,𝑑 =  𝑘𝑒 ∙ 𝑘𝑠𝑝 ∙ 𝜆𝐴 ∙ 𝜆1 ∙ 𝑘𝑚𝑜𝑑 ∙

𝑓𝑔,𝑘

𝛾𝑀
+  𝑘𝑝 ∙ 𝑘𝑒,𝑝 ∙

𝑓𝑏,𝑘  −  𝑓𝑔,𝑘  

𝛾𝑝
= 57,25 𝑀𝑃𝑎  

Where: 

ke = 1,0         (polished edges) 
ksp = 1,0         (surface not sandblasted) 
λA = 1,0         (area of the pane does not exceed 18 m2) 
λ1 = 1,0         (area of the pane does not exceed 18 m2) 
kmod = 0,29       (for permanent loads) 
fg,k = 45 MPa (characteristic bending strength of annealed glass) 
γM = 1,8         (material partial safety factor) 
kp = 1,0         (heat treatment with horizontal process) 
ke,p = 0,8         (since edges are polished and the load is in-plane) 
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fb,k = 120 MPa ( characteristic bending strength of fully tempered glass after thermal process) 
γp = 1,2           (Class of consequence 2 – CC2) 

 

Then, buckling verification should be checked: 

 
𝑁𝐸𝑑 ≤ 𝑁𝑏,𝑅𝑑 = 4000 𝑁 ≤ 8827,49 𝑁    𝑽𝑬𝑹𝑰𝑭𝑰𝑬𝑫  (6.6) 
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7 FINAL CONCLUSIONS  

This section presents a brief recap of the entire work and the main findings obtained from analyses, also 

including some study limitations and recommendations for future works. 

7.1 General conclusions 

The leading objective of this study regards the structural behaviour of laminated glass, in more detail, the 

problem of buckling instability, for the purpose of highlighting the dependency and variation of the critical 

buckling load/stress on slenderness ratio and interlayer shear modulus of the glass pane. 

Chapter 3 represents the starting point of the whole work, since illustrates the Enhanced Effective Thickness 

Theory and some analytical formulas, suggested by glass Technical Specifications, for glass design as regards 

design bending strength and buckling load calculation. Then, Chapter 4 provides a theoretical background 

concerning the two different typologies of numerical simulations: linear buckling and geometrically nonlinear 

buckling analyses, performed in a commercial Finite Element program, LUSAS. 

Chapter 5 is devoted to describe the set of models  - 2D flat, 2D and 3D FE-models characterized by initial 

geometric imperfection  - realized in LUSAS, in all their relevant parts: element types, mesh density, geometric 

and materials characteristics, boundary and loading conditions. 

Thereafter, Chapter 6 illustrates a series of significant findings obtained from numerical simulations (linear 

and nonlinear analyses), in the form of graphs. The first solution strategy for nonlinear analysis requires to 

stop it when the characteristic bending strength of annealed glass fg,k is reached, and then, buckling loads are 

obtained and buckling stresses can be computed.  

Firstly, through a parametric analysis, the effect of slenderness ratio on critical buckling stress is assessed and 

compared between the three sets of models, emphasizing the decreasing relationship between critical 

buckling stress and  slenderness ratio of the panel. From a graphical point of view, some numerical buckling 

curves, are plotted, providing buckling stresses which are always lower than those provided by theoretical 

one, since geometric nonlinearity affects buckling behaviour by reducing the buckling load. Also, the two 

different typologies of Finite Element models, two-dimensional and three-dimensional, behaves in a similar 

way for relatively high values of slenderness ratio, entailing the option to model laminated glass by means of 

3D models, which require high computational costs owing to the large number of degrees of freedom and 

the complexity of the model itself. 

Secondly, the effect of interlayer shear modulus degradation on critical buckling stress is analysed and 

compared between the three sets of models, by carrying out a parametric analysis. It was found that 

geometrically nonlinear analysis on 2D models provides , in principle, the lowest critical buckling loads only 

for a buckling length Lb equal to 2 meters. Then, increasing the length of the pane and also the shear modulus, 

provide similar buckling loads on both 2D and 3D models, which are always lower than those obtained from 

eigenvalue analysis. 

After that, to be really consistent, a second solution strategy for nonlinear analysis is used and requires to 

stop it when a threshold in terms of displacement is reached, and then, buckling loads are obtained and 

buckling stresses can be computed. By doing this, it can be concluded that geometrically nonlinear analysis 

on 2D models provides the lowest critical buckling loads with respect to 3D models. Moreover, this result is 

favourable, since it is for safety’s sake during design process of a possible 2D model. Finally, several buckling 

curves and also design buckling curves are obtained and discussed. 
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7.2 Limitations of the work 

Finite Element Method is considered as a reliable technique to reproduce and predict the behaviour of a 

physical object for a certain phenomenon. For this reason, some basic assumptions must be taken into 

account, since the reality is too complex to be analysed as it is.  

The first assumption is related to materials, in particular to PVB interlayer, since it is defined and categorized 

as a viscoelastic material, implying that its physical properties are not constant over the time, but they could 

strongly vary, depending on load duration and temperature. However, in this study, PVB is assumed as a linear 

elastic material, characterized by “equivalent” mechanical properties, able to account for the degradation of 

its shear stiffness G. The second assumption regards the form of the initial geometric imperfection of the 

curved 2D and 3D models. It can be assumed that sinusoidal shape is able to well-describe the initial 

geometric imperfection in laminated glass, but in view of simplifying the realization of curved models, the 

initial imperfection was described as a simple arch. 

Some challenges were encountered during modelling stage of 3D models, in particular, as regards the 

selection of the mesh size and also the application of the eccentric load to the midplane of glass plies. It is 

known that the more refined is the mesh size, the more the solution will be accurate; conversely, it will result 

in longer computational time. In the case of 3D models simulations, due to their complexity and large number 

of degrees of freedom, is more than necessary to find an optimal balance between accuracy and efficiency. 

This consideration led to use a coarse mesh in order to ensure reasonable computational time. Also, as 

concerns the compressive in-plane load, it was applied to the midplane of glass layers making use of extremely 

stiff “vertical plates”, there being no other way to apply an eccentric load in the Finite Element software. 

The last assumption relates to boundary coefficient Ψb, which is contained in the coupling parameter formula. 

It is used to compute the two effective thicknesses of glass: firstly, since laminated glass elements under 

analysis are very slender, the coupling parameter for beams ηb,2 was chosen, and secondly, the boundary 

coefficient for a simply supported static scheme with an out-of-plane distributed loading was selected (the 

glass Standard UNI CEN/TS 19100 does not provide any boundary coefficient for in-plane loaded glass 

components).  

7.3 Future developments 

This study is focused on the analysis of flexural buckling on double layered slender glass members by means 

of parametric analysis, which involves relevant factors such as the slenderness ratio of the panel and the shear 

modulus of the interlayer.  

Future developments should focus on the buckling analysis of triple laminated glass panes, also considering 

the effect of load eccentricities and initial imperfections. Extensive investigations should be carried out as 

regards different types of restraints, as well as different boundary conditions. Lastly, other buckling forms such 

as torsional, lateral-torsional and dynamic buckling should be studied in depth. 
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A. DESIGN BENDING STRENGTH OF GLASS: FACTORS 

This annex presents the evaluation of the factors necessary to calculate the design bending strength of glass, 

according to CEN/TS 19100-1 [31].  

The first factors present in the formula of glass design bending strength are the edge or hole finishing factor 

(ke) and the surface profile factor (ksp). They are always lower or equal to one and are used to include in the 

design the effect of defects along the edges and on the glass surfaces. The values of the aforementioned 

factors are tabulated in Table A-1 and Table A-2. 

Table A-1: Values for edge or hole finishing factor for verifications near edges and holes under tension. 

Edge or hole finishing factor ke 

Glass material As-cut, arrissed 
or ground 

edges 

Seamed edges Polished edges 

(-) (-) (-) (-) 

Float 0,8 0,9 1,0 

Patterned 0,8 0,8 0,8 

Polished wired 0,8 0,8 0,8 

Wired 
patterned 

0,8 0,8 0,8 

 

Table A-2: Values for surface profile factor for various surface conditions. 

Surface profile factor ksp 

Glass material As produced Sandblasted 

(-) (-) (-) 

Float 1,0 0,6 

Drawn sheet 1,0 0,6 

Enamelled float 
or drawn sheet 

1,0 0,6 

Patterned 0,75 0,45 

Enamelled 
patterned 

0,75 0,45 

Polished wired 0,75 0,45 

Patterned wired 0,6 0,36 

 

The values of size effect factors, λA and λ1, are provided by Technical Specifications for glass buildings[31] in a 

note, that reads: “The size effect λA and λ1 can be set to a value of 1 unless the area of the pane exceeds 18 

m2 or the length of a side exceeds 6 m. In cases where these limits are exceeded additional investigation on 

the areal or size effect is needed”. 
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Another significant factor is the modification factor (kmod), and its values are shown in Table A-3. The 

modification factor depends on the type and time duration of the action and takes into account the variability 

of glass bending strength during its lifetime. 

Table A-3: Values for modification factor for annealed glass. 

Modification factor kmod 

Type of action Load duration Action kmod 

(-) (-) (-) (-) 

Permanent Permanent 

Self-weight, 
difference in 

altitude, permanent 
cold bending 

0,29 

Variable Intermediate Snow (3 to 4 weeks) 0,43 

Variable Intermediate 
Imposed vertical 
action (1 week) 

0,45 

Variable Intermediate 

Temperature 
change and change 

in the 
meteorological 

barometric pressure 
(8 h) 

0,58 

Variable Short 
Maintenance load 

(30 min) 
0,69 

Variable  Short Wind (10 min) 0,74 

Variable  Short 
Barrier personnel 

loads – crowds  
(5 min) 

0,77 

Variable Short 
Barrier personnel 

loads – normal duty 
(30 s) 

0,89 

Variable Very short Wind (3 s) 1,00 

Variable Dynamic Impact (100 ms) 1,20 

 

The pre-stressing process factor (kp) depends on the type of industrial process used to pre-stress the glass 

element. The edge or hole pre-stressing factor (ke,p) is able to take into consideration the effect of pre-stress 

on the edge of the element. The values of both factors are shown in Table A-4 and in Table A-5. 
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Table A-4: Values for pre-stressing process factor. 

Pre-stressing process factor kp 

Pre-stressing treatment kp 

(-) (-) 

None 0,0 

Heat treatment with horizontal process 1,0 

Heat treatment with vertical process 0,60 

Chemical strengthening See Note 1 

 

Note 1 regards chemical strengthening process and it requires that: “In case of chemically strengthened glass, 

the kp values can be taken from a transparent and reproducible assessment that complies with all the 

requirements of EN 1990”. 

Table A-5: Values for the edge pre-stressing factor for verifications near edges and holes under tension. 

Edge or hole pre-stressing factor ke,p 

Type of glass Type of loading As cut Arrissed Ground/smooth 
ground 

Polished 

(-) (-) (-) (-) (-) (-) 

Heat 
strengthened 

Out-of-plane 
loading 

To be avoided 1,0 1,0 1,0 

Heat 
strengthened 

In-plane loading 
(including pure 

tension) 
To be avoided 0,8 0,8 0,8 

Thermally 
toughened 

Out-of-plane 
loading 

To be avoided 1,0 1,0 1,0 

Thermally 
toughened 

In-plane loading 
(including pure 

tension) 
To be avoided 0,8 0,8 0,8 

Chemically 
strengthened 

Out-of-plane 
loading 

To be avoided 
To be 

avoided 
See Note 2 See Note 2 

Chemically 
strengthened 

In-plane loading 
(including pure 

tension) 
To be avoided 

To be 
avoided 

See Note 2 See Note 2 

 

Note 2 regards chemical strengthening process and it requires that: “In case of chemically strengthened glass, 

the ke,p values can be taken from a transparent and reproducible assessment that complies with all the 

requirements of EN 1990”. 

The material partial factor (γM) and the partial factor for pre-stress on the surface (γp) depend on the 

consequence class (CC), that must be predicted by the designer. Table A-6 illustrates the three different classes 

of consequence and each of them is associated to a specific level of damage and impact on human, economic 

and social life.   
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Table A-6: Class of consequences: description and examples 

Class of consequences (CC) 

Class of consequence Description Example of building 

(-) (-) (-) 

CC3 

High consequence for loss of 
human life, or economic, social 

or environmental 
consequences very great 

Grandstands, public 
buildings 

CC2 

Medium consequence for loss 
of human life, or economic, 

social or environmental 
consequences considerable 

Residential and office 
buildings 

CC1 

Low consequence for loss of 
human life, or economic, social 

or environmental 
consequences small or 

negligible 

Agricultural buildings 

 

Lastly, the aforementioned partial safety factors γM and γp are defined according to the class of consequence, 

as shown in Table A-7. 

Table A-7: Partial safety factors γM and γp for glass. 

Partial safety factors γM and γp 

Design 
situations 

Type of partial 
factor 

CC1 CC2 CC3 

(-) (-) (-) (-) (-) 

Persistent & 
transient 

(fundamental 
combination) 

Basic material 
γM 

1,6 1,8 2,0 

Persistent & 
transient 

(fundamental 
combination) 

Surface pre-
stress γp 

1,1 1,2 1,3 

Accidental 
Basic material 

γM 
1,0 1,1 1,2 

Accidental 
Surface pre-

stress γp 
1,0 1,0 1,0 
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B. COUPLING PARAMETER FOR BEAMS 

The present annex is dedicated to explain the computation of the coupling parameter which is used to 

compute the two effective thicknesses for laminated glass elements. Glass Standard CEN/TS 19100-2:2021 

[36] in its Annex A proposes two different formulas for coupling parameter depending on the thickness of 

glass plies, whether it is the same for each glass ply or not.  

The following formula is valid for a laminated glass pane, composed of n-plies having the same thickness. In 

the specific case of this document, since different laminated glass composed of only two plies with same 

thickness are studied, the formula of coupling parameter for beams ηb,2 reads: 

 

𝜂𝑏,2 =
1

1 +
ℎ𝑖𝑛𝑡 ∙ 𝐸𝑔 ∙ 𝑛 ∙ ℎ1

3 ∙ (𝑛 + 1) ∙ 𝛹𝑏

12𝐺 ∙ [ℎ1
2 + (ℎ1 + ℎ𝑖𝑛𝑡)2 ∙ (𝑛2 − 1)]

 
(A.1) 

Where: 

hint is the thickness of the interlayer. 
Eg is the Young’s modulus of glass. 
n is the number of glass plies. 
h1 is the thickness of the top glass ply. 
Ψb is the boundary coefficient for beams. 
G is the interlayer shear modulus. 

 

The boundary coefficient for beams (Ψb) depends on the boundary and loading conditions of the member. 

The aforementioned Technical Specifications for glass in buildings, in its Annex A, provide a table with all the 

cases of practical significance; in this document, the boundary coefficient for a simply supported scheme 

subjected to out-of-plane distributed load is chosen, as shown in the following Figure B-1. 

 

Figure B-1: Coupling parameter for beams Ψb  for different loading and boundary conditions. 
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C. 2D FLAT AND CURVED MODELS: EFFECTIVE THICKNESS FOR 

OUT-OF-PLANE BENDING DEFLECTION 

This annex presents the effective thickness for calculating out-of-plane bending deflection assigned to flat and 

curved (i.e. with initial geometric imperfection) 2D-FE models, for each case study. 

Case A : 

Table C-1: Effective thickness for bending deflection for G = 0,01 MPa (case A). 

2D Model - 
Case A 

Thicknesses  
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_A1 10/1,52/10 2000 500 0,01 12,72 

2D_A2 10/1,52/10 4000 500 0,01 13,08 

2D_A3 10/1,52/10 6000 500 0,01 13,59 

2D_A4 10/1,52/10 8000 500 0,01 14,20 

 

Table C-2: Effective thickness for bending deflection for G = 0,1 MPa (case A). 

2D Model - 
Case A 

Thicknesses  
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus 

 G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_A5 10/1,52/10 2000 500 0,1 13,69 

2D_A6 10/1,52/10 4000 500 0,1 15,69 

2D_A7 10/1,52/10 6000 500 0,1 17,37 

2D_A8 10/1,52/10 8000 500 0,1 18,54 

 

Table C-3: Effective thickness for bending deflection for G = 1 MPa (case A). 

2D Model - 
Case A 

Thicknesses  
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_A9 10/1,52/10 2000 500 1,0 17,59 

2D_A10 10/1,52/10 4000 500 1,0 20,00 

2D_A11 10/1,52/10 6000 500 1,0 20,76 

2D_A12 10/1,52/10 8000 500 1,0 21,07 
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Table C-4: Effective thickness for bending deflection for G = 10 MPa (case A). 

2D Model - 
Case A 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_A13 10/1,52/10 2000 500 10,0 20,83 

2D_A14 10/1,52/10 4000 500 10,0 21,33 

2D_A15 10/1,52/10 6000 500 10,0 21,43 

2D_A16 10/1,52/10 8000 500 10,0 21,47 

 

Case B : 

Table C-5: Effective thickness for bending deflection for G = 0,01 MPa (case B). 

2D Model - 
Case B 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_B1 12/1,52/12 2000 500 0,01 15,24 

2D_B2 12/1,52/12 4000 500 0,01 15,58 

2D_B3 12/1,52/12 6000 500 0,01 16,09 

2D_B4 12/1,52/12 8000 500 0,01 16,72 

 

Table C-6: Effective thickness for bending deflection for G = 0,1 MPa (case B). 

2D Model - 
Case B 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus 

 G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_B5 12/1,52/12 2000 500 0,1 16,19 

2D_B6 12/1,52/12 4000 500 0,1 18,29 

2D_B7 12/1,52/12 6000 500 0,1 20,20 

2D_B8 12/1,52/12 8000 500 0,1 21,61 
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Table C-7: Effective thickness for bending deflection for G = 1 MPa (case B). 

2D Model - 
Case B 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_B9 12/1,52/12 2000 500 1,0 20,46 

2D_B10 12/1,52/12 4000 500 1,0 23,45 

2D_B11 12/1,52/12 6000 500 1,0 24,47 

2D_B12 12/1,52/12 8000 500 1,0 24,90 

 

Table C-8: Effective thickness for bending deflection for G = 10 MPa (case B). 

2D Model - 
Case B 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_B13 12/1,52/12 2000 500 10,0 24,57 

2D_B14 12/1,52/12 4000 500 10,0 25,26 

2D_B15 12/1,52/12 6000 500 10,0 25,40 

2D_B16 12/1,52/12 8000 500 10,0 25,45 

 

Case C : 

Table C-9: Effective thickness for bending deflection for G = 0,01 MPa (case C). 

2D Model - 
Case C 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_C1 14/1,52/14 2000 500 0,01 17,76 

2D_C2 14/1,52/14 4000 500 0,01 18,09 

2D_C3 14/1,52/14 6000 500 0,01 18,60 

2D_C4 14/1,52/14 8000 500 0,01 19,23 
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Table C-10: Effective thickness for bending deflection for G = 0,1 MPa (case C). 

2D Model - 
Case C 

Thicknesses 
h1/hint/h2 

Length 
model  

L 

Width 
model 

 b 

Shear 
modulus  

G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_C5 14/1,52/14 2000 500 0,1 18,69 

2D_C6 14/1,52/14 4000 500 0,1 20,88 

2D_C7 14/1,52/14 6000 500 0,1 22,99 

2D_C8 14/1,52/14 8000 500 0,1 24,61 

 

Table C-11: Effective thickness for bending deflection for G = 1 MPa (case C). 

2D Model - 
Case C 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus 

 G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_C9 14/1,52/14 2000 500 1,0 23,28 

2D_C10 14/1,52/14 4000 500 1,0 26,85 

2D_C11 14/1,52/14 6000 500 1,0 28,14 

2D_C12 14/1,52/14 8000 500 1,0 28,70 

 

Table C-12: Effective thickness for bending deflection for G = 10 MPa (case C). 

2D Model - 
Case C 

Thicknesses 
h1/hint/h2 

Length 
model  

Lb 

Width 
model 

 b 

Shear 
modulus 

 G 

Effective 
thickness 

hef,w 

(-) (mm) (mm) (mm) (MPa) (mm) 

2D_C13 14/1,52/14 2000 500 10,0 28,27 

2D_C14 14/1,52/14 4000 500 10,0 29,18 

2D_C15 14/1,52/14 6000 500 10,0 29,36 

2D_C16 14/1,52/14 8000 500 10,0 29,43 
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D. 2D (1ST SOLUTION STRATEGY) AND 3D MODELS: 

NUMERICAL RESULTS  

This annex is dedicated to present in tabular format critical buckling loads Ncr,FEA  and stresses σcr,FEA , obtained 

by eigenvalue analysis (LBA) and geometrically nonlinear analysis (GNA), for each case study and interlayer 

shear modulus. 

Case A : 

Table D-1: Critical buckling loads and stresses for 2D flat models with G = 0,01 MPa (case A – 1st solution strategy). 

2D flat models - Case A - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness  

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 12,72 Linear 5,942 5,00 14,86 14,81 10760 1,38 

4000 13,08 Linear 1,611 5,00 4,03 4,02 10760 0,37 

6000 13,59 Linear 0,803 5,00 2,01 2,01 10760 0,19 

8000 14,20 Linear 0,515 5,00 1,29 1,29 10760 0,12 

 

Table D-2: Critical buckling loads and stresses for 2D flat models with G = 0,1 MPa (case A – 1st solution strategy). 

2D flat models - Case A - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness  

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 13,69 Linear 7,408 5,00 18,43 18,43 10760 1,72 

4000 15,69 Linear 2,782 5,00 6,94 6,94 10760 0,65 

6000 17,37 Linear 1,676 5,00 4,19 4,19 10760 0,39 

8000 18,54 Linear 1,146 5,00 2,87 2,86 10760 0,27 
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Table D-3: Critical buckling loads and stresses for 2D flat models with G = 1 MPa (case A – 1st solution strategy). 

2D flat models - Case A - G = 1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 17,59 Linear 15,715 5,00 39,29 39,15 10760 3,65 

4000 20,00 Linear 5,762 5,00 14,41 14,37 10760 1,34 

6000 20,76 Linear 2,862 5,00 7,16 7,15 10760 0,66 

8000 21,07 Linear 1,683 5,00 4,21 4,21 10760 0,39 

 

Table D-4: Critical buckling loads and stresses for 2D flat models with G = 10 MPa (case A – 1st solution strategy). 

2D flat models - Case A - G = 10 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 20,83 Linear 26,097 5,00 65,24 64,99 10760 6,06 

4000 21,33 Linear 6,989 5,00 17,47 17,45 10760 1,62 

6000 21,43 Linear 3,149 5,00 7,87 7,87 10760 0,73 

8000 21,47 Linear 1,780 5,00 4,45 4,45 10760 0,41 

 

Case B : 

Table D-5: Critical buckling loads and stresses for 2D flat models with G = 0,01 MPa (case B – 1st solution strategy). 

2D flat models - Case B - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 15,24 Linear 10,220 5,00 25,55 25,44 12760 2,00 

4000 15,58 Linear 2,723 5,00 6,81 6,80 12760 0,53 

6000 16,09 Linear 1,332 5,00 3,33 3,33 12760 0,26 

8000 16,72 Linear 0,841 5,00 2,10 2,10 12760 0,16 
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Table D-6: Critical buckling loads and stresses for 2D flat models with G = 0,1 MPa (case B – 1st solution strategy). 

2D flat models - Case B - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 16,19 Linear 12,250 5,00 30,63 30,50 12760 2,40 

4000 18,29 Linear 4,406 5,00 11,02 11,01 12760 0,86 

6000 20,20 Linear 2,637 5,00 6,59 6,59 12760 0,52 

8000 21,61 Linear 1,816 5,00 4,54 4,53 12760 0,36 

 

Table D-7: Critical buckling loads and stresses for 2D flat models with G = 1 MPa (case B – 1st solution strategy). 

2D flat models - Case B - G = 1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 20,46 Linear 24,731 5,00 61,83 61,61 12760 4,85 

4000 23,45 Linear 9,287 5,00 23,22 23,19 12760 1,82 

6000 24,47 Linear 4,688 5,00 11,72 11,71 12760 0,92 

8000 24,90 Linear 2,778 5,00 6,95 6,94 12760 0,54 

 

Table D-8: Critical buckling loads and stresses for 2D flat models with G = 10 MPa (case B – 1st solution). 

2D flat models - Case B - G = 10 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 24,57 Linear 42,830 5,00 107,80 106,60 12760 8,39 

4000 25,26 Linear 11,608 5,00 29,02 28,97 12760 2,27 

6000 25,40 Linear 5,243 5,00 13,11 13,09 12760 1,03 

8000 25,45 Linear 2,966 5,00 7,42 7,41 12760 0,58 
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Case C : 

Table D-9: Critical buckling loads and stresses for 2D flat models with G = 0,01 MPa (case C – 1st solution strategy). 

2D flat models - Case C - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

 
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 17,76 Linear 16,175 5,00 40,44 40,24 14760 2,74 

4000 18,09 Linear 4,263 5,00 10,66 10,64 14760 0,72 

6000 18,60 Linear 2,058 5,00 5,15 5,14 14760 0,35 

8000 19,23 Linear 1,279 5,00 3,20 3,19 14760 0,22 

 

Table D-10: Critical buckling loads and stresses for 2D flat models with G = 0,1 MPa (case C – 1st solution strategy). 

2D flat models - Case C - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

  
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 18,69 Linear 18,852 5,00 47,13 46,79 14760 3,19 

4000 20,88 Linear 6,556 5,00 16,39 16,37 14760 1,11 

6000 22,99 Linear 3,887 5,00 9,72 9,70 14760 0,66 

8000 24,61 Linear 2,682 5,00 6,71 6,70 14760 0,45 

 

Table D-11: Critical buckling loads and stresses for 2D flat models with G = 1 MPa (case C – 1st solution strategy). 

2D flat models - Case C - G = 1 MPa 
 

Length 
model 

 
Lb 

Effective 
thickness 

  
hef,w 

Type of 
buckling 
analysis  

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 23,28 Linear 36,432 5,00 91,08 90,75 14760 6,17 

4000 26,85 Linear 13,941 5,00 34,85 34,79 14760 2,36 

6000 28,14 Linear 7,129 5,00 17,82 17,81 14760 1,21 

8000 28,70 Linear 4,254 5,00 10,64 10,62 14760 0,72 
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Table D-12: Critical buckling loads and stresses for 2D flat models with G = 10 MPa (case C – 1st solution strategy). 

2D flat models - Case C - G = 10 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

load 
Ncr,LG 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (-) (-) (N/mm) (kN) (kN) (mm2) (MPa) 

2000 28,27 Linear 65,239 5,00 163,10 162,35 14760 11,05 

4000 29,18 Linear 17,895 5,00 44,74 44,63 14760 3,03 

6000 29,36 Linear 8,097 5,00 20,24 20,22 14760 1,37 

8000 29,43 Linear 4,587 5,00 11,47 11,45 14760 0,78 

 

Case A : 

Table D-13: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case A – 1st solution strategy). 

2D curved models - Case A - G = 0,01 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 12,72 12,32 Nonlinear 4,400 5,00 11,00 10760 1,02 

4000 13,08 16,13 Nonlinear 1,444 5,00 3,61 10760 0,34 

6000 13,59 20,99 Nonlinear 0,754 5,00 1,89 10760 0,18 

8000 14,20 26,32 Nonlinear 0,496 5,00 1,24 10760 0,12 

 

Table D-14: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case A – 1st solution strategy). 

2D curved models - Case A - G = 0,1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 13,69 12,32 Nonlinear 5,500 5,00 13,75 10760 1,28 

4000 15,69 16,13 Nonlinear 2,450 5,00 6,13 10760 0,57 

6000 17,37 20,99 Nonlinear 1,542 5,00 3,86 10760 0,36 

8000 18,54 26,32 Nonlinear 1,077 5,00 2,69 10760 0,25 
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Table D-15: Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case A – 1st solution strategy). 

2D curved models - Case A - G = 1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 17,59 12,32 Nonlinear 10,800 5,00 27,00 10760 2,51 

4000 20,00 16,13 Nonlinear 4,900 5,00 12,25 10760 1,14 

6000 20,76 20,99 Nonlinear 2,606 5,00 6,52 10760 0,61 

8000 21,07 26,32 Nonlinear 1,574 5,00 3,94 10760 0,37 

 

Table D-16: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case A – 1st solution strategy). 

2D curved models - Case A - G = 10 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 20,83 12,32 Nonlinear 17,000 5,00 42,50 10760 3,95 

4000 21,33 16,13 Nonlinear 5,900 5,00 14,75 10760 1,37 

6000 21,43 20,99 Nonlinear 2,842 5,00 7,11 10760 0,66 

8000 21,47 26,32 Nonlinear 1,654 5,00 4,14 10760 0,38 

 

Case B : 

Table D-17: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case B – 1st solution strategy). 

2D curved models - Case B - G = 0,01 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 15,24 14,10 Nonlinear 7,000 5,00 17,50 12760 1,37 

4000 15,58 17,52 Nonlinear 2,377 5,00 5,94 12760 0,47 

6000 16,09 22,08 Nonlinear 1,232 5,00 3,08 12760 0,24 

8000 16,72 27,20 Nonlinear 0,793 5,00 1,98 12760 0,16 
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Table D-18: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case B – 1st solution strategy). 

2D curved models - Case B - G = 0,1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 16,19 14,10 Nonlinear 8,200 5,00 20,50 12760 1,61 

4000 18,29 17,52 Nonlinear 3,800 5,00 9,50 12760 0,74 

6000 20,20 22,08 Nonlinear 2,400 5,00 6,00 12760 0,47 

8000 21,61 27,20 Nonlinear 1,693 5,00 4,23 12760 0,33 

 

Table D-19: Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case B – 1st solution strategy). 

2D curved models - Case B - G = 1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 20,46 14,10 Nonlinear 15,600 5,00 39,00 12760 3,06 

4000 23,45 17,52 Nonlinear 7,600 5,00 19,00 12760 1,49 

6000 24,47 22,08 Nonlinear 4,200 5,00 10,50 12760 0,82 

8000 24,90 27,20 Nonlinear 2,545 5,00 6,36 12760 0,50 

 

Table D-20: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case B – 1st solution strategy). 

2D curved models - Case B - G = 10 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 24,57 14,10 Nonlinear 25,600 5,00 64,00 12760 5,02 

4000 25,26 17,52 Nonlinear 9,450 5,00 23,63 12760 1,85 

6000 25,40 22,08 Nonlinear 4,650 5,00 11,63 12760 0,91 

8000 25,45 27,20 Nonlinear 2,732 5,00 6,83 12760 0,54 
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Case C : 

Table D-21: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case C – 1st solution strategy). 

2D curved models - Case C - G = 0,01 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 17,76 15,94 Nonlinear 10,200 5,00 25,50 14760 1,73 

4000 18,09 19,03 Nonlinear 3,600 5,00 9,00 14760 0,61 

6000 18,60 23,29 Nonlinear 1,880 5,00 4,70 14760 0,32 

8000 19,23 28,20 Nonlinear 1,203 5,00 3,01 14760 0,20 

 

Table D-22: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case C – 1st solution strategy). 

2D curved models - Case C - G = 0,1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 18,69 15,94 Nonlinear 11,700 5,00 29,25 14760 1,98 

4000 20,88 19,03 Nonlinear 5,420 5,00 13,55 14760 0,92 

6000 22,99 23,29 Nonlinear 3,450 5,00 8,63 14760 0,58 

8000 24,61 28,20 Nonlinear 2,465 5,00 6,16 14760 0,42 

 

Table D-23: Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case C – 1st solution strategy). 

2D curved models - Case C - G = 1 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 23,28 15,94 Nonlinear 21,100 5,00 52,75 14760 3,57 

4000 26,85 19,03 Nonlinear 11,090 5,00 27,73 14760 1,88 

6000 28,14 23,29 Nonlinear 6,200 5,00 15,50 14760 1,05 

8000 28,70 28,20 Nonlinear 3,823 5,00 9,56 14760 0,65 
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Table D-24: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case C – 1st solution strategy). 

2D curved models - Case C - G = 10 MPa 
 

Length 
model 

Lb 

Effective 
thickness 

hef,w 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 28,27 15,94 Nonlinear 35,200 5,00 88,00 14760 5,96 

4000 29,18 19,03 Nonlinear 14,000 5,00 35,00 14760 2,37 

6000 29,36 23,29 Nonlinear 7,000 5,00 17,50 14760 1,19 

8000 29,43 28,20 Nonlinear 4,100 5,00 10,25 14760 0,69 

 

Case A : 

Table D-25: Critical buckling loads and stresses for 3D models with G = 0,01 MPa (case A). 

3D models - Case A - G = 0,01 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
10/1,52/

10 
12,32 Nonlinear 5,200 5,00 13,00 10760 1,21 

4000 
10/1,52/

10 
16,13 Nonlinear 1,464 5,00 3,66 10760 0,34 

6000 
10/1,52/

10 
20,99 Nonlinear 0,798 5,00 2,00 10760 0,18 

8000 
10/1,52/

10 
26,32 Nonlinear 0,532 5,00 1,33 10760 0,12 
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Table D-26: Critical buckling loads and stresses for 3D models with G = 0,1 MPa (case A). 

3D models - Case A - G = 0,1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
10/1,52/

10 
12,32 Nonlinear 6,454 5,00 16,14 10760 1,49 

4000 
10/1,52/

10 
16,13 Nonlinear 2,459 5,00 6,15 10760 0,57 

6000 
10/1,52/

10 
20,99 Nonlinear 1,560 5,00 2,87 10760 0,36 

8000 
10/1,52/

10 
26,32 Nonlinear 1,082 5,00 2,71 10760 0,25 

 

Table D-27: Critical buckling loads and stresses for 3D models with G = 1 MPa (case A). 

3D models - Case A - G = 1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
10/1,52/

10 
12,32 Nonlinear 11,450 5,00 28,63 10760 2,66 

4000 
10/1,52/

10 
16,13 Nonlinear 4,779 5,00 11,95 10760 1,11 

6000 
10/1,52/

10 
20,99 Nonlinear 2,585 5,00 6,46 10760 0,60 

8000 
10/1,52/

10 
26,32 Nonlinear 1,612 5,00 4,03 10760 0,37 
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Table D-28: Critical buckling loads and stresses for 3D models with G = 10 MPa (case A). 

3D models - Case A - G = 10 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
10/1,52/

10 
12,32 Nonlinear 19,500 5,00 48,75 10760 4,53 

4000 
10/1,52/

10 
16,13 Nonlinear 5,812 5,00 14,53 10760 1,35 

6000 
10/1,52/

10 
20,99 Nonlinear 3,053 5,00 7,63 10760 0,71 

8000 
10/1,52/

10 
26,32 Nonlinear 1,697 5,00 4,24 10760 0,39 

 

Case B : 

Table D-29: Critical buckling loads and stresses for 3D models with G = 0,01 MPa (case B). 

3D models - Case B - G = 0,01 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
12/1,52/

12 
14,10 Nonlinear 8,500 5,00 21,25 12760 1,67 

4000 
12/1,52/

12 
17,52 Nonlinear 2,398 5,00 6,00 12760 0,47 

6000 
12/1,52/

12 
22,08 Nonlinear 1,283 5,00 3,21 12760 0,25 

8000 
12/1,52/

12 
27,20 Nonlinear 0,865 5,00 2,16 12760 0,17 
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Table D-30: Critical buckling loads and stresses for 3D models with G = 0,1 MPa (case B). 

3D models - Case B - G = 0,1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
12/1,52/

12 
14,10 Nonlinear 10,146 5,00 25,37 12760 1,99 

4000 
12/1,52/

12 
17,52 Nonlinear 3,886 5,00 9,72 12760 0,76 

6000 
12/1,52/

12 
22,08 Nonlinear 2,412 5,00 6,03 12760 0,47 

8000 
12/1,52/

12 
27,20 Nonlinear 1,710 5,00 4,28 12760 0,34 

 

Table D-31: Critical buckling loads and stresses for 3D models with G = 1 MPa (case B). 

3D models - Case B - G = 1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
12/1,52/

12 
14,10 Nonlinear 18,600 5,00 46,50 12760 3,64 

4000 
12/1,52/

12 
17,52 Nonlinear 7,408 5,00 18,52 12760 1,45 

6000 
12/1,52/

12 
22,08 Nonlinear 4,108 5,00 10,27 12760 0,80 

8000 
12/1,52/

12 
27,20 Nonlinear 2,548 5,00 6,37 12760 0,50 
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Table D-32: Critical buckling loads and stresses for 3D models with G = 10 MPa (case B). 

3D models - Case B - G = 10 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
12/1,52/

12 
14,10 Nonlinear 26,800 5,00 67,00 12760 5,25 

4000 
12/1,52/

12 
17,52 Nonlinear 10,839 5,00 27,10 12760 2,12 

6000 
12/1,52/

12 
22,08 Nonlinear 4,770 5,00 11,93 12760 0,93 

8000 
12/1,52/

12 
27,20 Nonlinear 2,803 5,00 7,01 12760 0,55 

 

Case C : 

Table D-33: Critical buckling loads and stresses for 3D models with G = 0,01 MPa (case C). 

3D models - Case C - G = 0,01 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
14/1,52/

14 
15,94 Nonlinear 13,040 5,00 32,60 14760 2,21 

4000 
14/1,52/

14 
19,03 Nonlinear 3,650 5,00 9,13 14760 0,62 

6000 
14/1,52/

14 
23,29 Nonlinear 1,967 5,00 4,92 14760 0,33 

8000 
14/1,52/

14 
28,20 Nonlinear 1,309 5,00 3,27 14760 0,22 
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Table D-34: Critical buckling loads and stresses for 3D models with G = 0,1 MPa (case C). 

3D models - Case C - G = 0,1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
14/1,52/

14 
15,94 Nonlinear 12,653 5,00 31,63 14760 2,14 

4000 
14/1,52/

14 
19,03 Nonlinear 5,580 5,00 13,95 14760 0,95 

6000 
14/1,52/

14 
23,29 Nonlinear 3,556 5,00 8,89 14760 0,60 

8000 
14/1,52/

14 
28,20 Nonlinear 2,495 5,00 6,24 14760 0,42 

 

Table D-35: Critical buckling loads and stresses for 3D models with G = 1 MPa (case C). 

3D models - Case C - G = 1 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
14/1,52/

14 
15,94 Nonlinear 25,400 5,00 63,50 14760 4,30 

4000 
14/1,52/

14 
19,03 Nonlinear 10,793 5,00 26,98 14760 1,83 

6000 
14/1,52/

14 
23,29 Nonlinear 6,139 5,00 15,35 14760 1,04 

8000 
14/1,52/

14 
28,20 Nonlinear 3,820 5,00 9,55 14760 0,65 
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Table D-36: Critical buckling loads and stresses for 3D models with G = 10 MPa (case C). 

3D models - Case C - G = 10 MPa 
 

Length 
model 

Lb 

Thicknes
ses 

h1/hint/h2 

Basic 
imperfe

ction 
e0 

Type of 
buckling 
analysis 

Buckling 
load 

factor 
BLF 

Applied 
linear 
load 
P0 

Critical 
buckling 

load 
Ncr,FEA 

Area of 
laminated 

glass 
 Afull 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (mm) (mm) (-) (-) (N/mm) (kN) (mm2) (MPa) 

2000 
14/1,52/

14 
15,94 Nonlinear 37,000 5,00 92,50 14760 6,27 

4000 
14/1,52/

14 
19,03 Nonlinear 13,741 5,00 34,35 14760 2,33 

6000 
14/1,52/

14 
23,29 Nonlinear 7,039 5,00 17,60 14760 1,19 

8000 
14/1,52/

14 
28,20 Nonlinear 4,239 5,00 10,60 14760 0,72 
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E.  2D-FE CURVED MODELS: PRELIMINARY CALCULATIONS 

AND NUMERICAL RESULTS (2ND SOLUTION STRATEGY) 

This annex is intended for presenting in tabular form preliminary calculations, regarding section modulus 

W(hef,σ,i) and true buckling stress σ̅. Additionally, there are also present tables, which include critical buckling 

loads (Ncr,FEA) and stresses (σcr,FEA) for each case study, obtained by means of geometrically nonlinear analysis 

(GNA) on 2D curved models. 

Case A :  

Table E-1: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,01 MPa (case A). 

2D curved models - Case A - G = 0,01 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_A 

500 2000 10760 14,29 17017,01 

500 4000 10760 14,70 18007,50 

500 6000 10760 15,29 19482,01 

500 8000 10760 15,96 21226,80 

 

Table E-2: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,1 MPa (case A). 

2D curved models - Case A - G = 0,1 MPa 
 

Model type 
& case 
study 

Width 
model 

b 

Length 
model 

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_A 

500 2000 10760 15,39 19737,68 

500 4000 10760 17,44 25346,13 

500 6000 10760 18,89 29736,01 

500 8000 10760 19,76 32538,13 
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Table E-3: Section modulus and effective thickness for bending stress for 2D curved models with G = 1 MPa (case A). 

2D curved models - Case A - G = 1 MPa 
 

Model type 
& case 
study 

Width 
model 

b 

Length 
model 

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_A 

500 2000 10760 19,06 30273,63 

500 4000 10760 20,69 35673,01 

500 6000 10760 21,12 37171,20 

500 8000 10760 21,29 37772,01 

 

Table E-4: Section modulus and effective thickness for bending stress for 2D curved models with G = 10 MPa (case A). 

2D curved models - Case A - G = 10 MPa 
 

Model type 
& case 
study 

Width 
model 

b 

Length 
model 

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_A 

500 2000 10760 21,16 37312,13 

500 4000 10760 21,42 38234,70 

500 6000 10760 21,47 38413,41 

500 8000 10760 21,49 38485,01 
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Table E-5:  Calculation of true buckling stress for 2D curved models with G = 0,01 MPa (case A). 

2D curved models - Case A - G = 0,01 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 38,66 12,32 50,98 33,98 

4000 Nonlinear 2500 144,32 16,13 160,45 32,50 

6000 Nonlinear 2500 314,07 20,99 335,06 32,59 

8000 Nonlinear 2500 560,042 26,32 586,74 34,39 

 

Table E-6:  Calculation of true buckling stress for 2D curved models with G = 0,1 MPa (case A). 

2D curved models - Case A - G = 0,1 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 39,09 12,32 51,41  37,09 

4000 Nonlinear 2500 124,35 16,13 140,48 34,52 

6000 Nonlinear 2500 246,75 20,99 267,74 35,48 

8000 Nonlinear 2500 400,68 26,32 427,00 35,58 

 

Table E-7: Calculation of true buckling stress for 2D curved models with G = 1 MPa (case A). 

2D curved models - Case A - G = 1 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 30,13 12,32 42,45 40,37 

4000 Nonlinear 2500 99,19 16,13 115,32 40,74 

6000 Nonlinear 2500 222,09 20,99 243,08 43,21 

8000 Nonlinear 2500 379,77 26,32 406,09 42,67 
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Table E-8: Calculation of true buckling stress for 2D curved models with G = 10 MPa (case A). 

2D curved models - Case A - G = 10 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 25,69 12,32 38,01 47,24 

4000 Nonlinear 2500 94,63 16,13 110,76 44,10 

6000 Nonlinear 2500 204,01 20,99 225,00 42,28 

8000 Nonlinear 2500 348,38 26,32 374,70 40,64 

 

Table E-9: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case A – 2nd solution strategy). 

2D curved models - Case A - G = 0,01 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,32 Nonlinear 2500 51,20 4,700 11750,00 1,09 

4000 1,38 Nonlinear 2500 199,82 1,481 3702,50 0,34 

6000 1,38 Nonlinear 2500 433,61 0,772 1930,00 0,18 

8000 1,31 Nonlinear 2500 733,31 0,503 1257,50 0,12 

 

Table E-10: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case A – 2nd solution strategy). 

2D curved models - Case A - G = 0,1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,21 Nonlinear 2500 47,42  5,760 14400,00 1,34 

4000 1,30 Nonlinear 2500 162,12 2,520 6300,00 0,59 

6000 1,27 Nonlinear 2500 312,98 1,564 3910,00 0,36 

8000 1,26 Nonlinear 2500 506,70 1,091 2727,50 0,25 
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Table E-11: Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case A – 2nd solution strategy). 

2D curved models - Case A - G = 1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,11 Nonlinear 2500 33,59 10,800  27000,00 2,51 

4000 1,10 Nonlinear 2500 109,56 4,950 12375,00 1,15 

6000 1,04 Nonlinear 2500 213,29 2,614 6535,00 0,61 

8000 1,05 Nonlinear 2500 400,50 1,571 3927,50 0,37 

 

Table E-12: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case A – 2nd solution strategy). 

2D curved models - Case A - G = 10 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 0,95 Nonlinear 2500 24,47  16,700  41750,00  3,88  

4000 1,02 Nonlinear 2500 96,56 5,900 14750,00 1,37 

6000 1,06 Nonlinear 2500 217,15 2,860 7150,00 0,66 

8000 1,11 Nonlinear 2500 385,72 1,660 4150,00 0,39 

 

Case B :  

Table E-13: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,01 MPa (case B). 

2D curved models - Case B - G = 0,01 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_B 

500 2000 12760 17,11 24396,01 

500 4000 12760 17,51 25550,01 

500 6000 12760 18,09 27270,68 

500 8000 12760 18,77 29359,41 
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Table E-14: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,1 MPa (case B). 

2D curved models - Case B - G = 0,1 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_B 

500 2000 12760 18,20 27603,33 

500 4000 12760 20,38 34612,03 

500 6000 12760 22,07 40590,41 

500 8000 12760 23,15 44660,21 

 

Table E-15: Section modulus and effective thickness for bending stress for 2D curved models with G = 1 MPa (case B). 

2D curved models - Case B - G = 1 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_B 

500 2000 12760 22,28 41366,53 

500 4000 12760 24,38 49532,03 

500 6000 12760 24,97 51958,41 

500 8000 12760 25,20 52920,00 

 

Table E-16: Section modulus and effective thickness for bending stress for 2D curved models with G = 10 MPa (case B). 

2D curved models - Case B - G = 10 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_B 

500 2000 12760 25,02 52166,70 

500 4000 12760 25,39 53721,01 

500 6000 12760 25,46 54017,63 

500 8000 12760 25,48 54102,53 
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Table E-17: Calculation of true buckling stress for 2D curved models with G = 0,01 MPa (case B). 

2D curved models - Case B - G = 0,01 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 33,66 14,10 47,76 35,63 

4000 Nonlinear 2500 127,23 17,52 144,75 34,13 

6000 Nonlinear 2500 272,24 22,08 294,32 33,48 

8000 Nonlinear 2500 434,63 27,20 461,83 31,34 

 

Table E-18: Calculation of true buckling stress for 2D curved models with G = 0,1 MPa (case B). 

2D curved models - Case B - G = 0,1 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 31,42 14,10 45,52  35,41 

4000 Nonlinear 2500 114,91 17,52 132,43 37,09 

6000 Nonlinear 2500 231,32 22,08 253,40 37,93 

8000 Nonlinear 2500 376,58 27,20 403,78 38,60 

 

Table E-19: Calculation of true buckling stress for 2D curved models with G = 1 MPa (case B). 

2D curved models - Case B - G = 1 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 26,64 14,10 40,74 41,47 

4000 Nonlinear 2500 85,43 17,52 102,95 40,98 

6000 Nonlinear 2500 199,72 22,08 221,80 45,65 

8000 Nonlinear 2500 306,93 27,20 334,13 40,67 
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Table E-20: Calculation of true buckling stress for 2D curved models with G = 10 MPa (case B). 

2D curved models - Case B - G = 10 MPa 
 

Length of 
glass 
pane 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 23,20  14,10 37,30 50,78 

4000 Nonlinear 2500 83,12 17,52 100,64 46,11 

6000 Nonlinear 2500 182,18 22,08 204,26 44,87 

8000 Nonlinear 2500 325,56 27,20 352,76 45,07 

 

Table E-21: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case B – 2nd solution strategy). 

2D curved models - Case B  - G = 0,01 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,26 Nonlinear 2500 42,51 7,500 18750,00 1,47 

4000 1,32 Nonlinear 2500 167,74 2,450 6125,00 0,48 

6000 1,34 Nonlinear 2500 365,89 1,255 3137,50 0,25 

8000 1,44 Nonlinear 2500 624,06 0,811 2027,50 0,16 

 

Table E-22: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case B – 2nd solution strategy). 

2D curved models - Case B  - G = 0,1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,27 Nonlinear 2500 39,93 8,800 22000,00 1,72 

4000 1,21 Nonlinear 2500 139,41 3,880 9700,00 0,76 

6000 1,19 Nonlinear 2500 274,46 2,430 6075,00 0,48 

8000 1,17 Nonlinear 2500 439,04 1,713 4282,50 0,34 
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Table E-23: Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case B – 2nd solution strategy). 

2D curved models - Case B  - G = 1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,09  Nonlinear 2500 28,91 16,000 40000,00  3,13 

4000 1,10 Nonlinear 2500 93,81 7,680 19200,00 1,50 

6000 0,99 Nonlinear 2500 196,90 4,200 10500,00 0,82 

8000 1,11 Nonlinear 2500 339,60 2,560 6400,00 0,50 

 

Table E-24: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case B – 2nd solution strategy). 

2D curved models - Case B  - G = 10 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 0,89 Nonlinear 2500 20,56  24,400 61000,00  4,78 

4000 0,98 Nonlinear 2500 81,12 9,400 23500,00 1,84 

6000 1,00 Nonlinear 2500 182,71 4,650 11625,00 0,91 

8000 1,00 Nonlinear 2500 325,07 2,710 6775,00 0,53 

 

Case C : 

Table E-25: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,01 MPa (case C). 

2D curved models - Case C - G = 0,01 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_C 

500 2000 14760 19,94 33133,63 

500 4000 14760 20,32 34408,53 

500 6000 14760 20,90 36400,83 

500 8000 14760 21,59 38844,01 
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Table E-26: Section modulus and effective thickness for bending stress for 2D curved models with G = 0,1 MPa (case C). 

2D curved models - Case C - G = 0,1 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_C 

500 2000 14760 21,01 36785,01 

500 4000 14760 23,29 45202,01 

500 6000 14760 25,21 52962,01 

500 8000 14760 26,50 58520,83 

 

Table E-27: Section modulus and effective thickness for bending stress for 2D curved models with G = 1 MPa (case C). 

2D curved models - Case C - G = 1 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_C 

500 2000 14760 25,45 53975,21 

500 4000 14760 28,03 65473,41 

500 6000 14760 28,79 69072,01 

500 8000 14760 29,10 70567,50 

 

Table E-28: Section modulus and effective thickness for bending stress for 2D curved models with G = 10 MPa (case C). 

2D curved models - Case C - G = 10 MPa 
 

Model type 
& case 
study 

Width 
model  

b 

Length 
model  

Lb 

Area of 
laminated 

glass 
Afull 

Effective 
thickness 

hef,σ,i 

Section 
modulus 
W(hef,σ,i) 

(-) (mm) (mm) (mm2) (mm) (mm3) 

2D_C 

500 2000 14760 28,86 69408,30 

500 4000 14760 29,34 71736,30 

500 6000 14760 29,44 72226,13 

500 8000 14760 29,47 72373,41 
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Table E-29: Calculation of true buckling stress for 2D curved models with G = 0,01 MPa (case C). 

2D curved models - Case C - G = 0,01 MPa 
 

Length 
model 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 29,81  15,94 45,75  36,94 

4000 Nonlinear 2500 110,24 19,03 129,27 34,42 

6000 Nonlinear 2500 251,63 23,29 274,92 35,82 

8000 Nonlinear 2500 430,03 28,20 458,23 35,68 

 

Table E-30: Calculation of true buckling stress for 2D curved models with G = 0,1 MPa (case C). 

2D curved models - Case C - G = 0,1 MPa 
 

Length 
model 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 39,09 15,94 55,03 45,74 

4000 Nonlinear 2500 124,35 19,03 143,38 43,90 

6000 Nonlinear 2500 246,75 23,29 270,04 44,56 

8000 Nonlinear 2500 400,68 28,20 428,88 45,58 

 

Table E-31: Calculation of true buckling stress for 2D curved models with G = 1 MPa (case C). 

2D curved models - Case C - G = 1 MPa 
 

Length 
model 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 30,13 15,94 42,45 45,06 

4000 Nonlinear 2500 99,19 19,03 115,32 50,71 

6000 Nonlinear 2500 222,09 23,29 243,08 55,60 

8000 Nonlinear 2500 379,77 28,20 406,09 55,65 
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Table E-32: Calculation of true buckling stress for 2D curved models with G = 10 MPa (case C). 

2D curved models - Case C - G = 10 MPa 
 

Length 
model 

Lb 

Type of 
buckling 
analysis 

Applied 
load 

P0 

Maximum 
displacement 

δmax 

Basic 
imperfection 

e0 
(δmax + e0 ) 

True 
buckling 

stress 
σ ̅

(mm) (-) (N) (mm) (mm) (mm) (MPa) 

2000 Nonlinear 2500 25,69 15,94 38,01  54,15 

4000 Nonlinear 2500 94,63 19,03 110,76 56,41 

6000 Nonlinear 2500 201,01 23,29 225,00 55,70 

8000 Nonlinear 2500 348,38 28,20 374,70 53,76 

 

Table E-33: Critical buckling loads and stresses for 2D curved models with G = 0,01 MPa (case C – 2nd solution strategy). 

2D curved models - Case C  - G = 0,01 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,22 Nonlinear 2500 36,32  10,890 27225,00 1,84 

4000 1,31 Nonlinear 2500 144,12 3,740 9350,00 0,63 

6000 1,26 Nonlinear 2500 316,16 1,917 4792,50 0,32 

8000 1,26 Nonlinear 2500 542,32 1,224 3060,00 0,21 

 

Table E-34: Critical buckling loads and stresses for 2D curved models with G = 0,1 MPa (case C – 2nd solution strategy). 

2D curved models - Case C  - G = 0,1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 0,98 Nonlinear 2500 38,46 12,90 32250,00 2,18 

4000 1,03 Nonlinear 2500 127,47 5,660 14150,00 0,96 

6000 1,01 Nonlinear 2500 249,18 3,540 8850,00 0,60 

8000 0,99 Nonlinear 2500 395,58 2,490 6225,00 0,42 
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Table E-35:  Critical buckling loads and stresses for 2D curved models with G = 1 MPa (case C – 2nd solution strategy). 

2D curved models - Case C  - G = 1 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 1,00 Nonlinear 2500 30,09 23,000 57500,00 3,90 

4000 0,89 Nonlinear 2500 88,02 11,280 28200,00 1,91 

6000 0,81 Nonlinear 2500 179,76 6,250 15625,00 1,06 

8000 0,81 Nonlinear 2500 307,11 3,877 9692,50 0,66 

 

Table E-36: Critical buckling loads and stresses for 2D curved models with G = 10 MPa (case C – 2nd solution strategy). 

2D curved models - Case C  - G = 10 MPa 
 

Length 
model 

Lb 

Ratio 
fg,k / σ ̅

Type of 
buckling 
analysis 

Applied 
load 

P0 

Limit 
displacement 

δlim 

New buckling 
load factor 

BLF 

Critical 
buckling 

load 
Ncr,FEA 

Critical 
buckling 

stress 
σcr,FEA 

(mm) (-) (-) (N) (mm) (-) (N) (MPa) 

2000 0,83 Nonlinear 2500 21,35 35,400 88500,00 6,00 

4000 0,80 Nonlinear 2500 75,49 14,040 35100,00 2,38 

6000 0,81 Nonlinear 2500 164,81 7,030 17575,00 1,19 

8000 0,84 Nonlinear 2500 291,60 4,200 10500,00 0,71 
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F. DESIGN BUCKLING CURVES BASED ON EC3: CALCULATIONS 

This annex presents all the calculations necessary to plot the design buckling curves for laminated glass 

members in compression, based on the Eurocode 3 framework. 

Annealed glass (ANG) : 

Table F-1: Nondimensional slenderness and buckling reduction factors for annealed glass (case A). 

3D models - Case A  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 13000 45 14811,83 5,718 18,662 0,0275 0,0268 

4000 3660 45 4018,27 10,977 64,434 0,0078 0,0076 

6000 2000 45 2006,13 15,536 126,482 0,0040 0,0041 

8000 1330 45 1287,74 19,391 195,175 0,0026 0,0027 

 

Table F-2: Nondimensional slenderness and buckling reduction factors for annealed glass (case A). 

3D models - Case A  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 16140 45 18434,74 5,125 15,239 0,0338 0,0333 

4000 6150 45 6939,75 8,353 38,138 0,0133 0,0127 

6000 3900 45 4186,37 10,755 61,935 0,0081 0,0081 

8000 2730 45 2864,97 13,000 89,406 0,0056 0,0056 
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Table F-3: Nondimensional slenderness and buckling reduction factors for annealed glass (case A). 

3D models - Case A  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 28630 45 39146,01 3,517 7,720 0,0685 0,0591 

4000 11950 45 14372,67 5,804 19,192 0,0267 0,0247 

6000 6460 45 7149,34 8,230 37,072 0,0137 0,0133 

8000 4030 45 4205,49 10,730 61,664 0,0082 0,0083 

 

Table F-4: Nondimensional slenderness and buckling reduction factors for annealed glass (case A). 

3D models - Case A  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 48750 45 64987,70 2,730 4,981 0,1093 0,1007 

4000 14530 45 17451,77 5,267 16,029 0,0321 0,0300 

6000 7560 45 7866,90 7,845 33,847 0,0150 0,0156 

8000 4240 45 4447,43 10,434 58,427 0,0086 0,0088 

 

Table F-5: Nondimensional slenderness and buckling reduction factors for annealed glass (case B). 

3D models - Case B  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 21250 45 25443,68 4,751 13,257 0,0390 0,0370 

4000 6000 45 6797,93 9,191 45,783 0,0110 0,0104 

6000 3210 45 3329,44 13,132 91,180 0,0055 0,0056 

8000 2160 45 2098,68 16,541 142,960 0,0035 0,0038 

 

  



Buckling resistance of laminated glass members in compression 

126 
 

Table F-6: Nondimensional slenderness and buckling reduction factors for annealed glass (case B). 

3D models - Case B  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 25370 45 30499,76 4,339 11,241 0,0463 0,0442 

4000 9720 45 11005,73 7,223 28,938 0,0176 0,0169 

6000 6030 45 6585,80 9,337 47,196 0,0107 0,0105 

8000 4280 45 4534,29 11,253 67,599 0,0074 0,0074 

 

Table F-7: Nondimensional slenderness and buckling reduction factors for annealed glass (case B). 

3D models - Case B  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 46500 45 61611,00 3,053 6,031 0,0890 0,0810 

4000 18520 45 23187,60 4,976 14,435 0,0357 0,0323 

6000 10270 45 11709,17 7,003 27,292 0,0186 0,0179 

8000 6370 45 6936,97 9,098 44,904 0,0113 0,0111 

 

Table F-8: Nondimensional slenderness and buckling reduction factors for annealed glass (case B). 

3D models - Case B  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 67000 45 
106599,2

1 
2,321 3,804 0,1467 0,1167 

4000 27100 45 28970,61 4,452 11,777 0,0441 0,0472 

6000 11930 45 13093,10 6,622 24,566 0,0207 0,0208 

8000 7010 45 7408,89 8,803 42,163 0,0120 0,0122 
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Table F-9: Nondimensional slenderness and buckling reduction factors for annealed glass (case C). 

3D models - Case C  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 32600 45 40242,88 4,063 9,982 0,0524 0,0491 

4000 9130 45 10639,15 7,901 34,307 0,0148 0,0137 

6000 4920 45 5139,18 11,368 68,944 0,0073 0,0074 

8000 3270 45 3194,75 14,419 109,358 0,0046 0,0049 

 

Table F-10: Nondimensional slenderness and buckling reduction factors for annealed glass (case C). 

3D models - Case C  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 31630 45 46968,91 3,760 8,693 0,0605 0,0476 

4000 13950 45 16369,57 6,370 22,836 0,0223 0,0210 

6000 8890 45 9700,73 8,275 37,459 0,0135 0,0134 

8000 6240 45 6699,56 9,957 53,392 0,0094 0,0094 

 

Table F-11: Nondimensional slenderness and buckling reduction factors for annealed glass (case C). 

3D models - Case C  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 63500 45 90748,58 2,705 4,907 0,1111 0,0956 

4000 26980 45 34789,22 4,369 11,384 0,0457 0,0406 

6000 15350 45 17807,98 6,107 21,104 0,0242 0,0231 

8000 9550 45 10621,51 7,908 34,361 0,0147 0,0144 
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Table F-12: Nondimensional slenderness and buckling reduction factors for annealed glass (case C). 

3D models - Case C  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fg,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 92500 45 
162354,0

4 
2,023 3,051 0,1875 0,1393 

4000 34350 45 44633,34 3,858 9,097 0,0577 0,0517 

6000 17600 45 20223,19 5,731 18,743 0,0273 0,0265 

8000 10600 45 11454,15 7,615 31,984 0,0159 0,0160 

 

Fully tempered glass (FTG) : 

Table F-13: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case A). 

3D models - Case A  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 15960 120 14811,83 9,337 47,188 0,0107 0,0124 

4000 5220 120 4018,27 17,926 167,317 0,0030 0,0040 

6000 2590 120 2006,13 25,370 331,107 0,0015 0,0020 

8000 1760 120 1287,74 31,665 512,873 0,0010 0,0014 

 

Table F-14: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case A). 

3D models - Case A  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 18660 120 18434,74 8,369 38,279 0,0132 0,0145 

4000 9450 120 6939,75 13,640 98,159 0,0051 0,0073 

6000 4380 120 4186,37 17,562 160,736 0,0031 0,0034 

8000 3010 120 2864,97 21,229 233,166 0,0021 0,0023 
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Table F-15: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case A). 

3D models - Case A  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 34870 120 39146,01 5,743 18,818 0,0272 0,0270 

4000 13540 120 14372,67 9,478 48,570 0,0104 0,0105 

6000 7400 120 7149,34 13,439 95,360 0,0053 0,0057 

8000 5050 120 4205,49 17,522 160,021 0,0031 0,0039 

 

Table F-16: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case A). 

3D models - Case A  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 57290 120 64987,70 4,457 11,804 0,0440 0,0444 

4000 18880 120 17451,77 8,602 40,334 0,0125 0,0146 

6000 10400 120 7866,90 12,811 86,900 0,0058 0,0081 

8000 6920 120 4447,43 17,039 151,498 0,0033 0,0054 

 

Table F-17: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case B). 

3D models - Case B  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 25160 120 25443,68 7,758 33,131 0,0153 0,0164 

4000 6980 120 6797,93 15,008 118,237 0,0042 0,0046 

6000 3790 120 3329,44 21,445 237,848 0,0021 0,0025 

8000 2410 120 2098,68 27,011 374,677 0,0013 0,0016 
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Table F-18: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case B). 

3D models - Case B  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 28720 120 30499,76 7,085 27,904 0,0182 0,0188 

4000 11150 120 11005,73 11,795 74,038 0,0068 0,0073 

6000 6730 120 6585,80 15,248 121,950 0,0041 0,0044 

8000 4810 120 4534,29 18,376 175,657 0,0029 0,0031 

 

Table F-19: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case B). 

3D models - Case B  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 55620 120 61611,00 4,985 14,483 0,0356 0,0363 

4000 22040 120 23187,60 8,126 36,189 0,0140 0,0144 

6000 11620 120 11709,17 11,435 69,731 0,0072 0,0076 

8000 6980 120 6936,97 14,857 115,926 0,0043 0,0046 

 

Table F-20: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case B). 

3D models - Case B  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 92140 120 
106599,2

1 
3,790 8,814 0,0596 0,0602 

4000 27160 120 28970,61 7,270 29,295 0,0173 0,0177 

6000 12870 120 13093,10 10,814 62,600 0,0080 0,0084 

8000 7480 120 7408,89 14,376 108,726 0,0046 0,0049 
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Table F-21: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case C). 

3D models - Case C  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 39160 120 40242,88 6,634 24,649 0,0207 0,0221 

4000 11240 120 10639,15 12,903 88,107 0,0057 0,0063 

6000 5380 120 5139,18 18,565 179,201 0,0028 0,0030 

8000 3580 120 3194,75 23,546 285,851 0,0018 0,0020 

 

Table F-22: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case C). 

3D models - Case C  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 44250 120 46968,91 6,141 21,322 0,0240 0,0250 

4000 16270 120 16369,57 10,402 58,080 0,0087 0,0092 

6000 9890 120 9700,73 13,512 96,376 0,0052 0,0056 

8000 6850 120 6699,56 16,260 138,247 0,0036 0,0039 

 

Table F-23: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case C). 

3D models - Case C  - G = 1 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 81260 120 90748,58 4,418 11,614 0,0447 0,0459 

4000 33460 120 34789,22 7,135 28,276 0,0180 0,0189 

6000 17340 120 17807,98 9,973 53,558 0,0094 0,0098 

8000 10620 120 10621,51 12,913 88,249 0,0057 0,0060 
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Table F-24: Nondimensional slenderness and buckling reduction factors for fully tempered glass (case C). 

3D models - Case C  - G = 10 MPa 
 

Length 
model 

 
Lb 

Critical 
buckling 

load 
Ncr,FEA 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

Buckling 
reduction 

factor (FEM) 
χFEM 

(mm) (N) (MPa) (N) (-) (-) (-) (-) 

2000 145860 120 
162354,0

4 
3,303 6,914 0,0770 0,0824 

4000 43840 120 44633,34 6,299 22,365 0,0228 0,0248 

6000 19780 120 20223,19 9,359 47,401 0,0107 0,0112 

8000 11280 120 11454,15 12,435 82,018 0,0061 0,0064 

 

Heat strengthened glass (HSG) : 

Table F-25: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case A). 

3D models - Case A  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 14811,83 7,131 28,244 0,0180 

4000 70 4018,27 13,691 98,869 0,0051 

6000 70 2006,13 19,377 194,890 0,0026 

8000 70 1287,74 24,185 301,324 0,0017 
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Table F-26: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case A). 

3D models - Case A  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 18434,74 6,392 22,985 0,0222 

4000 70 6939,75 10,418 58,252 0,0087 

6000 70 4186,37 13,413 95,007 0,0053 

8000 70 2864,97 16,214 137,493 0,0036 

 

Table F-27: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case A). 

3D models - Case A  - G = 1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 39146,01 4,386 11,465 0,0453 

4000 70 14372,67 7,239 29,059 0,0175 

6000 70 7149,34 10,264 56,607 0,0089 

8000 70 4205,49 13,383 94,587 0,0053 

 

Table F-28: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case A). 

3D models - Case A  - G = 10 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 64987,70 3,404 7,291 0,0728 

4000 70 17451,77 6,570 24,199 0,0211 

6000 70 7866,90 9,785 51,632 0,0098 

8000 70 4447,43 13,014 89,585 0,0056 
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Table F-29: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case B). 

3D models - Case B  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 25443,68 5,925 19,943 0,0257 

4000 70 6797,93 11,463 70,053 0,0072 

6000 70 3329,44 16,379 140,238 0,0036 

8000 70 2098,68 20,630 220,411 0,0023 

 

Table F-30: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case B). 

3D models - Case B  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 30499,76 5,412 16,851 0,0305 

4000 70 11005,73 9,009 44,064 0,0115 

6000 70 6585,80 11,646 72,234 0,0070 

8000 70 4534,29 14,035 103,763 0,0048 

 

Table F-31: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case B). 

3D models - Case B  - G = 1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 61611,00 3,808 8,887 0,0591 

4000 70 23187,60 6,206 21,751 0,0235 

6000 70 11709,17 8,734 41,529 0,0122 

8000 70 6936,97 11,347 68,695 0,0073 
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Table F-32: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case B). 

3D models - Case B  - G = 10 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 106599,21 2,895 5,504 0,0982 

4000 70 28970,61 5,553 17,674 0,0290 

6000 70 13093,10 8,259 37,329 0,0136 

8000 70 7408,89 10,980 64,464 0,0078 

 

Table F-33: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case C). 

3D models - Case C  - G = 0,01 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 40242,88 5,067 14,923 0,0345 

4000 70 10639,15 9,855 52,342 0,0096 

6000 70 5139,18 14,179 105,842 0,0047 

8000 70 3194,75 17,983 168,374 0,0030 

 

Table F-34: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case C). 

3D models - Case C  - G = 0,1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 46968,91 4,690 12,951 0,0400 

4000 70 16369,57 7,945 34,666 0,0146 

6000 70 9700,73 10,320 57,204 0,0088 

8000 70 6699,56 12,418 81,805 0,0061 
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Table F-35: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case C). 

3D models - Case C  - G = 1 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 90748,58 3,374 7,177 0,0740 

4000 70 34789,22 5,450 17,071 0,0301 

6000 70 17807,98 7,617 32,001 0,0159 

8000 70 10621,51 9,863 52,425 0,0096 

 

Table F-36: Nondimensional slenderness and buckling reduction factors for heat strengthened glass (case C). 

3D models - Case C  - G = 10 MPa 
 

Length 
model 

 
Lb 

Charact. 
bending 
strength 

fb,k 

Critical 
buckling 

load 
Ncr,LG 

Nondim. 
slenderness 

 
λ ̅

Buckling 
parameter 

 
Φ 

Buckling 
reduction 

factor 
χ 

(mm) (MPa) (N) (-) (-) (-) 

2000 70 162354,04 2,523 4,364 0,1262 

4000 70 44633,34 4,811 13,569 0,0381 

6000 70 20223,19 7,148 28,369 0,0179 

8000 70 11454,15 9,498 48,760 0,0104 

 

 

 

 

 


