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Abstract (Italiano)

Al giorno d’oggi, le persone non viaggiano semplicemente per il piacere di spostarsi, ma perché
devono svolgere diverse attività, spesso distribuite in aree differenti. Se non ci fossero attività da
svolgere, o se tutte fossero concentrate in un unico luogo, le persone non avrebbero necessità di
spostarsi. Questo concetto rappresenta il punto di partenza del nostro studio, che si propone di
analizzare la congestione lungo le infrastrutture urbane.

Delineato il problema, l’obiettivo di questa ricerca è analizzare i tempi di percorrenza per
identificare i tratti stradali più critici all’interno della Città Metropolitana di Torino. Questa
analisi è pensata per supportare la gestione del traffico, sia nelle decisioni a lungo termine che in
quelle operative a breve termine.

Per raggiungere questo obiettivo, è stata sviluppata una metodologia strutturata che prevede
diversi passaggi fondamentali nell’analisi su larga scala dei floating car data e degli historical
car data. Questi dati, raccolti nell’arco di un anno dall’azienda TIM, sono stati archiviati in
numerosi file .csv contenenti informazioni essenziali sugli spostamenti dei veicoli in un’ampia area
che comprende l’intera città di Torino, la sua cintura urbana e i comuni limitrofi. Grazie a questi
dati, che includono le coordinate dei veicoli, i timestamp e la velocità, è stato possibile analizzare
sia i tempi di percorrenza effettivi che i tempi di percorrenza in condizioni di flusso libero lungo i
diversi tratti stradali.

I passaggi principali della metodologia comprendono la selezione dei dati, filtrandoli in base
alla rete stradale disponibile, seguita dal map matching, ovvero l’associazione di ciascuna posizione
registrata del veicolo al corretto segmento stradale. Una volta completata questa mappatura, è
stata condotta un’analisi della congestione per valutare le dinamiche del traffico e le inefficienze
della rete viaria.

I risultati dello studio forniscono informazioni a tre livelli di aggregazione. A livello più dis-
aggregato, è stato misurato il tempo perso da ciascun veicolo a causa della congestione. A livello
di singolo tratto stradale, è stato quantificato il tempo perso su ciascuna sezione specifica della
rete. A livello zonale, è stato sviluppato un metodo per valutare i ritardi dovuti alla congestione
nelle diverse aree di Torino, con una suddivisione basata sui quartieri della città e sui confini
amministrativi dei comuni limitrofi.

Infine, i risultati di questo studio hanno il potenziale per diventare uno strumento utile per le
amministrazioni pubbliche e i pianificatori dei trasporti, supportando il processo decisionale nella
gestione della congestione stradale e del traffico.
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Abstract

Nowadays, people do not travel merely for the pleasure of moving but because they need to carry
out various activities, which are often spread across different areas. If there were no activities to
perform, or if all activities were concentrated in a single location, people would not need to travel.
This premise serves as the foundation for our study, which aims to analyse the congestion along
urban infrastructures.

Having outlined the issue, the objective of this research is to analyse travel times to identify
the most critical road segments within the Metropolitan City of Turin. This analysis is intended
to support traffic management efforts, both in long-term planning and short-term operational
decisions.

To achieve this, a structured methodology was developed, involving several key steps in the
analysis of large-scale floating car data and historical car data. These datasets, collected over a
one-year period by the company TIM, were stored in numerous .csv files containing essential infor-
mation on vehicle movements across an extensive area, encompassing the entire city of Turin along
with its urban belt and surrounding towns. Using this data, which includes vehicle coordinates,
timestamps, and speeds, both observed travel times and free-flow travel times along different road
segments were analysed.

The main steps of the methodology included data selection, where raw data was filtered based
on the available road network, followed by map matching, where each recorded vehicle position was
associated with the correct road segment. Once this mapping was completed, congestion analysis
was conducted to assess traffic patterns and inefficiencies.

The analysis provide insights at three levels of aggregation. At the most disaggregated level,
the time wasted by each individual vehicle due to congestion was measured. At the road segment
level, the study quantified the time lost on each specific section of the network. At the zonal
level, a method was developed to evaluate congestion-related delays within different areas of Turin,
where zoning followed the city’s neighbourhoods and the administrative boundaries of surrounding
municipalities.

The results of this study have the potential to serve as a valuable tool for public adminis-
trators and transport planners, aiding in decision-making processes related to traffic congestion
management.
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1 Introduction

Nowadays, the rise of new technologies is helping us in managing a lot of aspects of our daily
lives, among which of course we have the traffic management system. So far, we mostly used fixed
sensors to measure the characteristics of traffic streams and to take decisions based on that, but as
we know those devices are pretty limited to the specific location where they are placed for example.
So, with the introduction of the Floating Car Data we have the possibility to record the position of
each vehicle in real time and even taking real time decisions. The structure of this thesis is made
in such a way that we can present the usefulness of those kind of data in the individuation of the
arcs where most time is wasted due to congestion in Turin. In the following sections, we introduce
some technical terms that could be useful in the better understanding of the topic faced during the
thesis. In the second chapter a literature review of the most common method used to determine
the travel time on each arc at aggregate and disaggregate level is presented, then methods to
determine time waste during congestion. In the third one the dataset we used to implement our
analysis is presented. In chapter four, the methodology is described, thus the process that led us
from the data pre processing to the final data ready to be analysed. Here we also present the
Map Matching process we carried out and the following data processing. In the fifth chapter, the
analysis of travel times is carried out while in the sixth the results of the analysis are commented
and graphically visualized.

1.1 Thesis objectives

Our studies are based on the knowledge of the so-called Floating Car Data (FCD) and Historical
Car Data (HCD) of the private vehicles around Turin. They are recorded, by means of mobile
devices, such as smartphones, and they basically report information on the position of the vehicle
along the time; we can say these are raw data, and we will process them in order to get the main
information, thus, speed and travel time on each arc.

The purpose is not only to process these data and get these details, but to make them inter-
pretable. We will evaluate the travel time and speed of the same arcs under free flow conditions by
means of HCD, in order to successively understand how much time is wasted due to congestion and
what are the roads in which most of the time is wasted in Turin, by means of FCD. This is slightly
different with respect to determine the most congested roads, in fact, the congestion is strictly
related with the capacity of the infrastructures, and for small minor roads, even if few vehicles
pass, we could reach congestion easily, instead, on the other hand, it would be more interesting to
understand how much time is collectively wasted with respect to a standard travel time under free
flow condition, for example to support transport policy makers wishing to prioritize interventions
based on the loss of social welfare.

1.2 Background

We would like to give some technical definitions and introduce concepts that will be faced in the
next chapters of the thesis to make the reader fully understand all the topics, most of those are
taken from the Highway Capacity Manual [3].
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1.2.1 Characteristics of traffic stream

First of all, traffic flow can be divided into two types. The first one is uninterrupted flow, which is
a flow regulated only by vehicle-vehicle and vehicle-roadway interactions, meant as the geometric
and environmental characteristics of the latter. The second one is interrupted flow, which is a
condition in which the free movement of one vehicle is influenced not only by other vehicles or
by the geometric characteristics of the road, but also by external factors, like the presence of
intersection on the road, traffic signals, traffic signs, yield signs and so on. Uninterrupted and
interrupted, however, describe the facility, not the flow conditions.

Knowing this information is important to appropriately choose the correct analysis procedure
to estimate the capacity of the infrastructure, which is a fundamental concept to be catch. The
capacity of a facility is the maximum hourly rate at which the vehicles are expected to traverse a
determined section of a lane or roadway under standard conditions.

We can state that capacity is a fixed characteristic of a facility, instead, to quantify the amount
of traffic passing a section, we use the concept of:

• Volume: total number of vehicles that pass over a given section during a given time interval;
it can be expressed as annual, daily, hourly or subhourly;

• Flow rate: the equivalent hourly rate at which vehicles pass over a given section during a
given time interval less than 1 hour, usually is 15 min.

The difference between them is important. The volume in fact is the total number of vehicles
observed in a given interval of time, the flow rate is expressed as a fraction of the volume, for
example, if you observe 100 veh/15 min, you can assume a volume of 400 veh/h, but each 15 min,
the flow can be different, so this distinction is important to understand if the flow rate is exceeding
the capacity in that 15 minutes. This led us to define the so-called peak-hour factor (PHF), thus
the ratio between the hourly volume and the highest flow rate within 1 hour.

PHF =
V

4 ∗ V15

(1)

Where:

• V is the hourly volume;

• V15 is the highest flow rate in 15 minutes;

The knowledge of the PHF is not needed to determine peak flow rates when you have traffic
counts, but if you don’t have too much information, it is quite good to know it (usually it varies
around 90%).

All this, to highlight the fact that when the volume is near to the capacity, we are reaching
congestion, and this concept will be the basis for the analysis we will carry out in this thesis.

Although traffic volumes are good indicators, we can exploit also other indicators to understand
if a segment is or not congested.

The speed, for example, is another important factor to be analysed. Literally, the speed is
defined as the distance travelled in a unit of time, and by means of this we can estimate the travel
time to travel a certain segment. For each segment is possible to define the free-flow speed, thus
that speed adopted by the users, which is only influenced by the geometric characteristics of the
roadway, so we can say the “optimal” speed; this has to be compared with the observed speed to
understand the level of congestion.

4



Another factor is the density of the segment, thus the number of vehicles occupying a given
length of the roadway in a certain instant of time. Those are the characteristics of the traffic
flow which will be considered for our analysis, but considering only those, could be too simplistic,
because, since we are prevailing in an urban context, we are in interrupted-flow conditions, so
the most significant sources influencing the flow, are the traffic signals, so their presence will be
considered as well.

1.2.2 Externalities

In the introduction, we mentioned some data on the effect of traffic on the whole society. We
can basically refer to them in general as externalities [5]. In economics, an externality is a cost
or benefit incurred or received by a third party who has no control over the factors that created
that cost or benefit. The basic characteristic is that the agent causing the damage, usually is not
paying any indemnity to those affected by the cost imposed, or he is not gaining any compensation
for the generated benefit.

In the transport sector, there are mainly 5 categories of externalities, considering the viewpoint
of the supplier, user and the collectivity:

• Congestion;

• Safety (accidents);

• Greenhouse gases emissions (GHG);

• Pollution;

• Noise;

We already introduced the congestion beforehand. The safety is referred to the increasing
number of accidents and death due to the continuous expansion of the roads. While the difference
between GHG emissions and pollutants emissions is slight but important, especially on a policy
viewpoint. The GHG are the results of a process in which hydrocarbons are burnt, so if you know
the quantity of fuel, with an equation you could estimate the quantity of CO2 emitted, it’s pretty
simple.

On the other hand, concerning pollutants, their presence is due to the several processes that
happen during the internal combustion process, e.g. atoms of carbon are not completely oxidized,
therefore is coming out carbon monoxide (CO); when the combustion process does not happen
correctly, there is the production of hydrocarbons, which are volatile, there are the so-called VOC
(volatile organic compounds); the oxygen in the air could be recombined into ozone (O3), and
since in the engine does not enter pure oxygen but the air, which is in turn composed of nitrogen,
we can have oxides of nitrogen; sulphur is added to the fuel for technical reasons, and is going
to be combined with oxygen to form sulphur dioxide, which is again a poison; but right now we
are missing the worst one, particulate matters, as PM10, PM2,5, where the number is giving the
dimension of the particulate expressed in micrometres, the smaller is the worst is the effect on the
health, this is coming out not only from the combustion of the engine but also from the operation
of the vehicle (even electric vehicle emit particulate matter).

This distinction is important because we understand that we can control the pollutants by
improving vehicle efficiency (better emission standard class) but the emission of GHG itself since
is a chemical reaction cannot be controlled, it only depends on the kind of fuel. Noise is a very
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harmful factor for the health of the people and hinders the smooth realization of their everyday
activities. The main impacts from noise include hearing difficulties, frustration, radical changes in
the behaviour of people, communication complications, fatigue, and difficulty in sleeping. These
impacts can cause serious issues on human organization.

1.3 Data Analysis

We have raw data initially, and we will work on them to make them useful. Substantially, we want
to transform data into information. As a general, when we have raw data, the first thing to do is
to clean them, to eliminate outliers for example, then there is the process of analysis and at the
end the final interpretation with the results.

At the level of analysis, we can have two alternatives: aggregate or disaggregate.
At aggregate level, raw data are gathered, maybe they are classified and then the analysis is

carried out with respect to each class, to have a more general view.
For example, remaining on the thesis topic, we have for example one arc with a certain travel

time during free flow condition. Assuming that there is a given number of vehicles travelling there
within a certain interval of time, if we take their average speed and therefore their average travel
time, then we can compare the latter with free-flow travel time and therefore assess the time lost due
to congestion. This is an aggregate analysis at a level of the arc. An even more aggregate analysis
involves the consideration of the whole network. There is a lot of macro-simulation software, in
the field of transportation, that, starting from a series of input data, gives the flow on each arc
and the total travel time as output. So by comparing the latter with a value taken under free flow
conditions, we can estimate the total delay on the network.

At the disaggregate level, the analysis is carried out, considering the characteristics of each
vehicle, in order to have a more detailed information, nevertheless this is a process which is “data
hungry”, thus it needs a lot of data. Here, since we have a lot of data, we will carry out a
disaggregate analysis, considering each vehicle on each arc with its own speed and travel time.
This is consistent with a micro-simulation approach that is normally employed to study in details
only limited portions of a road network.

1.3.1 Road Graph

The road infrastructure is represented by means of a set of edges and nodes which constitute the
network graph. Each arc represents a road in the Network and the graph represents the topology
rather than the real physical structure. Each vertex represents not only the physical intersections,
but also points in which there is a change of speed, a change in the number, we can say a change
in the physical or functional characteristics of the road.

Moreover, when we associate different attributes to each arc, such as the travel time, the speed,
the number of lanes, the capacity, we can then analyse the graph and compute for example the
shortest path between 2 points, the fastest path, or solve some vehicle routing problems (Travelling
Salesman problem, Chinese Postman problem and so on). This to state that the representation
of the network, it’s not only used to represent the ’supply’ in the transportation system, but can
also be used to make analysis and prediction supporting the policy maker. At the same time, we
cannot often represent all the roads present in the network on the graph, but only the main ones.
The impact of this simplification has to be taken into account especially when we, for example,
have to distribute the traffic flow along the network, because some arcs can result more congested
than they effectively are, since roads are not represented and thus not loaded with their traffic.
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2 State of the Art

In this chapter, we will examine current methodologies for measuring time wasted during conges-
tion, using both disaggregate and aggregate approaches. First, we will review the Map Matching
process as it is presented in literature, with its different typologies and then features of FCD (Float-
ing Car Data) to identify potential challenges and limitations. At the end, most of the literature
on low-frequency FCD has focused on link travel time estimation. Proposed methods are typically
divided into two groups, one related more with the real travel time estimation, which is observed
by means of FCD and one more related with the travel time under free flow speed conditions.

2.1 Map Matching

Map matching is a critical process in geographic information systems (GIS) and transportation
analysis, aimed at aligning raw GPS trajectories with a digital road network. It consists of the
integration of 2 data typologies: localization data and digital maps. In fact, as we know, GPS
trajectories are associated with two types of errors, measurement errors, i.e. the recorded location
can deviate from the true location due to noise from several sources; sampling errors, which refer
to lost information between the recorded points; ignoring those errors can lead us to false analysis,
so map matching is an approach to minimize these errors by matching the recorded points to
the graph of the network. Over the years, researchers have proposed numerous methodologies to
address the challenges posed by the inherent noise and imprecision of GPS data.

An example of Map Matching is reported in Figure 1.

Figure 1: Map Matching [16]

Several approaches have been developed, each with distinct strengths and weaknesses. More
in detail, in [12], at the paragraph 4, is reported a table which we will report in the Appendix
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[7], providing an overview of the different categorizations of Map Matching methods. The most
significant categorization is related with Use of Road Network and Trajectory details, divided into
four groups: geometric approach, topological approach, probabilistic approach and advanced prob-
abilistic or machine learning-based approaches. In this section, we will review the most influential
works within each category. To sum up:

Figure 2: Map Matching strategies, from [12]

2.1.1 Geometric approach

A geometric map-matching algorithm relies solely on geometric information, such as the ”shape”
of line segments (i.e., the road centerlines that define the road network, rather than their con-
nectivity). Various types of geometric map-matching algorithms have been developed, including
point-to-point matching, point-to-curve matching, and curve-to-curve matching. These algorithms
are versatile and can be applied to positioning data of any frequency, as they only require position
fixes (x- and y-coordinates) and a base road network map as input. However, the accuracy of
geometric map-matching algorithms is relatively low, with correct link identification rates ranging
between 80% and 85%.

A review of different algorithms in this context is presented by [21]. The simplest one is the
simple search problem, where the purpose becomes matching the given point to the ”closest” node
or shape point in the network. Several data structures and algorithms are available for identifying
all points ”near” a given point, a process often referred to as a range query. Once the nearby points
are identified, calculating the distance to each node or shape point within a ”reasonable” distance
is straightforward (regardless of the distance metric used), and the closest point is selected. While
this approach is relatively easy to implement and computationally efficient, it presents several
practical challenges. One significant issue is its heavy reliance on how shape points are defined
and utilized within the network, which can greatly influence the results.

Map matching can also be approached as a problem of statistical estimation. In this framework,
a sequence of points is considered, constrained to lie on the network, and an attempt is made to fit a
curve to them. This approach has been explored in numerous studies and is particularly appealing
due to its elegance, especially when the ”physics of motion” is modeled with simplicity—such
as movement being restricted to a straight line. However, in most real-world applications, the
physics of motion is heavily influenced or constrained by the network itself, making it challenging
to accurately model and apply this approach effectively.
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2.1.2 Topological approach

Since maps are usually represented as graphs, topological algorithms tend to preserve continu-
ity in the matching, avoiding frequent errors. This approach considers both spatial details and
route topology relationships through locations and path ties to candidates as the considerations
of decision. The topology Map Matching approach steps can be divided into two sections:

1. Initial matching;

2. Subsequent matching.

Initial matching is the first step in the process, determining the section of the path to be matched
through geometrical analysis. In the second step, subsequent matching selects candidate segments
based on the outcomes of the initial matching. This step involves both road network analysis
and further geometrical evaluation. Candidate links are then assigned a value, which is calculated
based on three key components:

1. Alignment Angle in Direct Link and “Axis” Across Next Locations;

2. Relation Link and Orientation of Successive Points;

3. Closeness of Direct Link to Positioning Point;

After identifying the candidate segments, the best-suited candidate is selected through topological
and geometric-based calculations. The candidate with the highest score is designated as the
vehicle’s true position. While topological map-matching methods incorporate geometric strategies,
they often struggle in more complex scenarios, such as handling low-precision data, large-scale
positional datasets, or low sampling rates, where results may be unsatisfactory. Nonetheless,
topological weight-based map-matching methods are noted for their simplicity of implementation
and exhibit superior performance in terms of speed and accuracy.

2.1.3 Probabilistic approach

The probabilistic algorithm involves defining an elliptical or rectangular confidence region around
a position fix obtained from a navigation sensor. Probabilistic map matching algorithms have been
pro posed to take advantage of statistical models such as Kalman filter, particle filters and Hidden
Markov Model.

2.1.4 Advanced map-matching techniques

Advanced map-matching algorithms improve vehicle positioning by using refined techniques such
as Kalman and Extended Kalman Filters, probabilistic models, and fuzzy logic. These methods
address challenges in navigation, particularly in dense urban areas where GPS signals may be
obstructed. Kalman Filters, for instance, help re-estimate positions by minimizing errors in relation
to road network data, effectively reducing cross-track errors. Particle Filters apply probabilistic
constraints to vehicle positions, enhancing accuracy even in urban environments. Some algorithms
model the vehicle path as constrained road segments, allowing accurate positioning with fewer
satellite signals. At intersections, these techniques integrate probabilistic models to select the
correct road segment. Additionally, fuzzy logic-based models evaluate potential road segments
using criteria like proximity, heading, and connectivity, refining the map-matching process. These
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advanced approaches collectively enhance navigation accuracy by accounting for positioning errors
and the complex topology of urban road networks.

The various map matching approaches offer distinct advantages depending on the application,
but they are not without limitations. The accuracy of the results can be influenced by several
factors, including the quality of GPS data and the complexity of the road network. These inaccu-
racies can lead to significant errors in the matching process, which are crucial to analyze in order
to understand the main challenges of this technique.

2.1.5 Errors associated with Map Matching processes

We saw the different approaches with their strengths and weaknesses. However, as it is perfectly
explained in [17], due to bandwidth limitations, the sampling frequency is often too low, leading
to some problems which will be highlighted to have a clear context. A drawback of FCD is that
probes are not in general generated at the start and end points of routes1 and links.

Figure 3: FCD observations after map matching, from [17]

In Figure 3, yellow triangles, red circles, and blue rhombuses represent three distinct vehicles whose
movements have been recorded. A number is associated with each trajectory connecting the pairs
of vehicles. There are several potential sources of bias when using FCD for travel time estimation:

1) Incomplete Coverage of Route: A FCD observation may cover only a fraction of the route, as
illustrated in Figure 3 (see yellow triangles). Considering each observation in isolation, the
travel time of the vehicle on other parts of the route is unknown and needs to be inferred;
incorrect inference will lead to bias.

2) Time-Based Sampling: The sampling of vehicle trajectories is often triggered by time, which
means that the distance between consecutive probes is short if the travel speed is low and
vice versa. Furthermore, there will be more FCD observations in parts where the speed is
lower. These factors need to be considered in the travel time estimation to avoid bias.

3) As the opposite of bias 1, an FCD observation may extend partially over the route and
partially over adjancent links, as illustrated by observations 1, 4-6 in Figure 3. The precise
allocation of travel time T between the route and the adjacent links is unknown. Incorrect
allocation means that the travel speed on the adjacent links will spill over and bias the
estimated route travel time.

4) Non-Uniform Coverage of Route: The coverage of FCD observations may vary along the
route since vehicles may enter and leave via side streets (compare yellow triangles, blue

1A route is defined as a sequence of links from an origin point to a destination point.
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rhombuses and red circles Figure 3). If the travel speed is not homogenous on the route, the
estimated route travel time will be biased if all observations are weigthed equally.

5) Unknown Route Entry Time: Route travel times may be estimated for certain time intervals
(e.g. 15-minute intervals) based on the time that a vehicle passes the start point of the route.
For FCD observations covering the start point (e.g., observation 1 in Figure 3), the exact
entry time is not known. For observations not covering the start point (e.g., observations 2-6
in Figure 3), the entry time is hypothetical and needs to be constructed. If the inference is
inaccurate, the travel time profile across intervals may be biased.

2.2 Observed travel time estimation using FCD with different method-
ologies

Travel time estimation is a critical component of intelligent transportation systems, enabling ap-
plications such as traffic management, route optimization, and real-time navigation services. Over
the years, a wide range of methodologies has been developed to estimate travel times with in-
creasing accuracy and reliability. These approaches leverage various data sources, including GPS
trajectories, historical traffic data, and sensor-based measurements, each offering distinct advan-
tages and challenges. A review of different approaches is presented in [10]. They are classified
according to the data exploited and the method applied. Travel time estimation is articulated
through a series of steps involving three main phases:

• FCD cleaning and map matching;

• Link-based travel time estimation, known as travel time allocation;

• Route travel time estimation;

Of course we will go more into detail of the second step, which usually is structured in two
main phases, the first related with travel time allocation for each vehicle and the final one is the
processing of all those travel time by means of simple instruments as the average, weighted average
or by means of more sophisticated methods which will be presented below. We can distinguish
mainly data-driven methods, model-based methods or hybrid strategies. We remind that this is
the part on which our methodology will rely to meet the purpose already declared in section 1.1.

2.2.1 Data-driven methods

Data-driven methods are approaches that rely primarily on large volumes of data to extract in-
sights, recognize patterns, and make predictions. Unlike traditional model-based techniques, these
methods do not rely on predefined rules or physical models but instead use statistical and machine
learning algorithms to learn directly from the data. For example, as it is described in [15], the
reference to measure the time wasted in congestion can be the travel time on the arcs; this step
involves a detailed process to ensure the calculated travel time accurately reflects the duration
taken to traverse a segment while distinguishing between various factors that may influence the
overall time. To begin with, the GPS data is analyzed to identify the first recorded point within
the buffer zone surrounding the starting node of the road segment and the last recorded point
within the buffer zone of the ending node. They both mark the entry and exit time of the vehicle
from the arc respectively and the total travel time is the difference between the two timestamps.
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This total travel time inherently includes any intermediate stops made by the vehicle along the seg-
ment, such stops can occur for two primary reasons: traffic-related conditions such as congestion,
traffic lights, or yielding or operational service stops, such as deliveries or loading and unloading
activities. To refine the travel time analysis, the methodology makes a clear distinction between
these two categories of stops. Stops lasting less than or equal to 120 seconds are attributed to
traffic conditions, as they typically reflect temporary delays caused by the road congestion. Con-
versely, stops exceeding 120 seconds are classified as service stops, which are generally longer and
operational in nature. This threshold of 120 seconds is chosen as a compromise based on research,
despite it is acknowledged that some misclassification may occur for instance because of shorter
service stops or exceptionally long congestion related delays. Once the service stops are identified,
their cumulative duration, denoted as T GPS ss, is subtracted from the total travel time to derive
the net travel time along the segment. This net travel time excludes operational delays, providing
a clearer picture of the time required to traverse the segment under prevailing traffic conditions.
At this point, focusing on a certain time interval (8:00-8:59 am) the travel time of each vehicle has
been compared with an estimated travel time under ideal conditions, better known as free flow
condition. In this way, with the following definition of some indicators, it has been determined the
extent to which the vehicles wasted time due to traffic conditions.

The approach we have explored adopts a more disaggregated perspective, focusing on individual
components or detailed elements. However, shifting towards a more aggregated analysis, a link-
based method is proposed in [17] to estimate the final route mean travel time. There are two main
steps, which are allocating observed travel times to links, and estimating the travel time of each
link. Referring to Table 1

Table 1: Notation used in the paper

Äi i-th travel time observation

si first time stamp of the i-th observation

Äik fraction of link k covered by observation i

³k fraction of link k included in definition of the route

´ik fraction of a route link k covered by observation i

ℓk length of link k

Here the travel time is computed by following the 2 aforementioned steps:

1. Travel Time Allocation: The observed travel time Äi is allocated proportionally to the dis-
tance traversed on each link:

Äik =
Äikℓk

∑

k Äikℓk
Äi (2)

2. Aggregation: For observations that are not overlapping a link entirely, the allocated travel
time Äik is scaled to the whole link by the factor 1/Äik i.e.

tik =
Äik

Äik
(3)

This scaling assumes that travel speed is homogenous along the link. To acknowledge that
observations with little overlap are less reliable, each observation is then weighted according
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to the fraction of the link covered, and the average link travel time tk is defined as the
weighted mean over all observations:

tk =

∑

i Äiktik
∑

i Äik
(4)

3. Route Mean Travel Time: To estimate the mean route travel time, the mean travel times
of the links in the route are summed up. In case the route starts and ends at non-zero link
offsets, link travel times are assigned proportionally to the overlapping length, i.e.,

T =
∑

k

³ktk (5)

The last step has been reported only for knowledge.
Another more structured method which could be seen as a mixture of both disaggregate and

aggregate analysis, is described in [18] to estimate travel time. Were tested 4 different kinds of
scenario:

• Scenario 1: no map matched point on a link;

• Scenario 2: only one matched point from one vehicle on the link;

• Scenario 3: more than one map matched point from one vehicle on the link;

• Scenario 4: more than one matched point from more vehicles on the link;

Method 1 considered map-matched points from adjacent links while estimating travel time to
enhance the link coverage and to reduce the uncertainty in the estimation. Method 2 assimilated
link travel times from Method-1 in both spatial and temporal ways.

Method 1-Distance and Time proportion Map-matched fixes from step-1 were employed to
estimate link travel time. Figure 4 depicts a generic condition in which there are four map-matched
points from two different vehicles on link AB.

Figure 4: Distance-time proportion travel time estimation [18]
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Where:

• M1-M7 represent the map matched vehicles (one represented by black circles and the other
by white circles);

• V1 and V2 represent respectively the speed of the two vehicles;

• A and B are respectively the start and the end node of the link;

• TT1 and TT2 are respectively the travel time to travel the first portion of the arc, defined
below, and the travel time to travel the last portion, described below as well;

• ∆ti+2,i+1 is the difference between the timestamp associated with the two map matched
points;

• ti represents the timestamp of each map matched point;

One approach would have been to determine average speed on link AB based on speed measure-
ments (from GPS) associated with these four map-matched points and then use average speed and
the length of the link to estimate link travel time. Alternatively, the average speed for each of the
vehicles could have been calculated and then employed to estimate two measurements of travel
time. Both of these approaches however would likely result in an incorrect estimate of travel time,
especially for an urban link where delays are more common at junctions due to traffic lights. To
counter this effect, the solution is to divide the link in three portions:

• The first portion is between the starting node of the arc and the first matched vehicle;

• The second one is between the first matched point and the last one;

• The third one is between the last matched point and the end node of the arc;

The travel time is calculated with the following equations:

TTAB = ∆ti+2,i+1 +
2

∑

i=1

TTi (6)

TT1 = (ti+1 − ti) ∗
di+1

di+1 + di
(7)

TT2 = (ti+3 − ti+2) ∗
di+3

di+1 + di+4

(8)

This makes it possible to consider the effect of the downstream and upstream characteristics of
the traffic. Developing each scenario, we have different situations:

• Scenario 1: For the first scenario when no map-matched point existed on a link, then speed
limit data of the link was considered as being the ’average speed’ to use in estimating the
travel time. Otherwise we can employ link-based historical travel time that would be more
accurate.

• Scenario 2: For the second the second scenario,when one map-matched point was available
on a link, then the distance between the two nodes of link and vehicle speed recorded by
GPS receiver was used for link travel time estimation.
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• Scenario 3: For the third scenario when there are more than one map matched points from
one vehicle on a link, the average speed of that vehicle (v) is used to estimate the travel time
for the first and last portion of the link. The link travel time therefore consisted on link
travel time of each portion, denoted by TT1,TT2 and ∆t.

TT1 =

√

(xi − xs)2 + (yi − ys)2

v
(9)

TT2 =

√

(xf − xn)2 + (yf − yn)2

v
(10)

Where xs,ys,xf ,yf are the coordinates of starting and final node of the link respectively and
xi,yi,xn,yn are the coordinates of the first and last matched point on the arc respectively.

• Scenario 4: it is carried out the same process as the third scenario, for each vehicle and then
it is calculated an average.

Method 2-Spatial and Temporal moving average It was reasonable to assume that the link
travel time among adjacent links may be correlated with each other for a given time window. For
instance, the link travel time for link (AB) may be correlated with the link travel time for both
links (DA) and (BC), especially for the same time window length (see Figure 5).

Figure 5: Link travel time using the spatial and temporal connectivity [18]

It was also rational to assume that link travel time of a link may be correlated over time.
Especially, link travel time for link (AB) at time window (t) may be correlated with travel time
at time window (t-1) and (t+1). Therefore, the estimation of link travel time could potentially
be enhanced by link travel time input values from the adjacent links for the same time window
(i.e. spatial component) and from the adjacent time windows for the same link (i.e. temporal
component). Since vehicle trajectory data from GPS were used in estimating travel time, for the
temporal component it was required to integrate the current travel times of a given link with those
of the previous and following time windows. For the spatial component, the lengths and travel
times of the connected links needed to be used. Therefore, the link travel time estimation based
on spatial and temporal component was be derived as follows:

(a) Spatial component: since link travel time for arc AB is correlated with those of link DA and
BC, we perform a weighted average, where the weight is the length.

T s
AB =

TDA ∗ LDA + TAB ∗ LAB + TBC ∗ LBC

LDA + LAB + LBC

(11)
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(b) Temporal component: average link travel time for AB over nth consecutive time windows.

T t
AB =

1

n

n
∑

k=−n

T t−k
AB (12)

Where n is the total number of time windows considered and n=1. By taking n=1 in (12) it
is confirmed that link travel time is estimated by integrating the travel times of the current
time window with the previous and the next one.

Then, total link travel time for AB is obtained as a weighted average between spatial and temporal
component, according to two empirical coefficients:

TTAB = ³ ∗ T s
AB + ´ ∗ T t

AB (13)

In which ³ + ´ = 1 and 0 < ³ < 1 and 0 < ´ < 1. Through empirical analysis ³ = 0.1 and
´ = 0.9. It means the effect of spatial correlation in link travel time estimation is much weaker.

2.2.2 Model-based methods

A model-based method is an approach that uses predefined mathematical, physical, or theoretical
models to represent and analyse a system or process. These methods are grounded in established
principles, such as physical laws, traffic dynamics, or well-defined equations, to predict outcomes
or understand behaviours within a given context. For example, a virtual floating car2 method is
proposed in [22]. The main concept is the proportional decomposition of the total route time in
more link travel times. Basically, the general formula is:

TAB = ÄAB ∗ T actual
total (14)

Where ÄAB is the estimated proportion for the link AB calculated with the virtual floating car
method. The process to estimate the proportion is the following:

1. Virtual floating car simulation: it is created a virtual floating car simulating the real be-
haviour of the GPS-equipped vehicle considering decision parameters as positions, speed,
acceleration, deceleration and so on..

2. Computation of proportion time along the link: once we have carried out the simulation, we
simply make the ratio between the time needed to travel the arc i and the total time needed
to complete the route.

ÄAB =
T virtual
AB

T virtual
route

(15)

By simulating vehicle behavior with a virtual floating car, the approach compensates for gaps in
real GPS data, leading to more reliable travel time estimates across all road segments.

2A virtual floating car is a simulation of a vehicle that mimics, in a virtual environment, the path and behavior
of an actual GPS-equipped vehicle
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2.2.3 Hybrid strategies

Hybrid strategies make use of both approaches described above, by combining available data with
statistical instruments. For example, in [9] is presented a method for estimating time-dependent
travel times tailored to urban logistics by leveraging Floating Car Data (FCD). The primary
objective is to enhance routing accuracy in urban environments, where congestion and traffic
variability demand reliable, time-sensitive travel times for each road segment. The study introduces
various levels of FCD aggregation to calculate time-dependent travel times and employs a Data
Mining approach to significantly reduce the data volume required for city logistics routing without
sacrificing accuracy. The part we want to highlight is the method described in the third paragraph
to compute the travel time of each arc. In fact here, it is suggested to define a time interval and
inside this last, select all the available speeds, then, the speed selected will be the median. So it
will be possible to calculate the travel time with a simple ratio between distance and speed.

The method presented in [13] is quite different with respect to the previous one. In fact here is
presented a statistical model in which link travel times are calculated as the sum of the segment
travel time (one link is further divided in more segments with constant characteristics of traffic,
such as speed, flow or geometric characteristics) plus the intersection delay. The model is estimated
using maximum likelihood. The travel time of a trip is assumed to consist in two parts:

• Link travel time;

• Delay at intersections and traffic signals;

A link is defined to be the road section between two adjacent intersections or traffic signals and as
we already stated, they can be divided into more segments. While the links are largely determined
by the inherent network structure, the number of segments per link depends on the traffic char-
acteristics of the link. Segments are designed to capture homogeneous traffic behaviour. In this
model the average speed of a vehicle can vary between segments but it is assumed to be constant
along each segment. The travel time on a segment s is presented as the length of the segment,
multiplied with the inverse speed or travel time rate Xs. The travel time rate may depend on
observed and unobserved properties of the segment and conditions for the trip. The second com-
ponent, thus delay at intersections is basically defined by means of a time penalty ht, influenced
by the type of traffic control present at intersections. Here the segment travel time rates and the
turn penalties are modeled as stochastic variables.

X(À) = µs(À) + ϵs(À) (16)

Z(À) = µa(À) + ϵa(À) (17)

Where µs(À) and µa(À) are mean values vectors while ϵs(À) and ϵa(À) are stochastic error terms
with E[ϵs(À)] = E[ϵa(À)] = 0.

Observation model We can calculate the travel time of one link as:

yr = ls ∗X(À) + ar ∗ Z(À) (18)

Where ls is the length of the segment and ar is 1 if the intersection is visited, otherwise is 0. This
for all the segments composing the link. Therefore, the link travel time is a linear combination of
the travel time rates on all traversed segments and the penalties at all turns.
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2.3 Travel time estimation under free flow conditions

As it is highlighted in [19], travel times, especially on urban road networks, are highly stochastic,
so only basing the computation on mean values could lead to some misunderstanding situation.
Here, therefore, is proposed a method in which distribution of the travel times on the whole road
network is calculated as the sum of the single link travel time plus the turning delay on each
intersection. The part we are mostly interested in, is the estimation of the link travel time. In
particular, in the paragraph 3.1 is introduced a method to estimate the link travel time under
ideal conditions, simply carrying out the ratio between the length of the arc and the speed of the
vehicle.

tij =
dij

vij
(19)

Here the challenge is to choose the most appropriate speed, which is the maximum speed registered
on the arc. The choice is due to the fact that in the paper, the aim is to determine the travel
time under ideal conditions, only influenced eventually by delays at the nearest intersection, so
this could be a good method to review the travel time under ideal conditions, to be compared with
the measured travel time. The speed is computed with a weighted average:

vij =

∑u

p=1

∑q

r=1 w
r,p
ij · vr,pij

∑u

p=1

∑q

r=1 w
r,p
ij

(20)

Where the weights for speeds are calculated using a concept called the ”degree of central tendency”
which measures how close each GPS sampling point is to the center of the link. This approach
assigns greater reliability to points near the center of the link, as these are less affected by slowdowns
caused by traffic lights or turns at intersections, which mainly influence points closer to the link’s
endpoints. The formula for the weight is:

w
r,p
ij = 1−

∣

∣2 · ¹r,pij − 1
∣

∣ (21)

Where ¹
r,p
ij represents the relative position of the sampling point on the link, expressed as a value

between 0 and 1:

• If ¹r,pij is close to 0.5, the point is central and has a higher weight;

• If ¹r,pij is near 0 or 1 (closer to the link edges), the weight decreases, reducing the influence of
that speed on the final estimate, because probably that speed is affected by the presence of
the intersection.

2.4 Delay estimation in aggregate fashion

Here in [20] it is presented a method to globally validate the use of FCD to support policy maker
in taking decisions. The interesting part is more related to the determination of the total delay.
In fact here is presented a more aggregate analysis, in which the delay is calculated as following:

Delay = (TTobserved − TTfreeflow) ∗ V olume (22)

It is pretty simple but I would say efficient. Here the only challenge is to define the correct speeds.
The average observed speed is determined for each interval of 15 minutes while the free flow speed is
the maximum observed speed during off peak hours after having removed the 20% highest speeds.
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2.5 Indicators of congestion

This section explores key metrics used in literature to evaluate congestion levels on road networks.
By analyzing these indicators, we can identify bottlenecks, assess travel delays, and understand
the overall impact of congestion on traffic flow efficiency.

2.5.1 Key Performance Indicator based on highly disaggregate level analysis using
travel time

In [15] a highly disaggregated analysis has been developed to assess traffic congestion, initially
conducted at the arc level by evaluating the travel time of each individual vehicle. This analysis
was then slightly aggregated at the link level, considering the combined travel times of all vehicles
on the same arc. Initially, the time lost is defined as follows:

KPIj,k = T 0j − (T GPSj,k − T GPS ssj,k) (23)

Where T 0j is the free flow travel time of arc j and (T GPSj,k − T GPS ssj,k) is the observed
travel time of vehicle k along arc j purified from the eventual service stop time. To consider also
the length of the arc, because clearly the time is strongly depending on it, we can define a relative
indicator:

RKPIj,k =
T 0j − (T GPSj,k − T GPS ssj,k)

T 0j
(24)

Negative values of those indicators respectively represent absolute or relative measures of the time
potentially lost in congestion. Zero values indicate that vehicle was travelling at free flow speed.
Can even occur cases in which there are positive values, because free flow travel time is an average
estimation as we will see in 5.1, so it can happens a vehicle is travelling at higher speeds, especially
during off-peak hours. Starting from those indicators, it is possible to aggregate the results at
different scales, according to the specific transport policy questions that need to be answered.

Then,results are visualized by plotting for example the minimum RKPI for each arc j, for differ-
ent hourly intervals, especially for peak hours. Through these maps we can eventually appreciate
where are the most congested link to act on them.

2.5.2 Performance Indicator based on qualitative analysis of average speeds

In [2] average speed values were transformed into a qualitative 4-scale state parameter based on
the Level of Service (LOS) definitions for urban roads by using raw FCD data sampled every 1
minute. After transforming average speeds into predefined states, a series of search algorithms
were developed to detect critical patterns in urban traffic, depending on the number of segments
considered.

LOS is a quantitative measure representing quality of service [3]. Generally, 6 different LOS
states are defined for different road types, where LOS A represents the best operating condition
and LOS F the worst. HCM defined LOS for urban roads as ”the reductions in travel speed as a
percentage of the free-flow speed of the corridor”. Table 2 shows those percentages.
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Table 2: Percentage of free flow speed corresponding to different LOS and assumed traffic state

LOS Travel Speed as a Percentage
of Base Free-flow Speed

Assumed Traffic State

A >85% 1
B 67-85% 1
C 50-67% 2
D 40-50% 3
E 30-40% 3
F <30% 4

Then, during the searches, the traffic state in each segment was compared against those of the
following segment(s), in order to acquire different patterns such as bottleneck release, persistent
congestion,etc. At the final stage, all segments were evaluated to detect the frequency and start
point of the predefined critical patterns in the extensive FCD archive of the corridor.

2.6 Contextualizing the Proposed Methodology within Current Re-
search

We have just seen some of the many methodologies present in literature. Our work is related with
the three aspects, Map Matching, determination of observed travel time and determination of free
flow travel time. Concerning Map Matching, we applied of course a geometric approach, because
of its simplicity and efficiency, more or less like that described in [12] (point to line) but with
different elaboration.

Concerning observed travel time, I would say the best method to measure it considering the
efficiency and the simplicity is presented in [18], however, divide the arcs in three part could be
really challenging and needs a big effort, which is not even related with the final purpose of this
thesis, therefore we will opt for a more simple method, which we didn’t find in any research. The
calculus of travel time is based on a proportionality concept, thus, we know the timestamps and
the distance travelled between the points and as a consequence with a proportionality calculus we
can determine the total travel time to travel the current arc; this is carried out for each vehicle on
each arc and then we perform a weighted average among all the travel times.

Concerning the evaluation of the travel time under free flow conditions, we followed two ap-
proaches, one based on what is described in [19] and the other based on usage of the already known
data associated with the graph.
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3 Experimental setting

Here we will give a clear context of the study area, reporting information related with the infras-
tructure and mobility, and then we describe all the data we used to carry out this work along with
their features, involving the process that led us to have the complete dataset.

3.1 Study context: Turin

Turin (Torino in italian), located in the northwestern region of Italy, serves as the capital of
the Piedmont region. Renowned for its historical significance, industrial heritage, and cultural
prominence, Turin has emerged as a pivotal hub for urban mobility studies, making it an ideal case
study for this research. With a population of approximately 900.000 residents within the city limits
and over 1.7 million in its metropolitan area, Turin is one of Italy’s largest urban centres. This dense
and diverse population drives significant demands for efficient transportation and logistics systems.
The city’s urban layout is characterized by a blend of historic streets, modern thoroughfares, and
green spaces, with a grid pattern especially in the urban central area, providing a unique backdrop
for studying mobility patterns. Its compact centre contrasts sharply with sprawling suburban
developments, creating distinct transportation challenges and opportunities.

Figure 6: Plan view of Turin, can appreciate the grid in the central area
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The extension of the study area is about 1132.9 km2, consistings of 62 municipalities and it
has been delimited with a polygon created on the basis of the available graph, as it is shown in
Figures 7 and 8:

Figure 7: Extension of study area with municipalities, from Qgis elaboration
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Figure 8: Extension of study area with road graph, from Qgis elaboration

Municipalities boundaries have been taken from the official Istat website.3.

3.2 Mobility and road infrastructures in the study area

Some information about road network has been taken from PUMS (Sustainable Mobility Urban
Plan [6]).

The metropolitan mobility system in Turin is based on a complex infrastructure network, com-
bining historical elements with more recent developments. The road network of the Metropolitan
City is centered around major highways, including the A4 Torino-Milano-Venezia-Trieste (1932),
the A5 Torino-Ivrea-Aosta-Monte Bianco with a branch to Santhià (1961), the A6 Torino-Savona
(1960), the A21 Torino-Piacenza-Brescia (1968-69), and the A32 Torino-Bardonecchia with the
Fréjus tunnel (1992-94). These routes converge on the A55 ring road (1976), which also includes
the branch to Pinerolo (1992-2006) and the highway connection to Caselle Airport (RA10). In
total, the highway network within the metropolitan boundaries spans 316 km, approximately 60
km of which are part of the ring road. The ordinary road network, consisting of a limited number
of state roads that follow historical routes and over 300 provincial roads (around 450 if including
branches), plays a complementary role to the aforementioned main highways. The network is fur-
ther complemented by numerous local roads that densely connect the entire plains and hill areas,

3https://www.istat.it/notizia/confini-delle-unita-amministrative-a-fini-statistici-al-1-gennaio-2018-2/
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supporting short- and medium-range inter-municipal mobility. Overall, the ordinary road network
extends for approximately 5600 km.

Figure 9: Extension of Metropolitan City of Turin [6]

The analysis of the circulating vehicle fleet was conducted using data collected by the Automobile
Club d’Italia (ACI) and included in an annually published study called Autoritratto4. This study
provides detailed information on the Italian vehicle fleet according to various spatial and temporal
aggregations (e.g., vehicles by region or province, year of registration) and vehicle characteristics
(e.g., passenger cars, commercial vehicles, buses, fuel type, engine capacity, emission class).

Focusing on the Metropolitan City of Turin for the year 2019: The total circulating vehicle
fleet is of about 1.9 million, of which 77% is represented by passenger cars. If we relate those data
to the resident population of 2.25 million in December 2019, we have high motorization rate, of
657 passenger cars and 848 vehicles for each 1000 inhabitants.

4https://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/autoritratto.html
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Figure 10: Motorization Rate of Metropolitan City of Turin [6]

It can be seen in Figure 10, as we could expect, that the rate increases as we move towards the
external areas. Blue circles are proportional to the number of inhabitants of the municipality.
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To this high motorization rate, there naturally corresponds a high number of interchange trips
using private vehicles, primarily driven by reasons such as work and study. We can then distinguish
net mobility-generating municipalities, those where the number of residents commuting outside the
municipal boundaries for study and work exceeds the number of incoming commuters for the same
reasons and net mobility-attracting municipalities, with more individuals entering than leaving
for work or study. This distinction is illustrated in Figure 11, where attracting municipalities are
highlighted in red and generating ones in blue.

Figure 11: Main attractor and generator poles [6]

As observed, the primary metropolitan-level attractor is clearly the City of Turin, which draws
over half a million systematic inbound trips, while generating slightly more than 400,000 outbound
trips. Going more into detail, within the city of Turin, it is possible to identify its area of influence
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based on two primary reasons: study (Figure 12) and work (Figure 13). These distinct purposes
shape commuting patterns, highlighting the city’s role as a central hub for both educational and
employment opportunities in the metropolitan area.

Figure 12: Influence area of Turin-study [6]
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Figure 13: Influence area of Turin-work [6]

3.3 Floating car data used in the study area

Through an agreement between TIM and the Municipality of Turin, trips to and from Turin were
recorded between January 15th, 2019, and January 17th, 2020. This initiative registered a total of
120,000 trips per day and 21,000 vehicles per day. These data were made possible by leveraging
GPS coordinates and timestamps collected by TIM from individuals subscribed to the company’s
services.

3.3.1 Overview of Commercially Available Floating Car Data

A ’Floating Car’ is defined as a vehicle that provides position and kinematics data, such as speed
and direction of travel, to gather traffic information for Intelligent Transportation System (ITS)
applications. These data can be processed by remote control centers for multiple purposes, for
example, to monitor road traffic conditions and prevent congestion to inform fleets of vehicles
cooperatively driving, to detect possible in-vehicle malfunctions, to collect traffic statistics, to get
car maintenance tips and service information. The current need for FCD could be satisfied by
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using mass-market users’ devices, such as smartphones, and available technologies, such as cellular
and Wi-Fi networks. This conviction is shared with the scientific community and many running
initiatives are pushing toward enabling users’ portable devices, such as tablets and phones, to access
in-vehicle telematics and to monitor in-vehicle services through low-cost devices and open-source
software.

Nowadays, there is a plenty of companies furnishing these kind of the data in the field of ITS,
like TomTom, INRIX, Google Maps, Teralytics and so on. All of them acquire data from mobile
devices and GPS devices placed on vehicles. In particular, also telephonic operators like TIM,
Vodafone, Movistar and so on collect those data and sell them to private or public institutions
(see Section 3.3 Floating car data used in the study area). In particular, the process begins with
data collection through various sources within their network. Base transceiver stations (BTS),
for example, record signals sent by mobile devices, providing an approximate location based on
the tower’s position. As devices move between towers, ”handover” events are recorded, enabling
the tracking of movement patterns. Additionally, network events like internet connections, SMS,
and calls contribute to location data, which can be further enhanced with Wi-Fi hotspot and
offload information. To ensure user privacy and comply with regulations like GDPR, the collected
data undergoes anonymization and aggregation. Anonymization removes personal identifiers such
as phone numbers, while aggregation combines data from multiple users into statistical insights,
ensuring that individual movements cannot be traced. The raw data is then processed using
advanced techniques. Filters remove erroneous signals, while localization algorithms, including
triangulation or GPS-based methods when available, improve positional accuracy. The resulting
data is analyzed to identify traffic flows, congestion points, and frequently used routes. The
insights derived from these data serve a variety of applications among which the purpose of this
thesis declared in 1.1 Thesis objectives.

3.3.2 Historical Car Data (HCD)

Historical Car Data, refers to vehicle data collected in batch mode over an extended period.
In particular, their aim is to capture aggregate information such as average speed, traffic

volumes and travel times on various road segments. This is a useful tool to plan and to manage
the traffic because it makes understand the main trends. Moreover, it’s a cost-effective method,
and their big advantage is that they provide continuous data across the entire road network, unlike
sensors, which are limited to the specific location where they are installed.

Referring to our dataset, in the document we have, named ”Gestione invio dati HCD e FCD”
are described the procedures and the metadata related with the acquisition of Historical Car Data
and Floating Car Data.
HCD are extracted once per day, not before 09:00 AM and refer to data belonging to the pre-
vious day. For each day recorded, there is one heading representing the origin/destination of
the trips carried out during that specific day and n details representing the successive move-
ments of the vehicle during each trip. The heading consists of 368 .csv files named in the format
polito viaggi YYYY MM DD, where YYYY represents the year, MM the month, and DD the day.
Each file contains hundreds of thousands of records, with each record representing a trip along with
the associated origin and destination coordinates during that day. The data spans the period from
December 18th, 2018, to January 14th, 2020. 366 files concern the whole year between January
14th, 2019 and January 14th, 2020. 2 files more concerns December 18th, 2018 and December 19th,
2018. These files contain the following information:

• Trip numerical identifier;
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• Device identifier;

• Trip start timestamp (UTC), format YYYY-MM-DD HH24:MI:SS;

• Trip end timestamp (UTC), format YYYY-MM-DD HH24:MI:SS;

• Trip start latitude and longitude, with 6 significant decimal digits after the separator which
is the dot (.);

• Trip end latitude and longitude, with 6 significant decimal digits after the separator which
is the dot (.);

• Starting address in textual format: State—Region—Province—Municipality—Address;

• ISTAT code of starting municipality as result of census of 2011;

• ACE code of starting zone (Census area);

• Arrival address in textual format: State—Region—Province—Municipality—Address;

• ISTAT code of arrival municipality as result of census of 2011;

• ACE code of arrival zone (Census area);

• Total km travelled, with minimum resolution of 100 m;

• Average speed in km/h;

• Total number of samples that define the travel detail;

• Vehicle typology (1:autovehicle,2:commercial vehicle);

• Vehicle brand, if not known ”NULL”;

• Vehicle model in textual format, if not known ”NULL”;

• Owner sex if physical person (”M” or ”F”), ”S” if legal person, if not known ”NULL”;

• Owner age, ”S” for legal person, if not known ”NULL”;

• Starting weather conditions: temperature (celsius), precipitation (0-1-2-3 depending on the
intensity), textual description;

• Arrival weather conditions: temperature (celsius), precipitation (0-1-2-3 depending on the
intensity), textual description;

The metadata are described in Table 3.
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Table 3: HCD Metadata

Field Rules
Trip id From 1 to 20 characters

Device Id From 1 to 20 characters
Datetime partenza (format UTC: YYYY-MM-DD HH24:MI:SS)
Datetime arrivo (format UTC: YYYY-MM-DD HH24:MI:SS)
Lat partenza 6 significant decimal numbers, separator is dot
Lon partenza 6 significant decimal numbers, separator is dot
Lat arrivo 6 significant decimal numbers, separator is dot
Lon arrivo 6 significant decimal numbers, separator is dot

Indirizzo partenza
State|Region|Province|Municipality|Address,

separator is |
Codice Istat comune partenza ISTAT census 2011, from 4 to 6 digits

Codice ACE partenza
Code that identifies univocally the census
area, if present, within the municipal

territory, from 0 to 3 digits

Indirizzo arrivo
State|Region|Province|Municipality|Address,

separator is |
Codice Istat comune arrivo ISTAT census 2011, from 4 to 6 digits

Codice ACE arrivo
Code that identifies univocally the census
area, if present, within the municipal

territory, from 0 to 3 digits
km percorsi Precision of 2 decimals digits, separator is .
speedKmh Speed on the arc, expressed in km/h
Nsamples Number of samples constituting the trip details

Tipologia
1 car
2 fleet

Marca veicolo Es. Fiat, Toyota...
Modello veicolo Es. Panda, Clio, Golf

Sesso M or F for physical persons
Età intestatario If not known 0

Temperatura alla partenza Up to 1 decimal digit, separator is ., if not known 99
Precipitazioni alla partenza 0:no rain, 1: 1mm/h, 2: 4 mm/h, 3: >4 mm/h, 9: not known
Condizioni meteo partenza If absent ”UNK”
Temperatura all’arrivo Up to 1 decimal digit, separator is ., if not known 99
Precipitazioni all’arrivo 0:no rain, 1: 1mm/h, 2: 4 mm/h, 3: >4 mm/h, 9: not known
Condizioni meteo arrivo If absent ”UNK”
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Additionally, for each trip on each day, the dataset includes the sequence of recorded positions,
stored in 8,832 (since 24*368=8832) .csv files with hundreds of thousands of records, named in
the format polito dett YYYY MM DD HH.csv, where YYYY represents the year, MM the month,
DD the day, and HH the hour interval. Data refer to travels which started or ended or crossed
the interest area on the days between December 18th, 2018, to January 14th, 2020.These are the
information described:

• Trip numerical identifier;

• Device identifier;

• Timestamp in format UTC, YYYY-MM-DD HH:MI:SS;

• Latitude and longitude, 6 decimal digits, separator is . ;

• Address in textual format: State—Region—Province—Municipality—Address;

• ISTAT code of municipality as result of census of 2011;

• ACE code of Census area;

• Road class (”U”,“E”,“A”,“X”: urban, rural, motorway, other);

• Weather condition (textual and numeric (0-1-2-3) depending on the precipitation intensity)
aggregated/updated according to the following rules:

◦ If the position remain within the same municipality, each 30 minutes;

◦ Sampling in municipality different from the previous one;

• Speed in km/h;

• Gps signal quality (3 excellent, 2 sufficient, 1 poor);
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The metadata is described in Table 4.

Table 4: HCD Trip Details Metadata

Field Rules
Trip id From 1 to 20 characters

Device Id From 1 to 20 characters
Datetime (format UTC: YYYY-MM-DD HH24:MI:SS)

Lat 6 significant decimal numbers, separator is dot
Lon 6 significant decimal numbers, separator is dot

Indirizzo
State|Region|Province|Municipality|Address,

separator is |
Codice Istat comune ISTAT census 2011, from 4 to 6 digits

Codice ACE
Code that identifies univocally the census
area, if present, within the municipal

territory, from 0 to 3 digits

Tipologia strada

U:urban
E:rural

A:motorway
X:other

Temperatura Up to 1 decimal digit, if not known 99
Precipitazioni 0:no rain, 1: 1mm/h, 2: 4 mm/h, 3: >4 mm/h, 9: not known

Condizioni meteo If absent ”UNK”
speedKmh Speed on the arc, expressed in km/h

Hdop Gps signal quality: 3 excellent, 2 sufficient, 1 poor

3.3.3 Floating Car Data (FCD)

Floating Car Data refers to data collected in near real time from vehicles equipped with GPS
devices as they are moving throughout the road network, they provide real time data which makes
understand the current traffic conditions and can support the policy maker especially in short
term decisions, or they can even be used to assess the effectiveness of regulatory actions on traffic.
Here as well we have a set of 264,383 files with thousands of records each one. Data was made
available in format .csv, they have been sampled with a 2 minutes frequency and therefore are
named with the format ”VST POLITO YYYYMMDD hhmmss.csv” where YYYY represents the
year, MM the month, DD the day, hh the hour, mm the minute and ss the second. They have a
temporal extension which starts from January,14th 2019 to January, 17th 2020. The big number
is due to the fact that in one hour of each day we have about thirty file, since they have been
sampled every 2 minutes. Therefore in one day we have 30*24=720 files. There are 366 entire days
sampled, so 720*366=263,520 files plus those coming from January,14th 2019 that is sampled only
from 09:46:57 ahead and January, 17th 2020 that is sampled only until 11:09:44. They have been
made available immediately after the acquisition, without any filtering activity. Each sample has
the following characteristics:
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• Request identifier;

• Device identifier;

• Datetime of recording, same format as before;

• Latitude and longitude;

• Speed expressed in km/h;

• Direction of motion expressed with a number between 0 and 360, pointing the angle with
respect to the North;

• Gps signal quality, expressed in hdop decimals, between 0 (excellent) and 150 (poor);

• Engine state (1 turned on, 0 turned off);

• Eventual other optional informations;

• Vehicle typology (1 autovehicle, 2 commercial vehicle)

As well as before, the metadata is described in Table 5.

Table 5: FCD Metadata

Field Rules
idRequest From 1 to 20 characters
DeviceId From 1 to 20 characters
dateTime format UTC: YYYY-MM-DD HH24:MI:SS
latitude 6 significant decimal numbers, separator is dot
longitude 6 significant decimal numbers, separator is dot
speedKmh Speed on the arc, expressed in km/h
heading From 0 to 360, with increment of 4 degrees

accuracyDop From 0 to 150

EngineStatus
1 engine on
0 engine off

Type
1 car
2 fleet
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3.3.4 Differences between HCD and FCD

To briefly highlight the main differences between the two types of data, as they might appear
similar at first glance, the key distinction lies in the period of data collection. Specifically, while
HCD (as detailed in Section 3.3.2 Historical Car Data (HCD)) are collected offline, typically on
the following day, FCD are gathered in near real time. This means that FCD are not instantly
available but are accessible shortly after collection, making them suitable for obtaining real-time
information.

Another significant difference lies in the structure of the generated files. For HCD, data is typi-
cally split across multiple files: one file identifies the trip’s origin and destination (polito viaggi YYYY MM DD.csv),
while additional files record the subsequent positions along the route (polito dett YYYY MM DD HH.csv).
In contrast, FCD consolidates all consecutive positions of each vehicle into a single file (VST POLITO YYYYMMDD
This difference likely reflects the nature of their processing; HCD are usually post-processed,
whereas FCD are collected and utilized as-is due to their near real-time acquisition.

3.4 Graph of Turin

Beyond the GPS traces, we have also the graph (see Section 1.3.1 Road Graph) of the main roads
in Turin and province.

Figure 14: Graph view on Qgis

This has been taken from the master thesis [14] whereby is described the process to extract the
graph. Here, to sum up we report only the main details. The input data are:
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• Open Street Map5 road network available on the Geofabrik6 website;

• The graph ”DatiSVR2019 su ElementoStradaleBDTRE”7 available on Geoportal of region
Piemonte;

OSM geometries are represented with good accuracy and include information about the direction
of travel. However, they do not always provide data on travel speed or the technical-functional
classification of the roads. The BDTRE graph, on the other hand, contains information updated to
2019, including the average daily traffic (ADT), maximum, and average travel speeds. However, its
representation is less accurate. Their characteristics has been mixed to get the following attributes
of each arc:

• Identifier number of the arc;

• Identifier number of starting node;

• Identifier number of end node;

• Direction;

• Length;

• Class (displayed in the Figure 14);

• Travelling speed (km/h);

• Capacity;

• Number of lanes;

The final graph will have therefore a number of 7549 arcs representing the main infrastructures
in the area of Turin. In Table 6 we represent the metadata.

Table 6: Graph Metadata

Field Rules
Arco Identifier of the arc, from 1 to 4 characters
Nodo i Starting node identifier, from 1 to 4 characters
Nodo f Final node identifier, from 1 to 4 characters
Centroid Null

Dir F if it’s one-way or B if it’s two-way
L [m] Length of the arc expressed in meters

Main class motorway;primary;secondary;tertiary;trunk;unclassified;service
Vf [km/h] Average traveling speed on that arc
C [ve/h] Capacity of the arc expressed in vehicles per hour
N corsie Number of lanes

5OpenStreetMap (abbreviated OSM) is a website that uses an open geographic database which is updated and
maintained by a community of volunteers via open collaboration

6https://download.geofabrik.de/europe/italy/nord-ovest.html
7https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search/metadata/rpiemon : 2bb551d2−bad8−

488f − 9070− 07f5a65b5f11
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We have it available as a file named ’graph reprojected.shp’ that we imported on Qgis to
perform our analysis, and further we exported the attribute table as an Excel file named ’grafo.csv’
to process it as it will be showed in Chapter 5 Methodology, part 2: travel times derivation.
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4 Methodology, part 1: HCD data processing and map

matching

Here we will focus on the process that led us to the dataset to be analysed for the purposes of our
thesis, including data pre-processing. As we already said, in the previous Section 3 Experimental
setting we have two kinds of data, thus HCD and FCD. We will exploit them for different purposes.
In particular, HCD will be used to develop a methodology with which will be determined the free
flow speed on the arcs. Whereas, FCD will be used to meet the purpose of this thesis, explained in
Section 1.1 Thesis objectives, thus determine the arcs where most time is wasted due to congestion.

4.1 HCD data pre-processing

As described in Section 3.3.2 Historical Car Data (HCD), our dataset covers one year of data.
For computational and efficiency reasons, we could not use the entire dataset for our analysis.
Thus, we began by cleaning and selecting relevant data. To select dates for free flow sampling, I
will take one day every 365/n at constant intervals, focusing on hours between 10 PM and 6 AM,
where n is fixed in such a way to have at least 10 days for each month, so n=120. Concerning
the determination of congestion, we used an equal probability stratified sampling. This sampling
technique ensures that each stratum (subgroup) is represented equally in terms of probability,
regardless of the size or other characteristics of the strata.

Firstly, we excluded particular days like holidays, snowfalls and strikes. In Table 7 we reported
what days have been excluded and the reason.
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Table 7: Classified List of Significant Dates in 2019

Date Reason
01/01/2019 holiday
06/01/2019 holiday
16/01/2019 strike
23/01/2019 snowfall
31/01/2019 snowfall
01/02/2019 snowfall
08/03/2019 strike
21/04/2019 holiday
22/04/2019 holiday
25/04/2019 holiday
27/04/2019 strike
01/05/2019 holiday
31/05/2019 strike
02/06/2019 holiday
24/07/2019 strike
14/10/2019 strike
25/10/2019 strike
22/11/2019 strike
08/12/2019 holiday
13/12/2019 snowfall, strike
25/12/2019 holiday
26/12/2019 holiday

Then, we considered as stratifying variables: Season (4 categories),a combination of Au-
gust/school calendar (3 categories: from early September to mid-June / from mid-June to the
end of July and August plus early September) and day of the week (7 categories). We therefore
constructed a three dimensional contingency table counting the days lying on each strata, that we
report in Figure 15:

Figure 15: Three dimension contingency table

Now, since we want to maintain the same proportion of each strata in the sampling process, we
would sample around 10 days for each month, so we assume n=10*12=120 and so, applied the
following formula to each cell:

Sample =
Cellfrequency

Totalpopulation
∗ n (25)

Where the total population is 344 days resulting from the 366 normal days minus the excluded
days in Table 7. The resulting table is shown in Figure 16:
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Figure 16: Sampled strata

For each stratum, we selected random day. Focusing on free flow speed, the process above de-
scribed, resulted in 102 files, named using the format ”MMDDYYYY HCD.csv,” where MM rep-
resents the month, DD the day, and YYYY the year. To reduce the dataset size and focus on
relevant information, we removed several columns deemed unnecessary for our purposes: ’Indi-
rizzo’, ’Codice Istat comune’, ’Codice ACE’, ’Meteo Temperatura’, ’Precipitazioni’, ’Condizioni
meteo’, and ’Hdop’. Additionally, since each file contained data from multiple days, we filtered
out records to retain only those corresponding to the reference day for each file. After this step,
each file contained approximately 800,000 records.

Given that our primary objective with this dataset is to estimate the free-flow speed, we
implemented an additional filtering process. For each day, we retained only data recorded during
nighttime hours (from 10:00 PM to 6:00 AM). This restriction is based on the premise that traffic
flow is generally lower during these hours, making speeds more reflective of free-flow conditions.
To apply this filter, we utilized the Datetime column, which contains timestamp information, to
isolate records within the specified time window.

The final result of this preprocessing is a collection of 102 files, each containing approximately
60,000 records, ready for further analysis.

Furthermore, since we needed to process the data in QGIS, we combined the 102 individual
files into seven aggregated datasets because of Excel limits (1 million records), each one containing
data from one or more months, we can see them in Figure 17.

Figure 17: Aggregated HCD files, per month, per hourly interval, sorted by month

The naming format here is ”HCD mm yyyy.csv” where mm stands for the month period and yyyy
for the year. They consist of about 6 million records.

4.2 HCD data matching process to the graph

To perform the map-matching process, we followed a series of structured steps.
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4.2.1 Data cleaning and selection

The initial step involved importing the above mentioned files introduced in 4.1 HCD data pre-
processing into QGIS. It is important to note that the coordinates in the original files are expressed
in the WGS 84 geographic coordinate system (EPSG:4326), which uses latitude and longitude in
degrees. Since the subsequent analysis requires distances to be expressed in meters, the first step
was to reproject the points into a projected coordinate system, specifically EPSG:32632 (WGS 84
/ UTM zone 32N). This system, based on the Universal Transverse Mercator (UTM) projection
for Zone 32N in the Northern Hemisphere, utilizes the WGS 84 datum and represents coordinates
in meters within a flat planar system, enabling precise distance calculations.

Furthermore, given that the extent of the graph was smaller than the distribution of the points,
we created a polygon encompassing the graph (see Section 3.1 Study context: Turin) and excluded
all points located outside of this boundary as you can see in Figure 18.

Figure 18: Maintained points (violet) and deleted points (green)

The yellow lines represent the polygon boundary, outside of which the points were removed. Once
this pre-processing step was completed, we created new files containing only the violet points in
Figure 18 displayed in Figure 19 by exporting them from Qgis to .csv and proceeded with the
actual map-matching.
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Figure 19: .csv files with only maintained points after selection process

Those files, since they contain less records than the files showed in Figure 17, have been further ag-
gregated in 3 files, which are ”in polygon jan-apr.csv”,”in polygon may-aug.csv” and ”in polygon sep-
dec.csv” consisting of 3,108,779 points (respectively 1,014,135 records, 1,046,812 records and
1,047,832 records).

4.2.2 Online map matching with ORS

The first approach we employed utilized an online map-matching service provider, specifically Open
Route Service (ORS)8. ORS returns a list of points snapped to the nearest edge in the routing
graph taken from OpenStreetMap9 (OSM). In case an appropriate snapping point cannot be found
within the specified search radius, “null” is returned. In the latter case we managed to maintain
the same coordinates. We developed a Python script, detailed in Appendix [1], to facilitate this
process. The script begins by reading the files ”in polygon jan-apr.csv”,”in polygon may-aug.csv”
and ”in polygon sep-dec.csv” one at time, introduced at the end of the section 4.2.1 Data cleaning
and selection and sending the coordinates to the ORS API. Using road data from OSM, the API10

then snaps each GPS point to the nearest road edge based on three main criteria:

• Minimum distance: each point is associated to the closest arc;

• Transport mode: in this case, the API is configured for the option ”driving-car”, so it only
considers the network suitable for vehicles;

• Direction and topology: the API takes into account the direction and the topology of the
road to place correctly the point on the segment;

Following this step, the script extracts corrected coordinates for each point. If the API fails
to generate corrected coordinates, the respective fields are left empty, and we retain the orig-
inal coordinates from the dataset. The new coordinates are appended as additional columns
to the same file with the same structure and information as the original. The generated files
are ”in polygon aftercut afterpython jan-apr.csv”,”in polygon aftercut afterpython may-aug.csv”
and ”in polygon aftercut afterpython sep-dec.csv” with same number of records as before, but
with improved coordinates.

8https://openrouteservice.org/dev/#/api-docs/v2/snap/profile/post
9https://www.openstreetmap.org/exportmap=9/45.064/8.042

10An application programming interface (API) is a connection between computers or between computer programs.
In contrast to a user interface, which connects a computer to a person, an application programming interface connects
computers or pieces of software to each other.
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Figure 20: Output of Python script, with corrected coordinates

4.2.3 Snapping on QGIS

The second step involved further processing in QGIS. We imported the last three files
”in polygon aftercut afterpython jan-apr.csv”,”in polygon aftercut afterpython may-aug.csv” and
”in polygon aftercut afterpython sep-dec.csv” introduced at the end of section 4.2.2 Online map
matching with ORS containing the corrected coordinates and refined the map-matching results.
Since the ORS API utilized a graph derived from OpenStreetMap, which differs from our graph
(whose description is given in 3.4 Graph of Turin), the points were not perfectly aligned. The
difference is given by the fact that our graph contains far less arcs with respect to the OSM graph,
and moreover, since not all the links contained data on travel speed or the technical classification of
the road, sometimes elements coming from the BDTRE graph have been embedded, as described
in [14]. To resolve the above mentioned lack of alignment, we used the ’Snap Geometries to Layer’
tool in QGIS, snapping points to the nearest road segment within a small tolerance (around 3
meters) to ensure points remained on major roads represented in our graph (otherwise, especially
in central urban area, the points on minor roads would have been anchored to the graph). This
adjustment was not only for visual consistency but also essential for associating each point with
its corresponding road segment.
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Figure 21: Results of snapping process

Given the differences between the OSM graph and our graph, not all the points can be associated
to the graph’s arch, as it can be seen in Figure 21 and as we will better discuss in the next section.
We can say the process is more or less based on a point-to-curve geometric algorithm, based on
what is described in [12].

4.2.4 Association of arc’s corresponding attributes

The final step in the map-matching process was to correctly associate each point with the cor-
responding road segment. We used the ’Join Attributes by Nearest’ function in QGIS to create
new shapefiles. These files retained the original point geometries but enriched the attribute table
with data from the graph, providing vehicle and road segment information for each point. We
generated two shapefiles for each temporal interval, ”matched jan-apr.shp” and ”not snapped jan-
apr.shp”,”matched may-aug.shp” and ”not snapped may-aug.shp” and ”matched sep-dec.shp” and
”not snapped sep-dec.shp” among which only the matched ones were later exported as .csv files
with the same name but different extension clearly. The ”matched” file contains all points suc-
cessfully associated with our graph, in detail, they contain respectively 674,581 points, 684,859
points and 678,806 points. Therefore, about 65% of the HCD points selected in Section 4.2.1 Data
cleaning and selection have been matched.
In this dataset, a new column, ’Arco’ was added to store the identifier of the arc on which each
point is located. Conversely, the ”not snapped” file includes the points that were excluded from
the matching process. These points were likely associated with other roads, as their positions were
too distant from our network to be reliably mapped. In Figure 22 we display an example of the
output file after the map matching process.
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Figure 22: Matched points after map matching process, from ”matched jan-apr.csv”

We note in particular the most important features, thus the coordinates, expressed in the projected
reference systemWGS84/UTM 32N, the identifier of the corresponding arc under the column ’Arco’
and the timestamps under the column ’Datetime’.

4.3 HCD data cleaning of matched points

With the matched points dataset ready, we needed to further refine the data to support our thesis
analysis. Specifically, we focused on identifying and excluding the following cases:

• Cases in which there is only 1 point of the same deviceId on the same arc, because it is a
useless information that could fake our analysis;

• Cases in which the vehicle’s speed is zero;

• Cases in which the same deviceId passes through the same arc more than once in few minutes.

Since our objective is to accurately measure travel time on each road segment, these cases could
compromise the validity of our results. In the first case, a single point does not provide any
information about travel time. In the second case, we risk to get distances from points equal to
zero, due to the fact that the vehicle is not moving along time. Instead, in the third case, repeated
traversals in a short period could skew our analysis.

To address the first scenario, we implemented an R script (see Appendix 2) that counts the
occurrences of each deviceId on each road segment during the same day. For example, if deviceId
5116563 appears only once on segment 833, this point is removed from the dataset. We applied this
script to the three files ”matched jan-apr.csv”,”matched may-aug.csv” and ”matched sep-dec.csv”
introduced in 4.2.4 Association of arc’s corresponding attributes and get the same file, with a new
column reporting the above mentioned count, as it is showed in Figure 23.

Figure 23: Output after counting script applied on R,from ”matched jan-apr.csv”
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We have hidden some useless column referring to the scope of this representation because otherwise
the image would have been too large. In every file, we added one more sheet (’filtered’) in which we
filtered and maintained only the records corresponding with count>1 strictly. In that way we only
maintained the vehicles which are recorded on the same arc at least two times and solved the first
issue. To do this, we had to create three files with extension .xlsx named respectively ”matched jan-
apr.xlsx”,”matched may-aug.xlsx” and ”matched sep-dec.xlsx” with respectively 172,550 records,
189,000 records and 173,000 records.

After completing this process, and considering the significant number of records that were
deleted, we simplified the workflow by merging all three files into a single consolidated file named
”merged matched processed.xlsx”, which now contains a total of 534,988 records.

Then we filtered out and removed all the records corresponding to a speed equal to zero.

To handle the second scenario, we developed a more complex yet intuitive approach. We first
sorted the data by Day, Device Id and Datetime, creating a chronological sequence of each point’s
movements for each day.

Figure 24: Cronological movements of each vehicle, from ”merged matched processed.xlsx”

If we look at the sequence of movements of Device Id 2822159 in Figure 24, we can notice that it
passes through the arc 6096 two times in the same day, but during two different hourly intervals,
this could significantly distort travel time calculations, so we have to exclude these cases.

Considered the big dataset, we cannot proceed manually, so what we did, basically, has been
to create a new column reporting the difference between the current and previous arc (’diff arco’).
For each row, if we see a 0 value, it means the vehicle is still on the same arc, if you see a certain
numeric value it means the Device Id has changed arc. More in the detail, if you see a numeric
value and then a 0 value, the vehicle has changed arc and then it is travelling on the last one, but
the cases in which there are two consecutive numeric values it means the arc x has been visited,
then the vehicle has been on another arc y and of course, sooner or later, the vehicle passed again
through arc x because we remind that we only maintained the cases in which the same arc has been
visited at least two times by the same vehicle. Looking to the ’diff arco’ column corresponding to
the data displayed in Figure 24 we can see what we just said in Figure 25:
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Figure 25: Difference column with sequence of movements of Device Id 2822159

To explain how we automatize the process: under the ’condition’ column we plotted ”si” if the
difference is 0, otherwise ”no”. Under ’test’ column we plotted ’FALSO’ if there are two consecutive
0 or one number and a 0 and ’VERO’ when there are two consecutive numbers. Given what we
said, the points corresponding to ’VERO’ should be removed from our dataset. We carried out
this process in the ’filtered’ sheet of the same excel file.

Once did this, only the last sheet of the file has been exported in .csv ”merged matched processed.csv”
with 464,338 records left, and consequently imported in QGIS. Now we do not have anymore points
which could fake the analysis.

4.4 Computation of distances on the graph

Now, the following step has been to compute the distances between two consecutive points with
the same ID, on the same arc during same day. The complexity here is related with the fact that
we don’t want to calculate the straight distance between the points but rather we want to calculate
the distance following the geometry of the road. To do this, we had to develop a Python script
(see Appendix A [4]), in which there are 2 main steps:

• Organizing points by Day and Device Id on the same arc;

• Computation of distance between points as the difference between the distance between origin
node of the arc and point xi+1 and the distance between the origin node of the arc and point
xi.

What we get is one Excel file, named ’distances.csv’ structured as it is showed in Figure 26.

Figure 26: Output file after execution of Python code to calculate distances among points

This is the meaning of the column displayed in Figure 26:

• ’Giorno’ is the day of the acquisition;
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• ’Device Id’ is the identifier of the vehicle;

• ’Arco’ is the identifier of the arc;

• ’Datetime1’ is the timestamp of the first point on the arc;

• ’Datetime2’ is the timestamp of the second point on the arc;

• ’Speed1’ is the instantaneous speed of the first point;

• ’Speed2’ is the instantaneous speed of the second point;

• ’Distance’ is the distance between the two points following the geometry of the graph;

• ’Arc Length’ is the total length of the arc;

• ’Distance to Start’ is the distance between the origin node of the arc and the first point;

• ’Distance to End’ is the distance between the second point and the end node of the arc;

All the distances are expressed in meters. Now, the next step will be related with the computation
of the travel time of each arc by means of the calculated distances.

4.5 Filtering out HCD observations with service stops

Before proceeding with the main analysis, it is important to note the presence of certain points
with a significantly large temporal gap. This likely occurs in situations where, for example, a
vehicle remains on the same arc, parks in a nearby parking area, and then resumes its journey
after a considerable time, such as 20 minutes. Since the vehicle remains associated with the same
arc, the algorithm calculates the physical distance between these points without recognizing that
they correspond to distinct temporal intervals.

Therefore, we decided to eliminate certain records based on a temporal criterion. Specifically,
we calculated the difference between Datetime2 and Datetime1 in a new column ’delta time’ and
plotted the distribution with a bin of 1 minute.
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Figure 27: Distribution of delta time from ’distances.csv’

As we can notice in Figure 27, the vast majority delta time is concentrated between 0 and 4
minutes. To establish a statistical basis, we calculated the 95th percentile, which is 3.78 minutes,
and excluded 19,682 records with a temporal distance greater than 4 minutes (rounded up to the
nearest integer).Moreover, as it has been done in [15], our threshold is a bit higher than that
established there, thus 2 minutes, which is also the maximum duration of traffic light cycle. As a
result, these records were removed from the dataset.

Additionally, we deleted the points whose physical distance was zero, because useless for our
purposes. These points have been further removed from the file ”merged matched processed.csv”
with 434,815 records left.

4.6 Statistics on the number of HCD observations on each arc

Before proceeding with the work, we wonder if the level of detail of the graph that we used was or
not appropriate to the dataset we have. We want highlight we started with a dataset consisting on
about six million points and now, after the processes described above, we have about four hundred
thirty thousand points in the file ”merged matched processed.csv” introduced in 4.3 HCD data
cleaning of matched points. At this point we implemented two kind of analysis on R. We calculated,
by means of a R script, displayed on Appendix [3], how many visits and how many Device Id on
each arc, getting the excel files ’arco stats.xlsx’ presented in the Figure 28.
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Figure 28: Arcs statistics

We report the meaning of each column:

• Arco, it’s the arc identifier;

• visits, it’s the total number of vehicles recorded on the arc;

• visits device id, is the total number of deviceId on that arc;

• average, is calculated as the ratio between ’visits’ and ’visits deviceId’.

We have to mention we have data on 7093 arcs out of 7549, thus we can perform our analysis on
93% of the arcs.

4.6.1 Distribution of the average number of observations per device

We then reported the distribution of the column ’average’, for each arc, displayed in Figure 29.
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Figure 29: Distribution of ’average’ column, from ’arco stats.xlsx’

We can notice frequencies are high for lower values. It means most devices cross an arc only a few
times on average. These arcs are used by a wide variety of vehicles, rather than being dominated
by repeat visits from a few vehicles.

4.6.2 Distribution of the visits

We also plotted the distribution of the column ’visits device id’ which represents the number of
different vehicles visiting each arc in Figure 30.
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Figure 30: Number of deviceId visiting arcs distribution

Despite the high frequency of lower values, indicating that many arcs are visited by only a few
devices, a substantial number of arcs are visited by 10 or more devices. Specifically, out of 7083
arcs:

• 4093 arcs are visited by more than 10 devices.

• 2990 arcs are visited by fewer than 10 devices, and among these, 1257 arcs are visited by 5
or more devices.

This suggests that the dataset is well-balanced, with a significant portion of arcs showing diverse
usage. The distribution, which is right censored, confirms the quality of the data, providing a solid
foundation for further analysis.

To sum up, we started with 6,491,019 points in the file showed in Figure 17 and through a series
of structured steps involving selection of points inside the area covered by the graph in 4.2.1 Data
cleaning and selection, data processing described in 4.2.4 Association of arc’s corresponding at-
tributes,and 4.3 HCD data cleaning of matched points we finally ended up with 464,337 points.
Only the 8% of points maintained but still a good result because we have data on 93% of arcs.
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5 Methodology, part 2: travel times derivation

In this chapter, we will outline the analysis process applied to the dataset, focusing on estimating
the free-flow travel time and the observed travel time for each arc.

5.1 Free-flow travel time computation

In this paragraph we will focus on the estimation of the travel time under ideal conditions. We
consider two alternatives to perform this task:

1. Exploit the data we already have on each arc of the graph dataset;

2. Develop a new method based on [19];

To ensure clarity, we will perform both processes and compare their results to choose the most
appropriate method. It should be noted that the first one is based on an official data source, as it
will be apparent in the following subhead, and therefore it could be considered the best solution.
However, this data source is only available for the Piedmont region. Consequently, we will also
explore the second method that is only making use of the above introduced HCD dataset, and it
is therefore generalisable to any study area where such data are available.

5.1.1 Free flow travel time using previous information from the graph

In the dataset we already described in 3.4 Graph of Turin we have a column with the free flow speed
on each arc ’Vf [kmh]’. The process to get this speed is accurately explained in [14] (paragraph
5.2). We report a brief explanation.

The estimation of free-flow speed, denoted as Vf, is derived from analyzing data collected on
the road network11 available on Geoportal of region Piemonte using an approach that integrates
detailed information about segment lengths and instantaneous speeds recorded by moving vehicles.
Speed data, in the dataset BDTRE, which are crucial for this calculation, are obtained through
GPS devices or tracking systems that monitor the position and travel time along various segments
of the network. Each arc in the network represents a road or a portion of it, consisting of multiple
segments. For each segment, data on its length, travel time, and average speed are available.

To calculate Vf, in [14] data are first aggregated at the arc level by considering all its constituent
segments. The weighted average speed of an arc, required for estimating Vf, is calculated using a
ratio that accounts for the segment lengths and their respective travel times. This method assigns
greater weight to longer segments, ensuring that the overall speed estimate represents the entire
road accurately. However, to isolate the value of Vf, which represents the speed under free-flow
conditions, only data collected during periods of low or absent traffic are considered. This filtering
excludes the effects of congestion or delays, ensuring that the estimate reflects solely the road’s
performance under ideal conditions.

The formula for calculating Vf is implemented in QGIS, through an expression that combines
segment lengths and instantaneous speeds (we remind that those instantaneous speed are taken
from BDTRE dataset). This implementation automates the aggregation process, handling any
missing data and ensuring that only valid segments contribute to the calculation. The result is
a theoretical speed allowing smooth, uninterrupted movement, a critical parameter for comparing

11https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.searc/metadata/rpiemon : 2bb551d2− bad8−
488f − 9070− 07f5a65b5f11
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observed conditions with ideal ones and supporting more in-depth analyses of traffic and road
network planning.

Once understood where Vf comes from, we created a .csv file named ”points processed.csv” (see
Figure 31), after having applied to the already mentioned file ”merged matched processed.csv” in
the paragraph 4.3 HCD data cleaning of matched points a Python script (see Appendix [5]) to
determine the list of all the points in the dataset, with their relative position on the arc, and their
instantaneous speed, reporting:

• Device Id;

• Arco;

• distance to start already mentioned in 4.4 Computation of distances on the graph;

• speed, thus the instantaneous speed of each vehicle recorded;

• Datetime;

• arc length;

• Vf kmh described here above;

• Main Class, thus the class of the arc, whose meaning has been explained in Table 6;

Figure 31: List of points to be processed to determine free flow speed

Then, the travel time is simply determined as the ratio between the arc length and the aforemen-
tioned speed, under the column ’TT ffs (min)’ displayed in Figure 32 which has been added to the
aforementioned file ”points processed.csv”.

5.1.2 Free flow travel time based on HCD observations [19]

The alternative approach involves utilizing the HCD dataset at hand, following the method out-
lined in paragraph 2.3 Travel time estimation under free flow conditions. The concept focuses on
performing a weighted average of all recorded speeds for each arc, where the weights are deter-
mined by the position of the vehicle on the arc. Specifically, the closer the vehicle is to the centre
of the arc, the higher its speed’s reliability, as it is presumed to be less affected by congestion on
adjacent arcs. Conversely, the closer the vehicle is to the extremities of the arc, the lower its speed’s
reliability, as it is considered more likely to be influenced by congestion or delays originating from
neighbouring arcs. This method is reasonable to apply, as we recall from the discussion in Section
4.1 HCD data pre-processing that all the data we have pertains to an hourly interval between 10:00
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PM and 6:00 AM. In fact, we assume that there is no congestion during this interval that could
have influenced the data. This is crucial because the objective is to determine the free flow speed.

The column ’distance to start’ report the distance of the point with respect to the origin node
of the arc, while the column ’arc length’ is reporting the length of the arc expressed in meters. As
it is described in [19] we calculated the ratio between the two above cited columns, according to
the Equation 26:

¹ =
distance to start

arc length
(26)

Then, based on the concept already explained above, the weight is calculated according to Equation
27:

w = 1− |2 ∗ ¹ − 1| (27)

So that, when the vehicle is approximately near to the centre of the arc (¹ = 0.5) the weight is
maximum, while if ¹ is far from 0.5, the weight is low because the vehicle is considered to be
influenced from the adjacent arcs. Now, we have the weight of the points based on their position
and the instantaneous speed, so that we can proceed applying the formula showed in Equation 20.
The result is a column, named ’TT weighted (min)’ displayed in Figure 32 in which we performed
the ratio between the arc length and the speed calculated in Equation 20.

Figure 32: Output of elaboration of free flow speed with the two different methodologies, from the
file ”points processed.csv”

5.1.3 Selection of the most appropriate free flow travel time and comparison between
the two different methodologies

Now, we need to construct a dataset in which each arc is associated with the travel time under
free flow conditions, calculated using the two methodologies described above. Before proceeding,
it is essential to highlight three important aspects:

1. Missing Data: we do not have data for all arcs in the dataset. Therefore, in cases where
no data is available, we will apply the methodology described in 5.1.1 Free flow travel time
using previous information from the graph;

2. Analysing Results: results obtained from the methodology described in 5.1.2 Free flow
travel time based on HCD observations [19] must be analysed to determine the conditions
under which these results can be considered valid;

3. Preference for the Second Methodology: When both methodologies are applicable
according to the above two points and reliable based on the subsequent considerations, we
will always prefer the second one. This preference is due to its development based on our
available data, ensuring reproducibility in diverse contexts. In fact, this approach remains
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applicable even in scenarios where local datasets, such as BDTRE, are unavailable, as long
as we have access to similar HCD data;

To understand which methodology is better to be choose, we followed a sequence of structured
steps:

• Creation of an Excel file, in which we associate to each arch, the corresponding travel time
developed with the two above described methodologies, named ”archi fftt.xlsx”;

• Determination of speed from the above calculated travel times;

• Determination of speed limits based on the road class, under the columns ’Main Class’;

• Difference between speed determined with both methodologies and speed limits, expressed
in percentage with respect to the limit;

• Selection of the methodology with the lower difference;

Concerning the limits, we associated the limit based on the functional class of the road, taken from
OpenStreetMap ’https://wiki.openstreetmap.org/w/index.php?title=IT:Key:highway
&oldid=2222720’.
As it is mentioned in the website the class is only assigned based on functional characteristics and
not considering the administrative classification or the owner. Here we report the limits:

• motorway12:120 km/h;

• trunk13:100 km/h;

• primary14: 90 km/h;

• secondary15:90 km/h;

• tertiary16:50 km/h;

• unclassified17:50 km/h;

• residential18:30 km/h;

The limits for each road category, as determined by those present, are specified in DM 6792/2001
[8].

The result is a file excel ’archi fftt.xlsx’ structured as it is showed in Figure 33:

12https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dmotorway
13https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dtrunk
14https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dprimary
15https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dsecondary
16https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dtertiary
17https://wiki.openstreetmap.org/wiki/Tag:highway%3Dunclassified
18https://wiki.openstreetmap.org/wiki/IT:Tag:highway%3Dresidential
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Figure 33: Free flow travel time of each arc, from ’archi fftt.xlsx’

Where ’V f’ (already introduced in Section 5.1.1 Free flow travel time using previous information
from the graph) and ’V weighted’ have been calculated respectively:

Vf =
arc length

TTffs

(28)

Vweighted =
arc length

TTweighted

(29)

Then, the column ’deltaVf’ and ’deltaV weighted’ represent the percentage variation of the speed
with resspect to the limit. Calculated as follows:

deltaV f =
Vf − Limits

Limits
(30)

deltaVweighted =
Vweighted − Limits

Limits
(31)

The final column, ’FFTT’ is the free flow travel time associated to each arch, choosen as the travel
time corresponding to the minimum between ’deltaVf’ and ’deltaV weighted’.
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Moreover, we wanted to analyse the difference between the two methodologies with respect to
the arc length.
In particular we plotted the difference between the two columns ’Vf’ and ’V weighted’ showed in
Figure 34 getting the column ’delta speed’ and represented the scatter plot.

Figure 34: Relationship between ’delta speed’ and ’arc length’, from ’archi fftt.xlsx’

We can see there is a big variance when the arc length is low.
This is likely due to the significant influence of small changes in travel times, which have a more
pronounced effect on smaller arcs. Whereas, as the length of the arcs increases, delta speed tends to
decrease and become more stable. This behaviour aligns with the fact that longer arcs incorporate
a greater amount of data, reducing the influence of local anomalies.

By narrowing the focus to arcs with a maximum length of 200 meters, as shown in Figure 35,
we can delve deeper into the analysis to uncover more specific patterns and relationships within
this subset of data.
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Figure 35: Relationship between ’delta speed’ and ’arc length’ (max=200m), from ’archi fftt.xlsx’

The majority of values are positive, since delta speed is the difference between the speed derived
from methodology presented in 5.1.1 Free flow travel time using previous information from the
graph and the speed derived methodology presented in 5.1.2 Free flow travel time based on HCD
observations [19], we understand the former, when the arc length is low, is often higher. Since
we used, as it is mentioned in 4.1 HCD data pre-processing data collected only during nighttime,
when traffic is supposed to be absent, this can be due to several reasons, like:

• Nighttime road conditions, e.g., insufficient lighting, reduced visibility, precautionary slowing
by drivers for safety reasons;

• Infrastructure or geometric reasons: short arcs (<200m) often include features that require
speed reduction, such as curves, intersections, or speed bumps, which become even more
relevant at night.

• Nighttime environmental conditions: if the data was collected during periods with adverse
weather conditions (e.g., rain, fog), drivers may have slowed down compared to the reference
speed.

5.2 Observed travel time computation from the FCD dataset

5.2.1 FCD dataset manipulation and selection of observed days

Once we established the free flow travel time of each arch, we are ready to meet the real purpose
of this thesis, already introduced in 1.1 Thesis objectives, thus to calculate the increment of travel
time in Floating Car Data (introduced in 3.3.3 Floating Car Data (FCD)) due to congestion, by
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comparing these latter with the free flow time calculated by means of HCD. Here as well, we
developed two approaches to carry out the analysis:

1. Calculate the travel time by means of a simple proportional calculus, in a high disaggregate
fashion;

2. Calculate the travel time for each arc by computing the weighted average of the travel times
recorded by all vehicles that traversed that arc (more an aggregate fashion);

Here, we have to apply the same processes already introduced in advance in 4 Methodology, part
1: HCD data processing and map matching, to the Floating Car Data, to get a dataset which can
be processed. Based on the contingency table shown in Figure 16, we identified 120 potential days
for analysis. From these, we selected 4 representative days to ensure computational feasibility.
Importantly, all selected days fall within a standard working period during school time, which is
when the majority of movements have taken place. The selected days are represented in Table 8:

Table 8: Selected day for FCD data manipulation

Date Day
24/09/2019 Tuesday
18/10/2019 Friday
20/11/2019 Wednesday
12/12/2019 Thursday

We provide a brief description of the input files and the final processed files.
We started with ’merged FCD hh-hh ddmm.csv’ where hh-hh stands for the hourly interval

and dd and mm are respectively the day and the month. Five hourly intervals have been selected
for each day: 00-06,06-10,10-16,16-20,20-24; since we have four days we have a total of 20 files.
The structure of each file is like the one presented in Table 5. Moreover, based on the deviceId and
dateTime, we were able to associate each record to one trip, whose details are presented in Table
3, and therefore we added the trip characteristics to each record whenever possible. Unfortunately,
we could not make this for each deviceId, because there are some missing trips and moreover, the
trip characteristics that we initially omitted will be useful especially when performing analysis of
results in 6 Results. To make this association, we had to apply a python script (see Appendix 8),
getting 20 additional files named ’merged FCD hh-hh ddmm+.csv’.
We had initially 8,614,394 records. After the data manipulation described in detail in 4.2.1 Data
cleaning and selection, there are 5,814,050 records remaining. After processes described in 4.2.2On-
line map matching with ORS, 4.2.3 Snapping on QGIS, 4.2.4 Association of arc’s correspond-
ing attributes and 4.3 HCD data cleaning of matched points, we have obtained the final files
’matched processed ddmm.csv’, for each day, containing a total of 1,138,855 records. To these, we
applied the python script reported in Appendix [4] and get the files ’distances processed ddmm.csv’,
for each day, that have been further merged into a new file ’distances processed.csv’. The structure
is therefore different with respect to that presented in 4.4 Computation of distances on the graph.

This is the list of columns of ’distances processed.csv’:

• ’Giorno’ is the day of the acquisition;

• ’deviceId’ is the identifier of the vehicle;
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• ’Arco’ is the identifier of the arc;

• ’Datetime1’ is the timestamp of the first point on the arc;

• ’Datetime2’ is the timestamp of the second point on the arc;

• ’Speed1’ is the instantaneous speed of the first point;

• ’Speed2’ is the instantaneous speed of the second point;

• ’Distance’ is the distance between the two points following the geometry of the graph;

• ’Arc Length’ is the total length of the arc;

• ’Distance to Start1’ is the distance between the origin node of the arc and the first point;

• ’Distance to Start2’ is the distance between the origin node of the arc and the second point;

• ’Distance to End1’ is the distance between the first point and the end node of the arc;

• ’Distance to End2’ is the distance between the second point and the end node of the arc;

• Arc length;

• Main Class;

• Trip id;

• Datetime p, thus the starting timestamp of the trip;

• Datetime a, thus the arrival timestamp of the trip;

• Lat parten;

• Lon parten;

• Lat arrivo;

• Lon arrivo;

• Type;

• km percors;

• speedKmh y;

• Sesso;

• Età intest;

The presence of those 2 additional columns ’Distance to End1’ and ’Distance to End2’, is needed
for the proportional calculus presented in 5.2.2 Vehicle level travel time derivation.
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5.2.2 Vehicle level travel time derivation

The subsequent analysis process is relying on a proportional calculation. Here, we relate the
distance travelled within the given time interval to the portion of arc travelled so far. We have to
distinct two cases:

1. Only two points on the same arc;

2. More than two points on the same arc;

For clearness, we could say this is a general formula in the first case:

TTi,j =
Arc Lengthj

Distancet,t+1

∗ delta time (32)

Where i represent the deviceId, j the arc, t and t+1 the initial and successive timestamps, re-
spectively, and delta time denote the difference between these two consecutive timestamps. In the
second case, we adopted a more sophisticated approach. Consider the simplest case in which we
have 3 points on the same arc, as it is showed in Figure 36:

Figure 36: Three points on the same arc

Where A and B are the origin and ending node of the arc j, while 1,2,3 are the points of same
deviceId successively recorded on the same arc at the instant t, t+1 and t+2 respectively. In this
case, considering the structure of the Excel file ’distances processed.csv’, we will have two distinct
rows. The first one representing timestamps and distance between points 1 and 2, the second one
representing distance and timestamps between points 2 and 3.
Considering only the row relative to points 1 and 2:
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Figure 37: Notation on the arc considering points 1 and 2

Looking at Figure 37 we can now introduce the formula to calculate the travel time between node
A and point 2:

TA2 =
Distance to Start212

Distance12
∗ delta time12 (33)

Now considering the record relative to points 2 and 3:

Figure 38: Notation on the arc considering points 2 and 3

Looking at Figure 38 we can now introduce the formula to calculate the travel time between point
3 and node B:

T3B =
Distance to End123

Distance23
∗ delta time23 (34)

So that, at the end, the total travel time needed to travel the arc AB is:

TTi,AB = TA2 + T3B (35)

This has been done for all the deviceId on the same arc. The problem was, how to generalize this
method for each arc, since we can have more than three points on the same arc. So we implemented
an approach exploiting Excel to automatize the calculus. To make understand this, we have to
proceed step by step.
Firstly, we grouped and sorted the excel file ’distances processed.csv’ by ’Giorno’, ’deviceId’ and
’Arco’.

Then we calculated in a new column named ’diff arco’ the difference of the arc identifier of two
consecutive rows. From this, we can understand when there are zeroes, it means there are more
than two points on the same arc.
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Then, in a new column named ’test’ we implemented a formula which returns ’FALSO’ if the
record is relative to only two points on the same arc and ’VERO’ if there are consecutive rows
representing more than two points.

Therefore, next to the last column, we created the column ’tt duepunti’ in which, if the pre-
vious column ’test’ was ’FALSO’ we calculated travel time with the simple proportional calculus
presented in the first part of this section, otherwise it returns zero value and we have to continue
because it means there are at least three points.

So that, we created a column ’progr’ where we plotted 1 if, considering column ’test’, the value
of the previous record was ’FALSO’ and the value of the current one was ’VERO’; 2 if the value of
the current is ’VERO’ and the value of the successive is ’FALSO’; ”NA” in the other cases. This,
because, if we remind the meaning of column ’test’, when we have ’FALSO’ and then ’VERO’ it
means the arc has changed so the current record is representing the first two points on the same
arc. When, instead, the current is ’VERO’ and the next one is ’FALSO’, it means the current
record is representing the last two points recorded on that arc.
In the middle if there are more than 3 points we have always ”NA”. In this way, the structure is
always like: 1, NA,NA,NA...,2; to detect same deviceId on consecutive arcs and implement the last
presented proportional calculus. To make better understand, we report the structure in Figure 39
:

Figure 39: Result of described process above, from ’distances FCD.xlsx’

Successively, we created a new column ’Ti’ where we implemented the formula presented in Equa-
tion 33 if ’progr’ was 1, or that presented in Equation 34 if ’progr’ was 2. If the value was ”NA”,
we simply used the observed delta time between the two consecutive points of that row.

Finally, in the column ’tt disaggregate’ we grouped and summed up the value of the column
’Ti’ corresponding to the same deviceId on the same arc in the same day.
The values in this last column, will be then compared with the free flow travel times in the next
section to get results and make final considerations.

5.3 Statistics on the number of FCD observations on each arc

As we did in 4.6 Statistics on the number of HCD observations on each arc, we aim to determine the
number of observations available for each arc to assess whether the resulting data can be considered
representative of real traffic conditions. As mentioned in 1.1 Thesis objectives, FCD will be pro-
cessed to derive observed travel times, helping to identify the most critical arcs. However, since our
analysis is based on only four days of data due to computational constraints, we need to evaluate
the reliability of these results. A higher number of observations per arc indicates greater reliability
in the findings. We created a file, starting from ’distances processed.csv’ already introduced in
5.2.1 FCD dataset manipulation and selection of observed days , named ’arco stats FCD.xlsx’, in
which we have the structure shown in Figure 40:
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Figure 40: Statistics on arcs, from ’arco stats FCD.xlsx’

We report the meaning of each column:

• Arco, it’s the arc identifier;

• visits, it’s the total number of vehicles recorded on the arc;

• visits device id, is the total number of different deviceId on that arc;

• average, is calculated as the ratio between ’visits’ and ’visits deviceId’.

We have data on 4675 arcs out of 7549, thus we can perform our analysis on 62% of the arcs.

5.3.1 Distribution of the visits

We plotted the distribution of the column ’visits device id’, under the name of ’idcount’ which
represents the number of vehicles visiting each arc in Figure 41.
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Figure 41: Number of deviceId visiting arcs distribution

Despite the high frequency of lower values, indicating that many arcs are visited by only a few
devices, a pretty high number of arcs are visited by 5 or more devices. Specifically, out of 4675
arcs:

• 2561 arcs are visited by more than 5 devices, of which 2169 have been visited more than 10
devices.

• 2114 arcs are visited by fewer than 5 devices.

The distribution, which is right censored, confirms the quality of the data, providing a solid
foundation for further analysis.
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6 Results

This chapter presents the computation of the results derived from the application of the method-
ology presented in the preceding chapters. The aim is to synthesize and quantify time lost in
congestion by processing the data we got so far, with different levels of aggregation according to
the thesis goals mentioned at the beginning. Specifically, this work focuses on calculating both
disaggregate and aggregate data to reveal the most congested arcs and zones.

6.1 Increase in travel times by vehicle and by arc

By means of the files cited above ’archi fftt.xlsx’, ’distances processed.xlsx’ introduced respectively
in 5.1.2 Free flow travel time based on HCD observations [19] and in 5.2 Observed travel time
computation from the FCD dataset, we created a new excel file summarizing the most important
features of each arc, named ’results vehicle level.xlsx’ consisting of 342,817 records. It uses travel
times calculated in 5.2.2 Vehicle level travel time derivation and compare them with free flow travel
time of each arch. In Figure 42 we can see the structure.

Figure 42: Structure of ’results vehicle level.xlsx’

It can be noted that the arc identifier may sometimes be repeated because the analysis involves
multiple vehicles traversing the same arc. Thus the analysis is disaggregated by vehicle and by
arc.

To quantify the impact of traffic on travel times, we created a new column ’Wasted time vehicle’
in which we calculated the difference between ’tt disaggregate’ and ’FFTT (s)’ to get the time
wasted during rush hours with respect to the reference time (calculated, as we remind from 5.1.3 Se-
lection of the most appropriate free flow travel time and comparison between the two different
methodologies, during off peak hours).

Wasted time vehicle = tt disaggregate− FFTT (s) (36)

Moreover, we express the time wasted in terms of percentage rather than absolute numbers, so we
calculated the percentage as:

Wasted percentage =
Wasted time vehicle

FFTT (s)
(37)

And added the new column named ’Wasted percentage’.
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Figure 43: Structure of ’results vehicle level.xlsx’, with percentage of time wasted for each vehicle

Figure 43 reports the final structure of the file. We can notice the presence of negative values,
meaning that the vehicle is not wasting time due to congestion. In fact, when a negative value is
detected, the relative percentage of time wasted plotted is zero.
In Figure 44 we plot the distribution of the column ’Wasted time vehicle’.

Figure 44: Distribution of column ’Wasted time vehicle’, from ’results vehicle level.xlsx’

The distribution shows that most of vehicles experience relatively low congestion times, indicating
that the network generally operates efficiently for the majority of users. However, there are notable
instances of significantly higher delays, which point to potential bottlenecks or localized issues in
the system.
In Figure 45 we plot the distribution of the column ’Wasted percentage’.
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Figure 45: Distribution of column ’Wasted percentage’, from ’results vehicle level.xlsx’

The data suggest a skewed distribution where most vehicles are not seriously affected by congestion,
but a smaller subset (less than 50% of the total number of vehicles) suffers from significantly higher
percentages of wasted time. These extreme cases could point to specific bottlenecks, localized
congestion, or unique conditions such as traffic incidents or infrastructure limitations.

6.2 Comparison of data availability during peak hours vs entire-day
data

Moving forward, our analysis will distinguish between peak hours and full-day data. We have
defined a relatively broad peak hour window, spanning from 6–10 AM and 4–8 PM, totalling eight
hours (33% of total daily interval), otherwise, considering only a few hours would have posed a
data availability issue. In the ’results vehicle level.xlsx’ file, which serves as the foundation for our
subsequent analysis, there are a total of 342,817 records, with 164,939 of them falling within the
peak hour interval, accounting for 48% of the total data. This is why, when analysing the number
of available data points, the full-day analysis will not have significantly more data compared to
the peak-hour analysis.

6.3 Increase in travel times at arc level

In the previous paragraph 6.1 Increase in travel times by vehicle and by arc we calculated travel
times of each vehicle on each arc in a highly disaggregated fashion. Here we try to slightly aggregate
more the results, by summing up the travel time of all different vehicles on the same arc. We will
carry out one analysis only considering peak hours and one considering the whole day.
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6.3.1 Increase in travel times at arc level during peak hours

We first filtered out the data corresponding to ’Datetime a’ and ’Datetime p’ (whose meaning has
already introduced in 5.2.1 FCD dataset manipulation and selection of observed days) between
6-10 AM or 4-8 PM which are considered peak hour intervals. Then, we had to group all the
values in the column ’Wasted time vehicle’ from the file ’results vehicle level.xlsx’ for the same arc
and make the sum (not considering zero or negative values because they don’t represented time
wasted), creating a new file ’results arc level peak.xlsx’.The latter, contains one row for each arc,
whose structure is presented in Figure 46.

Figure 46: Structure of ’results arc level peak.xlsx’

To account for the varying number of vehicles recorded on each arc, we added a column called
’idcount’ to represent the total number of vehicles per arc. We have observations from 164,939
vehicles during peak hours on all the 3900 arcs that we consider in this analysis. Moreover, it is
also relevant to check the number of days in which we have data related to each arc, therefore we
added a further column ’daycount’ to this effect. Then, we calculated the average wasted time by
dividing the total wasted time by the number of vehicles for each arc. In Figure 47 we can see the
new column ’Average wasted time arc’ on the basis of what we just said, that is pointing out the
average time wasted in congestion per vehicle, on that specific arc.

Figure 47: Structure of ’results arc level peak.xlsx’ with new column ’Average wasted time arc’

Moreover, there could be a certain relationship between the wasted time and the length of the arc,
so we show the scatter plot with this relation in Figure 48.
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Figure 48: Relationship between arc length and average time wasted on each arc

The points appear widely dispersed with no evident pattern or trend, which aligns with the near-
zero correlation coefficient (0.043). This indicates that the arc length does not significantly influ-
ence the average time wasted. Factors other than the arc length, such as traffic conditions, road
type, or congestion levels, may have a more substantial impact on the wasted time. If a linear
relationship was present, we could have divided by the length, but considered the results, we don’t
need to further process them.
Now we can visualize the results on Qgis to graphically understand what are the arcs where most
time is wasted due to congestion. This is shown in Figure 49.
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Figure 49: Visualization of arc level congestion, from Qgis layout
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In Figure 50 we provide a zoom of congestion in the central urban area of Turin.

Figure 50: Visualization of arc level congestion in the central area of Turin, from Qgis layout

Moreover, we aim to provide a table showcasing the ten most congested arcs in Turin based
on the recently conducted analysis. To achieve this in QGIS, we first selected the arcs within the
municipal boundaries of Turin. Next, we sorted them in descending order according to the variable
’Average wasted time (min/veh)’. To ensure a reliable estimation, we filtered the data using the
’idcount’ column, retaining only values greater than 30. We then selected the top 30 values and
exported them as a new shapefile, ’mostcongested arcs peak.shp’. Subsequently, we applied the
Reverse Geocoding function available in QGIS, which, based on the arcs’ positions, provides their
corresponding addresses. The selection was limited to the top 30 values due to the computational
intensity of the process. Moreover, we considered the average daily traffic for each of these arcs,
taken from the file ’OT DUE.xlsx’ created in the thesis work [14]. We are in fact interested in
an estimation of the traffic flow during rush hours: therefore, we multiplied the above mentioned
average daily traffic in each arc times the fraction of traffic in the peak hour intervals defined
in 6.2 Comparison of data availability during peak hours vs entire-day data. To achieve this, we
consider the hourly distribution of traffic in Turin as reported in [14] (see Figure 51).
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Figure 51: Hourly flow distribution measured on February, 13th, 2019, from [14]

The fraction of traffic in the previously cited interval (6-10 AM and 4-8 PM) is of 50,9%. At the
end, by multiplying the ’Average time wasted (min/veh)’ times the flow during peak hours, we get
the total time wasted by all vehicles travelling during rush hours in a typical working day along
that specific arc, under the variable named ’Total time wasted (min)’. It’s important to notice,
since the above mentioned average daily traffic doesn’t take into account the direction, when an
arc is bidirectional, we first divided by two and we also show the direction to which the value it
is referred. In Table 9 we can see the ten most congested arcs in Turin according to what we just
said.
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Table 9: 10 most congested arcs in Turin during peak hours

Arco L [m] Name idcount Bidir Direction Av w t
(min/veh)

Tot w t
(h)

6423 407.92 Corso Toscana,
Madonna di
Campagna

36 YES - 639 8260

5980 477.89 Corso Racconigi,
Cenisia

56 YES - 411 20547

6081 1691.8 Corso Regina
Margherita,
Basso San Do-
nato

488 NO Nord-
ovest/Sud-
est

288 26066

6830 388.52 Via Cernaia,
Quadrilatero
Romano

46 YES - 179 18735

1654 283.84 Corso Umbria,
Basso San Do-
nato

37 YES - 172 6009

6144 604.02 Via Lanzo, Bar-
riera di Lanzo

70 YES - 135 14381

1929 700.76 Via Chiesa della
Salute, Borgo
Vittoria

90 YES - 115 5684

1755 660.31 Corso Mon-
calieri, Crimea

319 YES - 107 8980

1372 355.65 Corso Dante
Alighieri, Pi-
lonetto

85 YES - 85 2640

6592 422.28 Via Nino Oxilia,
Rebaudengo

125 YES - 81 5805

In Table 10 we represented ’Average time wasted (min/veh)’ and ’Total time wasted (min)’
respectively with ’Av w t (min/veh)’ and ’Tot w t (h)’. An interesting observation, is that the
arc where each vehicle wastes the most time is not always the most congested. In fact, we must
consider the actual number of vehicles passing through each arc. For example, while Corso Toscana
is the arc where each vehicle experiences the highest unit time waste, the arc with the greatest
overall time wasted is actually Corso Regina Margherita.

6.3.2 Increase in travel times at arc level during all day

Here, we had to group all the values in the column ’Wasted time vehicle’ from the file ’re-
sults vehicle level.xlsx’ for the same arc and make the sum (not considering zero or negative values
because they don’t represented time wasted), creating a new file ’results arc level.xlsx’. The latter,
contains one row for each arc, whose structure is presented in Figure 52.
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Figure 52: Structure of ’results arc level.xlsx’

Here as well as before, to account for the varying number of vehicles recorded on each arc, we
added a column called ’idcount’ to represent the total number of vehicles per arc and the column
’daycount’ in which we count the number of days. We have observations from 342,817 vehicles in
each of the 4675 arcs that we consider in this analysis. Then, we calculated the average wasted
time by dividing the total wasted time by the number of vehicles for each arc. In Figure 53 we
can see the column ’Average wasted time arc’ on the basis of what we just said that is pointing
out the average time wasted in congestion per vehicle per day, on that specific arc.

Figure 53: Structure of ’results arc level.xlsx’ with new column ’Average wasted time arc’

Now we can visualize the results on Qgis to graphically understand which are the arcs where
most time is wasted due to congestion. This is shown in Figure 54.
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Figure 54: Visualization of arc level congestion, from Qgis layout

77



In Figure 55 we provide a zoom of congestion in the central urban area of Turin.

Figure 55: Visualization of arc level congestion in the central area of Turin, from Qgis layout

Moreover, we aim to provide a table showcasing the ten most congested arcs in Turin based on the
recently conducted analysis with the same structure as Table 9, with the only difference that we
didn’t multiplied for any fraction of traffic, because here the whole day is object of analysis and
that we filtered ’idcount’>50 because we have a larger time interval in this case.
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Table 10: 10 most congested arcs in Turin

Arco L [m] Name idcount Bidir Direction Av w t
(min/veh)

Tot w t
(h)

6747 325.22 Corso Potenza,
Lucento

60 YES - 1346 100879

6423 407.92 Corso Toscana,
Madonna di
Campagna

65 YES - 359 9109

6438 450.48 Corso Giovanni
Agnelli, Circo-
scrizione 2

130 YES - 289 29187

4711 30.33 Strada del
Francese, Circo-
scrizione 6

116 YES - 205 33068

4950 72.35 Strada Provin-
ciale della Reg-
gia di Venaria,
Circoscrizione 6

1013 YES Both 151 38463

7130 405.8 Corso Se-
bastopoli, Santa
Rita

63 YES - 131 18616

6633 348.18 Corso Giuseppe
Gabetti, Borgo
Po

71 YES - 131 10472

4607 266.54 Corso Regina
Margherita,
Lucento

138 YES - 123 41382

7063 1652.38 Via Guglielmo
Reiss Romoli,
Madonna di
Campagna

1074 YES Both 109 35337

6434 1234.01 Corso Grosseto,
Madonna di
Campagna

195 YES - 109 21450

We can conclude by emphasizing the distinction between analysing only the average time
wasted per vehicle versus considering the total time wasted. The choice of analysis should depend
on the specific objective. For instance, if we are interested in the economic impact of congestion on
society, the total time wasted is more relevant as it provides a measure of overall social waste. On
the other hand, if the focus is on user perception and optimizing traffic management to enhance
their experience, the average time wasted per vehicle is a more reliable metric to consider.
A small road with low flow but high average time wasted, it’s a nightmare for those who travel
on it, despite it has a limited impact on the city. A road with low minutes lost per vehicle but
a high traffic volume results in a significant collective waste of time and could be a priority for
intervention.
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Also other kinds of analyses can be carried out to have a clearer picture of the situation, such
as analysis on speed, as it will be done in the subsequent paragraph 6.4 Speed variation at arc
level.

6.4 Speed variation at arc level

As we did previously, we conduct the analysis both during peak hours and across the entire day.
We study in which arcs, on average, the real speed is mostly different from the free flow speed. By
means of the arc length and the travel time we can calculate both the free flow speed and the real
speed.
To calculate the free flow speed, we simply divide the arc’s length by the free flow travel time.
However, to determine the real speed, we consider the average speed of all vehicles travelling along
the same arc.

6.4.1 Speed variation at arc level during peak hours

In more detail, the file ’results vehicle level.xlsx’ contains a list of the travel times for each vehicle
on the arc. For each vehicle, we computed its speed by dividing the arc’s length by its travel time.
Once we have these individual speeds, we calculate the average of all vehicle speeds on that arc
to determine the real speed, and add a new column in the file ’results arc level peak.xlsx’ called
Average speed arc.

This approach ensures that the real speed reflects the collective performance of all vehicles
travelling on the arc, rather than being based solely on individual measurements. Then, the
difference between the two speeds has been calculated in the column ’delta speed’:

delta speed = Average speed arc− FFS (38)

And by dividing this last column per the FFS we got the ’Relative difference’ expressed in percent-
age (with values whose range is from -100%, when vehicles are completely stopped, up to 377% if
the vehicle travels considerably faster than the FFS of the arc):

Relative difference =
delta speed

FFS
(39)

The structure is showed in Figure 56:

Figure 56: ’results arc level.xlsx’, with calculus of speeds and their difference

On average, the deviation with respect to the free flow speed is of -36%, calculated as the average
of the last column showed in Figure 56. Here as well, we can visualize the relative difference on
Qgis. (Figure 57)
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Figure 57: Real speed deviation with respect to free flow speed during peak hours, expressed in
percentage
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Zooming out in the urban centre of Turin (Figure 58):

Figure 58: Real speed deviation with respect to free flow speed during peak hours, expressed in
percentage, zoom on Turin urban centre
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Moreover we provide, in Table 12, a list of 10 arcs where there is the highest difference with
respect to the free flow speed, now considering the column ’delta speed:

Table 11: 10 highest delta speed arcs in Turin during peak hours

Arco L [m] Name Bidir Direction idcount delta s FFS s limit
4820 629.17 Tangenziale

Nord, Circo-
scrizione 6

NO - 114 -100 125 130

5027 508.24 Tangenziale
Nord, Villaretto,
Circoscrizione 6

NO - 59 -85 105 110

6719 670.97 Corso Grosseto,
Borgo Vittoria

NO - 84 -67 100 50

7217 504.64 Corso Giovanni
Agnelli, Borgo
Cina

NO - 40 -58 90 50

1989 447.74 Raccordo Au-
tostradale
Torino-Caselle,
Borgo Vittoria

NO - 46 -47 59 110

3298 409.29 Corso Unità
d’Italia, Italia
’61

NO - 152 -46 62 70

6000 361.4 Corso Cairoli,
Borgo Nuovo

YES Both 112 -46 70 50

2517 394.18 Corso Giacomo
Matteotti, Cen-
tro

NO - 65 -45 60 50

4467 441.2 Corso Giovanni
Agnelli, Borgo
Cina

NO - 79 -45 73 50

6911 793.39 Sottopasso
Statuto, San
Donato

NO - 118 -45 77 50

As observed in Table 12, the arcs with the highest difference during peak hours are represented
by motorway links. This outcome is expected, as the Turin motorway is typically congested during
peak hours.

6.4.2 Speed variation at arc level during all day

On average, the deviation with respect to the free flow speed is of -38%, calculated as the average
of the last column showed in Figure 56. Here as well, we can visualize the relative difference on
Qgis (Figure 59).
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Figure 59: Real speed deviation with respect to free flow speed, expressed in percentage
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Zooming out in the urban centre of Turin (Figure 60):

Figure 60: Real speed deviation with respect to free flow speed, expressed in percentage, zoom on
Turin urban centre
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Moreover we provide, in Table 12, a list of 10 arcs where there is the highest difference with
respect to the free flow speed, now considering the column ’delta speed’:

Table 12: 10 highest delta speed arcs in Turin

Arco L [m] Name Bidir Direction idcount delta s FFS s limit
6719 670.97 Corso Grosseto,

Borgo Vittoria
NO - 178 -70 100 50

2437 388.99 Strada
dell’Aeroporto,
Circoscrizione 6

NO - 65 -67 85 50

7217 504.64 Corso Giovanni
Agnelli, Borgo
Cina

NO - 91 -60 90 50

931 61.1 Strada Comu-
nale del Portone,
Mirafiori Nord

NO - 81 -58 60 50

1655 40.48 Lungo Stura
Lazio, Pietra
Alta

NO - 87 -55 66 50

4564 49.81 Piazzale
Costantino
Il Grande, Santa
Rita

NO - 273 -54 55 50

4623 39.6 Corso Belgio,
Vanchiglietta,
Circoscrizione 7

NO - 334 -49 50 50

2116 19.34 Corso Alessan-
dro Tassoni,
Martinetto

NO - 154 -49 52 50

2518 53.16 Corso Germano
Sommeiller, San
Salvario

NO - 82 -48 55 50

1521 54 Strada Val
San Martino,
Madonna del
Pilone

NO - 190 -46 54 50

6.4.3 Case study: Turin streets where the average speed is larger than 30 km/h

Furthermore, speed is often a topic of intense debate, particularly concerning travel safety and ef-
ficiency. In this context, the Italian city of Bologna, located in northwestern Italy, has introduced
a new initiative called “Città 30” (City 30) in January 16th, 2024 in the context of the approval
of the detailed urban traffic plan (PPTU, in italian Piano Particolareggiato del Traffico Urbano)
[7]. While the standard urban speed limit in Italy is 50 km/h, Bologna has become the first major
Italian city to implement a comprehensive 30 km/h speed limit across its entire municipal area
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in a systematic and widespread manner. This move aims to enhance road safety, improve urban
living conditions, and promote more sustainable mobility.
Opponents of the 30 km/h speed limit often present several arguments19, primarily focusing on the
perceived drawbacks of such policies in urban settings. These criticisms include concerns about
practicality, efficiency, economic impact, and individual freedoms. One of the most common argu-
ments is that lower speed limits lead to increased travel times, particularly for commuters who rely
on private vehicles. Critics argue that forcing cars to move at 30 km/h instead of 50 km/h could
slow down traffic, making daily commutes longer and less efficient, especially in larger cities where
congestion is already an issue. They contend that this could have a ripple effect on productivity,
as more time spent in traffic means less time available for work, family, or leisure activities.
They also state that there has been a increase of travel time even with public transport system.
Moreover they sustain that travelling slower, using low gears, can increase the environment pol-
lution. The municipality of Bologna recently, has published data which support the effectiveness
of this measure20, concerning road accident data recorded by the Local Police on roads within the
municipal territory of Bologna (excluding highways and the ring road) from January 15th, 2024,
to January 12th, 2025 (a 52-week period), compared to the average for the corresponding periods
of the two preceding years (January 17th, 2022 - January 15th, 2023, and January 16th, 2023 -
January 14th, 2024), show the following trends in particular:

• -13.10% total accidents;

• -48.72% fatalities;

• -11.08% injured persons;

• -9.78% accidents with injuries;

• -20.71% accidents without injuries;

• +36.00% persons in critical condition;

The environmental context is marked by a significant reduction in NO2(nitrogen dioxide) levels
recorded in 2024 at the ARPAE monitoring station in Porta San Felice. The average hourly value
of 29 µg/m3 recorded in 2024 (as of November 30th, 2024, the latest available data) represents a
29.3% decrease compared to the annual average for 2022–2023 (41 µg/m3). In absolute terms, this
is the lowest level recorded in the past 10 years.

19https://www.ilrestodelcarlino.it/bologna/cronaca/bologna-citta-30-ultime-notizie-sw2lqzoa
20https://www.comune.bologna.it/informazioni/citta-30-dati-6-mesi
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Basing on what we just said, it could be interesting to visualize in Turin, what are the arcs
where the mean speed on the arcs is greater than 30 km/h during peak hours (Figure 61). We used
the column ’Average speed arc’ of the file ’results arc level peak.xlsx’ introduced in 6.3.2 Increase
in travel times at arc level during all day.

Figure 61: Average speed on each arc, zoom on Turin

As observed, the arcs where the average speed is below 30 km/h are primarily concentrated in
Turin’s urban centre, with a few exceptions. This is not a result of any political decisions by the
municipality but rather a consequence of traffic congestion.

6.5 Increase of arc travel times at zonal level

To better reflect the zoning within Turin, from Appendix 9.5 of [1], as illustrated in Figure 62,
and the administrative boundaries of the municipalities21 surrounding Turin shown in Figure 8, we
created a new shapefile, ”zonetoealtricomuni.shp” presented in Figure 63. This shapefile defines
zones used to aggregate the travel times analysed in 6.3 Increase in travel times at arc level.

21https://geoportale.igr.piemonte.it/cms/

88



Figure 62: Zoning inside Turin
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Figure 63: Zoning of the study area
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This process resulted in a total of 84 zones. Using QGIS, we assigned each arc to its corre-
sponding zone and calculated the sum of the ’Average time wasted arc’ column within each zone
to determine the wasted time at the zonal level. This has been done both considering peak hours
and the entire day.

6.5.1 Increase of arc travel times at zonal level during peak hours

In this case, we aggregated at zonal level the ’Average time wasted arc’ from the file ’results arc level peak.xlsx’.
In reality, the time wasted could be strongly influenced by the extension of each zone, therefore by
the total length of arcs falling into each zone, so, we decided to ’normalize’ the time wasted by divid-
ing it per the total length of arcs inside each zone, getting a new variable ’unit time wasted zone’
expressed in minutes/veh/kilometres, thus the amount of time lost by each vehicle for each km of
road. We can visualize the new result in Figure 64:

Figure 64: Unit average time wasted for each zone during peak hours

We see that the zones in which most of the time is wasted due to congestion are those located inside
the central urban area of Turin (CENISIA,CENTRO, MADONNA DI CAMPAGNA, SAN SAL-
VARIO, VANCHIGLIA, REGIO PARCO BARCA, SAN PAOLO, CROCETTA, SANTA RITA,
BARRIERA DI MILANO, AURORA, MADONNA DEL PILONE, SAN DONATO) but also some
located outside Turin like Rivoli,Robassomero,Villastellone, Piobesi Torinese.
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6.5.2 Increase of arc travel times at zonal level during entire day

In this case, we aggregated at zonal level the ’Average time wasted arc’ from the file results arc level.xlsx.
(see Figure 65) We directly expressed the result in the column ’unit time wasted zone’ in min/ve-
h/km of road.

Figure 65: Unit average time wasted for each zone considering all day

As shown in Figure 65, the results align with previous findings, confirming that the most congested
areas are concentrated in the urban centre of Turin. However, congestion appears to be slightly
lower in the very centre and more pronounced in the surrounding areas. This may be due to the
fact that, during peak hours, a larger number of people travel toward the city centre for work or
study, whereas throughout the rest of the day, traffic conditions tend to be more balanced.

6.6 Increase of vehicular travel times at zonal level

As well as we did in 6.5 Increase of arc travel times at zonal level here we aggregate previous results
at the zonal level, but focusing on the wasted time by each vehicle inside each zone irrespective
of the arc that was travelled. Like before, we performed the analysis both for peak hours and the
entire day. Therefore, we summed up the above mentioned wasted times and divided by the number
of vehicles recorded inside each zone, getting a new variable ’wasted time zonal disaggregated’
expressed in minutes per vehicle.
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6.6.1 Increase of vehicular travel times at zonal level during peak hours

We can visualize the results in Figure 66:

Figure 66: Unit average time wasted for each zone during peak hours, expressed in minute per
vehicle

The results are coherent with the previous analysis carried out in the previous section, where
the worst zones are located mostly inside the central urban area of Turin, with the addition of
some external zones that are larger. One might consider normalising the time wasted inside each
zone based on the area within each zone, however such results would not have a very intuitive
meaning. It could also be interesting to consider the total time wasted inside each zone, based
on considerations done at the end of 6.3.2 Increase in travel times at arc level during all day. In
Figure 67 the reader can appreciate the result.
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Figure 67: Total time wasted for each zone during peak hours, expressed in hours

It is important to mention that we multiplied by the number of monitored vehicles. However, we
do not know the exact number of vehicles present in each area, so the result in this case should be
considered as an indicator.

6.6.2 Increase of vehicular travel times at zonal level during the whole day

We can visualize the results in Figure 68.
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Figure 68: Unit average time wasted for each zone, expressed in minute per vehicle per day

Instead, if we focus on total time wasted for each zone, not depending on number of vehicles
(Figure 69).
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Figure 69: Total time wasted for each zone during all day, expressed in hours

To better compare the results, since it’s difficult to interpret them only looking at Figures 66 and 68,
we created an Excel file ’confronto zonaldisaggregated.xlsx’ where we had initially three columns:
’ZONE’, ’wasted time zonal disaggregated (min/veh)’ and ’wasted time zonal disaggregated peak(min/veh)’.
The structure is presented in Figure 70.

Figure 70: Structure of ’confronto zonaldisaggregated.xlsx’

We calculated the ratio between ’wasted time zonal disaggregated peak’ and ’wasted time zonal disaggregated’.
to understand to which extent traffic conditions worsen during peak-hour traffic. A high ratio in-
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dicates that most traffic congestion is concentrated during peak hours, while a ratio close to one
suggests that traffic remains consistent throughout the day. Our analysis revealed that in the
central urban area of Turin, the ratio is, on average, close to one. This confirms the expected
scenario where traffic congestion is spread throughout the day, highlighting the need to manage
mobility demand, particularly during peak hours. Conversely, suburban areas exhibit the highest
ratios, indicating that traffic is primarily concentrated in peak hours. This pattern is likely driven
by commuter movements (pendolarism). For instance, Virle Piemonte has the highest ratio (29.3),
meaning that virtually all wasted time due to congestion occurs during peak hours. Vinovo, Tro-
farello, and San Salvario show ratios between 2 and 3, indicating that congestion in these areas
doubles during peak hours. This suggests that these zones are heavily influenced by commuter
flows or specific traffic patterns during peak times. On the other hand, zones located inside centre
urban area of Turin, represent a ratio next to one, meaning the problem of traffic is equally dis-
tributed along the day, so need to be taken important long term decisions. We provide in Figure
71 the graphic visualization of those comments.

Figure 71: Visualization of ratio between ’wasted time zonal disaggregated peak’ and
’wasted time zonal disaggregated’
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6.7 Speed measure for O/D relations between the zones introduced in
6.5 Increase of arc travel times at zonal level

Accessibility of an area is the easiness of reaching interest destinations.
Over the years, different models have been developed to give a measure of accessibility, in order
to represent the interaction between the transport system and land use.
In Figure 72, we present a table with a commonly accepted categorization of the possible alterna-
tives [4].

Figure 72: Classification of the accessibility measures reviewed from the literature, from [4].

In the context of opportunity-based models, we will measure accessibility by considering the speed.
Starting from the file ’results vehicle level.xlsx’ introduced in 6.1 Increase in travel times by vehicle
and by arc we used the columns ’Datetime partenza’ and ’Datetime arrivo’ to associate origin and
destination to each trip, based on the zoning proposed in 6.5 Increase of arc travel times at zonal
level. Four new columns have been created in a new file named ’origin destination.xlsx’ named
respectively ’zone origin’ (containing the id of the zone), ’zone O’ (containing the name of the
zone), ’zone destination’ and ’zone D’.
By means of those columns, we created the origin/destination matrix, that we cannot report here
entirely, because it is an 84x84 matrix. We only report an extract in Figure 73.

Figure 73: Origin/Destination matrix, from ’origin destination.xlsx’
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Then, by means of the column ’speedKmh’ present among the characteristics of each trip, as we
can recall from 3 HCD Metadata, we created another 84x84 matrix, where each cell contains the
average speed of all the trip sharing the same origin destination pattern. The partial structure of
this new matrix can be seen in Figure 74, where the first row and the first column are related to
trips which have either the origin or the destination (or both, in case of the top left cell) outside
the study area.

Figure 74: Average speed matrix, from ’origin destination.xlsx’

At the end of each row, we have the average weighted speed (weighted with the amount of move-
ments for each cell) of all the trip starting from that specific zone. For example if we consider
the zone 1 ’Airasca’, all the trip starting from there, have an average weighted speed of 46 km/h.
Conversely, at the end of each column, we have the average weighted speed of all trip arriving to
that specific zone.
To represent those results, we connect all pairs of centroids with lines in the shapefile ’desire lines.shp’,
whose colour is representing a specific range of the above average speeds. Since we have 84*84=7056
lines, we cannot represent them all, so we started by representing only the desire lines relative to
Turin urban area, filtered with a number of recorded trips of at least 250 to have meaningful
results. The result can be appreciated in Figure 75.
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Figure 75: Desire lines of Turin

As observed, most movements within Turin occur at speeds ranging from 9 to 23 km/h, indicating
a significant impact of congestion on travel. Then, we considered Turin as a whole big zone, and
plotted desire lines of movements towards Turin, with at least 250 trips, in Figure 76:
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Figure 76: Desire lines towards Turin

Overall, speeds are higher when trips originate outside Turin and end within the city. This is likely
due to the greater availability of roads with freer-flowing traffic compared to the more congested
urban streets in the city center.

6.8 Increase in travel times for different travellers’ categories

We are interested also in understanding the characteristics of the trip maker, therefore, we selected
3 independent classes:

• Vehicle typology (private car or fleet);

• Holder (male, female, legal entity) ;

• Gender and age of holder (if not legal entity): male or female crossed with 18-25 / 25-35 /
35-45 / 45-55 / 55-65 / >65;

We used the excel file introduced in 6.1 Increase in travel times by vehicle and by arc,
’results vehicle level.xlsx’ and created pivot tables. Starting by the vehicle typology, we summed
up the variables ’wasted time vehicle’ for each vehicle type to get the total time wasted and
’tt disaggregate’ to get the total travel time. Most of time wasted is attributable to private cars
(85%). However, the highest percentage can be due to the higher number of private cars, so
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effectively, what we have to look at, is not the absolute number but we have to divide by the count
of elements inside each class, getting the average wasted time per type of vehicle; moreover we
also plotted the average speed as the ratio between the total distance traveled and the total travel
time, the result can be apreciated in Figure 77:

Figure 77: Pivot table with vehicle type characteristics (private or commercial), from ’re-
sults vehicle level.xlsx’

Of course private cars are those which travel more, they waste more time in congestion and have
a lower average speed, this could be due to the fact that some commercial vehicles could have
reserved lanes for example. Concerning the gender, we did the same, and we report the pivot table
in Figure 78:

Figure 78: Pivot table with gender characteristics, from ’results vehicle level.xlsx’

On average, males waste more time in congestion rather than females and have a lower average
speed.
Now, at the end, we have to cross the gender with the age and to have a better visualization and
to make comparison between each class, we constructed a three entry table, where the variables
plotted in the third dimension of the table are the following five:

• km traveled;

• Total travel time (h);

• Total wasted time (h);

• Average wasted time (min/class);

• Average speed (km/h);

The results are plotted in Figure 79.
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Figure 79: Three entry pivot table crossing gender and age ranges, from ’results vehicle level.xlsx’

Focusing on females, the 45-55 age group travels the most (33,637 km) and experiences the
highest total wasted time (3,391 hours). However, on average, women over 65 spend the most time
in congestion, with an average delay of 10 minutes per trip.
For males, those aged 55-65 travel the most, while the 45-55 age group accumulates the highest
total wasted time (7,210 hours), likely due to travelling more during peak hours. On average,
however, the 35-45 age group experiences the longest delays, wasting 16 minutes per trip.
Comparing genders, men travel more and experience higher total wasted time overall. This could
be mostly due to different habits, in fact according to [11], women use more public transport rather
than men.
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7 Conclusions

In an increasingly connected world where big data has become a vital resource, floating car data
could provide us a reliable support in managing traffic and planning the transport system.
Starting with the fundamental and straightforward question: ”Which arcs in Turin experience the
highest time loss due to congestion?” we followed a structured methodology consisting on three
fundamental steps: raw data preprocessing, map matching and extrapolation of results. With
raw data preprocessing, we started by treating a dataset of GPS traces of vehicles travelling in
Turin that was provided by TIM. Two different kinds of data were available, namely Historical
Car Data (HCD) and Floating Car Data (FCD). The former, that are assembled the day after the
measurement campaign at 9 AM, are more compact and are divided in heading (characteristics of
the trip along with trip maker characteristics) and details (spatial and temporal information on the
successive position of the vehicle during the trip). Their processing enabled us to determine the
travel times required to traverse each arc of the graph under ideal conditions, which we assessed
exclusively during nighttime. With one year of data available, we based our calculations on 102
out of 366 days. While including all sampled days would have yielded even more precise results, we
believe the current dataset provides a solid foundation and remains sufficiently reliable. The latter
data, namely the FCD, were utilized to assess congestion levels and derive insights. This analysis
was conducted on only four days out of the entire year due to computational constraints. To ensure
a more homogeneous analysis, we followed a structured sampling plan when selecting these days.
Naturally, using the complete dataset would have provided a more representative picture of the
overall situation. However, this type of analysis can be performed on a single day or over an entire
year, depending on the specific objectives. All those data have been imported on Qgis, where each
vehicle was represented with a GPS trace, that naturally had to be matched with the arcs.
Here comes the map matching phase, in which, through a series of steps, we were able to associate
each point to the correct arc. Here one limitation was due to the fact that it is not convenient
to consider a graph where all the arcs have been represented, rather than focusing on a graph
representing only the main roads, so that we had to discard a good portion of data; expanding the
dataset to include more roads would further enhance the accuracy and applicability of the analysis.
During this phase we exploited the functionalities of Qgis and the API of Openrouteservice (ORS)
to snap the points to the graph and then correctly associate the correct arc with its main geometric
and functional characteristics to each point. Once did this, we were ready with the last part, thus
the extrapolation of results. This last part, we can say it’s divided in two phases, the first one, little
bit more addressing from a computational view point, where we exploited the matched points, to
determine speed and travel times of each arc through a series of algorithms properly explained in
each paragraph; the second one, where we used those travel times and speed to extract results and
make our consideration, which is the most interesting part of this work, where we practically meet
the objective of the thesis.

We came up with a set of tables and images that identified the most critical arcs and zones
within the study area in terms of time losses caused by congestion.
We carried analysis at three main levels, vehicle, arcs and zones.
At vehicle level, we analysed the distribution of wasted travel time for each vehicle on each arc,
highlighting a situation in which the network is generally efficient with some exceptions where
the wasted times were really high. At arc level, we analysed the excess in travel times to travel a
certain arc with respect to the free flow travel time, both during only peak hours or considering the
entire day. Overall each analysis showed what are the most critical arcs from the two viewpoints,
the average time wasted by each vehicle, which give us a measure of how much time is wasted on
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average from one vehicle passing from there, and the total time wasted, which is, we can say, a
more complete information, because it takes into account also of the importance of the single arc.
In fact, if on a certain arc the time lost is for example 100 minutes for each vehicle but only few
vehicle passes from there, probably the arc has some problem but this is not affecting the overall
social benefit too much. On the other hand, there could be some arcs where the average time
wasted is 10 minutes per vehicle, but a lot of vehicles passes from there, in this case, the problem
is related not to the arc itself but to the traffic demand, and this is affecting a lot the congestion
on the network. We faced results confirming our statement, for instance Corso Toscana is the road
with the highest average time wasted by each vehicle, but effectively, Corso Regina Margherita, is
the road where most time is wasted, so from a transport planner view point, if we want to solve
problem of congestion, we have to act on the second mentioned road.
Moreover, the analysis carried out during peak hours compared with results of analysis carried out
during the entire day, allowed us to understand if the problem of traffic is more related with peak
hours or if it is constant during all day, to understand with which kind of policy we have to act.
At zonal level, inside Turin we used the zoning according to neighbourhood while out from Turin
we simply considered the administrative boundaries of each municipality. For each zone, we carried
out two analyses with a different level of aggregation. Firstly, we aggregated the total time wasted
on each arc at zonal level dividing it by the total length of arcs because the result otherwise could
be strongly affected from this aspect, and we determined the zones where most time is wasted
due to congestion. Secondly, we aggregated the wasted time at vehicular level, according to the
zone where they travelled, and divided by the number of vehicles inside each zone, determining the
most congested zones. Both analyses gave the same results, with the zones of the central urban
area of Turin which are the most congested. It is however important to consider that, by means
of the analysis carried out during peak hours and during the whole day, we noticed there are some
zones which are green (meaning not too much time is wasted) if consider the whole day, that
become red (meaning a lot of time is wasted) if only peak hours are considered. This means that
the traffic is there concentrated during peak hours, maybe because there is a lot of pendolarism.
For example, Virle piemonte, Vinovo and Trofarello, are municipalities with the just mentioned
characteristic. This information could be helpful to manage traffic for administrators. So,despite
computational limitations, our findings were both reasonable and insightful. Concerning policy
implications, municipalities could use HCD to conduct an analysis similar to ours and then leverage
real-time FCD for short-term decision-making. Alternatively, they could analyse an entire year of
FCD to inform long-term strategies and identify persistent network issues.
Finally, there is still much work to be done in this field, but this methodology proves to be a highly
effective tool for managing traffic and infrastructure, both in the short and long term.
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APPENDIX

1 Map Matching code

Here is the Python code we developed with the support of ChatGPT to carry out the first step of
map matching:

import csv
import j son
import r eque s t s

# Imposta l a tua ch iave API d i OpenRouteService
ap i key = ’5 b3ce3597851110001cf624889a69173e7334d9892d083113bfcf97d ’

# Percorso a l f i l e CSV
c s v f i l e p a t h = ’C: / Users /Asus/Desktop/ t e s i /SampleData190115 7 8/

SampleData190115 7 8/merged . csv ’

# Endpoint d e l l ’ API d i OpenRouteService per i l map snapping
o r s u r l = ’ https : // api . open rou t e s e rv i c e . org /v2/snap/ dr iv ing−car ’

# Dimensione massima de l batch per r i s p e t t a r e i l i m i t i d e l l ’ API
ba t ch s i z e = 2000

# Li s t a per memorizzare l e r i gh e o r i g i n a l i da l CSV
rows = [ ]

# Leggere i l f i l e CSV ed e s t r a r r e tu t t e l e co lonne
with open ( c s v f i l e p a t h , mode=’r ’ ) as c s v f i l e :

r eader = csv . DictReader ( c s v f i l e )
a l l l o c a t i o n s = [ ]

# Es t ra r r e tu t t e l e coo rd ina t e da l f i l e CSV
f o r row in reader :

# Salva l a r i g a o r i g i n a l e
rows . append ( row )
# Aggiungi s o l o l e coo rd ina t e per l ’ i n v i o a l l ’ API
a l l l o c a t i o n s . append ( [ f l o a t ( row [ ’ l ong i tude ’ ] ) , f l o a t ( row [ ’

l a t i t ude ’ ] ) ] )

# Sudd iv id i l e coo rd ina te in batch p i p i c c o l i
batches = [ a l l l o c a t i o n s [ i : i + ba t ch s i z e ] f o r i in range (0 , l en (

a l l l o c a t i o n s ) , b a t ch s i z e ) ]

# I n i z i a l i z z i amo una l i s t a per memorizzare tu t t e l e r i s p o s t e d e l l ’ API
a l l s n app ed po i n t s = [ ]
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# Inv ia ogni batch separatamente
f o r batch num , batch in enumerate ( batches ) :

j s on data = {
” l o c a t i o n s ” : batch

}

# Convert i r e i da t i in formato JSON
json output = j son . dumps( j son data , indent=4)
p r i n t ( f ” Inviando batch {batch num + 1} su { l en ( batches ) } . . . ” )

# Inv i a r e l a r i c h i e s t a POST a l l ’ API d i OpenRouteService
re sponse = reque s t s . post (

o r s u r l ,
headers={

’ Author izat ion ’ : api key ,
’ Content−Type ’ : ’ a pp l i c a t i o n / json ’

} ,
data=j son output

)

# Ve r i f i c a se l a r i c h i e s t a andata a buon f i n e
i f r e sponse . s t a tu s code == 200 :

p r i n t ( f ”Batch {batch num + 1} e s e gu i t o con succ e s s o ! ” )
r e sponse data = response . j son ( )

# Es t r a i l e coo rd ina t e abbinate s o t t o l a ch iave ’ l o ca t i on ’ , se
e s i s t e

f o r snapped in re sponse data [ ’ l o c a t i on s ’ ] :
i f snapped and ’ l o ca t i on ’ in snapped : # Ve r i f i c a che ’

l o ca t i on ’ e s i s t a e non s i a None
a l l s n app ed po i n t s . append ( snapped [ ’ l o ca t i on ’ ] ) #

Aggiungi s o l o l e coo rd ina t e abbinate
e l s e :

# Se ’ l o ca t i on ’ non e s i s t e o None , i n s e r i s c i v a l o r i d i d e f au l t
a l l s n app ed po i n t s . append ( [ None , None ] )

# Puoi s c e g l i e r e a l t r i v a l o r i d i d e f au l t
e l s e :

p r i n t ( f ”Errore n e l l a r i c h i e s t a per i l batch {batch num + 1} : {
r e sponse . s t a tu s code }”)

p r i n t (”Messaggio d i e r r o r e : ” , r e sponse . t ex t )
break # Interrompi in caso d i e r r o r e

# Aggiungere l e nuove coo rd ina t e abbinate a c ia scuna r i g a de l CSV
f o r i , snapped in enumerate ( a l l s n app ed po i n t s ) :

rows [ i ] [ ’ snapped long i tude ’ ] = snapped [ 0 ] # Prima coord inata (
l ong i tude )
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rows [ i ] [ ’ snapped la t i tude ’ ] = snapped [ 1 ] # Seconda coord inata (
l a t i t u d e )

# Sc r i v e r e i l nuovo f i l e CSV con tu t t e l e co lonne o r i g i n a l i e l e
coo rd ina te abbinate

output csv path = ’C: / Users /Asus/Desktop/ t e s i /SampleData190115 7 8/
SampleData190115 7 8/ snapped output . csv ’

with open ( output csv path , mode=’w’ , newl ine = ’ ’) as c s v f i l e :
f i e ldnames = l i s t ( rows [ 0 ] . keys ( ) ) # Ott iene tu t t e l e co lonne

o r i g i n a l i e l e nuove coord ina t e
wr i t e r = csv . DictWriter ( c s v f i l e , f i e ldnames=f i e ldnames )

wr i t e r . wr i t eheader ( )
wr i t e r . wr i terows ( rows )

p r i n t ( f ” R i su l t a t o f i n a l e s a l va t o in ’{ output csv path } ’ ” )

2 Counting deviceId-Arco Occurrences in R

Here is the R code developed with the support of ChatGPT to counts how many times one vehicle
occur on a certain arc during same day:

# Carica i pa c che t t i n e c e s s a r i
l i b r a r y ( r eadx l )
l i b r a r y ( dplyr )
l i b r a r y ( openxlsx )

# Sp e c i f i c a i l p e r co r so de l f i l e Excel
f i l e p a t h <− ’C: / Users /Asus/Desktop/ t e s i / s h ap e f i l e who l e d a t a s e t /

matched jan−apr . x lsx ’

# Leggi i l da tase t da l f i l e Excel
df <− r e ad ex c e l ( f i l e p a t h )

# Assumiamo che i l da ta se t contenga una colonna ’ Datetime ’ da cu i
e s t r a r r e i l g i o rno

# Crea una nuova colonna ”Giorno” basata su l g io rno de l timestamp
df <− df %>%

mutate ( Giorno = as . Date ( Datetime ) )

# Conta quante vo l t e un Dev ice Id a s s o c i a t o a un Arco in uno s t e s s o
Giorno

count d f <− df %>%
group by ( Device Id , Arco , Giorno ) %>%
summarise ( counts = n ( ) ) %>%
ungroup ( )
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# Aggiungi l a colonna de l contegg io a l data se t o r i g i n a l e
d f w i th count s <− df %>%

l e f t j o i n ( count df , by = c (” Dev ice Id ” , ”Arco ” , ”Giorno ”) )

# Sov r a s c r i v i i l f i l e Excel o r i g i n a l e con i da t i f i l t r a t i
wr i t e . x l sx ( d f w i th count s , f i l e p a t h , ove rwr i t e = TRUE)

cat (” F i l e Excel agg io rnato con i punt i f i l t r a t i : ogni Arco ha almeno 2
punt i n e l l o s t e s s o g io rno .\n”)

3 Computation of average number of visits on each arc

Here is the R script, developed with the support of ChatGPT, to count the average number of
visit on each arc:

# Carica i pa c che t t i n e c e s s a r i
l i b r a r y ( r eadx l )
l i b r a r y ( dplyr )

# Percorso de l f i l e Excel
f i l e p a t h <− ”C: / Users /Asus/Desktop/ t e s i / r e c ap sp e r imen t a l s hp ex c e l /

matched processed . x l sx ”

# Carica i l f i l e Excel
df <− r e ad ex c e l ( f i l e p a t h , shee t=”FALSO”)

# Step 1 : Raggruppa per ’Arco ’ e conta quante vo l t e s t a t o v i s i t a t o
e da quant i dev i c e Id d i v e r s i

a r c o s t a t s <− df %>%
group by (Arco ) %>%
summarise (

numero v i s i t e = n ( ) , # Conta quante vo l t e l ’ arco s t a t o
v i s i t a t o ( v i s i t e t o t a l i )

numero dev ice id = n d i s t i n c t ( dev i c e Id ) # Conta quant i dev i c e Id
un i c i hanno v i s i t a t o l ’ arco

)

# Step 2 : Ordina i r i s u l t a t i per ’Arco ’
a r c o s t a t s <− a r c o s t a t s %>%

arrange (Arco )

# Vi sua l i z z a i r i s u l t a t i
p r i n t ( a r c o s t a t s )

# Step 3 : Se d e s i d e r i s a l v a r e i r i s u l t a t i in un f i l e Excel
l i b r a r y ( w r i t e x l )
w r i t e x l s x ( a r c o s t a t s , ”C: / Users /Asus/Desktop/ t e s i / a r c o s t a t s . x l sx ”)
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4 Computation of distances on the graph

Here is the Python script, developed with the support of ChatGPT, to measure the distances
among points on the graph:

import geopandas as gpd
from shape ly . geometry import Point
import pandas as pd

# 1 . Caricamento de i da t i da l g ra f o e d a l l e t r a c c e GPS
a r c s gd f = gpd . r e a d f i l e (”C: / Users /Asus/Desktop/ t e s i /

r e c ap sp e r imen t a l s hp ex c e l / g raph r ep ro j e c t ed . shp ”) # Shap e f i l e con
a r ch i de l g ra f o

gps gd f = gpd . r e a d f i l e (”C: / Users /Asus/Desktop/ t e s i /
s h ap e f i l e who l e d a t a s e t /matched processed jan−apr . shp ”) # Shap e f i l e
con t r a c c e GPS

# 2 . Creaz ione d i un d i z i o n a r i o per mappare c i a s cun Arco a l l a sua
geometr ia e lunghezza

a r c s d i c t = { s t r ( row . Arco ) : { ’ geometry ’ : row . geometry , ’ length ’ : row .
geometry . l ength } f o r , row in a r c s gd f . i t e r r ows ( ) }

# 3 . Raggruppamento d e l l e t r a c c e GPS per giorno , dev i c e Id e datet ime
gps grouped = gps gd f . groupby ( [ ’ Giorno ’ , ’ Device Id ’ , ’ Arco ’ ] )

# 4 . Ca lco lo d e l l e d i s t anz e su l g ra f o t ra i punt i s u l l o s t e s s o arco
d i s t an c e s = [ ] # L i s t a per s a l v a r e i r i s u l t a t i

f o r ( g iorno , d ev i c e i d , a r c i d ) , group in gps grouped :
# Ordina per datet ime
group = group . s o r t v a l u e s ( by=’Datetime ’ )

# Prendi l a geometr ia d e l l ’ arco co r r i spondente da l d i z i o n a r i o
a rc data = a r c s d i c t . get ( s t r ( a r c i d ) )
i f a r c data i s None :

cont inue # Se l ’ arco non e s i s t e , passa o l t r e
arc geom = arc data [ ’ geometry ’ ]
a r c l e ng th = arc data [ ’ length ’ ]

# I t e r a su i punt i c on s e cu t i v i
f o r i in range ( l en ( group ) − 1) :

# Coordinate e i n f o rmaz i on i de i punt i c on s e cu t i v i
p1 , p2 = group . geometry . i l o c [ i ] , group . geometry . i l o c [ i + 1 ]
datetime1 , datet ime2 = group . Datetime . i l o c [ i ] , group . Datetime .

i l o c [ i + 1 ]
speed1 , speed2 = group . SpeedKmh . i l o c [ i ] , group . SpeedKmh . i l o c [ i

+ 1 ]
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# Calco la l a po s i z i on e de i punt i GPS lungo l a geometr ia d e l l ’
arco

po s i t i o n p1 = arc geom . p r o j e c t ( p1 )
po s i t i o n p2 = arc geom . p r o j e c t ( p2 )

# Calco la l a d i s tanza lungo l a geometr ia d e l l ’ arco
d i s t ance = abs ( po s i t i o n p2 − po s i t i o n p1 )

# Calco la l a d i s tanza t ra i l primo punto e i l nodo d i i n i z i o
d i s t a n c e t o s t a r t = po s i t i on p1

# Calco la l a d i s tanza t ra i l secondo punto e i l nodo d i f i n e
d i s t an c e t o end = ar c l eng th − po s i t i o n p2

# Aggiungi l e i n f o rmaz i on i a l d i z i o n a r i o de i r i s u l t a t i
d i s t an c e s . append ({

’ Giorno ’ : g iorno ,
’ Device Id ’ : d ev i c e i d ,
’ Arco ’ : a r c id ,
’ Datetime1 ’ : datetime1 ,
’ Datetime2 ’ : datetime2 ,
’ Speed1 ’ : speed1 ,
’ Speed2 ’ : speed2 ,
’ Distance ’ : d i s tance ,
’ Arc Length ’ : a r c l eng th ,
’ D i s t ance to S ta r t ’ : d i s t a n c e t o s t a r t ,
’ Distance to End ’ : d i s t an c e t o end

})

# 5 . Creaz ione d i un DataFrame f i n a l e con i r i s u l t a t i
d i s t a n c e d f = pd . DataFrame ( d i s t an c e s )

# 6 . Sa lva tagg io de l r i s u l t a t o in un f i l e CSV
output path = ”C:/ Users /Asus/Desktop/ t e s i / d i s t a n z e d e v i c e a r c o g i o r n o .

csv ”
d i s t a n c e d f . t o c sv ( output path , index=False )
p r i n t ( f ” R i su l t a t o s a l va t o in : { output path }”)

5 Computation of points’ relative position on the arcs

Here is the Python script, developed with the support of ChatGPT, to determine the relative
position of the points on each arc, in order to estimate the free flow speed:

import geopandas as gpd
import pandas as pd

# Caricamento de i da t i d e g l i a r ch i e de i punt i GPS
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a r c s gd f = gpd . r e a d f i l e (”C: / Users /Asus/Desktop/ t e s i /
r e c ap sp e r imen t a l s hp ex c e l / g raph r ep ro j e c t ed . shp ”) # S o s t i t u i r e
con i l pe r co r so c o r r e t t o

gps gd f = gpd . r e a d f i l e (”C: / Users /Asus/Desktop/ t e s i /
shape f i l e who l eda t a s e t c opy /merged matched processed . shp ”) #
S o s t i t u i r e con i l pe r co r so c o r r e t t o

p r i n t ( gps gd f . columns )
p r i n t ( a r c s gd f . columns )

# Diz i ona r i o per a s s o c i a r e c i a s cun arco a l l a geometria , lunghezza e
v e l o c i t

a r c s d i c t = {
s t r ( row . Arco ) : {

’ geometry ’ : row . geometry ,
’ length ’ : row . geometry . length ,
’Vf kmh ’ : row [ ’ Vf [km/h ] ’ ] ,
’ Main Class ’ : row . Main Class # Aggiunge l a colonna Main Class

}
f o r , row in a r c s gd f . i t e r r ows ( )

}

# Li s ta per r a c c o g l i e r e i r i s u l t a t i
po in t s = [ ]

# Raggruppa i punt i GPS per dev i c e Id e Arco
gps grouped = gps gd f . groupby ( [ ’ Giorno ’ , ’ Device Id ’ , ’ Arco ’ ] )

f o r ( day , d ev i c e i d , a r c i d ) , group in gps grouped :
# Ordina i punt i de l gruppo per dateTime
group = group . s o r t v a l u e s ( by=’Datetime ’ )

# Ott i en i l a geometria , l a lunghezza e l a v e l o c i t d e l l ’ arco da l
d i z i o n a r i o

a rc data = a r c s d i c t . get ( s t r ( a r c i d ) )
i f a r c data i s None :

cont inue # Passa o l t r e se l ’ arco non trovato
arc geom = arc data [ ’ geometry ’ ]
a r c l e ng th = arc data [ ’ length ’ ]
a r c speed = arc data [ ’ Vf kmh ’ ]
r o a d c l a s s = arc data [ ’ Main Class ’ ] # V e l o c i t da l d i z i o n a r i o

# I t e r a su i punt i de l gruppo
f o r , row in group . i t e r r ows ( ) :

po int = row . geometry
datet ime = row . Datetime # Data e ora de l punto
speed = row [ ’ SpeedKmh ’ ] # V e l o c i t i s t an tanea d i re t tamente

da l f i l e
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# Calco la l a d i s tanza de l punto da l l ’ i n i z i o d e l l ’ arco
d i s t a n c e t o s t a r t = arc geom . p r o j e c t ( po int )

po in t s . append ({
’ Device Id ’ : d ev i c e i d ,
’ Arco ’ : a r c id ,
’ d i s t a n c e t o s t a r t ’ : d i s t a n c e t o s t a r t ,
’ speed ’ : speed ,
’ Datetime ’ : datetime ,
’ a r c l eng th ’ : a r c l eng th , # Lunghezza de l l ’ arco
’Vf kmh ’ : arc speed ,
’ Main Class ’ : r o a d c l a s s })

# Creazione d i un DataFrame con i r i s u l t a t i
p o i n t s d f = pd . DataFrame ( po in t s )

# Sa lva tagg io in un f i l e CSV
output po in t s path = ”C:/ Users /Asus/Desktop/ t e s i /

po i n t s w i t h d i s t an c e s s p e ed l e n g th da t e t ime . csv ” # S o s t i t u i r e con
i l pe r co r so de s i d e r a t o

p o i n t s d f . t o c sv ( output po int s path , index=False )
p r i n t ( f ” R i su l t a t o s a l va t o in : { output po in t s path }”)

6 Calculation of mean travel time for each deviceId on

each arc

Here is the Python script, developed with the support of ChatGPT, to determine the average
travel time of each deviceId traveling on the same arc:

l i b r a r y ( dplyr )

# Leggi i l f i l e CSV
# S o s t i t u i s c i ’ p e r c o r s o d e l f i l e . csv ’ con i l pe r co r so e f f e t t i v o de l

tuo f i l e
data <− read . csv (”C: / Users /Asus/Desktop/ t e s i /

r e c ap sp e r imen t a l s hp ex c e l / d i s t an z e e l a b o r a z i o n e . csv ”)

# Raggruppamento per Arco e dev i c e Id e c a l c o l o d e l l a media d i TT. . min
r i s u l t a t i <− data %>%

group by (Arco , dev i c e Id ) %>%
summarise (media TT min = mean(TT. . min . , na . rm = TRUE) )

# Aggiungi l a colonna a l datase t o r i g i n a l e
# Ef f e t tua un j o i n per un i r e i l tempo medio a l data se t o r i g i n a l e
data <− data %>%
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l e f t j o i n ( r i s u l t a t i , by = c (”Arco ” , ” dev i c e Id ”) )

# Vi sua l i z z a i r i s u l t a t i
p r i n t ( head ( data ) )

# Salva i l da ta se t agg io rnato con l a nuova colonna
data <− wr i t e . csv ( data , ”C: / Users /Asus/Desktop/ t e s i /

r e c ap sp e r imen t a l s hp ex c e l / da ta s e t agg i o rna to . csv ” , row . names =
FALSE)
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7 Different categories of Map Matching methods

Figure 80: Review of Map Matching methods, from [12]

8 Association of deviceId to correct Trip

import pandas as pd

# Per co r s i de i f i l e CSV
f i l e v i a g g i = ”D:/NAS/ViaggiHCD/ po l i t o v i a g g i 2 0 1 9 1 2 1 2 . csv ”
f i l e t r a c c e = ”D:/NAS/12−12 FCD/MERGED/merged FCD 20−24 1212 . csv ”

# 1 Car i ca re i f i l e con par s ing d e l l e date
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d f v i a g g i = pd . r ead c sv ( f i l e v i a g g i , pa r s e da t e s =[ ’ Datet ime partenza ’ ,
’ Datet ime arr ivo ’ ] )

d f t r a c c e = pd . r ead c sv ( f i l e t r a c c e , pa r s e da t e s =[ ’ dateTime ’ ] )

# 2 As s i c u r a r s i che g l i ID de i d i s p o s i t i v i s i ano s t r i n gh e per
e v i t a r e problemi d i j o i n

d f v i a g g i [ ’ Device Id ’ ] = d f v i a g g i [ ’ Device Id ’ ] . astype ( s t r )
d f t r a c c e [ ’ dev ice Id ’ ] = d f t r a c c e [ ’ dev ice Id ’ ] . astype ( s t r )

# 3 Unire i da t i basandos i s u l dev i c e Id mantenendo TUTTE l e
t r a c c e GPS

df merge = d f t r a c c e . merge ( d f v i a g g i , l e f t o n =’ dev ice Id ’ , r i gh t on=’
Device Id ’ , how=’ l e f t ’ )

# 4 Aggiungere una colonna che i nd i c a se l a t r a c c i a a s s o c i a t a
a un v i agg i o

df merge [ ’ A s s o c i a t o a v i agg i o ’ ] = (
( df merge [ ’ dateTime ’ ] >= df merge [ ’ Datet ime partenza ’ ] ) &
( df merge [ ’ dateTime ’ ] <= df merge [ ’ Datet ime arr ivo ’ ] )

) . f i l l n a ( Fa l se ) # Se non c ’ un v iagg io , r i emp i r e con Fal se

# 5 Rimuovere l a colonna dup l i c a ta ’ Device Id ’ p o i c h g i
p r e s ente come ’ dev ice Id ’

df merge . drop ( columns=[ ’ Device Id ’ ] , i np l a c e=True , e r r o r s =’ ignore ’ )

# 6 Sa lvare i l data se t un i to con TUTTE l e t r a c c e GPS
o u t p u t f i l e = ”C:/ Users /Asus/Desktop/ t e s i / f c d e x c e l /

daimportare12122019 /merged FCD 20−24 1212+. csv ”
df merge . t o c sv ( o u t pu t f i l e , index=Fal se )

p r i n t ( f ” F i l e ’{ o u t p u t f i l e } ’ c r ea to con succ e s so ! ” )
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